{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### NY Taxi Train Amazon Forecast with Weather Index\n",
"\n",
"Our goal is to predict the number of NY City yellow taxi pickups in the next 7 days for each of 260 pickup zones.
\n",
"\n",
"To do this, we will use Amazon Forecast with 1 hour frequency and 7 day forecast horizon. For the demo, we'll use 8 months of historical data for training, and we will use the built-in Weather Index feature of Amazon Forecast that reads in 14-day weather predictions as related data.
\n",
"\n",
"
\n", " | timestamp | \n", "item_id | \n", "actual_value | \n", "location | \n", "
---|---|---|---|---|
342843 | \n", "2019-11-03 01:00:00 | \n", "79 | \n", "2085 | \n", "40.8_-74.0 | \n", "
342876 | \n", "2019-11-03 01:00:00 | \n", "148 | \n", "1710 | \n", "40.8_-74.0 | \n", "
\n", " | X | \n", "Y | \n", "OBJECTID | \n", "Shape_Leng | \n", "Shape_Area | \n", "zone | \n", "LocationID | \n", "borough | \n", "
---|---|---|---|---|---|---|---|---|
78 | \n", "-73.985214 | \n", "40.727944 | \n", "79 | \n", "0.042625 | \n", "0.000108 | \n", "East Village | \n", "79 | \n", "Manhattan | \n", "
140 | \n", "-73.959713 | \n", "40.766839 | \n", "141 | \n", "0.041514 | \n", "0.000077 | \n", "Lenox Hill West | \n", "141 | \n", "Manhattan | \n", "
147 | \n", "-73.990718 | \n", "40.719212 | \n", "148 | \n", "0.039131 | \n", "0.000070 | \n", "Lower East Side | \n", "148 | \n", "Manhattan | \n", "
150 | \n", "-73.967808 | \n", "40.797866 | \n", "151 | \n", "0.054890 | \n", "0.000129 | \n", "Manhattan Valley | \n", "151 | \n", "Manhattan | \n", "
\n", " | item_id | \n", "actual_value | \n", "LocationID | \n", "zone | \n", "
---|---|---|---|---|
timestamp | \n", "\n", " | \n", " | \n", " | \n", " |
2019-07-01 | \n", "79 | \n", "214 | \n", "79 | \n", "East Village | \n", "
2019-07-01 | \n", "141 | \n", "46 | \n", "141 | \n", "Lenox Hill West | \n", "
\n", " | timestamp | \n", "item_id | \n", "actual_value | \n", "location | \n", "
---|---|---|---|---|
310876 | \n", "2019-10-21 23:00:00 | \n", "140 | \n", "64 | \n", "40.8_-74.0 | \n", "
69443 | \n", "2019-07-25 10:00:00 | \n", "146 | \n", "8 | \n", "40.8_-74.0 | \n", "
345917 | \n", "2019-11-04 05:00:00 | \n", "7 | \n", "12 | \n", "40.8_-74.0 | \n", "
517288 | \n", "2020-01-08 18:00:00 | \n", "7 | \n", "13 | \n", "40.8_-74.0 | \n", "
533277 | \n", "2020-01-15 03:00:00 | \n", "113 | \n", "7 | \n", "40.8_-74.0 | \n", "
\n", " | item_id | \n", "actual_value | \n", "p60_weather | \n", "p60_no_weather | \n", "
---|---|---|---|---|
timestamp | \n", "\n", " | \n", " | \n", " | \n", " |
2020-02-16 00:00:00 | \n", "161 | \n", "154.0 | \n", "186.035034 | \n", "229.013199 | \n", "
2020-02-16 01:00:00 | \n", "161 | \n", "67.0 | \n", "117.110497 | \n", "132.239929 | \n", "