HDF  ` hTREEHEAPX0model_weightsoptimizer_weights( Hkeras_version @backend  H model_config Htraining_configbHTREE(HEAPX8densedense_1dense_2dropoutdropout_1  h layer_names densedropoutdense_1dropout_1dense_2HGCOL2.3.0-tf tensorflow{"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "Dense", "config": {"name": "dense", "trainable": true, "batch_input_shape": [null, 31], "dtype": "float32", "units": 31, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "RandomNormal", "config": {"mean": 0.0, "stddev": 0.05, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 15, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "RandomNormal", "config": {"mean": 0.0, "stddev": 0.05, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout_1", "trainable": true, "dtype": "float32", "rate": 0.2, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_2", "trainable": true, "dtype": "float32", "units": 2, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "RandomNormal", "config": {"mean": 0.0, "stddev": 0.05, "seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}], "build_input_shape": [null, 31]}}b{"loss": "binary_crossentropy", "metrics": ["accuracy"], "weighted_metrics": null, "loss_weights": null, "sample_weight_mode": null, "optimizer_config": {"class_name": "Adam", "config": {"name": "Adam", "learning_rate": 0.0010000000474974513, "decay": 0.0, "beta_1": 0.8999999761581421, "beta_2": 0.9990000128746033, "epsilon": 1e-07, "amsgrad": false}}} tensorflow2.3.0-tfSNOD$aLalc @backend  Hkeras_versionTREE`"HEAPX`denseHSNOD @5,5L7; H,J ZZ\(] ^,` @ X weight_namesdense/kernel:0dense/bias:0(  $3_h!TREE#HEAPX "kernel:0bias:08SNOD!SNOD3hpsǽ^Q ?E[?.?EFU8U9D>E>w?兿*_cɬ>Ѧ}fRti?I?o) ջˉH񟓾INw?MC8ľA=?0i>3>s{־17nw`Ҿuv>?}$Cr g]翅X5 >D'CBfuᾬDK矿M>vmI[=U˾M8?,DCzhھWv4ҩQpȿ(>B?^߾&v3/1>&=2+ՙ8t޾lQC}R=Kb[>ľ]'P9?XI>0оl5 sJ?EL"ž.n=m :nq [_显־XRzw=vb>{in[><>6a_=E.v>˓*^s)D=RNE@aӟG^"X۾郾?bi1P.\I>|uQ5f=>>K.蓿<̺yӪs_߾Q. []o y=)K'<&|>o>>~,3HѾo3=#B>4Mk>^=2HnUT0}WM%9lUQ8S>%˾0y%8v=:=E*=T<6>x= >jI&8>c;Ǹ q_1m%5" %㸷wFPڻ=fKIwL=2[| ? XFu[dd Y{oΓmLa(Qؑ0sﯼT<*S@r Ed?XX=Nurm"s:Wо2eľ?cE]\侗'RN-Hܑ붽gnuCp|Sq0u!Wľw)v4Jlή&qO'@SnZ1=I-ܾdZRL>(yؾJR Ej-Fae|ݾ"-O &ý0%ZFԹ#ͽ8$Ts{!X2k龟>%>5'3鈿[>vnz5)r/VR8pq@>“ 彺.E 3?n<"þH)'o ¾K>h*Q]H>w= M$>Zp\AѢ/?/ / XC&G̾IV='=x $ҿt̾H>ܾg625sc Z"9f=i, pu)Zr슾' *%F>{p5I?8t= >>"lLgR^m>hP˳ ĽTܖl6?