
Deploy an Amazon Aurora MySQL Serverless v2
DB cluster with recommended best practices
using AWS CloudFormation

This document covers how to build an Amazon Aurora MySQL cluster. The cluster is based on AWS best practices for

security and high availability and you can create it quickly by using AWS CloudFormation. It will walk through a set of

sample CloudFormation templates, which you can customize to suit your needs.

Amazon Aurora is a MySQL-compatible relational database built for the cloud. Aurora combines the performance and

availability of high-end commercial databases with the simplicity and cost-effectiveness of open-source databases.

The MySQL-compatible edition of Aurora delivers up to five times the throughput of standard MySQL running on the
same hardware. This enables existing MySQL applications and tools to run without being modified. The combination of

MySQL compatibility with Aurora enterprise database capabilities provides an ideal target for commercial database

migrations.

When you are starting your journey with Aurora MySQL and want to set up AWS resources based on the recommended

best practices of AWS Well-Architected Framework, you can use the CloudFormation templates provided here.

Prerequisites
Before setting up the CloudFormation stacks, note the following prerequisites.

1. You must have an AWS account and an AWS Identity and Access Management (IAM) user with sufficient

permissions to interact with the AWS Management Console and services listed in the Architecture overview

section. Your IAM permissions must also include access to create IAM roles and policies created by the AWS
CloudFormation template.

2. The VPC CloudFormation stack requires three Availability Zones for setting up the public and private subnets.

Make sure to select an AWS Region that has at least three Availability Zones.

3. Create an EC2 key pair using Amazon EC2 console in the AWS Region where you are planning to set up the

CloudFormation stacks. Make sure to save the private key, as this is the only time you can do this. You use this
EC2 key pair as an input parameter while setting up the Amazon Linux bastion host CloudFormation stack.

https://aws.amazon.com/rds/aurora/details/postgresql-details/
https://aws.amazon.com/rds/aurora/details/postgresql-details/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/relational-database/
https://aws.amazon.com/relational-database/
https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html#waf
https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html#waf
https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html#waf
https://docs.aws.amazon.com/wellarchitected/latest/userguide/intro.html#waf
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair

Architecture overview
Here is a diagram of our architecture and a brief summary of what you are going to set up.

The sample CloudFormation templates provision the network infrastructure and all the components shown in the
architecture diagram. The CloudFormation templates are divided into the following three stacks.

1. Template to set up Amazon Virtual Private Cloud (VPC), subnets, route tables, internet gateway, NAT gateway,

Amazon Simple Storage Service (Amazon S3) gateway endpoint, AWS Secrets Manager interface endpoint, and other

networking components.

2. Template to set up a Linux Bastion Host in an Amazon Elastic Compute Cloud (Amazon EC2) Auto Scaling group to

connect to the RDS DB cluster.

3. Template to set up Aurora MySQL Serverless v2 DB cluster with DB admin user password stored in AWS Secrets
Manager.

The stacks are integrated using exported output values. Using three different CloudFormation stacks instead of one

nested stack gives you some flexibility. For example, you can choose to deploy the VPC and bastion host CloudFormation

stacks once and Aurora MySQL Serverless v2 DB cluster CloudFormation stack multiple times in an AWS Region.

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://aws.amazon.com/secrets-manager/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://aws.amazon.com/ec2/autoscaling/
http://aws.amazon.com/lambda

Best practices
The architecture built by these CloudFormation templates supports AWS best practices for high availability and security.

The VPC CloudFormation template takes care of the following:

1. Sets up three Availability Zones for high availability and disaster recovery. Availability Zones are geographically

distributed within a Region and spaced for best insulation and stability in the event of a natural disaster.

2. Provisions one public subnet and one private subnet for each Availability Zone. We recommend using public

subnets for external-facing resources and private subnets for internal resources to reduce the risk of exfiltration

of data.

3. Creates and associates network ACLs with default rules to the private and public subnets. AWS recommends
using network ACLs as firewalls to control inbound and outbound traffic at the subnet level. These network ACLs

provide individual controls that you can customize as a second layer of defense.

4. Creates and associates independent routing tables for each of the private subnets, which you can configure as

necessary to control the flow of traffic within and outside the Amazon VPC. The public subnets share a single
routing table, because they all use the same internet gateway as the sole route to communicate with the

internet.

5. Creates a NAT gateway in each of the three public subnets for high availability. NAT gateways offer major

advantages over NAT instances in terms of deployment, availability, and maintenance. NAT gateways allow

instances in a private subnet to connect to the internet or other AWS services while they prevent the internet
from initiating a connection with those instances.

