# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # Copyright (c) 2018-2019 NVIDIA CORPORATION. All rights reserved. import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from smcv_utils import _C from smcv_utils import NHWC from apex import amp class _ROIAlign(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio, is_nhwc): ctx.save_for_backward(roi) ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio ctx.is_nhwc = is_nhwc ctx.input_shape = input.size() output = _C.roi_align_forward( input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio, is_nhwc ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale sampling_ratio = ctx.sampling_ratio if not ctx.is_nhwc: bs, ch, h, w = ctx.input_shape else: bs, h, w, ch = ctx.input_shape ## TODO: NHWC kernel + transposes is faster than NCHW backward kernel ## Might change to transposes + NHWC kernel if we want to speed up NCHW case ## Cast to fp32 for the kernel because FP16 atomics is slower than FP32 in Volta grad_input = _C.roi_align_backward( grad_output.float(), rois, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, sampling_ratio, ctx.is_nhwc ).half() return grad_input, None, None, None, None, None roi_align = _ROIAlign.apply class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio, is_nhwc): super(ROIAlign, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.nhwc = is_nhwc def forward(self, input, rois): return roi_align( input, rois.float(), self.output_size, self.spatial_scale, self.sampling_ratio, self.nhwc ) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ")" return tmpstr