虎>eԿ-[Lg==,ځNi;]Kafn& ?N?[>=mP?Z4A 0>?}3 Oc?kiW7QO> X +ԅqu "ʺVTs?x$e$ _>݌0W"?W/:C>,>!վ4_j> >LB> p8 an\n8kidʩ?6 T|K>F^j<B>/M { 2 >d=#>dΧ?t=m3P>+.=) ? Ի܏=Q-~N+ ~s_>3bQX>k.?^>S8-fYz," ,c!nA6ʾ=GBX=2k< ܝAJ~=yox1䬾<>MF >>X>]ԟ2.S=$<60>?r]>>>0t#a=sl׻=)=C[0<̾vp>J2>@x5>uU)끾b{Xk>'c=-->ͨ~h Q=܌zV>ߌ? ig &#&=?=5_~>8 uˏX *q>]c/#4aD?"`>0V,ɾo.C1~>Ŧo?aaVEz,F>A )>@Dmͽ/ >w?d* 0t۽*3>N4=}G?1 ?>=({>U> Oŵ7; q=zMƾyN}#/?!:;F>=>#w?YI4>CjgQ8ܖg>I#Q>[@=/D[Ӻ=m<"?½Pw>q-遾<+ Y>>Uخ> u>M1}>.U>u o>`:6 >wO>d6!>G -==焾7 >H+>]ʐ1P=_ 6m=扃!% = x=#>>ÆEjADf?tv>;\|6 Zv#Vǽ95-MU>P=g3$S=(?ss <{/|>]>f*HLN(ȕ龻T>#>Ej>/Z=Y-VA >\սtS>`>屮>Vg>->>|Ӿc'+bY>r4c5?u 8&v(Zn8X>޾?*J¦|q>5l{=>|˞>ܪ=%>>]Du>bN;=4<>~>Y" >?wŹv%;W=",>_I ?" j=Q >L]>žW> ?(>[V>䌍? >{ >:>|-H>~> :o>^h=.]>{i=TΏ`\ ?'l;7?"ɾV־'\>]E>^پ>?r>>KP>I> >|ž[n/>TQ=cg  ;|3_x7TREElDHEAPXl7dense_1H,5L7 X weight_namesdense_1/kernel:0dense_1/bias:0(  p<D3_h9CTREEEJԥe=֔O*&Hqල)d@ ~+u>w%:ľvW+#& |0>Ͼvs i㡾v- w\9W0>}>g?(O> >Ի85r >Rɽ>o(~>@>>WS>M >>O>O>ߨ>A('hOPBa='=,p>_>P|Cmž̺V45?Ѩ=*iS*>.=>>$3y>(?} 68Zpc]BN}AL'e=vnns_>x4>tƾ)>b>J->7:5>e>䄽Ӫ<}Ȟ>gEh 'žGfɽoTr)e>a[#d=J>_=Vؾ[׋cD&>EB鬼R)0=臼.Ϳs>^>6ӽ+Sșs?>HysP!;OmS!?ninQŏlBR?ɛžtq<'<>Ѐrl=Ju2'hZ= =}D>$$/6E->] !>;t?W>΢>찢?ܾ=煾*驾%Ս?n>qҽX3> ᾗ3>=c>2b:A m/Ⱦ)n`<(>;=Nҽn;m[#EC+>ď=h>w ߵCiE J)x>$Xヾe&H8~i!?Ft+M(p~溨p)\s(Ծ󫝿STR>,dM`>!;\Ӽ9"U ep >MevOվ=&iٽG>dK<&P=Z/k& 0Β>>F?z>qpBp9>=Ao?8ɼ Ϯ =W>[=ۏ&ýN[?l>F >ڽB׋)?1?h>%>b5оgq"Z >)ʼ c>ڹ=\B>' /=>̢=>.3?p6*2>LP.F= ?s>3?6mYqUjD#ξ@`Q{>+4K»F`>3;+M<Ѿi5D=-Հ=:ʾEe9N|=)ҽk%=V;>ֿW%y489߻ɽ ]==Ib Q5uۼ{K>ѭg"J%GcBF>>rÕ>r99뙽1&̽=o$@͇J^^-l;(=Sی>,sվ2ߍ%䰾7 ??iE >;->>xP=n ">| >ͽ=͸>4qLw˾c3ehKT >" 3>1=;aON]>8軆{N^Ln\2  ѾmIݾ=U>fžw#=i1>(žބ?>`ဿ&>(>>u=>LZMT?wW>!?7eF>c?= NQ긾bF^`??O>M>$1?P$?0?Zz<HEAPX Dkernel:0bias:08SNODd99CSNODFT8  C<3_xTREEOHEAPXLJdense_2H H,J X weight_namesdense_2/kernel:0dense_2/bias:0(  Qx3_hlLNTREELPHEAPX Nkernel:0bias:08SNODDLlLNSNODY4Ke_0_p>?W&F=!K=9=SUv7>=сCS=\"$'z2>;BGɾY>Ĉʀ>ܹ{T+u;@5K=6Z!<:c<{Ȇ<έ;9w$=r<̩=Z<ͼ< rH<= p=0ʺ:T;:b: :2L:̝3::QF:˒:k:. ; ;t:g%?9_(:9S2::Q;#2;:=:(:( :Ҟ:Þ8n::g9,;   R3_xd]TREEHEAPX ]PZ\ H weight_names ?@4 4`TREEHEAPXL`P ^,` H weight_names ?