# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import boto3 import pandas as pd import json import ast import csv import os kendra = boto3.client('kendra') s3 = boto3.client('s3') def lambda_handler(event, context): metric_type = "TREND_QUERY_DOC_METRICS" snapshot = get_kendra_analytics_snapshot(metric_type) upload_to_s3(snapshot, metric_type) def get_kendra_analytics_snapshot(metricType): index_id = os.environ['INDEX_ID'] interval = "ONE_MONTH_AGO" response = kendra.get_snapshots( IndexId= index_id, Interval= interval, MetricType= metricType ) metrics_data=pd.read_json(json.dumps(response['SnapshotsData'])) metrics_data.columns=['Date', 'Data'] metrics_data['Data'] = metrics_data['Data'].apply(ast.literal_eval) metrics = metrics_data.explode('Data').reset_index(drop=True) metrics = metrics.join(pd.DataFrame(metrics.pop('Data').tolist())).groupby('Date').sum() metrics = metrics.transpose() tmp_file = '/tmp/snapshot.csv' metrics.to_csv(tmp_file, index=True) return tmp_file def upload_to_s3(local_file, metric_name): bucket = 'kendra-analytics-bucket' object_name = 'snapshot_result/{}/{}.csv'.format(metric_name, metric_name) s3.upload_file(local_file, bucket, object_name)