MZ@ !L!This program cannot be run in DOS mode. $1D=uz*nuz*nuz*n|n{z*nf+owz*nf)ovz*nf/o~z*nf.o|z*nJ+ovz*n+owz*nuz+nz*nJ)otz*nJ'ozz*nJ*otz*nJntz*nJ(otz*nRichuz*nPEd3[" FP\`QPR0 +@t T.text `.rdata@@.datap|V@.pdata+,@@.rsrc 0 @@.reloct@ @BHHXHp HPHHWH `H cI%HHtE@  LF3LL$0HKg7T$0H HH\$@Ht$HH _3H\$HT$UVWHHPe8I贮HHt|eHXLIeeC fo EHEEEKE LM83LEHK6U8HX HH\$pHP_^]3HHXHp WH `L@H3H "xiH\$@H H+ H bڭHHt=LCHVHHLL$8 T$8Hv HH\$0Ht$HH _3H\$Ht$H|$AVH H:LH6P^Cy HHHH?HHkHrH+HDH;5m^HHNb^H;Q  HsHVIHCH~HC(H qH HH HHyH\$0Ht$8H|$@H A^HC(H#NJH HxH\$UVWAVAWHHPe@LMHLELHH'(LEHUHMϋ LEHUMϋH aJHHN H `2HHT HuLU@LuHIGLT$(HWHKHD$ LNMFI.u IFIP0H.u HFHP0U@IܠuALH HH/H H+ HH$HPA_A^_^]H/u HGHP0H+u HCHP03HMHH)uHAH(MAt)u2AH(LD$PH(MI2M+ IE3$BHD$PH(H\$UVWAVAWHH@e@LEHHH T3/HuH% H.1 LHUHL3LHUL3H ,_gHH H _OHH LuLU@L}HHFLT$(HWHKHD$ MNMGI/I.u IFIP0U@Hu>LH HH/H H+ HH\$pH@A_A^_^]H/u HGHP0H+u HCHP03HEHHMHH)tHEIGIP0ZHAP0LI[IkIsI{ ATAVAWH0AMDME2 HA AHII3IA(H9\tUH|$xHH\$pI{I[LHH\LHH\H\$PHl$XHt$`H|$hH0A_A^A\IHI@(H9\HAA\A3HOHD$xH|$xMLL$pIH|$ !3ۅtLHHh^sAA?AEAAHD؊A3H/+A3A3HHD$x@SHLt,EAuIPI@(H|t8D2AAA[guHJHB(H|t AI2I˺M[(tA:u AAAtLD$(H\$Ht$WH  A@Hw#@ @;HcHcHcH\$0Ht$@H _H\$Ht$UWAVHH@e0LMHLELHHALEHU8M΋LEHUM΋H )[dHHH}HHHu8LM0LGHVcH.t/H/t5U0I4HH\$`Ht$hH@A^_]HFHP0HGHP0HM8H)uHAP03H\$WH A8HM@[t#@;H\$0H _3HHXHpWH `HLLHP tlH &ZaHH7H|$HLFHHLL$@HWH/t'T$@H8'HH\$0Ht$8H _HGHP03HHXHpWH `HLLHP !tlH YHHH|$HLFHHLL$@HWH/t'T$@H蘙HH\$0Ht$8H _HGHP03HHXHpWH `HLLHP tlH X!HH[H|$HLFHHLL$@HWfH/t'T$@HKHH\$0Ht$8H _HGHP03HHXHp WH `L@H3H xiH\$@HH+H /XjHHt=LCHVHHLL$8T$8HPHH\$0Ht$HH _3HHXHp WH `L@H3H xiH\$@HH+H W΢HHt=LCHVHHLL$8,T$8H贗zHH\$0Ht$HH _3H\$Hl$Ht$WH IIHHSLLHHuH\$0Hl$8Ht$@H _H\$Hl$Ht$WH IIHHucuHOHG(H|t1LHHXLHHUH\$0Hl$8Ht$@H _Ã}$tLHHWtŀ#ouH\$Hl$Ht$WH IIHHuMuHOHG(H|tCLHHlWt3LHHUH\$0Hl$8Ht$@H _ t}$tLHH#Wt#H\$Ht$UWAVHHPe0LMHLELH"HQLEHU8M΋LEHUM΋H 9UtHHrH}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I;KHH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Hl$VWAVH0d$XMIHl$pHHAH{LD$XH3$INHIHH;D$XLHH#HH+HNgmHHH_H;HOHob1%}H;HL,ULH^IHRH\$PHl$`H0A^_^Hl$ Mu/LźHHTDAE#A#D;uHICD+AH;JAMA+HHXHpWH `HLLHP tlH SEHHwH|$HLFHHLL$@HW2 H/t'T$@HgHH\$0Ht$8H _HGHP03HHXHpWH `HLLHP tlH jR襝HH H|$HLFHHLL$@HW>H/t'T$@H|HH\$0Ht$8H _HGHP03@USVWATAVAWH$H0 HMH3H IAMHAHHD$0A@ L$@D$PD$THJHB(H||AD2LZHLZMS MIHIIHH3H+H=ʚ;H='9HdH HHHI;G'A,fo WE0HE HEH HEH HEH HEE0D$`0E0EMEMD$hL$xEMH;d$XM'ILL$0Ld$0LH|$ H36LKHL$`L+L$0MLK3$ILL$0HD$0LD$`HD$LHHMHD$ +HD$LHLL$0HD$ LD$`HMKu(HKHC(H|tLHUHM#AG(HT$0LljD$XHLHT$0NEE D$`"E(2H H3H0 A_A^A\_^[]M+HMMII?AE3M}1LHT$0H-N뮺AHuLH yHQLA(ILHʚ;sBH'Hd,H HHL 5I;Lt3HJHyqH@zZH;HvHH;rgHrN H;HH;HH H@BHHHuIH:uHHsH TH;HH >Hd H;Ho#H;HƤ~H;HHHHHHHHHHʚ;s0H'snHdH HH3LI;LH@zZH;sjHvHH;rBHrN H;HH;HH H@BshHHHH TH;HH uHd H; Ho#H;HƤ~H;HH6HHHHHHH@USVWAVH$`HHGH3Hfo HELWHEM3D$`0D$PLD$0D$XHIID$hHfo'MIHD$0HD$TL$xHD$HKD$8D$\+#HT$0HL$`M HD$0Lt$(LL$`HD$ LH3cD$`HH3HĠA^_^[]HHXHpWH `HLLHP utlH JHHH|$HLFHHLL$@HW>H/t'T$@HHH\$0Ht$8H _HGHP03H\$Ht$UWAVHl$HfoLIHIHIHHEoH+EAIHEHEoHE?E'HE7I@eeeHEA@(EA@,MHUIHMHˉEE 'KtDLEHHUHEu#eHELMHD$ LEIHa%E% L$I[ Is0IA^_]IHpuALHR#H u$ HFH+HHCHHXHpWH `HLLHP tlH H%HHH|$HLFHHLL$@HW>H/t'T$@HHH\$0Ht$8H _HGHP03H\$Hl$Ht$ WH IIHuZHJHB(H|t8HjHj LHULHH\$0Hl$@Ht$HH _AHuA3HH\$WH  IHt7MA #IH$H  H\$0H _3H\$Hl$Ht$ WH  IIHHLLHHH\$8Hl$@Ht$HH _HHXHpWH `HLLHP tlH GQHHH|$HLFHHLL$@HWH/t'T$@H(HH\$0Ht$8H _HGHP03H\$Ht$UWAVHl$Hfo*LIHIHIHHEoH+EAIHEHEoHE?E'HE7I@eeeHEA@(EA@,MHUIHMHˉEE cGtDLEHHUEEu#eHELMHD$ LEIHAE% L$I[ Is0IA^_]IHuALHu #H- uHFH+HHCIFHHXHpWH `HLLHP tlH &EaHH%H|$HLFHHLL$@HW~H/t'T$@H8HH\$0Ht$8H _HGHP03H\$Ht$UWAVHHPe0LMHLELH&HULEHU8M΋LEHUM΋H =DxHHnH}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I?GHH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03HHXHhHpHx AVH0MHl$`IHH A"ujHHl$ u/HH2=t;HHLHHDLIH>BH\$@Hl$HHt$PH|$XH0A^HHHA tH\$Ht$UWAVHHPe0LMHLELHJHyLEHU8M΋LEHUM΋H aB蜍HHH}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0IcHH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03HHXHhHpHx AVH0MHl$`IHH A"u$HHl$ %u2HH1t>HHHLHHBLIH_@H\$@Hl$HHt$PH|$XH0A^HHA vH\$Ht$UWAVHH@e0LEHHH 36H]HkH+wLHU8L36LHUL3H ~@蹋HH=HuHHLu8HE0LKHD$ LFIVI.t+H.t1U0H耀uDHH\$`Ht$hH@A^_]IFIP0HFHP0HM8H)t HEHE8H/u HGHP03HAP0H\$Ht$UWAVHHPe0LMHLELH2HaLEHU8M΋LEHUM΋H I?脊HH0H}HHHu8HE0MNHD$ LGHV6H.t/H/t5U0IK HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Ht$UWAVHHPe0LMHLELHHILEHU8M΋LEHUM΋H 1>lHHLH}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I3~%HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03HHXHhHpHx AVH0MHl$`IHHu} A"uuHHl$ u/HH-t;HHLHH>LIH6<H\$@Hl$HHt$PH|$XH0A^HHxA txHHHXHhHpHx AVH0MHl$`IHH A"u$HHl$ 9u2HHj6t>HHHLHH=LIHs;H\$@Hl$HHt$PH|$XH0A^HHA tuHHXHhHpHx AVH0H|$`IHxMHHu8IH5LHH˅thLx6ucHKHHKH;M|"H\$@Hl$HHt$PH|$XH0A^ȋ@puHKHC(H|uM뮁@H\$WH AI MH٨ u 3H\$0H _LD$PuAu LELA(I^<H$H H\$WH HyH~HcB(LL+L9A H\$8H _M H6P^Cy IHH?HHkHzL+HDMtHI(L 3HDK4HTHAH;=6HHN6H;S HH{"HC(LSJ|dHK(HH H9uHHH~H\$WH HHHIE3ЅHϋAE3&H\$0H _@UHHHAHEHAHEHAHEHA HEHA(HEHBHEHBHEHBHEHB HEHB(HEȊHM$ @EЊHU$ @EIHĀ]DDAHBA@HAHBHAHBHAHB HA HB(HA(DH\$Ht$H|$UHHDAH2HuZA$  u_,)Ѕt'#+ڋL$I[IsI{ I]HGH9FtσH9FM A##+‹ӄtA##;HIH~|HWH~sHFAHeA@HeHEHF HEHF(HE$HM @HUEHUHGHMHEHG HEHG(HEDEE(3H9G3H+H\$WH HHHIE3ЅHϋAE3H\$0H _@USVWAVH$`HH+3H3Hfo HHHMIHMHD$`0WHL$`LHMD$hL$xJ83ɅILL$LH9FLD$0fo7HHOFHL$PHD$0HAF,D$\D$8HD$HKHD$THD$LHLL$0HD$ LD$`H:LD$LHHT$0y5LLD$0HH2D$`6AD$L% @ HH3HĠA^_^[]H\$WH HuLIHA(J|t H:H9yH\$0H _H\$HYMLRLKLIM;|H\$uLAHA(J|tL+II;}A+@USVWAVAWH$H8 HM1H3H IMHHHJHB(H|tHʰH/uLNILNIHIIHHH3H+H=ʚ;FH='oHd!H HHHI;FA~,AAND$0AF L$@D$PD$T|fo WE0HE HEH HEH HEH HEE0D$`0E0EMEMD$hL$xEMH;Td$XM>ILL|$0LD$0HH LKHL$`L+L$03LKDB;ILL$0HD$0LD$`HD$LHHMHD$ wHD$LHLL$0HD$ LD$`HMO/u(HKHC(H|tLHUHM"AF(HT$0LljD$XHrLHT$0M2EED$`EH H3oH8 A_A^_^[]IAHH=HHE3E33HuLHeH=@BH=H=HH|u u, R tH@USVWATAWH$HH H-H3H0IMHHIHJHB(H|Ax,AAHD$8A@ L$HD$XD$\fo WE0HE0HEH0HEH0HEH0HE E0D$h0E0EMEMD$pMEMH;uMHMs2hHud$`M'Id$0LL$0LD$8Ld$8HH@L$0 LKHCH+D$8I@HL$hLD3DB ILL$8HD$8LD$hHD$THHMHD$ \ HD$THLL$8HD$ LD$hHM4,u(HKHC(H|tLHUHMAG(HT$8LljD$`HLHT$8HGLHT$8"/E@@fnE@r|D$h@E@H0H3=HH A_A\_^[]u3HAzIhH\$VH`HID A~HKHC(H|tvyHKH|$pH{HHjHx_AHT$xLH$H$gHCHAHD$xH|$pH$H`^H$3H`^H"HD$00HD$ HD$PLHD$XHHL$0/HD$8H\$0SH\$H|$MPHH_Cy 5LIIHHkL+иLDH!IPI@(ALDLI;vH#H\$H|$L+L 3IK4HHL uI+L+IIILHK3HC(HDKјI HH;sIHLI;~&3HAHDIIMII;AÃ@USVWAVH$`HH3)H3Hfo HHHMHL$XWHXLID$00HL$pI3ED$8LD$`MfoMMHHL$0HD$xKLEHL$HD$`XMH\$ LD$0HH1LIH+D$0$HH3HĠA^_^[]HHXHhHpHx AVH 2MIHHxMLE3ɊMHHVu HoH;.4H\$0Hl$8Ht$@H|$HH A^II;tLIذH+.HHHoMLHHHA AHt@A돀!II#NJ3LILI(LIIAIL+MHI(HAHHHHIRHDH=ʚ;)H='s0HdsH HHHkHHIJH=HHH=@BH=H=HH@USVWAVH$HH&H3Hfo 5HHD$XIWD$00HEHE HELD$8AfoH+EȐL$HH,LIfo LHEM;Hd$|AL+CHXLIeKefoLCHL$pET$xED$`L;LLt$`LD$`HH!@HH3<HA^_^[]HHXHhHpHx AVH HMAI؋M@Mx+LD$PHH*H\$0Hl$8Ht$@H|$HH A^HKHC(H|HtoHt$PILHHHtHgwLMHHNu Ht@LL$PMHHhSE3E3 P@SH@d$0HD$0HD$ HKD$0LD$pA AbH@[@USVWATAUAVAWH$HX H!$H3H@fo H@WHEH@D$h0HE(MH@E0HHD$`MD$80HL$hILD$pMEMD$@L$P)(ALD$hHUHM06HMH LHd LqIwM#H˲B pAHC(HHLSHCM,7IHDHt$pfoѤE3I4$HXLIHHMEHEKD}D}DUHMHEKD}D}DUEEEMAHM@HLc JD@LEȀLψ HHL$8HEHEb63HT$hLt$xL;u6LMH|$ LD$8HL$8*LHUHL$8B%LMH|$ L¡HT$8HL$8!LMH|$ LD$8HH u IMHVLHL$hLMH|$ MHT$hHL$8MLMH|$ LHT$8Hl@@D$h@E@ *D$8@-9H@H3ܸHX A_A^A]A\_^[]IH+HD$pIL+uHMMLLuHUHH nIFH=-HHL$hDLMHELeHD$ HT$hHL$8IEHL$@EyHHL$@ML$M+ $HT$HIALRLL;HHBHHL$@H+H+HHH HHXHhHpHx AVH0IIHHEALt$`ALpHpGQMHHNu HoH;.H\$@Hl$HHt$PH|$XH0A^H+.HHY HoMLHHHA AHt@ALt$`LLt$ uD LALt$ HHsHA@LELHA0H!Ia \ @USVATAUAVAWH$HPHH3H@fo XHE@HELH@D$h0HEHH@E0HEHEE0HE0WHBMHHMHEHAMHELD$pMEMEfoMfo ӟEM +IOIG(H|@foHL$hd$LHXLId$PI׃d$XHD$@IMHD$THD$`D$0D$HKt$\#$Hd$pAwIGHHL|$`HL$hL+O?MHT$h1!LD$`HMHM+!lEHUH HD$LHLL$0HD$ LEHeHAHD$LLHD$(LMHD$0HUHD$ ŌHD$LLHD$(LD$hHD$0HUHD$ HM蜌bt>HD$LLLL$0HD$ HHM EHT$hHMDLK(HMIIHHHH+ȅLkD$h@@E@uE@uA$HT$0AL$D$0AD$ L$@D$PD$TMHH@H3+HPA_A^A]A\^[]MHT$hLHL$h7IGHHHMI LmI@I ME3HrIeMƺH[IHHH\$H|$UHHIH HfoTHE؀PHEMHEHMHBIHEHBHEHBHEHB HEHB(HUHEHE EАEHE>J3L$I[I{ I]fHyH<t3H\$Ht$WH IIH t'HSHK(HH5LL9SH\$0Ht$8H _LǺH3H\$Hl$Ht$ WH  IIH#3@+HHK(I#NJIHsAHAIH+H9HC(HxDDLCJTHʚ;H'HdsEH HHHl$@Ht$HIkHHHKH\$0H _H:H9Q QIHBH\$Hl$Ht$WATAUAVAWH0HH_Cy 5H$LHMIHMAHHkH+MDDcL+L-ߢMlHT$ MH$L+H$HHHuuL\$ ML9u_HEHy!3ۋH\$`Hl$hHt$pH0A_A^A]A\_H<uH+xHtIILII M+LI H;ssN4L\$ MHT$ MH$,ML$M9uL\$ H+IHGLI vXIIwGAAAAId 3IIHIL+MIEAueHIHHHHA AtsAAAuI@zZ{I]xEclAHGzGIIH+HHHHHkdHH"LIvH"Io#IƤ~IrN At?AAu[HBzՔIHHHi€IHG6XOIIH+HHHHHiAHaw̫IHHHiiAt9A_HKY8m4IH HHi'9I THw/$IIH+HHH HHiH4ׂCIHHHi@BAH/KimIIH+HHHHHiʚ;H\$WH IHu H\$0H _HSHK(kH`HH\$WH@d$0HD$0HD$ IHLD$0HH8D$0LD$pA AkH\$PH@_H\$LLAE3H#NJM;s&KIE3H;A3H;HEK IH;tH\$ILILHA(JTHʚ;s.H'spHdH HHIkHHIHH@zZH;s^HvHH;HrN H;HH;HH H@BrcHsmHHHHd H;sXHo#H;s{HƤ~H;HHLHHH9HHH& H#NJH;HHH TH;HH H]xEcH;HHH\$Ht$ WH HAHHq(HH|HHIHl$8H;LLHHLH){HH6P^Cy HkHH?HHkHGH9KHEH HH;HHC H;t t%H;H{HHl$8H\$@Ht$HH _LD$0HE3HH;HA Ht!HC(HCHCH3H{H9S ~LL$0D$0AHm|$0HC(uHKHC H\$Ht$WH IIHcuH\$0Ht$8H _HSHK(H'HHH9C~ɺHGHCHHCLHH?EH$LE3HEtjAt8At:AtDAt[AAuAHIwtIAAtI3DMt uMt  uAȋMAIAHB(uHA(HHHHHHH+MttuIAiLL$ SWATAUAVH0E2E3IIHL.A$Hl$`+Ht$h@L|$pA@2H\u"DEEE2AuHOHG(H|HEt@$A@uHKHC(H|H$EHt$xLHl$(HIHt$ tAHl$(ELHt$ HIPu!LHIEtiHl$(EHt$ _Ht$hHl$`L|$pH0A^A]A\_[@HKHC(H|E3MAIDDLHl$ tA]uHkI rLHI`@uHKHC(H|t1AIAE3E3+Et @$L$I4H+E%H$HL$ IH$ELL$xHIHD$ 蓠 AA#D+IDEBA谴pHHXHhHpWAVAWH@`HHH#HEIDtAH\$`Hl$hHt$pH@A_A^_HrH$:HuwLEHD$0H$ILHD$ HL$0ufHT$0HMHMHHH;ALH|LHt!'HD7H_ME3AEA3:. HH LH;tf$u`uMHRI@(LLHQHA(H|t6MtLIMPILIIMPM;t|I= Mu3t3LI[IkIsWATAWHPHBHIHMxHICLHBIKICEHBIICHB ICHB(ICH$" PD$ =LHL;{HT$(@"H$HHT$0H?:HEHH3H+H=ʚ;H@zZH;Hd H;Ho#H;H]xEcH;HHK8H;&3L\$PI[ Ik(Is0IA_A\_LML+MIAHH3H+H=ʚ;ssH='Hd,H=HHK8H;}H='rH=@BH=HHdHdH=HHHH@zZH;EHvHH;H TH;HH qH=@BrfH=H=HHKH= INgmLAHL$HH H=HHH HHyH HHH\$H|$ UH$`HHH3Hfo HEHD$XLHAHHAW3D$00D$8HXL$HHHfoLL$`HXLIMMHL$0LD$ L[D$`HD$pEHD$xKETT$0H|$@H|$8"-HHHHHHH3؞L$I[ I{(I]HHH3H+H=ʚ;tH='s%HdsH HHHH=HHH=@BcH=i H\$Hl$VWATAUAVHPMcHHLD$8H ]33҉$zaH\$8HVH+bH\$(HT$0LDt$ LHL$@fHl$0EHUL$DL|$@AEGIOEAAI/HmL$t;Au5@ƋzL\$PI[8Ik@IA^A]A\_^HEHP0AwHvBlkH뮃A u gDŽ$Y@EuEu AtgAt;$HoIt(3\JBIGIP0 At HxHHxHD$0HnwHHdwjjHjYkjjH\$Hl$Ht$WAVAWH@I)t$0HL=VHIIILI;uJHI6IHbH;kvUH9uHH\$`Hl$hHt$p(t$0H@A_A^_IwuHNtL$HIjSIHwH;u8$H$M,LHI [ICswuHNHuH;UwHHUuH$HH4IHCLHHXHHH2G<3I3$aHHL$ v0f.5̈́t$ zL$(Wf.zNuL(vHHL$HIAH,YH.IHFHP0HltHHbtIH(LH;DD A$AHRI@(L\HQHA(H|thMt|AH\$ A2A٨uLIMPILIIMPM;u!I+H\$ H(ÃM;|+Mu93H(ÍCH\$ H(A+ȋH(Aƒ+AƒEH(AɃu +ȋH(Aƒ+H(H8HALHRH;uEHQHx"HI(MJ(L+HHI; uHHy3H8øBH8H+H"LAHHI(MJIR(HD$ H8LIHQ(IJ(MBHD$ H8H\$Hl$Ht$H|$ AVH0IIHHEALt$`AALt$(Ht$ H1MHH.u HkHH;H\$@Hl$HHt$PH|$XH0A^H+HHUHkMLHHHA AHt@ALt$`LLt$ uDLALt$ AHHoHHHBHAHBHAB$A$3HAA B(A(B,A,H\$ UVWAVAWH$0HHH3HH HEfo !MH(E3HEHHD$`0INWINEHEHFHD$8HFHD$@F,D$\HHE0HLD$HAD$hDD$PL$xHD$0EHD$TMLHL$`RLD$LI3{D$L7HL$0H|$(HL$ HT$`HELD$`NZE_jLHHHH3H$HA_A^_^]HH|$(HD$0L|HD$0LHT$`HD$ INgmAAHGAH\$Ht$ AVH MHH٨ux{+uHHl$0HkH;Hl$0H\$@Ht$HH A^H+H|$8HHLHkMLHHHA HAH|$8t@A루 tH\$@Ht$HH A^KH\$Hl$Ht$WH0LRIHB(HHJ|tMuMRH\$@Hl$HHt$PH0_LBH6P^Cy LIHH?HHkHEL;HEH;-HHNH;S t H;S LOLHW(HK(Ht$ k2$0HGHCHOHHkHKQHHXHhHpHx AVH Hy(H@2HMHHuEHHVHt4HH{(@Hk H\$0Hl$8Ht$@H|$HH A^@fHx H<t3øH\$WH HHH;tRHRHH;HHA H;uF2HK($0HGHCHGHCHGHCLGHW(I誦H\$0H _ t H;~&uLA3HQ(J9DDL$ HT$SATHXDŽ$AMHMLl$@L$M Ht$PH5IHcH4HLl$xLt$8L$L|$0Hl$pH|$HH$MLHD$ HHLL$IH'uHkIH;IuhuHKHC(H|NHIsL$L|$0Lt$8H|$HHl$p$A E#$Ht$PLl$@HXA\[H$MMHD$ HHL$IH#'uHkIH;CH+HH HkL$MHHHC$ $H@$H+HHHkL$MHHH$ $H@$$ ~LSUVATHHZH3H$ILD$HLHT$PHHL$h A IHI#NJH;JI{MkMMsLNM{LMNLl$pL|$XMuM_L\$xKH\$`H\$0IIM(3IG(Lv(HH!HJ*m6H\$0HHD$0HD$ H\$0HpMO(MEIU(M WWR)LUSVWAVAWI8HHH3Hpfo ^mHEpHE0H]WE0HD$@0HRHpHD$hMEHG(IM HELD$HLMfo"mL$XH|fo lHME8E@H]`MPHWHWMcMkE3HELOLeIH3H6 foglHIHEKH;DmMDmHLEHHuIEEM)gHIYHHH;yE3EE3HL$@LoLmII]xEcHUPI#NJL+Id IIrN IvHHo#HDH TH@zZH=ʚ;HH='HdH HHHkLM8MHHUHHEHD$(HEHMHHD$ IHD$0D$0LMHD$ LEHT$@HL$@D$0!D$@HD$0LiHT$@HL$@/HD$(E3HEHD$ D$@LD$0HUHL$@|$@@OHt$PLuI;=LT$hLL|$XM+LeLT$8K|ML;H_Cy 5MIMLIIkL+HD$pHD$xHE=OJH sMH+HT$xL!HM-LD$xMNHT$xHMHD$xHD$pHH]3IM;sGODHUMHMHMIIHH]ILHM;rHD$hHt$PHD$8H]LeLD$pHH]LT$8HHI+H6P^Cy HHt$PLI?LIkIGH;LEHIL;HHD$`H;tD$@ H;LuLmL|$XLd$HHcEH3I#NJI;MLM;z3MHHuLD$XHD$hJLHʚ;H@zZH;HvHH;LHrN H;HH;HH IkHHHL$PI;D$0I]xEcL} Ht@ EILmIH]`uAtI\H]Ht$PLT$hLMyHIHd H;=Ho#H;H]xEcH;HH2H'HdHHHMTICHxI9\|HyH\$p0H TH;HH Mt3ODHT$xAHMHD$xMHD$pHH]LD$pM+>|ەLI wRIAE4A]HGzGIIH+HHHHHkdL+MIA ttA A|AIrN TAAaAAHaw̫IHHiHL+MI TI3IHIL+MIwAtdAiAIo#HIHHHHL+MHBzՔIHHi€HL+MId kIvH\AA]HKY8m4IH Hi'HL+MA1H/KimIIH+HHHHHiʚ;L+MIH4ׂCIHHi@BHL+MHG6XOIIH+HHHHHiL+MLHAI@zZkIƤ~\Hw/$IIH+HHH HHiL+MAwI]xEcH\$WAVAWH HyHHQHLHMHKH;.{(Ht$HuHsH;|lHt$HH\$PH A_A^_LHI+HH;~L+HrIMLIItI)vAAINIF(H|tH;{}H+3IN(HIFH|A IFH;fHIH+"HcMLIvIH誻A A. @@AIN(IFH|A 3IF(3IFIFHAMV(IFI|HcC$uQAI΀AwA@H\$PH A_A^_H;A IvuHI9V uHR_XHAItGIN{(udA kIF(3H\$PIFIFHAH A_A^_IHpHCH+HIF:AIu3"H+ HINH0I9V pM%MMMMLUIH@HgH3Hfo OHEI[ WIsHI{HMcLMkLpMsMHEE3HD$hHL$@HEINHBM{EDL$ HT$xLmE0HD$hEȐEfoOMfo uOEMH;AIMIIMLH;ALNLV(DD$0K|H~IML~H;HH+HIHJLXHHJI;}M+~K|L}XMOL IH6P^Cy HLI?LIkIEH;LEM;Ll$`IINHALfH_Cy 5LV(IH}ILT$PMd$LH|$(IIkL\$XH+OHFWHHT$pHD$8H+HL$HLHE_HD$HIMIHcIH|$pH|$8HD$(DD$0L JI;>H6P^Cy HHH?HHkH+HCHEH_HuHH;HHF H;SLV(H^~7HMDMA3A (H\$Hl$Ht$ LD$WATAUAVAWH0L$LHA(MLCTIhHHI#NJDI^(3HL$pHtWH@f@H#HH;eLLl$ HHL$pLHHtHL$pH\$pHugA 3MF(Hv8uIHH;ѹBI;CHHHDIuCHHRHH\$`Hl$hHt$xH0A_A^A]A\_I;dIF(HHLH;sIHI;t3IHHuHt,eI3@SH H HH;wHWH*/W^H*HyX Yf/sH,HH [HH\$WH HLD$8H 3xmH\$8HdH+dCPHWHL$8AEAA<HdHL$8H HL$8HHH\$0H _3H\$Hl$Ht$ WATAUAVAWH IAHLHJDLBM4Au@uMIIHH;HMHHH[Mƺ 1ItE3E3@HdV-)HHXHhHpHx AVH MHHu HqH;2tSH\$0Hl$8Ht$@H|$HH A^H(AHHL$@EAAEHD$@H(H\$WH HLD$8H '3xZH\$8H7SH+CSSPHOHH;SHH HHOoHH\$0H _3H\$Hl$VWAVH HHHRMIHO(H| MLOM;M+H6P^Cy ILKHH?HHkHEL;HEH;HnHH;HHC H;LGLHW(HK(HHk2$0HGHCHH\$@Hl$PH A^_^E3I;A HtHC(HCHCHH>nH9S ~Q MRH;f2RMHHsH|$HLFHHLL$@HW6H/t'T$@Hܙ>HH\$0Ht$8H _HGHP03H\$Ht$UWAVHHPe0LMHLELHHLEHU8M΋LEHUM΋H XHH>>H}HHHu8HE0MNHD$ LGHVH.t/H/t5U0I>HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Hl$Ht$WH03IHHuCAu=HHRH͋@LE3X:H\$@Hl$HHt$PH0_HD$`HD$ t@USVWATAUAWH$ HHSH3HHEfo WH@MHEIHE0HD$`LHD$80EMD$@L$PAIHI@(H|I;<Ht$(HL$8LLd$ MHD$8  HKHC(H|HGH+CH+CHHGHHL$8Ll$HHL$8D$4QDHL$8eAeLǃeHfo3D$0HXLIHD$xA$EA:EKHEED$hLL$hHD$ U;HHL$8Fx^E;;D$8;D$8;LIHTHH3XHA_A]A\_^[]Ã|$4LHT$8HVHt$ /uAtj4HD$(HD$hHD$ ʂ1HJHB(HLHҁLH/c|$0!tM;,$u:tLIHXVH\$WH0HLL$ HLD$XHH`LD$XHT$PL˹3LD$ HT$(L˹tYH\$(LL$PHSIIqu+HnHH=dI)t=H+tCHH\$@H0_HHH=HL$PH)uHAP03IQIR0HSHR0̊uuHBE3H9AAAè uuE3t tAH\$Ht$UWAVHHPe0LMHLELH"HQLEHU8M΋LEHUM΋H 9StHHJ9H}HHHu8HE0MNHD$ LGHVzH.t/H/t5U0I;#9HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Ht$UWAVHHPe0LMHLELH H9LEHU8M΋LEHUM΋H !R\HHf8H}HHHu8HE0MNHD$ LGHVH.t/H/t5U0I#?8HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03HHXHhHpHx ATAUAVH MIH"E3$ADȄHzIxL%MHI@H;BHNINHVI;INH;W }7HEH HE3HHQHE(3J HF(NHʚ;H'HdH HHE3HtzE3E3 HHHHHHH+HLHIHHHL+ILIHI;3HAIL;|IcHH}FH H HIHHHL+ILHHHHHH;|HG(J,IL;F6'HgHVHI;HWINH;W 6H7IH4 H\$@Hl$HHt$PH|$XH A^A]A\HJLD$`H H@BjHE sH@zZH;SHd H;5Ho#H;5HƤ~H;HHHO(HH H9 HHHHE(E3NHF(N4HIHHHL+HMLIHHHL+ILIHI;ul3LHH?HH;|HG(H N IHEHL;SHHH0HHHHHHHHvHH;I4HrN H;HH;HH HHXHhHpHx AVH03IHLuIAuCHH GI΋@LE3_/H\$@Hl$HHt$PH|$XH0A^H\$`H\$ t+H\$Ht$UWAVHHPe0LMHLELH.H]LEHU8M΋LEHUM΋H EL耗HH3H}HHHu8HE0MNHD$ LGHVH.t/H/t5U0IG3HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Ht$UWAVHHPe0LMHLELHHELEHU8M΋LEHUM΋H -KhHH2H}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I/2HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03HHXHhHpHx ATAUAVH MIHE3$ADȄHzIxL%FHI@H;BHNINHVI;INH;W 2HEH HE3HHHE(3J HF(NHʚ;sUH'HdH HH~LD$`HH\$@Hl$HHt$PH|$XH A^A]A\H@zZH;Hd H;1Ho#H;u1HƤ~H;HHE3HE3E3 HHHHHHH+HLHIHHHL+ILIHI HAJHAIL;|IcHH}IH H HIHHHL+MLIHHIHHpH;|HG(J,IL;F0'HgHVH I;HWINH;W 0HK0IHQ37HE(E3NHF(N4HIHHHL+HMLIHHHL+ILIHI tGHLHHHH;|HG(H N IHEHL;PR3H@BH HO(HH H9HHHHvHH;reHrN H;HH;HH |HHHiHHHVHHHCH TH;HH *LI(HAI|t LAM'/u A t33HQLA(ILHʚ;s|H's7Hds!H HHL }IHH;t,3HHHH@BsHHHHJHylH. H@zZH;.Hd H;/Ho#H;.HƤ~H;HHLI.HHʚ;snH's8Hds"H HHHH 3HH;HHHH@BsHHHH. H@zZH;.Hd H;.Ho#H;.HƤ~H;HHZH8HD$`MEAHD$(ALT$ qH8H\$WH HyH~ LL9A&uHKHC(H|H\$8H _H6P^Cy IHH?HHkHzL+HDMtHI(L S3HDK4HTHTH;=?HHN?H;S u(HH{+eLKE3H%i -H;S ~-HK(HH H9uHHH~HHHBHH8uHHH~H\$Ht$WH  IH-Hc$Hc Hc 7Ht$@H\$0H _H\$Ht$UWAVHHPe0LMHLELHHMLEHU8M΋LEHUM΋H 5BpHH&-H}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I7,HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Hl$VWAVH0d$XMIHl$pHHuAuyH{HT$XHD$XHIH;{HH;|sHHuzHy:LoBtDIHHHH*)Hl$ utLL@IHH\$PHl$`H0A^_^LźHLAH\$WH HLHH3DAE+HH;+u H\$0H _HH\$Ht$UWAVHHPe0LMHLELHHծLEHU8M΋vLEHUM΋\H ?HH+H}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0I*HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03H\$Hl$LL$ VWATAUAWH IHE3$ADȄHzIxL-$;LI@H;BHNMNHVI;INH;W 6*IGH )HE3HHIG(E3J HF(NHʚ;H'XHdH HHE3HtE3E3 HHHHHHH+HHHIHHHL+ILHHHtYHYJLAIL;|HG(HN$IA})HIHHHL+ILHwmA3L^M;)'HgIWH}I;HWINH;W )H%HT$hHH\$PHl$XH A_A]A\_^LD$pHH@BH7 H@zZH;@Hd H;(Ho#H;(HƤ~H;HHGIG(E3NHF(J,HIHHHL+HMLHHHHH+HHIHItGHLHH5HH;|HG(H N IIGHL;\R3HO(HH H9mHHH\HHHYHHHFHvHH;B'HrN H;(HH;HH HHHH\$Ht$UWAVHHPe0LMHLELHHLEHU8M΋ZLEHUM΋@H :܅HHH'H}HHHu8HE0MNHD$ LGHVbH.t/H/t5U0Iz!'HH\$pHt$xHPA^_]HFHP0HGHP0HM8H)uHAP03@USVWATAVAWH$ HH5H3Hfo eHEЃd$0WMH@IHD$`HHD$80HELHD$h0HED$@E0L$PD$pMEMGA=H~A?6HT$0HDd$0IH;LII;HHLH+H9S LHL$hMH8%IHL$hLHMLHH%DMLEAH|$(HT$hL|$ IeD$8t%@@|%D$h%@%E%@%HH3HA_A^A\_^[]H|$ uLAIHL$HLHI<9LHL$8H*9$IHL$8H\$8HHXHpWH `HLLHP  tlH r7譂HH$H|$HLFHHLL$@HW>H/t'T$@Hw$HH\$0Ht$8H _HGHP03HHXHhHpHx AVH IMHH HzMH6P^Cy L9RL3LMRIHH?HHkHGL;HEI;HINH;S "$3H~nH;MHE(LE3L HIHHHL+ILHwgHu^ILIHZL;|HC(LHH;|#HcHYI;H{INH;{ #HBIH3LƺHH\$0Hl$8Ht$@H|$HH A^HK(HH H9uHHH~E3H\$Ht$H|$UHHPH~L >e(MHELLHEHD$(HHEIIHD$ qLML; .H ɱLE3UHEH"HEHH("LMLHUBLMHULE'H 4HH"LMHHH}HE(HuIHD$ LGHVH."H/u HGHP0U(HMwtuHH\$`Ht$hH|$pHP]H+u HCHP03IIH\2H; "HMH)uHAH\$Ht$H|$UHHPHΣL G<e(MHEL=LHEHD$(HHEIIHD$ LML; ~H LE3HEH!HEHH(!LMLHU蒺LMHULEwH 2~HH!LMHHH}HE(HuIHD$ LGHVUH.}!H/tUU(HMruHH\$`Ht$hH|$pHP]H+u HCHP03IIH0H;( HGHP0HMH)uHAH\$Ht$H|$UHHPHL 9e(MHELLHEHD$(HHEIIHD$ LML; ΡH iLE3HEHz HEHH(n LMLHULMHULEǸH (1c|HHW LMHHH}HE(HuIHD$ LGHVH.A H/tUU(HM!quHH\$`Ht$hH|$pHP]H+u HCHP03IIH/H;(HGHP0HMH)uHAH\$Ht$H|$UHHPHnL 6e(MHELݡLHEHD$(HHEIIHD$ aLML; H LE3EHEH>HEHH(2LMLHU2LMHULEH x/zHHLMHHH}HE(HuIHD$ LGHVuH.H/tUU(HMqouHH\$`Ht$hH|$pHP]H+u HCHP03IIHV-H;(aHGHP0HMH)uHAH\$Ht$H|$UHHPHL 7e(MHEL-LHEHD$(HHEIIHD$ LML; nH LE3HEHHEHH(LMLHU肵LMHULEgH -yHHLMHHH}HE(HuIHD$ LGHVH.H/tUU(HMmuHH\$`Ht$hH|$pHP]H+u HCHP03IIH+H;(%HGHP0HMH)uHAH\$Ht$H|$UHHPHL 6e(MHEL}LHEHD$(HHEIIHD$ LML; H YLE3HEHHEHH(LMLHUҳLMHULE跳H ,SwHHLMHHH}HE(HuIHD$ LGHVEH.H/tUU(HMluHH\$`Ht$hH|$pHP]H+u HCHP03IIH)H;(HGHP0HMH)uHAH\$Ht$H|$UHHPH^L 2e(MHEL͜LHEHD$(HHEIIHD$ QLML; H LE35HEHHEHH(~LMLHU"LMHULEH h*uHHgLMHHH}HE(HuIHD$ LGHV H.QH/u HGHP0U(HMWjuHH\$`Ht$hH|$pHP]H+u HCHP03IIH<(H;HMH)uHAH\$Ht$H|$UHHPHL w0e(MHELLHEHD$(HHEIIHD$ LML; ^H LE3HEHNHEHH(BLMLHUrLMHULEWH (sHH+LMHHH}HE(HuIHD$ LGHVH.H/u HGHP0U(HMhuHH\$`Ht$hH|$pHP]H+u HCHP03IIH&H;gHMH)uHAH\$Ht$H|$UHHPHL /e(MHELmLHEHD$(HHEIIHD$ LML; H ILE3՗HEHHEHH(LMLHU®LMHULE觮H 'CrHHLMHHH}HE(HuIHD$ LGHV-H.H/u HGHP0U(HMfuHH\$`Ht$hH|$pHP]H+u HCHP03IIH$H;+HMH)uHAH\$Ht$H|$UHHPHNL _+e(MHELLHEHD$(HHEIIHD$ ALML; H LE3%HEHHEHH(LMLHULMHULEH X%pHHLMHHH}HE(HuIHD$ LGHVH.H/u HGHP0U(HMGeuHH\$`Ht$hH|$pHP]H+u HCHP03IIH,#H;HMH)uHAH\$Ht$H|$UHHPHL *e(MHEL LHEHD$(HHEIIHD$ 7LML; NH LE3u HEHHEHH(LMLHUbLMHULEGH #nHHwLMHHH}HE(HuIHD$ LGHVeH.aH/u HGHP0U(HMcu1HH\$`Ht$hH|$pHP]IIH!H;2H+u HCHP03HMH)uHAH\$Ht$H|$UHHPHL 7*e(MHEL]LHEHD$(HHEIIHD$ -LML; H 9LE3ŒHEH^HEHH(RLMLHU販LMHULE藩H !3mHH;LMHHH}HE(HuIHD$ LGHVH.%H/tUU(HMau1HH\$`Ht$hH|$pHP]IIHH;<H+u HCHP03HGHP0HMH)uHAHNgmI+$)II;H\$UVWATAUAVAWHl$HHH3HE3HMH LELHu3HuuDDDHHuH3H.?LMILEH-OHMHAHU͐LHHUH~8DFPHMIEHMHHMHH8uHHMHH8uHHMLFHLMHU}LHrHH€<uHUEE3IHEM/H?HOEMt IHEHMH3ٲH$HĐA_A^A]A\_^]HA HӐ%HHtHdHHtH HEHMHHHtH2HHEH HEHMHKLHtHLHH HEHM HPH AH XI.IVIR0H+HCHP0H/HGHP099ĪD-H!9HAHU Dgg$AĈAH|HAHA HA(HPsHM @89tHcHъ,<<:^ @{B<^-wI(I90f 6 HM 9,_9.B<"w;IIs+HSHM 9H\$HHt$PH A\_]À%tЍBuHC 8HGNHM AEĈCHHKHHHK HH@HC( xFHM HE 80t7DHU HM H8"t83HHHM  tDHU HM HC8"t8tHM uCzHHM @{~HHHCHHC HHC(HM tHU HJCHM HSHM SHH\$DLLEtAODAH\$3AH\$UVWATAUAVAWH$0HHH3Hfo HEDz3HD$hWHc LD$8ILHD$@0AD$HL$XH9EA?AF< <+xQd$0Aσ%@A+A;HMFMLd$8AfD$0%'MHMDHӒHD$pHHD$xHIF8uaI>uBD$@,8HEHH3gH$ HA_A^A]A\_^]LHL$pIu uH#d H; LHL$pIwox A5DAHc L;3 Aσe"A+A;Ld$8MMDL9GHD$0MHHD$ HL$@H|$@LHL$@H׃ +HD$HH|$@Af]pHOHG(H|\HQHD$0ME3HD$ HHL$@dH|$@*Ld$8HD$0MHD$ IHL$@HGA~z ƃ A%EƋuHOHG(H|tLd$8I@UM+A)3H\$UVWATAUAVAWH L2MHHL9qBE3E3D$hDd$`HHD8d*uL+qLL$`HIHHAHL$xHHOHHGD8d$` D$hA=-6HH(HHIMIAHMILL+H\$UVWATAUAVAWHPHY3MH$LHD;-wHH(H HH$H uLL+;.HFH.H+HD$@HMuIF @88IF(@88L$MH$HLt$8Hl$0H\$(Ld$ H~HHHH HKHFH| L$MH$HLt$8Hl$0H\$(Ld$ OHL$@H$HPA_A^A]A\_^]MfH H$HH\$Hl$Ht$WATAUAVAWH L$3HDMMAHIF HHLDH@8<0uHL$HT$xHAHyH9MHT$pHI~(HHلI;L+IEK*LMuQA~zuIKMJ!I;HIKHtIH\$PHl$XHt$`H A_A^A]A\_H~EuxIV LItHG8tHH?IQH_H@8<uLIL+AHM+HH+HI~IzAHI-HALLI+LAHQHAHt"HIHHxHL+AHHyL3MLHQHAHAI+HAHt"HIHHxHL+AHHyIxN H+B AIIyHAHH+HQLAHAMtI 0HyHA(It HyAHQIH<uHHwHQ IH<uHw3H\$WH IIHHHuH Ht H\$0H _HLI[IkIsI{ AVH0HzIHzMI+HMHJHB(H|Ht$`LHIs=L9sH\$@Hl$HHt$PH|$XH0A^LGHt$ LHHH+$)Iڂ7II;J@SH HLL¹HT$@t6LT$@HSIJPu$HQHHGI*t HH [3H}HH}IRIR0HHXHhHpHx AVH DMIHAHJHB(H|LBL+x`HJHd IH;H}H|$PLbtHsIHjH\$0Hl$8Ht$@H|$HH A^H|$PILHUHHtLHsMHH Ht@ALAE3H^u!LI3LA(K9DtLALAL;B3H\$Ht$H|$UHHPH}L e(MHELALHEHD$(HHEIIHD$ {7LML; }H LE3} HEH4HEHH((LMLHU薔LMHULE{)H XHHLMHHH}HE(HuIHD$ LGHVH.H/u HGHP0U(HMLu1HH\$`Ht$hH|$pHP]IIH H;2aH+u HCHP03H\$Ht$H|$UHHPH2|L e(MHEL}LHEHD$(HHEIIHD$ %zLML; {H }LE3 |HEHHEHH(LMLHULMHULEےH < wVHHH}HHHuLM(LGHVvH.H/tRU(HMBKHH\$`Ht$hH|$pHP]IIH7 H;E\HMH)t3HGHP0HAH\$WH HLL¹HT$@tNH\$@HL$@DGPHSOH+Ht2Hx9HL$@HhHL$@HvHH\$0H _3HSHR0*xAAEAA鰃@SH@HzL ,MHD$hLHD$hHHD$ L{IIxHT$hH;yt8HJHH;ueHHKR%u|HyHHyyH@[H $LD$03yxIHD$0HtVHD$hHt5H(EHT$hHyuH rwH~H x3HwHHw&@SH@HxL xMHD$hLHD$hHHD$ LzIIvHT$hH;xt8HJHH;ueHHKvt|HwHHwH@[H LD$03xxIHD$0HtVHD$hHt5H(IHT$hH xuH fvH}H w3HwHHw%@SH@HwL MHD$hLHD$hHHD$ LyIIuHD$hH;wtOHHHH;u|D@PHSHL$0YHHL$0HwHL$0HHH@[H LD$03wxFHD$0Ht@HD$hHt2H(6HD$hvuH FuH|H u3$H\$WH@HvL d$hMLHD$0HD$0HL}xHD$ IItHD$0H;vH 'LD$83vHD$8HHD$0HH(H XQHHt~LD$0HWIHHLL$hT$hHL$07FuAHH\$PH@_HHH:H;tuuH tHe{H tH+u HCHP03H\$WH@HuL d$hMLHD$0HD$0HLAwHD$ IIsHD$0H;PuH LD$83vuHD$8HpHD$0HH(cH PHHt~LD$0HWIHHLL$h T$hHL$0DuAHH\$PH@_HHHH;t{tuH rH)zH xsH+u HCHP03H\$WH@H_tL  d$hMLHD$0HD$0HLvHD$ IIXrHD$0H;tH LD$83:tHD$8HPHD$0HH(CH NHHt~LD$0HWIHHLL$h T$hHL$0CuAHH\$PH@_HHHH;t?suH qHxH uHH\$PH@_H+u HCHP03H `zLD$83mxHD$8Ht@HD$0HtH(gpVmTH kHsH OlDH\$WH@HCmL d$hMLHD$0HD$0HLnHD$ IIgH;Hp7LHyLH,LHCC HcG8HWH+H9S(~xH7uSHAHHtCHHA3賚HEfdLCHjH dM@H d3LSHHH\$WH IHE33HHt%LHHH+dHH\$0H _HHXHpHHWH `H IHAHHtHLGHHHLL$06T$0H5uHH\$8Ht$@H _H+u HCHP03HHXHhHp D@WATAUAVAWH A DHC DAA $@HHHHHHkHMcLLH3EH;}2Dl$`A7EuGC~AIHH;|AIH\$PHl$XHt$hH A_A^A]A\_HsHt_tH\$HL$WH d$0H yIGHHt@HWHHLD$0wT$0H4uHH\$8H _H+u HCHP03@SH H3H HHt|HGHtdLxH/t'T$@H'HH\$0Ht$8H _HGHP03HHXHhHpHx AVH @*I@ILHLtOLHHeuIJ>IILHIH6H$LH$MIM+HMHIDH>H$IEL$HHD$(LLHD$ LIIMHkt$0H$3H^H<LIlH$LL$ILt$(LL$IHD$ ]H$HH$ILI /LIIHt$03IH<6HLIL$N 3H$Ht$(Ht$ ILIH'LIIiLd$PHl$XLl$HIH\$WHl$ILHt$3LL+H#NJHLHv8u@ffO MMIL3M;A3L;H I (IDIIIuHl$Hu Ht$H\$ _HLLL;73LHHtLL$ UVATAVAWH Lt$pMIHLM1H\$XH+H|$Ll$N,M+LM+Ll$pLd$PE3MI4IIv8uIJ*mLt$(HH$H+HHHHHH;IGHD$@H-Ll$XLL+HH+Lt$8HD$ DH,0I 6H)HH+H;HCH;L>LL;L;HT$PLiH (HH+H;HCH;HLIAH,H;H;H|$ LI 6IH<7H 8LL+H;LCL;HT$PLHII;H;Lt$8IHHD$ I,6L<0HL;d$@Hl$0Lt$(D$H$HHD$8H}HD$ H|$@LHAuLHHLLLHtwL$HoHHfILI~ILIHH LIIHLIILI6LI~MvHuH|$@Lt$(HD$ L$HHL$8HD$ H;H$H$HH;s&Hl$0$DHHtIH;rHhA_A^A]A\_^][3DD$HL$SUVWATAVHhHMcHHHH4HLILd$(H;sEIHJH;rH\Ll$`JEƺL|$XH]J HD$0HLȸH$HHL$ H$LHIALHHHtLMtoILIIILI~INLHHH=LIIH,LIHLI6HI~MvIuLd$(H|$ H$J LL$0HHH$H|$ H2D$HL$8|H$MH$E3HH+HN4HH;IGH$HLLl$HI+I+H$H$fJ<7J 6H9LL+H;LCL;IIHH+I;LHCHT$@LL+H;LBH 8HH+H;HCH;ILIH 0HH+H;HCH;H$LH$IJ 1J<7H 8HH+H;HCH;s~HT$@LIvH$H 0HH+H;H$HCHH+H;HBIIJ,6N$7IL;$L|$XLl$`HhA^A\_^][3H+zHMHHLHLL+LHHL;gH(JH;LALCHII+HH;fI(II;HJHCHLH+IH;EH(I@HH;ICHI;HLHI H+H;H MKL L;IMCI+IH I;HPHFI M M;HBHCHM;IHL;H"JH;LALCHII+HH;I"II;HJHCHLH+IH;`H"HH;WMVI;rLHM+iHrI I+HIH\$WH LHHt'AtHHQHHHCIHuHH\$0H _H\$DD$HL$UVWATAUAVAWHPLIcHHHAHHH*H$ILILd$0I  DƺIHD$@LHL<IML|$HM;s)J<MIHHI;rH$MHI, $HH5VDúHH4KHD$8LI;HIDH\$ @ffLIIAPHHLLHtsHoLHHfI LI[IIHHIIHrIILdI;LI[M[HuH\$ H$Ld$0HLL$8HIH\$ M;=L$Lt$@L|$H$I;t!IDúH^LHtJM;sHMHIrLM;rIYH$HPA_A^A]A\_^]3H\$DD$HL$UVWATAUAVAWHPHMcHHHAHEHH*H$IHLt$(HD$8LHL$HLd$@I;s1H$H<MHHHI;rHH5TEJ4HAHD$0HM;HH$H\$ LIAHHLqLHtvHoLHH@I LI[I>IHH0IIH"IILI;LI[M[HuH\$ H$Lt$(HHL$0HIH\$ M;=L|$8Ld$@H$LHIQL;t&I?D$ILHtpHI;s0J<ffMIHHI;rH$IMHHtH$HPA_A^A]A\_^]3HHHLHLLHIH+H;GH(H H;IIHICLH+IH;YH(HH;IQHICLH+IH;8H(IAHH;ICHudI;s_HLHI H+H;H MJH H;HMCII+H H;I HBII;HCHuI;rI+IH+H;wyH"MQH H;HMCII+HH;wYI"I HJI;LHCHL+HL;w9H"J H;r1Hu I;.I+II1IHHHHT$HL$SUVWATAUAVAWHxLHPIPMMcIHT$HL$NN IHMgLIM+HyIL+LHI+L\$ ILfDI?LONT/J,/I4;L7IHI+H;HCI;bI ?HI+I;J HCI6LM+H;LCM;;HM ;II+=I;J HLHC'L_L\$ HHI]L$L$H$AL$M;@H$M3ILl$0MIJI+O4?IHL$IHL,N*H:M NJHI+I;HCI;KJ *IH+L;J4HCK HI+I;HCI;$I II+H2M;L$JHCIJHI;uLl$0L$IH$JMULT$ J HHD$HHD$@HL$8@ffHE3M!K?IHD$hHIHHJ HL$`HHD$XII+LL|$XHHD$(L4I?L 8H7IHI+H;HCI;HI ?I+I;J HCI6HI+H;HCI;HHII+I;J ILHCHL$(Ld$hL$L9HL$`HHHD$(M;QL$Ll$0HD$@HL$8LT$ L$HJHHL$8IHD$@LT$ ML$L$MIXH$IHxA_A^A]A\_^][HHHLHLLHIH+H;TH(H H;IIHICLH+IH;H(HH;IQHICLH+IH;H(IAHH;ICHudI;s_HLHI H+H;H MJH H;HMCII+H H;!I HBII;HCHuI;rI+IH+H;wiH"MQH H;HMCII+HH;wYI"I HJI;LHCHL+HL;w9H"J H;r1Hu I;.I+II4IHHH3LDLDL;wHIHHIH+L3I;rKMIOHHXHhHpHx AVH IHHIHLHL;t}jHHHDL;tEIHHH;uzIIHJ DMLHHu-3.E3HltHHQIJ HBH\$0Hl$8Ht$@H|$HH A^/H(HHHEH(H\$UVWATAUAVAW`~jH+HDH3H$PHT$0HL$HHHH;U3HHt$8H;HHHHHHD$@HHHD$(LhLLMLl$ L|$PMHt,H|$(LLII*jLLIuH|$0Ld$ HHL$PH;t$8L|$PMHt,H|$(LLIIiLLIuLd$ H|$0Lt$8LLd$@LLt$8Ld$ L;SHL$HHH;H$PH3TH$H`A_A^A]A\_^]Ht{H\$VH|$H3HAfHMCLN HL;s2JLM+LNIHHH@IMIuIICH;rH|$H\$^H\$ UVWATAUAVAWrhH+H8H3H$H$MHL$(HE>HT$@HHHyHH2H;ILYGHT$HHLI?Ll$`HL$hJIE3L$MLL$ IH$Ld$XdHL$(HHl$@HH HL$xIHD$pI;`II+HJLHD$8IgHMFH\$ HHHD$ jHT$(HIHHLH;LLHL$ KLD$8HdgLD$8IHTgIHIFLl$ MFHD$ IHIă?HHH IHL$(LIIHLL;uLd$XLl$0H\$0Ll$`K HLD$8fHL$hLEL|$pLL$ IJ HL$xM;H$HT$HHJrHT$HH;8H[H$H3QH$HĠA_A^A]A\_^]AuHD$@*HHHLD$ HHL$0LLHT$hPOHD$hHHAAHHu AH%ٹ3H\$WH HHHHu,HHHtL3HzcHH\$0H _3IcLID3MhMPI@HIAuIH+HHH\$Hl$Ht$WAVAWH HIcDHHHHHtkL5DDM4AHlHCH3LsHtL[MIHH|M[HuHH\$@Hl$HHt$PH A_A^_H\$WH LHHtAu!HH)IHuHH\$0H _HHHHHHLHLLHIH+H;`H"MQH H;HMCII+HH;?I"I HJI;LHCHL+HL;H"J H;Hu I;I+LHI H+H;H MJH H;HMCII+H H;I HBII;HCHuI;rI+zIH+H;wrH(H H;IIHICLH+IH;H(HH;IQHICLH+IH;H(IAHH;ICHuI;sHII+IHHH̸HHuHHH;rH%_3H\$LL$ HT$UVWATAUAVAWH LLIIMIE33 H$HHHHHHHHLH|HHHhHILHaLIIaLIHaM;YE3HHAHIAHHH$LIHLMt IHt H H\$`HH A_A^A]A\_^]3H\$WH LHHt'AtHHHHHIHuHH\$0H _H\$ VATAUAVAWH LMcHL5?IO4MIVwLMtMD$M$HHH\$XHl$PEIH|$`HЅIl$E3Ht<J MJ|HHHHJDJIL;rEIHT$XItnIL~IIIOMM_II?IoIIHIHHzIHLlIGIwI_MM IuH|$`Hl$PH\$hH A_A^A]A\^IַHmH3HHHLHLLHIH+H;TH(H H;IIHICLH+IH;gH(HH;IQHICLH+IH;FH(IAHH;ICHudI;s_HLHI H+H;H MJH H;HMCII+H H;׶I HBII;HCHuI;rI+IH+H;wqH"MQH H;HMCII+HH;wYI"I HJI;LHCHL+HL;w9H"J H;r1Hu I;.I+I9IIHHH3Ht HAHtúLSUATAWHHH3HD$`3IICMICLICHM"Is L+I{L+MkHMsIHIIILN4 MI;wM;vHI+I;MIJ (HCLHIHJ4I;sHH3HHL$ HLHT$8HD$0LHHL$0L+EIIH+T$8L;t$8J HCH@PTBLHHHLIHHLLL;I 1H;ILL;H#NJIHL$H3H;L$HHL$H3M LL$PL;L$PLL$PBMLD$XLD$0L;PHD$XHT$@H|$ HL$PDLL$HHT$0LD$@HL$HH|$ zDHD$0HHHHIH6Lt$pLl$xH$H$HL$`H3FHĈA_A\][HHHHLHLLHIH+H;vIH"MQHH;HMCII+HH;I"I HJI;HCHLH+IH;H"HH;MulI;sgHLHL+L;wXH(N L;rPHIHH+I;wCH(L L;r;HIHH+I;w.H(HH;r'HuI;rI+HHHHHHHLHcIHL;HHL;tHHL;wHH@SH HH}LHKHHHHDzI;LGIH [@SH LH;v5HHHHHHIHHH [ 3H [H(HHH;HH(H(HHHYH(H\$Ht$UWAVHHpH L e8MHELs!LHEHD$0HHEIHD$(IHEHD$ ZLML; MH N,LE3.HEHHEHH(LMLHUػ6LMHULE6ݲLMHULE6H -HHHELU8H}HKHuHLuLT$(LOHD$ LFIVbJI.H.t8H/u HGHP0U8HMuuHL\$pI[ Is(IA^_]HFHP0HMH)tZHMH)tZ3IIHH;H wH#H H+uHCHP0HAP0HAH\$Ht$UWAUAVAWHl$HHL tHEMHEL!HELHELHEIHEIHE'HEHEHD$XHE'HD$PHEHD$HHEHD$@HEHD$8HEHD$0HEHD$(HEHD$ HMH; =t-HHHHc H;IMH}E3H;=HGtHH5)AHL5F)fDH;8tJHI;|AHHt,HI;|H H!H {{aA]4HMHc H; Vt#HHWHH;aI] HMH; &tHH;IEHMH; tH4H5AEPHMH; t6YHHaHH;RA]8HuH;5L$L%?HFH\AILH~cHHL9=ItfDH9At'H L99uH HSH AS HI;|ǩ<=AE(H}'H;=HGkHHIH~mfDHHH=<ItH9At(H H9uH HH 9AD HH;|Aǩu}=,AE,3L$L$I[8Is@IA_A^A]_]\HHu H H (HuHոHILzHuHA HuHHuHtrHI8Ht$WH IHMH=HH\$0tH9Pt(H H8uH aHH Xu[HvxNHV u ˉ 3H\$0Ht$8H _#H LHMH \Ht$8H _øH\$H|$UHHH8L 1e(MHELWHELHEHHD$(IHEIHD$ '#HEH;H $LE3 HEHHEHH(HE@HMH; H E@0MEt EH 6qHHt}HP3HE(LGHD$ LM}U(HMQuUHL$I[I{I]HHHJH;VDH HmH 3H+uHCHP0@SH HHtC43H [ÃH\$H|$UHHHhL ie(MHELHELHEHHD$(IHEIHD$ W*HEH;H "LE3;HEHhHEHH(\HE@HMH; H E@0MEt -EH fHHHPHE(LGHD$ LM{U(HMzuUHL$I[I{I]HHHsH;O=H EHH 3H+uHCHP0H\$Hl$Ht$WH HAHt@H 3HH-!H;2tBHH;|3HHt:HH;|H HgH NH\$0Hl$8Ht$@H _Ë̃w Q$3H\$Ht$WH H6A@AHw;HBH; uDHBE3HIAЋ9ƒAA;HHETHHH\$0Ht$8H _ tHЩuHFE3A9AA;s3H\$Ht$WH IHHMtWHBt(HHt\HHt;LHH(H\$0Ht$8H _H 1HH HHHHH\$WH HBHHt(HUH0t"HIHt HHHG@HH\$0H _HGHH\$0HH _@SH HGHH9BtHrtH [HB=C(3@SH HHH9BtH*tH [HB=C,3H\$Ht$WH HA3H H uRH9=9t6H@HSHHt%Hx_tH H{uы+ ;HuHAHHXHhHp WH0E3ILPIHMtIHYH+JH#NJIHH;r?LHl$ HT$PLH*LT$PHHuH\$@IHl$HHt$XH0_HILHHLLIHHXHhHp WAVAWH E3MLPILHAMt:HL+III$6II;r?LHL$@HL2LT$@HHuHt$XLH\$HHl$PH A_A^_HHHXHhHpHx HMI?HJ*mLH+WH HHHH{HRHHL HLQH>HHҖH(H HH HH+H.H LHHIL lHD$ LtHa#H HqH L.HHXH { H LH|H+[H ULHHHLHH NL LHD$ HtfHHIMH)IMH)IMH)H HHnHLHHHHKLDHH"LEHHIzHH dE3HHH֔HH&LH2 HHAXH5"AL$FA===@H fHHHNE3H:HHΓH+HHHLHVvHHHH H*I IHkH;@HVE3L9%HtH {kHHHKE3HHHmH.ݒHHHLHSEH L9ct HƍH553HHsHHHPLHlH-HHHLCɒ3HHaLH^I  _HHEH]VA@PMEEEfsA@Ef~ @EMAH A@0+3HHHHL HH@PEH]EMDeM@H P0,L9%ՏH5Ώt6HNHHHLH$HL9&uHHHߐAHIH`HH`H"H`LHH}HH|LHHҐLuHHIz_HL\$`I[0Is8I{@IA_A^A]A\]LH3M'L LҋHmLHLLM:H(HLH?%II+DD E+uHEuEtH HHu @H@H(H(=HAH>XH H(@SH0)t$ HHtCH;H+(u HSHR0f.5z\W((t$ H0[3H\$WH HLD$@H k3x4H\$@H!H+-AHHH\$0H _3IItH+L+Š:uHIIuA:t3H(H=H͐Ht H@H(H H8u鰐H\$WH HHVHHt-LH ĄH\H+HHH\$0H _HHXHpWH0`HLLHP  tsH fHHAH|$XHPHD$P3LNHD$ LGZH/t'T$PHq*HH\$@Ht$HH0_HGHP03@SH LLHT$@i tOLD$@A@uIH0I@@H|t HHHI(t HH [H:HH03IPIR0@SH LLHT$@ t/HL$@AdHHHH)t HH [3HQR0H\$UVWH d$PHLLHT$X tmH HHH|$XLD$PHHHWtsH/t$T$PHHH\$@H _^]HGHP03H\$UVWH d$PHLLHT$X tmH DHHH|$XLD$PHHHW|tcH/t$T$PHRHH\$@H _^]HGHP03AtHHHHaHHWHHXHpWH0`HLLHP  tvH vHHH|$XHPHD$PLNHD$ LGWH/t'T$PH~HH\$@Ht$HH0_HGHP03@SH LLHT$@ut>HL$@Au HHHH)t HH [HWHHM3HQR0@SH LLHT$@ t+HL$@Au$HsHHiH)t HH [3HHHHQR0H\$Ht$UWAVHH@e0LEHHH 3VH]HH+LHU8L3VLHUL3=H HH}HuHHLu8HE0LKHD$ LFIV I.tQH.t)U0H蠿mHH\$`Ht$hH@A^_]HFHP0HE8HM8H)tHEIFIP0HAP03H\$Ht$UWAVHH@e0LEHHH 3"H]HߋH+LHU8L3"LHUL3 H j~HHHuHHLu8HE0LKHD$ LFIVCI.tQH.t)U0HlHH\$`Ht$hH@A^_]HFHP0HE8HM8H)tHEIFIP0HAP03@SH LLHT$@5t/HL$@A,HHHH)t HH [3HQR0ftH/H+t1HH\$`Ht$hH|$pHP]IIH;tH;]THCHP03H\$WH HLD$@H [3x4H\$@H}H+AHHH\$0H _3H\$WH HLD$@H 3x4H\$@HCH+OAHHH\$0H _3HAH\$Ht$WH HHtUH=xt8H=xwHLLECHڄH HuHH\$0Ht$8H _3H(LLHT$@HH#D$@H(H\$Hl$VWAVH HHHR3MHN(H9\M؄HnL;dHO(I+HoH6P^Cy LFHHH?HHV({HkLHCH;HEH_2$0HFHGIH\$@Hl$PH A^_^AuHQ0HA@3H9LtH(H )LD$@33ɅxH9L$@'HL$@HH(@SH AMA H  tOLD$XuHAuHAuFt+LIWtHHT$P$ 7H [AME3LMA(A tHSHHIHHHH(H yr贽LHt3HDB :OIH(H\$Ht$WH HHHJHHLHHH;H\$0Ht$8H _AtHHHHHHAu"HQ0HA@H|uHcHHYHHHHAHBHH uHB8H H% H\$Ht$WH d$@HH ^q虼HH]HVLD$@HHrtsD$@<HH\$0Ht$8H _H\$Ht$WH d$@HH p-HHHVLD$@HH/rtcD$@HH\$0Ht$8H _AHt 3H%"HI(H@ HHAtHHHHqHHgfHHHXHhHpHx AVH HHHHIEiZH\$0Hl$8Ht$@H|$HH A^H(H oLHtE33HLIH(AtHOHHEHHHAtH#HHHyHHoHAH+AHHH%HA H+AHHH%HHHA,H2HH(A(HHHHcA4H %HHHHHHHHHHHA3̸ LIIHt$(IH%%%%%%%%%%%y%k%U%G%9%+%%%y%k%]%O%)%%%%%%%o%%%m%W%I%;%-%%%%%%%%%%q%c%U%G%1%%%%%%%% %%%%)%%-%/%1%3%5%7%%C%E%O%Q%SffH; IhuHfuH7@SH H3H"|HȺ H [H%`HL$H8't)H HD$8HjHD$8HHHSHHD$@H HkH HHkH RgHL HkH EgHL H 9H8H(H(̉L$H(@tD$0)H HD$(HHD$(HHHkH HkH T$0HH NH(LD$T$L$H8tD$@)H HD$8HHD$8HHmHH7 |$HvH|$PuD$H|$Hv D$HȉD$HD$HHkH T$@HD$ D$ D$ D$H9D$ s"D$ L$ HLD$PIHH x?H8H\$ WH@HHHT$PHE39Ht2Hd$8HL$XHT$PLHL$0LHL$`HL$(3H\$  H\$hH@_@SVWH@HcH3E3HT$`HHt9Hd$8HL$hHT$`LHL$0LHL$pHL$(3H\$ ǃ|H@_^[H(t9t(tt H(vGH(IH(MH(H\$Ht$H|$ AVH HL3m؈D$@@=tO 1HH u)Ut HH f<@2@u? HH8t$HgtLƺIHL fA3H\$0Ht$8H|$HH A^ùH\$WH @~Sȉy`؈D$8=uDt/ %_3@yt3H\$0H _ù3HHX L@PHHVWAVH@ILu93BwEHhHu D$0S؉D$0LƋI؉D$0LƋI%؉D$0u8u4L3I L3I\HHtL3Itu@LƋI,؉D$0t)HHu X\$0LƋI؉D$03ۉ\$0H\$xH@A^_^HqHuH%_H\$Ht$WH IHuLNjHH\$0Ht$8H _k@UHH 3HMHE#HEHEH1EHM H1EE HMH H3E H3EH3HH#H ]H\$ UHH H|`H2-+H;uu3HMHEHEHEH1EHM H1EE HMH H3E H3EH3HH#H3-+H;HDH_H\$HHH_H ]H(uH=uH(H EH%H 5 HAH(vHHH(Hu_HыH3ƒ?HL]_HAй@?