6. Creates an S3 VPC endpoint, which provides resources in private subnets; e.g., AWS Lambda, to communicate

with Amazon S3 in a secure and reliable way.

7. Creates AWS Secrets Manager interface VPC endpoint, which provides Lambda resources in private subnets to

communicate in a secure way with Secrets Manager service without requiring internet access.

The Amazon Linux bastion host CloudFormation template takes care of the following:

1. Creates an auto scaling group spread across the three public subnets set up by the VPC CloudFormation
template. The Auto Scaling group ensures that the Amazon Linux bastion host is always available in one of the

three Availability Zones.

2. Sets up Elastic IP address and associates with the Amazon Linux bastion host. Elastic IP address makes it easier to

remember and allow these IP addresses from on-premises firewalls. If an instance is terminated and the Auto
Scaling group launches a new instance in its place, the existing Elastic IP address is re-associated with the new

instance. This ensures that the same trusted Elastic IP address is used at all times.

3. Sets up an EC2 security group and associates with the Amazon Linux bastion host. This allows locking down

access to the bastion hosts to known CIDR scopes and port for ingress.

4. Creates an Amazon CloudWatch Logs log group to hold the Amazon Linux bastion host’s shell history logs and
sets up a CloudWatch metric to keep track of SSH command counts. This helps in security audits by allowing you

to check when and by whom the bastion host is being accessed.

5. Creates a CloudWatch alarm to monitor the CPU on the bastion host and send SNS notification when the alarm is

triggered.

The Aurora MySQL Serverless v2 DB cluster template takes care of the following:

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

1. Creates a Multi-AZ Aurora Serverless v2 DB cluster with a primary instance and an Aurora replica in two separate

Availability Zones for a production or pre-production type of environment. We recommend this for high
availability. Aurora automatically fails over to an Aurora Replica in case the primary DB instance becomes

unavailable.

2. Places the Aurora Serverless v2 DB cluster in the private subnets according to AWS security best practice. To

access the DB cluster, use the Amazon Linux bastion host, which is set up by the Linux bastion host

CloudFormation template.

3. Sets up an EC2 security group and associates with the Aurora Serverless v2 DB cluster. This allows locking down

access to the DB cluster to known CIDR scopes and port for ingress.

4. Generates a random admin user password by using AWS Secrets Manager and associates this password with the

Aurora Serverless v2 DB cluster. A Python-based Lambda function backed by CloudFormation custom resource

configures automatic password rotation every 30 days using AWS Secret Manager provided Serverless
Application Repository. AWS recommends rotating passwords regularly to prevent unauthorized access in case

the password is compromised.

5. Creates a DB cluster parameter group with the following setting and associates with Aurora Serverless v2 DB

cluster.

These DB cluster parameters are provided as a general guide. You should review and customize them to suit

your needs.

Parameter Value Description

require_secure_transport

OFF This ensures that connections to the Aurora instance use SSL. It’s turned off but if

you require SSL please enable this. More info can be found here.

6. Creates a DB parameter group with the following settings and associates with Aurora Serverless v2 DB instances.

These DB instance parameters are provided as general guidance. You should review and customize them to suit

your needs.

Parameter Value Description

slow_query_log 1 The slow query log can be used to find queries that take a long time to execute

and are therefore candidates for optimization. The slow query log consists of

SQL statements that take more than long_query_time seconds to execute

long_query_time 5 If a query takes longer than this many seconds, the server increments
the Slow_queries status variable. If the slow query log is enabled, the query is
logged to the slow query log file

innodb_print_all_deadlocks 1 When this option is enabled, information about all deadlocks in InnoDB user
transactions is recorded in the mysqld error log.

7. Creates a customer-managed encryption key using AWS KMS and enables Aurora Serverless v2 DB cluster

encryption at rest by using that key.

https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Security.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Security.html
https://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slow_queries
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_print_all_deadlocks
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_deadlock
https://dev.mysql.com/doc/refman/5.7/en/error-log.html
http://aws.amazon.com/kms
http://aws.amazon.com/kms
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Overview.Encryption.html

8. Configures backup retention to 35 days and 7 days for production and non-production type of environment

respectively. This is to ensure the production database can be recovered to any point in time in the last 35 days.
Similarly, the non-production database can be recovered to any point in time in the last 7 days.

9. Automatically enables Enhanced Monitoring for production type of environment with one-second granularity so

that you can view real time OS metrics and troubleshoot database performance issues.

10. Automatically enables Performance Insight and configures performance insight data encryption using a

customer-managed AWS KMS encryption key. Sets performance insight data retention to 2 years and 7 days for
production and non-production type of environments respectively. Performance insight helps to quickly detect

database performance problems and determine when and where to take action.

11. Enables IAM database authentication to use authentication token instead of database password for database

login using AWS Identity and Access Management (IAM). When you use IAM database authentication, network

traffic to and from the database is encrypted using Secure Sockets Layer (SSL).

12. Disables automatic minor version upgrade option for production type of environment, so that you can perform
the upgrade according to your schedule when all non-production environments are upgraded and you have

successfully tested application functionality.

13. Configures CloudWatch alarms for key CloudWatch metrics like CPUUtilization and FreeLocalStorage for the

Aurora Serverless v2 database instances and sends SNS notification when the alarm is triggered.

14. Configures RDS event notifications for db-cluster, db-instance and db-parameter-group source types to notify
you when an important event is generated.

15. Attaches optional common tags to the Aurora cluster and Database instances. AWS recommends assigning tags

to your cloud infrastructure resources to manage resource access control, cost tracking, automation, and

organization.

Set up the resources using AWS CloudFormation
These CloudFormation templates are provided as a general guide. You should review and customize them to suit your

needs. Some of the resources deployed by these stacks incur costs as long as they are in use.

Setup VPC, subnets, and other networking components

1. Choose Launch Stack. This button automatically launches the AWS CloudFormation service in your AWS account

with a template. You are prompted to sign-in if needed. You can view the CloudFormation template from within

the console if required.

2. Choose the AWS Region where you want to create the stack on top right of the screen and then choose Next.

This CloudFormation stack requires three Availability Zones for setting up the public and private subnets. Select

an AWS Region that has at least three Availability Zones.

3. The CloudFormation stack requires a few parameters, as shown in the following screenshot.

• Stack name : Enter a meaningful name for the stack, e.g., amsvpc

• ClassB 2nd Octet : Specify the 2nd Octet of IPv4 CIDR block for the VPC (10.XXX.0.0/16). You can specify
any number between and including 0 to 255, e.g., specify 33 to create a VPC with IPv4 CIDR block

10.33.0.0/16.

To learn more about VPC and subnet sizing for IPv4, refer AWS VPC Documentation.

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Monitoring.OS.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/USER_Monitoring.OS.html
https://aws.amazon.com/rds/performance-insights/
https://aws.amazon.com/rds/performance-insights/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAMDBAuth.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Monitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Monitoring.html
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://s3-us-west-2.amazonaws.com/aws-aurora-cloudformation-samples-github/cftemplates/VPC-3AZs.yml
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html#vpc-sizing-ipv4
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://s3-us-west-2.amazonaws.com/aws-isv-pnp-cfn-templates/cftemplates/VPC-3AZs.yml

4. After entering all the parameter values, choose Next.

5. On the next screen, enter any required tags, an IAM role, or any advanced options, and then choose Next.

6. Review the details on the final screen, and then choose Create to start building the networking resources.

It takes about five minutes to create the stack. Check the AWS CloudFormation Resources section to see the Physical IDs
of the various components set up by this stack.

Now let’s set up the Amazon Linux bastion host, which you use to login to the Aurora MySQL Serverless v2 DB

cluster.

Setup Amazon Linux bastion host

1. Choose Launch Stack. This button automatically launches the AWS CloudFormation service in your AWS account

with a template to launch.

2. Choose the AWS Region where you want to create the stack on top right of the screen and then choose Next.

3. The CloudFormation stack requires a few parameters, as shown in the following screenshots.

• Stack name : Enter a meaningful name for the stack, e.g., amsbastion

• ParentVPCStack : Enter the CloudFormation stack name for the VPC stack that was set up in the previous

step. Refer to the CloudFormation dashboard in AWS Console to get this, e.g., amsvpc

• Allowed Bastion External Access CIDR : Enter allowed CIDR block in the x.x.x.x/x format for external SSH

access to the bastion host.

• Key Pair Name : Select the key pair name that was set up in the prerequisites section.

• Bastion Instance Type : Select Amazon EC2 instance type for the bastion instance.

• LogsRetentionInDays : Specify the number of days you want to retain CloudWatch log events for the

bastion host.

• SNS Notification Email : Enter the Email notification list used to configure a SNS topic for sending
CloudWatch alarm notifications.

• Bastion Tenancy : Select the VPC Tenancy in which the bastion host is launched.

• Enable Banner : Select if you want a banner to be displayed when connecting via SSH to the bastion.

