import awswrangler as wr import pandas as pd import boto3 import os def lambda_handler(event, context): s3 = boto3.client('s3') s3_resource = boto3.resource('s3') comprehend = boto3.client('comprehend') t_prefix = 'quicksight/data/cta' paginator = s3.get_paginator('list_objects_v2') pages = paginator.paginate(Bucket=os.environ['classifierBucket'], Prefix='comprehendInput') a = [] cols = ['transcript_name', 'cta_status'] df_class = pd.DataFrame(columns=cols) comprehendEndpoint = comprehend.list_endpoints( Filter={ 'Status': 'IN_SERVICE', } ) for item in comprehendEndpoint.get('EndpointPropertiesList'): if 'document-classifier-endpoint' in item['EndpointArn']: endpointArn = item['EndpointArn'] for page in pages: for obj in page['Contents']: transcript_file_name = obj['Key'].split('/')[1] temp = s3_resource.Object(os.environ['classifierBucket'], obj['Key']) transcript_content = temp.get()['Body'].read().decode('utf-8') transcript_truncated = transcript_content[-400:] response = comprehend.classify_document(Text=transcript_truncated, EndpointArn=endpointArn) a = response['Classes'] tempcols = ['Name', 'Score'] df_temp = pd.DataFrame(columns=tempcols) for i in range(0, 2): df_temp.loc[len(df_temp.index)] = [a[i]['Name'], a[i]['Score']] cta = df_temp.iloc[df_temp.Score.argmax(), 0:2]['Name'] df_class.loc[len(df_class.index)] = [transcript_file_name.strip('en-').strip('.txt'), cta] wr.s3.to_csv(df_class, path='s3://' + os.environ['classifierBucket'] + '/' + t_prefix + '/' + 'cta_status.csv')