@4 4cTREETiHEAPXcAdamHLalc h weight_names Adam/iter:0Adam/dense/kernel/m:0Adam/dense/bias/m:0Adam/dense_1/kernel/m:0Adam/dense_1/bias/m:0Adam/dense_2/kernel/m:0Adam/dense_2/bias/m:0Adam/dense/kernel/v:0Adam/dense/bias/v:0Adam/dense_1/kernel/v:0Adam/dense_1/bias/v:0Adam/dense_2/kernel/v:0Adam/dense_2/bias/v:0@R3_fhTREEjHEAPX(hiter:0densedense_1dense_20SNODffhSNODlmP:30!F:j8/y8=ŹVďlgQ4g%71ۏ967);xf495!i838J :įz;ۋ<0׻hb$ R;|~:z u9)0y 9=J9L@:"8ƹO9|Lb:A 9М2m;92;5o9:: ;:ڔ;es;}^ip :3?qm Z>%:^o:8p8-:tK:S8kwNZ; =\9P];9ĥ.:\:;Ƌ&95*<<ҹ8`f  a4O:e!;Y8gTMa:EDz67 `%8 `Yp;# Sm9ă;x9_b9Y:F<.G:|59.:pS8ق<`u<\9E<d< B:89!#.ǹ:c:F廵;T.7~8c;"ҼF\V$ŏ:$S91ЫJ8kw< V9D;F;<[!ʿ=7(n:0<: ;Z:'غL3Z:;N9>;;z`^7B8,+93ո|8oF9M"5n4E__5,2 MyԊiv+0:Nzh 5Ja\ɺuf(<"U.8Μ&BV95<׭K|Rkc);¼Yn|%e%oU-燤g:(;a+:0T6ҙ- Z`L;5{6.oJ6|j:ZjKO/54J|$GxI91s㺑f뽹:7Ph*9v};39Hɵ뺘\Xõhސ d;r7H2+o6!û+;`&pȹ%GYG)hdI! *DM(E<j ҏ+q $nmc;.ֹrٺCNQz._!l9 X96 b ȍ9U G ;}@YMyR҃*+L1L> o> &*2Uĵ]89QD7ئj:k$]ō@To(53#ɭ72UTW9UY̺Z&6#W ,;;?8&YV3N|*lUN%6] a*5Ia!+!ԆRI+lD-y9zwl8(1sbc6!K+8GA:Ȑ87{190V=v.>_=,S>U>>V(=  R<3_xxTREEHEAPXm:0v:0@SNOD@Ŀ(  Rx3_hTREEHEAPXТkernelbias@PpTREE0HEAPXm:0v:0@SNODЫ(PpSNODX  LS3_xЫTREEHHEAPXm:0v:0@SNODx(  3_hMG:w:[:^͔:ʫ9 9ޒ9j:8&:uQ9n:6 :H9V798EtI7+(:ZVM;ـ:89P:q72m9O\:49028+@9:Cf:[:g:F:?w\9s9أ9?:m99::197:fj:#X9!&8!98@7!:66;=9:s]9:s 8w:zY: 69s8R9Dk:sB:~:UV::EN99}9u919#/:D9JF9vz:Ɩ9q~788>q84:;.:929|G9&h::%W:``7:8a9I;Mc::: 9?Ǚ9/b9$99<8%:rZ9O/8M^:^978hD8k83 :,;I'%:Ҟ9[89A:IF:Y|7:"9i4o9:U9㬎:.:_p999m99m;8G8:9+8ω:9708[8.$9Yd94;80 :w$\9k9H91Y:C:7 :.92d9Ex:;m9M]:_69D9ѧ9C999M8ޚ-:9̕8:9^7i8ܝ8a9"9~!;:@9";9å9`P::0:M8&:*F9Ph\9 :֖9H>:(/9K 9_9_*9998d:κP98ŵ:L9D7U9䆋8F99,;nMN:9L99w@:l:zD8:iP93P9L:O@9__:9'9B9 9#9(9e9d9٢99;:M9r8K9w89I9*;ʧ:8'9?:2:_ :֝8lh :SH9pD9)7:8:G9h9u9|9p99n92m98 9qq:ӗ9OL88'9U8˰99P:I˘:89N:É%:C9$89B99@9o:#8P:9c9TW9999 S989$Ss8%6':zֵ:hq9i8>978"9$G9 <::b8s8)::98]9/b>9;9":|G8(c;8ks9[99n:99:(9q8Xn:Z:Y9Α8.9f89,ql9:T:T8X9(l=:0:9.8EM9ٲR9r)9:O7y$;;A8_9G!9:y\9 :t:-98b:ʘ:;69 Q8ئ9_7ǹ91O59::R:q9F9Y::+?9EG8罠9O%z96V9:07 V;+79d9 :"*9G<::ɬ#:"<9_<8:K:e98-!97=:99':C>9ж9s:,9~8n[8 9h98k:]7Qq;)7E09ip8j:&8_://:P9x9ds:<:8k89ik7. :Ө89}A:X@s9ň9@Z:9`S8p8D99M8=e:;7v;|8:%8t:-8Jy:5:da95/9~::8f9x9k$7C:\"896B:9M9o:QP9R8?8b93B948tW ;]7G;gG8S):8ł :)8:Q_=:Rz9>\9:Y:g8*29F9rb60#:*y7-L9{:^S9+:-2:,9+޴78b99e!86;ɓ;j;>;_3^;:>yB;:^;<;޲;%;K;c:0:;H;;;g2X;e;3~Y;x:;;;w:wK:;{<3Dt<R<;<ʚ*:֣A:$9;*8(;;c-:[:@f9(]99m9FE:9.9 9 %%:!V<:ے;=*: ;{&: ;388:;o9Q: 7^5_:FZ;H;Fy;Z;P9yy.$y6T5w`::9(9q;t8yy*ܮ5 2[,˦;`9<^:<ޯ:u:f<<;;mМ;s3;u:!:9:z;R98|;*U:42: