''' Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import sys from pyspark import SparkContext from pyspark.sql import SparkSession from pyspark.sql.types import StructField, StructType, StringType, LongType from pyspark.sql.functions import udf, lit from awsglue.utils import getResolvedOptions from awsglue.context import GlueContext args = getResolvedOptions(sys.argv, ['s3_bucket', 's3_output_prefix']) # set your bucket name below s3_bucket= args['s3_bucket'] s3_output_prefix = args['s3_output_prefix'] s3_prefix = "a2d2/camera_lidar/*/camera/*/*.json" print(f"s3_bucket: {s3_bucket}") # Create a schema for the dataframe schema = StructType([ StructField('cam_name', StringType(), True), StructField('cam_tstamp', LongType(), True), StructField('image_png', StringType(), True), StructField('pcld_npz', StringType(), True) ]) # create spark session sc = SparkContext() glueContext = GlueContext(sc) spark = glueContext.spark_session # read json data from S3 s3_uri = f"s3a://{s3_bucket}/{s3_prefix}" df=spark.read.json(s3_uri, schema, multiLine=True) df.printSchema() df.show(10) # drop all rows with any null value df_clean=df.dropna(how='any') def scene_id(file_name): parts=file_name.split('_') return parts[0] scene_id_udf = udf(scene_id, StringType()) def s3_key(file_name, cam_name): parts=file_name.split('_') s3_key = f"a2d2/camera_lidar/{parts[0][0:8]}_{parts[0][8:]}/{parts[1]}/cam_{cam_name}/{file_name}" return s3_key s3_key_udf = udf(s3_key, StringType()) def sensor_id(file_name, cam_name): parts=file_name.split('_') sensor_id = f"{parts[1]}/{cam_name}" return sensor_id sensor_id_udf = udf(sensor_id, StringType()) df_image = df_clean.select(lit("a2d2").alias("vehicle_id"), scene_id_udf(df_clean.image_png).alias('scene_id'), sensor_id_udf(df_clean.image_png, df_clean.cam_name).alias('sensor_id'), df.cam_tstamp.alias('data_ts'), lit(s3_bucket).alias('s3_bucket'), s3_key_udf(df_clean.image_png, df_clean.cam_name).alias('s3_key')) #save prepared data frame S3 bucket df_image.write.save(f"s3://{s3_bucket}/{s3_output_prefix}/image", format='csv', header=True) df_pcld = df_clean.select(lit("a2d2").alias("vehicle_id"), scene_id_udf(df_clean.pcld_npz).alias('scene_id'), sensor_id_udf(df_clean.pcld_npz, df_clean.cam_name).alias('sensor_id'), df.cam_tstamp.alias('data_ts'), lit(s3_bucket).alias('s3_bucket'), s3_key_udf(df_clean.pcld_npz, df_clean.cam_name).alias('s3_key')) df_pcld.write.save(f"s3://{s3_bucket}/{s3_output_prefix}/pcld", format='csv', header=True)