+HI3HHH(O H( LcAH+4HKH9S hHK(LL$8AD$8>|$8HC(@HJHC 0HJH9Q HI(LL$0AD$0=|$0HC(HJHC HL$HH)bHAHCHP0LH+BHL$HH) HAHCHP0 H+ HM8H)uHAP0HMH) H+ HCH HM8H)uHAP0HMH) H+ HCH ]kHHm  HSHR0y HM8H)uHAP0HMH)9 HA- HM8H)uHAP0HMH),H++HCHHM8H)uHAP0HMH)H+HCH uHL$`tF5HMdFE.HMRF&LLD$0HH!LHT$0HLHT$0HA(E3E3 E3H3EA ,LǺHHMEEHMEHMEE|HMEtHMED$hnHL$hsEeHM cEE_HMQEWLD$8HXLHT$8HLHT$8HLHT$8GAHAu|AHH *HHd$xHHHL$XDD$0HL$0D :HHH )H=HH H@zZH;sZHvHH;sH TH;HH HrN H;sHH;HH Hd H;sAHo#H;sHƤ~H;HHPH]xEcH;HH7I;HH(LǺH2foI؃eeeHMHMUIVEEEVHc HDLELψ HHL$0HEHEV3LMLD$0H|$ HUHL$0KLHUHL$0ELL$`H|$ L&HT$0HL$07BLL$`H|$ LD$0HH%" u H[D$0uHL$XqBD$0u HL$0^BLLt$`HT$`H!EP̺HHGBH9S pHK(LL$0AD$045|$0HC(HHBHC 8AAAH'LǺHrHMAD$hHL$hAHM(AEHMtAHL$`cAD$8HL$8OA E!HH 4!A7%A3H+%IHH.3HS#T$L-T$LIMMHSD?%HMgO$HM@D$hH$HL$h@C$HM{@=$HMk@7$HM[@1$HMK@+$E33HEAK& @%HSHH;4@HN,@H;S t+ tH;S ~ LH LH[D%HKHC(HHC%HI(LL$8AD$82|$8HC(%H?HC %H@BsHHH)&HsHHH & &H@zZH;sZHvHH;sH TH;HH %HrN H;sHH;HH %%Hd H;sAHo#H;sHƤ~H;HHc%H]xEcH;HHJ%I;HH;%J9 &L+&L+HIo&&A"'I#NJ&HSHH;P>HNH>H;S t+ tH;S ~ LH LHwB8)HKHC(HHC@)H)LD$0H+HKHd HC(HTHC,AIA/0HH߼HLLI@HI]A]b/INgmM3IV#N/EuH$HHˁ@0l0L$H2H=HH2HvHH;sH TH;HH 2HrN H;q2HH;HH X2HƤ~H;HH?2H#NJH;HH&2 2HrN H;q2HH;HH X2Hd H;sAHo#H;sHƤ~H;HH!2H]xEcH;HH2H#NJH;HH1H=HHk4H=HHY4H TH;HH @4HrN H;sHH;HH 44Hd H;sAHo#H;sHƤ~H;HH3H]xEcH;HH3H#NJH;HH3H@zZH;sHvHH;*>uHL$X:T$0u HL$0:H2HL$X{:T$02HL$0g:2\HH43HCHP03IH53H)I7HAP05\H+73I6̨ 9HH9LHMI>t*HD$0H|$(EHD$ LEHHT$`g};A3HX;HM9D$`;HL$`o9;HM_9E;HML9;MH MH=Y=:^:L;SOSMH 9_MźH5Vfo H WHELE0LLl$ HUHEM4lU ¨HME3HEL9|Au  4Uu HM3LwTSLD$@H LD$@HL8L3uSTA u7L9W ~1LL$0D$0AIH&|$0HG(u H3HG HG(HGHGH_ULD$8HHUA3HEبuHM/3Eب2UHM3"UHM 3&U PUHUH>UE3IL;IADH@ u;H2H9W ~.LL$0D$0AI%|$0HG(u H2HG HG(HGHGHVICHx I9uHy3HD$8UMtJODHT$PAHL$`]HD$PHD$8HuICHx I9u@Hy3HD$8H\$`M+UNK#I$Md$IuHD$8ULD$8H{VLD$8H6U3UHW0VW3HVHd HHHGHHGIHGHt$@ILH_VA]I#NJ]H+1I9V aLL$@D$@AI$|$@IF(]aH0IF Ma Au_LL$@D$@A#|$@IF(I`$LL$@D$@A#|$@IF(#`H0IF `LxHMt9DD$0L \0bLxHMH<5tDD$0L 40cLxHeLxHLxHM4eD\$ cE3iI~HC HH;=/HHN/H;t8 tH;~.LxH>LxH3eD\$ HC(Ht6fLxHrdLxH3]dHM/eHM /eICHx I94uHyLkAkHPHR0ko {nA nAnHrN H;sHH;HH mmHd H;sAHo#H;sHƤ~H;HHlH]xEcH;HHlH#NJH;HHl lHUHNlJ8HHNgH^ LMLEHHNHE HEH}l@ElLEHNH|l sV=#LHt.O(#7HHtHIߡH+u HSHR0H.GlHFHP07l=qHSHR0~qVsLF6s tH;sMH MH<1svH ÞHH c3}3IA0a|HrN H;sHH;HH ||Hd H;sAHo#H;sHƤ~H;HH|H]xEcH;HH|H#NJH;HHw| |HT$@HK|J<8HHKCH{ L$LD$@HHKHw$ $H^|@$O|L$HKD| s!=#ЩHHt.#}(HHtHHH/u HWHR0H+u HCHP03|LH}HHPHR0} HT$0H~ rH ȞHH X`H;LHHHCHP0 HFHP0iH.u HFHP0H/ueHGHY s=#袨HHt.K(#ԛHHtHH|H+u HSHR0Hmu HEHP03 HOH+uVHCHP0JImt'/u HN()u H|)Imu IEIP0= IEIP03gHN(LMoA]olHF(8]oxHH)HF hHMIH@BsHMIւHsHMI麂M鲂H;MosGI;sH TH;MI 鎂I;sHH;MI pAeH;sAHo#H;sHƤ~H;MI8H]xEcH;MII;MI hHUHHH鳬HSHR0魬HK(LL$HAD$H;|$HHC(HHC 骭MH襲WMHH FMH胲 MH* H2H=MISH TH;MI :HrN L;sHL;EA AHd L;sAHo#L;sHƤ~L;EAïH]xEcL;EA骯H#NJL;EA鑯HMHH)uHAP0HMH)uHAP0HMH)7H+6HCH'̊Hc$Hc HcHs(/ 3鑱HM8H)uHAP0HMH)B A<wAXAu IAv Au .AvAu AwAuZEMCED:rBA:r=IEYI;v IEAC5x+ + +HM.D$@uHL$hD$@HL$@HL$hD$@HL$@A/ HO3HwAm LD$`WrLD$`H _LD$(/LD$P LD$P/ (HPHR0yH 0xHH xHMH)HMH)uHAP0HMH)\HAPHFHP0'HPHR0OyH wH~H HxHMH)uHAP0HMH)bHCHP0THFHP0H+:HPHR0HPHR0HPHR0v&eHPHR0m&HPHR0{&HPHR0_&HPHR0C&HPHR0'&HPHR0 HPHR0o HPHR0 HPHR0 %i HPHR0q %HH< HSHR06 HgH/ HGHP0 y%HH HSHR0uUu3lH\H]HLAstHHH5LHAPHH;|Au ~sHmwtt A vx 0AAH tHH quvH2`tqvHbH vHAHCHP0DtctIFIP0)HCHP0(HGHP0'HSHR0eH.u HFHP0sNH.u HFHP0Au IN(A"IH L$PMHt,H|$(LLIILLIuH|$0Ld$ HH$P?L|$PMHt,H|$(LLII˨LLIuH|$0Ld$ L$PMH>H|$(LLII苨LLIu≯@HDIJEIkEHJBHHIIMH1E3LHHCH˅MI LN<+L+d$xtM3II趥ALHIH˅tKHT$hMç3MtI'HMI;rALHHH˅t bFVHMUFH 1HL$XHk.FH!IIHIHHJM JIIK3IHHD$XHL+LD$0KHLH L+L;vHH LPLL;ILCI+IH I;HPHFI M M;HBHCHuM;rM+IH7LIXLIaL̺HHL;HEMHL;MHHL;HF̻kAlLJHHxckHHhLkHЍK8kj̹-kAlLHH%kHHL jHй jHj̹jASLHHjHHjHй tji̹ijAlL,HHZaBjHHG(jHй jiYLHPHR0LHMMHMH)uHAP0HMH)uHAP0HMH)MIFIP0OMH WlHv5RKPHwH!wH *lH j)R THPHR0TH kHTH kH~vH ujTeUHPHR0UH kHERVH kHH )jYH {kHH  j>YH kHFoH i\̹hA\LJHHx`hHHneFhHй 0hgIn`LL$8HGLI$ILl$ I _gA\LHHgHHؐgHй g gH+bHCHP0bHSHR0bHWHR0bH. cHFHP0cHCHH+cHCHP0cHdHHHdH@BsHHHxdHsHHH\d RdH@zZH;sZHvHH;sH TH;HH dHrN H;sHH;HH ccHd H;sAHo#H;sHƤ~H;HHcH]xEcH;HHcH#NJH;HHcHcdIIIHI I+HHH HIHu8dH+>eHCHP0.eHHe}eHSHR0weHCHP033fH+uHCHP0iH@P0iHCHP0jHFHP0 jHCHP0jHAP0kHAP0kHAP0 kHCHP0llHFHP0mDCHHgxbHHnE3QMMHtFH+u@HCHP0IIHtH+u HCHP0MMHtH.u HFHP0H rHtH)L%ruHAP0MtImu IEIP0MtI.u IFIP0MtI/u IGIP0H rHtH)L%ruHAP0H rHtH)L%ruHAP0H rHtH)L%ruHAP0H qHtH)L%quHAP0H qHtH)L%quHAP0H [rHtH)L%KruHAP0HtH/u HGHP03nH eHMH c3n̹bA7LLHHzbHHbHй H(H%bbA;LHHkbHHipQbHй ;baeHnnoHHnnHSHR0nH dHLH ;c3oHSHR0eoHL$XH) pHAHCHP0oH+oHcHHcpHL$XH)?qHAHCHP0)qH+qHL$XH)qHAHCHP0qH+qHL$XH)RrHAHCHP03{{# H{(]3|HCHP0]3}H+uHCHP0\3~H+uH#NJH9Z~3HHNjH|$PHLLH\&HD6H^@n~H\$Ht$WH IHHHu 躊HJH>H;'^HKsLHHsLHH9u\H]H;t+]u!LCHaH \M@H \H-t3.LHH ALHHLHH:ZH\$0Ht$8H _H\$Ht$WH HIغHDHHHtLHHHH&[HH\$0Ht$8H _@SH HHu%=wC,3H ;]H$hH [H [@SH HH7u%=wC(3H \HgH [H [H\$WH HAHL$8YH;tH )[HH 9[32HL$82[HHtHZH+Hu HSHR0HH\$0H _H(H=HtH9Ht+H H8uH d\H`H ZH(Ë@H[HH[H)ZHHZH8 qqL$$H$ qfsf~D$ D$$$ @D$H0gL$@@PD$ H @0H8H8Hg q q@Pq$H$ $L$D$L$@H P0H8̃uB uB BB s H-[H%iXH\$Hl$Ht$WH HkY3HH~%HHXHCu HH;|ۋH\$0Hl$8Ht$@H _H(HH bZH XH(H(HH BZH X3H(@UHl$HPHH3HE H=|tEHA3H }DHAL |DHI HDHRH|IDHyHxuHEH |LMLEHUH$HEH$HEH$HEHD$xHEHD$pHEHD$hHEHD$`HEHD$XHEHD$PHEHD$HHEHD$@HEHD$8HEHD$0HEHD$(HEHD$ lXHM H3@|HP]H(H VH]H WH(H(HH RWH iWH(HHXHhHpHx AVAWHE3HT$8E3HHHLI+HM+LI#NJIJ IE3J; A3I;L Hv8uHMHDKM@HuMt8LHH+M;sIJ IE3I;A3I;HEIIII;tM;sH+JM+H H HRIuH\$IHl$ Ht$(H|$0A_A^HHXHhHpHx AVAWL3HL$8E3HHMI+LM+LJ,H#NJHI+H+3H;@HH;HCKM@IuH;sBLIM+M;sSI H#NJHH+3H@HHDIHHHtM;sI+K M+HHHIIuH\$Hl$ Ht$(H|$0A_A^LH_Cy 5IHHkHL+MLIIHIH\$H|$L E3MH#NJM;HLAA3L;L Hv8uIMIDHt+L;s&KIE3H;A3H;HEK IH;tH\$IH|$H\$H|$L E3MH#NJM;HLAA3L;L Hv8uIMIDHt+L;s&KIE3H;A3H;HEK IH;tH\$IH|$HHXHpLH WH0E3ILH HMtPHYH+JH#NJIHH;sHLHD$ @HT$XLHEvLL$XHHuH\$@IHt$HH0_HHXHpLH WH0E3ILH HHMtHH+@H$II;sHH#NJLHL$ LHL$XHuLL$XHHuH\$@IHt$HH0_HHXHhHp WH E3ILPIHHMt7H+HH$II;sHLHL$@HL0KLT$@HHuH\$0IHl$8Ht$HH _H\$Ht$WH0IHHsE3H\$ LHHQH\$@Ht$HH0_HHPL@LH SVWH0HHpH'E3Ht$ LHHPH0_^[H( QA#t A H(Hc H HAHXLIHA3A A(A$HAKA,Hc H&HAHXLIHA3A A(A$HAKA,̹H%OA(ËA,HAHAHËA$ËAËAÍBDL=wa¹ E3uPA@$MPHcAIAJEP EJAEH(EH,HAHH RH+IHI@3ÃHc H&HAIc HXLIA$HA3A A(HBHAKA,I;w>HH6P^Cy HJHHH?Hи@HH;HMH;HOZAA H%4Hc A$HHAHXLIHA3A A(HAKA,̸;v3ÉQ,Áv3ÉQÁv3ÉQLIIHIH\$DL$ UVWATAUAVAWHHPLMcH gILJHLHEHP'HEH{Ht3Hu.HH;H5~L=HFHLFH5L= EHIօEHIօ Ht[LmIvM+HHHHFLEM 4HMPIT4HEPHHELl$ HEPHFHEHHvHuDmXEHIAׅHH}IHuHHHIFHUHEPHMPIFLHELIHEIFHELHULHMHMPINHMINHMIMv HMINHu3H$HPA_A^A]A\_^]HcH eHHH\$WH LILD$PIH 'HHI'H\$0HH _H\$Ht$WH IHLHH MIc'HHIU'H\$0HHt$8H _L LQLHBMM;LII;HAHBHAHHXHp L@WH0LBH#NJL@HHL;s33IHHHL+LD$PHGHOLKHT$@Ht$ oL HT$PLD$@HHt$ nHD$PH\$HHt$XH0_LHIHLHHIHII;sHHAHQLI3IHIL+MLIIHILH8LMCH3IISICIH+LIK?nHD$PH8H\$WH ILHHIMIHH+H;sHH\$0HH _ILM+I;LLBL+H;ILBI+HM;HCHcH bcHHLIIHIHHI+H;HCHI+I;HBHHcH cHHLL+H;KICH\$WH LILD$PIH HHIH\$0HH _H\$Ht$WH IHLHH MIHHIH\$0HHt$8H _LIIHIHHI+H;HCHI+I;HBHcH 6bHHH\$Hl$Ht$WATAUAVAWH L|$pMHLLIH IHLM+H;LCMM+M;MBIHI+I;MHCIQHVMH HI+H;HCIHI+I;HBwHVMH HI+H;I]HCI $RHVMH HI+H;HCIHI+I;HB%H HI+H;HCHI+I;HBIHI+I;HBI$HI+I;HBIEH\$PHl$XHt$`H A_A^A]A\_H\$Ht$WH IHLD$PIH LD$PHHHH\$0HHt$8H _H\$Ht$H|$AVH ILHHH MIIILHH8H\$0Ht$8H|$@IH A^LH6P^Cy IHH?HHkHL+MH\$WH HHHȺdHHtLHAqHQHHH (qFH\$0H _HHXHhHpHx ATAVAWH Hi[3EML5MEzMELHAs%MLIHcHxM;}IHcH+I|H;HCHD]HA+H\$@Hl$HHt$PH|$XH A_A^A\Ã@SH cHHtHH 6pYHH [H%EHH pH [H%D@SVWH`H%H3HD$PIHAHL$ Iu+3LHT$ LHHL$PH3jH`_^[H\$Hl$Ht$WAVAWH EL59LHH3As%MLYoHcH:Hcȅx<;}8H+I|H;tH+ߋH\$@Hl$HHt$PH A_A^_ÃH(AHHL$@EAAOHD$@H(HHHHPL@LH SVWH0HHpCHE3Ht$ LHHCH0_^[HHXHpHxLp AWH 3H!:MI!8ILH~<.tfuR;0u"KQCu?