{ "cells": [ { "cell_type": "markdown", "metadata": { "license":"MIT-0" }, "source": [ "# LICENSE\n", "\n", "Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.\n", "SPDX-License-Identifier: MIT-0\n", "\n", "Permission is hereby granted, free of charge, to any person obtaining a copy of this\n", "software and associated documentation files (the 'Software'), to deal in the Software\n", "without restriction, including without limitation the rights to use, copy, modify,\n", "merge, publish, distribute, sublicense, and/or sell copies of the Software, and to\n", "permit persons to whom the Software is furnished to do so.\n", "\n", "THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,\n", "INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A\n", "PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT\n", "HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION\n", "OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE\n", "SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting started with Amazon Braket\n", "\n", "In this hello-world tutorial we prepare a maximally entangled Bell state between two qubits. We then run our circuit on a local simulator and obtain the results." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# general imports\n", "import matplotlib.pyplot as plt\n", "# magic word for producing visualizations in notebook\n", "%matplotlib inline\n", "import string\n", "import time\n", "import numpy as np\n", "\n", "# AWS imports: Import Braket SDK modules\n", "from braket.circuits import Circuit, Gate, Observable, Noise\n", "from braket.devices import LocalSimulator\n", "from braket.aws import AwsDevice, AwsQuantumTask" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build a circuit\n", "\n", "Let's build a Bell state with two qubits. By calling `Circuit()` we create an empty circuit, and we can just add gates to the circuit. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# build a Bell state with two qubits. Here 'cnot(control=0, target=1)' can be simplified as 'cnot(0,1)'\n", "bell = Circuit().h(0).cnot(control=0, target=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Submit the circuit to the local simulator and obtain the results\n", "\n", "Here we submit our circuit to the local simulator and obtain the results." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# set up device\n", "device = LocalSimulator()\n", "\n", "# run circuit\n", "result = device.run(bell, shots=1000).result()\n", "# get measurement shots\n", "counts = result.measurement_counts\n", "# print counts\n", "print(counts)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# plot using Counter\n", "plt.bar(counts.keys(), counts.values());\n", "plt.xlabel('bitstrings');\n", "plt.ylabel('counts');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running larger circuits on managed simulators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apart from the local simulator, you can also run your circuit on a managed simulator. This approach adds some latency overhead, but is beneficial for larger circuits by leveraging the optimized cloud hardware infrastructure. Moreover, all your results will be stored reliably in S3. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__NOTE__: If you are working with the local simulator ```LocalSimulator()``` you do not need to specify any S3 location. However, if you are using a managed device or any QPU devices you need to specify the S3 location where your results will be stored. Remember that bucket names for Amazon Braket always begin with `\"amazon-braket-\"`. In this case, you must replace the API call ```device.run(circuit, ...)``` below with ```device.run(circuit, s3_folder, ...)```, where `s3_folder = (my_bucket, my_prefix)`. If you don't specify the S3 location, default S3 folder, where all inputs and outputs for your tasks are saved, follows the convention `amazon-braket--`. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Prepare a GHZ State" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# function to build a GHZ state\n", "def ghz_circuit(n_qubits):\n", " \"\"\"\n", " function to return a GHZ circuit ansatz\n", " input: number of qubits\n", " \"\"\"\n", "\n", " # instantiate circuit object\n", " circuit = Circuit()\n", " \n", " # add Hadamard gate on first qubit\n", " circuit.h(0)\n", "\n", " # apply series of CNOT gates\n", " for ii in range(0, n_qubits-1):\n", " circuit.cnot(control=ii, target=ii+1)\n", "\n", " return circuit" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The GHZ state is a quantum superposition of all subsystems being in state 0 with all of them being in state 1 (as often discussed in the famous Gedanken experiment of a cat being dead and alive at the same time). The GHZ state is a maximally entangled quantum state. \n", "\n", "To prepare this state, build and run the following circuit using a single-qubit Hadamard gate (denoted as H) acting on the first qubit followed by a series of two-qubit CNOT gates: " ] }, { "attachments": { "image.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2gAAAV6CAYAAAAoASwVAAAgAElEQVR4nOzdeZzNZQP//3POLGZhGNssjLEvIZS+STGWlDVli0FESOhGluK2RSJiqCwVRd+7PUtEpEKyjl1ZwowZ+zozZjPnzHn//uh35pucYZw558wMr+fj8f6zua5zucdxf96f67oMAgAAAAAAAAAAAAC4hSGvJwAAAAAAAAAAAAAA9wsKWgAAAAAAAAAAAABwEwpaAAAAAAAAAAAAAHATCloAAAAAAAAAAAAAcBMKWgBAjq1bt05z5szRrFmzCCFOzLp163Tt2rW8/hUHAAAAAAAA4AYUtACAHBs+fLgqVqyosLAwQogTM3z4cJ08eTKvf8UBAAAAAAAAuAEFLQAgx3r37i1vb28ZDAZCiBPTu3dvHTt2LK9/xQEAAAAAAAC4AQUtACDHKGgJcU0oaAEAAAAAAID7BwUtACDHKGgJcU0oaAEAAAAAAID7BwUtACDHKGgJcU0oaAEAAAAAAID7BwUtACDHKGgJcU0oaAEAAAAAAID7BwUtACDHKGgJcU0oaAEAAAAAAID7BwUtACDH7lTQNm/eXIMHD9bQoUMJIf9InTp15OXlRUELAAAAAAAAgIIWAJBzdypoZ8yYoePHjysuLo4Q8o9MmjRJZcqUoaAFAAAAAAAAQEELAMi5OxW0ixcv1o0bN/J6mkC+s3jxYlWpUoWCFgAAAAAAAAAFLQAg5yhoAcdQ0AIAAAAAAACwoaAFAOQYBS3gGApaAAAAAAAAADYUtACAHKOgBRxDQQsAAAAAAADAhoIWAJBjFLSAYyhoAQAAAAAAANhQ0AIAcoyCFnAMBS0AAAAAAAAAGwpaAECOUdACjqGgBQAAAAAAAGBDQQsAyDEKWsAxFLQAAAAAAAAAbChoAQA5RkELOIaCFgAAAAAAAIANBS0AIMcoaAHHUNACAAAAAAAAsKGgBQDkGAUt4BgKWgAAAAAAAAA2FLQAgByjoAUcQ0ELAAAAAAAAwIaCFgCQYxS0gGMoaAEAAAAAAADYUNACAHKMghZwDAUtAAAAAAAAABsKWgBAjlHQAo6hoAUAAAAAAABgQ0ELAMgxClrAMRS0AAAAAAAAAGwoaAEAOUZBCziGghYAAAAAAACADQUtACDHKGgBx1DQAgAAAAAAALChoAUA5BgFLeAYCloAAAAAAAAANhS0AIAco6AFHENBCwAAAAAAAMCGghYAkGMUtIBjKGgBAAAAAAAA2FDQAgByjIIWcAwFLQAAAAAAAAAbCloAQI5R0AKOoaAFAAAAAAAAYENBCwDIMQpawDEUtAAAAAAAAABsKGgBADlGQQs4hoIWAAAAAAAAgA0FLQAgxyhoAcdQ0AIAAAAAAACwoaAFAOQYBS3gGApaAAAAAAAAADYUtACAHKOgBRxDQQsAAAAAAADAhoIWAJBjFLSAYyhoAQAAAAAAANhQ0AIAcoyCFnAMBS0AAAAAAAAAGwpaAECOUdACjqGgBQAAAAAAAGBDQQsAyDEKWsAxFLQAAAAAAAAAbChoAQA5RkELOIaCFgAAAAAAAIANBS0AIMcoaAHHUNACAAAAAAAAsKGgBQDkGAUt4BgKWgAAAAAAAAA2FLQAgByjoAUcQ0ELAAAAAAAAwIaCFgCQYxS0gGMoaAEAAAAAAADYUNACAHKMghZwDAUtAAAAAAAAABsKWgBAjlHQAo6hoAUAAAAAAABgQ0ELAMgxClrAMRS0AAAAAAAAAGwoaAEAOUZBCziGghYAAAAAAACADQUtACDHKGgBx1DQAgAAAAAAALChoAUA5BgFLeAYCloAAAAAAAAANhS0AIAco6AFHENBCwAAAAAAAMCGghYAkGMUtIBjKGgBAAAAAAAA2FDQAgByjIIWcAwFLQAAAAAAAACbXBW0N27c0MmTJ/Xrr79q48aNiomJua8fzFutViUkJGjPnj368ccftWvXLl27dk2ZmZl5PTUAcAoKWsAxFLQAAAAAAAAAbHJV0J44cUJRUVHq0KGD2rdvr7lz5yomJkYWi8VZ8ytQkpOT9dNPP+mVV15RixYt1L9/f61Zs0aJiYl5PTUAcAoKWsAxFLQAAAAAAAAAbBwuaM1ms3755Rd17NhRpUqVUkBAgJ5//nn99ttvSktLc+YcC4xz585p1qxZqlmzpvz8/BQeHq7XXntNhw8fvm9LawD3FgpawDEUtAAAAAAAAABsHC5oU1NT9d133ykiIkI+Pj4yGo1q3ry51qxZo+TkZGfOscA4d+6c3nnnHVWsWFFGo1FeXl5q1qyZVq5cqevXr+f19AAg1yhoAcdQ0AIAAAAAAACwcbigvX79ur766is98cQTKlSokAwGg5o0aaJVq1bdt2Xk9evX9fnnn+vRRx/NKjAqVqyoKVOmKC4uTlarNa+nCAC5QkELOIaCFgAAAAAAAIBNrgraL7/8Uo8//vhNBe33339/3xa0FotFO3bsUM+ePRUYGCiDwaAiRYqoW7du2r59O6UFgAKPghZwDAUtAAAAAAAAABunFrQRERH3dUErSWfPntXMmTNVpUoVmUwmeXh46JFHHtHSpUt19erVvJ4eAOQKBS3gGApaAAAAAAAAADYUtE6WlpamtWvXqmXLlvL395fBYFBISIhGjBihv/76i2OOARRoFLSAYyhoAQAAAAAAANjcEwXtjRs3dPHiRR08eFAbN27UqlWr9N133+mbb77RsmXLtHbtWm3btk0nT55UUlKSLBaLy+ZitVp15MgRvfbaawoJCZHBYFChQoXUqlUrrV+/XikpKS4bGwBcjYIWcAwFLQAAAAAAAACbAlvQWiwWXbp0STt37tTSpUs1btw4vfjii2rXrp2aNWumJ554Qg0bNlSjRo3UokULderUSYMHD9bMmTO1atUqHTt2TMnJyS7Z0Xrt2jUtXrxYdevWlaenp4xGo6pXr65Zs2bp7NmzTh8PANyFghZwDAUtAAAAAAAAAJsCV9BarVZdvnxZGzdu1DvvvKPIyEg98sgjCgsLU/HixVWsWDGVLl1a5cqVU/ny5RUaGqrixYuraNGiKlWqlKpWrarmzZtryJAhWrJkif744w+lpqY6dY5ms1m//fabOnXqpICAABkMBgUGBqpPnz7au3evzGazU8cDAHehoAUcQ0ELAAAAAAAAwKZAFbTp6ek6cuSIFi5cqC5duqh69eoKDAyUj4+Pihcvrrp166pLly4aPXq03nnnHc2aNUuTJ0/WgAED1KxZM5UrV05+fn7y8/NTcHCwGjRooP/85z/64YcfdOHCBacefRwbG6uJEycqPDxcRqNRnp6eatSokb777jslJiY6bRwAcCcKWsAxFLQAAAAAAAAAbApMQZuSkqKtW7dqzJgxatCggYoXLy5PT0/5+fmpdu3aGjhwoD755BNt2bJFJ06c0IULF3Tp0iWdOXNGBw4c0KpVqzR16lS1bt1aISEh8vLyUqFChVS2bFm1b99eH3/8sU6ePOm03a3Jycn6+uuvb1qf8PBwTZw4UadOnXLJ0coA4GoUtIBjKGgBAAAAAAAA2BSIgjY5OVmbNm3SoEGDVK1aNfn5+cloNCogIEDNmjXT7NmzFR0drUuXLiktLe2mnbBWq1UZGRm6fv26YmNjtXr1ag0ePFjVqlWTt7e3PDw8FBgYqIiICM2ePVtHjx51SrmQmZmp3bt3q0+fPipRooQMBoP8/f3VoUMHbd68Wenp6bkeAwDcjYIWcAwFLQAAAAAAAACbfF/Qpqena+vWrRo8eLAqVaqUVQz4+/urefPmWrRokU6cOKG0tLQ77kq1WCxKSEjQjh07NHr0aFWrVk1eXl4yGo0qUqSIHnvsMc2ePVsnT550ynHH58+fV1RUlKpXry6TySSTyaQHH3xQ8+fP18WLF3P98wHA3ShoAcdQ0AIAAAAAAACwydcFrcVi0Z9//qmxY8eqevXqWaWAp6en6tWrp6ioKJ08eVIZGRk5/plWq1UpKSnatm2bBg0apLJly8pkMsloNKpw4cJq2rSpPv30U124cCHXxxDfuHFD69evV+vWreXv7y+DwaBSpUpp8ODB+vPPP5165y0AuAMFLeAYCloAAAAAAAAANvm6oD137pzmz5+vBg0ayNfXN+shZtmyZTV8+HDt3bvXoaOCrVarEhMT9f3336tt27YqUqSIDAaDjEajAgMD1blzZ/3444+5/hxWq1XHjh3TyJEjFRoaKoPBIG9vbz311FNas2aNkpOTc/XzAcDdKGgBx1DQAgAAAAAAALDJtwVtenq61q9fr44dOyowMFBGozGr4HzyySe1fPlyJSQkOLzLNTMzU3FxcZo2bZqqVasmDw8PGQwGmUwmhYeHa/To0Tp8+LDMZnOuPkdCQoKWLFmi+vXrZx2nXLVqVc2YMUNnz57N1c8GAHejoAUcQ0ELAAAAAAAAwCbfFrQxMTGaOHGiKleunFWeGgwGBQcH67XXXtOff/6Z6/I0PT1dGzZs0HPPPaeAgICsMQoVKqRGjRrp888/17Vr13I1htls1u+//66uXbuqaNGiMhgMKlasmHr16qXdu3fn+jMAgDtR0DqPxWJRcnKyrl27pqtXr+ratWtKTExUUlKSkpOTlZqaqvT0dGVkZMhisSgzM/Om/z4zM1MWi0UZGRlKT09XamqqkpOTdf36dSUmJt70c1NSUm7577ObU0pKyi1zun79+i1zMpvNyszMvOlFqX/PKS0tTSkpKXbnlJycfF8d9U9BCwAAAAAAAMAmXxa0aWlpWr16tVq1aqXChQvf9ACzfv36Wrp0qa5cuZKrMaS/jyA+efKkxo0bp3LlymXt0jUajQoKCtKgQYO0b9++u7rj1p74+HhNmTJFFSpUkNFolKenpx5//HF9/fXXSkxMzPXnAAB3oaB1jvT0dG3fvl3vvvuuRowYoWHDhmnEiBEaPXq0xo4dqwkTJmjy5Ml6++23NWPGDM2ePVvvvfee5s2bpwULFmj+/Pl6//33FRUVpXfffVfTp0/XlClTNHHiRP33v//V66+/rpEjR2r48OF67bXX9P7772v//v1KS0u77Zz27NmjOXPmaMSIERo+fLhGjBih119//ZY5zZw5U1FRUVlzmj9/vubNm6f3339fc+bMyZrTW2+9pUmTJmncuHF64403bppTVFSUoqOjlZqa6saVzzsUtAAAAAAAAABs8mVBGxcXp8mTJ6tSpUo37Z718fFR586d9fvvvzt096w9SUlJWrJkiR566CF5enpmjeXl5aXHHntMn332ma5evZqrMVJTU7Vy5Uo1bdo06y7dcuXKady4cYqJiXH4mGYAcDcKWuc4f/68pk+frnr16ql06dIqVaqUSpcureDgYIWGhqps2bIKCwtTeHi4KlasqEqVKqlKlSqqVq1aVqpWrarKlSurYsWKKl++vMqVK6eyZcsqNDRUwcHBCgoKyvq5TZo0uePLTefPn9d7772nRx999Kb/9p9zKleunMqXL6+KFSuqcuXKdzWnkJCQm35uw4YNtWDBAl28eNGNK593KGgBAAAAAAAA2OS7gjYzM1NbtmxRly5dso4E/ufxxiNHjtRff/2Vo6Mac8Jisejnn39WmzZt5O/vf8t4I0aM0LFjx3I1ntVq1aFDhzR48GAFBQXJYDDIz89Pzz77rDZt2uS0shkAXI2C1jlOnTqlkSNHKiQkRCaTSUajUUajUSaT6ZZ4eHjcNvb+m3/+TA8PDz366KN3fOEoLi5OEydOVHh4uFvmVLduXS1cuFCXLl1y48rnHQpauENGRoauXbum06dP6+jRozp48KCOHj2qM2fOKCEhIdenwgAAAAAAAMA58l1Bm5CQoEWLFumhhx6Sl5fXTQ8va9Sooblz5+r8+fMO/3x7Dhw4oP79+6tkyZI3jVeoUCG1bdtWP//8c66PYLx8+bIWLFig2rVry8PDQ0ajUbVq1dK8efPum91DAAo+ClrnSExM1OrVqzV69Gj16tVLkZGR6ty5s9q2bauIiAg9+OCDKl269E0nO2QXT09PlSpVSrVr11bTpk31zDPPqHPnzurWrZt69Oih/v37a968eTp8+PBt/2ySkpL0008/acyYMerdu3fWnNq1a6emTZuqbt26Cg4OvuW7+XZzqlWrlpo0aaJ27drdMqeoqCgdOHDgvnlJiYIWzmaxWBQfH69169Zp9uzZGjRokLp06aJ27drp6aefVrNmzRQREaFmzZqpZcuWWb+HQ4YM0dy5c7VhwwadPXtWZrM5rz8KAAAAAADAfSffFbRHjhzR8OHDFRoamnUnrO1e2Mcee0xffvmlEhISHP759sTExGjs2LEqU6bMTQ9LjUajateurfnz5+d6h09GRoZ++eUXtW/fXkWKFJHBYFDJkiX1yiuv6NChQ7JYLE76NADgOhS0zpGZmalr167p+PHjOnjwoPbu3avo6Ght3bpVv/76q1auXKnRo0erZs2at13vIkWKqFmzZpo6dapWrFihjRs3avv27YqOjtbevXu1f/9+HT58WOfPn1d6evptj9TPzMxUYmKiTpw4cdOctm3bpo0bN+r777/X2LFjVbt27dvOqWjRomrWrJneeustLV++XL/++qu2bdt205z+/PNPnT17VmlpaffNMf8UtHCW+Ph4fffddxo2bJhat26thx56SGFhYfL395fJZLrtyxNGo1GFCxdWuXLl9PDDD6t169YaOXKkVqxYofPnzzvthBoAAAAAAADcXr4qaM1ms9avX682bdqocOHCNz1Q8vDwUIsWLbR27VqlpKQ4Om27Lly4oBkzZqhChQq3PMgKCgrS8OHDnXLM8YkTJzRmzJisItjb21vNmzfXqlWrcn1vLwC4AwWt81itVlksFlksFpnNZpnNZmVkZCgjI0Opqan64Ycf1KpVq1u+D/+5S/WJJ57QokWLFBsbq9TU1Kz/3vbzzGazLBZLjr+/rFarMjMzs53TunXr7H5H2+Ll5aWGDRs6dU73Cgpa5NaxY8c0e/ZsPffcc6pVq5aKFi16x0L2TjEajQoMDNSDDz6oDh066IMPPlBMTAwvDgIAAAAAALhYvipok5KStGjRItWpU+eWYx29vb313HPP6bfffnP6cYgJCQlauHChatSoccuDLj8/P3Xu3Flbt27NdemQlJSkL774Qg0aNJC3t7eMRqMqV66sadOm6cyZM076NADgOhS07mGxWLRs2TI1btxYPj4+dte6ePHi+s9//qM//vjDLUeUZmRkaNWqVWratKl8fX3tzqlEiRJ6+eWXdeDAAY5N/RcKWjgqLi5O8+bNU7t27RQWFpajY8YdiZeXl8qXL6/27dvr448/1tmzZ++bHe4AAAAAAADulq8K2jNnzmjy5MkKDw+/6XhjW1Hao0cP7dmzx+kPfZOTk/W///1P9evXv+Whl4eHhyIiIrRy5cpc73K1WCzavXu3+vTpoxIlSshgMCggIEDdu3fXzp07lZGR4aRPBACuQUHrHomJiYqKilLVqlXl4eFhd61r166thQsX5voI/ruZ04cffqiaNWtmO6dq1app9uzZOnfunFvmVJBQ0OJuJScna/ny5YqMjFT58uVv+3evs4vaypUr64UXXtC6des45QUAAAAAAMAF8lVBe+jQIb3yyisqVarULQ+LihQpov79++vw4cNOf5s/LS1Ny5cvV6NGjbI+yz9Tp04dffTRR7p8+XKuxzp//rxmz56tatWqyWQyycPDQ/Xr19eSJUt09epVJ3waAHAdClr3OHHihIYPH67g4OBsjyV9+umn9eOPPyo5Odktczp16pTGjx+vsmXLZjunxo0bO+WFpnsRBS3uxl9//aXx48erXr168vPzc0sx++/4+/vr4Ycf1tSpUxUTE8NuWgAAAAAAACfKVwXtb7/9pg4dOqhIkSK3PCQqVqyYhgwZouPHjzs65WxlZGRozZo1evLJJ+0e21i+fHm9+eabiouLy/XDqfT0dK1du1ZPPfVU1gO3kJAQjRgxItf33AKAq1HQusfvv/+uLl26qGjRonbX2c/PT3369NGePXvcdvrC7t271atXLwUGBmZb5kRGRmrXrl2cCGEHBS1ywmq1atOmTerZs6eCgoJyfcdsbmM0GlW2bFn16dNH0dHRHF0OAAAAAADgJPmmoM3IyNCKFSuyvW+vZMmSGjFihGJiYhydcrYsFos2bNig1q1by9/f/5axAwMDNWDAAP3xxx+5LlCtVqsOHz6s//znPwoKCpLBYJCPj4/atGmjn376SampqU76VADgfBS0rmc2m/Xtt9+qcePG2d71GhoaqgkTJig2NtYtu9osFot+/PFHtWjRIts5lSlTRmPHjtXJkyfZaWcHBS3uxGq1as2aNWrTpo3dlxXzMgEBAXrmmWf022+/8QIGAAAAAACAE+SbgjYpKUmLFi1SnTp15OnpecuDoZCQEI0ZM0anTp1ydMrZslqt2rx5s5599lkVLlz4lrG9vb317LPPatu2bU55KHX16lV9/PHHWZ/VaDTqgQce0HvvvacLFy444RMBgGtQ0LretWvXFBUVpRo1atj9PjQY8ub+2dt9R9vmtGDBArfNqaChoMWdbNiwQS1btsyzI43vFF9fXz3zzDPasWOHLBZLXi8XAAAAAABAgZZvCtpLly5p1qxZqlKlit3j3MLCwjRx4kTFx8c7OuXb2rZtmzp37qyAgIBbxjYajWrevLnWr1+vtLS0XI+VkZGhTZs23XScc/HixdWvXz/t37+f4+MA5FsUtK4XExOjkSNHKiQkREaj8ZY1NplMatGihX744Qe33T8bHx+vN998U+XLl7c7Jw8PDzVt2jRX1xzc6yhocTt79+5Vp06d7L4omJ/i7++vF154QX/88UdeLxkAAAAAAECBlm8K2jNnzmjy5MkKDw+3+/A3PDxcU6ZM0enTpx2d8m3t2LFDXbt2zfa+v4YNG2rZsmVKSkrK9VhWq1UnT57UuHHjVK5cORmNRnl5ealRo0b65ptvlJiY6IRPBADOR0Hrejt27FC3bt1UrFgxu2vs4+OjPn36aN++fW57oefAgQMaMGCASpUqZXdOfn5+6tatG3dU3gYFLbITHx+vgQMHZnu/c35LYGCg3njjDcXFxeX10gEAAAAAABRY+aagjYmJ0ZgxY1SmTBm7D4MqVKigqVOn6syZM45O+bZ27typyMjIbB+IP/TQQ1q6dKmuXr3qlPGuX7+ur7/++qb1Cw8P1/jx4xUTE8P9fQDyJQpa18rMzNSyZcvUqFEju/exGwx/3/U6adIkxcfHu+3+2XXr1t326NXg4GCNGjWK+2dvg4IW9qSmpmrq1KkqW7Zsnhevd5OwsDB9+OGHSkhIyOslBAAAAAAAKJDyTUF79OhRDRs2TMHBwXYfBFWsWFFvv/22ywraXbt2qUePHtkWtDVr1tS8efN08eJFp4yXmZmpffv2qV+/fipRooQMhr+PjevYsaO2bNmi9PR0p4wDAM5EQetaiYmJmjNnjqpVqyYPD49sXxj65JNPdOXKFbfM6fr161q8eLFq166d7Zxq1qypDz74wGnfkfciClrY8+2336pevXrZ/m7l5zzyyCP6+eef2TUPAAAAAADggHxT0NqOTyxZsqTdh0CVKlXStGnTdPbsWUenfFvR0dHq2bNntsfLVa5cWe+8845Tx79w4YLmzp2rGjVqyMPDQyaTSXXr1tWiRYt0+fJlp40DAM5CQetaf/31V9bLStndP9uqVSutW7fObffPxsXFaeLEiQoLC7P7Z24ymXL1/X+/oKDFvx0+fFgdOnSQr69vnpetjsTb21svvviijh49mtdLCQAAAAAAUODkm4J2z549evHFF1W8ePFsC1pnF6T/tHv3bvXq1SvbgjY8PFyTJ0926h246enpWrdunVq3bi1/f38ZDAYFBQVp6NChOnLkiDIzM502FgA4AwWta23ZskWdO3fO9j70woUL66WXXtLevXuVkZHhljnt2bNHffr0yfb72c/PT127dtWOHTvcNqeCiIIW/5Senq6JEycqKCgoz4vW3KRUqVJasGCBEhMT83pJAQAAAAAACpR8U9Du2rXrjjtYZ8yYoXPnzjk65dvas2ePevXqle0D6LCwMI0fP15xcXFOG9Nqtero0aMaMWKEQkJCZDAY5OPjo5YtW2rdunVKTU112lgA4AwUtK6TkZGhb7/99rb3z4aGhmrixIk6deqU2+6fXb9+vVq2bJn1ItG/ExQUpBEjRuivv/7i/tnboKDFP/36669q2LBhgTza+N9p0qSJduzYkddLCgAAAAAAUKDkm4J2x44dioyMzPYO2CpVqmjmzJkuLWh79+6dbUFbpkwZjR07VqdOnXLquAkJCVq6dKkefvhheXl5yWg0qkaNGoqKinLZZwUAR1HQuo7t/tnq1atnW9rUqVNHH330kduOwb9+/bo+/fRT1atXT15eXnbnVL16dUVFRen8+fNumVNBRUELm+TkZA0ZMiTbnfIFLf7+/po2bZouXbqU10sLAAAAAABQYOSLgtZqtWrbtm16/vnns31YVbVqVb377rt5VtCGhITojTfeUGxsrFPHtVgs2r59u7p3755VTgcGBqpv377au3evzGazU8cDgNygoHWd2NhYjRw5UiEhIXbvnzUajVknLLjr/tkzZ85oypQpKl++fLZ34jZu3FjLli1TUlKSW+ZUUFHQwmbDhg165JFH7P5OFdQ0bNhQW7duzeulBQAAAAAAKDDyTUFru3cvICDA7oOfatWqafbs2S7boXOngjY4OFijRo1STEyM08c+ffq0pk2bpsqVK8tkMsnT01OPP/64vvrqKyUkJDh9PABwFAWt62zfvl3dunXL9iQJX19fvfTSS9q/f7/bXt45dOiQBg4cqFKlSmU7p65du2rXrl28UHQHFLSQJLPZrBEjRmT7e15Q4+fnp7lz5/LvVgAAAAAAgBzKNwXt5s2b1bFjx9sWtK48QvFOBW1QUJDLCtrU1FStXLlSTZs2zbp3MCwsTP/970bAuL0AACAASURBVH918uRJ7vQDkG9Q0LqG1WrVsmXL1Lhx42zvnw0LC9PkyZMVHx/vlu8Fq9WqX375RW3atMn2/tng4GCNHj2a76ocoKCF9PdLD82bN5fJZMrzUtXZ6dixow4dOpTXSwwAAAAAAFAgUND+/3bv3q1evXopMDDQ7QWt1WrVwYMH9corr2TtUvLz89Nzzz2nTZs2KT093eljAoAjKGhdIykpSXPnzlWNGjXk6elpd23r16+vpUuX6urVq26ZU0pKipYuXap69eplO6datWpp/vz5unjxolvmVJBR0EKSPvroI1WqVCnPy1RXJDQ0VKtXr1ZmZmZeLzMAAAAAAEC+l28K2i1btqhTp055dsRxdHS0XnjhhWwLWlcecSxJly9f1oIFC1S7dm15eHjIZDKpTp06+vDDD3Xp0iWXjAkAd4uC1jViY2M1atQohYaG2r2X0sPDQ23atNH69euVkpLiljmdPn1akydPVnh4eLb3zzZp0sSh7/37EQUtzGazXn75Zfn5+eV5meqKeHh4aMaMGbp27VpeLzUAAAAAAEC+l28K2q1bt+r5559X0aJF86yg7dGjR7Z3goWEhOj1119XbGysS8bPyMjQxo0b1aFDh6ySunTp0hoyZIgOHz7MbgQA+QIFrWtER0erZ8+e2b4k5O/vr/79++vAgQNuu+t1//796tevn0qWLJntnCIjI7Vjxw7+zHOAghZxcXFq2bKl3Rce7pX06tWL/x0DAAAAAADkQL4oaCVpx44dioyMzLYgrVq1qt59912dO3fO0Snf1q5du9S9e/dsxw8NDdXYsWN16tQpl4xvtVoVExOjCRMmZO1W8vb2VvPmzbVq1SolJye7ZFwAuBsUtM5nNpu1cuVKNWvWLNuddaGhoZo0aZLb7p+1WCzasGGD2rRpo8KFC9udU3BwsEaOHKnjx49z/2wOUNDil19+0SOPPJLnJaor07BhQ23bti2vlxoAAAAAACDfyzcF7c6dO9WjR49sdw9VrlxZM2bM0NmzZx2d8h3Hv11BXLZsWY0bN05xcXEuGV/6e02/+uorPfbYY/L29pbRaFTlypX19ttvu+2hPADcDgWt89nun61evbo8PDzsrmvdunW1ePFiXblyxS1zSk5O1meffab69evLy8vL7pxq1KihuXPn6sKFC26ZU0FHQYslS5aoatWqeV6iujJhYWFat25dXi81AAAAAABAvpdvCtrdu3erd+/eKl68uN0HPhUrVtS0adNcWtB269Yt2yOWw8PD9eabbyo+Pt4l40tSZmbmLetQtGhR9ezZU9HR0crIyHDZ2ACQExS0zhcbG6uRI0cqODjY7poajUa1adNGGzZscNv9s+fPn9f06dNVsWJFu8exGo1GNWrUSCtWrOD+2RyioMXMmTNVtmzZPC9RXRkfHx8tW7Ysr5caAAAAAAAg38s3Be2BAwc0YMCAbO+6q1ChgqZOnaozZ844OuXb2rFjh7p27ZptQVupUiVNnz7dZQWxTUxMjP773/+qTJkyMhgM8vLy0lNPPaWffvpJaWlpLh3bWY4fP66JEyeqe/fuhJB7LBUrVpTJZKKgdaJt27bd9g52b29vdezYUatWrdLRo0d14sQJl2fDhg168cUXs/1O9vX1Vbdu3RQdHe22O3ELujsVtBUrVtQzzzyT57/jxHWpU6eOfH1987xEdWVsL29ERkbm+XoTQgghhBBCCCGEuDpff/21EhISHHpemG8K2qNHj2rYsGEKCgqy+8AnPDxckydP1unTpx2d8m1t3779tg/IH3jgAb3//vsuP8rxyJEjGjp0aNY6+Pj46JlnntHmzZuVnp7u0rGdZefOnXriiSfk4eFBCLnHYm83JQWt4ywWi7777js1atRIPj4+dtfUw8ND4eHhioiIUJs2bdS2bVuXpl27doqIiFC5cuWy3S0dGhqqN954QydPnuT4/Ry6U0FrNBrz/Peb5O3fn/dKTCZTnq81IYQQQgghhBBCiDsybtw4nT9/3qHnhfmmoI2NjdXYsWOzdo7+O2XLltXEiRNddsTwtm3b1LlzZwUEBNgdv169evrkk09cev/fjRs3tGHDBrVt21b+/v4yGAwKCgrS0KFDdfjwYWVmZrpsbGfasWOHGjZsmOcPCAkh7g8F7d1JTEzUnDlzVKNGDXl6ema7rrbCw9PT0y3x8PC47U7p2rVra8GCBbp06VJeL2GBcaeClhBCCCGEEEIIIYQQUrAyduxYnTt3zqHnhfmmoD1z5oymTJmi8PBwuzsMQkJCNGbMGJ06dcrRKWfLarVqy5Yt6tChg4oUKWJ3kRs0aKBvvvlGiYmJTh/f5uLFi/rggw9Us2bNrIfj9erV06JFi3T58mWXjetsFLSE3L+hoL07tvtnQ0NDs91dZzKZ5OnpKS8vL7fE09PztuWsh4eHmjZt6vD3/f2KgpYQQgghhBBCCCGEkHsr90RBe+nSJc2ePVtVq1a1+2C4ZMmSeu211xQTE+PolLNlsVj0yy+/3LRz9Z8xGo1q0qSJ1q5dq5SUFKePL0mZmZk6cOCABg4cqNKlS8tgMKhw4cJ6/vnntXXr1gJVeFDQEnL/hoL27uzcuVPdu3dXsWLF7K6nj4+PIiIi9Prrr2vatGmaPn26S/POO+9o0KBBqlOnTrZHLvv7+6t79+7atWuXMjIy8noJCwwKWkIIIYQQQgghhBBC7q3cEwVtYmKiPv74Y9WpU8fuMY9FixbV4MGDdfz4cUennK2MjAytXbtWLVq0kJ+f3y1je3p6ql27dtqyZYvLioeUlBQtW7ZMjRs3znooXqFCBU2ePFlxcXEF6o4/ClpC7t9Q0OZcZmamli9froiICPn6+tpdz7Jly2r8+PE6dOiQLl26pMuXL7s0Fy5c0DfffKNmzZplO6egoCCNHDlSJ06cKFDfTXmNgpYQQgghhBBCCCGEkHsr90RBe+PGDX333Xc3/bx/pkiRIhowYICOHDni9AfC6enpWrFihSIiIuzuGAoICFDfvn118OBBWSwWp45tc+rUKU2aNEnly5eX0WiUt7e3IiIitHz5ciUlJblkTFehoCXk/g0Fbc4lJydr7ty5qlatmjw8POyuZ/369bV06VJduXJFVqvV5UlOTtann36qunXrZnsnbo0aNfTee+/pwoULeb2EBQoFLSGEEEIIIYQQQggh91buiYLWarXe9phhf39/9e7dWwcOHHB6SZqSkqIvv/xSjz76qLy8vG4ZOywsTOPHj1dsbKxLdguZzWb99ttv6tSpkwICAmQw/H2k84ABA7R//36ZzWanj+lKFLSE3L+hoM25mJgYvfbaawoODra7liaTSW3bttXPP//ssuP1/+3s2bO3vQ/eaDTm6rv+fkZBSwghhBBCCCGEEELIvZV7oqCVpH379qlv374qUaLELR/Sx8dHXbt21c6dO51+511SUpIWLVqk2rVr293FVLNmTc2bN08XL1506rg2V69e1ccff6x69erJ09NTRqNRNWvW1Pvvv6/z588XuCMkL1++rB9//FH/9//+X0LIPZZGjRplu7PSYKCgvRu///67OnfurKJFi9pdy8KFC+vll1/WgQMH3Paizr59+/TSSy/Z/R42GP7f/bPR0dHcP3uX7lTQNm7cWDNnzszz33HiukyZMkVVq1bN8//j4Mo8+OCDmjJlSp6vNSGEEEIIIYQQQog7sm/fPqWlpTn0vDBfFbRxcXGaMGGCwsLCbnng4+3trXbt2unXX391+MNm59KlS4qKilKlSpVu2TFkMpn0+OOP65tvvlFiYqJTx5X+3jl8+PBhDR06VCEhITIajfL19dUzzzyjX375xemf1R2sVqssFgsh5B5Mr1695O3tTUGbS2azWd9++60aNWpk92h9g+Hv0xumTJmi+Ph4t7yoY7Va9dNPP6lVq1Z2T7IwGP6+E3fcuHGKiYkpcC8P5bU7FbS9evXS4cOH8/x3nLgup0+fVqtWrezuTr9X0qdPHx09ejTP15oQQgghhBBCCCHEHcnMzHT4eWG+KmiTkpL08ccf68EHH7xlh5bJZFKzZs20evVqJScnOzptu+Lj4zVp0iS7xbCvr6+ee+45bd68Wenp6U4dV5LS0tK0Zs0atWjRQr6+vlkP5ceOHasTJ07k6g8XAJytd+/eFLROkJCQoKioKFWvXj3bHcl169bV4sWLdeXKFbfMKTk5WUuWLNFDDz1k97h/2+64Dz/8UJcuXXLLnO4ldypoe/furWPHjuX1NOFCZrNZQ4YMUZEiRfK8SHVFTCaToqKilJSUlNdLDQAAAAAAkO/lq4LWbDZr7dq1evrpp+3u3nn00Uf1+eef69q1a45O264jR45o6NChCgoKumXM4OBgDR8+XEePHnVJWXr27Fm98847qlKlikwmkzw8PNSgQQN98cUXTv+cAJBbFLTOERsbq5EjR2adnGCv6GjdurXWr1/vtvtnz5w5oylTpqh8+fJ25+Th4aHmzZtr9erV3D/rAApaSNKSJUvu2WOOy5cvrzVr1vByIQAAAAAAQA7kq4LWarXq4MGDeuWVVxQUFHTLA+KaNWvqgw8+0IULFxydtl3R0dHq0aOHihUrdtN4RqNRdevW1UcffeSS3UIWi0U7d+5Uz549FRgYKIPBoICAAPXo0cMld+0CQG5R0DrHjh07FBkZecv3ji2+vr4aMGCADh065Lb7Zw8dOqSBAweqVKlSdufk5+en7t27a/fu3W6b072EghaSdPz4cbVo0eKePOY4MjJShw8fzuslBgAAAAAAKBDyVUErSZcvX9b777+vWrVq3XLsY5kyZZx+9K/FYtH69ev11FNPZR0x/M8H5M8995w2bdrkkrtgk5KS9Pnnn6tBgwZZhUflypU1ffp0nT59mvv9AOQ7FLS5Z7VatXz5cjVu3Djb+2fLli2rt956y23fBZmZmdqwYYPatm2rwoUL251TUFCQRo0apZMnT/L95AAKWkhSRkaGxo4dm+2LEAU1/v7+WrhwodOvIQEAAAAAALhX5buC1mw269dff1WHDh0UEBBw08MfPz8/RUZGOnV36fXr17V06VLVq1fPbiH8+uuv6/jx4y45ru3EiRMaM2aMwsLCZDQa5e3trSeffNIl9+wCgDNQ0Obe9evXNWfOHFWrVk0eHh5217F+/fr67LPPdPXqVbfMKSUlRZ9++qnq1KmT7Z24NWvW1Lx583Tx4kW3zOleQ0ELm99//10NGjTI81LVmWnevLl27tzJyxsAAAAAAAA5lO8KWkmKi4vT5MmTValSJZlMpqyHPyaTSU888YS+/fZbJSYm5moMm/j4eLt37nl6eqphw4b63//+55IH5BkZGfr5559v2q1UqlQpDRo0SIcOHZLFYnH6mACQWxS0uXf8+HENGzZMwcHB2d712rZtW23YsMFt98+ePn1akyZNUrly5ez+uRqNRjVp0kSrVq3i/lkHUdDCJiUlRaNGjVKJEiXyvFh1Rvz9/TVnzhwlJCTk9dICAAAAAAAUGPmyoE1LS9Pq1avVqlWrW45arFChgiZPnqzY2Nhc72q1WCzavn27evTokXUHrC1BQUEaMmSI9u3b55K7YC9cuKC5c+fqgQcekIeHh0wmkx588EHNnz+f3UkA8i0K2tzbsmWLOnXqpKJFi9pdw8KFC2vAgAE6cOCA2+4i37t3r/r06ZNtYeSKEyzuNxS0+KedO3eqUaNGN72IWFDTtm1b7d69m92zAAAAAAAAdyFfFrRWq1UnT57Um2++qSpVqtx03GLhwoXVpUsXbd68Odf3wl69elWLFi1S/fr1byocvL29FRERoS+//FJXr151+gOnzMxM7du3T/369VPJkiWzdh906NDBZffdAoAzUNDmjtls1rfffqtGjRple/9smTJlNHnyZMXHx7ul8LBYLFq3bp1atWolf39/u3MKDg7WqFGjdPz4cUoYB1HQ4p/S0tI0Y8YMhYWF5XnBmpuEhoZqyZIlXM0BAAAAAABwl/JlQSv9/eDq119/Vbdu3VS8ePGsYyBNJpNq1qypWbNmKS4uzuFdtGazWbt27VK/fv1UunTprJ9vNBpVvnx5jRkzRocPH5bZbM71Z/m3lJQULVu2TI0bN856QF+uXDlNmDBBMTExPPwGkG9R0OZOYmKioqKiVL169Wzvn61bt64WL16sK1euuGVO169f1+LFi1WvXj15eXnZnVP16tU1Z84cnT9/3i1zuhdR0OLfYmJi1K1bN/n5+eV50epIPD099eqrryo2NjavlxIAAAAAAKDAybcFrdVq1cWLF7V48WI9/vjj8vX1zXogVKRIET3zzDNatWqVQ3fRWq1WnTlzRnPmzFG9evVuKhtKlCihyMhIbdiwwWX37MXFxWnKlCmqWLGiTCaTPD099cQTT+ibb75x2t26AOAKFLS5c+rUKY0cOVIhISF27581GAxq1aqV1q9f79b7ZydPnqzw8HC7czKZTIqIiNDy5cuVlJTkljndiyho8W+ZmZn66aef9OijjxbIo46bNWumzZs3c+w5AAAAAACAA/JtQSv9fezisWPHNHXqVNWpUydrHJPJpLJly2rgwIH6/fff7/oh9uXLl/XVV1+pTZs2KlasWNYD6cKFC+vpp5/W559/rgsXLuT6jtvsPtPWrVv1/PPPZ90/GBgYqBdffFG7d+/mIReAfI2CNnd27Nihbt26qVixYnbXz9fXV/369dOBAwdccoKDPQcOHNCAAQOyjtz/d3x8fNStWzdFR0e7bU73Igpa2JOSkqIPPvhAFStWzPPC9W5SuXJlffbZZy57mREAAAAAAOBel68LWkm6ceOG9u/fr/Hjx6t27dpZY3l6eqpq1aoaOnSoNm3apGvXrt2xULVYLDp79qy+/PJLderUSUFBQVk7FgICAtSsWTN9+OGHOnXqlCwWi9M+wz8lJCTo008/1cMPP5x1lGS1atU0a9YsnT17luONAeRrFLSOs1qtWr58+U3H2/87YWFheuutt9x2/6zVatWGDRvueP/s6NGjOYI/lyhokZ3z589r5MiRKl26dJ4XrzlJ8eLF9fbbb3PkOQAAAAAAQC7k+4JWklJTU7V3715NmjRJDz/8sPz9/WU0GuXt7a1KlSqpT58++uqrr/TXX38pOTn5lqLWbDbr6tWr2rNnj9577z21bt1apUuXloeHh0wmk4oXL65WrVpp0aJFiomJcdkuVqvVqqNHj2rEiBEKDQ2V0WhUoUKFso6zTE1Ndcm4AOAsFLSOS05O1nvvvacHHnhAnp6edtevfv36Wrp0qa5eveqWOaWmpmrJkiWqW7dutnOqVauW5s+fr4sXL7plTvcqClrcztGjR/XCCy8oICAgzwvY28XX11dDhw7ViRMnXHLSDAAAAAAAwP2iQBS0kpSWlqaDBw8qKipKrVu3VmhoqLy8vOTl5aWQkBA9+eSTGjNmjP73v/9p8+bN2rt3r/bv369du3Zp3bp1mj9/vgYMGKD69eurWLFiMplM8vHxUZUqVdSzZ0998cUXio+Pd+nxjenp6Vq3bt1NO5VCQkI0YsQIHTt2jAddAPI9ClrHxcXFafTo0Vkv6Px77Tw8PNSmTRu33z87adIklStXLtv7Z5s2beqy7/b7CQUtbsdqtSo6OlodOnTIdjd7Xsfb21t9+vRx6xHsAAAAAAAA96oCU9BKfx93HBsbqxUrVmj48OF64oknFBISIl9fXxUuXFjh4eF67LHH1LFjR/Xp00f9+vVTz5491bp1a9WpU0dBQUHy9fWVv7+/ypcvr1atWmnKlCnauHGjLl686LJjjW3OnTunWbNmqVq1ajKZTPLw8NAjjzzi1t1SAJAbFLSO2717t3r27KnAwEC7a+fv76/+/ftr//79bruPfO/everTp49KlCiR7Zy6d++unTt38ueaSxS0uBOz2azt27erS5cu+W4nrb+/v1566SXt3r2bvwsAAAAAAACcoEAVtNLf98gmJCTo4MGD+vzzzzVq1Ci1b99e9evXV+XKlVWmTBmFhIRkJTg4WKVLl1ZwcLAqV66sxx57TF27dtWbb76pVatW6cSJE0pJSXH57tXMzExFR0erd+/eKl68uAwGg4oUKaJu3bpp27ZtPOwCUCBQ0DrGYrHo+++/V/PmzeXn52d37UJCQvTmm2+67f5Zi8Wi9evX5+j+2RMnTnD/bC5R0CInzGaz9u3bp2HDhik0NDTPi1mD4e+7sceMGaM//viDv98BAAAAAACcpMAVtDYZGRm6evWqjh49qp9//llLlizR9OnTNXLkSPXt21fPP/+8OnfurG7duqlv37567bXXNGPGDH355Zf6/fffFRsbq6SkJJfvmrWxrVfDhg2z1qtChQqaMmWK4uLiePANoECgoHVMcnKy5s6dq+rVq8vDw8Pu2tWtW1eLFy/WlStX3DanTz/9VA899JC8vLzszqlGjRqaO3euLly44JY53csoaJFTVqtVMTEx+vDDD9WwYUP5+PjkSTHr5eWl5s2b65NPPtHp06fd9m9mAAAAAACA+0GBLWhtLBaLUlNTdeXKFZ09e1YnT57UwYMHtWPHDm3btk27du3SoUOHdPLkSZ07d04JCQlKT093+32vMTExGj9+vMLDw2U0GuXl5aWmTZtq5cqV3OsHoMCgoHXMqVOnNGLECAUHB2e7dq1atXLr/bPnzp3T1KlTVb58ebv3zxqNRkVERPA95SQUtLhbiYmJ2rJli0aNGqVKlSpl+3KHK1KjRg3997//1datW5WUlJTXSwEAAAAAAHDPKfAF7b9ZrVZZLBbduHFDN27cUEZGhiwWS57uUDWbzdq4caOeffZZFSlSRAaDQaVKldLgwYN16NAhdiQAKDAoaB2zbds2Pf/88ypatKjddfPx8VHfvn21b98+t90/e/DgQb388ssqVapUtnPq1q2boqOjZTab3TKnexkFLRyRmZmp+Ph4rVy5UgMGDFBYWJhMJpPLitmKFStqyJAhWr16tc6dO8e/UQEAAAAAAFzknito86NLly5p3rx5qlWrljw8PGQymVSnTh0tXLhQFy9ezOvpAUCOUdDevczMTC1btkyNGzfO9qjSkJAQTZgwQbGxsW474eHnn39W69ats71/NiQkRG+88YZOnjzJMfxOQEGL3MjIyNCJEye0bNkyvfrqq6pVq1bWv79zm0KFCqlevXoaPny4VqxYodjYWLe9KAIAAAAAAHC/oqB1sczMTB04cEADBw5U6dKlZTAY5Ofnp2effVabNm1SWlpaXk8RAHKMgvbuXbt2TTNnzlTVqlWzPaK0Vq1aWrhwoS5duuSWOSUmJurDDz/Ugw8+KE9PT7tzql27thYsWOC2Od3rKGjhDDdu3NCpU6e0ceNGLVy4UEOGDFFERIRKlix5Vztrg4KC1KxZMw0dOlQff/yxNm3apPj4eP7+BgAAAAAAcBMKWhdLSUnRihUr1KRJk6ydU2XLltWYMWN04sQJdiUBKFAoaO+O1WrVtm3bFBkZqcDAQLt3vRoMBj322GP66quvlJCQ4PI5WSwW7dy5U3369FHJkiVvO6evv/5aiYmJLp/T/YCCFs6WkpKi2NhY7dy5U99//70++eQTNW3a9LY7azt27Kj58+dr9erV2rVrl+Li4pSamsq/RwEAAAAAANyMgtbFTp8+ralTp6pSpUoymUzy8PBQgwYN9MUXX7jlQTwAOBMF7a2sVqvMZrNu3Lih9PR0Xb9+XZcuXdKJEyf0ww8/qH///goPD892p6rBYFDlypU1YcIE7d27V1euXFFKSopu3Lghs9ns0D3qtvvYbfNKTU3VtWvXdOrUKa1Zs0b9+/dX+fLl7zincePGaffu3bp8+XKu53S/o6CFK1mtVt24cUODBg1S4cKFs/3f2fTp03X58mV+fwEAAAAAAPIYBa0LWSwWbd++XZGRkSpWrJgMBoMCAgLUs2dP7dq1i/u9ABQ4FLT/z/nz5/X9999rxowZGj9+vMaOHavXX39dw4YN00svvaT27dvr4YcfVqlSpW5bhBoMBvn4+Khy5cpq06aNBgwYoBEjRmjMmDEaN26cJk6cqKioKP32229KTEy8bbFy8eJFrV27VjNnztSECRM0btw4jRkzRiNHjtSgQYPUpUsXPfLIIypZsmS2xy3/c06VKlVSq1at1K9fv1vmNHv2bP3yyy+6evUqZU8OUNDCHYYOHaqAgIBs/3c2a9YsdsUDAAAAAADkAxS0LnTt2jV9+umnevjhh+Xl5SWj0ajKlStr2rRpio+P54E2gAKHgvZvFotF69atU6dOnVShQgWVLl1aJUuWVIkSJRQYGKjChQvL29s72+OD7cVoNMrb21sBAQEqXry4SpYsqVKlSikoKEiVKlXSqFGjdPjwYZnNZrtzslqt2rRpk3r06KGKFSuqdOnSKlWqlEqWLKnixYuraNGi8vHxuat7Km1zKlKkiN05DRkyRPv37892Tvh/KGjhDsOGDaOgBQAAAAAAKAAoaF3EarXq8OHDGj58uEJDQ2U0GlWoUCG1aNFCq1evVnJycl5PEQDuGgXt327cuKHPPvtM/+f//J/b3vf4z6LTdsy9LSaTSSaTKUclbtGiRTVkyBD9+eefslgsdudkNpu1bNkyNW7cOOvOc1fPqW/fvtq3bx8FbQ5Q0MId7lTQvvvuu1yxAQAAAAAAkA9Q0LpIenq61q5dq5YtW8rPz08Gg0FBQUEaNmyYjhw5oszMzLyeIgDcNQrav2VmZmrnzp0aM2aM2rdvr5YtW6pNmzZq3769OnbsqK5du6pHjx7q3bu3+vXrp1deeUWvvvqqhg8fruHDh2vo0KF69dVXNXjwYA0cOFADBgxQ37599cILLygyMlKdO3fWs88+qzZt2qhVq1Z66aWXtHz5cl25ciXb0xcyMzO1b98+TZw48f9j797je67//4/vvZNhNnM+zOaUU2jkMDlEJnIqx4pI8tFB8VGRfZCoKIfUp8YbpgAAIABJREFUB9GBfL5KlFKOOe2DUDLnYZgzw2xjZnZ+339/fD751Sd7v9+9t71f773ft+vl8vyvvB7v19Rl7/ft/Xy+9Nhjj/1ppscffzzPmV599VWNHj1aI0eO1IgRI/TCCy9o+PDhevbZZ/X000//Yabu3bvrkUce0dChQ7V8+XIlJCRwIoQNCLRwhFdeecVioJ05cyaBFgAAAAAAwAkQaAvJlStXNHv2bNWrV+/OrqSmTZtq4cKFSkxMNHo8ALALgfb/u3Xrlk6fPq0DBw5o3759OnDggA4dOqSYmBgdPXpUsbGxOnHihOLi4nTmzBmdO3dO58+f1/nz53Xu3DmdPXtWZ86c0enTp3Xq1CmdPHlSx48f17Fjx3TkyBEdOnTozp99/PhxJScn57l79jdpaWk6e/asDh48+Jdn+m2u388UFxd315n279+v2NhYJSUlWZ0J/0GghSO8+uqrCgwMJNACAAAAAAA4OQJtITCbzdq/f7+effZZlS1bVh4eHvL391e/fv20Y8cOZWRkGD0iANiFQAvYh0ALR7AWaGfMmKHr168bPSYAAAAAAIDbI9AWgrS0NK1YsUJt2rS5c29CQ0M1adIknTlzhqMgARRZBFrAPgRaOMJrr71mMdBOnz6dQAsAAAAAAOAECLSF4Ny5c3rrrbdUo0YNmUwmeXt7q23btlqxYoVSUlKMHg8A7EagBexDoIUjjBkzRqVLlybQAgAAAAAAODkCbQHLzs7Wjh071L9//zs7GMqUKaO//e1vOnjwoLKzs40eEQDsRqAF7EOghSNYC7TvvfcegRYAAAAAAMAJEGgLWFJSkj755BOFhYXJ29tbJpNJ9957r+bMmaMrV64YPR4A5AuBFrAPgRaOMHbsWIuB9t1331VycrLRYwIAAAAAALg9Am0BMpvNiomJ0UsvvaSKFSvKw8NDxYsXV48ePbRlyxbdvn3b6BEBIF8ItIB9CLRwhNdff11BQUEEWgAAAAAAACdXoIG2ffv2bh1o09PTtWrVKnXs2FHFixeXh4eHqlSporFjx+rkyZPKzc01ekQAyBcCLWAfAi0cwVqgnTZtGoEWAAAAAADACdgdaG/duqWvv/5abdu2lZ+fnzw8PNShQwetXr3abQNtQkKCPvzwQ9WrV0+enp7y8vJSixYttGTJEj4MA+ASCLSAfQi0cIRx48ZZDLRTp05VUlKS0WMCAAAAAAC4PbsDbUZGhlavXq2IiAiVKFFCJpNJnTt31saNG5WWllaQMxYZly5d0tSpUxUaGioPDw8FBQVpyJAh2rNnj7KysoweDwDyjUAL2IdAC0eIjIxUmTJlCLQAAAAAAABOzu5Am5ubq+joaI0YMUL169dX7dq1NXLkSB04cMBtY2RycrKWLFmijh07KiQkRB06dNBnn32mq1evymw2Gz0eAOQbgRawD4EWjmAt0L7zzjsEWgAAAAAAACdgd6CVpMTERK1fv17Tpk3TtGnTtGHDBiUlJbltjMzOztbx48e1aNEiTZ48WYsWLVJsbCyxAoDLINAC9iHQwhH+8Y9/WAy0b7/9thITE40eEwAAAAAAwO3lK9Dm5OQoJSVFFy9e1MWLF5WSkqKcnJyCmq1IyszM1LVr13T+/HklJCQoIyPDbYM1ANdDoAXsQ6CFI4wfP15ly5Yl0AIAAAAAADi5fAVa5I0oC8AVEWgB+xBo4QjWAu1bb71FoAUAAAAAAHACBFoAgM0ItIB9CLRwhAkTJlgMtFOmTNG1a9eMHhMAAAAAAMDtEWgBADYj0AL2IdDCESZOnKhy5coRaAEAAAAAAJwcgRYAYDMCLWAfAi0cwVqgnTx5MoEWAAAAAADACRBoAQA2I9AC9iHQwhHeeOMNi4H2zTffVEJCgtFjAgAAAAAAuD0CLQDAZgRawD4EWjjCpEmTVL58eQItAAAAAACAkyPQAgBsRqAF7EOghSNYC7STJk0i0AIAAAAAADgBAi0AwGYEWsA+BFo4wptvvmkx0L7xxhu6evWq0WMCAAAAAAC4PQItAMBmBFrAPgRaOMLkyZNVoUIFAi0AAAAAAICTI9ACAGxGoAXsQ6CFI1gLtBMnTiTQAgAAAAAAOAECLQDAZgRawD4EWjjClClTLAbaCRMm6MqVK0aPCQAAAAAA4PYItAAAmxFoAfsQaOEIb731lipWrEigBQAAAAAAcHIEWgCAzQi0gH0ItHAEa4F2/PjxBFoAAAAAAAAnQKAFANiMQAvYh0ALR3j77bctBtp//OMfunz5stFjAgAAAAAAuD0CLQDAZgRawD4EWjjCO++8o0qVKhFoAQAAAAAAnByBFgBgMwItYB8CLRzBWqCNjIwk0AIAAAAAADgBAi0AwGYEWsA+BFo4wtSpUy0G2nHjxik+Pt7oMQEAAAAAANwegRYAYDMCLWAfAi0cYdq0aapcuTKBFgAAAAAAwMkRaAEANiPQAvYh0MIRrAXa119/nUALAAAAAADgBAi0AACbEWgB+xBo4QjvvvuuxUA7duxYXbp0yegxAQAAAAAA3B6BFgBgMwItYB8CLRzhvffeU5UqVQi0AAAAAAAATo5ACwCwGYEWsA+BFo5gLdCOGTOGQAsAAAAAAOAECLQAAJsRaAH7EGjhCNOnT7cYaF977TVdvHjR6DEBAAAAAADcHoEWAGAzAi1gHwItHGHGjBmqWrUqgRYAAAAAAMDJEWgBADYj0AL2IdDCEawF2ldffZVACwAAAAAA4AQItAAAmxFoAfsQaOEIM2fOtBhoX3nlFV24cMHoMQEAAAAAANwegRYAYDMCLWAfAi0cYdasWQoODibQAgAAAAAAODkCLQDAZgRawD4EWjiCtUA7evRoAi0AAAAAAIATINACAGxGoAXsQ6CFI7z//vsWA+3f//53nT9/3ugxAQAAAAAA3B6BFgBgMwItYB8CLRxh9uzZqlatGoEWAAAAAADAyRFoAQA2I9AC9iHQwhGsBdpRo0YRaAEAAAAAAJwAgRYAYDMCLWAfAi0c4YMPPrAYaEeOHKlz584ZPSYAAAAAAIDbI9ACAGxGoAXsQ6CFI3z44YcKCQkh0AIAAAAAADg5Ai0AwGYEWsA+BFo4grVA+/LLLxNoAQAAAAAAnACBFgBgMwItYB8CLRzhn//8p8VA+9JLL+ns2bNGjwkAAAAAAOD2CLQAAJsRaAH7EGjhCHPmzFFoaCiBFgAAAAAAwMkRaAEANiPQAvYh0MIRrAXaESNGEGgBAAAAAACcAIEWAGAzAi1gHwItHGHu3LkWA+2LL76oM2fOGD0mAAAAAACA2yPQAgBsRqAF7EOghSPMmzdP1atXJ9ACAAAAAAA4OQItAMBmBFrAPgRaOIK1QPvCCy8QaAEAAAAAAJwAgRYAYDMCLWAfAi0c4aOPPrIYaJ9//nmdPn3a6DEBAAAAAADcHoEWAGAzAi1gHwItHGH+/PmqUaMGgRYAAAAAAMDJEWgBADYj0AL2IdDCEawF2ueee45ACwAAAAAA4AQItAAAmxFoAfsQaOEICxYssBhohw8frlOnThk9JgAAAAAAgNsj0AIAbEagBexDoIUjfPzxx6pZsyaBFgAAAAAAwMkRaAEANiPQAvYh0MIRrAXav/3tbwRaAAAAAAAAJ0CgBQDYjEAL2IdAC0f45JNPLAbaYcOGKS4uzugxAQAAAAAA3B6BFgBgMwItYB8CLRzh008/Va1atQi0AAAAAAAATo5ACwCwGYEWsA+BFo5gLdA+++yzBFoAAAAAAAAnQKAFANiMQAvYh0ALR/jss88sBtqhQ4fq5MmTRo8JAAAAAADg9gi0AACbEWgB+xBo4QgLFy5U7dq1CbQAAAAAAABOjkALALAZgRawD4EWjmAt0D7zzDMEWgAAAAAAACdAoAUA2IxAC9iHQAtHWLRokcVAy98zAAAAAAAA50CgBQDYzFqgffPNNxUdHa1Dhw6xWKzfrdGjR6t8+fKEMxSqzz//nC8CAAAAAAAAFAEEWgCAzawF2nvuuUdt2rRRu3btWCzW71ZISIh8fHwIZyhU1gLt008/zd8zAAAAAAAAJ0CgBQDYzFqgZbFY9i0CLQrC4sWLLQbawYMH6/jx40aPCQAAAAAA4PYItAAAmxFoWazCWQRaFIR//etfqlOnTp5/zwi0AAAAAAAAzoFACwCwGYGWxSqcRaBFQbAWaAcNGkSgBQAAAAAAcAIEWgCAzQi0LFbhLAItCsL//d//WQy0Tz31lGJjY40eEwAAAAAAwO0RaAEANiPQsliFswi0KAhLlixR3bp18/x7RqAFAAAAAABwDgRaAIDNCLQsVuEsAi0KgrVAO3DgQAItAAAAAACAEyDQAgBsNmHCBDVp0kSNGjVisVgFuCZMmKBz584Z/Z84irgvvvjCYqAdMGCAjh07ZvSYAAAAAAAAbo9ACwCwWWxsrLZv365t27axWKwCXLGxsbp9+7bR/4mjiPvyyy9Vr149Ai0AAAAAAICTI9ACAAAALsBaoH3yyScJtAAAAAAAAE6AQAsAAAC4gKVLl1oMtE888YSOHj1q9JgAAAAAAABuj0ALAAAAuICvvvpK9evXJ9ACAAAAAAA4OQItAAAA4AKsBdrHH3+cQAsAAAAAAOAECLQAAACAC1i2bJnFQNu/f38dOXLE6DEBAAAAAADcHoEWAAAAcAHLly9XgwYNCLQAAAAAAABOjkALAAAAuABrgbZfv34EWgAAAAAAACdAoAUAAABcwNdff20x0Pbt21cxMTFGjwkAAAAAAOD2CLQAAACAC/jmm2907733EmgBAAAAAACcHIEWAAAAcAHWAm2fPn0ItAAAAAAAAE6AQAsAAAC4gBUrVlgMtL1799bhw4eNHhMAAAAAAMDtEWgBAAAAF/Dtt9+qYcOGBFoAAAAAAAAnR6AFAAAAXIC1QNurVy8CLQAAAAAAgBMg0AIAAAAu4LvvvrMYaB977DEdOnTI6DEBAAAAAADcHoEWAAAAcAErV65Uo0aNCLQAAAAAAABOjkALAAAAuABrgfbRRx8l0AIAAAAAADgBAi0AAADgAr7//nuLgbZnz546ePCg0WMCAAAAAAC4PQItAAAA4AJ++OEHNW7cmEALAAAAAADg5Ai0AAAAgAuwFmh79OhBoAUAAAAAAHACBFoAAADABaxatcpioO3evbsOHDhg9JgAAAAAAABuj0ALAAAAuIDVq1frvvvuI9ACAAAAAAA4OQItAAAA4AKsBdpu3boRaAEAAAAAAJwAgRYAAABwAWvWrLEYaLt27ar9+/cbPSYAAAAAAIDbI9ACAAAALmDt2rUKCwsj0AIAAAAAADg5Ai0AAADgAqwF2kceeYRACwAAAAAA4AQItAAAAIALWLduncVA26VLF+3bt8/oMQEAAAAAANwegRYAAABwAevXr1eTJk0ItAAAAAAAAE6OQAsAAAC4AGuBtnPnzgRaAAAAAAAAJ0CgBQAAAFzAjz/+aDHQPvzww9q7d6/RYwIAAAAAALg9Ai0AAADgAjZs2KCmTZsSaAEAAAAAAJwcgRYAAABwAdYCbadOnQi0AAAAAAAAToBACwAAALiAjRs3Wgy0ERERio6ONnpMAAAAAAAAt0egBQAAAFzApk2bdP/99xNoAQAAAAAAnByBFgAAAHAB1gJtx44dCbQAAAAAAABOgEALAAAAuIDNmzdbDLQPPfSQ9uzZY/SYAAAAAAAAbo9ACwAAALiALVu2qFmzZgRaAAAAAAAAJ0egBQAAAFyAtUDboUMHAi0AAAAAAIATINACAAAALiAqKspioG3fvr1+/fVXo8cEAAAAAABwewRaAAAAwAX8+9//VvPmzQm0AAAAAAAATo5ACwAAALgAa4H2wQcfJNACAAAAAAA4AQItAAAA4AK2bt1qMdC2a9dOu3fvNnpMAAAAAAAAt0egBQAAAFzAtm3b1KJFCwItAAAAAACAkyPQAgAAAC7AWqBt27YtgRYAAAAAAMAJEGgBAAAAF7B9+3aLgbZNmzb65ZdfjB4TAAAAAADA7RFoAQAAABfw008/qWXLlgRaAAAAAAAAJ0egBQAAAFyAtUDbunVrAi0AAAAAAIATINACAAAALmDHjh0WA+0DDzygn3/+2egxAQAAAAAA3B6BFgAAAHABO3fuVHh4OIEWAAAAAADAyRFoAQAAABdgLdC2atWKQAsAAAAAAOAECLQAAACAC9i1a5fFQBseHq5du3YZPSYAAAAAAIDbI9ACAAAALuDnn39Wq1atCLQAAAAAAABOjkALAAAAuABrgbZly5YEWgAAAAAAACdAoAUAAABcwC+//GIx0LZo0UI7d+40ekwAAAAAAAC3R6AFAAAAXMDu3bv1wAMPEGgBAAAAAACcHIEWAAAAcAHWAm3z5s0JtAAAAAAAAE6AQAsAAAC4gF9//dVioG3WrJl27Nhh9JgAAAAAAABuj0ALAAAAuIA9e/aodevWBFoAAAAAAAAnR6AFAAAAXIC1QHv//fcTaAEAAAAAAJwAgRYAAABwAdHR0RYDbdOmTfXTTz8ZPSYAAAAAAIDbI9ACAAAALmDv3r1q06YNgRYAAAAAAMDJEWgBAAAAF2At0DZp0oRACwAAAAAA4AQItAAAAEARlp2drVu3bmnr1q0KDw/PM9Dee++9Wrlypa5du6abN28qMzNTZrPZ6PEBAAAAAADcDoEWAAAAcHKpqak6deqUdu7cqW+//Vbz5s3TxIkTNWzYMPXr10+PPvqo2rVrpzJlyuQZaEuVKqWWLVuqW7du6tmzp3r37q3BgwdrzJgxmjVrlpYuXaqoqCgdOXJESUlJysnJMfplAwAAAAAAuCQCLQAAAOBEMjMzFRcXpzVr1mjWrFl64YUX1Lt3b0VERCg8PFwNGzZU9erVVa5cOfn5+clkMuUZZa0tHx8flS5dWsHBwapXr56aNWum9u3bq3v37nrmmWc0efJkLVu2TAcOHFBqaio7bgEAAAAAAAoAgRYAAAAwUE5Ojs6fP6/169dr+vTpGjJkiCIiIhQWFqbg4GCVKFFCnp6edkdYe1exYsVUoUIF1a9fX23btlX//v01YcIELVu2TEeOHNHt27eNvnUAAAAAAABFEoEWAAAAcLDbt2/rwIEDWrhwoUaMGKFHHnlETZo0UZUqVVSsWDGHx1hblre3t8qVK6cGDRqoffv2evrppzVz5kxt3bpVycnJ7K4FAAAAAACwEYEWAAAAcIDMzEwdPnxYCxYs0DPPPKN27dqpdu3a8vf3z9cxxUatYsWKKTg4WM2bN1ffvn01depUbdu2TSkpKUbfagAAAAAAAKdGoAUAAAAKUVJSktasWaNRo0apQ4cOqlmzpvz8/AwPrAW9u7Zy5cpq0aKFBg8erIULF+rs2bPKyckx+vYDAAAAAAA4HQItAAAAUAjOnz+vxYsXa9CgQQoLC1NAQECR3Cn7V5efn59q166t7t27a/r06Tp8+LAyMzON/nEAAAAAAAA4DQItAAAAUIDi4uI0d+5c9e7dW3Xq1Cn03bKenp7y8/OTv7+/vL298/znfHx8FBQUpKCgIJUoUUJeXl6FOpeXl5eqVq2qDh06aOLEifr11191+/Zto388AAAAAAAAhiPQAgAAAAXg5MmT+uCDD9SjRw+FhobK19e3QIOnv7+/atWqpbZt2+rxxx/X6NGjNWPGDC1ZskTfffed5syZo4YNG+b574eGhurdd9/V6tWrtXLlSi1btkxz5sxRZGSknn76aXXq1En33nuvgoKCCjTemkwmVahQQW3atFFkZKR2795NqAUAAAAAAG6NQAsAAADkw/nz5/XRRx/p0UcfVUhIiHx8fPIdNX19fVWrVi1169ZNY8aM0fz58/Xtt99q8+bN2r17t44eParz58/r+vXrys7OliTFxMTowQcfzPPPbNCggf7973/fmTs3N1epqamKj4/X8ePHtXfvXm3dulWrVq3S559/rjfffFNPPvmk7rvvPvn7++f7eGaTyaRy5cqpdevWmjhxog4cOMDRxwAAAAAAwC0RaAEAAAA7JCcna+nSpXr88cdVo0aNfO2YNZlMqly5siIiIvTqq69q0aJF2rRpkw4cOKCLFy8qLS1Nubm5Fuc5cuSI2rdvb3OgtSQzM1MJCQk6evSotm/fruXLl2vy5Mnq06ePateurWLFiuV7R+1DDz2kmTNn6vTp01ZfGwAAAAAAgCsh0AIAAAB/QXZ2trZt26YXX3xRDRo0sPsZs15eXqpRo4b69eunGTNmaNWqVYqOjtbFixeVkZHxl+eyFmjr169vc6C922tOSEhQTEyMNm/erI8//ljDhw/XfffdpxIlStj1+j09PVWtWjX17t1by5cvV1JSkl2zAQAAAAAAFDUEWgAAAMBGFy5c0KxZs9SuXTsFBgbadexv2bJl1aVLF7333ntav369YmJidP369XzvIj169KjFQFuvXj1FRUUVyH1IS0vTqVOntH37dn3yyScaNGiQQkND5e3t/ZfvR7FixdSgQQONHj1a+/fvV1ZWVoHMCAAAAAAA4KwItAAAAIAV2dnZioqK0jPPPKNq1arZFSKrVaumZ555Rl988YX27dun5OTkAj3a99ixY+rQoYNDAu3v3bp1S8ePH9fatWs1btw4NWzY0K7jnsuUKaOHH35YX375JbtpAQAAAACASyPQAgAAABZcu3ZNH330kdq1a6dSpUr95fAYEhKi4cOH65tvvtHJkyeVnp5eKHNaC7R169YtlED7m9zcXF26dElbtmzRxIkTdd999/3lZ9X6+Piofv36ioyMVGxsLM+mBQAAAAAALolACwAAAOTh0KFDGj16tGrVqiUfH5+/FBurVq2qYcOGacWKFTp16pRdz5X9K2JjYy0G2jp16mjLli2FOoP0n1B7+fJlRUVFacKECXbtqK1QoYL69u2rjRs3Ki0trdBnBgAAAAAAcCQCLQAAAPA/srKytGbNGvXp00dly5b9S8+aLVeunAYOHKivvvpKcXFxhR5mf3P8+HE99NBDhgfa3+Tm5io+Pl6bN2/Wa6+9ptq1a8vLy8vm+1i8eHGFh4fr448/VkJCgsPmBgAAAAAAKGwEWgAAAOB3bty4oQULFuiBBx5QiRIlbA6KJUuWVNeuXbVw4UIdO3as0I4yzou1QHvPPfc4NND+Jjc3VxcuXNDq1as1bNgwVa5c2ebg7enpqXvuuUeRkZGKi4uT2Wx2+PwAAAAAAAAFjUALAAAA/NeFCxf05ptvqm7dujYfaezp6anmzZtrxowZio6OVmpqqiGznzhxwmKgrV27tjZv3mzIbNJ/diWfPHlSS5YsUbdu3RQQEGBz/K5UqZKGDBmi6OhoZWdnG/YaAAAAAAAACgKBFgAAAJB05MgRvfzyy6patao8PT1tfs7syy+/rE2bNikpKUm5ubmGzX/y5El17NjRaQPtb9LS0rR//369++67aty4sc0hPCAgQN27d9fmzZsdvjsZAAAAAACgIBFoAQAA4PZ2796twYMH2/y8WV9fXz388MNavHixzp49q6ysLKNfgtVAW6tWLacItL9JSEjQhg0bNGTIEJUrV86mSOvn56d27dpp5cqVhu1UBgAAAAAAyC8CLQAAANzatm3b1LdvXwUGBtoUCYODg/Xaa69p165dThUJ4+LiLAbamjVratOmTUaP+QfZ2dk6fvy4PvzwQzVp0sSm3bQ+Pj5q3ry5vvrqK6WkpBj9EgAAAAAAAP4yAi0AAADc1pYtW9SzZ0+VKlXKpmfNtmnTRp999pnOnz/vdM9CPXXqlCIiIopUoP1NUlKSfvzxR/Xr10+lS5e2+rPw8vJSWFiYlixZohs3bhg9PgAAAAAAwF9CoAUAAIBb2rp1q3r06CF/f3+rQbBkyZJ66qmntGnTJqfdtWkt0NaoUcNpA60kZWVl6dChQ4qMjFRISIhNwfy+++7Tl19+6bQ/EwAAAAAAgLsh0AIAAMDt/Pzzz+rdu7dNO2crVqyo119/XYcOHVJGRobRo+fp9OnTFgNt9erVtXHjRqPHtOrChQuaP3++GjVqJC8vL6uRtmnTplqxYoVu3bpl9OgAAAAAAAA2IdACAADArRw8eFADBw5UQECA1Thbq1YtTZ8+XWfPnlVOTo7Ro1t05swZderUqcgHWklKTk7WihUr1Lp1a/n6+lo97rhVq1Zat26d0tPTjR4dAAAAAADAKgItAAAA3EZcXJyGDx+uoKAgq3G2fv36+uijj3TlyhWZzWajR7fKWqANDQ0tMoFWktLS0vTjjz+qY8eOKlasmMWflY+Pjzp27KitW7cqKyvL6NEBAAAAAAAsItACAADALVy5ckVjxoxRxYoVbYqzn3zyiRITE40e22Znz561GGhDQkK0YcMGo8f8SzIyMrRlyxZFRERYjbR+fn7q1auXoqOjlZuba/ToAAAAAAAAeSLQAgAAwOWlpqZq2rRpCgkJkclkshj6atasqXnz5hWpOCtJ586d08MPP+xSgVb6T6TduHGj2rZtKx8fH4s/O39/fw0bNkyxsbFGjw0AAAAAAJAnAi0AAABcWnZ2tj777DM1aNBAXl5eFgNfcHCwZs2apStXrhg99l9mLdBWq1atSAZaSUpPT9cPP/ygFi1aWP0Zli1bVhMmTNCFCxeMHhsAAAAAAOCuCLQAAABwaWvXrlXr1q3l6+trMexVqFBBb7/9ti5dulQknjn7v86fP28x0AYHB+vHH380eky73bp1S8uXL1dYWJg8PT0t/ixDQkK0YMECJScnGz02AAAAAADAnxBoAQAA4LIOHDig3r17q0SJEhaDXmBgoCIjI3X27Nki+/zSCxcuqHPnzi4baCUpJSVFCxcuVP369a0eVR0WFqbVq1crPT3d6LEBAAAAAAD+IF+BNiMjQydOnNDatWu1bt06nTx5UhkZGQU1W5FjNpuVnJysXbt26dtvv9VPP/2kxMTEIvshHwAAQFF25coVjRw5UmXKlLEY8vz8/DRixAjFxsYEodDcAAAgAElEQVQqJyfH6LHtZi3QVq1atcgHWklKSkrSrFmzVL16dYs/V29vb3Xt2lV79uzh93EAAAAAAOBU8hVoT5w4oalTp6pTp07q0KGD3n33XZ08ebJIf7CVH6mpqVq7dq0GDRqk8PBwDRgwQCtXrtT169eNHg0AAMCtZGZmavbs2apevbrFnZaenp4aMGCA9u3bp+zsbKPHzpeLFy9aDLRVqlTR+vXrjR6zQMTHx2vcuHGqVKmSxUhbsmRJjRo1SmfOnDF6ZAAAAAAAgDvsDrRZWVnauHGjevbsqaCgIBUvXly9evXS1q1b3fYYsfj4eE2fPl116tSRr6+vKleurJdeekkxMTFuG60BAACMsHbtWoWHh8vb29tiwIuIiFBUVJRLnAJz6dIldenSxS0CrSTFxcXpmWeeUWBgoMWfceXKlTV//ny+NAkAAAAAAJyG3YE2LS1NK1asULt27eTn5ycPDw917NhRa9eu1a1btwpyxiLj8uXLmjFjhmrVqiWTySRvb2+1bdtWK1asUEpKitHjAQAAuIWTJ0/qiSeeUMmSJS2Gu0aNGmn58uUu87urtUBbuXJllwq0ZrNZ0dHReuSRR1SsWDGLP+tmzZpp8+bNRX6XNAAAAAAAcA12B9rU1FQtX75cbdq0ufOBSPv27bVq1SqlpqYW5IxFxq1bt/T111/rgQceuHNPQkNDNWnSJJ09e1Zms9noEQEAAFxaenq6Jk+ebPXo24oVK+qDDz5QYmKi0SMXmPj4eIuBtlKlSlq3bp3RYxao7OxsrVmzRs2aNZOnp2eer93X11dDhgzR8ePHjR4ZAAAAAAAgf4F22bJlat26NYH2v3Jzc7V3714NHTpUZcuWvfPcq379+mnHjh0ucXQeAACAM1u9erWaNWsmLy+vPGNdsWLFNHr0aJ05c8alvkB3+fJlPfLII24VaKX/vC/55z//qRo1aliM8uXKldPcuXM56hgAAAAAABiuQAPtgw8+6NaBVpKuXr2qDz/8UPXq1ZOnp6c8PT3VtGlTLVy40KV2aAAAADib8+fPa+DAgVaPNu7Ro4d2797tcsfdWgu0FStWdMlAK/1n9/CIESMUFBRk8WffsmVLbdu2Tbm5uUaPDAAAAAAA3BiBtoBlZmZq8+bN6t69u/z9/e98GPb3v/9dx48f58MgAACAQpCbm6sPPvhAISEhFgNdvXr19M033ygtLc3okQvclStXLAbaChUqaO3atUaPWWj27dunzp07y8fHx+ru6XPnzhk9LgAAAAAAcGMuEWgzMzMVHx+vvXv3at26dfrqq6+0ePFiLVq0SP/617+0YsUKRUVFKTY2Vjdu3FBOTk6hzWI2mxUXF6dx48YpODhYJpNJvr6+6tSpk9auXatbt24V2rUBAADc1Z49exQREWExzpUsWVJvv/22rl69avS4heLq1avq2rWr2wbarKwsffnll6pfv77FSB8aGqpvvvmGx48AAAAAAADDFNlAm52drStXrmj79u2aN2+eXn75ZfXu3Vvt27dX8+bNFRYWpsaNGyssLEzh4eF6+OGH9dRTT2nixIlatmyZYmJilJqaWijPHUtJSdGSJUt0//33y8fHRyaTSffcc4/ee+89Xbp0qcCvBwAA4M7S09M1btw4lS1b1mKY69u3rw4cOOCyJ5pYC7Tly5d36UArSUlJSXrllVcs/l3w9PTUgAEDdOzYMaPHBQAAAAAAbqrIBVqz2ayrV69q/fr1mjBhgrp3764GDRqofPny8vf3V6lSpVS+fHmFhISoRo0aqly5sgIDA1WiRAkFBAQoODhYLVq00ODBgzVv3jzt37+/wI+4y8nJ0c8//6wnnnhCgYGB8vDwUGBgoAYPHqzo6GhlZWUV6PUAAADcWVRUlMLDw+Xp6ZlnlKtdu7a+/vpr3b592+hxC01CQoLFQFuuXDmtWbPG6DEL3f79+xURESFvb2+L92LRokWcbgMAAAAAAAxRpAJtenq6Dh8+rFmzZumRRx5RaGio/P395evrq3Llyik8PFzPPvuspk2bpk8//VSLFi3SnDlzNGbMGHXv3l21atVSiRIl5OvrqzJlyqhRo0YaOnSovvnmG8XHxxfo0ccXLlzQO++8oxo1ashkMsnLy0sPPPCAli1bphs3bhTYdQAAANxZWlqaRo4ceedLcXdb3t7eGjdunMufZHLt2jV169bN7QNtVlaW5s+fr5o1a1rcUf3YY4/p0KFDRo8LAAAAAADcUJEJtKmpqYqKitLIkSPVuHFjlSpVSl5eXipZsqSaNWumMWPG6Ntvv9WBAwcUHx+vlJQU3bx5U0lJSYqLi9PWrVs1d+5c9e3bV9WqVZOPj498fHxUoUIFdezYUR9++KFOnDhRYLtb09LStHLlSrVr105+fn7y8PBQtWrVNH78eJ05c6ZQjlYGAABwN5s3b1aLFi1kMpnyDHGtW7fWtm3bCvTLeM7IWqAtW7asWwRaSbp06ZIGDhyo4sWL53k/goKCtHDhQnbRAgAAAAAAhysSgTY1NVUbN27UkCFDFBoaqmLFislkMikoKEjdunXTp59+qqNHjyolJUVZWVl/eK6Y2WxWTk6O0tPTdeXKFW3dulWvv/66GjZsqGLFisnT01OlSpVSs2bN9PbbbysmJkaZmZn5njk3N1cHDhzQ8OHDVb58eXl4eKh48eLq2bOnoqKilJ6enu9rAAAAuLOMjAyNHj1apUuXzjPClSxZUrNnz1ZycrLR4xa6xMREi4G2TJkyWr16tdFjOoTZbNZ3332nRo0aWX0ucUxMjNHjAgAAAAAAN+P0gTY9PV1bt27V0KFDFRwcfOdZUv7+/uratauWLVumS5cuKSsry+qu1NzcXKWlpenQoUOaPHmyGjZsKF9fX5lMJhUvXlxhYWGaOnWqTp48qezs7HzPfu3aNc2bN08NGjSQl5eXTCaT7r33Xs2ZM0dXrlzJ958PAADgzn7++We1adPG4u7ZLl26KDo62i1OL0lKSlL37t0JtP+VnJys559/XgEBARaPfV66dKkyMjKMHhcAAAAAALgRpw60OTk5OnTokF599VXVrFlTPj4+8vDwkI+Pj1q2bKlPPvlEFy9e/MvH1WVkZGj//v169dVXFRoaKk9PzzuRtlWrVlqwYIHi4+P/sBPXHllZWYqKilLPnj3l7+9/54Ox5557TjExMS5/zB4AAEBhMZvNmjx5sipUqJBnfCtVqpTmz5+vmzdvGj2uQ1gLtEFBQW4VaCVp/fr1atKkSZ73xGQyafjw4Tp16pTRowIAAAAAADfi1IH24sWLmj17tpo0aXLnGh4eHgoNDVVkZKSOHDli9zNj09LStGHDBvXu3VuBgYF3PqAJCAhQ9+7d9cMPPyglJSXfr+HUqVMaP368goODZTKZ5OPjow4dOhTas3oBAADcwalTp9StW7c7p6vktXt27969brF7VvrPjlFLgbZ06dJatWqV0WM61I0bN/Tcc8+pVKlSed6X2rVra8OGDfn+ciYAAAAAAICtnDbQpqena+3aterWrZsCAgLuHF3n6+urLl26aM2aNfnaDWE2mxUfH6/3339fDRo0uPPhnslkUuXKlTVq1CgdPnw430cd37x5U0uXLlXLli3l6+srDw8P1apVS1OnTtXFixfz9WcDAAC4q88//1z33HNPntHNz89PH374YYF84a6ouH79unr06EGg/R8rV660+CxaHx8fvfXWW0pISDB6VAAAAAAA4CacNtDGxcXpH//4h6pXry5PT887H6BUqVJFr7/+uk6cOJHvI4KzsrK0bds29e/f/84u2t8fobx48WIlJSXl6xo5OTnavXu3nnrqKQUFBcnDw0MBAQEaOHCgfv31V7t3AAMAALir1NRUDR06VMWLF88zurVq1Uo7duxwm92zkvVAGxgY6JaBNjExUU8++eQfTuT539WxY0ft2bPH6FEBAAAAAICbcMpAm5aWpu+++04PPfSQSpQo8YdnRIWHh+urr77S9evX83WN35w/f15TpkxR9erV7+zS9fDwUNmyZTVs2DBFR0crMzMzX9e4dOmS3nvvPdWqVUsmk0leXl4KDw/X0qVLC+x1AAAAuIudO3eqVatWFp8rOnHiRF25csXoUR3qxo0bFgNtQECAfvjhB6PHdDiz2az58+erRo0aFncXf/HFF8rIyDB6XAAAAAAA4AacMtCeOXNGEydO/NPu2RIlSuiJJ57Q7t278x1Nf5OWlqYvv/xSzZo1k4+Pz51reXt7q1mzZlq0aJESExPzdY2MjAytXbtWnTp1uhOcq1atqnHjxunUqVNutbMDAAAgv6ZNm6bKlSvnGduqV6+u1atX5/tRFUVNSkqKevbsSaC9i+PHjysiIuIPX8j83/Xyyy/r7NmzRo8KAAAAAADcgNMF2tzcXG3dulW9evVSQEDAHz40qVKliiIjI3Xq1Cnl5ubafY27Xa9nz57y9/f/w/UqVKigUaNG6dixY/m6ntls1rFjxzR69GhVqlTpznPRunXrpi1btig9Pb1AXgsAAICrS0hIUN++ff/wxbr/XQMHDlRsbKzRozqctUBbqlQptw20WVlZev3111W2bNk8709YWJi2b99u9KgoorKysnT16lUdO3ZMO3fu1Jo1a7RkyRLNnTtXH330kZYuXar169frl19+0fHjx5WYmOh2XyIBAAAAAPx/Thdok5OTtWDBAjVu3Fje3t5/+NDk3nvv1bx583T16lW7//y7OXz4sF544QWVL1/+D9fz9fVVly5dtGHDBqWlpeXrGsnJyVq4cKHCwsLk7e0tk8mk+vXr65///GeBvx4AAABXtXHjRjVt2jTPyObn56cFCxbo1q1bRo/qcDdv3rQYaP39/fX9998bPaZh1q5dq7CwsDzvT4kSJfTZZ5/l+/d+uI8rV64oKipK77//voYOHapu3bqpQ4cOCg8PV1hYmOrWravQ0FDVqFFD9erVU5MmTdSqVSs99NBD6t69u55//nnNmzdPO3fu1PXr1zlZCQAAAADciNMF2iNHjujll19WpUqV/nAEmclk0gMPPKCvv/5aKSkpdv/5d3Pu3DlNnDhRwcHBf3p+WYMGDTRnzpx8R9Ts7Gxt375dffr0ubMzuEyZMho+fLgOHjzIt6cBAABsMGXKFFWsWDHPyNakSRNt27bNLUNHamqqHn30UQJtHq5du6Y+ffr86Uugv18vvPCCTp8+bfSocGIZGRnatWuXJk+erF69eqlZs2aqVq2a/Pz8LB6hfbdVsmRJVa9eXeHh4erXr59mzpypw4cP8yxkAAAAAHADThVos7KytH79enXu3FklS5b8w5tXb29vde7cuUB2s/6vhIQEzZo1SzVq1PjTm+by5ctr5MiRio2NzfexymfPntWkSZMUEhIiDw8P+fj4qH379lq5cqVu3rxZQK8GAADANSUnJ6tfv34WjzceMWKE2z5H1FqgLVmypFsHWrPZrKlTp1p8fvH999+vHTt2GD0qnFBWVpZ27typsWPHqk2bNqpQoYLF2P9Xl7e3t4KDg9WhQwdNmTJFhw8fVmZmptEvGwAAAABQSJwq0KakpOiTTz5Rw4YN5eXl9Yc3rMWKFVPv3r21Y8eOAv9G8W/XbdCggTw9Pf9w3eLFi6tPnz7asWNHvt8g37p1SytWrFCbNm1UrFgxmUwm1ahRQ2+99ZYuXLhQQK8GAADANe3YsUMtW7a0eETt559/rvT0dKNHNcStW7csBtoSJUpo5cqVRo9pqKioKDVr1sziLuMvvviCMIY7zGazYmJiNHnyZLVr105lypT503vGglwmk0mVKlVSRESEZs+erbNnz+b7i8IAAAAAAOfjVIH2woULevPNN1WtWrW7fqA0aNAg7d+/Xzk5OfaOfVdpaWlaunSpmjdv/qcdGV5eXmrXrl2B7HLNzc3VwYMH9dxzz6lcuXJ3PgTq37+/du3axQdBAAAAFsyZM0ehoaF5ho0mTZpo+/btRo9pmLS0ND322GMEWguSkpKsHnMcGRmp+Ph4o0eFE0hOTtbixYvVo0cPVaxY8U9fIi7M5enpqZCQEPXv31+rV68u8Mf8AAAAAACM5VSB9tChQ3+Il79fpUqV0nPPPafY2NgCf6ZYenq6vv/+e7Vr105+fn5/unajRo308ccf69q1a/m+VkJCgubOnav69evL09NTnp6eatKkiT777DMlJiYWwKsBAABwPdnZ2Ro+fLiKFy+eZ9D429/+plOnThk9qmGsBdrixYu7faA1m82aNGmSypcvn+d96tatm/bv32/0qDDYkSNHNGbMGNWrV+/O+10jlp+fn8LCwjR16lSdO3fOLZ+vDQAAAACuyKkC7bZt2/Too4+qVKlSf3pjGhQUpJEjRxbKh25ZWVlat26dIiIi7vqhX0hIiCZNmlQgb4gzMzO1adMmde3a9c5zditWrKhRo0bp2LFjHF8FAABwF2fPnlXnzp1lMpnuGjG8vLw0b9483bp1y+hRDXP79m2LgdbPz0/fffed0WMa7vvvv1ejRo3yvE8hISHasGGD0WPCQNu3b9eAAQNUrly5PP+f4+gVHBys559/XocPH+Y9IwAAAAC4AKcJtJmZmfruu+/uPJ/1f9+Qli9fXmPGjNGZM2fsHTlPOTk52rJli7p163Ynmv5+BQYGatiwYYqJicn3m2Gz2awTJ05ozJgxqly5sjw8/vN83c6dO+vHH39UWlpaAb0qAAAA1/Hjjz+qSZMmFqPa+vXr3Xp3WXp6unr16kWgteLMmTPq1KlTnvfJx8dHn376qW7fvm30qDBAVFSUevbsedcvDRu9goKCNGjQIB08eJBICwAAAABFnNME2pSUFH366adq3LjxXZ8JVblyZY0fP17nzp2zd+Q8mc1m/fTTT+rVq9dd34j7+PioZ8+e2rlzp7KysvJ9vRs3bmjx4sVq2rSpvL29ZTKZVLduXb3//vu6fPlyAbwiAAAA1/LBBx+oWrVqeYaLLl26aN++fUaPaShrgbZYsWIEWv3ni6HDhg2zeFz22LFjdenSJaNHhYPt2bNHffr0kb+/v+ExNq8VGBio5557TsePHzf6dgEAAAAA8sFpAm1CQoJmzZql2rVry9PT809vRKtVq6bJkyfrwoUL9o5s0c8//6z+/fsrICDgT9c2mUx66KGHtGHDhgL5Jn12drZ27typ/v37KzAwUB4eHipdurSGDBmiffv2KTs7uwBeEQAAgGswm80aMWLEXU86+W2NHj260H5PLCoyMjIsBlpfX199++23Ro/pFGbMmKGqVavmea969eqlw4cPGz0mHOj06dMaNmyYSpcubXiEtbbKlSunN954QxcvXjT6tgEAAAAA7OQ0gfbixYuaMmWKQkJC7vqcn9DQUL3zzjuF9iZ09+7deuKJJ+4E0/9drVq10ooVK3Tz5s0Cud65c+c0ZcoUVa9eXSaTSd7e3mrVqpWWLl2q69evF8g1AAAAXEFycrIee+yxu36Jz8PDQ56enlqwYIHbPyoiMzNTvXv3JtDaYNWqVbrvvvvyvFeNGzfWtm3bjB4TDnLjxg1NmDBBlSpVMjy+2rpCQkL06aef6saNG0bfPgAAAACAHZwm0J45c0aRkZGqUqXKXd+A1qhRQ1OnTi20o8Z+/fVXDRgwIM9vTDdp0kSLFy9WcnJygVzv9u3b+v777/Xggw/Kz89PHh4eCg4OVmRkpE6dOuXWz08DAAD4vQMHDqht27Z5hooKFSpo9erVbv/7k7VA6+PjQ6D9r2PHjqlDhw553quAgAB9//33bv93yh3k5uZq4cKFqlevXp5fAnHW1axZM23cuLFAHsMDAAAAAHAspwm0sbGx+vvf/66KFSve9c1nzZo1NW3atEILtHv27NFTTz2VZ6Bt0KCB5s6dq4SEhAK5ntlsVkxMjF588UWVL19eHh4eKl68uB599FFt27ZNGRkZBXIdAACAou6HH35Q48aN84wULVq00M6dO40e03BZWVkWA623t7dWrFhh9JhO4datW+rbt6/FXdnz5893+13Z7mDnzp2KiIiQr6+v4cH1ry4fHx89+eSTOnLkiNG3EQAAAADwFzlNoD106JCGDx+ucuXK3fXNZ61atfTuu+8qPj7e3pEtio6O1uDBgxUUFJTn9d97770CvX5iYqLmz5+vhg0bysvLSyaTSY0aNdKCBQt07dq1ArsOAABAUTZv3jxVr149z0jRr18/AoWk7Oxs9enTh0BrA7PZrFGjRqlUqVJ53q8JEyboypUrRo+KQpSYmKgXX3wxz8fcFIVVpkwZzZo1S4mJiUbfTgAAAADAX+A0gXbv3r0aMmSIypQpk2cgnT59eqEF2r179+rpp5/OM9CGhoZqypQpunDhQoFdMzMzU1u2bFHPnj3l7+8vDw8PlS9fXi+99JKOHj2q3NzcArsWAABAUTV+/HiVLVs2z0DxyiuvFOjvaEWVtUDr5eVFoP2dGTNmqGrVqnner6FDh+rkyZNGj4lC9K9//Ut169aVyWQyPLTmZzVt2lRRUVG8fwQAAACAIsRpAu2ePXs0aNCgPANp7dq1NWPGDF2+fNnekS3at2+fnn766TwDcbVq1fTGG2/o/PnzBXZNs9msuLg4RUZG3vlwyNfXVxEREVq3bh1HqgEAAEgaNmzYnd8377ZmzZqlGzduGD2m4XJyciwGWk9PT33zzTdGj+k0li5dqvr16+d5v7p27ar9+/cbPSYKyenTp9WnTx+L/28pKsvX11evvfZagb5XBQAAAAAULqcJtL/88osGDBiQ5zNg77nnHs2cObNQA62lHbxVq1bV+PHjde7cuQK9bmpqqr766iu1aNFCPj4+MplMqlOnjmbOnFlou4UBAACKitu3b6tPnz557nDz8vLSkiVLlJ2dbfSohsvNzVXfvn0JtDaKiopSs2bN8rxfzZs359nGLmzOnDkKDQ01PK4W1Kpdu7bWrVunnJwco28tAAAAAMAGThFozWazdu3apccffzzP5//UqVNH77//fqE9B8paoK1cubIiIyN19uzZAr1ubm6uoqOj/7B7NzAwUIMHD1Z0dDQfNgIAALd26dIldenSJc8oERQUpFWrVhk9plOwFmhNJhOB9ncOHz6sBx98MM/7VbNmTW3atMnoMVEIzp07p169esnX19fwsFpQy9vbW2PGjNHFixeNvr0AAAAAABs4TaDdsWOH+vbtq4CAgLu+4axbt65mz55tWKCtVKmSxo4dqzNnzhT4tS9fvqxZs2apTp068vT0lJeXl1q2bKkvvvhC169fL/DrAQAAFBUxMTEWI1qtWrW0efNmo8d0Cmaz2WKg9fDw0Ndff230mE4jPj7eavxfvXq10WOiECxZskR169Y1PKoW9GrcuLG2bdtm9O0FAAAAANjAaQLt9u3b1bt3b4uB9oMPPnDJQJuenq5169bp4YcfVokSJeTh8Z8jlceOHauTJ08qNze3wK8JAABQFOzatUvh4eF5Bon7779fO3bsMHpMp9GvXz+LAWf58uUym81Gj/n/2Lvv8KgK9G/jM+kNEkoSOgEp0jsCBiSUBRRBpClIURBcKYprQxAi0hVEEZAmzQJIEywUKT9KQpcOoYOUAAHSe+b7/rEr77oyM5QZTsr9ua7nv71ynjnBvTJzzzknW0hJSVGHDh1sXpG4dOlSzlcuk5KSon79+t1535WbxsvLS1OnTlV8fLzRpxkAAAAAYEe2CrQdO3Y0LNDu27dPPXv2VIECBR55oLVYLDp+/LjeeOMNBQcHy2QyydvbW23bttXGjRuVkpLi8GMCAADkBOvXr1ft2rWtBomwsDDt2bPH6DWzjS5dulh9Xi+B9q8sFou6d+8uV1dXq+dr/vz5Sk9PN3pVONChQ4f01FNP2fzvJCdPz549FRUVZfRpBgAAAADYkW0C7fbt29W5c2fDbnG8d+9e9ejRw5BAK0m3bt3S3LlzVbNmTbm5uclsNqtq1aqaNm2arl+/7pRjOktsbKx27dqldevWMQzDMAzDPNSEh4erTJkyVmNE/fr1NX36dMP3zC5jLzx98MEHWrt2reF7Zpdp06aNzeeQDho0SKtXrzZ8T8ZxM3ToUJUqVcrwkOqsKVeunCZNmmT4eWYYhmEYhmEYhskLc+rUKaWlpT1QS8s2gTYyMlIvvPCC/P39DQu0L730kgICAu56/KJFi2ro0KE6f/68U46fkZGhHTt2qGvXrnfOQaFChfTaa6/pyJEjyszMdMpxneHw4cPq3bu3ateuzTAMwzAM81BTtmxZeXt7W40RAQEBqlSpkuF7Zpex9mXDP6dMmTKG75idJjAwUC4uLlbPV8mSJVWjRg3D92QcNyVLlrQZ5XP6eHh4qFy5coafZ4ZhGIZhGIZhmLww06ZNU0xMzAO1tGwRaCVp165d6tatm9VAWqFCBU2aNElXr1590JVt2rNnj7p37271+MWLF9ewYcN04cIFpxxfki5evKjRo0erTJkyMpvNcnd3V5MmTbRixYoc9RyhXbt2qVGjRoZ/OMEwDMMwDMMwDMMwDMMwDMMwDMMwzphhw4Y9cLfMNoF2z549eumll6x+679cuXL65JNPdOXKlQdd2abdu3fbDMQlSpTQiBEjdPHiRaccX5KSkpK0YsUKhYaG3jmnISEhGjVqlC5cuJBjnhdGoGUYhmEYhmEYhmEYhmEYhmEYhmFy8+SKQLt//369/PLLKliw4F1fZNmyZTV+/Hhdvnz5QVe2affu3XrxxRet3mK5dOnSGjVqlP744w+nHF+SsrKydODAAb366qsqVKiQTCaT8uXLpxdffFG7du1Senq6047tSARahmEYhmEYhmEYhmEYhmEYhmEYJjdPrgi0hw8f1muvvabAwMC7vsiQkBCNGTPGaYF2165dNp+BW65cOU2cONFpV/D+6cKFCxo5cqRKlCghk8kkd3d3tWzZUuvXr1dycrJTj+0oBFqGYRiGYRiGYRiGYRiGYRiGYRgmN6WcQbcAACAASURBVE+uCLQnT57UW2+9pSJFitz1RZYuXVoff/yxLl269KAr27Rz50517drVaqCtUqWKpk2bpuvXrzvl+H86duyYBg0apKCgIJlMJvn4+KhDhw7avn270tLSnHpsRyHQMgzDMAzDMAzDMAzDMAzDMAzDMLl5ckWgPX/+vIYPH67ixYvf9UWWKFFCI0eOdNothiMjI9W5c2flz5//rsevVauWFixYoFu3bjnl+JKUmpqqtWvXqlWrVvLx8ZHJZFKxYsX0zjvv6OTJk8rKynLasR2JQMswDMMwDMMwDMMwDMMwDMMwDMPk5skVgfbKlSsaM2aMQkJCZDab//YiixQpoqFDh+rChQsPurJVFotF27dvV4cOHZQvX767nuSGDRtq2bJlio+Pd/jx/xQdHa3PP/9clSpVkqurq1xcXFS3bl0tWrTIqWHY0U6cOKE33nhDLVu2ZBiGYRiGeaipUaOG/Pz8rP4hHBQUpIYNGxq+Z3aZokWL3vVv6T+natWqatGiheF7ZpcpWbKkXF1drZ6vxx9/XM2aNTN8T8YxU79+fat3TMpNExQUZPi5ZhiGYRiGYRiGyQszb968B+532SbQxsTEaMqUKapYsaJcXFz+9iazUKFCeuutt3T27NkHXdmqzMxMbdy4Uc8884x8fX3/dmyz2aywsDCtXbvWac+BzcrK0v79+9W3b18VLlxYJpNJ+fPnV/fu3bV7926lp6c75bjOkJiYqBMnTmjfvn0MwzAMwzAPNVOmTFGFChWshognn3xS3333neF7Zpd5+umnbQbHUaNGadeuXYbvmV2mffv2cnd3t/lN2IiICMP3ZBwzCxcuVI0aNQwPqM6e5s2bG36uGYZhGIZhGIZh8sJcvnz5gftdtgm0CQkJ+vrrr1WzZk25ubn97U2mv7+/Bg4cqNOnTz/oylalp6frl19+UYsWLeTt7f23Y7u7u6t9+/aKiIhwWihNSEjQ0qVL1ahRI3l4eMhkMqlcuXKaMGGCLl26JIvF4pTjAgAAZGcbNmxQnTp1rIaIp556Srt37zZ6zWyjR48ed/1b+s9ZsGBBjvrinzNZLBa9+OKLd/1y6J+zcOFCZWRkGL0qHOTQoUNq0qSJ4QHV2fPSSy8ZfaoBAAAAAHZkm0Cbnp6ulStXKjQ09M7P++/Jly+f+vXrp+PHjzs8VqampmrlypVq0qTJXY8dEBCgfv366ejRo057DuzZs2c1fPhwlSxZUmazWR4eHmrevLl++uknJSYmOuWYAAAA2d3OnTvVsGFDqyGiVq1a2rZtm9FrZhs9e/a0eUUogfb/S0xM1HPPPWf1XHl4eGjZsmV8UTIXuXTpklq1amV4QHX2DB482OhTDQAAAACwI9sEWovFoi1btqhdu3Z3fc6Yr6+vevXqpYMHDyozM/NB176rpKQkff/996pfv/5dP9AqXbq0PvroI128eNEpH9Ckp6dr06ZNat++/Z3XHhgYqAEDBujIkSMOf70AAAA5xfHjxxUWFmY1RISEhGj9+vVGr5lt2Au08+fPJ9D+h71YV6hQIf30009GrwkHSklJUZcuXWzeBjw3zLhx44w+1QAAAAAAO7JNoJX+fcupfv363XkG63+Pl5eXunTpop07dzr8Q6W4uDjNnj1bVapUuestzqpVq6aZM2fqxo0bDj3un2JiYvTVV1+pWrVqcnNzk9lsdvoxAQAAcoLo6Gi1adPGaojIly+fVq1aZfSa2UavXr1sBtp58+YpLS3N6DWzhQMHDqhx48ZWz1W5cuX022+/Gb0mHOztt99WQECA4RHVWePp6alvvvnG6NMMAAAAALAjWwXay5cva9SoUSpdurTMZvNf3mi6u7urbdu22rRpk1JSUh507bu6ceOGJk+erLJly/7tDa6Li4tCQ0O1YsUKxcfHO/S40r+vHD5y5IgGDBigoKAgmUz/vlq4Y8eO2rZtm1JTUx1+TAAAgJwiLS1NnTt3tvqcUBcXF82fP5/o+B+9e/eWh4cHgfYerF+/3ubzjRs0aKCIiAij14SDzZkzR+XKlTM8pDprKlasqI0bNxp9mgEAAAAAdmSrQJuQkKB58+apVq1acnNz+9uHb2FhYQ/18625ePGiRo4cqRIlSvztDa63t7c6duyoHTt2OOXDrOTkZP34449q2rSpvLy8ZDL9+1Z94eHhOn/+PM+8AgAAeV7//v3l7e1tNUhMmDBBt27dMnrNbMFeoP36668JtP+xcOFCVaxY0eq5ateunQ4ePGj0mnCwffv2KTQ01PCQ6qzp2rWrjh07ZvRpBgAAAADYka0CbUZGhtavX69nnnnmrs+hrV+/vr799lvdvn37Qde+q+PHj2vw4MEKDg7+2zGLFSum9957T6dOnVJWVpZDjytJf/zxh8aMGaOyZcvKxcVFbm5uCg0N1bJlyxQXF+fw4wEAAOQ0I0eOVGBgoNUgMXjwYF24cMHoNbOFl19+2WagnTt3Lndo+Y9x48apaNGiVs9Vv379dObMGaPXhIMlJibq5Zdftvmlj5w6rq6umjx5smJjY40+zQAAAAAAO7JVoJWkY8eOafDgwSpSpMjfbnNcuXJlTZ06VdeuXXvgn383u3fvVrdu3eTv7/+X45nNZtWpU0fz58/XzZs3HXpM6d9BOiIiQi+++OKd5yAFBATo5Zdf1v79+5WRkeHwYwIAAOQ0s2bNuuujKP6c5557TocOHTJ6zWzhlVdeufO3OYHWttdff12+vr5Wz1V4eLiuX79u9Jpwgjlz5uixxx4zPKg6eipXrqwNGzY45YvFAAAAAADHynaB9vbt25o5c6Zq1Kghd3f3v7zhLFq0qMOvZs3IyNDatWvVvHnzv32L2sfHR507d9aOHTuc8kFWbGysFixYoLp16955rRUrVtTkyZN15coVbm8MAAAg6ZdfflGtWrWsRomaNWtq69atRq+ZLdgLtHPmzCHQ6t9/h3fo0MHqs43NZrPmzJmjlJQUo1eFE5w9e1ZPP/20XF1dDY+qjhzuJgAAAAAAOUe2C7SZmZnatm2bunbt+rcrWr29vdWlSxdFRkY67NlZ8fHxmjdvnmrUqPG3N+glS5bU8OHDdfbsWafE0pMnT+rtt99WsWLFZDab5enpqdatW2vdunVKSkpy+PEAAAByoqNHj6pp06ZWo0RAQIBWrVrFl9sk9enTx2agnT17NtFR0sGDB9WkSROr56lQoUJavXo1/6ZyqYyMDH366acqUaKE4VHVURMSEqIVK1bwjGkAAAAAyCGyXaCVpMuXL2vChAmqUKHCX6Kp2WxWw4YNtXjxYoc9V+fChQsKDw9X6dKl/3JLZXd3dzVp0kRLly51yjN80tLStG7dOrVu3Vo+Pj4ymUwKDg7Wm2++qRMnTnBbKgAAgP+Ij4/X888/b/VqRxcXF33xxReKj483elXD9e3bV15eXgRaO5YtW6YqVapYPU916tTR9u3bjV4TTnTy5Ek9/fTTcnNzMzyuPuyYzWYNHDhQ58+fN/q0AgAAAADuUbYMtKmpqVq3bp3atWunfPny/eXNZ6lSpTRixAidPXv2oSNmRkaGtm/frq5du955BuyfU7x4cf3rX//SkSNHnPIs2KtXr2rSpEmqWLGiXFxc5OLiolq1amnOnDmKiYlx+PEAAAByKovFojfffFP58+e3GigGDBhAnJD9QDtr1iwCraQxY8aoSJEiVs9T165ddfToUaPXhBNlZGRo5syZueJZtNWqVdPPP//M1bMAAAAAkINky0BrsVj0xx9/aMKECapcufJfvtXs4+OjDh06aOPGjQ99G+CYmBh99dVXf3verZeXl1q0aKEVK1YoNjbW4bc2y8rK0t69e9W7d28VLFhQJpNJfn5+6tKliyIiInhjDQAA8D+mT5+ukJAQq4EiLCxMe/bsMXpNw7366qs2A+3MmTOVnJxs9JqGSk1NVc+ePeXh4WH1PA0fPlzR0dFGrwonu3Llil5++WX5+fkZHlkfdHx8fDR69Ghdv37d6NMJAAAAALgP2TLQSv++BfCOHTvUu3dvBQYG3rn9sNlsVoUKFTRu3DidO3fuga+iTU9PV0REhHr16qXChQvf+fkuLi4qX768PvroI506dUqZmZkP/Vr+V0JCgpYuXapGjRrd+WCoTJky+vjjj3Xx4kWedQUAAPA/Nm3apLp161qNFMHBwVqzZk2e/zuqX79+8vb2JtDacPz4cTVr1szqOfL09NSCBQv40mQeYLFYtGXLFjVq1MjqLdSz+3Ts2FG///47j8gBAAAAgBwm2wZaSbp586a+++47NWvWTL6+vn/5lnCrVq20bNky3b59+75/rsVi0YULFzRx4kRVrVr1L1fPBgYG6pVXXtG2bdse+gpda86dO6eRI0feee6tu7u7nnrqKa1cuZJnpwEAANzF1atX9fTTT9/5Ut3/jqurqyZPnqzY2FijVzWUvUD71Vdf5flAu2TJElWuXNnqOSpfvrx+++03o9fEI5KcnKzp06erbNmyhsfW+53q1atr5cqVef6/aQAAAADIibJ1oJX+HVPPnDmjsWPHqnr16neOZTabVaxYMfXv319btmxRbGys3W8NZ2Zm6urVq/r222/VqlWrvzzfNl++fGrRooW++eYbpz4D9vbt25ozZ46qV68uV1dXmc1mVa5cWVOnTtW1a9ecdlwAAICcbtasWTafF1mpUiVt3rzZ6DUN9dprr8nHx8fqOZo+fbrTvoSYE8TExKht27Y2o9dHH33E7WLzoEuXLqlDhw5/+fJudh2z2az3339fly9fNvq0AQAAAAAeULYPtJIUHx+vLVu2aMCAASpXrpw8PT1lNpvl7e2tmjVr6v3339fmzZsVHR2t1NTUv93aLisrS0lJSTp79qyWLl2qnj17qlSpUnJzc5PZbJavr6+eeOIJjR8/XkePHlVqaqpD9/9v586d04gRI1SqVKk7V8+GhYU55bwBAADkJhs2bFCdOnWsRov8+fPr+++/V3p6utGrGoZAa1tkZKQaNmxo9fx4enrq66+/VkpKitGr4hFLTk7Wd999p6pVq1q9Uj+7TJMmTbR27Vr+nQIAAABADpYjAq3FYlFCQoIiIiI0dOhQ1a9fXwUKFJCrq6s8PT1VtmxZvfDCC5o2bZq2bNmiEydO6MKFC7p48aLOnTungwcPas2aNQoPD1eLFi0UFBQkV1dXubu7q0iRIvrHP/6hqVOnKioqyqnPmkpPT9eWLVv0/PPP37l6NzAwUAMGDNDRo0ed8rxbAACA3OLatWtq166dzWdFvvPOO7p06ZLRqxrmn//8p81AO23aNCUmJhq9pmEmT56skiVLWj0/VapUyfNXYedlt2/f1owZM1ShQgXDI6y1qVu3rn744QcejQMAAAAAOVyOCLR/Sk5O1tGjRzV79my98MILevzxx+Xv7y9PT08VKFBAVapUUdu2bfX6669r+PDhCg8P13vvvafevXuradOmCgkJka+vrzw9PVW4cGHVrl1br7/+ulasWKGLFy86/WqLmJgYzZgxQ1WrVpWrq6tcXFxUo0YNffXVV9xGDQAAwI6srCx98MEHKlSokNV40ahRI0VGRhq9qmFef/11+fr6EmjvIjY2Vt27d7/z3uVu07t3b508edLoVWGgGzdu6KuvvlKVKlVsfhnEiAkNDdWSJUvy/LO2AQAAACA3yFGBVpIyMjJ0/fp1bd++XZMnT1a3bt1Ur149hYSEqEiRIgoODlbx4sVVunRphYSEqGTJkgoODlahQoUUHByscuXKqXHjxurfv7++/vprHThw4J6eX/uwLBaLDh8+rH/+858KDAyUyWSSj4+POnTooC1btnB7KgAAgHuwatUqVa9e3WrAyJcvn+bPn59n/7ayF2i//PLLPBtoN2/erHr16lk9N25ubpo2bRqPHYFu3rypZcuWqVmzZvL29jY8zHp7e6tLly5au3YtV84CAAAAQC6R4wLtn1JTU3X16lXt3btXS5Ys0fjx4zVw4EB16dJFLVq0UKNGjdSwYUOFhoaqRYsW6ty5s9544w199tlnWr16tQ4fPqyYmBhlZGQ4fVfp31f//vjjjwoLC5OXl5dMJpNKlCihYcOG6cyZM397bi4AAAD+7sqVK3r22WdtXtnWr18/nTlzxuhVDTFgwACbgXbq1Kl5MkBaLBaFh4crKCjI6rmpVKmSfvvtN/4uhyQpKSlJkZGRGjJkiEqUKGHYc2krVqyo8PBwHThwIM9+8QQAAAAAcqMcG2j/lJGRofj4eF25ckWnTp3SgQMHtHXrVv3yyy9as2aN1q1bp23btun333/X6dOnde3aNSUlJT3y571eunRJ48aN02OPPSYXFxe5urqqYcOG+v7777lFFQAAwD3KzMzUhx9+eOeOJHeb8uXLa8OGDXkytA0cOFB+fn4E2v9x7tw5tW3bVm5ublbPTZ8+fXTq1CmjV0U2kpWVpfPnz+u7777Tc889p4CAgEcWZgMDA9WrVy+tXLlS0dHRTr/jEwAAAADg0crxgfZ/WSwWZWRkKCUlRcnJyUpNTVVGRoahH9BlZmYqMjJS3bp1u/OmvkCBAnrllVe0f//+R3YVLwAAQG6wYcMG1alTx2rYcHd319ixYxUTE2P0qo+cvUD7xRdf5MlAu3DhQlWsWNHqefHx8dGcOXOUlJRk9KrIhpKTk3Xo0CFNmzZNLVu2VL58+ZwWZgsUKKDnn39e8+fPV1RUlFJTU41++QAAAAAAJ8h1gTY7io2N1fz581W7dm25u7vLbDarUqVKmjJliq5evZonr+4AAAB4ULdu3VK3bt3u/A16t2nWrJn27Nlj9KqP3KBBg2wG2s8//zzPPcMyPj5er7zyinx8fKyel4YNG2rHjh38XQ6b4uLitG/fPk2fPl1du3ZV8eLF5erq+tBR1sXFReXKlVOvXr00f/58HT58mC8LAAAAAEAuR6B1MovFohMnTuitt95S0aJFZTKZ5OnpqTZt2mj9+vW88QYAALhPFotFX375pUJCQqwGj/z582v27NlKTEw0et1HavDgwTav7psyZUqeC7QbNmxQ3bp1bQayDz74QFevXjV6VeQQ8fHxOnr0qH766Sd9+umn6tWrl2rVqmXz+c//OwEBAWrQoIH69eunqVOnat26dTp58qSSk5ONfnkAAAAAgEeAQOtkqampWrt2rVq3bn3nW/vBwcEaMmSIoqKieJYQAADAAzh+/LiaNWsms9lsNYB06tRJR44cMXrVR4pA+1cpKSkaMmSIzWeHlixZUqtWreKxI7hvWVlZun37tk6ePKlt27Zp2bJlevvtt1WqVCmr/94qVKigkSNHauXKlYqIiNCZM2eUkJDA+0IAAAAAyGMItE4WHR2tKVOm6PHHH5erq6tcXFxUq1Ytff3117p586bR6wEAAORIaWlpeu+991SoUCGrIaRw4cJauHBhnroi7Y033rAZaD/77DPFxcUZveYjs3XrVjVs2FAuLi5Wz0n37t11/Phxo1dFLpCVlaW1a9eqdu3aVv+9PfXUU4qMjOR22gAAAACQxxFonSgrK0u///67+vTpc+fDQ19fX3Xu3Fk7duxQWlqa0SsCAADkWBs3brR769q8dhXtm2++qfz581s9H5MnT84zgTY5OVlvvfWWChQoYPNW2HPnzuWxI3AYe/+/FBYWliefjw0AAAAA+CsCrRMlJCRo6dKlatSo0Z1zVLp0aY0YMULnzp3jW9MAAAAPIS4uTv3795efn5/VGFKoUCHNmjUrz9zWd8iQIQTa/1i/fr3q169v8+rZVq1aad++fUavilxk06ZNNgNt06ZNtXv3bqPXBAAAAAAYjEDrRGfOnNGwYcNUqlQpmc1mubu7q3Hjxvrhhx/yzAdjAAAAzvTjjz+qevXqNq+ibdmypfbu3Wv0qo+EvUA7adIkxcbGGr2m0928eVP9+/e3ebtnHx8fffHFF/xdDofavHmz6tWrR6AFAAAAANhEoHWS9PR0bd68We3bt7/zwVChQoXUv39/HTp0SBkZGUavCAAAkOPdvHlTffr0sXkVrZ+fn8aMGaPr168bva7TvfXWWzYD7aeffponAu0333yjxx9/XGaz2eq5aN68uXbv3s1dbeBQ9gLtU089RaAFAAAAABBoneXmzZuaOXOmqlWrJldXV5nNZlWpUkVffvmlrl27ZvR6AAAAucaaNWtUo0YNm1fRVqtWTWvXrs31X5L717/+JX9//zwdaE+cOKEOHTrIy8vLZrSfOnVqrj8XePS2bNliM9A2adJEu3btMnpNAAAAAIDBCLROYLFYdPToUQ0cOFDBwcEymUzy9vbWs88+q40bNyo5OdnoFQEAAHKN27dva+DAgQoICLAaRdzd3dW7d29FRUUZva5T2Qu0n3zyiW7fvm30mk6TkpKi8PBwFSlSxGawf/bZZ/X7779z9Swc7v/+7/9Uv359Ai0AAAAAwCYCrROkpqbq559/VvPmzeXt7S2TyaRixYrp3Xff1alTp5SVlWX0igAAALnK1q1b1aBBA5u3tA0MDNQXX3yhW7duGb2u07z99ts2A+3EiRNzdaD98ccfVadOHbm6ulo9B8HBwZo3b54SExONXhe5kL1A27hxYwItAAAAAIBA6wxXrlzRp59+qvLly8vFxUUuLi6qV6+eFi1alKs/EAQAADBKUlKSRo0apaJFi9q8crJ27dpat26d0tPTjV7ZKd555x2bVxLn5kB74sQJde7cWT4+PlZfv9lsVt++fXXq1Cmj10UutXXrVpuBNjQ0VDt37jR6TQAAAACAwQi0DpaZmak9e/aod+/eKliwoEwmk/Lnz6/u3btr9+7dufbDQAAAAKNFRUWpXbt28vDwsHmr4xdeeEFHjhwxel2nsBdoJ0yYkCsDbVxcnIYNG6agoCCbgb569er66aeflJaWZvTKyKW2bdumJ554gkALAAAAALCJQOtgcXFx+uabb1S/fn15eHjIbDarfPnymjhxoi5fvsxzrgAAAJwkMzNT33//vSpXrmwz0hUoUEDh4eG6cuWK0Ss73Lvvvmsz0I4fPz7X3dElKytL8+bNU6VKleTi4mL1tfv6+mrs2LG6fv260SsjF7MXaJ988kkCLQAAAACAQOtoJ0+e1LvvvqvixYvLbDbLw8NDLVu21M8//8xzrgAAAJzs5s2b+te//qXChQvbjLRly5bVggULFB8fb/TKDvXee++pQIECeSrQbtq0SWFhYTavnDaZTOrUqZMOHDigrKwso1dGLrZ9+3abgbZRo0aKjIw0ek0AAAAAgMEcGmibNm2apwNtWlqaNmzYoGeeeUa+vr4ymUwKDAzUoEGDdOzYMWVmZhq9IgAAQK538OBBtWnTxmawM5vNeuKJJ7R+/fpcdbtbe4F23LhxuSrQHj9+XN26dZOfn5/NOFu5cmWtWLFCycnJRq+MXG7Hjh1q0KABgRYAAAAAYNNDBdolS5YoNDRUXl5eMplMCgsL05o1a/JsoI2JidGMGTNUpUoVubq6ymw2q3r16po5c6Zu3Lhh9HoAAAB5QkZGhpYuXaqqVavajHYeHh5q166d9u7dm2uuqnz//fdtBtqxY8fq5s2bRq/pENHR0XrrrbfsXi3t7++v8ePHc2tjPBL2Am3Dhg0JtAAAAACABw+0KSkpWrVqlcLCwuTt7S2z2ayWLVtq7dq1SkpKcuSOOcalS5c0evRolS5dWiaTSX5+furcubO2b9+u1NRUo9cDAADIM27fvq3w8HAVK1bMZrzz8/PTq6++qqioKKNXdoihQ4eqYMGCuT7QJiQkaPz48SpdurTMZrPV1+vi4qKXX35Zx48fzzURHtlbRESEzUDboEEDRUREGL0mAAAAAMBgDxxoMzMztX37dvXo0UMlSpRQYGCgevXqpZ07d+bZGHnjxg3NmDFDderUUYECBVSrVi1NnjxZly5dksViMXo9AACAPOXs2bPq0aOH3dvfFi5cWEOHDtXFixeNXvmh2Qu0Y8aMyfGBNi0tTbNmzVLlypXl6upq83fbtGlTbdq0KVfdxhrZW2RkpBo2bEigBQAAAADY9MCBVpKuXLmib7/9VgMHDtSAAQO0ePFiRUdH59lvp6elpWn//v0aN26cXn31VY0dO1b79u1TSkqK0asBAADkORaLRTt27FCzZs3k7u5uM+QVL15cEyZMUHR0tNFrP5QPPvjAZqAdPXq0YmJijF7zgWVmZmrx4sWqV6+e3d9p+fLltWjRIsXHxxu9NvIQe4H2iSeeINACAAAAAB4u0GZkZOjGjRuKiopSVFSUYmJilJGR4ajdcqTk5GT98ccfOn78uC5evKikpCSungUAADBIWlqafvjhB1WvXt3mrXBNJpMee+wxTZ8+PUcHzGHDhqlQoUK5MtBaLBatXr1aTZo0kZeXl83fZcGCBTVu3Dhdu3bN6LWRx+zcudNmoK1fv7527Nhh9JoAAAAAAIM9VKCFdURZAACA7CEuLk5TpkxRmTJlbEY9s9msSpUqad68ebp9+7bRaz8Qe4H2448/zrGBdsOGDfrHP/4hHx8fm79HLy8vDR48WKdPn86zd/aBcXbt2qVGjRoRaAEAAAAANhFoAQAAkOtdvXpV7733noKDg+1G2ho1amjJkiVKSEgweu37Nnz4cJuBdtSoUbpx44bRa9637du3q127dvL19bX5+3NxcdGLL76o/fv35/k7+8AY9gJtvXr1CLQAAAAAAAItAAAA8obTp0+rT58+CggIsBn5XF1dVa9ePS1fvjzHRdoPP/xQhQsXzlWBdufOnercubPy589v8/dmMpnUqlUrbd68WampqUavjTxq9+7dNgNt3bp1tX37dqPXBAAAAAAYjEALAACAPMFisejAgQPq1KmT3Ssx3dzcVL9+fS1ZskRxcXFGr37P7AXajz76KEcF2m3btqlTp07y9/e3G2cbNGigVatWKTEx0ei1kYft2bNHTz75JIEWAAAAAGATgRYAAAB5RmZmZRgliQAAIABJREFUpiIiItSmTRt5eXnZvZK2Zs2amj17do55buuIESNsBtrw8HBdv37d6DXtyszM1C+//KK2bdsqX758duNs9erV9c033+SomI7cyV6grVOnDoEWAAAAAECgBQAAQN6Snp6ujRs3KiwsTB4eHnafaVqxYkWNHj1aFy5cMHp1u0aOHKnAwMAcHWgTExO1YMECNWnSRD4+PnbjbIUKFTRr1izdvHnT6NUB7d2712agrV27trZt22b0mgAAAAAAgxFoAQAAkOekpqbql19+UWhoqNzd3e1GwBIlSqhfv37at2+fMjIyjF7fKnuBduTIkdk60P7xxx8aO3asqlWrJk9PT7u/lzJlymjq1KnZ+jUhb9m3b59CQ0MJtAAAAAAAmwi0AAAAyJOSk5P1008/3XOkDQgIUOvWrbVs2TLFxsYavf5dhYeH2wy0I0aM0LVr14xe82+ysrK0Y8cO9e3bVyVKlJCrq6vd30fZsmU1ZcoURUdHy2KxGP0SAEn2A22tWrUItAAAAAAAAi0AAADyrqSkJP36668KCwu7pys2PTw8VK1aNY0YMUInT55UVlaW0S/hLz766CMFBQXlqEAbExOj2bNnq3nz5vL397f7OzCZTHr88cf15Zdf6tq1a8RZZCv79++3GWhr1qyprVu3Gr0mAAAAAMBgBFoAAADkaSkpKdq0aZOeeeaZe3rmqclkUpEiRdShQwetWLEiW11Nay/Qfvjhh9km0GZmZioiIkIDBw5U+fLl7T4P+L9vETt37lzduHGDOIts5/fff1fjxo0JtAAAAAAAmwi0AAAAyPPS0tK0c+dOde/eXQEBAfcUCr28vFS9enW9++67+v3335WWlmb0y9CoUaNsBtrhw4crOjra6DV18eJFTZkyRc2aNVNAQIDMZrPd8202mxUWFqYffvhBt2/fNvolAHdlL9DWqFGDQAsAAAAAINACAAAA0r+v6Dxy5IjeeustFS1a9J4irclkUuHChdW8eXNNnTpVFy9eNPSqzo8//ljBwcHZNtDGx8dr+fLl6tatm0qXLn1Pz/41mUzy9PRU586dtWHDBiUkJBi2P2DPgQMHbAba6tWr6//+7/+MXhMAAAAAYDACLQAAAPAfFotF586d06RJk/T444/LxcXlngKiq6urQkJC1KVLFy1evFgxMTGG7G8v0A4bNsyQQJuWlqYtW7Zo0KBBql69+j3fStpkMqlQoUIaPHiw9u7dq5SUlEe+O3A/Dh48qCZNmhBoAQAAAAA2EWgBAACA/3H9+nUtXbpUTZs2lZeX1z3HRC8vL1WuXFl9+/bVzz///MifTzt69GibgfaDDz7Q1atXH9k+GRkZ2rNnjz744AM1atRI/v7+93Q74z+nUqVK+uSTT3TmzBllZGQ8sr2BB2Uv0FarVo1ACwAAAAAg0AIAAAB3k5SUpO3bt6tPnz4qXLjwPUdFk8kkPz8/1axZUwMGDNCGDRsUHx//SHYeM2aMihQpYnigzczM1O+//66PPvpIYWFhKly48D1fjWwymeTu7q7WrVtryZIlunHjhqG3jQbux6FDh2wG2qpVq2rLli1GrwkAAAAAMBiBFgAAALAiMzNTUVFR+vTTT1WlShW5urreV6j19/dXnTp1NGjQIK1bt05xcXFO3ddeoB06dKhTA21GRob279+vUaNGqUWLFgoODr7vcxYcHKzBgwcrIiJCiYmJTtsVcIbDhw/rqaeeItACAAAAAGwi0AIAAAB23LhxQ6tXr1aHDh3k7+9/X8Hxz1Bbu3Ztvfbaa1q2bJmuXbvmlKtCx44dazPQvv/++7py5YrDj5uUlKStW7dq2LBhatas2QOFWRcXFzVs2FAzZszQuXPnuKUxciR7gbZKlSoEWgAAAAAAgRYAAAC4F6mpqTp48KBGjx6tSpUqyc3N7b5Dbb58+VS1alV16tRJEydOVGRkpBISEhy247hx41S0aNFHEmgzMjJ0/PhxzZ07V3379lWDBg1UuHDh+w6zJpNJQUFB6t+/vzZs2KDY2FhuaYwc68iRIzYDbeXKlbV582aj1wQAAAAAGIxACwAAANyH6Oho/fTTT+rVq5eCgoLuO0b++YzV4sWLq2HDhurRo4c++eQTbdq0STdu3FBWVtYD72Yv0L733nsPFWgTExO1b98+zZ49W6+//rqaN2+ucuXKycfHR2az+b7Pg5eXl1q2bKk5c+bozJkzSktLe+DdgOzg6NGjatq0KYEWAAAAAGATgRYAAAC4T+np6YqKitLcuXPVunVr5c+f/4FCrclkkqenp4oXL666deuqffv2eueddzR//nzt3btXcXFx93U16fjx420G2nfffVeXL1++55+XmpqqqKgoLV++XKNGjVK3bt0UGhqqxx57TL6+vg8UZf+8nXHt2rU1ZswY7dy5U/Hx8Q/yawCyHXuBtlKlSgRaAAAAAACBFgAAAHhQCQkJ2r9/vz777DM1btxYPj4+Dxxq/wyXAQEBKl++vJ588kl16tRJ7777rmbMmKE1a9Zo3759unr1qtLT0++6z4QJE1SsWLH7DrRZWVm6deuWjh07pg0bNmjBggUKDw9Xjx491KxZM1WtWlVBQUFyd3d/qNdnNptVqVIlvf/++/rtt98e+ophILs5duyYzUD7+OOPa9OmTUavCQAAAAAwGIEWAAAAeEi3bt3Szp07NXHiRIWGhsrX1/ehQuaf4+rqqgIFCqhMmTKqUaOGQkND1aZNG7344osaMmSIPvnkE82bN09Lly7VmjVr1KdPHxUqVMjqz+vSpYsWLlyo5cuXa9GiRfr88881dOhQ9e7dW+3atVPTpk1Vp04dVahQQUFBQfLw8HDI6/gzzL799tv65ZdfdPnyZWVkZBj9awMc7vjx4woLCyPQAgAAAABsItACAAAADnLz5k3t3LlTkydPVosWLR7q1se2xs3NTfnz51fx4sVVvnx5Va5cWTVq1FDx4sVtXuUaHBysKlWqqGrVqqpYsaJKlSqlggULysPD44FvV2xvz5o1a2ro0KH69ddfdenSJatX/wK5gb1AW7FiRQItAAAAAIBACwAAADjarVu3tHfvXs2cOVMdO3ZUYGCgUwJodh1vb281btxYY8eO1caNG3XlyhWumEWecOLECZuBtkKFCtq4caPRawIAAAAADEagBQAAAJwkISFBR44c0eLFizVo0CBVqVJFnp6ehgdUZ03JkiX1wgsvaMaMGYqMjFRMTAzPmEWeEhUVpWbNmhFoAQAAAAA2EWgBAAAAJ0tLS9P58+e1efNmffnll+rZs6cqVKiQ42Ot2WxWsWLF1LZtW40ePVqrV6/WsWPHlJCQIIvFYvRpBx45e4G2fPnyBFoAAAAAAIEWAAAAeJTi4+MVFRWljRs36quvvtKAAQPUqFEjBQQE5IjbIHt5ealq1ap66aWX9Omnn2r16tU6cOCAYmJilJmZafTpBQx18uRJm4G2XLly+u2334xeEwAAAABgMAItAAAAYJDExESdO3dOkZGRWr58uSZMmKCePXuqbt268vf3zxbB1svLSxUrVlSHDh00bNgwLVq0SFu2bNGJEycUGxtLlAX+y6lTp9S8eXMCLQAAAADAJgItAAAAkA1kZmbq1q1bioqK0vbt27V8+XJNmjRJgwcPVocOHVSnTh0FBQXJzc3NaTHW399flStXVqtWrdS3b199/PHHWrRokTZu3KjDhw8rOjpaaWlpRp8qINuyF2gfe+wxAi0AAAAAgEALAAAAZEdZWVmKjY3VhQsXdOjQIW3fvl0///yzvvnmG02ZMkXDhg3Ta6+9ph49eqhTp05q27atmjdvrkaNGql27dqqVKmSHnvsMVWsWFE1atRQgwYN1LRpU7Vp00YdOnRQt27d1LdvX7399tuaMGGCvv76a61atUqbN2/W/v37dfr0ad24cUPp6elGnwogxzh9+rTNQFu2bFlt2LDB6DUBAAAAAAYj0AIAAAA5SEZGhuLj43X16lWdPXtWUVFROnLkiA4cOKC9e/cqMjJS27Zt0+bNm/Xbb79p06ZN2rp1qyIiIrR7927t379fhw8f1vHjx3X69GldunRJt2/fVlpamiwWi9EvD8jRzpw5oxYtWhBoAQAAAAA2EWgBAAAAAHAAe4G2TJkyBFoAAAAAAIEWAAAAAABHOHv2rM1AGxISovXr1xu9JgAAAADAYARaAAAAAAAc4Ny5c2rZsiWBFgAAAABgE4EWAAAAAAAHsBdoS5cuTaAFAAAAABBoAQAAAABwhPPnz9sMtKVKldK6deuMXhMAAAAAYDACLQAAAAAADnDhwgX94x//INACAAAAAGwi0AIAAAAA4AD2Am3JkiUJtAAAAAAAAi0AAAAAAI5w8eJFm4G2RIkSWrt2rdFrAgAAAAAMRqAFAAAAAMAB/vjjD7Vq1YpACwAAAACwiUALAAAAAIAD2Au0xYsXJ9ACAAAAAAi0AAAAAAA4wqVLl2wG2mLFiunXX381ek0AAAAAgMEItAAAAAAAOMDly5fVunVrAi0AAAAAwCYCLQAAAAAADmAv0BYtWpRACwAAAAAg0AIAAAAA4AhXrlyxGWiLFCmiX375xeg1AQAAAAAGI9ACAAAAAOAAV69eVZs2bQi0AAAAAACbCLQAAAAAADiAvUAbHBxMoAUAAAAAEGgBAAAAAHCE6Ohom4E2KChIP//8s9FrAgAAAAAMRqAFAAAAAMABrl27pqeffppACwAAAACwiUALAAAAAIAD2Au0gYGBBFoAAAAAAIEWAAAAAABHuH79us1AW7hwYf30009GrwkAAAAAMBiBFgAAAAAAB7hx44aeeeYZAi0AAAAAwCYCLQAAAAAADmAv0BYqVIhACwAAAAAg0AIAAAAA4AgxMTE2A23BggW1Zs0ao9cEAAAAABiMQAsAAAAAgAPcvHlTbdu2JdACAAAAAGwi0AIAAAAA4AD2Am2BAgUItAAAAAAAAi0AAAAAAI5w69Ytm4E2ICBAq1evNnpNAAAAAIDBCLQAAAAAADjA7du39eyzzxJoAQAAAAA2EWgBAAAAAHAAe4HW39+fQAsAAAAAINACAAAAAOAIsbGxNgNt/vz59eOPPxq9JgAAAADAYARaAAAAAAAcIC4uTu3atSPQAgAAAABsItACAAAAAOAA9gJtvnz5CLQAAAAAAAItAAAAAACOEB8fbzPQ+vn5adWqVUavCQAAAAAwGIEWAAAAAAAHSEhIUPv27Qm0AAAAAACbCLQAAAAAADiAvUDr6+tLoAUAAAAAEGgBAAAAAHCExMREm4HWx8dHK1euNHpNAAAAAIDBCLQAAAAAADhAUlKSnnvuOQItAAAAAMAmAi0AAAAAAA5gL9B6e3sTaAEAAAAABFoAAAAAABwhOTnZZqD18vLSihUrjF4TAAAAAGAwAi0AAAAAAA6QkpKiDh06EGgBAAAAADYRaAEAAAAAcAB7gdbT05NACwAAAAAg0AIAAAAA4Aipqak2A62Hh4eWL19u9JoAAAAAAIMRaAEAAAAAcIC0tDQ9//zzBFoAAAAAgE0EWgAAAAAAHMBeoHV3dyfQAgAAAAAItAAAAAAAOEJ6errNQOvm5qZly5YZvSYAAAAAwGAEWgAAAAAAHCAjI0MdO3Yk0AIAAAAAbCLQAgAAAADgAPYCraurK4EWAAAAAECgBQAAAADAETIzM20GWhcXF/3www9GrwkAAAAAMBiBFgAAAAAAB8jKylKnTp0ItAAAAAAAmwi0AAAAAAA4gL1AazabCbQAAAAAAAItAAAAAACOYLFYbAZak8mkpUuXGr0mAAAAAMBgBFoAAAAAABykc+fONgPtkiVLZLFYjF4TAAAAAGAgAi0AAAAAAA7SpUsXmc1mAi0AAAAAwCoCLQAAAAAADmIv0C5evJhACwAAAAB5HIEWAAAAAAAH6dq1q81A+/333ysrK8voNQEAAAAABiLQAgAAAADgIC+88IJcXFwItAAAAAAAqwi0AAAAAAA4iL1A+9133xFoAQAAACCPI9ACAAAAAOAgL774os1A++233yozM9PoNQEAAAAABiLQAgAAAADgIN26dZOrqyuBFgAAAABgFYEWAAAAAAAHsRdov/nmGwItAAAAAORxBFoAAAAAAByke/fuNgPtokWLlJGRYfSaAAAAAAADEWgBAAAAAHCQl156SW5ubgRaAAAAAIBVBFoAAAAAABzEXqBduHAhgRYAAAAA8jgCLQAAAAAADtKjRw+bgXbBggVKT083ek0AAAAAgIEItAAAAAAAOEjPnj3l7u5OoAUAAAAAWEWgBQAAAADAQewF2vnz5xNoAQAAACCPI9ACAAAAAOAgvXr1shlo582bp7S0NKPXBAAAAAAYiEALAAAAAICD9O7dWx4eHgRaAAAAAIBVBFoAAAAAABzEXqD9+uuvCbQAAAAAkMcRaAEAAAAAcJCXX37ZZqCdO3euUlNTjV4TAAAAAGAgAi0AAAAAAA7yyiuvyNPTk0ALAAAAALCKQAsAAAAAgIPYC7Rz5swh0AIAAABAHkegBQAAAADAQfr06WMz0M6ePVspKSlGrwkAAAAAMBCBFgAAAAAAB+nbt6+8vLwItAAAAAAAqwi0AAAAAAA4iL1AO2vWLAItAAAAAORxBFoAAAAAABzk1VdftRloZ86cqeTkZKPXBAAAAAAYiEALAAAAAICD9OvXT97e3gRaAAAAAIBVBFoAAAAAABzEXqD96quvCLQAAAAAkMcRaAEAAAAAcJD+/fvbDLQzZsxQUlKS0WsCAAAAAAxEoAUAAAAAwEFee+01+fj4EGgBAAAAAFYRaAEAAAAAcBB7gXb69OkEWgAAAADI4wi0AAAAAAA4yD//+U+bgXbatGlKTEw0ek0AAAAAgIEItAAAAAAAOMjrr78uX19fAi0AAAAAwCoCLQAAAAAADmIv0H755ZcEWgAAAADI4wi0AAAAAAA4yIABA2wG2qlTpyohIcHoNQEAAAAABiLQAgAAAADgIAMHDpSfnx+BFgAAAABgFYEWAAAAAAAHsRdov/jiCwItAAAAAORxBFoAAAAAABxk0KBBNgPt559/rvj4eKPXBAAAAAAYiEALAAAAAICDDB48WPny5bMaaKdMmUKgBQAAAIA8jkALAAAAAICDEGgBAAAAAPYQaAEAAAAAcJA33njDZqD97LPPFBcXZ/SaAAAAAAADEWgBAAAAAHCQN998U/nz57caaCdPnkygBQAAAIA8jkALAAAAAICDDBkyhEALAAAAALCJQAsAAAAAgIPYC7STJk1SbGys0WsCAAAAAAxEoAUAAAAA4CGkp6crISFBN27cUP/+/W0+g3bo0KE6cuSIrl27pri4OKWlpclisRj9EgAAAAAAjxCBFgAAAAAAOxITE3X27FlFRERo+fLlmjZtmj788EP17dtXnTt3Vvv27fXMM88oJCREbm5uVgNt+fLl1axZMz399NNq166dnn/+efXu3VvvvfeePvvsMy1evFhbtmxRVFSU4uLilJWVZfRLBwAAAAA4GIEWAAAAAID/kpmZqYsXL2rDhg364osvNHDgQHXs2FEtWrRQgwYNVLVqVYWEhKhw4cLy8vKS2Wy2GmTvZTw8PFSgQAGVLFlSlSpVUr169dSsWTO1a9dO/fr108SJE7V69WqdOnVKKSkpRp8eAAAAAMBDItACAAAAAPI0i8Wi6Ohobd68WV988YX69eun1q1bq06dOipdurT8/Pzk4uLyUBH