# *************************************************************************************** # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * # * # Permission is hereby granted, free of charge, to any person obtaining a copy of this * # software and associated documentation files (the "Software"), to deal in the Software * # without restriction, including without limitation the rights to use, copy, modify, * # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to * # permit persons to whom the Software is furnished to do so. * # * # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A * # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * # *************************************************************************************** import argparse import logging import sys import pandas as pd from features.feature_variables_dynamic import FeatureVariablesDynamic from core.fraud_detector_event import FraudDetectorEvent from core.fraud_detector_train import FraudDetectorTrain MODEL_TYPE_ONLINE_FRAUD_INSIGHTS = 'ONLINE_FRAUD_INSIGHTS' EVENT_TYPE_NAME = "demoevent" def train(model_name, s3uri, sample_data, wait, role): """ Runs a demo training job using simple mandatory features :param sample_data: :param model_name: :param s3uri: :param wait: :param role: :return: """ model_variables = FeatureVariablesDynamic(df=pd.read_csv(sample_data), true_labels=[1]) model_event = FraudDetectorEvent() trainer = FraudDetectorTrain() # Create event model_event.create_event(event_type_name=EVENT_TYPE_NAME, description="This is a demo event", entity="democustomer", model_variables=model_variables) # Create model model_details = trainer.run(model_name=model_name, model_variables=model_variables, model_description="This is a demo model", model_type=MODEL_TYPE_ONLINE_FRAUD_INSIGHTS, s3_training_file=s3uri, role_arn=role, wait=wait, event_type_name=EVENT_TYPE_NAME) ## NOTE: Important, so build can use regex to pick up the model version print("##ModelVersion##:{}".format(model_details["modelVersionNumber"])) print("##ModelName##:{}".format(model_details["modelId"])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--s3uri", help="The s3 training data file url", required=True) parser.add_argument("--sampledata", help="A subset of training data used to dynamically create variables in fraud detector", required=True) parser.add_argument("--model", help="The name of the model", required=False, default="demo_model") parser.add_argument("--role", help="The role arn to be used by Fraud detector to access s3 data", required=True) parser.add_argument("--wait", help="""Waits until the training job completes. When false triggers the training job and exists immediately without waiting for it to complete.. """, required=False, default=0, type=int, choices={0, 1}) parser.add_argument("--log-level", help="Log level", default="INFO", choices={"INFO", "WARN", "DEBUG", "ERROR"}) args = parser.parse_args() print(args.__dict__) # Set up logging logging.basicConfig(level=logging.getLevelName(args.log_level), handlers=[logging.StreamHandler(sys.stdout)], format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') # Run train(role=args.role, model_name=args.model, wait=args.wait, s3uri=args.s3uri, sample_data=args.sampledata)