# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from apex import amp from smcv_utils import NHWC class NHWCToNCHW_Impl(torch.autograd.Function): @staticmethod def forward(ctx, x): y = NHWC.cudnnNhwcToNchw(x) return y @staticmethod def backward(ctx, y_grad): x_grad = NHWC.cudnnNchwToNhwc(y_grad) return x_grad class NCHWToNHWC_Impl(torch.autograd.Function): @staticmethod def forward(ctx, x): y = NHWC.cudnnNchwToNhwc(x) return y @staticmethod def backward(ctx, y_grad): x_grad = NHWC.cudnnNhwcToNchw(y_grad) return x_grad class NHWCToNCHW(torch.nn.Module): def __init__(self): super(NHWCToNCHW, self).__init__() def forward(self, x): return NHWCToNCHW_Impl.apply(x) class NCHWToNHWC(torch.nn.Module): def __init__(self): super(NCHWToNHWC, self).__init__() def forward(self, x): return NCHWToNHWC_Impl.apply(x)