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://s3-us-west-2.amazonaws.com/aws-aurora-cloudformation-samples-github/cftemplates/VPC-SSH-Bastion.yml
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://s3-us-west-2.amazonaws.com/aws-isv-pnp-cfn-templates/cftemplates/VPC-SSH-Bastion.yml

• Bastion Banner : Use Default or provide AWS S3 location for the file containing Banner text to be

displayed upon login.

• Enable TCP Forwarding : Select if you want to Enable/Disable TCP Forwarding. Setting this value to true
enables TCP forwarding (SSH tunneling). This can be very useful but it is also a security risk, so we

recommend that you keep the default (disabled) setting unless required.

• Enable X11 Forwarding : Select if you want to Enable/Disable X11 Forwarding. Setting this value to true

enables X Windows over SSH. X11 forwarding can be very useful but it is also a security risk, so we
recommend that you keep the default (disabled) setting unless required.

• AltInitScript: Optional. Specify custom bootstrap script AWS S3 location to run during bastion host setup

• OSImageOverride: Optional. Specify an AWS Region-specific image to use for the instance.

4. After entering all the parameter values, choose Next.

5. On the next screen, enter any required tags, an IAM role, or any advanced options, and then choose Next.

6. Review the details on the final screen, Check the box for “I acknowledge that AWS CloudFormation might

create IAM resources” and then choose Create to start building the networking resources.

It takes about five minutes to create the stack. Check the AWS CloudFormation Resources section to see the Physical IDs
of the various components set up by this stack.

You are now ready to set up the Aurora MySQL Serverless v2 DB cluster.

Setup Aurora MySQL Serverless v2 DB cluster

1. Choose Launch Stack. This button automatically launches the AWS CloudFormation service in your AWS account

with a template to launch.

2. Choose the AWS Region where you want to create the stack on top right of the screen and then choose Next.

3. The CloudFormation stack requires a few parameters, as shown in the following screenshots.

• Stack name : Enter a meaningful name for the stack, e.g., amsprod-serverless-v2-sampleapp

• EnvironmentStage : Select the environment stage (dev, test, pre-prod, prod) of the Aurora MySQL DB

cluster. If you specify “prod” option for this parameter, DB backup retention is set to 35 days, enhanced

monitoring is turned on with one-second granularity and automatic minor version upgrade is disabled. If

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://aws-isv-pnp-cfn-templates.s3.us-west-2.amazonaws.com/cftemplates/Aurora-MySQL-DB-Cluster-J.yml
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?templateURL=https://s3-us-west-2.amazonaws.com/aws-isv-pnp-cfn-templates/cftemplates/Aurora-MySQL-Serverless-v2-DB-Cluster.yml

you specify either “prod” or “pre-prod” option for this parameter, a Multi-AZ Aurora DB cluster with a

primary instance and an Aurora replica in two separate Availability Zones is created

• DBName : Enter database name, e.g., sampledb

• MinCapacity: Enter minimum Aurora Capacity Units (ACU). 1 ACU provides 2GiB of memory and

corresponding compute and networking. Valid ranges are from 0.5 to 128, in increments of 0.5

• MaxCapacity: Enter maximum Aurora Capacity Units (ACU). 1 ACU provides 2GiB of memory and

corresponding compute and networking. Valid ranges are from 1 to 128, in increments of 0.5

• DBPort: Enter TCP/IP Port for the Database Instance

• DBUsername : Enter Database admin username, e.g., dbadmin

• DBEngineVersion : Select Database Engine Version

• DBSnapshotName : Optional. Enter the DB Snapshot ID to restore. Leave this blank if you are not

restoring from a snapshot

• NotificationList : Enter the Email notification list that is used to configure a SNS topic for sending

CloudWatch alarm and RDS Event notifications

• ParentVPCStack : Provide Stack name of parent VPC stack. Refer CloudFormation dashboard in AWS

Console to get this, e.g., amsvpc

• ParentSSHBastionStack : Provide Stack name of parent Amazon Linux bastion host stack. Refer

CloudFormation dashboard in AWS Console to get this, e.g., amsbastion

• ParentDMSStack: Optional. Provide stack name of parent DMS stack, if applicable, otherwise, leave

blank

• Application : Optional. The Application tag is used to designate the application of the associated AWS

resource. In this capacity, application does not refer to an installed software component, but rather the

overall business application that the resource supports

• ApplicationVersion : Optional. The ApplicationVersion tag is used to designate the specific version of the

application

• ProjectCostCenter : Optional. The ProjectCostCenter tag is used to designate the cost center associated

with the project of the given AWS resource

• ServiceOwnersEmailContact : Optional. The ServiceOwnersEmailContact tag is used to designate

business owner(s) email address associated with the given AWS resource for sending outage or

maintenance notifications

• Confidentiality : Optional. The Confidentiality tag is used to designate the confidentiality classification of

the data that is associated with the resource

• Compliance : Optional. The Compliance tag is used to specify the Compliance level for the AWS resource

4. After entering the all the parameter values, choose Next.

5. On the next screen, enter any required tags, an IAM role, or any advanced options, and then choose Next.

6. Review the details on the final screen, Check the 3 boxes to acknowledge the Capabilities and transforms and

then choose Create Stack to start building the networking resources.