2Qcfb21vFihVT9erV1bx5c/Xs2VPjxo3Tzz//rIsXLyo9Pd3o0wcAAAAAuE8EWgAAAABAnpORkaFTp05pyZIleuedd9SuXTvVq1dPpUqVko+Pz0NfFeus8fT0VNGiRVWzZk21atVKAwYM0Ny5c3Xw4EElJSUZfVoBAAAAAPeAQAsAAAAAyBMsFovOnz+vxYsXa9CgQWrZsqUqV66sgIAAubq6Gh5fH2T8/PxUrlw5NWnSRH369NGsWbOUmZkpi8Vi9OkGAAAAAFhBoAUAAAAA5GopKSmKjIxUeHi42rZtq0qVKilfvnzZ9irZBx1vb2+VLVtWr776qqZPn65Tp04pIyPD6NMPAAAAAPgfBFoAAAAAQK4UGxurX3/9VW+88YZCQ0MVFBSUY6+Uvd9QGxISolatWunjjz/Wvn37lJKSYvSvAwAAAADwHwRaAAAAAECuEhMTo2XLlqlPnz6qXbu2/P39nXq1rNlslpeXlwICAuTj4yMXFxer/9sCBQqoaNGiKliwoN3/7cOOi4uLihQposaNG+v999/Xjh07eE4tAAAAAGQDBFoAAAAAQK4QExOjpUuXqlevXqpatap8fX0dGjz9/Pz02GOPqXHjxuratauGDBmiTz75RAsXLtSKFf+PvTsNj/Hs3zg+M1klEbEGQWiqxB61b9Vaaiul+uhCV/rogm72pYrqotWiFLUUXamlVC21tooQiqJ2FYREiOzrzPl/8X/kaMtMkJnciXw/x3G+6zHXb670ze2c+7qWadWqVXr00UdVtGhRu5/x3HPPacmSJVq1apWWL1+ur7/+WlOmTNHQoUPVp08ftWnTRqGhoQoICHBaeWs2m1WyZEk1adJEb7zxhrZt20ZRCwAAAAAGoqAFAAAAABRoCQkJWrlypZ577jnVrFlTPj4+uS413dzcVLFiRbVt21YDBw7U9OnTtXTpUm3YsEHh4eE6fPiwIiMjFRcX9497XocPH64SJUrY/dyJEyfq8uXL2f99VlaWEhISdP78eR05ckQRERHavHmzVq5cqc8//1xDhw5V165ddffdd8vb2zvX36tEiRJq0qSJhg0bpt27d3P0MQAAAAAYgIIWAAAAAFAgZWRk6JdfftHAgQNVr169XL8xW6JECTVr1kwvvfSSPvvsM/3000+KiIjQmTNnlJSUJKvVmuNMORW077zzzj8KWkdSU1MVFRWl/fv3a8OGDZo/f74GDx6sdu3aqWzZsrm6T7dUqVJq1aqV3n33XR07dkxZWVm5/XMAAAAAAG4SBS0AAAAAoMA5fvy4Jk6cqJYtWyogIOC275gNDAxUhw4d9NZbb2nJkiXasWOHTp8+reTkZNlstluea8SIEQ4L2gkTJig2Nva2vnNaWprOnTunPXv26Mcff9QHH3ygnj17qlKlSnJ3d7/l726xWBQUFKSuXbvqyy+/vO25AAAAAAC3hoIWAAAAAFBgJCcna+nSpXr00UdVvnz523qL1NvbW40bN9bw4cO1dOlS7d27VzExMf84qvh2jRw5UiVLlnRJQft3NptNV65c0cGDB7VmzRpNnDhR7dq1U0BAwC3vh6enp6pXr64BAwYoIiJC6enpuZ4PAAAAAGAfBS0AAAAAoEA4ceKExo4dq7CwMBUpUuSWi0h/f3917NhR06ZN06+//qqoqChlZGQ4dcacCtrx48c7/U1Vm82m2NhYRUREaMGCBQoMDLyt+2qLFy+uNm3aaMGCBbxNCwAAAAAuREELAAAAAMjXMjMztW7dOj3xxBMqW7asLBbLLRWPxYoVU5cuXTRr1izt3btX8fHxt3V88c0YNWqUw4J23LhxunTpkkvWlqSUlBStWrVK48ePV4MGDW65qHV3d1e1atU0ePBgHTp0iLtpAQAAAMAFKGgBAAAAAPlWbGyspk+frubNm8vX1/eWykY/Pz917NhRM2fO1O+//67ExESXFbPXjB49WqVKlTKsoJX+/43a6Oho/fLLLxo3bpzCwsLk5eV1S3tXunRpde/eXWvWrFFSUpJL5wUAAACAwoaCFgAAAACQLx0+fFhvvvmmQkJC5OHhcdPlopeXl1q3bq2pU6dqz549SkhIcHkxe01OBe3bb7/t8oL2mmtF7ebNmzVixAhVr15d7u7uN72P3t7eatiwoWbMmKHo6Og8mRkAAAAACgMKWgAAAABAvmK1WrVx40Y9/vjjKl26tMxm800VihaLRWFhYZowYYK2b9+uq1ev5lkxe82YMWMcFrRjx45VTExMns5ktVp1/vx5rVmzRi+99JIqVKhwS3saEhKioUOH6tixY3m+nwAAAABwJ6KgBQAAAADkG6mpqfrmm2/Upk0b+fn53fTbnhUrVtTAgQO1bt06xcTEyGq1GjL/W2+9pdKlS+ergvaazMxMnTp1St98840efvhhBQQE3PT+lilTRn369NGuXbuUkZFhyPwAAAAAcKegoAUAAAAA5AtXr17Vp59+qvr169/0nak+Pj7q2rWrvvzyS505c8bw8jCngvatt94yrKC9JiUlRQcOHNCHH36osLAweXp63tReFy1aVJ06ddL69euVkpJi6HcAAAAAgIKMghYAAAAAYLiYmBhNnDhR1apVu+l7UkNDQzV+/Hjt2bNHycnJRn8FSdLYsWMdFrRjxozJN/e5xsbGasOGDerbt6/KlClz0/fStmzZUsuWLVNiYqLRXwEAAAAACiQKWgAAAACAoc6fP6/Ro0ercuXKcnNzy7EkLFKkiB555BEtXbpU0dHRhh1nfCNvv/22w7IzPxW0kpSVlaXjx49r+vTpatCgwU29Tevu7q4GDRro66+/1tWrV43+CgAAAABQ4FDQAgAAAAAMc+7cOQ0bNkwVKlSQxWLJsRysVKmSRowYob179+bLY3ZzKmhHjx6drwraa+Li4vTzzz/rscceU/HixXP8O7i5ualu3bpauHAhJS0AAAAA3CIKWgAAAACAIaKiojR8+HAFBQXJbDY7LATNZrOaNGmizz//XOfOnVNWVpbR49/QuHHjHBa0o0aN0sWLF40e84YyMzN18OBBjRo1SsHBwTn+TSwWi+rUqaOvvvpK8fHxRo8PAAAAAAUGBS0AAAAAIM/FxsZq7NixqlixYo5FoIeHh7p3764ff/wx37+tOX78eAUGBhbIgvaac+fOadasWapbt26OR05bLBbVr19f33//vZKSkoweHQAAAAAKBApaAAAAAECeSkhI0Pvvv68qVarkeKyxj4+Pnn8EsEX/AAAgAElEQVT+ee3YsSNfHmn8bzkVtCNHjsz3Ba30/0ceL1u2TC1btszxXlo3Nzc1bdpUP/30k1JTU40eHQAAAADyPQpaAAAAAECeSU1N1YwZM1S9evUc384sWrSoBgwYoAMHDig9Pd3o0W/KhAkTHBa0I0aM0IULF4we86YkJydr3bp1atu2rby9vXN8y7lNmzbaunWrMjIyjB4dAAAAAPI1CloAAAAAQJ7IysrSV199pfr168vDw8Nh4efn56eBAwfq8OHDyszMNHr0m/bOO++obNmyd0RBK0lpaWnatGmT2rZtKy8vL4d/M29vb3Xv3l179uyR1Wo1enQAAAAAyLcoaAEAAAAAeWLt2rVq3br1TRV9/fv318GDBwtUOSvlXNAOHz68QBW0kpSenq7169erVatWORbrRYsWVd++fXX06FGjxwYAAACAfIuCFgAAAADgcnv27FGPHj3k6+ub41G5Tz/9tPbu3Vsgj8qdOHGiw4J22LBhioqKMnrMW5aamqoffvhBjRs3zvFo6lKlSmn06NE6d+6c0WMDAAAAQL5EQQsAAAAAcKnIyEj1799fxYsXd1jsubm5qVevXtq5c2eBuXP23959912VK1fujitoJSkpKUnfffed6tWrJ4vF4vBvWalSJc2cOVNxcXFGjw0AAAAA+c4tFbTp6emKjY3V+fPndfnyZaWnp8tms7lqtnwvLS1NMTExOnfunC5fvlwgf90NAAAAAK6UmJioCRMmKCgoyGGhZzKZ1KlTJ23ZskWpqalGj33bcipohw4dWmALWkmKj4/X3LlzFRoaKrPZ7PDvWa9ePf34449KS0szemwAAAAAyFduuqC1Wq06evSo5syZozFjxmjevHk6evRogf1Vc26lp6dr//79mjFjhkaPHq2FCxfqxIkTlLQAAAAA8D9Wq1ULFy5UrVq1cjwWt3nz5lq1apWSk5ONHjtX3nvvPYcF7ZAhQ3T+/Hmjx8yVy5cv66OPPlLlypUd/k3d3d3VuXNnRUREFOofdwMAAADAv910QZuYmKi5c+fqvvvuU8WKFdWyZUstXLhQV65cceV8+dbFixc1ZcoUNW7cWEFBQbr//vs1f/58xcTE8OAJAAAAAJJ+++03tWvXTl5eXg6LvBo1aujLL79UfHy80SPn2vvvv6/y5cvf0QWtJEVFRWno0KEKDAx0+Lf18/PTq6++qtOnTxs9MgAAAADkGzdd0J47d07Dhw9XhQoVZLFYVKJECb399tt3xIPl7Th16pQGDx6c/cvoYsWKqV+/ftq7dy9v0QIAAAAo9M6fP69+/fqpWLFiDgu8cuXK6ZNPPlFsbKzRIztFTgXt4MGD75jn6OPHj+uZZ56Rv7+/w79x+fLlNWvWLF29etXokQEAAAAgX7jpgvbkyZMaNGiQAgMDZTab5efnp2HDhunMmTOF8o3RCxcu6J133lFISIgsFossFouaNWumb7/9VnFxcUaPBwAAAACGycjI0EcffaRKlSo5LO58fX01bNgwRUZG3jHPlR988IHDgvbNN9/UuXPnjB7TKWw2m3bv3q0OHTrk+JZ0o0aNtGnTJmVmZho9NgAAAAAY7qYL2hMnTmjgwIHZBa2vr6+GDh2qv/766455kL4VqampWrx4sVq1aqUiRYrIZDIpKChIo0eP1qlTp2S1Wo0eEQAAAAAM8fPPP6t58+Zyd3e3W9hZLBb17t1bBw4cUFZWltEjO82kSZMUFBRUKApa6f/L+FWrVunee++V2Wy2+709PT31/PPP69ixY0aPDAAAAACGo6C9TTabTfv27dMLL7yg0qVLy2QyydvbW4888oi2bNmilJQUo0cEAAAAgDx3/vx5Pfvss/Lz83P4RmWLFi20fv16paWlGT2yU+VU0L7xxht3VEErSYmJifrkk09UuXJlh3/zMmXK6LPPPuOoYwAAAACFHgVtLly+fFmffvqpatWqJXd3d5nNZtWtW1ezZs1STEyM0eMBAAAAQJ6yWq2aNm1ajkVdxYoVNWfOHMXHxxs9stN9+OGHDgva119/XWfPnjV6TKeLiorSiy++qICAAId/+2bNmunXX3/l1CkAAAAAhVqBK2itVqtSUlJ05coVXbx4UWfPntWZM2d05swZRUZGKioqSrGxsUpKSlJmZqZLZ8vMzNSmTZvUvXt3+fv7y2QyqUSJEhowYIAOHTrE3ToAAAAACpXdu3erXbt28vDwsFvQeXl5aejQoXdkSSlJH330kSpUqFDoClpJioiIyPHv7+3trcGDBysyMtLocQEAAADAMAWioLXZbEpNTVVMTIwOHz6sdevWac6cOZowYYKGDBmiQYMGacCAAXrttdc0evRoTZs2TStWrNDevXt17tw5JSYmuuxOo9OnT2vEiBGqWLGizGaz3Nzc1KZNG/3www9KSEhwyZoAAAAAkN8kJydryJAhKlmypMM3KDt16qTw8PA76t7Zv8upoH3ttdfu2II2IyNDixYtUvXq1R3+P1ClShUtW7ZM6enpRo8MAAAAAIbI9wVtamqqzp49q02bNmny5Ml6+umn1bJlS4WGhqpy5cqqUKFCdoKCglSxYkVVrVpVDRs2VI8ePTRmzBitWLFCR48eVUJCgtOPUUpOTtaiRYvUqFEjeXp6Zj9svvvuu4qMjCy0xz8DAAAAKFzWrl2rhg0bymKx2C3mgoOD9dVXXykpKcnocV1m8uTJORa0d/Lbo7GxsRo0aJBKlChhdw8sFoueeuopHTlyxOhxAQAAAMAQ+bagzcrK0pUrV/TLL79o/Pjx6tixo+6++24VK1ZMvr6+KlWqlKpWraomTZqoffv2evDBB9WiRQuFhoYqMDBQvr6+8vPzU1BQkJo3b66BAwdq+fLlioyMVHp6utNmttlsCg8PV+/evVW8eHGZTCb5+vqqT58+2rlzp9LS0pyyDgAAAADkV3Fxcfrvf/+rokWL2i3l3N3d9eabb96xb49e8/HHH6tixYp29+HVV1+9owta6f+POr7//vvl5uZmdx/KlCmjhQsXKjk52ehxAQAAACDP5cuCNjMzU3/99Ze+/PJLPf7447rrrrtUpEgReXh4qFSpUmratKleeuklzZw5U+vXr9euXbu0e/dubd68WQsWLNDgwYPVtm1bVahQQV5eXvL09FSZMmX0wAMPaNKkSdq3b5+SkpKcNveFCxf07rvv6u6775abm5ssFouaNGmiL7/8UleuXHHKGgAAAACQXy1fvlx16tSR2Wy2W8i1aNFCW7ZsUWZmptHjuhQFrZSenq5p06apcuXKDo867tmzpw4ePGj0uAAAAACQ5/JdQZuZmaljx45p8uTJuu+++1SiRAlZLBZ5enqqatWq6tevnxYvXqw///xTly9f/sfbsJmZmbp69apOnTqltWvXatiwYWrYsKH8/f1lsVhUpEgR1ahRQ2+++aa2bdum+Ph4p8yenp6uFStWqE2bNvLx8ZHJZFLZsmU1bNgwHT9+/I69WwkAAAAA4uLi1LdvX/n6+tot4ooWLaopU6YoLi7O6HFdLqeCdtCgQXd8QStJZ8+e1WOPPSZvb2+7e1GyZEl98cUXvEULAAAAoNDJVwVtVlaWTpw4oQ8++EANGzaUr6+vzGaz3N3dVatWLY0aNUo7d+7U1atXc7xLNiUlRceOHdOMGTP0wAMPqFixYtmfVblyZb344ovasmWLEhIScj2/zWbTH3/8oZdffjl7fzw9PdW5c2etW7fujr5fCQAAAEDh9uOPP6pevXoO35Ts1q2b9u3b55LrcfKbTz75xGFBO3DgQJ05c8boMV3OZrNp8eLFqlmzpsP/Nx577DEdPnzY6HEBAAAAIE/lm4LWZrMpKipKn376qZo0aZJdzlosFlWpUkXDhw/Xvn37lJKSctPrZWVl6fz585o1a5ZatmyZ/YtuNzc3BQcH67XXXlNERIRSUlJyPf/Vq1f12WefqU6dOvLw8JDJZFL16tX1ySef6MKFC4XiHyIAAAAAFC6pqal65ZVX5O/vb7eAK1WqlObPn19ofrg6ZcoUVapUqdAXtJJ0+fJl9e3bV35+fnb3IzAwUIsXL1Z6errR4wIAAABAnsk3BW1CQoKWLFmiBx98UP7+/tl3FxUvXlxPP/20fvnll9s69shqter06dOaMGGCQkNDs8tTd3d3hYaGauLEiTp+/Hiu70GyWq3aunWrHnnkERUrVkwmk0nFihXTf//7X+3fv18ZGRm5+nwAAAAAyG927Nih5s2bO7x79j//+Y8OHTpk9Kh5JqeCdsCAAYWmoJWklStXqk6dOnb3w2w265VXXtFff/1l9KgAAAAAkGfyRUGblZWl8PBwPf/88ypbtqwsFkv2m67NmjXTl19+qUuXLt32OpmZmdq+fbv69OmjUqVKZf/jgaenp1q2bKlFixbl6vOvOXPmjEaPHq3g4GBZLBZZLBa1bt1ay5YtU3x8fK4+GwAAAADym/HjxyswMNBu+VaiRIlCd8fo1KlTHRa0ha2MjIuL0/PPP+/wjuLq1atr48aNnDwFAAAAoNDIFwVtdHS0PvzwQ9WsWTP7Dddrb88OGDBABw4cyPUbqFeuXNGMGTMUFhYmT0/P7DUCAgLUt29f7dq1S2lpablaIyUlRd98842aNWsmb29vmUwmBQcHa8KECYqMjORhEwAAAMAd46+//tJDDz0kd3d3u8Vb165dtW/fPqNHzVPTpk1TcHAwBe3ffPfdd6pRo4bdPfH09NT777+vy5cvGz0qAAAAAOQJwwvazMxMbdq0ST169Mg+Gvha6tWrpzlz5jjl7Var1aodO3boySefVPHixbPXsFgsqlOnjmbMmJHru2JtNpt2796tZ555RiVLlpTJZJKPj4+eeOIJ7dixI9cFMAAAAADkF1999ZWqV69ut3Tz9vbWp59+qoSEBKNHzVM5FbQvv/xyoStoo6Oj9eijj/7jx9L/TseOHbV3716jRwUAAACAPGF4QRsdHa33339f1apV+8cvr93d3fWf//xH27ZtU2pq6m1//t9FRUVp3Lhxqly5cvYxyiaTSX5+furdu7dT1rp06ZI+/PBDVatWTW5ubrJYLGrUqJEWLlzIr4EBAAAA3BFSU1PVv39/h8fWNmrUSL/++muhO0no008/dVjQvvTSSzp9+rTRY+Ypm82W4928JUuW1HfffZfr07MAAAAAoCAwtKC12WzauXOnnnjiiX+81WoymVSqVCkNGzZMJ06ckNVqva3P/7e0tDQtWLBA99577z9+uWs2m1WnTh3NmjVLMTExuVojMzNTa9euVadOneTn5yeTyaQyZcpo8ODBOnr0qLKyspzyXQAAAADAKHv37lWrVq1kNpvtFm7Dhw9XVFSU0aPmuenTp6ty5coUtP9y8OBB3X///Xb/nzGbzXrjjTd09uxZo0cFAAAAAJcztKBNTU3VggUL1LBhQ3l5ef3j4Sw0NFQzZszIdWH6dzabTRs2bFCXLl2yy9O/30U7YMAAHTp0SJmZmbla5/jx43rzzTcVFBQks9ksd3d3dezYUWvXrlVSUpKTvg0AAAAAGCOnY3yDgoK0fPnyXD9bFUQ5FbQvvvhioSxo09LS9PrrrysgIMDu3jRu3Fjbt283elQAAAAAcDlDC9pTp05p8ODBCgoK+seRwyaTSa1atdLy5cudfl/Rvn379Pzzz2ffEXstbm5u6tChg9asWZPrEjUhIUHz5s37x5u699xzjyZPnqyoqKhCd8QXAAAAgDtHUlKSnn76aXl7e9st2nr06KE//vjD6FENMWPGDIcFbf/+/XXq1CmjxzTE8uXLVbt2bbt74+fnp4ULFyotLc3oUQEAAADApQwraK1WqzZs2KCuXbuqaNGi/3gos1gs6tatmzZv3qyUlJRb/mxHTp06pTfeeEOBgYHXPQxWr15d06ZNU3R0dK7WsFqt2rZtm3r16qVixYrJZDLJ399fffv21d69e7lTBwAAAECBtXv3brVo0cJuyebu7q6PP/5Y8fHxRo9qiM8++0xVqlShoL2BCxcuqFu3bnJzc7O7P6+++qoiIyONHhUAAAAAXMqwgjY5OVmzZs1SnTp15OHh8Y8HMk9PT/Xu3Vu7du1Senr6LX+2I9HR0Ro7dqwqVKhw3YNgiRIl9Prrrzvlrthz585p3Lhxqly5siwWiywWi1q1aqUlS5bo6tWrTvo2AAAAAJC3ZsyY4bCArFq1qtavXy+r1Wr0qIbIqaD973//W2gLWqvVqrfeektlypSxuz/NmjXTjh07jB4VAAAAAFzKsIL2woULGjVqVPY9rX9/IPPx8dGLL76ogwcPOv3Oori4OE2ePFlVq1a97lhlLy8vPfbYY9q+fXuuj1RKS0vTsmXLdP/998vHx0cmk0kVK1bU2LFjc3UsNAAAAAAYJSMjQy+88EL2M86N8uSTT+rIkSNGj2qYmTNnOixoX3jhBZ08edLoMQ2zZs0ahYWF2d2fYsWKafHixYXy/mIAAAAAhYdhBe3BgwfVt29flShR4roHMn9/fw0ePFgnT550+q+uk5KSNHv2bNWtW/e6N3ctFovatGmjVatWKTExMVfr2Gw2HTx4UC+//HL2nnl7e+uRRx7R1q1blZqa6qRvBAAAAAB54/jx42rXrt11P7L9+zPVJ598UmiPN5akWbNm6a677qKgtSM6Olpdu3a97gfT12I2mzV27FjFxMQYPSoAAAAAuIxhBe2mTZv00EMPyc/P74ZHDY8ZM0bnzp275c/NSWpqqhYtWqSGDRvK09PzurXr1aunuXPnKjY2NtdrxcXFafr06apVq5bc3d1lNptVu3ZtzZw5k4dNAAAAAAXOsmXLVKtWLbvlY3BwsH766adCe7yxlHNB269fv0Jd0FqtVg0bNuyGP9a+lh49euiPP/4welQAAAAAcBlDClqr1arFixeradOm8vLyuu5hLDAwUBMmTFBUVNQtf6GcZGRkaPHixWrevLm8vb2vW7tSpUqaMGGCzp49m+tjiLOysrRhwwY99NBDKlq0aHb5PGDAAB06dIgjmwAAAAAUKOPGjXN4f2iXLl20b98+o8c01OzZsx0WtH379tWJEyeMHtNQ3333nWrUqGF3j+655x5t3LjR6DEBAAAAwGUMKWiTkpI0ffp01ahRQ+7u7tc9jFWoUEEffPCBLl68eMtfKCdWq1U//PCDWrdurSJFily3tp+fn15++WX9+eefysrKyvV6p06d0tChQ7Pv2nV3d1f79u31448/5voYZQAAAADIK6mpqerdu/cNTyK6lpEjR+rChQtGj2qozz//XCEhIRS0Dvz555+6//777e6Rt7e3Fi5cqPT0dKNHBQAAAACXMKSgjYmJ0fjx41W5cuUb3jtz11136eOPP1Z0dPQtf6GbsWbNGrVv314+Pj7Xre3m5qbHH39cERERysjIyPVaSUlJWrBgwT+OVA4JCdGkSZN0/vz5XL+lCwAAAAB54dixY2rTpo3DUm3RokWFvlTLqaB9/vnnC31Bm5qaqj59+jgs+8eMGeOyfxMAAAAAAKMZUtBGRkZqyJAhKleunMxm8w2PM/r000916dKlW/5CN+Pnn39Wx44d5evre93aZrNZXbt21ZYtW5SamprrtaxWq7Zv367HH39cxYsXl8lkkq+vr5566imFh4cX+n+8AAAAAFAwrF69WvXq1bNbqFWrVo1jaSXNmTPHYUH73HPP6fjx40aPabjx48crMDDQ7j49/vjj+vPPP40eEwAAAABcwpCC9vjx4xowYIBKly59wwex6tWr67PPPnNZQbthwwZ17txZfn5+N1y/bdu2Wr16tZKSkpyyXlRUlN555x2FhITIYrHIYrGoUaNGWrBggS5fvuyUNQAAAADAlaZOnarg4GC7hVrXrl21f/9+o8c03Ny5c3X33XdT0OZg8eLFDu+hbdSokX777TejxwQAAAAAlzCkoD148KD69eunkiVL3vBBLDQ0VDNnzlRsbOwtf6GbsWnTJj300EN2C9pmzZpp8eLFunr1qlPWy8jI0MqVK9WmTZvsY5XLli2roUOH6vjx47JarU5ZBwAAAABc5bXXXpO/v7/dQu3111/X2bNnjR7TcDkVtM8++ywFraTff/9dLVu2tLtPZcqU0erVq40eEwAAAABcwpCCNiIiQr1791ZAQMANH8Rq1KihWbNmuayg3bx5s7p166aiRYvecP2wsDDNnz/fqW+3/vnnnxo4cKDKli0rs9ksT09Pde3aVRs3blRKSorT1gEAAAAAZ0tNTVWvXr3k5uZmt1D79NNPnXYKUUE2b948hwXtM888o2PHjhk9puHi4uLUtWvXG157ZDKZ5O7urvnz53MtEAAAAIA7kiEF7bZt29SzZ0+7v76uVauWZs+e7bKCdsuWLXr44YftFrShoaGaMWOGU49Yvnr1qmbNmqW6devKw8NDJpNJNWvW1PTp0xUdHe20dQAAAADA2c6cOaP27dvbLR2LFi2qpUuXcjqQpPnz56tq1aoUtDmwWq3673//m33K1I3yzjvvuOzfBQAAAADASIYUtDkVpLVr19acOXNcdj/r1q1b1b17d7vrV61aVVOmTHFqcZqVlaXNmzere/fu2cV0QECAXnrpJf3xxx/KzMx02loAAAAA4Ew7duxQ06ZN7RZp1apV08aNG40eM1/IqaB9+umnKWj/Z/z48QoMDLS7Vy+//LL++usvo8cEAAAAAKczpKDN6Q7YOnXqaO7cuS4vaO29wRsSEqKPPvpIFy9edOq6Z86c0ahRo1SxYkWZzWa5ubmpTZs2WrlypRITE526FgAAAAA4y4oVK1S7dm27Rdr999+v3bt3Gz1mvvDFF184LGifeuopHT161Ogx84Wc7uvt2bOnDh48aPSYAAAAAOB0hhS0P//8szp16mS3oK1bt67mzZvnsoL2l19+UY8ePewWtFWqVNGkSZN04cIFp66bmpqq7777Ts2bN5eXl1d2Gfzee+/p7Nmzt7yPAAAAAJAXZs+erZCQELtF2uOPP67Dhw8bPWa+sGDBAt1zzz0UtDdh9erVqlevnt29atWqlcLDw40eEwAAAACcLs8LWpvNprVr16pDhw7y9fW94UNYvXr1NH/+fF25cuW2vlROcipog4OD9f777zu9oLXZbPr999/Vt29flSpVSiaTST4+PnryyScVHh6u9PR0p64HAAAAAM7w7rvvqly5cnaLtIEDB+rMmTNGj5kv5FTQ9unTh4L2f3bt2qVmzZrZ3auaNWtqy5YtRo8JAAAAAE6X5wWt1WrVTz/9pPbt28vHx+eGD2FhYWH64osvDCtoK1WqpPfee09RUVFOX/vSpUv6+OOPFRoaKnd3d5nNZjVo0EBffPGFy94YBgAAAIDcGDp0qIoXL263SBs7dqxiYmKMHjNfWLhwocOCtnfv3jpy5IjRY+YLJ0+eVNu2be3uVVBQkNauXWv0mAAAAADgdIYUtD/++KPatm1rWEF77Q7aokWL5nlBm5mZqbVr16pjx47ZbxAHBgbqzTff1NGjR5WVleX0NQEAAAAgN/r372/3+c1kMmnKlClKSEgwesx8YdGiRapWrRoF7U24fPmyunTpYnev/Pz8tGLFCqPHBAAAAACnM6SgXb16tdq1a2dYQbtlyxY9/PDDDgvad9991yUFrSQdO3ZMb7zxhsqVKyez2SwPDw917txZ69evV3JyskvWBAAAAIDb1bt3b7m7u9st0ubNm8eVLf+TU0H75JNPUtD+T0ZGhh555BG7e2WxWPTdd9/d0r85AAAAAEBBkG/voHVlQbt582Z169YtxzdonX0H7TWJiYmaP3++GjRoIE9PT5lMJoWGhmrq1Km6ePGiS9bMS1euXNHmzZu1dOlSQgghhBBCSAHPkiVL1KxZM5nN5hs+P5nNZr322mv6/vvvDZ81P2TQoEEKCgqyWzq2bNlSU6dONXzO/JDvv/9eLVu2lMVicXi/8eLFiw2flRBCCCGEEEL+nUOHDik1NfW2ujRDCtqff/5ZnTp1kp+fn92Cdv78+S4raDdt2qSuXbvaXb9KlSqaNGmSywpaq9WqnTt3qnfv3tn3OPn7+6tfv37at2+fMjMzXbJuXjlw4IB69+6tWrVqEUIIIYQQQgp4atasKX9/f7sFmslkUsWKFQ2fM7+kQoUK8vLysrtXAQEBqlq1quFz5pcEBATYLf+v3UNbs2ZNw+ckhBBCCCGEkH9n6tSpunTp0m11aXle0ErSxo0b1aVLF7sFaZ06dTR37lxdvnz5lr+QM9YPCQnR5MmTXfo2a1RUlCZOnKiQkBBZLBZZLBa1aNFCixcv1tWrV122bl4IDw9Xs2bNHP4DDiGEEEIIIYQQQgghhBBCCCEFNSNHjrztlz0NKWi3bNni8IjhWrVqafbs2YqNjb3lL3Qzcipoq1atqk8++UTR0dEuWV+S0tPTtWzZMt13330qUqSITKb//9X52LFjdfr0aVmtVpet7WoUtIQQQgghhBBCCCGEEEIIIeROToEraLdt26aePXvaPSYrNDRUM2fOdFlBu2HDBnXu3NluQRsaGqrp06crJibGJetfs3//fvXt21clS5aUyWSSj4+P+vTpo927dys9Pd2la7sSBS0hhBBCCCGEEEIIIYQQQgi5k1PgCtqIiAj16dNHAQEBN/xC1apV04wZM2773OacXLsD19fX94brh4WFad68eS47YvmaI0eOaODAgSpTpoxMJpM8PT316KOP6rffflNaWppL13YlClpCCCGEEEIIIYQQQgghhBByJ6fAFbSHDh1Sv379st8c/XeqVq2qadOmuewN1vXr16tjx452C9qmTZvqu+++c+ldsFarVZs3b9bDDz+cfdRzyZIlNXDgQB06dEiZmZkuW9vVKGgJIYQQQgghhBBCCCGEEELInZwCV9Be+6zSpUvf8AtVqVJFH3/8scvugF27dq0efPBBuwXtAw88oFWrVikxMdEl60vS1atXNXPmTNWpUySZTbUAACAASURBVEfu7u4ymUyqXbu2PvvsM0VHR9/ynuYnFLSEEEIIIYQQQgghhBBCCCHkTk6BK2jPnj2rYcOGqXz58jKbzdd9oaCgIL3//vu6ePHiLX+hnFitVq1atUoPPPCAihQpcsMN7dy5szZt2qSUlBSnr3/Nn3/+qUGDBqls2bIym83y8vJSjx49tHXrVqWmprps3bxw7NgxDR8+XN27dyeEEEIIIYQU8Dz88MMqX7683QdSs9msxo0bGz5nfkmjRo3k7+9vd7+CgoLUtm1bw+fMLwkODpbFYrG7X/Xr11e3bt0Mn5MQQgghhBBC/p2vvvpKcXFxt9WlGVLQXrp0SRMmTFCVKlVu+CBWunRpjRs3TlFRUbf8hXKSkZGhJUuWqEWLFvL29r5ubYvFol69eik8PFzp6elOX1+S0tPTtXLlSrVt21Y+Pj4ymUyqUKGC3nrrrdvaz/wmOTlZJ0+e1B9//EEIIYQQQggp4Dlw4IA6dOhwwx/XXst7772nffv2GT5rfshHH32kkJAQu3vVvn17LV++3PA580P4f4sQQgghhBBSkHPx4sXbvrLUkII2KSlJ06ZNU2hoaPbxvn9P8eLFNXr0aJ07d+6Wv1BOUlNTtWjRIjVq1Eienp7Xre3r66sXX3xRhw8fVlZWltPXl6QLFy5o4sSJCgkJkcVikcViUYsWLbR48WKX3nsLAAAAALfjmWeekYeHh90S7fPPPy/wJwE5y5IlS1SzZk27e9WzZ08dPHjQ6DHzhZSUFHXv3t3uXnl4eGjJkiUF/kfMAAAAAPBvhhS0WVlZ+vrrr+2WpP7+/hoyZIhOnz7t9Aex5ORkzZkzR/Xq1bvhPzBUqFBB48ePV2RkpEseAm02m3bs2KHHH39cAQEB2d/3+eef1549e5SRkeH0NQEAAAAgN1555RX5+fnZLdI+/PBDfmz6PzkVtI888ggF7f9cvHhRHTt2tLtXAQEBWrlypdFjAgAAAIDTGVLQStK6devUoUMH+fr6XvcQ5ufnp4EDB+rIkSNOf4s1Pj5eU6ZMUfXq1eXm5nbd2nXr1tXnn3+u2NhYp657TWJioubPn68GDRpkl9PVqlXT5MmTFRUVxS+DAQAAAOQ7I0eOVMmSJe0WaSNHjtTFixeNHjNf+P777x0WtD169NAff/xh9Jj5wpEjR3T//ffb3avg4GCtX7/e6DEBAAAAwOkMK2j37dunZ599ViVKlLjuIczb21vPP/+89u3b5/Q3Sq/df1upUqXr7rkxm81q3bq1VqxYoYSEBKeue82JEyc0ePBgBQUFyWw2y93dXZ06ddK6deuUnJzskjUBAAAAIDc++ugjVahQwW6R1r9/f506dcroMfOFpUuXqlatWhS0N2Hbtm1q3Lix3b0KCwvTr7/+avSYAAAAAOB0hhW0Fy5c0KhRo1ShQoXrilIPDw/16tVL27dvV1pa2i1/tiNnzpzRkCFDVLZs2ese/jw9PdWzZ0/9+uuvLrk/KSsrS+vXr1fnzp2zjwcLDAzUkCFDdOzYMZfdeQsAAAAAubFgwQLdc889lI43IaeCtnv37uzV/yxbtszhXrVt21YRERFGjwkAAAAATmdYQZuSkqLZs2erbt26190Fazab1alTJ/38889Of6v00KFD6t+/v0qVKnXdw1+JEiX0+uuvu+RoZUmKjY3Vxx9/nH28stlsVqNGjbRw4UJdvnzZ6esBAAAAgDOsWbNGYWFhdou0pk2baseOHUaPmS/kVDo+/PDDOnDggNFj5gvTp09X5cqV7e7VE088oT///NPoMQEAAADA6QwraK1Wq9atW6dOnTplv03697Rs2VJLly5VfHz8LX+2Izt27FCvXr1UrFix69asXbu2Zs6cqZiYGKeuKUk2m0179+7Vc889l313k4+Pj5544gnt2LHD6W8KAwAAAICz/P7772rZsqXdIq1SpUpat26d0WPmC8uXL1ft2rUpaG/CiBEjHN5t/Prrr+vs2bNGjwkAAAAATmdYQStJR48e1aBBg1S2bNnrjjmuVauWZs+erUuXLt3WZ9+IzWbT6tWr1aZNGxUpUuQf67m7u6tbt27atGmTUlJSnLbmNampqfruu+/UvHlzeXt7y2QyKTg4WBMmTFBkZORt7yEAAAAAuFp0dLQ6depkt0jz8vLSN998w7Utyrmg7datGwWtpMzMTD311FPy9PS0u1cfffSR03+0DQAAAAD5gaEFbXJysubMmaOwsLDrHsrKlCmjkSNH6tSpU7Jarbf1+f+WmpqquXPnqm7dunJ3d//HeqVLl9aQIUN0/Phxl/yjQmRkpN566y0FBwfLYrHIYrGodevWWr58uRISEpy+HgAAAAA4y82UaZMmTVJcXJzRoxpuxYoVDgvarl27av/+/UaPabioqCh17Ngxx9I/MzPT6FEBAAAAwOkMLWhtNpt27dql3r17q3jx4te90fr4449r586dTjv+98KFCxo3bpyCg4P/8cau2WxW/fr1NW/ePMXGxjplrb+z2WzaunWrevToIX9/f5lMJgUEBOjFF1/UgQMHeOAEAAAAkO+NHDnS4XG0/fv316lTp4we03A//PCD6tSpQ0Gbg23btqlx48Z29yk4OFjr1683ekwAAAAAcAlDC1pJunz5siZPnqwaNWpc91ZrkyZN9O233zrlV9g2m0179uzRs88+e90/KhQtWlTPPPOMwsPDXXIX7NWrV/XZZ5+pdu3a2d8xNDRUU6dO1cWLFzneGAAAAEC+N2fOHN199912C7U2bdooIiLC6DENl1NB+9BDD1HQSpo/f76qVq1qd59at26tXbt2GT0mAAAAALiE4QVtVlaWfvnlFz366KMKCAj4xwNZ2bJlNWrUKJ04cSLXxw4nJyfryy+/VNOmTeXl5XXd27Nz5sxRdHS0S8rSgwcP6qWXXlKZMmVkNpvl6emphx56SBs2bFBycrLT1wMAAAAAZ9uyZYsaNmxot1ALCgrSmjVrjB7TcCtXrnRY0Hbp0kX79u0zekzDDR069LqTtP6evn376sSJE0aPCQAAAAAuYXhBK0lXrlzR9OnTr7uL1t3dXZ07d9batWuVmJh4259vs9l09OhRvfbaaypfvvw/jjcuWbKkXnrpJf3+++9KT0/P1fe4kfT0dK1YsUIPPPCAihQpIpPJpHLlymnEiBE6efKk0+7XBQAAAABXyunOUA8PD82cObPQ/wh11apVqlu3LgWtA1evXlXPnj3l5uZmd58++OAD7jQGAAAAcMfKFwWtzWbTwYMHNWDAAAUFBclisWQ/lFWoUEGjRo3S0aNHb/uu1oSEBC1cuFDNmjWTt7d39md7eXmpbdu2+v777xUXF+eSt2cvXryo9957T3fffbcsFovMZrOaNGmir7/+modNAAAAAAVGZmamXnjhBfn4+Ngt1QYMGKAzZ84YPaqhcipoO3fuXOgL2vDwcDVr1szuHhUrVkxLlizJ9UlaAAAAAJBf5YuCVpJSU1O1Zs0aPfzwwwoICMh+y9Xd3V2NGzfWvHnzdPHixVt+4zQjI0O//fabnnrqKZUuXTr7c93c3FSnTh1NmTJFkZGRLnnws9lsCg8PV+/evbOPbvLz89NTTz2lXbt2ueSNXQAAAABwlY8//lgVK1a0W6y1atVK4eHhRo9pqB9//NFhQdupUyf9/vvvRo9pqNmzZ+uuu+6yu0f33nuvfv31V6PHBAAAAACXyTcFrSTFxcXpm2++Ufv27eXv759dpvr6+qpjx45asmSJLl26dFMlrc1mU3p6uiIiIjRo0CBVrlxZ7u7u2eXs3XffrTFjxujw4cPKyMhwyvz/lpycrEWLFqlRo0bZRzeHhITo/fff17lz51zyxi4AAAAAuMqGDRt077332i3WSpQooaVLlxbqNx9Xr16tevXqUdDakZmZqZdeekm+vr529+iZZ57RsWPHjB4VAAAAAFwmXxW0khQTE6NFixapffv2KlasWPZxx/7+/nrwwQc1f/58nT59WmlpaTcsam02m7KysnT16lVt3rxZ/fv3V5UqVf5RzlarVk2jR4/W/v37lZaW5rTZ/+306dMaNmyYKlSoILPZLDc3N7Vr106rV6/O1Z26AAAAAGCEixcvqkuXLtk/pv13zGaz3n77bcXExBg9qmFyKmg7duxYqAva48ePq3379g7/H5o8ebLi4+ONHhUAAAAAXCbfFbQ2m02xsbFavHixunfvrrJly2aXq76+vmrQoIFGjBihDRs26Ny5c0pKSlJaWprS0tKUmpqqy5cva9++fZoxY4a6deumcuXKyd3dXWazWUWKFFH9+vU1ceJEHTp0yKXlbFZWljZu3Khu3bqpaNGiMplMKlmypF599VUdOXKkUP+iHAAAAEDBlJWVpTfeeEMBAQG8IWrHTz/95LCg7dChg/bu3Wv0mIb55ptvFBoaand/goKCtGrVqlu+3ggAAAAACpJ8V9BeExcXp61bt2rIkCGqV6+eihYtKjc3N3l6eqp8+fK677771L9/f02aNElz5szR/PnzNW3aNA0ZMkTdunVTtWrV5OfnJzc3N3l4eCgoKEg9e/bUggULdPr0aZcda3zNlStXNHXqVNWoUUNubm4ymUwKCwvT3LlzFRsb69K1AQAAAMBVvv76a1WvXt1uwVamTBmtWLGi0P4odc2aNQoLC6OgvYHMzEwNGjRI/v7+FPwAAAAACrV8W9BKUlpamk6dOqXFixfrxRdfVP369VWyZEl5e3vLx8dHJUuWVHBwsO655x5Vq1ZNd911lwIDA+Xr6ysvLy/5+voqODhYXbp00YcffqidO3fqypUrefJL3H379qlfv34qVaqUTCaTvL291atXL23btk2pqakuXx8AAAAAXOHEiRNq27at3YLNYrFozJgxunjxotGjGiKngvbBBx8stAXtkSNH1LZt2+yrjG6UsWPHFuojsgEAAAAUDvm6oJX+/8jjxMREHTt2TD/99JMmTZqkfv36qX379qpTp44qVaqkMmXKqEyZMipbtqwqV66s+vXrq3v37hoyZIgWLFig8PBwRUdHu/yt2WvS0tK0ZMkStWrVSt7e3jKZTKpYsaLGjh2rv/76i6OaAAAAABRY6enpGjBggMO3IFu3bq1du3YZPaoh1q5d67Cgbd++vfbs2WP0mIaYM2eOQkJCHL59vXTpUmVmZho9KgAAAAC4VL4vaP8uPT1dly5d0rFjxxQREaGNGzfq+++/17x58zR37lx9+eWX+uGHH7Rlyxbt379fkZGRSkxMzPOjtc6dO6dx48apcuXKslgsMpvNatGihZYsWaL4+Pg8nQUAAAAAnO2rr75yeMxxsWLFtHDhwkJ5etC6detUv359Ctp/SUxM1DPPPKMiRYrY3ZuOHTtyvDEAAACAQqFAFbT/ZrValZaWpsTERCUmJiolJUWZmZmGzSP9/xu/v/32m3r16qVixYrJZDLJ399fL7zwgvbv388vgQEAAAAUeKdPn1aHDh1kNpvtlm39+vXTiRMnjB41z+VU0LZr165QFrRbt25Vo0aN7O6L2WzWO++8o9jYWKNHBQAAAACXK9AFbX6UkJCg2bNnq27duvLw8JDJZFLNmjU1ffp0RUdHs1cAAAAACrzMzEwNHz5cJUuWtFu4hYSEaO3atYXuipf169c7LGjbtm2riIgIo8fMU1arVaNHj1apUqXs7kuVKlW0evXqPD8BCwAAAACMQEHrZIcPH9aAAQMUGBgok8kkT09Pde3aVRs3blRKSorR4wEAAACAU+T0pqiHh4fGjh2r6Ohoo0fNUz///LPuvfdeCtq/OXLkiDp06CA3Nze7+9K7d28dOXLE6FEBAAAAIE9Q0DpRRkaGVq1apbZt28rHx0cmk0llypTRkCFDdOLEiUL3y3EAAAAAd64rV67oySeflJeXl93SrXHjxvrtt9+MHjVP5VTQtmnTptAVtFOnTlVwcLDdPfH19dXnn3+u5ORko0cFAAAAgDxBQetE0dHR+uCDD1S1atXsXwY3bNhQCxcu1JUrV4weDwAAAACc6rPPPlOVKlXsFm8+Pj768MMPdfnyZaNHzTMbNmxwWNA+8MAD2r17t9Fj5pkzZ86oR48e8vT0tLsnLVq00I4dO/i3BQAAAACFBgWtE0VEROjpp59WiRIlZDKZVKRIET3xxBPauXOn0tPTjR4PAAAAAJzq+PHjat++vSwWi93yrWXLltq5c6fRo+aZjRs3qkGDBhS0/zNz5kzddddddvfDYrHo7bffVkxMjNGjAgAAAECeoaB1ktTUVH311Vdq3Lhx9i+Dg4ODNWHCBEVGRrJHAAAAAO44GRkZevvttxUYGOjw+Nr3339fsbGxRo+bJ3IqaO+///5CU9CePHlS3bt3d3gMdmhoqNauXausrCyjxwUAAACAPENB6yQnT57U0KFDFRQUJLPZLDc3N7Vu3VrLli1TfHy80eMBAAAAgEtERESoRYsWMpvNdku4Bg0aaOvWrbJarUaP63KbNm1yWNC2bt1au3btMnpMl7NarZo8ebIqVqxody9MJpNeffVVRUZGGj0uAAAAAOQpClonyMrK0vr169WlSxf5+fnJZDKpePHieuWVV3To0CFlZmYaPSIAAAAAuERqaqqGDx+uUqVK2S3hvL29NXToUJ07d87ocV1u8+bNatiwYaEvaPfs2aN27drJw8PD7l6EhITohx9+UEZGhtHjAgAAAECeoqB1gri4OE2bNk01atSQm5ubTCaTateurVmzZunSpUtGjwcAAAAALhUeHp7jW7QhISFatmyZ0tLSjB7XpXIqaO+77747vqBNSkrS0KFDHZb2ZrNZAwcO1JkzZ4weFwAAAADyHAWtE/zxxx/q37+/SpcuLZPJJE9PT/Xo0UNbtmxRSkqK0eMBAAAAgEulpKRozJgxDu+itVgsevTRR3Xw4EGjx3WpLVu2OCxoW7VqpfDwcKPHdKnly5crLCxMFovF4d2zP/74I2/PAgAAACiUKGhzKTMzU8uXL9d9992nIkWKyGQyqXz58ho1apROnTpVKO5YAgAAAIADBw6oTZs22acK3SjFixfXpEmT7uiThrZu3apGjRoV2oL2xIkT6tWrl3x8fOzugbu7u4YPH66oqCijxwUAAAAAQ1DQ5tKFCxf0zjvv6K677pLFYpHZbFaTJk309ddfKy4uzujxAAAAACBPpKena8qUKQoODrZbzF27Dmb16tVKT083emSXyKmgbdmy5R1b0KakpGjcuHEqV66cw/8HmjZtqi1btigzM9PokQEAAADAEBS0uWCz2RQeHq4+ffqoePHiMplM8vX11bPPPqu9e/dyVBMAAACAQiUyMlKPPfZY9ulC9t6efPTRR/XHH38YPa5L/PLLLw4L2hYtWmjnzp1Gj+kSS5cuVVhYmMO3qP39/fXJJ5/oypUrRo8LAAAAAIahoM2FpKQkzZ8/X/fee688PT1lMpl0zz336OOPP9aFCxcK7b4AAAAAKJxsNptWrlypunXrOnyDMiAgQG+99ZbOnz9v9MhO9+uvv6px48aFrqDdv3+/Hn74YYflvMlk0mOPPaaDBw/yvAwAAACgUKOgzYWjR4/qtddeU7ly5WQ2m+Xu7q5OnTpp3bp1SkpKMno8AAAAAMhz8fHxGjlypAIDAx0WdVWqVNGCBQuUkJBg9MhOlVNB27x58zuuoI2OjtagQYNUokQJh3/z6tWra9myZUpNTTV6ZAAAAAAwFAXtbcrKytJPP/2kBx98UL6+vjKZTCpVqpTeeOMNHT16VFlZWUaPCAAAAACG+PPPP9WtWzd5eXnZLevMZrOaNm2qjRs33lHXw2zbts1hQdusWTPt2LHD6DGdJjU1VZMnT1blypVlNpvtfm9fX1+NHz9e0dHRRo8MAAAAAIa76YL25MmTGjRo0HUF7ZkzZwplQXvp0iV9+OGHuueee7Lv1wkLC9PcuXMVGxtr9HgAAAAAYJisrCwtX75cderUcfhGpaenp3r06KF9+/bdMc+Vv/32m5o0aVIoClqbzaZvv/1W9evXl7u7u8O/9X/+8x/t379fVqvV6LEBAAAAwHA3XdCePn1ar7/+usqWLSuz2ayiRYtqxIgRioyMvGMepG/FiRMnsvfDZDLJ29tbjz32mLZv3660tDSjxwMAAAAAQ8XHx2v8+PEKCgpyWNz5+/vrlVde0cmTJ40e2SlyKmibNm16xxS0mzdvVrt27eTt7e3wb1yvXj2tXLmSo40BAAAA4H9uuqCNjY3VhAkTVKVKFbm5uSkoKEiTJk3SxYsXXTlfvvXXX39p2LBhKl++vMxms6pVq6aPPvpI58+fL5SFNQAAAAD82+nTp/XUU0/Jz8/PYYEXGBio8ePHKyoqyuiRc2379u0OC9omTZpo+/btRo+Za/v371evXr1UtGhRh3/b0qVLa8qUKbp8+bLRIwMAAABAvnHTBW1mZqY2b96s/v37q3Xr1urfv7+2bNmi5ORkV86XbyUnJ+unn37Sc889pwceeEBDhgzR7t27+UUwAAAAAPyPzWbTtm3b1Lp16xyPwK1cubKmT59e4K+M2bFjh5o2bXpHF7SnTp1S//79VaJEiRyPsB40aJBOnTrFD5kBAAAA4G9uuqCVpISEBB05ckTh4eE6cuSI4uPjC/X9MVevXtXhw4e1a9cunThxQsnJyTx0AgAAAMDfpKWl6dtvv1WtWrVkNpsdFno1atTQokWLFB8fb/TYty2ngrZx48YFuqCNiorSkCFDFBgY6PBvaTKZ1L17d+3atUuZmZlGjw0AAAAA+cotFbQAAAAAgP9j7z6jtCzPxW9PZ9ChCYKIIhZUEEGwIViwxG1EJdEoiZjEvsHexUoUlZLYExMToyJgC4g1GomxgihFUIqgohQx0pFhGKY85/vhv/TdO3uY4Rlg7mHmONY6v7nwvK5Z6/nyW/d9k65Vq1bF8OHDo23btpUGvaysrOjWrVuMHTs2CgsLk167WiZNmlRpoD3kkENiwoQJSa9ZLcuXL4/f/OY3seuuu1YZ27t37x4vv/xyFBUVJb02AABArSPQAgAAsNUtXrw4rrjiimjRokWlYS87O3ubjnsffPBB9OjRo84F2jVr1sTQoUNj9913j6ysrEr/hnvttVc8+uijsXr16qTXBgAAqJUEWgAAAGrEnDlzol+/ftGoUaNKA19ubm706tUr/vnPf0ZxcXHSa6elqkB78MEHb3OBtrCwMO6///7YZ599Ijs7u9K/XatWrWL48OHx7bffJr02AABArSXQAgAAUCPKy8vjww8/jN69e0d+fn6loa9BgwZx3HHHbXOR9sMPP6w00B500EHx3nvvJb3mJlu7dm38/ve/j44dO0ZOTk6lf7PGjRvHDTfcEAsWLIhUKpX06gAAALWWQAsAAECNKS0tjTfeeCOOOuqoyM3NrTT45efnx9FHHx2vvPJKrFu3LunVN8nkyZOjZ8+edSLQrly5Mu6+++7o0KFDlXE2Pz8/Lrroovj000+jrKws6dUBAABqNYEWAACAGrV+/fp48cUX49BDD63ylbl5eXnRvXv3GD16dKxatSrp1atUVaA98MADt4lAu3Dhwhg0aFDsueeeVcbZ3Nzc+PWvfx0fffRRlJSUJL06AABArSfQAgAAUOMKCwvjmWeeia5du0ZWVlalATA7Ozs6deoUw4cPj8WLFye9eqWmTJlSaaDt1q1bvPvuu0mvWampU6fGgAEDYuedd96kv03fvn1j0qRJsWHDhqRXBwAA2CYItAAAACRizZo1MWrUqOjSpUuVITAzMzPatm0bAwYMiGnTpkVpaWnS61do6tSpcfjhh2+Tgba4uDjGjRsXffr0iWbNmkVmZmaVcfbUU0+Nd999N9avX5/0+gAAANsMgRYAAIDErF69OkaNGhUHHHBAla87zsjIiGbNmsUJJ5wQzz77bK185XFVgbZr1661MtAuXLgwhg0bFgcddFA0bNiwyr9DTk5OnH766fHOO++IswAAAGkSaAEAAEjUmjVr4plnnolDDz20yu+dfv9d2k6dOsVNN90Uc+bMibKysqSP8INp06ZVGmgPOOCAeOedd5Je8wclJSUxfvz4OPvss2OXXXbZpEjeoEGDOOuss2LixIniLAAAQDUItAAAACRu7dq18dJLL8XRRx8d+fn5VUbCjIyMaNWqVZx88snx1FNPxYoVK5I+QkREfPTRR3HEEUdsE4F2/vz5MWzYsOjRo0cUFBRs0p03atQo+vfvH1OnTo3i4uKkjwAAALBNEmgBAACoFYqKiuKtt96KU089NRo1arRJwTAvLy86duwYl156abz//vuJP9FZVaDt0qVL4oF2zZo18eyzz8YZZ5wRbdq02aSnljMyMmKnnXaKgQMHxuzZs6OkpCTRMwAAAGzLBFoAAABqjZKSkpg2bVpcdNFF0bJly00KhxkZGdG0adM4/PDDY8iQITFv3rzEXns8ffr0SgNt586d4+23305kt5KSknjnnXfi0ksvjf3333+TvjX7/XTo0CHuueeeWLBgQa16pTQAAMC2SKAFAACgVikvL4/PP/88hg4dGnvvvXdkZWVtUkTMysqKNm3axEknnRQPP/xwLF68OFKpVI3uPmPGjDjyyCNrVaAtLy+P6dOnx6BBg+Lwww+Ppk2bRmZm5ibf6THHHBNPPvlkLFu2rMbvEwAAoC4SaAEAAKiVvv3223jqqafiyCOP3OTv0mZkZERubm7sueeeccYZZ8TIkSPj22+/rbGwWFWg3X///Wss0KZSqZgzZ04MHz48jj/++GjZsmVkZ2dv8j02btw4zjnnnHjzzTdj7dq1NbIzAABAfSDQAgAAUGsVFhbGu+++G+eee260aNFik+NiRkZG5Ofnxz777BP9+vWLp556KpYuXbrVQ+3HH39caaDt1KlTvPXWW1t1h1QqFXPnzo177rknevfundZ3Zr+f9u3bxx133BGzZ8+ODRs2bNV9AQAA6huBFgAAMdygigAAIABJREFUgFqtrKws5s6dG3fffXd06tQp7djYsGHD6NChQ/Tr1y9GjRoV33zzzVYLtZ988kkcddRRiQXaNWvWxJVXXhm9e/eOXXfdNXJzc9O6q7y8vPjxj38cTz31VPz73/+O8vLyrbYrAABAfSXQAgAAsE1YtmxZvPzyy3H66adH06ZN0wqP34fafffdN372s5/F/fffHzNnzozi4uItumNVgXa//fbb4oE2lUrF/Pnz4/HHH49zzjknGjdunHaYzcjIiLZt28a1114bkyZNisLCwi26IwAAAP8/gRYAAIBtxoYNG2LmzJkxfPjw6NKlS7VCZF5eXrRt2zZ69eoVl1xySYwcOTLmzZu3RV7lO3PmzEoDbceOHePNN9/c7P9PKpWKhQsXxrhx42LgwIFx4oknRvv27WO77barVrju3bt3jBw5MhYtWhSlpaWbvR8AAAAbJ9ACAACwzVm2bFmMHz8+Lr744thll10iMzMz7TCZkZERjRs3jn322SeOPfbY6N+/fzz00EMxceLEWLVqVbVegzxr1qzo1avXVgm069ati+nTp8eIESPiqquuit69e8f+++8fO+ywQ2RnZ6d99qysrOjatWvcddddMWXKFE/NAgAA1BCBFgAAgG1SWVlZzJ8/P55++un4+c9/Hi1atKhWpP1+tt9++2jXrl107949Tj311Ljuuuvi8ccfjw8++CBWrVq1Sd9jrSrQdujQYZMD7dq1a+Pjjz+OZ555JgYNGhRnnnlmHHnkkbH33ntHkyZNIisrq9pn3WuvveKqq66K119/PZYtW+ZbswAAADVIoAUAAGCbtn79+pg9e3Y8+uij0adPn2jWrNlmhdqMjIzIzs6OZs2aRfv27aNHjx5xyimnxAUXXBC33npr/OlPf4oXX3wxpkyZEkuWLImSkpIfdpk9e3algXbfffeNf/3rXz/892VlZbFs2bL4+OOP47XXXotHH3007rjjjrjooovitNNOi6OOOio6duwYO+64Y7Ve5/yfs9tuu8WAAQPi+eefj0WLFv2v3QEAAKgZAi0AAAB1QmFhYXz88cfxyCOPxE9/+tNo3rz5ZgfN7yczMzPy8/Njxx13jD322CO6dOkSPXv2jBNOOCH69u0b5513XlxyySVx7rnnRtu2bTf677Ro0SL69u0bl112WVxwwQVx5plnxkknnRRHHnlkdO3aNdq3bx877bRTbL/99pv1hOx/zh577BEDBgyIsWPHxvz587fI93YBAACoHoEWAACAOqWwsDA++eSTGDFiRJx11lnRunXrLRo7/3OysrKiQYMGUVBQEI0aNYqcnJxKn8wtKCiIgoKCyM/Pr9a3Y9N5Cni//faLq6++Ol544YX48ssvhVkAAIBaQKAFAACgTioqKopPP/00xo4dG5deemnsvffeW+Q1wbV9GjVqFD179ozbb789Xn/9da8yBgAAqGUEWgAAAOq0kpKS+Oqrr2L8+PExdOjQOOmkk6Jly5Zb9anaJKZx48Zx5JFHxpgxY2LixImxdOnSKCsrS/r6AQAA+A8CLQAAAPVCKpWKFStWxPTp02PcuHFx2223xcknnxxt2rSp9LXEtXlatGgRRx99dFx33XUxevTo+OCDD6K8vDxSqVTS1w0AAMBGCLQAAADUO2VlZbF06dKYMWNGvPLKK3HffffF+eefH4ccckg0adIkMjMzE4+vFU3Dhg2jU6dOceaZZ8aQIUPiueeei8mTJ8fXX3/t+7IAAADbCIEWAACAei2VSsWaNWvi888/jwkTJsSYMWNi2LBhcfbZZ8ehhx4aO+ywQ2KvQ27UqFF07tw5zjjjjBg0aFCMHj063nrrrZgzZ06sXLnSK4wBAAC2QQItAAAA/A9lZWWxcuXKmDdvXkycODFefPHFeOSRR+KOO+6Iiy++OE499dTo0aNH7L777rHddttt9tO2DRo0iDZt2sRBBx0UJ598clxwwQVx6623xh//+McYO3ZsvP322zFr1qxYunRplJSUJH09AAAAbCaBFgAAACqRSqVi/fr1sXz58vjqq6/ik08+iffffz/Gjx8f48aNi1GjRsVf/vKXeOCBB2L48OFx2223xcCBA+OKK66I/v37x3//93/HZZddFtdff30MGjQohg4dGvfdd188/PDDMWLEiBgzZky89tpr8d5778X06dPjiy++iG+//TbWrVsX5eXlSR8fAACALUygBQAAgM1QWloa69evj7Vr18aqVati2bJlsWTJkli4cGHMnz8/5s+fHwsWLIivv/46li5dGitXrozvvvsuioqKorS0NFKpVNJHAAAAoAYJtAAAAAAAAAA1RKAFAAAAAAAAqCECLQAAAAAAAEANEWgBAAAAAAAAaohACwAAAAAAAFBDBFoAAAAAAACAGiLQAgAAAAAAANQQgRYAAAAAAACghgi0AAAAAAAAADVEoAUAAAAAAACoIQItAAAAAAAAQA0RaAEAAAAAAABqiEALAAAAAAAAUEMEWgAAAAAAAIAaItACAAAAAAAA1BCBFgAAAAAAAKCGCLQAAAAAAAAANUSgBQAAAAAAAKghAi0AAAAAAABADRFoAQAAAAAAAGqIQAsAAAAAAABQQwRaAAAAAAAAgBoi0AIAAAAAAADUEIEWAAAAAAAAoIYItAAAAAAAAAA1RKAFAAAAAAAAqCECLQAAAAAAAEANEWgBAAAAAAAAaohACwAAAAAAAFBDBFoAAAAAAACAGiLQAgAAAAAAANQQgRYAAAAAAACghgi0AAAAAAAAADVEoAUAAAAAAACoIQItAAAAAAAAQA0RaAEAAAAAAABqiEALAAAAAAAAUEMEWgAAAAAAAIAaItACAAAAAAAA1BCBFgAAAAAAAKCGCLQAAAAAAAAANUSgBQAAAAAAAKghAi0AAAAAAABADRFoAQAAAAAAAGqIQAsAAADA/1FcXBxLliyJjz/+ON599914++23Y9q0aTF//vxYtWpVlJaWJr0iAABskwRaAAAAAH5QVFQUs2bNilGjRsUNN9wQv/rVr6JPnz5xyimnxM9//vPo379/DB06NF5//fX45ptvoqysLOmVAQBgmyLQAgAAABAREcuXL4+XX345Lr300jjssMNi1113jaZNm0ZBQUEUFBRE48aNo3nz5tG+ffs48cQTY9iwYTF9+vQoKipKenUAANhmCLQAAAAAxNKlS+PJJ5+Mn/70p7HLLrtEfn5+ZGVlRUZGxv+ZnJycKCgoiA4dOsTll18eEydOjHXr1iV9BAAA2CYItAAAAAD13Jo1a2LcuHHRp0+faNGiRWRnZ1cYZv9zcnNzo127dnHttdfGxx9/HBs2bEj6KAAAUOsJtAAAAAD1WGlpaUyePDkuvPDC2HnnnTf61OzGJicnJzp27BgPPPBAfP3111FeXp70kQAAoFYTaAEAAADqsRUrVsTDDz8cXbt2jby8vLTi7PeTn58fp512Wrz99tuxfv36pI8EAAC1mkALAAAAUI/NmjUrLr744mjVqlVkZmZWK9BmZGTE3nvvHQ8//HAsW7YsUqlU0scCAIBaS6AFAAAAqKfKy8vjX//6V5xwwgmx3XbbVTvOZmRkROPGjWPgwIHxxRdfRFlZWdJHAwCAWkugBQAAAKiniouLY8yYMXHooYdGbm7uZgXanJycOP/882PGjBlRUlKS9NEAAKDWEmgBAAAA6ql169bFyJEjo2vXrpGTk7NZgTYjIyP69esXU6ZMiQ0bNiR9NAAAqLUEWgAAAIB6av369fHMM8/EQQcdtEUC7S9/+cuYOnWqQAsAAJUQaAEAAADqqfLy8nj11VfjqKOOigYNGmxWnM3Ly4uLL744Zs+eHaWlpUkfDQAAai2BFgAAAKAemzx5cvTr1y+aNm26WYG2ZcuWMWTIkFi8eHGUl5cnfSwAAKi1BFoAAACAemzx4sVx5513xh577BFZWVnVDrSHHXZYjB07Nr777rukjwQAALWaQAsAAABQj61fvz7+8Y9/xCmnnBKNGjWqVpxt0aJFXHvttTFnzhyvNwYAgCoItAAAAAD1WCqViiVLlsSDDz4YBx54YNrfot1+++3jJz/5Sbz22mvx3XffRSqVSvpIAABQqwm0AAAAAPVcaWlpzJkzJ+6444444IADNjnSNmnSJH784x/Hk08+Gf/+9799exYAADaBQAsAAABAFBcXx+zZs+PBBx+ME088MVq3bh05OTkVhtnc3Nxo165d/OpXv4oxY8bE4sWLvdoYAAA2kUALAAAAQERElJSUxMKFC+PVV1+N22+/Pfr27Rs9e/aMDh06xO677x777LNP9OzZM84666y4++6747333ovly5eLswAAkAaBFgAAAIAflJWVxdq1a+PLL7+MiRMnxgsvvBAjR46MRx55JB5//PF44YUX4sMPP4zFixdHUVGR1xoDAECaBFoAAAAA/o+ysrIoLi6OwsLCWLNmTaxatSpWr14dhYWFUVxcLMwCAEA1CbQAAAAAAAAANUSgBQAAAAAAAKghAi0AAAAAAABADRFoAQAAAAAAAGqIQAsAAAAAAJsplUolvQIA2wiBFgAAAAAAqlBWVhaLFi2KN998M5566qn4/e9/H4MHD44rr7wyfv3rX0ffvn3j7LPPjiuvvDIGDx4cf/jDH+Kpp56Kt99+O5YsWRKlpaVJHwGAWkKgBQAAAACACpSUlMTs2bPjiSeeiEsvvTROPPHEOPjgg6NDhw7Rrl27aNWqVTRu3Dhyc3MjMzMz8vLyonHjxtGqVato165ddOjQIQ455JA48cQT44orroiRI0fGvHnzYsOGDUkfDYAECbQAAAAAAPA/FBYWxvjx4+PKK6+MY489Nvbee+9o1KhRZGZmRkZGRtqTmZkZjRs3jn322SeOPfbYuPbaa+Ott96KtWvXJn1UABIg0AIAAAAAQEQUFxfHW2+9FZdffnkcfPDB0aRJk2pH2cpmhx12iIMPPjiuvvrqmDhxYhQVFSV9dABqkEALAAAAAEC9N3PmzLj11lujR48e0bRp060SZisKtT169IjBgwfH3Llzo6ysLOlrAKAGCLQAAAAAANRb3333XYwaNSpOOeWUaNmyZWRlZW31MPufrz9u3bp19OnTJ8aOHRurV69O+koA2MoEWgAAAAAA6qWvvvoqBg0aFJ06dYoGDRrUaJj9z8nLy4vOnTvHXXfdFQsXLkz6agDYigRaAAAAAADqnVmzZsVFF10UrVu3rvGnZiubXXbZJS6//PKYO3dupFKppK8JgK1AoAUAAAAAoF759NNP48ILL4zmzZsnHmQrmhYtWsQll1wSn332WdJXBcBWINACAAAAAFBvLFmyJK688srYcccdEw+xlc2OO+4Yt9xySyxatCjpKwNgCxNoAQAAAACoF9auXRt33XVX7LrrrpGZmZl4hK1qdt1113jooYdixYoVSV8dAFuQQAsAAAAAQJ1XXl4eTzzxROy///6RnZ2deHzd1OncuXO8+OKLsX79+qSvEIAtRKAFAAAAAKDOmzhxYhx//PHRoEGDxKNrOpOTkxMnnXRSTJs2LVKpVNLXCMAWINACAAAAAFCnLV26NAYMGBBNmjRJPLhWZxo1ahQ33XRTLF68OOmrBGALEGgBAAAAAKizUqlU/PnPf4699tprm/ju7MZmjz32iLFjx0ZxcXHSVwrAZhJoAQAAAACosz755JPo3bt35OXlJR5ZN2eysrKib9++MWvWrKSvFIDNJNACAAAAAFAnlZaWxuDBg2OnnXZKPLBuidlhhx3iz3/+c6xduzbpqwVgMwi0AAAAAADUSR999FEce+yxkZ2dnXhc3VJzyimnxIwZM5K+WgA2g0ALAAAAAECdNGTIkGjdunXiUXVLTrNmzWLEiBFRVFSU9PUCUE0CLQAAAAAAdc7ChQujT58+kZOTk3hU3dJz3nnnxeeff570FQNQTQItAAAAAAB1zpgxY2K//fZLPKZujWnfvn3885//TPqKAagmgRYAAAAAgDrnuuuui6ZNmyYeU7fG5OXlxR/+8IdYu3Zt0tcMQDUItAAAAAAA1CnLli2Ln/zkJ5GdnZ14TN1aM2DAgJg/f37SVw1ANQi0AAAAAADUKR9++GH06NEj8Yi6NeeYY46JyZMnJ33VAFSDQAsAAAAAQJ3y7LPP1tnvz34/e+yxR4wfPz7pqwagGgRaAAAAAADqlAcffDB22223xCPq1pztt98+nn/++aSvGoBqEGgBAAAAAKhTBg8eHK1atUo8om7NycrKitGjR0dZWVnS1w1AmgRaAAAAAADqlJtuuimaN2+eeETd2vPoo4/Ghg0bkr5uANIk0AIAAAAAUKcItADUZgItAAAAAAB1ikALQG0m0AIAAAAAUKfceOON9SLQ/vWvf43i4uKkrxuANAm0AAAAAADUKYMGDYodd9wx8YC6tWfEiBFRWlqa9HUDkCaBFgAAAACAOuW3v/1ttGnTJvGAujUnNzc3/va3v0UqlUr6ugFIk0ALAAAAAECd8thjj0X79u0Tj6hbc1q1ahV///vfk75qAKpBoAUAAAAAoE4ZP358HHjggYlH1K05Bx54YLz33ntJXzUA1SDQAgAAAABQp8yfPz+OO+64xCPq1py+ffvG7Nmzk75qAKpBoAUAAAAAoE4pLi6O8847Lxo2bJh4SN1ac/vtt8eyZcuSvmoAqkGgBQAAAACgznnwwQdjt912Szykbo1p0aJFjBkzJkpLS5O+ZgCqQaAFAAAAAKDOmTZtWhx++OGJx9StMccff3xMnTo16SsGoJoEWgAAAAAA6pyioqK45JJLonHjxokH1S05OTk5MXTo0FixYkXSVwxANQm0AAAAAADUSS+++GJ07tw58ai6JadLly7xxhtvRHl5edLXC0A1CbQAAAAAANRJK1asiPPOOy8KCgoSD6tbYrKzs+Omm26Kb775JumrBWAzCLQAAAAAANRZr7zyShxwwAGJx9UtMQcddFC88cYbUVpamvS1ArAZBFoAAAAAAOqsNWvWxDXXXBPNmzdPPLBuzmy//fYxfPjwWL58edJXCsBmEmgBAAAAAKjTPvroo/jRj34UOTk5iYfW6s5pp50W06dP9+1ZgDpAoAUAAAAAoE4rKSmJJ554Ivbdd9/EQ2t1pmPHjjF27NgoKipK+ioB2AIEWgAAAAAA6rzly5fHwIEDo2XLlokH13SmWbNmMWzYsFi6dGnSVwjAFiLQAgAAAABQL8ydOzfOPPPMKCgoSDy8bsrk5ubGgAEDYt68eZFKpZK+PgC2EIEWAAAAAIB6oby8PCZMmBDHHXdc5OXlJR5gK5vMzMw49dRT44MPPoiSkpKkrw6ALUigBQAAAACg3tiwYUO8/PLL0b1798jJyUk8xG5sjjnmmPjHP/7hu7MAdZBACwAAAABAvVJYWBjPPfdcHHbYYZGbm5t4jP3PJ2ePOeaYeOmll2Lt2rVJXxUAW4FACwAAAABAvVNYWBivvfZanHTSSbXmm7T5+flxxhlnxPjx48VZgDpMoAUAAACgQqWlpbFq1apYsGBBfPnll7F8+fLYsGFDpFKppFcD2CKKi4tjypQpcc0110Tbtm0jMzMzsTi7++67x4033hgfffRRrF+/PumrAWArEmgBAAAA+EEqlYrly5fHhAkT4k9/+lNcd911cf7558e5554bV1xxRdx5553x7LPPxty5c6OoqEisBbZ5qVQqFixYEKNHj46TTjopGjduXKNhtlGjRnHaaafF008/HV9//XWUlZUlfSUAbGUCLQAAAAAREbF+/fqYOnVqDB06NE4++eTo2LFj7LTTTtGsWbNo2rRptGjRItq2bRsHH3xwnHfeefHkk0/GwoULo7S0NOnVATbbunXrYvr06XHvvffG4YcfHtttt91Wf53xMcccEw8++GDMmDEjioqKkr4CAGqIQAsAAABAFBYWxhtvvBH9+/ePfffdNwoKCiInJyeysrIiMzPzh8nKyorc3Nxo3rx59OjRI4YNGxZz586NkpKSpI8AsEWsXLky3n///Rg2bFj06tUrGjVqtMWfmD322GPjnnvuiUmTJsXq1au9jQCgnhFoAQAAAOq59evXxzvvvBPnnXdetG3bNnJzc6v8DmNmZmbk5+dHp06dYvjw4TF//nxP0gJ1yvLly+PDDz+MJ554Iq666qro1atXNG/ePLKystKOsi1btoxjjjkmrrnmmhg1alRMnjw5Vq1aFeXl5UkfE4AECLQAAAAA9VgqlYo5c+bE9ddfH3vuuWfk5OSkFR3y8vKie/fuMWrUqFixYoWnwIA6Z/369bFo0aL48MMP4/nnn4/77rsvbrjhhujatWvk5uZu9PfxiCOOiKuvvjoeeOCBeP7552Py5MmxePHiKC4uTvpIACRMoAUAAACox7777rsYPXp09OjRI/Lz86v1us6CgoI455xzYvLkybFhw4akjwSw1ZSXl8d3330XS5YsifPPPz8KCgo2+tt48803x7x582Lt2rWelAXgfxFoAQAAAOqxzz77LK677rpo06ZNla81rux1x507d45Ro0bFqlWrkj4SQI246qqronHjxhv9bfzd734Xq1evTnpNAGohgRYAAACgnkqlUvHuu+9Gnz59Kn0KbFNmhx12iEGDBsVXX33lSTGgXrj66qujSZMmAi0AaRNoAQAAAOqpkpKSGDduXBx22GGVfkdxUyY3Nzf69+8fM2fOjNLS0qSPBrDVVRVof/vb33qrAAAVEmgBAAAA6ql169bFyJEjo2vXrpGTk7NZgTYzMzPOOuusmDJliu/QAvXCNddcU2mgHT58uEALQIUEWgAAAIB6qqioKJ588sno1q3bZgfajIyM6Nevn0AL1BvXXnttNG3aVKAFIG0CLQAAAEA9VVZWFi+99FL06NFjs19xnJOTExdccEF88sknXnEM1AtVBdphw4YJtABUSKAFAAAAqMcmTJgQp556ajRq1GizAm3Tpk1j0KBBsWDBgigvL0/6WABb3XXXXVdpoB06dGisXLky6TUBqIUEWgAAAIB67IsvvoiBAwdGmzZtNivQdurUKUaMGOFpMaDeuP7666NZs2YCLQBpE2gBAAAA6rHCwsJ49tln44gjjoj8/PxqxdmGDRvGueeeG1OnTvX9WaDeqCrQDhkyRKAFoEICLQAAAEA9Vl5eHl988UUMGjQo9tprr8jOzk4rzmZnZ0fPnj3j6aefjhUrVkQqlUr6SAA1YuDAgZUG2rvuuitWrFiR9JoA1EICLQAAAEA9V1xcHB988EFcdNFFseuuu25ypM3JyYnOnTvHvffeG19++WWUlpYmfRSAGnPDDTfEDjvsINACkDaBFgAAAIBYu3ZtTJgwIa6//vrYf//9o2HDhpXG2YKCgujVq1c8+OCDMW/ePK82BuqdqgLtnXfeKdACUCGBFgAAAIBIpVKxbt26mDNnTowYMSLOPvvs6Nq1a7Ru3ToKCgqiQYMGsf3220fr1q3jkEMOicsuuyxeeOGFWLRokTgL1Es33nhjpYH2jjvuiOXLlye9JgC1kEALAAAAQET8v0hbWloaK1asiOnTp8fzzz8fDz30UAwePDhuuummuO222+KPf/xjvPLKKzFnzpxYs2ZNlJWVJb02QCJuuummaN68uUALQNoEWgAAAAD+l+9D7bp162LFihXx9ddfx4IFC2Lx4sWxYsWKKCoqirKyskilUkmvCpCYqgLt4MGDBVoAKiTQAgAAALBRqVQqysvLfxhRFuD/ufnmmysNtLfffnssW7Ys6TUBqIUEWgAAAAAASNMtt9wSLVq0EGgBSJtACwAAAAAAaaoq0N52220CLQAVEmgBAAAAACBNt956a6WB9je/+U0sXbo06TUBqIUEWgAAAAAASNOgQYNixx13FGgBSJtACwAAAAAAaaoq0A4aNEigBaBCAi0AAAAAAKTpN7/5TaWB9tZbb41vv/026TUBqIUEWgAAAAAASNNtt90WLVu2FGgBSJtACwAAAAAAaaoq0N5yyy0CLQAVEmgBAAAAACBNt99+e6WB9uabb45///vfSa8JQC0k0AIAAAAAQJoGDx4crVq1EmgBSJtACwAAAAAAaaoq0N50000CLQAVEmgBAAAAACBNd9xxR6WB9sYbb4xvvvkm6TUBqIUEWgAAAAAASNOdd94ZO+20k0ALQNoEWgAAAAAASFNVgfaGG24QaAGokEALAAAAAABpuuuuuyoNtAMHDowlS5YkvSYAtZBACwAAAAAAaRoyZEi0bt1aoAUgbQItAAAAAACkqapAe/311wu0AFRIoAUAAAAAgDQNHTq00kB73XXXxddff530mgDUQgItAAAAAACkadiwYbHzzjsLtACkTaAFAAAAAIA0VRVor732WoEWgAoJtAAAAAAAkKbhw4dXGmivueaaWLx4cdJrAlALCbQAAAAAAJCm3/72t9GmTRuBFoC0CbQAAAAAAJCmqgLt1VdfLdACUCGBFgAAAAAA0vS73/2u0kB71VVXxaJFi5JeE4BaSKAFAAAAAIA03X333bHLLrsItACkTaAFAAAAAIA0VRVor7zySoEWgAoJtAAAAAAAkKaqAu0VV1wRCxcuTHpNAGohgRYAAAAAANJ0zz33CLQAVItACwAAAAAAabr33ntj11133WigvfzyywVaACok0AIAAAAAQJqqCrSXXXZZLFiwIOk1AaiFBFoAAAAAAEjTfffdJ9ACUC0CLQAAAAAApOn++++Ptm3bbjTQXnrppQItABUSaAEAAAAAIE1VBdpLLrkkvvrqq6TXBKAWEmgBAAAAACBNDzzwgEALQLUItAAAAAAAkKYHH3wwdtttt40G2osvvligBaBCAi0AAAAAAKSpqkB70UUXxZdffpn0mgDUQgItAAAAAACk6fe//71AC0C1CLQAAAAAAJCmP/zhD9GuXbuNBtoBAwYItABUSKAFAAAAAIA0VRVo+/fvH/Pnz096TQBqIYEWAAAAAADS9NBDDwmekVkUAAAgAElEQVS0AFSLQAsAAAAAAGn64x//GLvvvvtGA+1///d/C7QAVEigBQAAAACANFUVaC+88ML44osvkl4TgFpIoAUAAAAAgDT96U9/EmgBqBaBFgAAAAAA0vTwww/HHnvssdFAe8EFFwi0AFRIoAUAAAAAgDRVFWjPP//8+Pzzz5NeE4BaSKAFAAAAAIA0/fnPfxZoAagWgRYAAAAAANL0l7/8Jfbcc8+NBtrzzjtPoAWgQgItAAAAAACkqapAe+6558Znn32W9JoA1EICLQAAAAAApOmRRx4RaAGoFoEWAAAAAADS9Ne//jX22muvjQbac845R6AFoEICLQAAAAAApKmqQHv22WfHvHnzkl4TgFpIoAUAAAAAgDQ9+uijAi0A1SLQAgAAAABAmh577LFo3779RgPtr3/9a4EWgAoJtAAAAAAAkKaqAu2vfvWrmDt3btJrAlALCbQAAAAAAJCmxx9/XKAFoFoEWgAAAAAASNOIESNi77333mig/eUvfynQAlAhgRYAAAAAANJUVaA966yz4tNPP016TQBqIYEWAAAAgAqVlpbGihUrYv78+fH555/HsmXLYsOGDZFKpZJeDSBxTzzxhEALQLUItAAAAAD8IJVKxbJly+LNN9+M3/3ud9G/f/84/fTT47TTTotzzjknrr/++nj88cdj1qxZsW7dOrEWqLdGjhwZ++yzz0YDbb9+/QRaACok0AIAAAAQERFFRUUxadKkuPnmm6NXr16x2267RZMmTaJhw4bRsGHDKCgoiBYtWsS+++4bp59+evz1r3+NL7/8MkpLS5NeHaDGVRVozzzzzJgzZ07SawJQCwm0AAAAAMTatWvj1VdfjV/+8pfRtm3byMvLi8zMzP8THDIzMyMzMzO233772H///WPQoEExc+bM2LBhQ9JHAKhRo0aNEmgBqBaBFgAAAKCeW79+fbzxxhvxi1/8Ilq1ahXZ2dkbDQ7/c7Kzs2P33XeP2267LT777DNP0gL1yujRo2Pffffd6G/kL37xC4EWgAoJtAAAAAD1WCqVipkzZ8bll18eu+yyS2RlZW1SnP1+srKyokuXLvHoo4/GsmXLfJMWqDeqCrQ///nPY/bs2UmvCUAtJNACAAAA1GNr1qyJxx9/PA466KDIy8tLK85+P/n5+dGvX7+YNGlSFBcXJ30kgBrx5JNPCrQAVItACwAAAFCPzZ07N6688srYaaedqhVnv58OHTrEY489FitXrvQULVAvPPXUU9GhQ4eN/i727dtXoAWgQgItAAAAQD2VSqXirbfeit69e8d22223WYG2SZMmcfPNN8eXX34ZZWVlSR8NYKurKtCeccYZMWvWrKTXBKAWEmgBAAAA6qmSkpJ47rnnonv37pGbm7tZgTYnJycuvPDC+OSTT6KkpCTpowFsdU8//bRAC0C1CLQAAAAA9VRhYWE88cQTccABB0R2dvZmBdqMjIzo169fTJkyJTZs2JD00QC2umeeeSY6duy40d/E008/XaAFoEICLQAAAEA9VVRUFE8++WR069YtcnJytkignTp1qkAL1AtVBdqf/exnMXPmzKTXBKAWEmgBAAAA6qmysrJ4+eWXo2fPnpGXl7fFXnFcWlqa9NEAtrpnn31WoAWgWgRaAAAAgHrs/fffj5/97GfRuHHjzQq0O+ywQ9x+++2xaNGiKC8vT/pYAFvd3/72t9hvv/02+rt42mmnCbQAVEigBQAAAKjHFixYELfcckvssssumxVou3TpEqNHj47Vq1cnfSSAGlFVoD311FPjk08+SXpNAGohgRYAAACgHisqKornn38+jj766GjYsGG14ux2220X/fv3jxkzZkRJSUnSRwKoEWPGjBFoAagWgRYAAACgHkulUrFo0aIYMmRI7L333pGdnZ32t2ePPvroGDduXKxevTpSqVTSRwKoEWPHjo1OnToJtACkTaAFAAAAqOdKS0tjxowZcdVVV0W7du02OdLm5OREt27d4uGHH44lS5b49ixQr1QVaH/6058KtABUSKAFAAAAIIqLi2P69Olx2223Rbdu3ap83XGjRo3i+OOPj8ceeywWLVoUZWVlSR8BoEY999xzlQban/zkJ/Hxxx8nvSYAtZBACwAAAEBERJSUlMSCBQviueeei4suuigOOeSQaNOmTTRq1Cjy8/OjoKAgdt555zj88MPjhhtuiDfeeCOWL1/uyVmgXho3blzsv//+Ai0AaRNoAQAAAPhBKpWKdevWxeeffx5vvvlmjB49Ou6///4YOnRo3HvvvTF69Oh49913Y9GiRVFcXOybs0C9VVWg7dOnj0ALQIUEWgAAAAAqVFZWFkVFRbFq1apYvnx5rFy5MoqKijwxCxARzz//fKWB9pRTTokZM2YkvSYAtZBACwAAAAAAaXrhhReic+fOAi0AaRNoAQAAAAAgTVUF2pNPPlmgBaBCAi0AAAAAAKTpxRdfrDTQnnTSSTF9+vSk1wSgFhJoAQAAAAAgTS+99FJ06dJFoAUgbQItAAAAAACkqapA27t3b4EWgAoJtAAAAAAAkKaXX3650kB74oknxkcffZT0mgDUQgItAAAAAACk6ZVXXokDDjhAoAUgbQItAAAAAACkqapA++Mf/1igBaBCAi0AAAAAAKTp73//e6WB9oQTTohp06YlvSYAtZBACwAAAAAAaXr11Veja9euAi0AaRNoAQAAAAAgTVUF2v/6r/8SaAGokEALAAAAAABpeu211yoNtMcff3xMnTo16TUBqIUEWgAAAAAASNM//vGP6Natm0ALQNoEWgAAAAAASFNVgfZHP/qRQAtAhQRaAAAAAABI0+uvv15poD3uuONiypQpSa8JQC0k0AIAAAAAQJrGjx8fBx54oEALQNoEWgAAAAAASFNVgfbYY48VaAGokEALAAAAAABp+uc//1lpoD3mmGNi8uTJSa8JQC0k0AIAAAAAQJreeOONOOiggwRaANIm0AIAAAAAQJqqCrRHH320QAtAhQRaAAAAAABI07/+9a9KA22vXr3iww8/THpNAGohgRYAAAAAANL05ptvxsEHHyzQApA2gRYAAAAAANJUVaA96qijBFoAKiTQAgAAAABAmt56661KA+2RRx4ZH3zwQdJrAlALCbQAAAAAAJCmt99+Ow455BCBFoC0CbQAAAAAAJCmqgLtEUccIdACUCGBFgAAAAAA0vTOO+9UGmgPP/zwmDRpUtJrAlALCbQAAAAAAJCmd999Nw499FCBFoC0CbQAAAAAAJCmqgJtz549BVoAKiTQAgAAAABAmt57771KA22PHj3i/fffT3pNAGohgRYAAAAAANI0YcKE6N69u0ALQNoEWgAAAAAASFNVgfawww4TaAGokEALAAAAAABpmjhxYqWBtnv37jFx4sSk1wSgFhJoAQAAAAAgTe+//34cdthhAi0AaRNoAQAAAAAgTVUF2kMPPVSgBaBCAi0AAAAAAKRp0qRJlQbaQw45JCZMmJD0mgDUQgItAAAAAACk6YMPPogePXoItACkTaAFAAAAAIA0VRVoDz74YIEWgAoJtAAAAADw/7F3n1FRXnsXwJlCbwpIE0EFQY0Na1S89kKwJIq9e42KsV1LbIkau8YSe0+s0Vhixd67YA2oKAICUkXpdZjZ74dceeOVGQRmeAbYv7X2x/D85+BAFnvOOUREheTn56eyoG3cuDFu3rwp9JhERKSFWNASERERERERERERERWSv78/WrZsyYKWiIgKjQUtEREREREREREREVEhFVTQNmrUiAUtERHliwUtEREREREREREREVEh3b9/X2VB27BhQ9y4cUPoMYmISAuxoCUiIiIiIiIiIiIiKqQHDx7Aw8ODBS0RERUaC1oiIiIiIiIiIiIiokIqqKB1d3dnQUtERPliQUtEREREREREREREVEgPHz5UWdA2aNAA169fF3pMIiLSQixoiYiIiIiIiIiIiIgK6dGjR2jVqhULWiIiKjQWtEREREREREREREREhVRQQVu/fn0WtERElC8WtERERERERERERERE/yM3NxcJCQl49uwZrl69ioMHD2Ljxo1Yvnw55s2bh+HDh8PBwUFpQWthYYGePXtiypQp+PHHH7FkyRKsWbMGe/bswblz5/Do0SNERUUhKytL6JdKREQljAUtEREREREREREREZVrMpkM4eHhuHjxIrZu3YpZs2ZhyJAh6Nq1K9q2bYsmTZqgdu3aqFatGuzt7WFtbQ0zMzNIpVKlBa1IJIKhoSHMzc1hZWUFOzs7ODo6ws3NDQ0bNkSrVq3QpUsX9OnTB5MmTcLq1atx7NgxPH36FOnp6UIvCRERaRALWiIiIiIiIiIiIiIqV3JzcxEREYGzZ89ixYoVGDlyJDp37oxGjRrB2dkZlpaW0NXVVVq+qjNisRhmZmaoUqUK6tatizZt2qB///6YM2cODh48yMKWiKgMYkFLRERERERERERERGVeSkoK/P39sWXLFvj4+MDT0xPu7u5wcHCAgYEBRCJRiRSynxOpVIpKlSqhdu3aaNOmDQYNGoSlS5fi/PnziIuLg1wuF3o5iYioGFjQEhEREREREREREVGZlJqaitu3b2PFihUYOHAgWrZsierVq8PY2FirCtmCoqenB3t7ezRq1Ajdu3fHrFmzcPLkScTGxrKsJSIqhVjQEhEREREREREREVGZoVAoEBwcjO3bt2Po0KFo3rw5HBwcoKenJ3jRqq4jkS0tLVG/fn306NEDixcvhp+fH49BJiIqRVjQEhEREREREREREVGpl5OTA39/fyxYsABfffUVnJ2dYWBgIHihqslIJBLY2dmhRYsWmDBhAnx9ffH+/XuhvxVERFQAFrREREREREREREREVGplZGTg6tWrmDZtGlq3bg0bGxtIpVLBy9OSjrm5ORo0aIBhw4bhwIEDiIuLg0KhEPrbQ0RE+WBBS0RERERERERERESlTnp6Oi5evIiJEyfiyy+/hIWFBcRisVpLT5FIhAoVKqBmzZpo164dBg0ahP/85z/48ccfMWnSJDg7Oyv9b+3s7DB+/HgsX74c8+bNw/fff4+RI0fCy8sL7u7usLGxga6urtqLWiMjI9SqVQv9+/fH7t27ERsby6KWiEjLsKAlIiIiIiIiIiIiolIjKysL165dw6RJk9C0aVOYm5tDJBIVu9iUSqVwcnJC586d4ePjg0WLFuHXX3/F8ePHcfnyZfj7+yMoKAgRERGIi4vDnTt34OHhofTrubm5wdfXF4mJiYiPj0dUVBRevXqFx48f48aNGzh9+jT27duHVatWYerUqejVqxfq1KkDY2NjtRS1BgYGcHNzw4ABA7B//368fftW6G8dERH9FwtaIiIiIiIiIiIiItJ6crkcDx48wKxZs9CiRQtUqFChWMWsWCyGvb09OnTogMmTJ2P79u04d+4cHjx4gLCwMCQkJCA7O1vp7tPnz5+jbdu2Sr9+zZo1cfnyZZWvSSaTITk5GW/evEFAQACuXr2K/fv3Y968efD29oarq2ux79E1MDBArVq1MHz4cJw+fRrJycma+PYQEVEhsKAlIiIiIiIiIiIiIq0WERGBNWvWoGPHjrCysiryUcZ6enqoVasWBg0ahNWrV+PUqVO4f/8+IiMjkZmZWaijgAsqaN3c3AosaPMjk8kQHx+PwMBAXLp0CTt27MCECRPQvHlzmJmZFbmoNTY2RoMGDTBt2jQ8fPgQ2dnZhZ6NiIjUgwUtEREREREREREREWmlzMxM+Pr6YtCgQXBycirSna0ikQjVqlXDwIEDsXHjRly6dAlBQUFITk6GXC4v8mxBQUEqC1pXV1dcunRJLWsQHh6OO3fuYN++fZg4cSLc3d1haGhYpKLWysoK7du3x+bNmxETE1Ps+YiIqPBY0BIRERERERERERGR1gkLC8OiRYvQtGnTIt3Lqqenh6ZNm2Lu3Lk4deoUnj9/jtTU1ELtklXlxYsXaNeuncYL2n/Kzs5GREQEbty4gbVr16Jr166oWLFioddGIpHA2dkZo0aNwt27d7mbloiohLGgJSIiIiIiIiIiIiKtIZPJcOHCBQwePBj29vaQSCSFKh/19fXRsmVLLF26FNeuXUNcXBxyc3PVPmdBBW2NGjXUXtD+U3JyMh4/foxff/0VvXr1gqWlZaGLWnNzc7Rt2xY7d+5EQkKCxmYlIqKPsaAlIiIiIiIiIiIiIq2QkJCAjRs3olWrVjAxMSn0jtkWLVpg2bJluHnzJhISEop1hHFBXr58qbKgdXFxwcWLFzX2/A/S0tIQGBiI3377DT179oSFhUWh1k0qlcLNzQ3Tp0/H8+fPNbpmRET0Nxa0RERERERERERERCS4Z8+eYerUqXBxcSnUXbMSiQQNGzbEggULcP36dbx7965ESsbg4GC0b99e8IL2g/T0dAQEBGDbtm346quvYGZmVqii1traGt7e3rh48SIyMjJKbG4iovKIBS0RERERERERERERCUYul+PixYvo168frKysIBKJPrtUdHV1xfTp03Hx4kXEx8eX6O7PggpaZ2fnEi1oP0hNTcWjR4/wyy+/oGXLljA0NPzs9TQyMkKLFi2wc+dOvHv3rsRnJyIqL1jQEhEREREREREREZEgMjIysGfPHrRt27ZQRxpbW1tjxIgROHbsGKKioiCTyUp89levXqksaKtXr44LFy6U+FwfJCYm4vbt2/jxxx9Rs2ZNSKXSz96RXLNmTSxcuBARERGCzU9EVJaxoCUiIiIiIiIiIiKiEvfu3TusXr0a9evXh76+/meVh/r6+ujQoQO2b9+Oly9fIisrS7D5Q0JC0KFDB60taAFAoVAgOjoavr6+GDZsGKytrT+7BHdwcMD48ePx7Nkz3ktLRKRmLGiJiIiIiIiIiIiIqERFRUVh7ty5cHZ2/uydnS4uLpg9ezbu3LmDlJQUoV9CgQVttWrVBC9oP8jJycGLFy+wefNmtGjRAgYGBp+15paWlhg4cCD8/f0F2aVMRFRWsaAlIiIiIiIiIiIiohITGhqKqVOnwsHBAWKxuMCS0MDAAN27d8eBAwcQHR2N3NxcoV8CgL9fh6qCtmrVqjh//rzQY34kKSkJ169fx9ixY2Fra/tZJa2pqSl69OiBGzduIDs7W+iXQERUJrCgJSIiIiIiIiIiIqISERwcjAkTJsDGxgYikajAcrBKlSqYMWMG/P39kZ6eLvT4HwkLC0PHjh1LVUELAHK5HCEhIdi0aRMaN24MXV3dAr8PRkZG6NKlC65cucKSlohIDVjQEhEREREREREREZHGvXr1CuPGjYO1tXWB5axIJELz5s2xbds2REZGas2u2X8qqKB1cnLSyoL2g8TERJw/fx69evWCmZnZZ+1k7tSpE65evcqSloiomFjQEhEREREREREREZFGRURE4D//+c9nlbP6+vrw9vbG6dOnkZSUJPToSr1+/VplQevo6Ihz584JPaZKOTk5ePLkCSZPngw7O7vPKmm9vLxw69Yt3klLRFQMLGiJiIiIiIiIiIiISGNiY2Mxc+ZM2NnZFVjOmpqawsfHB35+fsjMzBR6dJXCw8PRqVOnUl3QAoBCoUBYWBiWL18OFxeXAr9HRkZG6NmzJ+7fvw+5XC70+EREpRILWiIiIiIiIiIiIiLSiKSkJCxatAiOjo4FFn8WFhaYNm0anj9/jpycHKFHL1BBBW2VKlVKRUH7QVxcHLZs2YIvvvgCYrFY5ffKxMQEQ4YMQWBgIBQKhdCjExGVOixoiYiIiIiIiIiIiEjtMjMzsW7dOri6ukIikags/CwtLTF79myEhIRo5X2z+YmIiFBZ0Do4OODs2bNCj1ko79+/x86dO1G3bt0CS9qKFStiwoQJCAkJEXpsIqJShwUtEREREREREREREalVbm4u9u7dC3d3d0ilUpVFn5mZGaZPn46QkJBSdWRuZGQkOnfuXKYKWgBITEzEjh07UKtWrQJ3PdvY2GDBggWIjo4WemwiolKFBS0RERERERERERERqdW5c+fQpk0b6Ovrqyz4jI2NMWHCBAQFBZWanbMfFFTQVq5cuVQWtADw7t07rFu3Di4uLiq/fzo6OqhWrRq2bt2KxMREoccmIio1WNASERERERERERERkdo8fvwY3t7eMDY2Vlns6evrY9SoUQgICIBMJhN67EJ78+aNyoLW3t4eZ86cEXrMIouLi8OyZcvg5OSk8vsoEonQoEEDHD9+HJmZmUKPTURUKrCgJSIiIiIiIiIiIiK1iI6Oxrhx42BhYaGy1JNKpRg4cCAePHiAnJwcoccukqioKHTp0qXMFrTA39/PH374Afb29gV+Pzt16oQ7d+6UqmOqiYiEwoKWiIiIiIiIiIiIiIotMzMTy5cvh6Ojo8q7S0UiEbp3744bN24gKytL6LGLrKCC1s7OrtQXtADw+vVrjBs3DlZWVipLWiMjI4wcORIvX74UemQiIq3HgpaIiIiIiIiIiIiIiu3QoUNwd3eHRCJRWeR5eHjA19cXGRkZQo9cLNHR0SoLWltbW5w+fVroMdXi2bNnGDBgAExNTVV+bytVqoTly5cjPj5e6JGJiLQaC1oiIiIiIiIiIiIiKpZHjx6hW7duMDAwUFng1apVC3v37kVKSorQIxdbeSpo5XI57t27h86dO0NfX7/A7/Gff/7J+2iJiFQoVkErk8kQGxuLv/76CwEBAYiLiyuVl7mrU3p6OkJCQvDw4UMEBwcjLS0NCoVC6LGIiIiIiIiIiIiINOLdu3eYNGlSgffO2tjYYNWqVXj79q3QI6tFTEwMPD09Vb7eslLQAkBOTg5OnTqFJk2aQCwWK33dEokEXl5eePjwIf82TkSkRLEK2qioKOzbtw/jxo3Dd999h99//x3R0dHl9hLwzMxM+Pn5YcGCBRg+fDjmzZuH27dvIz09XejRiIiIiIiIiIiIiNROoVBg+/btcHV1VXnvrIGBAaZMmYLXr1+XmdKuoILW2toavr6+Qo+pVmlpadi8eTNcXFxUlvEmJiaYPXs23rx5I/TIRERaqcgFbW5uLm7duoWhQ4fC0dERtra2GDFiBO7du1eqL3Yvjvj4eGzatAlNmjSBhYUF6tSpg/nz5yM0NLTcltZERERERERERERUdvn7+6Nz587Q09NTWdj17t0bDx48QG5urtAjq01sbGy5K2iBv/8O/v3338Pa2lrl97x69eo4ePBgqb9rmIhIE4pc0GZmZuLYsWNo164dDA0NIRKJ0LFjR5w9e7bc7hiNiorC0qVLUa1aNYhEIhgYGMDLywvnz58vt2tCREREREREREREZVNycjImT55c4NHGjRo1wsmTJ8vcnaRxcXH46quvlL7uSpUqlcmCFgCCgoLQq1cvGBoaKn39YrEY3bp1w+PHj4Uel4hI6xS5oE1LS8Mff/wBDw+PvIvf27Zti5MnTyI1NVWdM5YaiYmJ+PXXX+Hu7g6pVAqRSISaNWti1apViImJEXo8IiIiIiIiIiIiIrX5448/ULduXZVHG1eqVAlr167F+/fvhR5X7QoqaK2srHDq1Cmhx9QIuVyOs2fPokmTJiq//2ZmZli6dCni4+OFHpmISKsUuaBNTU3FgQMH0LJlS+jr60NHRwdt2rTBiRMnym1Bm5OTg2vXrsHb2xtmZmbQ0dFBxYoV8e9//xuPHj2CTCYTekQiIiIiIiIiIiKiYgsLC0OfPn1U7qCUSCQYM2YMXr16VWbunf2n+Pj4clvQAn9v4vr555/h6Oiocgd1/fr1cfHixTJ1vDURUXGptaBt3bp1uS5oAeD169f46aefULVqVYhEIkilUrRq1QqHDh1CcnKy0OMRERERERERERERFYtCocAvv/xSYDHXokULXLp0CTk5OUKPrBFv376Fl5eX0tdvaWlZpgtaAAgPD8egQYNgbGysdB309PQwadIkhIeHCz0uEZHWYEGrZmlpaThy5Ahat26dd/Szk5MT5s6di9evX5fJT4oRERERERERERFR+REQEIAuXbpAV1dXaSlnYWGBDRs2ICkpSehxNaaggtbCwgInT54UekyNUigUOH/+PBo3bqzyqOOqVavi6NGjyM7OFnpkIiKtUCYKWplMhuTkZERERCAwMBD379/H3bt3cfv2bdy9excPHz7EixcvEBsbi4yMDMjlco3NIpfL8eTJE/j4+MDa2ho6OjowMjJCr169cOPGDWRlZWns2URERERERERERESalJubi4ULF8LW1lbl7tkhQ4YgKCioTG9YSUhIKPcFLfB3VzB37lyV/ybEYjFGjhyJV69eCT0uEZFWKLUFrVwuR3JyMoKDg3Hp0iXs2LED8+bNw9ixYzFo0CD06dMH3t7e6Nu3L4YNG4bJkydjxYoVOHToEPz8/BAdHY2srCyN/A/C27dvsX79enzxxReQSCQQi8WoX78+tmzZwsvQiYiIiIiIiIiIqNR6/PgxOnToAIlEorSMc3V1xdGjR8v8ZpV3796ha9euStehYsWK5aKgBYBnz57B09MTUqlU6Xo4ODjg8OHD3EVLRIRSWNAqFAqkpKQgICAA+/fvx/Tp09GtWzfUr18fjo6OsLW1hZ2dHapUqQJHR0dUrlwZNjY2sLOzg7OzM1q0aIEhQ4bg559/xoULFxAREaH2XwjZ2dm4cOECvLy88s7et7a2xvjx4/H06VNehk5ERERERERERESljkKhwKJFi1TulJRIJJg+fTqioqKEHlfjCipoK1SogBMnTgg9ZomQyWTYvHkzqlevrnIX7ejRoxESEiL0uEREgitVBa1MJsObN29w/PhxTJo0CR4eHnBwcICpqSnMzMxQrVo1eHh4oE+fPhg9ejTGjh2LYcOGwdPTE3Xr1kWlSpVgbGwMCwsLuLm5oUePHvj5559x7949JCUlqe3oY4VCgZcvX2LatGmoXLkyRCIR9PX10alTJ/j6+iItLU0tzyEiIiIiIiIiIiIqKTEImSAAACAASURBVEFBQQXukmzUqBEuXrwImUwm9Lga9/79exa0//DmzRv06dMnry9QdhftyZMnuYmJiMq9UlPQZmVl4dmzZ1i/fj26deuGKlWqwMDAAPr6+nByckL37t3x008/5R1hHBQUhODgYAQEBODChQvYtGkTxowZgyZNmqBixYrQ1dWFqakp6tSpgzFjxuDEiROIjY1V2y+GpKQk7Nq1C40aNYKuri5EIhFcXV3x888/l4tPjxEREREREREREVHZsmHDBlStWlVp+SaVSjF//vxyc81bYmIiunXrpnQ9zM3Ny1VBq1AosHv3bri5uXGHNRFRAUpFQZuVlYUnT55g/vz5aNasGczNzSEWi2FoaAh3d3dMmzYNZ86cQVhYGJKTk5GTk5N3t6xcLkdGRgbi4+Px+PFjbNu2Dd7e3nBwcIBUKoWuri4qV66MXr16Ye/evYiMjFTLp7tkMhlu3bqFfv36oUKFCnm/kAcPHgw/Pz/k5OQU+xlEREREREREREREJeHt27fo16+fyt2RjRs3xpUrV8rN7siCClozMzMcP35c6DFLVExMDPr27avy30nDhg1x48YNoUclIhKU1he0OTk5CAwMxE8//QR3d3cYGRnlHRncqFEjLFmyBI8ePUJKSkqBRxTn5OQgJiYGp06dwvDhw1GlShVIJBKIxWJYWVnBy8sLe/bsQXR0tFqOO46IiMCiRYtQvXp1iMViSCQSNG3aFLt378a7d++K/fWJiIiIiIiIiIiISsLJkydRv359lfeLzpkzB7GxsUKPWmKSkpJY0P4PhUKB7du3w8XFRem6GBoaYu3atUhOThZ6XCIiwWh1QSuXy/H69WusWrUKTZo0yStnJRIJ3NzcMGfOHAQEBCAzMzNvx+znfM3ExEScPn0a/fv3R6VKlSASiSAWi2FpaYmePXvi+PHjeP/+/Wd/TWUyMjJw/PhxtG3bFgYGBtDR0YG9vT2+//57BAcHq+3OWyIiIiIiIiIiIiJNkclkmDx5MszNzZWWbm5ubjhz5ky52T0LAMnJyejevbvSNTE1NS13BS0AhIeHo2vXrpBIJErXplevXggMDBR6VCIiwWh1Qfv+/Xvs378fnTp1gpmZGUQiEXR0dFCpUiWMGDECN27cQHp6eqG/rkKhwNu3b7F79260bt0aRkZGeZ/ysrOzw6hRo3Dr1i1kZGQUa36FQoGAgAB89913sLGxyft0UPfu3XH58mVkZmYW6+sTERERERERERERadrTp0/Rvn17iMVipYWbj48PQkNDhR61RBVU0JqYmODYsWNCj1nicnNzsWTJEtjb2ytdG1tbWxw7dqxcFfpERP+ktQVtTk4O7ty5gxEjRsDW1jbvl79UKkXz5s2xe/duvH37tsi7XOVyOV68eIFZs2ahatWqH339WrVqYfHixQgLCyv2LteEhARs3rwZ9erVg1QqhUgkQp06dbBx40bEx8cX62sTERERERERERERadqWLVtQvXp1pWWbhYUF9u3bh6ysLKFHLVEpKSksaJXw9/dHy5YtVR6JPXv2bMTExAg9KhGRILS2oI2OjsaqVatQp04d6Orq5v3gtrS0xOjRo/Ho0SPk5OQU6xnp6ek4fvw4OnXqBGNj47xnGBkZwdPTEydPnkRKSkqxnpGTk4PLly+jR48eMDU1hY6ODqysrODj44PAwEB+QoiIiIiIiIiIiIi0Vnp6OoYPH553hVt+6dy5Mx4+fCj0qCUuNTUVPXr0ULouxsbG5bagTU9Ph4+PT97fxPNL69at4efnJ/SoVErJ5fJiX1NJJCStLGizs7Nx+fJl9O7dGxUqVPjoh3a9evWwadMmxMXFFfvNp1AoEBQUhKlTp8Le3j7vCGWRSARHR0fMmDEDQUFBxSpRFQoFXr16hZkzZ8LBwQEikQh6enpo3749Tp48qbbjoImIiIiIiIiIiIjU7XN2Qi5duhTv3r0TetQSV1BBa2RkhKNHjwo9pmB+//131KxZU+n6mJubY//+/cjOzhZ6VNJSqampePLkCY4fP45t27Zh2bJlmD59Or799lv07dsXffv2xciRIzF9+nQsW7YM27Ztw9GjR/H48WOkpKSwwCWtppUFbWxsLFatWoXatWtDKpXm/cDW09ND9+7dceXKFbXd35qYmIitW7eibt26H11arq+vj/bt2+PPP/9EcnJysZ6RmpqK/fv348svv4Senh5EIhFq1KiBpUuXIjIykj8kiIiIiIiIiIiISCutW7cOTk5OSks2Z2dnnDlzpthXxZVGaWlpLGhVCA8Ph6enp8q7i7///ntERUUJPSppkYSEBFy6dAmLFy9G//798a9//Qv16tWDs7Mz7O3tUbFiRRgYGEAsFkMkEsHAwAAVK1aEvb09nJ2dUbduXbRq1Qp9+/bFwoULceHCBbx9+7Zc/owi7aZ1Ba1CoYC/vz+GDRsGS0vLj35YW1lZYcKECXj+/LnajgaWyWQ4e/YsOnbsCENDw7xniUQiODk5Yc6cOQgLCytWiSqXy/HgwQOMGDEi7zWZmZlhwIABuHv3Lj8hRERERERERERERFonMzOzwOONBwwYgOfPnws9qiDS09Px9ddfK10bQ0PDcl3QymQyzJw585O/8/8zbdq04THHBAAICQnBxo0b0a9fPzRu3Bh2dnYfXX9Z2EilUtja2qJRo0bw9vbGunXrEBISwmsnSWtoXUGblpaG33//Hc2bN8/7uh9So0YNrFixAtHR0UX++vl5+PAhhg0bBgsLi08+4eTt7Y2bN28W+4L7mJgYrFq1CjVr1oREIoFYLEbjxo2xa9cuvH//Xk2vhIiIiIiIiIiIiEg9/vrrL7Ru3VplAbJ27VqkpKQIPaogCipoDQwM8Oeffwo9pqCOHz+OevXqKV0jCwsLHDlyhKVZORYZGYnNmzfj66+/RtWqVaGnp1fkUlbVzyonJyd07doVGzZsQEREBHfUkuC0rqANDQ3FDz/8ACcnp0+OPmjSpAn27t2LxMTEIn/9/ISEhGD69Omwt7f/5P6Exo0bY+fOncW+QyEzMxOnT59G586dYWRkBB0dHdjZ2WHq1Kl4+fIlfxgQERERERERERGRVtm1axdcXV2Vlh4uLi44d+5cub3CLSMjgwVtAaKiouDl5aX0mGORSISFCxfi7du3Qo9KJSw1NRVHjhzBgAEDUL16dY0Us/kVtdWqVUPv3r1x+PBhbp4jQWlVQZubm4vr16+jV69eMDMz+6Qsbd++PU6dOoW0tLSijp2vmJgYLF26NN+7FCpXroxZs2YV+5hjhUKBZ8+eYdKkSbC1tc37Be3l5YULFy4gIyNDja+IiIiIiIiIiIiIqHgmT54Mc3NzpWVHnz598PTpU6HHFExmZia++eYbpeujr69f7gva3NxcTJ06FRUqVFC6Tr179y7X/47Ko8DAQMyYMQP169f/6OrJkoqBgQHq1KmDadOmISAgADKZTOgloXJIqwra9PR07NmzB40bN/7kbHE9PT10794dV69eRWZmZlHHztf79++xYcMGuLq6QiQSffRcExMTDBw4EP7+/sjJySn2c3bs2IEGDRpAKpVCJBLhiy++wNq1axEbG6umV0NERERERERERERUPPHx8ejRo4fSnY86OjpYunRpud6BVlBBq6enhyNHjgg9puD27t2LmjVrKl2nmjVr4vLly0KPSSVAJpPh1KlT8Pb2RqVKlVT+fCmJWFlZoXv37jh9+rTaNwYSFUSrCtrY2FgsXboU1apV+6QoNTQ0RP/+/dVSlOb3Wnbv3g13d3dIpdJPtrx36NBBLW9QmUyGW7duoW/fvnmfPLOwsMCoUaPw5MkTnrNPREREREREREREWuHmzZto1qyZ0mLD0tISf/75Z7n+m2ZWVhYL2s8QGBio8i5jAwMD7NmzB9nZ2UKPShqUlZWF3bt3o1WrVnnXQGpD9PX10axZM/z+++9ISkoSepmoHNGqgjYoKAgTJ06EjY3NJ28SExMTjBw5Ek+fPlX7fa2ZmZk4cuTIR6/lQ0QiERo2bIidO3eq5dNgERERWLRoEapXrw6xWAxdXV14eHjg0KFDSE5OVsOrISIiIiIiIiIiIiqe7du3w9nZWWmp0aJFC9y5c0foMQWVnZ2Nnj17Kl0jXV1dFrT4+67eQYMGqbxjdO7cuYiPjxd6VNIQmUyG3bt3o0mTJp90MNoQiUSCBg0a4MCBA0hJSRF6uaic0KqC9s6dOx/tLv1nKlSogHHjxuHVq1dFHVmp7OxsnDp1Cu3bt8/3vHNnZ2csXboUUVFRxX5Weno6/vzzT/zrX//KWzdHR0fMmTOn2PfcEhEREREREREREanD999/r/Le0G+//VYjf6stTQoqaKVSKQ4fPiz0mFph/vz5sLa2VrpW/fv3x/Pnz4UekzTkxIkT8PDw0Mpy9kPEYjGaNWuGM2fOICsrS+glo3JAawpamUwGX19fpSWppaUlpkyZgtDQ0KKOrPLZFy5cgKenZ75b662srDB+/HgEBQUVe/euXC7H48eP8e2338LS0hI6OjowNjaGt7c3bty4wTc+ERERERERERERCSo9PR19+/aFRCJRWmasXLmy3B8HmpOTw4L2Mx08eBC1a9dWulZNmjTBrVu3hB6TNODevXvo1q2bVh1rrCy6urrw9PTEvXv31H6SK9H/0pqCNi0tDbt27ULDhg2hq6v7yRvD1tYWM2fOxOvXr4s6slIKhQLXrl1Djx49YGJi8smzDQwM4O3tDT8/P8hksmI/Ly4uDmvXrkWtWrUgFoshFovh7u6OHTt2ICEhQQ2viIiIiIiIiIiIiKhoXr58iXbt2iktMUxNTXHo0KFyff8s8PfGn169eildJ4lEwoL2vx49eoRWrVopXSsrKyucOnVK6DFJzSIiIjBq1CiVu/G1LUZGRhg9ejSCg4OFXj4q47SmoE1ISMCaNWvg5uYGsVj8yZvCwcEBc+fORURERFFHVun27dvw9vaGmZnZJ88Wi8Xo2LEjLl26hMzMzGI/Kzs7G+fOnYOnpyeMjY2ho6MDGxsbTJw4US27dImIiIiIiIiIiIiK6sKFC2jUqJHSAuOLL77A1atXhR5TcAUVtGKxGIcOHRJ6TK2QmJiIHj16QCQSKS2zd+zYwRMmy5DMzEwsXboUDg4OgpeuhY21tTVWrVrFDXWkUVpT0EZHR2PRokWoWrVqvj+knZycsGDBArx586aoI6t07949pfffikQieHh44NixY0W+X/efFAoFgoKCMGXKFNjb20MkEkFfXx8dO3aEr68v0tLS1PCKiIiIiIiIiIiIiArv119/RY0aNZSWF15eXnj8+LHQYwouNzeXBe1nksvl8PHxUXnM7fz58/H27VuhRyU1OXnyJJo0aaLyqHRtTr169XDmzBnk5OQIvZRURmlNQRseHo4ffvgBlStXzvfNUK1aNSxevBhRUVFFHVklPz8/9O/fP9+CVkdHB40bN8a+ffuQmJioluclJiZi586daNy4MXR1dSESiVCjRg0sW7YMb968gUKhUMtziIiIiIiIiIiIiApj4cKFsLGxUVpc+Pj4ICwsTOgxBSeXy+Ht7a10nUQiEQvaf1i8eDFsbW2Vrtfo0aMREhIi9JikBuHh4Rg4cGCpuHdWWaRSKYYMGYKgoCChl5PKKK0paF++fIkpU6Yo/QFdrVo1LFmyRGMFrb+/PwYOHKj0LPS6detiy5YtavsET25uLu7du/fRM83NzTF48GD4+/vzUxlEREREREREREQkiO+++y7varb8snDhQh79iYILWh0dHRw8eFDoMbXGrl274OrqqnStevTogSdPngg9JhWTQqHAmjVr4OjoKHjJWtxUqlQJW7duRUpKitDLSmWQ1hS0gYGB8PHxQaVKlfJ9I1SvXh1Lly5FdHR0UUdW6f79+xg8eDAqVqyY7/NdXV2xcuVKxMTEqO2ZUVFRWLp0KVxcXCAWiyGRSPDll19i//79SEpKUttziIiIiIiIiIiIiD6HTCZDv379VB5LyrtC/6ZQKAosaP/44w+elvhf58+fR8OGDZWuVfPmzXH79m2hx6RiCggIQJcuXaCrqyt4waqOdOrUCQ8ePBB6WakM0pqC9uHDhxgxYgQsLS3zfRM4Oztj2bJlGitoHzx4gCFDhigtaKtWrYqFCxeq9Q7cjIwMHD9+HO3atYOhoSF0dHRQpUoVzJ49G6GhofzFTURERERERERERCUqISEBXl5eSssKY2Nj/Pnnn/zb5X/17t2bBe1nevz4MVq1aqV0rWrUqIFLly4JPSYVg0KhwJIlS2BnZyd4saqumJqaYv369UhOThZ6eamM0ZqC9v79+yoLUhcXF/z8889q3cH6Tw8fPsTQoUOVPr9KlSqYO3cuIiIi1PZMuVyOgIAAjB07FtbW1tDR0YGRkRG++eYbXL9+nZ9CIyIiIiIiIiIiohL18uVLtG/fXmlZUaVKFZw7d07oMbVGnz59IBKJlK7XgQMHWND+V2RkJDp37qx0raysrHDq1Cmhx6RiCA4OhpeXF6RSqeDFqjrTtWtXPH78WOjlpTJGawpaPz8/lXfA1qhRAytWrNBoQTts2DBYWFjk+/zKlSvjhx9+QHh4uFqfm5CQgE2bNqFOnTqQSCQQi8WoX78+tm7dqrb7bomIiIiIiIiIiIg+h7+/P1q2bKm0qKhbty6uXbsm9Jhao6CCdv/+/ZDL5UKPqRXS0tLQo0cPpWulp6eHw4cPs9AuxbZv3w5nZ2fBC1V1x8LCAvv370d2drbQS0xliNYUtHfu3EG/fv1gbm6e7xtAE3fA/lNBBa2dnR1mzpyJ169fq/W5OTk5uHr1Kr755huYmppCR0cH1tbWGD9+PJ49e4bc3Fy1Po+IiIiIiIiIiIhImcuXL6Nx48ZKiwoPDw/cvXtX6DG1Rt++fVnQfia5XI7+/furvN94165dyMnJEXpUKoKMjAyMGDEi7zrHshSRSIT//Oc/aj1hlUgrClqFQoFbt26hd+/eSgtaNzc3rFq1CrGxsUUdWaWCClpbW1tMnz4dYWFhan92aGgofvzxRzg6OkIkEkFPTw/t27fHyZMni1R2Cy0nJwcJCQmIiYlhGIZhGIZhGIZhGIZhGKYUZc+ePfjiiy+UFhVt27bF+fPnBZ9TW9KjRw+VBe3GjRsRFRUl+JzakgEDBuT1Cfll2bJlCA0NFXxOpvC5fPkymjdvLniZqqk0a9YMvr6+gq8zo11JTU0t8odwtKagvX79Onr16gUzMzOlBe3q1asFK2htbGzw/fffa6Sg/bCWLVq0yFtLZ2dnLF68GJGRkaXuSIegoCBMnjwZnp6eDMMwDMMwDMMwDMMwDMOUojRs2DDvpL/8Ym1tjZYtWwo+p7bEzs5OZalTv359dOnSRfA5tSWOjo4qd9DWrl0bnTp1EnxOpvBp1qyZ0g14ZSEmJiZo2rSp4OvMaFd27dqF9+/fF6lL06qCtmfPnioL2l9++UVjBe2DBw8wdOhQVKxYscQLWrlcjgcPHnxUEJuZmWHAgAG4d+9eqTvX/N69e2jRooXgPzAZhmEYhmEYhmEYhmEYhmEYhmEYRhOZPXs2YmKKdjWr1hS0N27cgLe3t2AF7f379zFkyBBBCloAiImJwcqVK+Hq6gqxWAyJRIKmTZti7969SExM1MgzNYUFLcMwDMMwDMMwDMMwDMMwDMMwDFOWUyYK2tu3b6Nv374q76DV5BHH9+/fx+DBg5UWtLa2tpgxYwZev36tkednZmbi7Nmz6NKlC4yNjaGjo4PKlStj+vTpePXqVak65pgFLcMwDMMwDMMwDMMwDMMwDMMwDFOWU+oLWgC4e/cu+vfvjwoVKuT7Il1dXbFq1SqNFbT+/v4YOHCg0ufb29tj1qxZCA8P18jzFQoFXrx4gWnTpsHe3h4ikQgGBgbw8vLCpUuXkJmZqZHnagILWoZhGIZhGIZhGIZhGIZhGIZhGKYsp0wUtH5+fhg0aJDSHaw1atTAihUrivxCP+f5AwYMUFrQOjg44Mcff0RERIRGng8AiYmJ2LlzJxo2bAipVAqRSIRatWphzZo1GiumNYEFLcMwDMMwDMMwDMMwDMMwDMMwDFOWUyYK2vv372Po0KGwsLDI90U6Oztj2bJliI6OLurIKvn5+aF///5Kj1h2dHTEvHnzEBkZqZHnA4BMJsOtW7fQu3fvvLt4LSwsMGrUKPz111/Izc3V2LPViQUtwzAMwzAMwzAMwzAMwzAMwzAMU5ZTJgraJ0+e4Ntvv4WVlVW+L7JatWpYvHgxoqKiijqySvfu3UO/fv2UFrTVq1fHkiVLNPb8D0JCQjBjxgzY29tDR0cHenp68PT0LFXHHD98+BBdu3aFjY0NwzAMwzAMwzAMwzAMwzClKBUqVIBUKlX6x2gDAwNYWloKPqe2xNDQUOUf783NzQWfUZtiZGQEkUikdL1MTU1hbW0t+JxM4WJlZQU9PT3ByzJNR09PDxYWFoKvN6M9WbJkCeLj44vUpWlNQfv8+XNMnDgRNjY2+f7Dd3JywsKFC/HmzZuijqzS3bt30bdvX6UFbc2aNbFmzRrExcVp5PkfKCtoL1++XGoK2sTERNy+fRunT59mGIZhGIZhGIZhGIZhGKYUZe7cuahWrZrSgqJx48ZYv3694HNqS9q3bw+JRKJ0vSZPnowTJ04IPqe2xNPTU2WR99133+Ho0aOCz8kULlu2bEG9evUEL1A1nXr16uGXX34RfL0Z7cmLFy+QlZVVpC5Nawra0NDQj4rJ/02VKlXw008/aeyI4bt376JPnz55Rwv/b+rXr4/t27cjISFBI88H/j7i+ObNmx8dcWxpaYnRo0eXqiOOiYiIiIiIiIiIqHQ6f/48GjZsqLSgaNu2Lfz9/YUeU2sMGTIEurq6Stfrt99+Q3Z2ttBjao3Bgwer3KG9Y8cOrlcpFBwcjPbt2wteoGo6HTt2xIMHD4RebiojtKagffPmDebPnw9HR8d8/+Hb2dlh9uzZCA8PL+rIKt26dQu9evWCqalpvs9v2rQpDhw4gKSkJI08H/h75+lvv/0Gd3d3SKVSiEQi1K5dG2vXrkVsbCwUCoXGnk1ERERERERERER0+/ZtfPnll0oLikaNGuHmzZtCj6k1hg4dyoL2M2VnZ6NXr15KjziWSCQ4cOAA5HK50KNSIcXExMDT01PwAlXT+eabbxAQECD0clMZoTUFbXx8PFasWAEXFxeIxeJP/uFXqlQJ06ZNQ1hYWFFHVkoul+Pq1avo1q0bTExM8n3j/etf/8KpU6eQnp6u9ucDgEKhwIsXLzBlyhTY29tDJBLB0NAQ3bp1K1XHGxMREREREREREVHpFRgYiDZt2igtKJydnXHx4kWhx9Qaw4YNU3lk76+//sqC9r/i4+Px1VdfKV0rU1NTHD9+XOgxqQiysrLQu3fvfLudspRvv/0WISEhQi83lRFaU9AmJSVhy5YtqFOnTr5n9leoUAETJkzQyD9+mUyGc+fOoXPnzjAyMvrk2RKJBJ6enrh27ZrGfplmZmbizJkzH83g4OCAmTNnIiQkhLtniYiIiIiIiIiISOOioqLQpUsXpQVFhQoVcPLkSaHH1BoFFbQ7duwo8v2EZc3z58/Rtm1bpWvl6OiIc+fOCT0mFdH48eOVboArK/npp5/w9u1boZeaygitKWgzMzPxxx9/oFmzZvn+QjM1NcWYMWPw4sULtZeVWVlZOHHiBNq0aQMDA4NPnm1iYoLBgwfj8ePHGrsHNjo6GitWrECNGjUgFoshlUrx5ZdfYt++fUhMTNTIM4mIiIiIiIiIiIj+KTMzEz179lR5DO3evXshk8mEHlUrDB8+nAXtZ7p+/TqaNm2qdK3c3d1x48YNocekIlqzZo3SKyzLQvT19bF7927uiCe10ZqCVi6X4/z580p3sRobG2PEiBEICAhQ+xn0GRkZOHjwIL788st8f5na29tjxowZGtvJmpubC39/fwwZMgQVK1aEjo4OzM3NMXjwYPj5+SEnJ0ftzyQiIiIiIiIiIiL6XwqFAv/+97/z/uabX1atWoXk5GShR9UKI0aMULlW27dvZ0H7X4cOHcIXX3yhdK06deqEBw8eCD0mFdHFixfRqFEjwYtUTcXNzQ2XLl0SepmpDNGaghYA/P39MXjw4LyS8p8xNDTEgAEDcP/+fbUXlikpKdi5cyfq16+f7/HKNWvWxJo1axAbG6vW5/7z+b///vtHBbGLiwuWLVuGN2/e8HhjIiIiIiIiIiIiKjGzZs2CpaWl0qJi6tSpePPmjdBjaoWCCtpt27YhMzNT6DG1QkE7LIcMGYIXL14IPSYVUXx8PL7++ut8O5aykAEDBuD58+dCLzOVIVpV0IaGhmLGjBmwt7f/5B+/np4evv76a1y/fl3tnzh69+4d1q1bhxo1anxydIdIJEKzZs2wf/9+JCUlqfW5H4SGhmL27NmoUqUKRCIR9PT00LFjR/j6+iItLU0jzyQiIiIiIiIiIiLKz/r16+Hk5KS0qOjbty+ePn0q9JhaoaDdxixo/9/UqVNhbm6udK2mT5+O6OhoocekIpLL5Zg/fz5sbGwEL1PVHV1dXaxbtw4pKSlCLzOVIVpV0CYmJmLDhg2oVavWJ5+ykEgk6NixI86cOaP20jIqKgoLFy7M99M7enp68PLywqVLl5CRkaHW5wJATk4Orly5gu7du+ddoG1ra4tJkybh+fPnGrvzloiIiIiIiIiIiCg/x44dQ926dZWWFc2aNcPt27eFHlMrjBw5EgYGBkrXauvWrSxo8ffdxv369YNUKlW6VuvWreOGpVLu5s2baNasmeCFqrrj7u6Oq1ev8rRTUiutKmizs7Nx/PhxtG3bFoaGhh+9AUQiEZo3b44//vhD7TtZg4ODMXXqVNjZ2X3yxrO0tISPjw8CAwM1Upa+ffsWGzZsQO3atSGRSCAWi9GwYUP8+uuvSEhIUPvziIiIiIiIwP4SCAAAIABJREFUiIiIiFR5+PAhWrVqpbSssLa2hq+vr9BjaoWCCtotW7ZoZONPafPq1St06NBB6TqZmJjg8OHDkMvlQo9KxZCamorvvvsOZmZmgpeq6opIJMLMmTO5u5vUTqsKWoVCgQcPHmD48OH53nFQr149bNmyBW/fvi3q2Pl69OgRhg8fDgsLi0+eWbt2baxdu1Yj98/K5XI8efIEo0ePhpWVFXR0dGBsbAxvb2/cvHmTl8cTERERERERERFRiXv37h26dev2yXVwHyKVSrF161YWjwC+/fZbFrSf4ezZs2jYsKHSdapZsyYuX74s9JikBmfPnoW7u7vgxaq6Urt2bZw5cwYymUzopaUyRqsKWgCIiYnB8uXL4erq+skxx05OTpg/fz7Cw8PVtpVcLpfjypUr8PLygrGx8UfP09PTg6enJ86dO4f09HS1PO+f0tPTcfToUbRu3Trvl7ijoyPmzJmDsLAwbpcnIiIiIiIiIiKiEieXy+Hj4/PJ30v/mWnTpuHNmzdCjyq4UaNGfXIa5D+zefNmFrQA1qxZk+8Vgx/i5eWFx48fCz0mqUFycjImTpyIihUrCl6uFjdSqRSzZ8/m7lnSCK0raLOzs+Hr64vOnTt/8j8AZmZmGDFiBB49eqS2TytkZGTgwIEDaNq0KXR1dT96nrW1NSZOnKixu2AjIyOxaNEiVK9eHWKxGFKpFC1btsShQ4eQnJys9ucRERERERERERERfY6VK1fCwcGBhVoBCipoN23apJHNP6XJh8LfyMhI6TpNmjQJERERQo9KanLnzh14eHhALBYLXrIWJx4eHrh27ZpG+iEirStogb/vhJ0xYwaqVKny0RtYIpGgffv2OHXqlNouC4+NjcXPP/8MFxeXT57l7u6OrVu3Ij4+Xi3P+qfc3Fzcvn0bffr0gbm5OXR0dFChQgW1F9BEREREREREREREheXr64sGDRooLS6cnJxw7tw5occU3OjRo1nQFiAyMhKenp5Kj8wWi8VcpzImMzMTq1evhpOTk+Ala1FjZWWFDRs2ICkpSejlpDJKKwva1NRU/PHHH2jduvUnv9zc3NywatUqREVFFfsIYLlcjsePH2PUqFGoVKnSR8+pWLEihg4dijt37mjkLtj3799jx44daNCgAaRSKUQiEdzc3LBixQq1vDYiIiIiIiIiIiKiogoNDUWHDh2Ulhd6enrYvHmz2jbSlFZjxoxRuTN048aN5b54PHPmjMo7Se3t7eHr68u/iZcxkZGRGD58OExNTQUvWwsbiUSC0aNHIzg4mP8uSWO0sqCVy+V49uwZpkyZ8skuWnNzcwwbNgx+fn7Izs4u1nM+FMEeHh4fXeQulUrRqFEjbNu2DXFxcWp/AyoUCjx79gwTJ06Era0tRCIRDAwM0KVLF5w9e7bc/8ImIiIiIiIiIiIiYWVnZ+Pf//63yt2hPj4+CAsLE3pUQRVU0G7YsKHcl9iLFy+GnZ2d0jVq37497t+/L/SYpGYKhQK3bt1CmzZtIJVKBS9dC5N27drh6tWryMnJEXoZqQzTyoIWANLS0nDixAl4eXnBzMzso08uNG7cGNu3by9WeZqbm4tnz55h6tSpcHBwyDteQSQSwdbWFmPHjsXDhw+LXQLnJysrC6dPn0anTp3yfnnb2dlh6tSpePnyJeRyudqfSURERERERERERFQYq1evRpUqVZSWGE2bNsWtW7eEHlNQBd2tWt4L2pSUFPTv3x96enpK12jy5MmIjIwUelTSgKysLOzfvx916tRResS1tsXNzQ379u1TS89FpIrWFrQKhQKRkZFYuXIl6tev/9EP8IoVK2Lw4MG4fv16kXebJiQkYNeuXfDw8PjoU2AmJibw9PTEkSNHkJiYqJHt67GxsVi1ahXc3NwgFovzSuddu3bh/fv3an8eERERERERERERUWFduXIFTZo0UVpkmJiYYM+ePRq5Iq60GDt2LIyNjZWu0fr168t1QXv79m00b95c6foYGBjgt99+Q2ZmptCjkoYkJiZixYoVqFq1quDla0GxtbXFypUrER8fL/SyUTmgtQUtAOTk5ODhw4eYPHkyqlevnrcNXiwWo0aNGvjhhx8QGBhY6F2uqampuHjxIgYNGoRKlSrlfXJDX18fTZs2xfr16xEREYHc3Fy1vI5/ksvlePDgAYYPHw4LCwvo6OjA1NQU/fr1w507dzSyY5eIiIiIiIiIiIiosBISEtCzZ09IJBKlhcakSZMQEREh9KiCKaigXbduXbneibdy5Uo4ODgoXZ86dergypUrQo9JGhYdHY2ZM2fC1tZW8BJWWSpUqIDZs2cjPDyc985SidDqghYA0tPTcf36dYwZMwZVq1bNK2n19fXRsGFDLFmyBAEBAcjIyCjwTSOXy5GUlIQrV65gzJgxcHJyyvt6BgYGaNCgARYuXIigoCCNnS2empqKgwcPokWLFnm7gqtVq4YFCxbwjU9ERERERERERERaQy6XY86cOahUqZLSUqNJkybl+pjj7777jgWtEomJiRgwYIDK442HDx+O4OBgoUelEhAaGorp06ervI9YqFhaWmL69OkIDg7WyMY9ovxofUEL/H1O/ZUrV+Dj4wNnZ2fo6+tDJBLB0NAQDRo0wKxZs3Dt2jXExcUhOzv7k5JTLpcjPT0dr1+/xpEjRzBs2LC8clYkEsHY2BhNmjTB4sWLERAQoNEjOcLCwjB37lw4OTlBJBJBV1cXbdq0wfHjx8vtL2oiIiIiIiIiIiLSTr6+vmjQoIHSYsPY2Bjbt28v8lV0pd24ceNgYmKidH3Wrl1bbv/ue/nyZZVHZOvq6mLjxo3l+gjo8ub169dYvnw5XF1dIRaLBS9mdXR04OLigiVLliA0NJTlLJWoUlHQKhQKpKam4ubNm/j+++/RuHFjVKhQAWKxGPr6+nB2dsaAAQOwadMm3LhxAy9fvkRkZCTevHmD8PBwBAYG4vTp01iwYAE6duwIGxsbSKVSSKVSWFtbo0OHDlizZg2CgoI0Ws7m5OTg2rVr6NWrF8zMzKCjowMrKyuMHTsWgYGBfPMTERERERERERGRVomLi8PXX3+t8pjj8rwLsqCCds2aNUhJSRF6zBKnUCgK3H1du3ZtXLp0iadKljNxcXE4ePAgunTpovK9o+no6emhS5cu2LdvH2JjYyGXy4VeGipnSkVB+0F6ejqePn2KzZs3o3fv3nB1dYWZmRn09fVRsWJF1KlTB927d8f48eMxZ84czJ8/HzNnzsSIESPQtm1bVKtWDSYmJtDX14eFhQUaNGiA0aNH4/DhwwgPD9fYscYfJCQkYPPmzahbty4kEgnEYjHq1auHzZs389JpIiIiIiIiIiIi0jpyuRzz58+HjY2N0qKjevXqOHPmTLksOMaPH6+yZPrll1/KZUEbGhoKLy8vlcX+yJEj8erVK6FHJQGkp6fj/v37mDdvHmrVqpV3FWVJpVatWvjxxx9x9+5d7uAmwZSqghYAZDIZ4uLicOPGDaxYsQJ9+/ZFo0aN4OjoCGtra9jY2KBy5cpwcnJC1apVUaVKFdjY2MDCwgLW1taoXr06WrRogZEjR2Lbtm149OgRkpKSNP4/DwqFAgEBARg7diysra2ho6MDIyMjfP3117h69SoyMzM1+nwiIiIiIiIiIiKiorhy5YrKo2qlUinmz59fLjehTJgwAaampixo/8fOnTvh6uqqdF2MjY2xY8cOZGRkCD0qCUShUCAmJgZnzpzBuHHj4OTkpPFjjx0dHeHj44OTJ08iJiaGp5qSoEpdQftBVlYWoqOj4efnh/3792PRokXw8fFBr1690LZtWzRr1gxNmzZF8+bN0bZtW3zzzTcYN24cVqxYgePHj+Ovv/5CQkKCxnfNfpCRkYETJ06gXbt2MDQ0hI6ODhwcHDBr1iyEhITwGAciIiIiIiIiIiLSSklJSRg8eDAMDAyUFh+tWrXCvXv3hB61xBVU0K5evRrJyclCj1mikpOTMWzYsLy/g+eXFi1a4Pbt20KPSlpAJpMhLCwMR48exdixY+Hi4qLWHbUikQjOzs4YM2YMDh8+jNDQUGRnZwv9solKb0H7gUwmQ3JyMqKiovDy5Us8evQI165dw6lTp3DixAmcOXMG165dw8OHDxEcHIzY/2PvzuNsrv///885s5kVY4aMdQjZl/pYsiUplDWVyBahRUV2MtayJZKttJhQCG/xtkRhqGQrhca+zoIxi9nnzMz998fnk8v3/f415xzMeJ1z5na9XF5/OvN4Lcbl4naez1dcnFJTU+/7NyOuXr2qmTNn6sEHH5TZbJa7u7uaNm2q1atXKykp6b7OAgAAAAAAAAB3YtmyZapSpUq+EcTf319LliwpcqtF33rrLauBdt68eUUu0O7YsUONGjWyGs0mTpyouLg4o0eFA8nOztaFCxf0/fffa968eerTp49q165tNfTnd3h7e6tWrVrq3bu35s6dq23btun8+fPKzMw0+jSB25w+0P63vLw8WSwWZWRkKD09XZmZmbJYLIauUM3JydGBAwfUu3dvlShRQm5ubipZsqQGDBigI0eO3LdVvAAAAAAAAABwN86cOaN27drJZDLlG0U6d+6sY8eOGT3qffX2228rMDCQQPt/MjIy9NZbb6l48eL5XpNKlSrpu+++k8ViMXpcOKC8vDwlJSXp1KlT2rNnjyIiIvTee++pT58+Klu2bL7PVXBwsHr16qUZM2YoIiJCP/74o6Kiou7LKy6Bu+FygdYRJSUlacWKFWrUqJE8PT1lMplUs2ZNzZ8/X7GxsWxvDAAAAAAAAMChZWdna+LEiQoJCck3kAQFBemzzz5Tamqq0ePeN8OHD7caaD/44IMitYPi7t271bRpU6shv0+fPoqKijJ6VDiJrKws3bx5U9u2bdMjjzyS73NVq1Ytbdy4UfHx8WxhDKdAoC1keXl5OnXqlN55553b3+7w9vZW+/bttWPHDqWlpRk9IgAAAAAAAADYtG/fPjVp0sTq1qJFbRWtrUA7d+7cIhNo09LS9Pbbb9/eRfKfjuLFi+uLL77g/8Vxx44cOaIWLVrk+2w1aNBAkZGRRo8J2I1AW8gyMzO1Y8cOdejQQX5+fnJzc1OZMmX09ttvKyoqiqX1AAAAAAAAAJxCSkqKXn/9datBskSJElq0aFGRiZIjRowg0P6fv1c4Wls927FjRx09etToUeGEjh49SqCFSyHQFrJr165pwYIFqlmzptzd3WU2m9WwYUN99tlnio+PN3o8AAAAAAAAALDb1q1b1bBhQ6uraFu3bq0DBw4UiVe7vfPOO1bftzpnzhwlJiYaPWahi4+P16BBgxQQEJDvtfDz89PHH39cpN7Ji4Lz22+/qWXLlvk+X/Xr1yfQwqkQaAtRXl6efvvtNw0aNEjBwcG3/xHq0aOH9u/fr8zMTKNHBAAAAAAAAAC7JSUlaejQoVZXjfr6+io8PFyxsbFGj1vobAXa2bNnF4lA++WXX6pGjRpWw/2TTz6pQ4cOFYlwj4JnK9DWq1dPe/fuNXpMwG4E2kKUmpqqdevW/cc1qlixoiZNmqQLFy7wDxEAAAAAAAAAp7Njxw41atTIaox76KGHtHnzZmVlZRk9bqEaOXJkkQ+0J06cUOfOnW//H/g/HYGBgVq0aBGrZ3HXfv/9dwItXAqBthCdP39eEydOVMWKFWUymeTp6amWLVtq3bp1/EMEAAAAAAAAwCndunVLI0aMUFBQUL6xxMPDQy+++KJOnjxp9LiFatSoUSpRokS+12HWrFkuHWjT0tL07rvvqnTp0laDfdeuXXXs2DEWLeGuHTt2TK1atcr3Gatbty6BFk6FQFtIsrOztXv3bnXt2vX2vvtBQUEaPHiwjh07JovFYvSIAAAAAAAAAHBXDhw4oJYtW8psNucbTIKCgjR37lzduHHD6HELja1AO3PmTCUkJBg9ZqFZv369GjZsaPU5KFu2rCIiIpSWlmb0uHBitgJtnTp1tGfPHqPHBOxGoC0kN2/e1LJly1SvXj15eHjIZDKpdu3aWrhwoa5du2b0eAAAAAAAAABw1zIyMjRr1iyVL1/e6srJunXrasuWLS671fHo0aOLbKA9ceKEunfvLh8fn3zP32QyaciQITp37pzR48LJ/fHHHwRauBQCbSHIy8vTiRMnNGzYMJUpU0Zubm7y8fHRM888o127dik9Pd3oEQEAAAAAAADgnpw7d07PPvus1XePenh4qFu3bvr9999dcnvbMWPGqGTJkvme//vvv++SgTYxMVFjxoxRSEiI1UDfoEEDbdu2zWUDPe6fP//8U61bt873WatduzaBFk6FQFsIMjMz9e9//1tPPPHE7W8PhYaGatSoUTpz5oxyc3ONHhEAAAAAAAAA7klubq7Wr1+vunXrWo10gYGBGjt2rK5cuWL0yAXOVqB97733dPPmTaPHLFA5OTn69NNPVaNGDatbGwcEBGj27NmKj483emS4AFuBtlatWtq9e7fRYwJ2I9AWgtjYWH3wwQeqXr26zGazzGaz/ud//kcREREu+W0pAAAAAAAAAEVTYmKixo0bp9KlS1uNtBUrVtQnn3yixMREo0cuUGPHji1ygfb7779Xq1at5OXlZfWe9+zZU3/++ScLllAgjh8/TqCFSyHQFrCcnBwdPnxYAwYMUKlSpW5/U6h37946ePCgsrOzjR4RAAAAAAAAAArMyZMn1aVLF6tbHZtMJjVq1EhbtmxRZmam0SMXmHHjxikoKCjf854xY4ZLBdo///xTzz//vPz8/KzG2Xr16mnTpk3KyMgwemS4iBMnTuixxx7L95mrWbMmgRZOhUBbwG7duqVVq1apSZMm8vLykslkUrVq1TRr1ixdvXrVJd+zAAAAAAAAAKDoysnJ0aZNm9SgQQOZTCar76Nt3769Dhw4oJycHKPHLhC2Au306dNdZovf6Ohovfnmm7cXJuV3lCxZUnPmzNGNGzeMHhkuxFagfeihh/Tjjz8aPSZgNwJtATtz5ozGjBmjcuXKyWQyycvLS+3atdOWLVuUmppq9HgAAAAAAAAAUOCSk5P1/vvvq3z58lbjna+vr/r06aMTJ064xGKW8ePHF4lAm5ycrOnTp6t8+fJWI7y7u7teeeUVnTp1yiXuLxzHyZMnCbRwKQUaaB977LEiHWizsrK0c+dOPf3007e3eAgJCdEbb7yhkydPusy3wgAAAAAAAADgv126dEkDBw5U8eLFba6wHD58uM6fP2/0yPdswoQJVleUTps2zekDbUZGhhYtWqQaNWrI3d3d6r1t27at9u7dq6ysLKPHhov566+/1KZNm3yfvRo1ahBo4VTuKdCuWbNGLVq0ULFixeTm5qY2bdpo8+bNRTbQxsfHa8mSJapdu7bc3d1lMplUr149LV26lO0cAAAAAAAAALi0vLw8HTx4UE899ZS8vLyshrwHHnhAU6dOVXR0tNFj3xNbgXbq1KlO/X/DFotFX331lRo2bChPT0+r9/Shhx7S6tWri2wfQOGyFWirV6+uH374wegxAbvddaDNyMjQxo0b1aZNG/n4+MhkMqldu3bavn270tLSCnJGp3H16lVNnz5dlSpVkpubm/z8/NSjRw/t27fPpV58DwAAAAAAAAD/JDs7W5s2bVKjRo1kNputBr1KlSpp3rx5unbtmtFj37WJEye6bKDNzc3Vhg0b/mMXzfyOkJAQzZkzR9evXzd6bLioqKgoAi1cyl0H2pycHO3fv18vvfSSypUrp+DgYPXt21cHDhwosjHy+vXrWrx4sRo1aqQSJUqoQYMG+uCDD3TlyhX22wcAAAAAAABQJKSkpGjJkiV68MEHrUY9Nzc3VatWTUuXLtXNmzeNHvuuvPvuuwoODs73/KZMmeK0gXbr1q16/PHH5ePjY/Ue+vj4aMSIETp//jz/D45Cc+rUKT3++ONWf5cQaOFM7jrQSlJMTIxWrlyp1157Ta+++qpWr16t2NhY5ebmFtR8TiUrK0tHjx7VjBkz9PLLL2v69Ok6fPiwMjIyjB4NAAAAAAAAAO6b69evKzw8XKGhoVbjnslkUq1atRQREaGkpCSjx75jtgLt5MmTnXJV6e7du9WxY0f5+vpavX/u7u7q06ePjh07JovFYvTYcGG2Au2DDz6oXbt2GT0mYLd7CrQWi0XXr19XVFSUoqKidOPGjSL/Szg9PV2XL1/WyZMndenSJaWlpfGtIQAAAAAAAABFzsWLF/X6669b3QLYzc1NZrNZDRo00OrVq5WcnGz02Hdk0qRJLhdo9+3bp65du8rf39/mCuinn35akZGRRXZXTdw/p0+fJtDCpdxToEX+iLIAAAAAAAAAiroTJ06od+/eCggIsLkSs2HDhlqxYoUSExONHttu4eHhCgkJyfe8wsPDnSbQ5uXl6ccff1SXLl1s3i83Nze1aNFCW7ZsUVpamtGjowg4c+aM2rZtm+/zWLVqVQItnAqBFgAAAAAAAABQKHJzc3Xo0CF16dLF5na5ZrNZderU0cKFC3Xt2jWjR7eLrUA7adIkpzgXi8WiTZs26amnnrJr5WyjRo30zTff6NatW0aPjiLCVqCtUqWKdu7cafSYgN0ItAAAAAAAAACAQmOxWLRv3z499dRTKlasmM130latWlUTJkzQuXPnHH6nwsmTJzt9oL1165aWL1+uRx99VD4+PjbjbM2aNfX555871UpnOL+zZ88SaOFSCLQAAAAAAAAAgEKVlZWlXbt26fHHH5eXl5fNCFi2bFn169dPv/zyi7KysoweP19TpkxR6dKl8z2Pd99916ED7YULFzR58mTVrFnTrvtSrVo1LVmyRPHx8UaPjiLm3LlzeuKJJ/J9NsPCwgi0cCoEWgAAAAAAAABAocvIyND333+vxx9/XN7e3jZjYEBAgNq0aaOvvvpKN2/eNHr8f2Qr0E6cOFFxcXFGj/n/k5OTo927d6tfv34qW7aszGazzftRvXp1LVq0yGneqQvXYivQVq5cWd9//73RYwJ2I9ACAAAAAAAAAO6LjIwM/fDDD3rqqafs2k7Xw8NDNWvW1OjRo3X8+HFZLBajT+E/TJ061ekC7bVr17Ro0SK1bt1aAQEBNu+Bm5ub6tSpo2XLlunGjRsOv+00XNP58+cJtHApBFoAAAAAAAAAwH2TlZWl/fv3q3v37nYHwpCQED399NNatWqVQ62mnTZtmsqUKZPv3BMmTHCYQGuxWLRnzx4NHjxYYWFh8vT0tOvaN27cWBEREQ513VH0XLhwQe3atcv3Oa1UqRKBFk6FQAsAAAAAAAAAuK8sFouOHDmigQMHqlSpUnaFQi8vL9WsWVPDhg3TgQMHlJGRYfRp2Ay048ePV2xsrNFj6ty5c5o9e7ZatmypwMBAu6632WzWk08+qY0bNyopKcnoU0ARZyvQVqxYUTt27DB6TMBuBFoAAAAAAAAAwH2Xm5urqKgoTZgwQRUqVLArGrq5ualkyZJq2bKlZs+erXPnzik3N9ewc5g+fbpDB9qEhAStXr1aPXr0ULly5eTh4WHXNfbx8VHv3r21e/dupaamGjY/8LeLFy8SaOFSCLQAAAAAAAAAAMNcuXJFixYtUr169eTu7m736s7y5curS5cu+uKLLxQXF2fIu1FnzJihBx54IN85x40bZ0igTU9P1/fff68hQ4aoVq1aKlasmN0BvEyZMho5cqR+//13ZWZm3vfZgX9y6dIlPfnkk/k+txUqVCDQwqkQaAEAAAAAAAAAhrp586Y2bdqk9u3by8/Pz+6Y6OXlpWrVqumll17St99+e9/fk2or0I4dO1YxMTH3bZ7s7Gz99NNPGjlypBo3bqyAgACZTCa7r2e9evU0f/58Xbx4UTk5OfdtbsAWW4G2fPny2r59u9FjAnYj0AIAAAAAAAAADJeRkaGDBw/qjTfesBo9/+nw9fVVnTp1NHDgQG3atEmJiYn3Zeb33nvPIQKtxWLRr7/+qvHjx6tFixYKCgqS2Wy2+/p5e3urc+fO2rBhg+Lj4w1ZjQxYc/nyZQItXAqBFgAAAAAAAADgEHJzc3Xu3Dl9/PHHatiwoTw9Pe8o1Pr7+6tevXp65ZVX9K9//avQV9S+//77Klu2bL7zjBkzplADbVZWln755RdNmDBBrVu3VnBw8B2FWTc3N5UrV04jR47UwYMHlZaWVmizAvfiypUreuqpp6w+xwRaOBMCLQAAAAAAAADAoSQkJGjHjh3q1auXgoKC7ig4/h1q69atq/79++urr77S1atXlZubW+Bz2gq0o0ePVnR0dIH/3OTkZO3cuVMjR45Uy5YtFRwcbPf7e/8+3N3d1bp1ay1fvlyXL1+WxWIp8DmBgmIr0IaGhmrbtm1GjwnYjUALAAAAAAAAAHA42dnZOnnypObOnav69evf8Wrav7c+rlGjhjp37qypU6fqhx9+UEJCQoFt4Ttz5sz7FmgzMzP122+/adGiRerbt68eeeQRlSxZ8o5XzP692vDNN9/Unj17lJycXCDzAYXp6tWrBFq4FAItAAAAAAAAAMBh3bhxQzt37tTQoUMVGhoqk8l0x0HS3d1dZcqU0SOPPKLnnntOU6dO1ZYtWxQdHX1PK0dnzZql0NDQfH/uqFGj7inQJiYm6qefftLChQs1cOBAtWrVSpUrV1axYsXu+Br8HayfeeYZRURE6OLFi8rOzr7r2YD7KTo6Wu3bt8/32S5btiyBFk6FQAsAAAAAAAAAcGgWi0Xnzp3TypUr1a1bN5UsWfKuAqWbm5s8PDxUpkwZNWjQQB06dNAbb7yhxYsXKzIyUjdu3LijrZBtBdqRI0fq6tWrdn9eSkqKjh07plWrVmn8+PHq0aOHmjZtqkqVKsnHx+eu4vTf59y0aVPNmTNHR44cUWpq6t3cBsAwtgLtAw88oK1btxo9JmA3Ai0AAAAAAAAAwCmkp6frjz/+0JIlS/Tkk08qICDgrkOtm5tZT/V3AAAgAElEQVSbTCaTAgICFBYWpsaNG6tTp04aNmyY5s2bp7Vr12r//v06f/680tLS/nFb5NmzZ99VoM3OzlZsbKyOHDmizZs3a9myZRo7dqxeeOEFtWrVSg899JCCgoLk4eFxT+dnNpvVoEEDhYeHa8+ePbp582ahvIsXKGwxMTEEWrgUAi0AAAAAAAAAwKkkJyfryJEjWrhwodq1a6fAwMB7Cpn/HWwrVKig2rVrq0mTJnriiSfUvXt3DR06VFOmTNHixYu1YsUKrV27Vv3791epUqXy/byuXbtq2bJlWrlypT799FPNmjVLw4cP14svvqgOHTqoRYsWql+/vqpUqVIgQfbvw93dXfXr19eECRO0c+dOxcXFKScnx+jbBty12NhYdejQId9nvkyZMgRaOBUCLQAAAAAAAADAKSUlJenIkSNavHixOnfurKCgoAIJnP8Ubn19fVW6dGlVrlxZ1atXV61atVS2bFl5enrm++dCQkJUo0YNPfTQQ6patapCQ0MVGBgod3f3QpnTy8tLTZo00ZQpU7Rr1y7Fxsbe0zt2AUdhK9CWLl1a//73v40eE7AbgRYAAAAAAAAA4NRu3bqlY8eOacWKFerTp49CQ0NlNpsLJYI64hEQEKAnnnhCc+fOVWRkpK5fv86KWbiUuLg4Ai1cCoEWAAAAAAAAAOAS0tPTFRUVpY0bN2rUqFF65JFH5Ovra3hALYzDbDbrwQcfVP/+/fXZZ5/p0KFDSkxM5B2zcEnXrl1Tx44d8/37EBISQqCFUyHQAgAAAAAAAABcisVi0dWrV7V//359+umnGjJkiBo0aOD0sdZsNissLEw9evTQnDlztG3bNp0+fVppaWlGX3KgUNkKtMHBwdqyZYvRYwJ2I9ACAAAAAAAAAFxWWlqazp8/r8jISH355Zd655139MQTT6hMmTKF9i7YgjwCAgL0yCOPaNCgQVq4cKG2bdum48ePs1oWRcr169cJtHApBFoAAAAAAAAAQJGQkZGhq1ev6vDhw9q8ebPmz5+vIUOGqGXLlgoJCXGIYOvv76/69evrxRdf1PTp07VmzRrt379fZ8+eVUpKClEWRdKNGzf09NNP5/v3plSpUgRaOBUCLQAAAAAAAACgyMnLy1NycrLOnz+vX3/9VZs3b9bixYs1ZswY9erVS61atVJYWJh8fHwKJcR6eHjogQce0COPPKJu3bpp2LBhmjNnjtauXavIyEj99ddfio+Pl8ViMfpSAYYj0MLVEGgBAAAAAAAAAEVeXl6eUlNTFRMTo7/++ku//vqrdu7cqXXr1mnp0qWaNm2ahg8frsGDB6tPnz7q0aOHnnnmGbVt21aPPvqoGjVqpDp16qh+/fpq2rSpHnvsMXXo0EHdunVTr169NHDgQL3xxhuaOHGiFixYoFWrVmnr1q3av3+//vjjD126dElJSUnKyckx+lIADic+Pt5qoA0KCtLmzZuNHhOwG4EWAAAAAAAAAIB85ObmKj09XfHx8bpy5YrOnTunU6dO6fjx4/r99991+PBh/fLLL9q3b5/27NmjyMhI/fzzzzp48KCOHj2qP//8U3/99ZfOnDmjixcvKi4uTikpKYRY4A7cvHlTzzzzDIEWLoNACwAAAAAAAAAAAIdlK9CWLFmSQAunQqAFAAAAAAAAAACAw0pISLAaaEuUKKHvvvvO6DEBuxFoAQAAAAAAAAAA4LASExPVqVMnAi1cBoEWAAAAAAAAAAAADstWoC1evDiBFk6FQAsAAAAAAAAAAACHlZSUZDXQBgYGatOmTUaPCdiNQAsAAAAAAAAAAACHlZycrM6dOxNo4TIItAAAAAAAAAAAAHBYtgJtQEAAgRZOhUALAAAAAAAAAAAAh3Xr1i2rgdbf31//+te/jB4TsBuBFgAAAAAAAAAAAA4rJSVFXbp0IdDCZRBoAQAAAAAAAAAA4LBsBVo/Pz8CLZwKgRYAAAAAAAAAAAAOKzU11Wqg9fX11caNG40eE7AbgRYAAAAAAAAAAAAOKy0tTV27diXQwmUQaAEAAAAAAAAAAOCwbAVaHx8fAi2cCoEWAAAAAAAAAAAADis9Pd1qoC1WrJg2bNhg9JiA3Qi0AAAAAAAAAAAAcFgZGRnq1q0bgRYug0ALAAAAAAAAAAAAh2Ur0Hp7exNo4VQItAAAAAAAAAAAAHBYmZmZVgOtl5eX1q9fb/SYgN0ItAAAAAAAAAAAAHBYWVlZ6t69O4EWLoNACwAAAAAAAAAAAIdlK9B6enoSaOFUCLQAAAAAAAAAAABwWNnZ2VYDrYeHh7799lujxwTsRqAFAAAAAAAAAACAw7JYLHr22WcJtHAZBFoAAAAAAAAAAAA4LFuB1t3dnUALp0KgBQAAAAAAAAAAgMPKycmxGmjNZrPWrVtn9JiA3Qi0AAAAAAAAAAAAcFi5ubnq0aMHgRYug0ALAAAAAAAAAAAAh2Ur0JpMJgItnAqBFgAAAAAAAAAAAA4rLy/PaqB1c3PT2rVrjR4TsBuBFgAAAAAAAAAAAA7tueeesxpo16xZo7y8PKPHBOxCoAUAAAAAAAAAAIBDe/7552UymQi0cAkEWgAAAAAAAAAAADg0W4H2m2++IdDCaRBoAQAAAAAAAAAA4NBeeOEFq4H266+/Vm5urtFjAnYh0AIAAAAAAAAAAMCh9ezZU2azmUALl0CgBQAAAAAAAAAAgEOzFWhXr15NoIXTINACAAAAAAAAAADAob344otWA+2qVauUk5Nj9JiAXQi0AAAAAAAAAAAAcGi9evWSu7s7gRYugUALAAAAAAAAAAAAh2Yr0K5cuZJAC6dBoAUAAAAAAAAAAIBD6927t9VA+9VXX8lisRg9JmAXAi0AAAAAAAAAAAAc2ksvvSQPDw8CLVwCgRYAAAAAAAAAAAAOzVagjYiIINDCaRBoAQAAAAAAAAAA4ND69OljNdCuWLFC2dnZRo8J2IVACwAAAAAAAAAAAIfWt29feXp6EmjhEgi0AAAAAAAAAAAAcGi2Au2XX35JoIXTINACAAAAAAAAAADAofXr189qoP3iiy+UlZVl9JiAXQi0AAAAAAAAAAAAcGj9+/eXl5cXgRYugUALAAAAAAAAAAAAh2Yr0H7++ecEWjgNAi0AAAAAAAAAAAAc2oABA6wG2s8++0yZmZlGjwnYhUALAAAAAAAAAAAAh/byyy/L29ubQAuXQKAFAAAAAAAAAACAQ7MVaJcvX06ghdMg0AIAAAAAAAAAAMChDRw40Gqg/fTTT5WRkWH0mIBdCLQAAAAAAAAAAABwaIMGDVKxYsUItHAJBFoAAAAAAAAAAAA4NFuB9pNPPiHQwmkQaAEAAAAAAAAAAODQXnnlFauBdtmyZUpPTzd6TMAuBFoAAAAAAAAAAAA4tMGDB8vHx4dAC5dAoAUAAAAAAAAAAIBDsxVoly5dSqCF0yDQAgAAAAAAAAAAwKENGTLEaqBdsmSJ0tLSjB4TsAuBFgAAAAAAAAAAAA5t6NCh8vX1JdDCJRBoAQAAAAAAAAAA4NBsBdrFixcTaOE0CLQAAAAAAAAAAABwaK+++qrVQLto0SKlpqYaPSZgFwItAAAAAAAAAAAAHNprr70mPz8/Ai1cAoEWAAAAAAAAAAAADs1WoP34448JtHAaBFoAAAAAAAAAAAA4tNdff91qoF24cKFSUlKMHhOwC4EWAAAAAAAAAAAADu2NN96Qv78/gRYugUALAAAAAAAAAAAAh2Yr0H700UcEWjgNAi0AAAAAAAAAAAAc2rBhw6wG2gULFujWrVtGjwnYhUALAAAAAAAAAAAAh/bmm28qICAg30A7f/58Ai2cBoEWAAAAAAAAAAAADo1AC1dCoAUAAAAAAAAAAIBDe+utt6wG2g8//FDJyclGjwnYhUALAAAAAAAAAAAAh/b2228rMDAw30A7b948Ai2cBoEWAAAAAAAAAAAADm348OEEWrgMAi0AAAAAAAAAAAAcmq1A+8EHHygpKcnoMQG7EGgBAAAAAAAAAADg0EaMGGE10M6dO5dAC6dBoAUAAAAAAAAAAIBDe+edd1S8eHECLVwCgRYAAAAAAAAAAAAOzVagnTNnjhITE40eE7ALgRYAAAAAAAAAAAAObeTIkVYD7ezZswm0cBoEWgAAAAAAAAAAADi0UaNGqUSJEgRauAQCLQAAAAAAAAAAAByarUA7a9YsAi2cBoEWAAAAAAAAAAAADm306NFWA+3MmTOVkJBg9JiAXQi0AAAAAAAAAAAAcGhjxoxRyZIlCbRwCQRaAAAAAAAAAAAAODRbgfb9998n0MJpEGgBAAAAAAAAAADg0MaOHWs10L733nu6efOm0WMCdiHQAgAAAAAAAAAAwKGNGzdOQUFBBFq4BAItAAAAAAAAAAAAHJqtQDtjxgwCLZwGgRYAAAAAAAAAAAAObfz48VYD7fTp0xUfH2/0mIBdCLQAAAAAAAAAAABwaBMmTFCpUqUItHAJBFoAAAAAAAAAAAA4NFuBdtq0aQRaOA0CLQAAAAAAAAAAABzaxIkTrQbaqVOn6saNG0aPCdiFQAsAAAAAAAAAAACH9u677yo4OJhAC5dAoAUAAAAAAAAAAIBDsxVop0yZQqCF0yDQAgAAAAAAAAAAwKFNmjTJaqCdPHmyrl+/bvSYgF0ItAAAAAAAAAAAAHBo4eHhCgkJIdDCJRBoAQAAAAAAAAAA4NBsBdrw8HACLZwGgRYAAAAAAAAAAAAObfLkyVYD7aRJk3Tt2jWjxwTsQqAFAAAAAAAAAACAQ5syZYpKly5NoIVLINACAAAAAAAAAADAodkKtO+++y6BFk6DQAsAAAAAAAAAAACHNnXqVKuBduLEiYqLizN6TMAuBFoAAAAAAAAAAAAYKi0tTZcuXdLBgwe1ZcsWff7555o3b56mTZumcePG6dFHH5WPj0++gbZhw4Z6+eWXNWrUKIWHh2vWrFlavHix1q1bp7179yoqKkoJCQnKyckx+lQBAi0AAAAAAAAAAADun6SkJB09elRr167VrFmz9Nprr+nZZ5/Vk08+qebNm6t+/fqqVq2aypcvrzJlyigoKEjFihWTyWTKN9B6eHjI19dXJUqUUEhIiEJDQxUWFqbatWurcePGatOmjZ555hn169dPEydO1PLly/Xjjz8qOjpaFovF6EuCIoZACwAAAAAAAAAAgEJz69YtHT16VBERERo9erR69OihFi1aqFatWgoNDZWvr6/MZnO+8bUgDy8vLwUHB6tq1ap65JFH1L59ew0ZMkTz58/Xrl27FBMTQ7BFoSPQAgAAAAAAAAAAoMDk5ubq0qVL+u677zR58mS98MILatGihapXr66SJUvK3d39vsRYew9fX19VqFBBDz/8sDp27Kg333xTn3/+uX777TelpqYafTnhggi0AAAAAAAAAAAAuCe5ubm6cOGC1q5dq+HDh6tDhw6qV6+eSpcuLU9PT8MjrL2HyWRSQECAHnzwQbVs2VJ9+/bVggULdPjwYWItCgyBFgAAAAAAAAAAAHclJSVFu3fv1oQJE/T000+rVq1aKl68+H3bsriwD29vb1WsWFHNmzfXoEGDFBERocuXLysnJ8foSw8nRqAFAAAAAAAAAADAHYmLi9PatWs1aNAgNW7cWMHBwQ63dXFBH76+vqpRo4Y6deqkOXPm6Pjx48rKyjL6VsAJEWgBAAAAAAAAAABgl0uXLmn58uXq2bOnatWqJT8/P8PD6f0+3N3dVb58ebVp00aTJk3Sr7/+qvT0dKNvDZwIgRYAAAAAAAAAAABWnT9/XosXL1b37t1VtWpVeXt7F3j49Pb2Vvny5dW4cWN17dpVr776qsaNG6fp06erY8eOKl68eL5/9sknn9S0adM0c+ZMTZo0ScOHD1fv3r3Vpk0b1ahRQ4GBgQW+7bLJZFLp0qXVvHlzjRkzRj///LPS0tKMvlVwAgRaAAAAAAAAAAAA/KMrV65o2bJl6tatmypXriwvL68CiZslSpTQww8/rF69emns2LH66KOPtGbNGm3fvl0//fST/vjjD50/f14xMTGKj4/X5MmTVbZs2Xw/b8SIETp9+rQSEhJ07do1XblyRX/99ZcOHTqkH3/8UZs2bdJnn32m6dOna+jQoWrbtq3KlSsnT0/PAjmfUqVKqVmzZho3bpwOHTqkjIwMo28dHBiBFgAAAAAAAAAAAP8hISFBX3/9tXr27KkqVarcc5j18/NTvXr11Lt3b82cOVPffvut9u3bp7/++ksxMTFKSUlRTk5OvvPMmjVLoaGh+X7+qFGjFB0dbfWcMjMzFR8fr/Pnz+vw4cPatm2bli5dqjfffFNt2rRR6dKl7/k9usHBwWrVqpVmzJihqKgoWSyWgr41cAEEWgAAAAAAAAAAAEiSsrOztXv3bg0dOlS1atWSj4/PPcXKNm3aaPTo0Vq5cqX27t2rqKgoJSQkWI2x/2T27NlWA+3IkSN19erVOz7ftLQ0Xbp0SQcPHtR3332nOXPmqGfPnqpatepdR2mTyaTQ0FB17NhRy5cvV1xc3B3PBddGoAUAAAAAAAAAAIAuXLigmTNnqkWLFgoMDJTJZLrjOOnv76/mzZtr/PjxWrdunQ4dOqTo6GhlZWXd02xz5sxRuXLlCjzQ/r/y8vKUmJiokydPaufOnZo/f76ee+45lStX7q5W1np4eKhatWoaNGiQIiMjlZ6efk/zwXUQaAEAAAAAAAAAAIqwrKwsbdu2Tb17977rGPnAAw+oZ8+eWr58uX755RfFxsYqOzu7wGa0FWjfeeedew60/y05OVknTpzQpk2bNGbMGNWtW/euVtUGBASoefPm+uijj2xuw4yigUALAAAAAAAAAABQRMXExGjevHlq1qyZ/Pz87jg+hoaGql+/fvr666918uRJpaWlFcqcc+fOtRpoR4wYoStXrhTKz87JyVF0dLR+/PFHhYeHq2HDhvL29r6j62Q2mxUWFqbBgwfr4MGD97yiGM6NQAsAAAAAAAAAAFDE5OXl6ddff9XQoUNVqVIleXh43FFwLFu2rPr166dvvvlGp0+fVkZGRqHO+8EHH6h8+fKGBNq/5eXlKS4uTnv27FF4eLjq169/x6G2ePHiatu2rb7++mslJCQU6rxwXARaAAAAAAAAAACAIiQjI0Nr1qxRx44dVaJEiTsKjKVKldILL7ygVatW6dSpU4UeZv9mK9AOHz680APt3/4Otbt379b48eP10EMP3VHg9vDwUO3atTVlyhRduHBBeXl592VuOA4CLQAAAAAAAAAAQBFx7do1zZ07Vw0bNlSxYsXsjop+fn7q2LGjli9frhMnTig9Pf2+zj1v3jyrgfbtt9/W5cuX7+tMubm5io6O1vbt2/XGG2+oYsWKMpvNd7Q99Msvv6xDhw4V6Pt64fgItAAAAAAAAAAAAEVAVFSU3nnnHVWqVEnu7u52RUR3d3c1btxYc+bM0eHDh5WSkmLI7B9++KEqVKjgUIH2bzk5Obpw4YLWrl2r559/XkFBQXZH2sDAQHXo0EFbt24ttPf3wvEQaAEAAAAAAAAAAFzczz//rL59+yokJEQmk8mueFihQgW9/fbb2rVrl27evGnoVry2Au1bb71lWKD9W2Zmpk6cOKGFCxeqadOmdq9Q9vb2VpMmTRQREcF7aYsIAi0AAAAAAAAAAICLys3N1fbt29W5c2cFBgbaFQyLFSumjh076quvvtKlS5dksViMPg2bgfbNN9/UpUuXjB5TkpSYmKjIyEi99dZbKl++vF1B3N3dXbVq1dKCBQsUFxdn9CmgkBFoAQAAAAAAAAAAXJDFYtH69evVtm1b+fn52RVnw8LCNGHCBB08eFCpqalGn8Jt8+fPd5pAK/1vGL948aK+/PJLtW7dWj4+PjavvclkUpUqVTRjxgxdvXrV6FNAISLQAgAAAAAAAAAAuBiLxaI1a9aoRYsWdsVBDw8PtWvXTitXrlRMTIxycnKMPoX/sGDBAlWsWDHf+YcNG+ZQgfZvKSkp+umnn/Taa6+pTJkydm8tPWnSJMO3bEbhIdACAAAAAAAAAAC4kJycHH3zzTd69NFH7XoPasmSJTV06FBFRkYqJSXF6PH/ka1A+8Ybb+jixYtGj/mPcnNzde7cOc2fP1916tSRu7u7zXtSrlw5Iq0LI9ACAAAAAAAAAAC4iNzcXG3cuFEtW7a0K86GhYVp+vTpOn36tLKzs40eP18fffSR0wbav8XHx2vDhg16/PHH7bo35cuX1/Tp0xUdHW306ChgBFoAAAAAAAAAAAAXsX37drVt29aubY0bNmyoZcuWKTY2Vrm5uUaPbtXChQtVqVKlfM/l9ddfd/hAK0np6emKjIxUjx49FBgYaPMeVapUSR9++KGuX79u9OgoQARaAAAAAAAAAAAAF7B//3516tRJfn5+NsNf8+bN9c033yghIcHose1iK9C+9tprunDhgtFj2sVisei3337TgAEDFBQUZPNeVatWTcuXL1diYqLRo6OAEGgBAAAAAAAAAACc3J9//qlevXrZtSqzVatW2rBhg27dumX02Hb7+OOPXSbQSv+7FfWJEyf0yiuv2Iy0JpNJ9erV07p165Sammr06CgABFoAAAAAAAAAAAAndvnyZb3++ut2rcZs2rSp1q9f71RxVpIWLVqkypUr53ter776qlMFWknKy8vTiRMn1K9fP5UoUcLqfXN3d1fz5s21c+dOZWVlGT067hGBFgAAAAAAAAAAwEklJiYqPDxcoaGhMplMViNfgwYNtGrVKiUnJxs99h2zFWiHDh2q8+fPGz3mHcvLy9Pvv/+uF154Qf7+/lbvn5eXlzp16qRDhw45/DuDYR2BFgAAAAAAAAAAwAllZ2dr8eLFql69usxms9W4V7NmTX322WdO887Z/7Z48WKXDLSSlJOTo4MHD6pLly7y9fW1eh/9/f01ePBgnT592uixcQ8ItAAAAAAAAAAAAE5o06ZNatKkiTw9Pa1GvUqVKmnhwoW6ceOG0SPftSVLligsLCzfcxwyZIjTBlpJslgsioyMVLt27eTt7W31foaEhGjGjBmKjY01emzcpXsKtJmZmTpz5oy2bdumHTt26OzZs8rMzCyo2ZxOXl6eEhISdODAAf3rX//STz/9pJs3b7LMHAAAAAAAAAAAFKijR4+qa9eu8vHxsRnz3nvvPcXGxiovL8/ose+arUA7ePBgnTt3zugx70lWVpa2bdumZs2aycPDw+p9ffDBB7Vy5UqlpKQYPTbuwj0F2tOnT2vmzJlq37692rVrp9mzZ+vs2bPKyckpqPmcSkpKirZt26b+/furefPm6tOnjzZt2qSkpCSjRwMAAAAAAAAAAC7i2rVrGjZsmIKCgmxuhzt69GhduHDBqeOsJC1dutTlA60kpaWl6euvv1bdunWtvlPYZDKpZcuW2rt3b5Htcs7srgNtdna2du7cqa5duyooKEh+fn569tlntXfvXmVkZBTkjE4jJiZGs2fPVo0aNeTt7a3Q0FANGzZMJ06c4C8HAAAAAAAAAAC4Z9nZ2VqwYIHCwsKsBjwPDw+9/PLLOn78uEs0imXLlqlKlSouH2glKSkpSQsWLLB6vm5ubipWrJgGDBigU6dOGT0y7tBdB9q0tDStX79erVu3VrFixeTm5qa2bdvq3//+t1JTUwtyRqcRGxur2bNnq0qVKjKZTPL09FSrVq20fv163bp1y+jxAAAAAAAAAACAk/v+++/VvHlzm1vgduzYUfv27VNWVpbRIxcIW4H2lVdecZlAK/1vcxo9erRKly5t9T4HBwfrgw8+UHx8vNEj4w7cdaBNSUnRmjVr1KJFi9svK37sscf03XffFdn9rlNTU7VmzRo1a9ZMXl5ecnNzU+XKlTV58mRdunTJ6bcPAAAAAAAAAAAAxrl06ZL69Okjf39/q9GuQYMGWr9+vdLS0oweucB88sknVgPtoEGDdPbsWaPHLFCnTp3Siy++aPN+16tXT1u3blV2drbRI8NO9xRov/nmGzVv3pxA+39yc3N1+PBhDRgw4Pa+7/7+/nr++ef1008/ucy3VAAAAAAAAAAAwP2VnZ2t2bNnq3z58lZjXZkyZfTRRx/p5s2bRo9coD799FNVrVq1SAXa3NxcRUZGqlWrVlZXTHt4eKh37946efKk0SPDTgUaaFu3bl2kA60kxcXF6cMPP1SNGjVkNptlNpv18MMP6/PPP3e5X4YAAAAAAAAAAOD+2L17t1q0aGE11Hl5eentt9/WhQsXXG5XT1uBduDAgS4XaCUpMzNTX375pWrUqGE1zJcqVUoLFixQQkKC0SPDDgTaApaVlaWdO3fq6aefvr3kvEyZMho+fLhOnz6t3Nxco0cEAAAAAAAAAABO5MaNGxo8eLACAwOtRroOHTrol19+kcViMXrkArd8+XKrgfbll1/WmTNnjB6zUMTHx2v06NEKCQmxev8bN26svXv30qKcgEsE2qysLMXGxuro0aPasWOH1q1bp5UrVyoiIkKrVq3Sxo0btXfvXp06dUrJycnKyckptFny8vJ05swZjRkzRuXKlZPJZJKXl5eefPJJbdu2zaX2ewcAAAAAAAAAAIVvxYoVNldQVq1aVatXr1ZqaqrR4xaKzz77TA8++GCRDLSSdOLECXXq1Ol2k/unw9vbW++8844uX75s9LiwwWkDrcViUVxcnPbt26elS5dq+PDheu6559S2bVs1bdpUDz/8sBo2bKiHH35YzZs3V8eOHdW/f39NmTJF69at08mTJ5WSklIoS/yTk5O1YsUKPfzww/L09JTJZFK1atU0Z84cRUdHF/jPAwAAAAAAAAAAruns2bPq3r271TBXrFgxTZw4UTExMUaPW2hsBdoBAwa4dKDNycnRt99+qzp16lgN9WFhYdq4caOysrKMHhlWOF2gzcvL07Vr17Rjxw6Fh4erS5cuqlu3rsqUKaPAwEAFBgYqJCREle81TQ0AACAASURBVCpVUlhYmEJDQ1WiRAn5+/urRIkSqlixopo1a6aXX35ZS5cu1bFjxwp8VWtOTo5+/vln9ezZU8WLF5ebm5uKFy+ufv366ciRIy65tQAAAAAAAAAAAChYeXl5mjdvnipUqGA1yrVv316//vproe4garTPP//caqDt37+/Tp8+bfSYhSoxMVGjRo1ScHBwvtfBbDZrwIABLn8tnJ1TBdqMjAwdP35c8+fP1zPPPKOwsDAFBATIy8tLpUqVUuPGjdW/f39NmzZNixcv1ieffKIPP/xQI0aMUMeOHVWlShX5+vrK29tbpUqVUv369fXKK69ow4YNiomJKdBfXJcvX9a0adNUuXJlmUwmeXh4qHnz5lqzZo2SkpIK7OcAAAAAAAAAAADXdPz4cXXo0EGenp75BrmyZcvqiy++uO+vn7zfvvjiC1WrVq1IB1pJ+v333/XEE0/I3d0932vxwAMPaPXq1crIyDB6XOTDaQJtSkqK9uzZo+HDh6tBgwYKDAyUu7u7/Pz81KhRI40YMUJr1qzRkSNHdPXqVSUkJCgpKUk3btzQqVOntGvXLs2fP1/du3dX+fLl5enpKU9PT5UpU0ZPPfWUPv74Y505c0bZ2dkFMm9aWpo2bNigli1b3r4+FSpU0LvvvquLFy8WytbKAAAAAAAAAADANeTl5WnmzJkKDQ3NN8SZTCYNGTJE586dM3rcQmcr0Pbr169IBNrs7Gx9/PHHCgsLs/pcvPTSS4qKijJ6XOTDKQJtSkqKdu7cqYEDByosLEze3t4ymUwqUaKEOnTooKVLl+rPP/9UUlKSsrKylJube/vP5uXlyWKxKD09XTExMfrhhx80atQo1a5dW15eXjKbzQoMDFSTJk303nvv6cSJEwWyL3dubq5+++03vfLKK7eXmvv4+KhLly7avXs331oAAAAAAAAAAAD5ioqKUocOHeTh4ZFviKtZs6Y2b95cJN43+uWXX1oNtH379tWpU6eMHvO+uHLlip5//nkVK1bM6iraNWvWKDMz0+hx8Q8cPtBmZGQoMjJSgwYNUqVKlW4v4/f391f79u21atUqXblyRVlZWTZXpebm5io1NVW///67wsPDb0dak8kkX19fNWrUSDNnztTZs2cL5D2x169f18KFC1WzZk25u7vLZDKpTp06+vjjj3Xt2rV7/nwAAAAAAAAAAOCaFixYoIoVK+Yb4Nzd3TVu3DjFxMQYPep9sWLFClWvXp1Aq/9dnLh69WrVrFnT6irawYMHF4nV1c7IoQNtTk6O/vzzT40aNUpVq1a9HWc9PT3VuHFjLVmyRFeuXLmjmJqXl6eMjAwdOXJEw4cPV8WKFWU2m29H2ubNm+uTTz5RTEzMf6zEvRvZ2dn64Ycf1KlTJ/n7+8vNzU2lSpXSq6++quPHj7v0y7oBAAAAAAAAAMDdiY6O1rPPPisvL698A1yDBg20c+fOAllw5gxsBdo+ffoUmUArSTdu3FDfvn3l6+ub7zUJCwvT1q1b77l3oeA5dKCNjo7WggUL1KhRo/9Ypl2xYkWNHTtWx48fv+tl+6mpqdq+fbu6deum4sWL3/42QfHixdW5c2dt3rxZt27duudzOHfunMaPH6/y5cvLZDLJ09NTjz/+uDZv3qzU1NR7/nwAAAAAAAAAAOBa1qxZo1q1auUb3sxmsyZOnKi4uDijR71vIiIirAbaovjOVVvPiYeHh959990i9Zw4C4cNtBkZGdq6das6deqk4sWLy2Qyyc3NTV5eXnrqqae0efNmJScn29zWOD95eXmKjo7W3LlzVbNmzdt7uJvNZpUrV07Dhw/X8ePH7/mbJ7du3dKqVavUpEmT29spV61aVe+//76io6Pv6bMBAAAAAAAAAIBrycjI0NChQ2/vzPlPR61atbR9+/YitVPnV199pRo1ahBo/x/Xr1/Xiy++eLvT/dPx6KOP6pdffjF6VPwXhw20Z8+e1YQJExQWFiZ3d/fbD1JoaKhGjx6tU6dO3fMvnqysLO3Zs0fPPffc7VW0f2+h3KxZM0VEROjmzZv39DNycnJ04MAB9e7dWyVKlJCbm5sCAwP10ksv6dChQ8rOzr6nzwcAAAAAAAAAAK7j119/VYsWLW4vXPun46233tLly5eNHvW+shVoe/fuXeQCbV5enj799FNVrVo13+vi7++vTz75hF1dHYxDBtr09HRt3LhRTzzxhPz8/P7jhcZNmjTR6tWrlZiYeE8/Q/rfB/fSpUuaMmWKKleu/B+/7IKDgzV48GAdOXLkrrdR/lt0dLRmzpypqlWrymQyycPDQ82aNdPXX3+tpKSkez4PAAAAAAAAAADgGmbPnq3Q0NB8g1vZsmW1bt26e24XzmblypVWA22vXr30119/GT3mfXf+/Hm1b99eZrM532vTt2/fIvV+XmfgkIH24sWLCg8PV+XKlf/jgfr/2rv3+J7r///j7/d7B9vYDMPGmDkMy7mccl4jQomQQ1F9JCXJp/qS5FCkEkWS0oFCJ4cKociZObOc57DZHDanjdnhvffuvz8+tV+y96Z5z+u97Xa9XO5/5vl4P/du/9z3fD49PT316KOPatu2bQ77xXPt2jV9/fXXuueee+Tm5nbDvdyNGzfWF198cdunaFNSUrRs2TKFh4fL09NTJpNJgYGBGjVqlI4fP57na5oBAAAAAAAAAEDhER8fr549e97QV/wzPXr0UGRkpNGj3nHz589XrVq1KGj/wWq1auzYsSpXrpzdvalatapWrVpFH+VEnK6gtdlsWr9+vbp37y4fH5+b/ipk5MiRioqKks1my/Ma/1xv3bp16tq16033uZcvX17Dhw/X4cOHb2u9zMxMHTx4UMOHD5e/v79MJpM8PDzUtWtXrV27VikpKQ75LAAAAAAAAAAAoOD65Zdf1LBhQ7tFm7u7u2bMmKGkpCSjR73jcito+/TpUyQLWklav369mjRpYndv3Nzc9M477+jSpUtGj4o/OV1Be+nSJc2ePVv169eXq6vrDV+gu+66SzNnztT58+fz/O9nJzIyUs8884zKli170y+6Tp06afXq1UpOTr6tNS5duqQ5c+ZkfS6z2azQ0FDNmDHD4Z8HAAAAAAAAAAAUPGPGjJGfn5/doq1BgwZat25dkTwJuWDBghwL2kcffVQHDx40ekxDJCYmasCAAfLw8LC7Pw8//HCRPHntrJyuoD148KCGDRumgICAG96ENZvNuvfee/Xdd98pMTExz/9+dqKjozVmzBgFBgbe8GU1m82666679OGHH952iWq1WrNOBnt7e8tkMqlMmTIaPHiw9u/fr4yMDAd9GgAAAAAAAAAAUNCcPXtW3bp1u+nw2t8zdOhQnTp1yuhRDbFw4ULVrl2bgtaOWbNmKTg42O7+BAYGavny5UWy3HdGTlXQpqen65dfflHHjh1VvHjxG744rq6uuv/++7Vy5crbPs36T/Hx8ZoyZUq2X9xy5crphRde0JEjR277WuVTp07p9ddfV6VKlbKOlLdt21ZLly4tktcRAAAAAAAAAACA/1m5cmWO1xt7e3tr3rx5Sk1NNXpUQ+RW0Pbu3btIF7SRkZFq06aN3f1xdXXVlClTdPnyZaNHhZysoE1KStInn3yiOnXqyMXF5YYvTrFixdS9e3dt2rTJ4b98rly5ok8++UShoaGyWCw3rOvp6akePXpo8+bNSktLu611rl27pu+//z5rz8xms6pWrao333xTp0+fdtCnAQAAAAAAAAAABc2bb74pf39/uwVb8+bNtWXLFqPHNMw333yTY0Hbq1cvHThwwOgxDZOSkqLBgwffdACSd3qdk1MVtLGxsRo/fnzWCdO/x8vLS4899pj27Nnj8OuAk5OTtWDBAjVu3Fhubm43rOvi4qLWrVtryZIlt33K1Wazae/evXr66aez7pAvUaKEevfura1bt952AQwAAAAAAAAAAAqeq1evqk+fPjd1FH/P8OHDFRMTY/Sohvn2228VGhpKQZuDTz/9VNWqVbO7R7Vq1dLatWuNHhNysoI2MjJSzzzzTLYPYHt7e2vw4ME6fPiww+/HTklJ0ZIlS9S6deusz/L31K1bV7Nnz1ZCQsJtrxUfH68ZM2aodu3aslgsslgsatiwoT777DNduHDBAZ8GAAAAAAAAAAAUJLt371bLli3tFmuenp768ssvi+z1xlLuBW3Pnj2LfEG7Z88etWrVyu4eeXh46IsvvlBKSorRoxZ5TlXQbtiwQd26dZO3t/dNXxpfX18NGzZMx48fz+vIdqWnp2vFihUKDw+Xp6fnTWtXrlxZ48aNU3R09G2Xw2lpaVq9erU6deqUdcy8fPnyGj58uA4fPnzb79wCAAAAAAAAAICCZe7cuQoJCbFbrNWtW1fr1q0zekxDfffddzkWtI888oj++OMPo8c0VHJysh577DG5u7vb3adXXnlFcXFxRo9a5DlNQZuWlqYlS5aoVatW2Z5i9fPz00svvaSTJ0/mdWS7MjIytGbNGj3wwAPZ3s3t6+urQYMG6Y8//rjtAjUzM1NHjhzRSy+9pICAgKz3dTt27KhVq1YpOTnZQZ8KAAAAAAAAAAAUBK+88opKlSplt1Tr37+/Dh8+bPSYhvr+++911113UdDm4q233srqn7JL586dtWfPHqPHLPKcpqBNTEzUp59+qnr16snV1fWmL0xAQIBGjx6t6OjovI5sV2ZmpjZu3KiHH34429O7bm5ueuihh7Rlyxalp6ff9nqXL1/WF198oYYNG8rV1VVms1m1atXStGnTdO7cOQd8IgAAAAAAAAAAUBAkJSXpkUcekYuLi91S7e2339alS5eMHtVQuRW0PXr0oKCVtGzZMtWvX9/uPlWtWlW//vqr0WMWeU5T0MbHx+u9995TjRo1ZLFYbvrCVKpUSePHj9fp06fzOnKOtm7dql69esnHx+emtc1ms8LCwrRq1Spdv379tteyWq3atGmTevbsmbWer6+vnnjiCe3evVtWq9UBnwgAAAAAAAAAADi7/fv3q3Xr1nYLtZIlS+qHH35QRkaG0aMa6ocffsixoO3evbsiIyONHtNwJ06cUHh4uN19KlasmL766iuHHEhE3jlNQRsbG6sJEyYoKChIZrP5pi9MUFCQJk6cqNjY2LyOnKOIiAg9+uijKlmyZLZf2ObNm2vRokVKSkpyyHrR0dEaP368qlSpIrPZLFdXVzVv3lwLFy7UlStXHLIGAAAAAAAAAABwbosXL1adOnXsFmoNGzbUxo0bjR7TcIsWLcpxnyho/yctLU0DBgzI9jnRv/LGG28oISHB6FGLNKcpaE+ePKlRo0apQoUK2X5ZgoODNWnSpHx7uHj79u3q27evfH197f4CnDt3rsOuEEhOTtaSJUvUunXrrP2rVKmSRo8erRMnTigzM9Mh6wAAAAAAAAAAAOc1ZcoUBQYG2i3TevXqpQMHDhg9puFyK2gffvhhCto/jR8/XuXKlbO7V0888YSOHTtm9JhFmtMUtIcPH9bw4cNVvnx5u3div/XWW/lW0O7YsUP9+/e3W9CGhoZq5syZio+Pd8h6mZmZioyM1JAhQ1S2bFmZTCZ5eXmpW7duWr9+vVJTUx2yDgAAAAAAAAAAcF7PP/+8SpQoYbdMGzVqlM6cOWP0mIbL7aRxt27dtH//fqPHdApff/21atWqZXevwsLCtGPHDqPHLNKcpqDdv3+/Bg8eLD8/v2y/LNWqVdPkyZPz7ZfQzp079fjjj6tUqVLZrl+9enW98847Dl0/ISFBH330kerUqSMXFxdZLBbVq1dPs2fP5mg5AAAAAAAAAACF3PXr19WzZ09ZLJZsuwmz2azZs2fr+vXrRo9quCVLlqhu3boUtLdg06ZNatasmd29qlGjhtasWWP0mEWa0xS0u3bt0sCBA1W6dGm7Ba2jC9J/rj9gwAC7BW1QUJAmTJig06dPO2zNtLQ0rVmzRl27ds3665iyZcvq+eef16FDh2Sz2Ry2FgAAAAAAAAAAcC6nTp1S+/bt7RZpvr6+Wrp0Kc8iKveC9qGHHqKg/VNMTIw6dOhgd69KlCihJUuW8L0ykNMUtDt27NBjjz2W4wnWd999V2fPns3ryDnavXu3BgwYYLcgrlSpkl5//XXFxMQ4bM3MzExFRUVp5MiRqlixokwmk9zd3dW+fXutWLFCycnJDlsLAAAAAAAAAAA4l61bt6p58+Z2i7RatWpp7dq1Ro/pFJYuXZpjQfvggw9q3759Ro/pFFJTU9W7d2+5uLjYPZk9Z84cnts0kNMUtNu2bVPfvn3tvgFbo0YNTZkyJV8L2pxO8FasWFGjR49WdHS0Q9dNSkrSggUL1KRJE7m5uclsNiskJETvvfced8oDAAAAAAAAAFCI/fjjj6pXr57d0rFdu3a8Ffqn3PaKgvZGQ4cOzfFt47feeksXL140eswiyykK2szMTG3ZskW9e/dWyZIls/2ihISEaOrUqTp37lxeR85RbgVtQECARo0apVOnTjl03YyMDO3YseOG65V9fX01YMAA7dq1S1ar1aHrAQAAAAAAAAAA5/D555+revXqdku03r176+DBg0aP6RRyK2i7du1KQfs3EyZMULly5ezu13//+1+HPuuJf8dpCtpNmzbpkUcekY+PT7ZflJo1a2ratGmGFbT+/v565ZVXdPLkSYevfebMGb377ruqUaOGLBaLXFxc1LRpU82fP1+XL192+HoAAAAAAAAAAMB4U6ZMUWBgoN0S7bnnnsuXXqIg+umnn3IsaLt06aK9e/caPabTmDlzpqpUqWJ3v5544gkdO3bM6DGLLKcpaDds2KDu3bvnWNC+//77hbKgTUlJ0fLlyxUeHi5PT8+sK5VHjhypqKgo2Ww2h68JAAAAAAAAAACMNWbMGPn5+dkt0V577bV860UKmp9//ln169enoL1FCxYsUO3ate3uV/fu3RUZGWn0mEWWUxW0PXr0MKyg3bVrlx5//PGsa4bvZEGbmZmpgwcPatiwYVnHzb28vPTggw9q7dq1SklJcfiaAAAAAAAAAADAWMOHD7fbi5hMJr3zzjvctPmn3Arazp07U9D+zfLly9WgQQO7+9W+fXvt2rXL6DGLLKcpaDdt2qSePXsadsXxzp079dhjjxlS0ErSxYsX9emnn6p+/fpydXWVxWJR3bp19dFHHyk+Pj5f1nS05ORknT9/XnFxcYQQQgghhBBCCCGEEEIIySX9+vWTh4eH3RJt0qRJioqKMnxOZ8jcuXMVGhpqd6/uu+8+rV692vA5nSU//PBDjgVt48aN9fPPPxs+Z0HM9evXb7tTc5qCduvWrXr00UdVsmRJwwra/v37y9fXN9v1AwICNGrUKJ06dSpf1rdardq0aZN69eqVtQd+fn4aMmSIDhw4UCCuOV69erWefPJJdezYkRBCCCGEEEIIIYQQQgghuSQwMFAWi8VuiXbXXXepffv2hs/pDLn77rvl7e1td6/Kli2re++91/A5nSVNmza123mZTCb5+vqqWbNmhs9ZELN27drb7u2coqCVpIiICPXt29fulyUkJETvvfeezp49m9eRc7Rjxw7169fP7voVK1bU6NGjFR0dnS/rS1J0dLTeeOMNValSRWazWW5ubmrTpo2WLl2apz2907744gvVqFHD7v/shBBCCCGEEEIIIYQQQgghhBTkfP3118rIyLitTs1pCtrt27erf//+dq8Yrl69ut59912dOXMmryPnun5OBXFgYKBef/11xcTE5Mv60v+uCF60aJFatGghd3d3mUwmBQcH64033lBMTIwyMzPzbW1HoKAlhBBCCCGEEEIIIYQQQgghhTmFqqDdtWuXBg4cqNKlS2f7YatWrarJkycrLi4uryPnaPv27erTp4/dK5aDgoI0YcIEnT59Ol/WlySbzaa9e/fqqaeeUpkyZWQymeTj46O+ffsqIiJC6enp+ba2I1DQEkIIIYQQQgghhBBCCCGEkMKcQlXQRkZG6plnnlHZsmWz/bDBwcGaOHFivhW0EREROb6BW716db3zzjv5doL3L9HR0Xr99dcVGBgok8kkNzc3tW/fXqtXr3bIo8P5iYKWEEIIIYQQQgghhBBCCCGEFOYUqoL26NGjGjFihPz9/bP9sEFBQXrjjTcUGxub15FztG3bNvXu3dtuQRsaGqoPP/xQ8fHx+bL+Xw4dOqRhw4apXLlyMplM8vT0VLdu3bRx40alpaXl69q3i4KWEEIIIYQQQgghhBBCCCGEFOYUqoL21KlTGj16tCpWrJjthw0MDNTYsWPz7YrhrVu3qmfPnvLx8cl2/YYNG+rLL7/UpUuX8mV9SUpLS9OqVavUsWNHeXl5yWQyKSAgQP/973915MgR2Wy2fFvbEShoCSGEEEIIIYQQQgghhBBCSGFOoSpoz5w5o4kTJ6pKlSoym803fVh/f3+9+uqrio6OzuvIdmVmZmrTpk16+OGH5e3tne1mN2/eXD/88IOSkpIcvv5fzp8/r+nTp6t27dpycXGRxWLR3Xffrblz5+rixYv5tq6jfPvtt2rRooUCAgIIIYQQQgghhBBCCCGEEJJLPD09cyyCfH19DZ/RWVK6dGm5ubnZ3atixYrJz8/P8DmdJX5+fnJ3d7e7X25ubipTpozhcxbELFq0qPAUtAkJCXr//fcVEhIii8Vy0xelTJkyGjFihE6cOJHXke3KyMjQ2rVr1blzZxUvXvymtc1ms9q1a6eVK1fm2zuwNptNe/bs0aBBg+Tn5yeTySQfHx/17dtXERERSk9Pz5d1HSk2Nlbr16/XL7/8QgghhBBCCCGEEEIIIYSQXNKxY8ccS7ShQ4dq6dKlhs/pDJk4caKqV69ud68aNmyo6dOnGz6ns+Tdd99VzZo17e5X7dq1NW3aNMPnLIiJi4tTZmbmbXVqTlPQJiUl6bPPPlP9+vXl6up60xelZMmSGjp0qKKiovI6sl3p6elasWKFwsPDs/1rFTc3Nz344IPasmVLvhWlV69e1XfffXfDflavXl2TJ09WbGzsbf+gAQAAAAAAAACAcxk6dKhKlChht0SbNm2aEhMTjR7TKfz666+6++677e5VeHi4du7cafSYTmP16tVq1KiR3f1q166dduzYYfSYRZbTFLTp6elavHixWrZsmfXv/T3e3t56+umndejQIYeXlampqVqyZIlat26d7dq+vr4aNGiQ/vjjj3x7B/bkyZMaM2aMKleuLLPZLHd3d4WFheV5PwEAAAAAAAAAgHMbOXKkSpUqZbdEGz9+vBISEowe0ynkVtDed999FLR/88MPP+iuu+6yu19du3bVvn37jB6zyHKagjYzM1O///67unbtmu1fixQvXlwDBgzQvn37bvte539KTk7WwoUL1aRJk2zvL69cubLGjRun6OjofDnJmp6ernXr1qlbt25Zb+CWLVtWzz77rCIjIx3+eQEAAAAAAAAAgPEmTZqkgIAAuyXaiy++qNOnTxs9plP47bffcixow8LCOBH6N3PmzFG1atXs7le/fv10+PBho8csspymoJWkffv2adCgQSpTpsxNXxQPDw/17t07X95jTUxM1Jw5c1SnTp1s37+tU6eOPv7443z7K5ULFy5o9uzZqlevnlxdXWU2m1W3bl19/PHHio+Pz5c1AQAAAAAAAACAsWbNmqXg4GC7JdqAAQN05MgRo8d0CmvWrNE999xDQXuL3n77bVWoUCHH941PnTpl9JhFllMVtLGxsRo/fnzWNb//fAe2S5cuWrt2rVJSUvI6drYSEhI0bdq0bP+SwGKxqGXLllq0aJGSkpIcuq70v5PDBw4c0PPPP6/y5cvLbDarePHi6t69uzZs2KDU1FSHrwkAAAAAAAAAAIz33XffKTQ01G6J1qlTJ+3Zs8foMZ1CbgUtb6re6KWXXpKvr6/d/Ro7dqzOnz9v9JhFllMVtFevXtXnn3+uBg0ayNXV9aaitF27dvr5558d/iZrTEyMxo4dq8DAwJu+oJ6enurRo4c2bdqUL2Xp9evX9dNPP6ldu3by8PCQyWRSUFCQxo4dq5MnT+bLlcoAAAAAAAAAAMB4v//+uxo3bmy3RGvUqJE2btxo9JhOYe3atTkWtG3bttX27duNHtMp2Gw2Pf7449k+6/lXPvzwQ127ds3oUYsspyporVarVq9erQceeEDFixe/6cvSpEkTzZ8/X5cvX87r2Nk6fPiwXnjhBZUvX/6mNQMCAvTyyy/r2LFjstlsDl1Xkk6fPq1JkyapWrVqslgscnV1VYsWLfTdd98pMTHR4esBAAAAAAAAAADncOjQIbVr185uiVa+fHmtWLHC6DGdQm5lNgXt/3fhwgV16dLlpttq/4q7u7u+/fbbfOm9cGucqqCVlHXdr7+//01fnNDQUM2YMcPhR6537Nihfv363XTU22w26+6779YXX3yhixcvOnRNScrIyNDWrVvVt2/frLV9fX01cOBA7dq1S1ar1eFrAgAAAAAAAAAA53DlyhU9+OCDdktHNzc3zZs3T+np6UaParjcCto2bdpQ0P5p7969atWqld29qlixolauXGn0mEWa0xW0ly5d0qxZs1SvXr2brjkOCAjQyJEjFRUV5bBW32q1auXKlQoPD5enp+cN63l5eemRRx7Jt+uNExMTNW/ePDVu3DjrmHlISIjee+89nTlzhuuNAQAAAAAAAAAoxGw2m/7zn/9kPYGYXSZNmpQvh8gKmnXr1uVY0LZu3VoRERFGj+kUli5dqrp169rdq6ZNm2rLli1Gj1mkOV1Ba7VatWHDBvXq1UslS5a86T3Y3r17a9u2bUpLS8vzGn+XlJSkL7/8Mtt3bwMDAzV69GgdP348X455Hzt2TK+88ooqVqwos9msYsWKqUOHDlq5cqWSk5Mdvh4AAAAAAAAAAHAu48ePV7ly5eyWaU899ZSioqKMHtNw69evV5MmTShob8HUqVNVqVIlu3vVq1cvLcIuTwAAH8lJREFUHThwwOgxizSnK2glKTY2VpMnT1ZISIhcXFxuuHK4efPm+vbbb3XlypXbWuMvMTExGj9+vIKCgm64UtnNzU2tWrXSt99+6/A3byUpLS1Nq1evVqdOneTl5ZV1l/ywYcN06NAh7v0GAAAAAAAAAKAImDdvnkJCQri6Nxe5FbStWrWioJWUmZmpZ599VsWLF7e7V6+88ori4uKMHrVIc8qCNjU1VatWrVLXrl3l7e19w5emcuXKGjt2rE6ePHnbJabVatXmzZv16KOP3vT+bIUKFTRixAhFRkbmy93uZ8+e1dSpU1WzZk1ZLBZZLBY1bNhQn376qRISEhy+HgAAAAAAAAAAcD6bNm1Ss2bN7JZpAQEBWrFihdFjGm7Dhg05FrQtW7bUtm3bjB7TcPHx8eratassFku2+2SxWDR79mxdv37d6FGLNKcsaDMzMxUTE6O33npLtWvXvuHqYS8vL3Xv3l1r16697S/PhQsXNHv2bDVs2DDrDViTyaRixYrpvvvu06JFi3T58mWHvwVrs9m0a9cuPfHEEypTpoxMJpNKlCihnj17avPmzfny3i0AAAAAAAAAAHA+58+fV+fOne0Wj66urvroo4907do1o0c11MaNG9W0aVMK2lzktk/ly5fXzz//7PDuC/+OUxa00v+uAN60aZMGDBigsmXLZl0/bDabVbNmTU2ePFmnTp3K8yna9PR0bdu2TQMHDpSfn1/Wv2+xWFS9enWNGzdOx44dU0ZGxm1/ln+6du2avv/++xv2rkqVKpowYYKio6P5nwIAAAAAAAAAgCIiIyNDzzzzTI5X0g4dOlSnTp0yelRD5VY8tmjRgoJW0qxZsxQcHEyR7eSctqCVpIsXL+rrr79W27Zts95pNZlMKl68uDp16qTFixfn6X3Yv07oTpkyRXXr1r3h9GzZsmU1cOBArV+/Pt/+GuXUqVMaN25c1ru3bm5uatOmjRYvXqykpKR8WRMAAAAAAAAAADinDz74QJUrV7ZbqrVu3brIv6+6adOmHAvae++9V1u3bjV6TENlZGTk+v7s008/rePHjxs9apHn1AVtRkaGTpw4offee0/33HOPPDw8sk7R+vv768knn9Tvv//+r9c7f/685s2bp/bt28vHxyfr9KyPj4+6du2qRYsW6cKFC/lyktVqtWrjxo3q0aOHfHx8ZDKZVKZMGQ0aNEh79+6V1Wp1+JoAAAAAAAAAAMB5rVmzRvfcc4/dUq106dJavHhxvtz6WVBs3rw5x7d6KWilkydPqmPHjlm91z9jNpv1wQcfcFjQCTh1QSv97yrigwcPatKkSWrUqFFWSevq6qrg4GANHjxYq1at0sWLF3O97thqtSomJkZffvmlunTpIj8/v6xHkn19ffXAAw9o3rx5iouLy7dfcpcuXdKcOXPUoEEDubq6ymw2KzQ0VDNmzNC5c+e43hgAAAAAAAAAgCLm/Pnz6tKli91izWKxaMKECUpISDB6VMPkVtA2b968yBe0ixcvVp06dezuUYUKFbRs2bI8Px8Kx3H6glaSUlNT9ccff+jtt99W8+bN5e3tnXU1cFBQkB599FF9+eWXOnjwoJKSkm76YlmtViUkJGjLli2aPHmywsLCVKZMGVksFlksFpUtW1YPP/yw5s+fr9OnT+fbKdbMzEwdOnRIL774ogICAmQ2m+Xh4aGuXbtq7dq1SklJyZd1AQAAAAAAAACA88rIyNB///tf+fr62i3Xunbtqr179xo9qmG2bNmSY0HbrFkzbdmyxegxDZOZmamRI0eqdOnSdvfo/vvv1+7du40eFSogBa0kpaWl6ciRI5o9e7Z69OihypUry83NTa6uripbtqxatmypF154QZ9++qlWrVqlrVu3KiIiQhs3btSSJUs0ZcoU9e/fX3Xr1pWPj48sFos8PT0VGhqqwYMHa+nSpTp79my+Xg+QkpKi5cuXq3379llv6lasWFGjRo1SVFQUf7EAAAAAAAAAAEARNX/+fNWqVctuuebv768ff/yxyHYJW7duVfPmzSlo7Th9+rS6du0qFxcXu3v06quv6uzZs0aPChWgglb633XHcXFxWrVqlcaMGaPw8HAFBgbK09NTXl5eqlChgho1aqROnTqpd+/e6tu3r7p376527dqpdu3aKlOmjIoVK6YSJUqoRo0a6t69u6ZOnapt27bp4sWL+X53e1xcnN5++23VqFFDFotFLi4uatq0qebPn6/Lly/n69oAAAAAAAAAAMB5HT16VPfdd5/dcs1isWj8+PGKj483elRD5FbQNm3atEgXtIsWLcrxemNfX1998803Sk9PN3pUqIAVtJJks9l09epVHTlyREuXLtWECRPUt29ftWzZUrVq1VKlSpXk7++v8uXLq3z58ipXrpzKlSunihUrKjQ0VGFhYXrqqac0depU/fbbb4qJidH169fz/e3XjIwMbd++XY899phKlSolk8kkHx8fPfbYY9q+fTv/QwAAAAAAAAAAUISlpaXpueeek7e3t92SLTw8XDt37jR6VENs27Ytx4K2SZMm2rx5s9FjGsJqterFF19UyZIl7e5Pq1atFBERYfSo+FOBK2j/YrValZiYqJMnT2rLli36/vvvNXPmTI0fP14vvPCCnnrqKT3xxBN6+umnNXz4cI0bN06zZs3Sjz/+qF27dikuLk7Xrl3L91Ozf0lKStL8+fPVtGlTubu7y2QyqVq1apo8ebJiY2PzvSAGAAAAAAAAAADObd68eQoJCbFbspUqVUoLFixQWlqa0aPecREREbr33nspaLNx8OBBhYeHy2Kx2N2f//u//1NcXJzRo+JPBbag/YvNZlNKSooSExOVkJCg2NhYHT16VPv27dPu3bsVGRmpY8eOKTY2VgkJCUpKSlJaWtodL0SPHz+uV199VZUqVZLZbJa7u7vCw8O1bNkyXbt27Y7OAgAAAAAAAAAAnE9UVJTat28vs9mcbclmNpv13HPP6eTJk0aPesflVtA2bty4yBa0H330kYKDg+3uTZkyZfTtt99ym6sTKfAFbXZsNpvS09OVnp4uq9Vq+IPZaWlp+u2339SlSxeVKFEi6zHv4cOH6+DBg3fsFC8AAAAAAAAAAHBe6enpevnll7OeSswutWrV0po1a4rczZzbt2/PsaC95557tGnTJqPHvOMuXryofv36ZXV12eX+++/X7t27jR4Vf1MoC1pnc/78eU2fPl21a9eWi4uLLBaLGjVqpM8++0wXLlwwejwAAAAAAAAAAOAkfv75Z9WvX99u2ebu7q633nqryPULO3bsUIsWLSho/2H58uVq0KCB3X2xWCx66623dPHiRaNHxd9Q0OYzm82mPXv2aNCgQfLz85PJZFLx4sXVo0cPbdq0SampqUaPCAAAAAAAAAAAnERCQoJ69eold3d3u6VbmzZttH37dqNHvaNyK2jvvvvuIlfQpqSkaNiwYSpZsqTdfQkJCdHKlSu5zdXJUNDms2vXrmnRokVq1aqVPDw8ZDKZVLlyZb3++us6efJkkbuCAAAAAAAAAAAA2JeZmakPPvhAlStXtlu6eXt7a+bMmUpMTDR63Dtm586dORa0jRo10saNG40e847auHGj7r33XrtvFptMJg0aNEjHjx83elT8AwVtPouJidEbb7yh4OBgWSwWubq6qkWLFvr++++L1C9OAAAAAAAAAABwaw4cOKCwsLAci7eOHTsWqXdFd+3apZYtW1LQ/iktLU2vvPKKSpcubXdPSpUqpa+++kopKSlGj4t/oKDNRxkZGdq8ebN69eqVdbzc19dXAwcO1O7du2W1Wo0eEQAAAAAAAAAAOJm0tDSNGjUq6+nE7FKyZEl9+OGHunLlitHj3hG5FbQNGzYsUgXthg0b1KJFC1ksFrt70rlzZ+3Zs8foUZENCtp8dPHiRc2ZM0cNGjSQq6urzGazatasqSlTpiguLo7rjQEAAAAAAAAAQLY2bNigpk2b2i3fTCaT2rVrV2Teot29e3eOBW2DBg20YcMGo8e8I65du6bhw4erVKlSdvfD09NTM2bM4DZXJ0VBm08yMzP1xx9/aNiwYfL395fZbJaHh4c6deqklStXKjk52egRAQAAAAAAAACAk7p69apeeOEF+fr62i3hihcvrokTJyo+Pt7ocfPdnj171KpVKwpaST///LMaNWqU4xXYbdu21bZt2zgs6KQoaPNJSkqKli1bpvDwcHl6espkMikgIEAvvfSSjh49KpvNZvSIAAAAAAAAAADAia1du1b33HNPjqdo69Wrp19//VUZGRlGj5uvcito69evXyQK2jNnzmjAgAEqXrx4jqdnp06dqsuXLxs9LuygoM0nZ86c0ZQpUxQSEiKLxSIXFxfdc889mjt3ri5dumT0eAAAAAAAAAAAwMldvXpVI0aMUOnSpe2WcW5ubho8eLCioqKMHjdf7d27N8eCtl69elq/fr3RY+Yrm82mmTNnKjg4OMfSPjw8XBEREZyedWIUtPnAZrNp586dGjBgQNYvTW9vbz366KPaunWr0tLSjB4RAAAAAAAAAAAUAFu2bFGLFi1yvM7W399fc+bMUVJSktHj5pt9+/apdevWRbqg3bZtm8LDw+Xm5mZ3H0qWLKmPPvqIt2edHAVtPvhrb5o3by53d3eZTCYFBwfrzTffVExMDH+xAAAAAAAAAAAAbsn169c1YcIEBQQE5HhqsmXLltq4cWOhfWIxt4K2bt26hbqgTUhI0NChQ3N8k9hkMqlnz56KjIyki3JyFLT54NSpUxo7dqyCgoJkNpvl5uamtm3basmSJYX6r1cAAAAAAAAAAIDjHT58WJ07d87x5KSHh4eGDBmi48ePGz1uvti/f3+OBW2dOnW0bt06o8fMFxkZGfr4449VvXr1HE9SBwUFaeHChbp+/brRIyMXFLQOlp6ervXr16tHjx7y8fGRyWSSn5+fhgwZosjIyEL/SDcAAAAAAAAAAHAsq9WquXPnqmbNmjmenvT399eMGTN08eJFo0d2uMjISLVp06ZIFrS///672rZtm2NB7+rqqhEjRigmJsbocXELKGgdLCEhQR999JHq1q0rV1dXWSwW1atXT7NmzVJ8fLzR4wEAAAAAAAAAgAIoISFBzz77bK5X3NavX1/Lli1Tamqq0SM7VG4F7V133VUoC9rjx4/r8ccfl7e3d44/91atWmn9+vWyWq1Gj4xbQEHrQJmZmdq/f7+eeeYZlStXTiaTSV5eXurWrZvWrVunlJQUo0cEAAAAAAAAAAAFVEREhNq2bSsXF5ccT1J26dJFO3fuLFTv0f7xxx85FrShoaH6/fffjR7Toa5cuaIxY8bI398/x3K2fPnymj17thITE40eGbfIoQVt27Zti3RBm5ycrCVLlqht27by8PCQyWRSYGCgXn31VR0/frxQ/SIEAAAAAAAAAAB3Vmpqqj799FPVqFEjx8KuRIkSevbZZxUVFWX0yA5z4MABtW3btsgUtFarVbNnz1bNmjVlsVhyLOSHDh2qEydOGD0y/oU8F7TXrl3Td999p1atWmWVke3atdPPP/9cZAva8+fPa9q0aQoJCZHFYpGLi4uaNWumhQsX6vLly0aPBwAAAAAAAAAACrjz58/rhRdeUOnSpXMsacuVK6dJkybp7NmzRo/sELkVtLVr1y5UBe2PP/6o5s2b5/jurMlkUlhYmDZs2KD09HSjR8a/kOeCNi0tTcuWLVOHDh3k5eUli8Wijh076tdff9X169cdOWOBERcXp0mTJikoKEgmk0llypTRoEGDtHv3bv7HAAAAAAAAAAAADrFv3z517tw564ZTe6lWrZrmzJlTKA6RHTx4MMeCtlatWlq7dq3RYzrE5s2b1blzZ3l6eub4861atarmzZtXZA9OFmR5LmhtNpv27NmjF198UfXr11doaKheeukl7d+/v8iWkVeuXNE333yjTp06qXr16urYsaPmzZunhIQEZWZmGj0eAAAAAAAAAAAoBKxWq3766Sc1bNhQZrPZboFnNpvVoEEDLVq0SMnJyUaPfVsOHTqkdu3aFfqC9sCBA+rfv798fHxyLGe9vb01fvz4QnNCuqjJc0ErSZcuXdLatWs1ffp0TZ8+XevWrdPly5eLbBlptVp1/PhxffPNN5oyZYoWLlyoqKioIltYAwAAAAAAAACA/JGUlKT3339fwcHBORZ5Li4uatmypVavXq3U1FSjx86z3AramjVrFviC9uTJk3ruuedUpkyZXH+mTz75pA4ePCibzWb02MiD2ypobTabrl69qvPnz+v8+fO6du1akf8ipKen69KlSzp79qwuXbqktLS0IltYAwAAAAAAAACA/HP27FmNGDFCfn5+ORZ67u7u6tChQ4F+q/Tw4cM5FrQhISFas2aN0WPm2ZkzZ/TKK6/I398/x1PRJpNJ999/v9avX6+0tDSjx0Ye3VZBCwAAAAAAAAAAAOMcOnRIffr0UYkSJXIs9Tw9PfXQQw8pIiJCGRkZRo/9rx05ckRhYWGFsqBNSEjQ2LFjValSpVzL2QYNGuiHH37QtWvXjB4bt4GCFgAAAAAAAAAAoICy2WzasmWLOnToIHd39xzLveLFi6t3797as2dPgbsRNbeCtkaNGgWyoL1y5YomT56s4OBgWSyWHH9+QUFBmjVrli5dumT02LhNFLQAAAAAAAAAAAAFWFpamlasWKFmzZrJxcUlx5LPx8dHjz/+uPbv31+gStqjR4/mWNBWr15dv/32m9Fj/iuJiYmaOnWqQkJCcv25+fn5aeLEiTpz5ozRY8MBKGgBAAAAAAAAAAAKuOTkZC1YsEB169bN9ZpcX19f9e/fX7t37y4w1x0fO3ZM9913X6EpaC9evKh33nlHISEhcnV1zfHnVaJECb388ss6ceJEgSrVYR8FLQAAAAAAAAAAQCFw5coVffzxxwoJCcmx8PvrJG337t21YcMGpaWlGT16rnIraKtVq1ZgCtrTp0/r9ddfV9WqVXM9Oevh4aEhQ4bo4MGDBaZMR+4oaAEAAAAAAAAAAAqJhIQEvffeewoODs61pPXy8lJYWJgWL16spKQko0fPUVRUVI4FbdWqVfXrr78aPWau9u3bp+eee04VKlTI9c1ZNzc3DRgwQHv27FF6errRo8OBKGgBAAAAAAAAAAAKkbNnz2rSpEmqXLlyriWtm5ubGjRooKlTpyouLs7o0e06fvy4wsPDC2xBm56eruXLl6t79+4qXbp0rtdQu7q6qk+fPoqIiCgQJ5zx71DQAgAAAAAAAAAAFDJxcXGaOHGigoKCci1pzWazqlSpoiFDhmjnzp1OeVozt4I2ODjYaQvac+fO6YMPPlCzZs3k5eV1S6V5nz59tHXrVqWmpho9PvIBBS0AAAAAAAAAAEAhFBcXp3fffVdVq1bNtRQ0mUzy9fVV+/bt9dVXX+nChQtGj3+DEydO5FjQVqlSRatXrzZ6zBvYbDZt3rxZzzzzjKpUqSJXV9dcfwYeHh4aMGCAIiIiKGcLMQpaAAAAAAAAAACAQurcuXP66KOPFBoamuubp3+d3qxVq5aGDx+uXbt2Oc31uidPnlT79u0LTEF79uxZzZw5U2FhYSpZsmSuVxqbTCZ5e3tryJAh2rNnj9PsO/IHBS0AAAAAAAAAAEAhduHCBc2fP19NmjSRm5vbLZ2mLV26tMLCwjRz5kzFxcUpMzPT0M+QW0EbFBTkFAVtSkqKVq1apSeffFLBwcG3vN/ly5fXyJEjdejQIae8YhqORUELAAAAAAAAAABQyCUlJWnFihXq1KnTLb2DajKZ5OLiouDgYPXv318//fSTrly5Ytj8p06dyrGgrVy5slatWmXYfJmZmdq7d69ee+01NWnSRCVKlLilPTaZTKpZs6amTJmi6OhoZWRkGPYZcOdQ0AIAAAAAAAAAABQBqamp2rZtm5566in5+fndcoHo5eWl+vXra/jw4dq8ebOuX79+x2ePjo5Whw4dnLKgPXnypD744APdf//9Klu27C1dJW0ymWQ2m9W6dWt99dVXio+PN/yUMu4cCloAAAAAAAAAAIAiwmaz6ciRI3rzzTdVvXr1Wy4TTSaTSpUqpXvvvVdjxoy54++k5lbQVqpU6Y4XtGfOnNHnn3+uHj16qHLlyrd8nbHJZFLx4sXVr18//frrr0pKSrqjc8N4FLQAAAAAAAAAAABFzNmzZ7VgwQK1adNGHh4et1wsms1mlStXTm3bttWbb76pyMjIO1LUxsTE5FjQBgYGauXKlfk+hySdP39eX3/9tfr27asaNWqoWLFit7x/JpNJVapU0ZgxYxQZGanU1NQ7MjOcCwUtAAAAAAAAAABAEXTt2jVt2rRJTz/9tMqVK/evSkaLxaKAgACFhYXpzTff1L59+/K1qD19+rTuv/9+Qwvas2fP6uuvv1a/fv1Uq1YteXp6/qs9c3V1VVhYmObOnaszZ87IZrPl67xwXhS0AAAAAAAAAAAARVRGRoaOHTum6dOnq1GjRv/qmt6/F7Xt2rXT6NGjtXHjRl29etXhc+ZW0FasWDFfCtrMzEwdPXpUH3/8sXr37q2aNWv+62LWZDKpfPnyGjp0qNavX8+VxqCgBQAAAAAAAAAAKOouXbqk1atX68knn/zXp2n/uvq4bNmyatq0qZ566il98sknOnjwoMOu8I2Njc2xoK1QoYJ++eUXh6wl/e+07LJlyzRq1Ch17NhRwcHB//oq479OzbZp00azZ8/WiRMnlJ6e7rAZUXBR0AIAAAAAAAAAAEBWq1VHjx7V7Nmz1bZtW3l5ef3rQtJkMsnLy0vVqlVTu3btNHjwYM2aNUvbt2+/rZOj+V3QWq1WRUVF6YcfftCrr76qbt26qX79+ipdurRcXFzytA/Vq1fX//3f/2nDhg1KTExUZmZmnudD4UJBCwAAAAAAAAAAgCyJiYmKiIjQhAkTVLduXbm7u+epoDSZTCpevLiCg4N17733qnfv3hozZoy++eYb/fHHH0pOTr7lmeLi4tSxY0e76wQEBPyrgtZmsyk2Nla//vqrpk2bpkGDBql9+/a66667VKZMmTyXsiaTSeXKldOAAQO0aNEixcbGymq15uXHgEKMghYAAAAAAAAAAAA3yMzM1Llz5/Tbb7/p5ZdfVkhIiFxdXfNcWv513a+fn59CQ0PVpk0b9enTR6NHj9Ynn3yiZcuWaffu3Tp37ly21wDnVtD6+/trxYoV2X6OxMREHTlyRL///rvmz5+vt99+W4MHD1anTp109913q1KlSvL09JTZbL6tz1eqVCk98sgjmjt3ro4cOeKw651R+FDQAgAAAAAAAAAAIFs2m02nT5/WL7/8ohEjRjikqP0rbm5uKlOmjKpWrar69eurZcuW6tSpk/r27asRI0bonXfe0SeffKKvvvpKn376qRo2bJhjOfraa69p4cKF+vzzzzV9+nS99tpreuqpp9StWzeFhYWpcePGqlWrlipUqOCQQvavlC5dWt27d9dnn32myMjIf3UyGEUTBS0AAAAAAAAAAABylJGRoZiYGK1cuVIjR45U3bp1VaxYMYcUnNmdtPXx8VHFihVVtWpV1axZUzVr1pS3t3eO/01QUJBq166tGjVqKCgoSH5+fipWrJjDitjsTu326dNHX375pfbv369r164Z/WNCAUFBCwAAAAAAAAAAgFuSkZGhuLg4/f7775o4caJatmyp4sWL50sB6owxm82qXr26nnnmGX377bc6dOiQrl+/bvSPBQUMBS0AAAAAAAAAAAD+lczMTCUkJGjbtm2aNWuW+vbtq0qVKsnFxcXwEjU/4u3trTZt2mjcuHFavny5Tpw4wRuzyDMKWgAAAAAAAAAAAOTZ1atXdejQIS1fvlyTJk1St27dVLFixQJf1np7e6t58+YaPny4vvrqK0VERCg+Pl5Wq9XoLUcBR0ELAAAAAAAAAACA22az2XThwgXt379fy5cv19SpUzVgwAA1aNCgQFyD7OLiosqVK6tLly567bXXtGDBAm3ZskUxMTGcloVDUdACAAAAAAAAAADAoTIzM3XlyhUdPXpUGzZs0IIFCzRu3Dj16tVLderUkZeXl1MUsoGBgQoPD9ewYcM0a9Ys/fLLL9q7d6/OnTun9PR0o7cRhRQFLQAAAAAAAAAAAPJVenq64uPjdeDAAa1bt04LFy7U22+/raFDh+qhhx5So0aNVK5cObm6uubbdcU1a9bUfffdp4EDB2rMmDGaM2eOVqxYoZ07dyo6OlrJycnKzMw0eqtQBFDQAgAAAAAAAAAA4I6yWq26fPmyTp06pf3792vjxo1avny5vv76a73//vt67bXX9Pzzz+s///mP+vXrp+7du+uBBx5Qu3bt1KxZMzVo0ED169dX48aN1apVK3Xo0EEPPfSQevfurYEDB2rIkCF6+eWX9dZbb2nOnDlavHix1qxZo507d+ro0aM6d+6cUlJSKGRhCApaAAAAAAAAAAAAOAWr1aqkpCSdO3dO0dHRioqK0uHDhxUZGak9e/Zox44d2rJlizZs2KANGzZo8+bNioiI0K5du7Rv3z4dPHhQR48e1YkTJxQbG6tLly4pNTWVIhZOhYIWAAAAAAAAAAAAAO4QCloAAAAAAAAAAAAAuEMoaAEAAAAAAAAAAADgDqGgBQAAAAAAAAAAAIA7hIIWAAAAAAAAAAAAAO4QCloAAAAAAAAAAAAAuEMoaAEAAAAAAAAAAADgDqGgBQAAAAAAAAAAAIA7hIIWAAAAAAAAAAAAAO4QCloAAAAAAAAAAAAAuEMoaAEAAAAAAAAAAADgDqGgBQAAAAAAAAAAAIA7hIIWAAAAAAAAAAAAAO4QCloAAAAAAAAAAAAAuEMoaAEAAAAAAAAAAADgDvl/GtABFhwsQgMAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Amazon Braket provides two managed simulators: SV1 and TN1. SV1 calculates and keeps track of the full state vector evolution, supporting simulations of circuits with up to 34 qubits. TN1 is a tensor-network simulator, where each gate in a circuit is represented as a tensor. Compared with SV1, TN1 can simulate a larger number of qubits for circuits with local gates or other special structure, but typically is slower for circuits with long-range or all-to-all gate structure." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### State Vector Simulator" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# set up the managed simulator SV1\n", "device = AwsDevice(\"arn:aws:braket:::device/quantum-simulator/amazon/sv1\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# define a 15-qubit GHZ circuit\n", "n_qubits = 15\n", "ghz = ghz_circuit(n_qubits)\n", "\n", "# run GHZ circuit on SV1\n", "result = device.run(ghz, shots=1000).result()\n", "counts = result.measurement_counts\n", "print(counts)\n", "\n", "# plot using Counter\n", "plt.bar(counts.keys(), counts.values());\n", "plt.xlabel('bitstrings');\n", "plt.ylabel('counts'); \n", "\n", "# print counts of all-zero-string\n", "print('Counts for all-zero bitstring:', counts['0'*n_qubits])\n", "# print counts of all-one-string\n", "print('Counts for all-one bitstring:', counts['1'*n_qubits])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "__NOTE__: Use unique task ID to look up task details in AWS console." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print unique TASK ID (task = execution of individual circuit)\n", "task_id = result.task_metadata.id\n", "# recover other metadata information such as number of qubits\n", "n = result.task_metadata.deviceParameters.paradigmParameters.qubitCount\n", "print('Task ID:', task_id)\n", "print('Number of qubits:', n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Running quantum circuits on QPU devices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this section we show how to run circuits on QPU devices. We can run our circuit on both the superconducting machine from Rigetti and the ion-trap machine provided by IonQ. As shown below, one can seamlessly swap between different devices without any modifications to the circuit definition, by just re-defining the device object. We also show how to recover results using the unique ARN associated with every task. This tool is useful in order to deal with potential delays if your quantum task sits in the queue for some time waiting for execution. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quantum Hardware: Rigetti" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we submit the Bell pair circuit to the superconducting quantum chip provided by Rigetti. Depending on our position in the queue, we may have to wait for some time till our circuit is actually run. However, thanks to asynchronous execution, we can always come back and recover the results by providing the unique ID associated with every task. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# set up device\n", "rigetti = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1\")\n", "\n", "# create a clean circuit with no result type attached.\n", "#(This is because some result types are only supported when shots=0)\n", "bell = Circuit().h(0).cnot(0, 1) \n", "\n", "# add the Z \\otimes Z expectation value\n", "bell.expectation(Observable.Z() @ Observable.Z(), target=[0,1])\n", "\n", "# run circuit \n", "rigetti_task = rigetti.run(bell, shots=1000)\n", "\n", "# get id and status of submitted task\n", "rigetti_task_id = rigetti_task.id\n", "rigetti_status = rigetti_task.state()\n", "# print('ID of task:', rigetti_task_id)\n", "print('Status of task:', rigetti_status)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The task is submitted and we can regularly (or irregularly) check the status of this task by executing the following cell. You may easily build logic around this query to wait for this task to complete before your code proceeds. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print status\n", "status = rigetti_task.state()\n", "print('Status of (reconstructed) task:', status)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now search in the console for the Rigetti task in us-west-1 Region. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Quantum Hardware: IonQ" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we submit our example Bell state circuit to IonQ. To this end, we set the device as AwsDevice(\"arn:aws:braket:::device/qpu/ionq/ionQdevice\"). This task may not readily be executed but enter a queue for this specific machine. While we can interrupt our kernel (and work on something else), we can always recover our results using the unique ID of this task. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Setup yourself the same circuit using the IonQ device,\n", "# specifying the device Amazon Resource Name and number of shots.\n", "\n", "# setup device\n", "ionq = AwsDevice(\"INSERT_ARN_HERE\")\n", "\n", "# run circuit\n", "ionq_task = ionq.run(bell, shots=INSERT_N_SHOTS_HERE)\n", "\n", "# get id and status of submitted task\n", "ionq_task_id = ionq_task.id\n", "ionq_status = ionq_task.state()\n", "# print('ID of task:', ionq_task_id)\n", "print('Status of task:', ionq_status)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print status\n", "status = ionq_task.state()\n", "print('Status of (reconstructed) task:', status)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Task Recovery" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By simply grabbing the unique task ID associated with the quantum tasks we have submitted above, we can recover this task at any point in time and (once the status is completed) visualize and analyze the corresponding results. Note that apart from other metadata, you can retrieve the compiled circuit that was actually run on the Rigetti device. More information about the compiling process can be found [here](https://pyquil-docs.rigetti.com/en/v2.22.0/compiler.html#partial). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Rigetti" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# recover task\n", "task_load = AwsQuantumTask(arn=rigetti_task_id)\n", "\n", "# print status\n", "status = task_load.state()\n", "print('Status of (reconstructed) task:', status)\n", "print('\\n')\n", "# wait for job to complete\n", "# terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", "if status == 'COMPLETED':\n", " # get results\n", " rigetti_results = task_load.result()\n", " # print(rigetti_results)\n", " \n", " # get all metadata of submitted task\n", " metadata = task_load.metadata()\n", " # example for metadata\n", " shots = metadata['shots']\n", " machine = metadata['deviceArn']\n", " # print example metadata\n", " print(\"{} shots taken on machine {}.\\n\".format(shots, machine))\n", " \n", " # get the compiled circuit\n", " print(\"The compiled circuit is:\\n\", rigetti_results.additional_metadata.rigettiMetadata.compiledProgram)\n", " \n", " # get measurement counts\n", " rigetti_counts = rigetti_results.measurement_counts\n", " print('Measurement counts:', rigetti_counts)\n", "\n", " # plot results: see effects of noise\n", " plt.bar(rigetti_counts.keys(), rigetti_counts.values())\n", " plt.xlabel('bitstrings')\n", " plt.ylabel('counts')\n", " plt.tight_layout()\n", " plt.savefig('rigetti.png', dpi=700)\n", " \n", "elif status in ['FAILED', 'CANCELLED']:\n", " # print terminal message \n", " print('Your task is in terminal status, but has not completed.')\n", "\n", "else:\n", " # print current status\n", " print('Sorry, your task is still being processed and has not been finalized yet.')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### IonQ" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# recover task\n", "task_load = AwsQuantumTask(arn=ionq_task_id)\n", "\n", "# print status\n", "status = task_load.state()\n", "print('Status of (reconstructed) task:', status)\n", "\n", "# wait for job to complete\n", "# terminal_states = ['COMPLETED', 'FAILED', 'CANCELLED']\n", "if status == 'COMPLETED':\n", " # get results\n", " results = task_load.result()\n", " # print(ionq_results)\n", " \n", " # get all metadata of submitted task\n", " metadata = task_load.metadata()\n", " # example for metadata\n", " shots = metadata['shots']\n", " machine = metadata['deviceArn']\n", " # print example metadata\n", " print(\"{} shots taken on machine {}.\".format(shots, machine))\n", " \n", " # get measurement counts\n", " counts = results.measurement_counts\n", " print('Measurement counts:', counts)\n", "\n", " # plot results: see effects of noise\n", " plt.bar(counts.keys(), counts.values())\n", " plt.xlabel('bitstrings')\n", " plt.ylabel('counts')\n", " plt.tight_layout()\n", " plt.savefig('bell_ionq.png', dpi=700)\n", " \n", "elif status in ['FAILED', 'CANCELLED']:\n", " # print terminal message \n", " print('Your task is in terminal status, but has not completed.')\n", "\n", "else:\n", " # print current status\n", " print('Sorry, your task is still being processed and has not been finalized yet.')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Taking it further" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check gate compatibility across devices, so you can write circuits that can run without any modification across devices." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# print all (the usual suspects) available gates currently available within SDK\n", "gate_set = [attr for attr in dir(Gate) if attr[0] in string.ascii_uppercase]\n", "print('Gate set supported by SDK:\\n', gate_set)\n", "print('\\n') \n", "\n", "# the Rigetti device\n", "device = AwsDevice(\"arn:aws:braket:us-west-1::device/qpu/rigetti/Aspen-M-1\")\n", "supported_gates = device.properties.action['braket.ir.jaqcd.program'].supportedOperations\n", "# print the supported gate set\n", "print('Gate set supported by the Rigetti device:\\n', supported_gates)\n", "print('\\n') \n", "\n", "# the IonQ device\n", "device = AwsDevice(\"arn:aws:braket:::device/qpu/ionq/ionQdevice\")\n", "supported_gates = device.properties.action['braket.ir.jaqcd.program'].supportedOperations\n", "# print the supported gate set\n", "print('Gate set supported by the IonQ device:\\n', supported_gates)\n", "print('\\n') \n", "\n", "# the Oxford device\n", "device = AwsDevice(\"arn:aws:braket:eu-west-2::device/qpu/oqc/Lucy\")\n", "supported_gates = device.properties.action['braket.ir.jaqcd.program'].supportedOperations\n", "# print the supported gate set\n", "print('Gate set supported by the Oxford device:\\n', supported_gates)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "conda_braket", "language": "python", "name": "conda_braket" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 4 }