{.uK=Cu+H&H>uNC,+HuHI>u7H>u1IHÊzIHH\$0Ht$8H|$@Lt$HH A_3H\$H|$LT$(IHLE~6IE3J!H;HPHE0HcHHAKHBIuMtEMCOE3M!EYH;HPHE0HcKL AMHBIuIIuH\$H|$H\$WH HAA HT$8H˃ @HA8u;t HL$89t AH\$0HH _LIIHII HAIH;AIBIH\$WH HH HHuK C#t K HH\$0HH _H H\$Hl$Ht$WH Hi(HHIHD 3HC(HuAHk(AHK/ HKHK Hs AHl$8Ht$@D H\$0H _HHIH\$Hl$Ht$WAVAWH0H|$p3ILLkI;rHI%4thLLHHIHʼnHHH~HNH H9u HHHH|HuHH\$PHl$XHt$`H0A_A^_HHHXHhHpHx ATAVAWH H|$`3IMLLkI;rHI93trLMLHH%8IHfYHHH~HNH H9u HHHH|HuHH\$@Hl$HHt$PH|$XH A_A^A\HH\$Hl$LD$VWATAVAWH LQ(MyKDMHHII L5D$pLHO(DHHHtZH;|JHkI;HINH;W t6 tH;W ~+LD$xHc LD$xH|L5HG(H4HOHHO(vLHtYHsH;|EI;HINH;W t2 tH;W ~'LD$xHec LD$xH t(L5HHG(L$HIItLd$`HHH\$PHl$XH A_A^A\_^H\$WH HA'I<HHHH;rHxHH;r HOLG uHD$0HLMHD$ LH~LD$0HHU IDt$0HD$@HH)F*L+fHI;IOH~HHH~E@@u HM ޼E@@u HMɼD$H@uHL$pD$H@u HL$HHE(H;t!@u HK(@u HwAA@E uHH3SHA_A^A]A\_^[]HHXHpHx UATAVHhHfo=HEfo e=IHuLegH`;eLƃeEeHEHE'HXLIfo@=EHEHEEMEEKEuHOHG(H|HxtWLMwHEgMHD$ HHHUwLEgHDEgD HKHC(H|u ALMwHEgMHD$ II3HUwLEgIýHEgHLMHD$ LEHHA .UgLƁHd{L$I[ Is(I{8IA^A\]ÊA ԈH\$Ht$H|$UAVAWHH`fo;HXLIH}@HHEH93ELljEEMHHEKA EE"At.LMH|$ LHHYLMH|$ MHH'LMH|$ LHH+LMH|$ MHHp'IuL\$`I[ Is(I{0IA_A^]@USVWATAUAVAWH$HxH H3H`HrWHBMfo :ID"HLjAHELHB HE HB(HUHE(H`HEH`HD$XHEHEXHEHLEMMHED$8Hufo5:L$HE0fo :D$00HEE0E8EPMHIE3Hcd HD$xKHc HMHD$`HACHL$hEEHXLIHMHM`HEHD$pD]D]EHEKD]D]E LcLMH|$ LHMH[JD`HUHL$0L<IGHD$`H;~]X]n]]]]]]]^^2^B^T^[v^^^^^^^,]_,_P_^_r__[ZZZZZ~ZpZ]`Z ]\\\\HZ\\,Z\v\b\ZZYYT\<\,\ \[[[[[[[t[d[YF[_.[YYYzYfYTY>Y$Y YXXXXXXtX`XFX4X"XXd^W<(OO)|OONANSNANINFnansnaninfO|OODecimal('%s')OOOOOOO|OO|Ogroupingthousands_sepdecimal_point,.|O%s, argument must be a tuple or listcoefficient must be a tuple of digits%s%lliFsNaNdenominatornN-Normal+Subnormal+NormalInf(i)+Zerosign must be an integer with the value 0 or 1-Infinitystring argument in the third position must be 'F', 'n' or 'N'NaNargument must be a sequence of length 3Context(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)argument must be a contextexponent must be an integeroptional arg must be an integerconversion from %s to Decimal is not supported|OOOOOOOOvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]signal keys cannot be deletedvalid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]optional argument must be a contexttrapsflagscontext attributes cannot be deletedinvalid signal dictargument must be a signal dictvalid values for clamp are 0 or 1valid values for capitals are 0 or 1valid range for Emax is [0, MAX_EMAX]valid range for Emin is [MIN_EMIN, 0]valid range for prec is [1, MAX_PREC]O(nsnniiOO)__module__DecimalTupledecimal__libmpdec_version____version__1.70ExtendedContextBasicContextHAVE_THREADSDefaultContextDecimalExceptiondecimal.DecimalExceptionContextDecimals(OO){}SignalDictMutableMappingcollections.abcnamedtuple(ss)sign digits exponentcollectionsRationalregister(O)Numbernumbersbit_lengthas_integer_ratiodecimal_contextnumeratorO(O)argument must be a DecimalinityINITYcannot convert Infinity to integer ratiocannot convert NaN to integer ratiocannot convert NaN to integercannot convert Infinity to integercannot convert signaling NaN to floatinvalid override dictformat arg must be str-nanformat specification exceeds internal limits of _decimalCannot hash a signaling NaN valueoptional argument must be a dictargument must be int or floatinvalid format stringinternal error in context_setroundinternal error in context_settraps_listinternal error in context_setstatus_listargument must be an integerA@@3[@3[ PP3[ 0ddpc XLI@c c ?CCA䌄_wC3@Infinityx?Kvl?d d InvalidOperationdecimal.InvalidOperationFloatOperationdecimal.FloatOperationDivisionByZerodecimal.DivisionByZeroOverflowdecimal.OverflowUnderflowdecimal.UnderflowSubnormaldecimal.SubnormalInexactdecimal.InexactRoundeddecimal.RoundedClampeddecimal.ClampedConversionSyntaxdecimal.ConversionSyntaxDivisionImpossibledecimal.DivisionImpossibleDivisionUndefineddecimal.DivisionUndefinedInvalidContextdecimal.InvalidContextcopydecimal.SignalDictMixinprecroundingEminEmaxcapitalsclampctx__enter____exit__decimal.ContextManagervaluecontextotherthirdexprealimaglnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmaxmax_magminmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedcanonicalconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftfrom_floatas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__decimal.Decimalabmoduloabsminusplusadddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatdecimal.ContextgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINY?B  d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ  @ @ @ @ @ @ @ @$`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNC2.4.2internal error in flags_as_exceptionTrueFalse{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}internal error in context_settraps_dictinternal error in context_setstatus_dictinternal error in context_reprinternal error in dec_sequence_as_strexact conversion for comparison failedinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error in PyDec_ToIntegralValueinternal error in PyDec_ToIntegralExactinternal error in dec_mpd_qquantizedec_hash: internal error: please reportinternal error: could not find method %s0pJ*m<@PT ( c:\_work\4\s\modules\_decimal\libmpdec\typearith.h%s:%d: error: sub_size_t(): overflow: check the contextCLAMP_DEFAULTCLAMP_IEEE_754c:\_work\4\s\modules\_decimal\libmpdec\context.c%s:%d: warning: mpd_setminalloc: ignoring request to set MPD_MINALLOC a second time illegal value for MPD_MINALLOCConversion_syntaxDivision_by_zeroDivision_impossibleDivision_undefinedFpu_errorInvalid_contextInvalid_operationMalloc_errorNot_implementedIEEE_Invalid_operation%s %s mpd_fprint: output error add_size_t(): overflow: check the contextmul_size_t(): overflow: check the context+Infinity-Zero-Subnormalc:\_work\4\s\modules\_decimal\libmpdec\mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please reportd XLIRSDS>єL -"C:\_work\4\s\PCbuild\amd64\_decimal.pdb##UGP.text$lp00_decimal.text$mn.text$mn$00.text$x4lh.text$zy8U.text$zz.idata$5.00cfg .CRT$XCA(.CRT$XCZ0.CRT$XIA8.CRT$XIZ@.CRT$XPAH.CRT$XPZP.CRT$XTAX.CRT$XTZ` .rdata.rdata$00 .rdata$zz.rdata$zzzdbg.rtc$IAA.rtc$IZZ.rtc$TAA.rtc$TZZ?.xdataQP.edataR.idata$2R.idata$3R.idata$4W .idata$6pP.dataPp.data$000y`.data$dk00}l.data$pr00.data$zz.bss .bss$00.bss$dk00.bss$zz+.pdata0.rsrc$010 .rsrc$02d 42p!|4 p ` P!|$d 42 p!$td42!4 p`P!<B4r p`P!\h t d T 4 R!y0d42 p!ed 4 r p P!hv  4 2pd42 p!Sd42 p!T0d42 p!Pd 42 p!/pd 42 p!0dT42p!'dT42pdT42pd4 p P!XoT 4 R p `d42 p! o!4d42 p!p!"T+ & p`0P !":%t'Tp`0P!'