It takes about 25 minutes to create the stack. This stack internally launches another CloudFormation stack to set up the
Secrets Manager provided Lambda function, which is used to rotate the Aurora MySQL DB cluster master user password.

Check the AWS CloudFormation Resources section to see the Physical IDs of the various components set up by these

stacks.

Now, let’s login to the Aurora MySQL DB cluster and run some basic commands.

Login to Aurora Serverless v2 DB cluster using the Amazon Linux bastion host
Note: The following instructions assume that you have a Linux computer and use SSH client to connect to the bastion

host. For details on how to connect using various clients, refer AWS Documentation.

1. Go to AWS Secrets Manager dashboard in AWS Console. Select the secret name from the list of secrets that

matches your Aurora MySQL DB cluster CloudFormation stack name. Scroll down the page and select Retrieve

secret value. Note down the password under Secret key/value, which you use to login to the Aurora MySQL

database.
2. In the AWS Console, go to the EC2 dashboard.

3. Select on the EC2 instance (bastion host) created by the CloudFormation stack.

4. Click on the Connect button to connect to the bastion host.

5. Select the Session Manager tab and click the Connect button.

6. On the CloudFormation Dashboard, select the Aurora DB cluster Stack. Select Outputs tab and note the MySQL

CommandLine parameter value, which you use to login to the Aurora MySQL database using mysql client.

7. MySQL binaries were already set up on the Amazon Linux bastion host by EC2 Auto Scaling Launch Configuration.

Copy/paste the MySQLCommandLine value at the command prompt of the bastion host.

https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://www.postgresql.org/docs/9.6/app-psql.html

 mysql -h ClusterEndpoint -P Port -u DBUsername -p DBName

When prompted, enter the master user password that you copied in step 1 above.

Summary
This document showed you how to deploy an Amazon Aurora MySQL Serverless v2 DB cluster based on AWS security

and high availability best practices using AWS CloudFormation. WE hope you find the sample CloudFormation templates
helpful and encourage you to modify them to support your business’ needs. You might also consider modifying the

Python based database bootstrap script used to create the AWS Lambda function. In it you could include all the standard

database commands that you typically run after setting up an Aurora MySQL Serverless v2 DB cluster.

Before you use the Aurora DB cluster to set up your application-related database objects, consider creating the

following:

• An application schema.

• A user with full access to create and modify objects in the application schema.

• A user with read-write access to the application schema.

• A user with read-only access to the application schema.

Use the master user that was set up with the Aurora DB cluster to administer the DB cluster only. The user with full
access to the application schema should be used to create and modify application related database objects. Your

application should use the read-write user for storing, updating, deleting and retrieving data. Any reporting kind of

application should use the read-only user. It’s a database security best practice to grant the minimum privileges required

to perform required database operations.

Review AWS CloudTrail, AWS Config and Amazon GuardDuty services and configure them for your AWS account,

according to AWS security best practices. Together these services help you monitor activity in your AWS account; assess,

audit, and evaluate the configurations of your AWS resources; monitor malicious or unauthorized behavior and detect

security threats against your AWS resources.

Some of the AWS resources deployed by the CloudFormation stacks in this document incur cost as long as they are in

use. Delete the stacks if you no longer need them. To clean up your stacks, use the CloudFormation console to remove
the three stacks you created in reverse order.

Training Links

Database Learning Plan: AWS Relational Database Services

https://aws.amazon.com/rds/aurora/details/postgresql-details/
https://aws.amazon.com/rds/aurora/details/postgresql-details/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/
https://aws.amazon.com/config/
https://aws.amazon.com/config/
https://aws.amazon.com/guardduty/
https://aws.amazon.com/guardduty/
https://explore.skillbuilder.aws/learn/learning_plan/view/81/database-learning-plan-aws-relational-database-services

	Prerequisites
	Architecture overview
	Best practices
	Set up the resources using AWS CloudFormation
	Setup VPC, subnets, and other networking components
	Setup Aurora MySQL Serverless v2 DB cluster

	Login to Aurora Serverless v2 DB cluster using the Amazon Linux bastion host
	Summary
	Training Links