(d42 p!)) d4 p P!)*d42 p!*+d T42p!+$,8  4 2pd T42p!t,,hd42 p!,c- d4 p Pd42 p!.S/d4 p P!T/k0 t d T 4Rd4 p P!01G2  t d T 4Rd 4 r p P!3E4\d4 p P!H4_5d4 p P!`5w6 t d T 4R t d T 4R t d T 4R  4 2p  4 2p!,9:  4 2p  Ptd4P  4 2p'Tp`0P!< >l  4 2p! >F>4)' p`0P !>A)) p`0P0 !AD  4 `!tDD!DD!tDD!DD!tN+l+X  t4'Tp`0P!FG t dT42!GH'p`0P!2td 4 P!>A@2td 4 P!D@A3td 4 P!AC,3td 4 P!CSEP3td 4 P!TEGt3td 4 P!GH3td 4 P!HaJ3td 4 P!dJL3td 4 P!LM4td 4 P!MqO(4td 4 P!tO!QL4td 4 P!$QRp4* 4 p`P!RV4d 4 2 p P4!YY40 4dZ p`P!YF]4 42 p`P!H]_(5 4 p`P!_`P5 d T 4 2p  4 2p t d T 4R!ced520 t dT42! ef5td 4 P!@fg5td 4 P!gyi6  4 2pr0! j,kL6r0!,k8ld6r0!8lEm|6  4 rp!Hmn6  4 rp!no6  4 rp!op6  4 rp!p6r6  4 rp!8rrs7  4 rp!tst 7r0!tu<7  4 rp!uvT7  4 rp!vxp7  4 rp!$x^y7d 4 r p!`ypz7d4 p P!pz|720d42 p  4 2pd42p d T 4 2p!~{ 842 p2042 p!<`8d T 4 rpd42 p d T 4 2pdT42p+ dT4rp0!D8bd 4R pBd4 p P dT4 Rp!`h89 td4P!hԋd9  4 2p2p!4@Z9!dZ9!Z9!@Z9!d4@Z9!4@Z9!d4@Z9d42 p!܌{,: t dT42!|ML:20B!e|:20 ,0P!ʐ:20B  4 2p!L:20!r:  4 2p!tɒ;d T42p!̒f ;p`0!  T pʓD;! T pʓD;4p!dTЕ;!dЕ;!Е;!dЕ;!dЕ;2 `P! t4 ;!;!t4 ;  4 p!dT<!T<!T<d42 pd42 p d T 4 Rp!`<  4 2pdT42p p`P0!<p ` P 0!  i$=!i$=! i$=! i$=  4 2p 4p`P! = 4p`P! = p ` P 0!`= t dT42!}>B!<>/ 4  p`PP!T>  4 `!t +>! +>/ 4   p`P!J>  4 2p d T 42p  4 2p 4 2p`P!j$?  4 2p4 2 `!t T X?!X?!t T X?!X? P0`!   td0r?!0r?!td0r?20!<$@20!<@B!T@B!l@d4 p P!,@ d4 p P!0@!0@!0@!0@!0@!0@!"x?x A  d 2p!48DA!48DA!8DA!48DAt4 P!zA20!|At4 P!QAdT42pd42 pd42 p  4 2p20!24B20!4zLBd42 p  4 2p2020  4 2p2020!*B% p`P!ė40B!ė40B!0B!ė4>yyCd T 4Rp d T 4 2ptd T4B!TlpCd 4  p!l"Cd42 p!0C20!C2020B!C t d T 4 R!Dd42 p!^4D20d42 p!)\Dd42 p!,|D  4 2pdT42p td4P![DB!\DB!E  hR0!SE  4 2p!T4EB!PE  4 2p! qhEd 4R p!tE2020!E  4 2p`P!E  4 2p`P!6Ed 4R p!d F2020d 4 r p P!4Fd 4 r p P!MXF20!P|F2020!XFtd 4 P!CFtd 4 P!DF  4 2p!FB20t 4  P!(Gtd 4 P!cHG  4 2p!dlG  4 2p!!Gd42 p!0GBT 42 p `!GB!G20Bd42 p! Hd42 p!8Hd42 p!jXH t dT42!+xHBBbB  b  4 rprp`020t d42@ w   2P  4 2p@ 1 _ j 2PB 4rp`@ RPd42 p  4 2P  2PBBB20 "@PB202020  4 rPdT42pBBBBBBBB4PB  4 2p  4 2pT4 p `  4 2pd42 pd42 pbb2020*P@dT42pBBBBBd 4Rpd 4Rpd T42p  t4 tdT4  t4 tdT4Rp`0d 4R pB 4 p ` P  4 2pd42 pd 4 Rp  4 2pb  4 2pd42 p d T 4 2pd42 ptd4220  4 2p t d T 42 d T 42pp`0PB  td42  t4  4 2pRp`0dT42p  4 2p t d T 4 R, P `0Pp d T 4 Rp T 4 2p` t d T 422020  hbdT 4 p-  p`0P  4 2p# ##t#d#4#P-  p`0P`4 R p `Pb td4P td4P'Tp`0P d T 4 Rp 4p`P'Tp`0P'Tp`0P'Tp`0P'Tp`0P'Tp`0P'Tp`0Pr0btd4242 p2020d T42pd T42pd42 pB20d42 p2020  4 2p d T 42ptd T4Bd 4R pbb20bd42 p203 "dV"4U"N P`20  4 2pd42 ptdT 40BQQQQQ_decimal.pydPyInit__decimalT_pS_SaS bT.b TNb@TpbSbSbR`dbccLd:d&ddcccccxcdcPc2cbxdnd___````````_:`ddF`aaaaaa~aba@a&aa````N`V`h`````>]X]n]]]]]]]^^2^B^T^[v^^^^^^^,]_,_P_^_r__[ZZZZZ~ZpZ]`Z ]\\\\HZ\\,Z\v\b\ZZYYT\<\,\ \[[[[[[[t[d[YF[_.[YYYzYfYTY>Y$Y YXXXXXXtX`XFX4X"XXd^WPyBaseObject_TypePyUnicode_InternFromStringPyErr_SetObjectPyBool_FromLongPyModule_AddIntConstant4PyType_GenericNew_Py_ascii_whitespacePyLong_AsSsize_tPyExc_KeyErrorPyImport_ImportModulePyErr_OccurredPyLong_FromSsize_tPyUnicode_DecodeUTF8bPyObject_GenericGetAttrgPyUnicode_AsUTF8AndSize#PyExc_RuntimeErrorPyLong_FromLonguPyContextVar_GetPy_BuildValuePyDict_GetItemWithErrorpPyComplex_FromDoublesEPyFloat_AsDouble_Py_NoneStruct+PyTuple_NewPyDict_SetItemStringPyDict_SizeHPyFloat_FromDouble_PyUnicode_ToDecimalDigitPyExc_AttributeErrorPyUnicode_NewPyList_SizePyUnicode_FromWideCharPyErr_SetString8PyExc_ZeroDivisionErrorQPyObject_CallFunctionxPyContextVar_Set5PyExc_ValueErrorPyLong_FromUnsignedLongPyErr_FormatPyExc_ArithmeticErrorPyModule_AddStringConstant/PyTuple_Type_Py_FalseStructMPyFloat_TypePyLong_Type7PyType_IsSubtypePyExc_OverflowError^PyObject_FreenPyComplex_AsCComplexPyModule_AddObjectRPyObject_CallFunctionObjArgsPyLong_AsLongPyUnicode_FromFormatPyList_NewPyModule_Create29PyType_ReadyhPyObject_GetAttrStringPyErr_NewExceptionPyErr_ClearPyList_Append.PyTuple_Size_PyLong_NewdPyObject_GenericSetAttrPyDict_SetItemPyDict_NewPyList_GetItem_PyUnicode_IsWhitespaceSPyObject_CallMethodrPyObject_IsInstancePyMem_FreePyErr_NoMemoryPyDict_GetItemStringUPyObject_CallObjectsPyComplex_Type_Py_NotImplementedStructqPyUnicode_Compare PyArg_ParseTupleAndKeywords_PyObject_New-PyExc_TypeErrorPyMem_RealloctPyObject_IsTruehPyUnicode_AsUTF8String,PyTuple_PackoPyObject_HashNotImplemented_PyUnicode_ReadyPyMem_MallocPyList_AsTuple_Py_TrueStructPyUnicode_FromString_PyLong_GCDrPyUnicode_CompareWithASCIIString:PyType_Type PyArg_ParseTuplevPyContextVar_NewIPyFloat_FromStringpython37.dll__C_specific_handler%__std_type_info_destroy_list>memsetVCRUNTIME140.dll0_isnan[mbstowcs)_finite__stdio_common_vsprintf_s _copysignTabortfputc__acrt_iob_func__stdio_common_vfprintfaraise!_strtoi64oisuppertolowerlocaleconv!_errnofputshisdigitcallocreallocfreemalloc6_initterm7_initterm_e?_seh_filter_dll_configure_narrow_argv3_initialize_narrow_environment4_initialize_onexit_table<_register_onexit_function"_execute_onexit_table_crt_atexit_crt_at_quick_exit_cexitgterminateapi-ms-win-crt-math-l1-1-0.dllapi-ms-win-crt-convert-l1-1-0.dllapi-ms-win-crt-stdio-l1-1-0.dllapi-ms-win-crt-runtime-l1-1-0.dllapi-ms-win-crt-string-l1-1-0.dllapi-ms-win-crt-locale-l1-1-0.dllapi-ms-win-crt-heap-l1-1-0.dllRtlCaptureContextRtlLookupFunctionEntryRtlVirtualUnwindUnhandledExceptionFiltersSetUnhandledExceptionFilterGetCurrentProcessTerminateProcessIsProcessorFeaturePresentIQueryPerformanceCounterGetCurrentProcessId GetCurrentThreadIdGetSystemTimeAsFileTime DisableThreadLibraryCallsgInitializeSListHead}IsDebuggerPresentGetStartupInfoWzGetModuleHandleWKERNEL32.dll<memcpy=memmove|ceillog102-+] f/ ȗP aD X8`p`0h@`4PPi`Ь`x0P` `x @8H `h@x   ````````x8 0    (   c c XLI 8>        is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. ̐ x$multiply($self, x, y, /) -- Return the product of x and y. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. C decimal arithmetic moduleis_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. sqrt($self, x, /) -- Square root of a non-negative number to context precision. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. logical_invert($self, x, /) -- Invert all digits of x. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. кL`yЩlogb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. canonical($self, x, /) -- Return a new instance of x. is_finite($self, x, /) -- Return True if x is finite, False otherwise. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') 3X d\@$0rotate($self, x, y, /) -- Return a copy of x, rotated by y places. is_signed($self, x, /) -- Return True if x is negative, False otherwise. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. T0,8D.Hp!P `)p܌@ dtd04HȤp! \ ȹ(`H401`T/`5`L'0p  P 0X$,08H XdXphpP`x|dp4tLؒ@ *h<(PpP 8|i`H  X0ph03d(X ȸ8`$X\1`ئp(lx0|xnext_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') number_class($self, x, /) -- Return an indication of the class of x. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') compare($self, x, y, /) -- Compare x and y numerically. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. to_integral($self, x, /) -- Identical to to_integral_value(x). fma($self, x, y, z, /) -- Return x multiplied by y, plus z. logical_and($self, x, y, /) -- Digit-wise and of x and y. clear_flags($self, /) -- Reset all flags to False. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). to_integral_value($self, x, /) -- Round to an integer. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. as_tuple($self, /) -- Return a tuple representation of the number. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. logical_or($self, x, y, /) -- Digit-wise or of x and y. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. max($self, x, y, /) -- Compare the values numerically and return the maximum. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. clear_traps($self, /) -- Set all traps to False. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. divide($self, x, y, /) -- Return x divided by y. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. getcontext($module, /) -- Get the current default context. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). ($0|Hlogical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. 4<,is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. copy_sign($self, x, y, /) -- Copy the sign from y to x. conjugate($self, /) -- Return self. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. shift($self, x, y, /) -- Return a copy of x, shifted by y places. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). min($self, x, y, /) -- Compare the values numerically and return the minimum. abs($self, x, /) -- Return the absolute value of x. radix($self, /) -- Return 10. 0vDuHHmPn`op8rЁ~`$x`D@pA$QpCTE Gpp >00p8H8@X 0dXp`x\p8} j,klP``pP pts(tp88lHDXpgHdJ@fPtOLM`ppR(8pzHXdhTxtcanonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. setcontext($module, context, /) -- Set a new default context. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. next_plus($self, x, /) -- Return the smallest representable number larger than x. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. ln($self, x, /) -- Return the natural (base e) logarithm of x. copy_decimal($self, x, /) -- Return a copy of Decimal x. subtract($self, x, y, /) -- Return the difference between x and y. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. copy($self, /) -- Return a duplicate of the context with all flags cleared. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. exp($self, x, /) -- Return e ** x. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. log10($self, x, /) -- Return the base 10 logarithm of x. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. next_minus($self, x, /) -- Return the largest representable number smaller than x. add($self, x, y, /) -- Return the sum of x and y.   ( @ X `h x   x8||$$<Y`\hy|ehvxST0P/p0'(VXop  o!4p!"T":%t'()))**++$,8$,t,\t,,h,c-d-..S/T/k0l0-101G2 H23D3E4\H4_5`5w6x647477788,9,9::W:8X::D;r<Lt<<`< >l >F>H>>>AADDDDHE HEfE4fEEDEvF|FGGH2>A@2D@A3AC,3CSEP3TEGt3GH3HaJ3dJL3LM4MqO(4tO!QL4$QRp4RV4VY4YY4YF]4H]_(5_`P5`]bx5cc5ced5d e5 ef5@fg5gyi6|ij@6 j,kL6,k8ld68lEm|6Hmn6no6op6p6r68rrs7tst 7tu<7uvT7vxp7$x^y7`ypz7pz|7|V|7X|}7} ~8~~8~{ 8|L89X8<`8`|8`88B8D8Ն9؆/ 98~9^$9`h89hԋd9ԋ79@Z9Z9Œ9Œ͌9͌Ҍ9Ҍ׌9׌ی:܌{,:|ML:Pt:e|:h:ʐ:̐ : J:L:r:tɒ;̒f ;pʓD;ʓT;Е;ЕN;NY;YZ;Z};;ܗ <ܗ(<8<T<x`<xt<<`<`<g<hӚ<<i$=i78=7HP=HP`=4= = =`=}><>T> +>+>>J>Lz>>(̷?̷?j$?lL?X?/l?/O?OS?0r?r??<$@<@T@l@,@0@*@*@@@  A8DA8PAdAxAAzA|AQATABnBp(B24B4zLB|EdBHtB"B$BB(B*B0BBlBl0CDCS\CTlpCl"C0CCCCCD^4D`TD)\D,|D DD[D\DESET4EPE qhEtEEEE6Ed Fz$F|,F4FMXFP|FVFXFCFDFFKGL G(GcHGdlG!G0GGGGVHH H8HjXH+xH,[HHHHH H  H  H } H  lI  H k 0Il tIIpIpI CIhIJlJXJPJpJ1xJ4MO`*OO*OP*PP*PP<+P|QL+|QTR|+TRR+RR+R,S8,,Sqr,>r9sD>:stx>tt>*tuyyCyyCy5zxC6zpzCpzzCzzCz{C{|$D|,|DD,|R|lDR|k|Dl|~D~~D~E$E@EXEtE-E.DEDuEvEـFڀAHFBlFFցFցkFlFG8G\G:xG:`G`zGzGG(H/HH0OhHhHJK^ K`(K(J(sXKKnK DK/hK0N`KPy0K|pKxKȌKȌKKKK$K$KL(K(DL Lԕ8LԕDLLTLPpL̗dLpxLL<LךLؚ1L\LqLt˜L̜0M0Mĝ0MGhMH$8M$̟PM̟-\M\M.tM<MNMΤlNФOHOPnxN3P\/0O0 P0WPXLNյNص϶NжNʻN̻PƼQPgP4PO$/O0uNx0Q\Q ,P;QL^|Op`OPMP8QYN\8P@P M8NP %OXPQ Q \PHP$f Qh+PLpPOONePh$NNP,NP9PdQJpQlQ(@X?p   9&860E true 4VS_VERSION_INFO? StringFileInfo000004b0VCompanyNamePython Software Foundation@ FileDescriptionPython Core,FileVersion3.7.06 InternalNamePython DLL0LegalCopyrightCopyright 2001-2016 Python Software Foundation. Copyright 2000 BeOpen.com. Copyright 1995-2001 CNRI. Copyright 1991-1995 SMC.B OriginalFilename_decimal.pyd.ProductNamePython0ProductVersion3.7.0DVarFileInfo$Translation3.7$ؠ`hpx (hp`PX`hpؠHXh8@Pآ0hx(@hpؤHPȥ (xH08PXpxШب08HP`pxЩة (08@HXhpȪЪ (8@PXhpЫ 0@PX`pxЬج 08HP`pxȯ ( (8@HX@HPX`hpxФ(0(08HPXhpxȨШب(08HPXhpxȩЩة(08HPXhpxȪЪت(08HPXhpxȫЫث(08HPXhpxȬЬج(08HPXhpxȭЭح(08HPXhpxȮЮخ(08HPXhpxȯЯد0(08HPXpxȠРؠ,Ьج (0HPX``hxȮخ (8@HX`hxȯد  (8@HX`hxȠؠ (8@HX`hxȡء (8@HX`hxȢآ (8@HX`hxȣأ (8@HX`hxȤؤ (@H`hȥ (, (0ȩЩة0 *H }0y10  `He0\ +7N0L0 +70 010  `He T>;4dP]Y-xU᱆d-( Y&00W~|NYKw;0  *H 01 0 UZA10U Western Cape10U Durbanville10 U Thawte10U Thawte Certification10UThawte Timestamping CA0 121221000000Z 201230235959Z0^1 0 UUS10U Symantec Corporation100.U'Symantec Time Stamping Services CA - G20"0  *H 0 ITK %y"W*oܸ&Csk¿.PZvC%CE{t"״MD$k_E;DCsi+˙r&Mq1QaSI,xE/W?=ƒJ{3y uAQlie)`; tޒ"t|'JÞ-'}aqPK],e ؖ|NHDD h]jxdE`F~T|yq00U_n\t}?L.02+&0$0"+0http://ocsp.thawte.com0U00?U8060420.http://crl.thawte.com/ThawteTimestampingCA.crl0U% 0 +0U0(U!0010UTimeStamp-2048-10  *H  yY0h O]7_R DnmX|0i#s oG9*ÎY M1\*zzWLey@b%n7j!AW?wI*^8j"Q~0085njP0  *H 0^1 0 UUS10U Symantec Corporation100.U'Symantec Time Stamping Services CA - G20 121018000000Z 201229235959Z0b1 0 UUS10U Symantec Corporation1402U+Symantec Time Stamping Services Signer - G40"0  *H 0 c 9D#DIa Sۭ,Jn"hcSit<üu00̠x"CS( \(L0  *H  0}1 0 UIL10U  StartCom Ltd.1+0)U "Secure Digital Certificate Signing1)0'U StartCom Certification Authority0 151216010005Z 301216010005Z0u1 0 UIL10U  StartCom Ltd.1)0'U  StartCom Certification Authority1#0!UStartCom Class 3 Object CA0"0  *H 0 l%6d\yaQ@fWW2eUz߯U(2gc/ewMLViL $d9ol:2,cTkDnd7[k`o,<oʰӚ5~gim$y|0:g(h9ˡz& krkWfH(o c@&@԰EiTكH@޻M@$F/ea}.b/i%wzf0b0U0U%0+ +7=0U002U+0)0'%#!http://crl.startssl.com/sfsca.crl0f+Z0X0$+0http://ocsp.startssl.com00+0$http://aia.startssl.com/certs/ca.crt0Ufz͜sji0U#0N @[i04hCA0?U 80604U 0,0*+http://www.startssl.com/policy0  *H   wGts`#c!9SQhSXٮ#Mg+x^[JL4G)yFG(ucQ@S^zi4.l B'/ &Ӯ7,8ۗS%gźɛq`\:^Xum3 \cfD@#o'tPj!{؏IAcWgY*Ǚ+u a#R.{QPxtYʮ؞J 96(fv1]i$[X}ҌR1/Fw6/U x䈩rmzwyJυJ.G.Z6.u}hL3uvC"рW~UJ-:|&@L0dеR7[U&cBqzOά.pB6Ů}z`0L<+Pc ?4\p~O2\uX00i Akh>7f֧0  *H  0u1 0 UIL10U  StartCom Ltd.1)0'U  StartCom Certification Authority1#0!UStartCom Class 3 Object CA0 160206001545Z 190206001545Z0|1 0 UUS10 U Oregon10U Beaverton1#0!U Python Software Foundation1#0!U Python Software Foundation0"0  *H 0 ȫDXCӥ jF2_E 9Vfxb\MNyi>QtZg}6[ߒ9W-c7W}nNVmzY@:DlJӻz`Z|++VRA9S뇷r;zQD]c0*ۣvnJ3#x)\EZ`Wt~,(8|d_! '@UmRFK4:@\l{Np>P3u(94`{M)T aA80T1;ߧ5(i!&\mU0LfTTr&\&̗"ׂf`Δ_'q&}O(/+Qh wD1ÜK=h!7UlgFJ8xڥ%w3\ِ]9 nĈ?fHoi􉻯s<#"$! 1;SI\2"Iđd~mM000U0U%0+ +7=0 U00UیJpO6qEaQ0U#0fz͜sji0m+a0_0$+0http://ocsp.startssl.com07+0+http://aia.startssl.com/certs/sca.code3.crt06U/0-0+)'%http://crl.startssl.com/sca-code3.crl0#U0http://www.startssl.com/0PU I0G0g 0; +70,0*+http://www.startssl.com/policy0  *H  ɀPo88Mo{x%:ԮSw Z)\i1:<1P#۵w0TIX^ٗD@έ -gb8R&YϷ~_&Ip`>0m©UJf#JxBmuK2uThN^],fv I=a5UI=pzjwuL`B~A1_0[00u1 0 UIL10U  StartCom Ltd.1)0'U  StartCom Certification Authority1#0!UStartCom Class 3 Object CAi Akh>7f֧0  `He0 *H  1  +70 +7 10  +70, +7 10Python 3.7.00/ *H  1"  ' TS2 q^8v0  *H v<% D#{lGc5Ta^_- Ĭ͒n=z-]X$#ホɺ5!`:5KJo`3{:tO4cLt6A.ZzYQY#%GK fXF ?*BAȲ-Sb*u=YZ t8Ernաw~˔EK2}a-2ox#6T_ NH~Ԛgώr͓LzCQ÷֯~q45 dt Gww9 ln%Ʌ޴!7"JH|{8FcNdg&Rkps4(α4|TωyU;[ P GjPgإ~K5~bKCeB;bVp]\<=XaL0c;J^N=F\Jb07VpQGw]%T'ϴ Vna{[b6ٖ ̇#H 0 *H  100r0^1 0 UUS10U Symantec Corporation100.U'Symantec Time Stamping Services CA - G285njP0 +]0 *H  1  *H 0 *H  1 180627050052Z0# *H  1= ݻs`ia0  *H B_,z)i&yZmVPL$ KY:yp]8#1^+<Vclgo;W"bӵG=dU@G_~lu~%, A@Z/<^.BDF|yQD ٓ 40m|cN^U$`g:)!00|Yj}av<C^t=̌C7՛w&'8d46 ,X