#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert raw COCO dataset to TFRecord for object_detection. Example usage: python create_coco_tf_record.py --logtostderr \ --train_image_dir="${TRAIN_IMAGE_DIR}" \ --val_image_dir="${VAL_IMAGE_DIR}" \ --test_image_dir="${TEST_IMAGE_DIR}" \ --train_annotations_file="${TRAIN_ANNOTATIONS_FILE}" \ --val_annotations_file="${VAL_ANNOTATIONS_FILE}" \ --testdev_annotations_file="${TESTDEV_ANNOTATIONS_FILE}" \ --output_dir="${OUTPUT_DIR}" """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import hashlib import io import json import multiprocessing import os from absl import app from absl import flags import numpy as np import PIL.Image from pycocotools import mask from object_detection.utils import dataset_util from object_detection.utils import label_map_util import tensorflow as tf flags.DEFINE_boolean('include_masks', False, 'Whether to include instance segmentations masks ' '(PNG encoded) in the result. default: False.') flags.DEFINE_string('train_image_dir', '', 'Training image directory.') flags.DEFINE_string('val_image_dir', '', 'Validation image directory.') flags.DEFINE_string('test_image_dir', '', 'Test image directory.') flags.DEFINE_string('train_object_annotations_file', '', '') flags.DEFINE_string('val_object_annotations_file', '', '') flags.DEFINE_string('train_caption_annotations_file', '', '') flags.DEFINE_string('val_caption_annotations_file', '', '') flags.DEFINE_string('testdev_annotations_file', '', 'Test-dev annotations JSON file.') flags.DEFINE_string('output_dir', '/tmp/', 'Output data directory.') FLAGS = flags.FLAGS tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) def create_tf_example(image, bbox_annotations, caption_annotations, image_dir, category_index, include_masks=False): """Converts image and annotations to a tf.Example proto. Args: image: dict with keys: [u'license', u'file_name', u'coco_url', u'height', u'width', u'date_captured', u'flickr_url', u'id'] bbox_annotations: list of dicts with keys: [u'segmentation', u'area', u'iscrowd', u'image_id', u'bbox', u'category_id', u'id'] Notice that bounding box coordinates in the official COCO dataset are given as [x, y, width, height] tuples using absolute coordinates where x, y represent the top-left (0-indexed) corner. This function converts to the format expected by the Tensorflow Object Detection API (which is which is [ymin, xmin, ymax, xmax] with coordinates normalized relative to image size). image_dir: directory containing the image files. category_index: a dict containing COCO category information keyed by the 'id' field of each category. See the label_map_util.create_category_index function. include_masks: Whether to include instance segmentations masks (PNG encoded) in the result. default: False. Returns: example: The converted tf.Example num_annotations_skipped: Number of (invalid) annotations that were ignored. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ image_height = image['height'] image_width = image['width'] filename = image['file_name'] image_id = image['id'] full_path = os.path.join(image_dir, filename) with tf.io.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) key = hashlib.sha256(encoded_jpg).hexdigest() xmin = [] xmax = [] ymin = [] ymax = [] is_crowd = [] category_names = [] category_ids = [] area = [] encoded_mask_png = [] num_annotations_skipped = 0 for object_annotations in bbox_annotations: (x, y, width, height) = tuple(object_annotations['bbox']) if width <= 0 or height <= 0: num_annotations_skipped += 1 continue if x + width > image_width or y + height > image_height: num_annotations_skipped += 1 continue xmin.append(float(x) / image_width) xmax.append(float(x + width) / image_width) ymin.append(float(y) / image_height) ymax.append(float(y + height) / image_height) is_crowd.append(object_annotations['iscrowd']) category_id = int(object_annotations['category_id']) category_ids.append(category_id) category_names.append(category_index[category_id]['name'].encode('utf8')) area.append(object_annotations['area']) if include_masks: run_len_encoding = mask.frPyObjects(object_annotations['segmentation'], image_height, image_width) binary_mask = mask.decode(run_len_encoding) if not object_annotations['iscrowd']: binary_mask = np.amax(binary_mask, axis=2) pil_image = PIL.Image.fromarray(binary_mask) output_io = io.BytesIO() pil_image.save(output_io, format='PNG') encoded_mask_png.append(output_io.getvalue()) captions = [] for caption_annotation in caption_annotations: captions.append(caption_annotation['caption'].encode('utf8')) feature_dict = { 'image/height': dataset_util.int64_feature(image_height), 'image/width': dataset_util.int64_feature(image_width), 'image/filename': dataset_util.bytes_feature(filename.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(str(image_id).encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/caption': dataset_util.bytes_list_feature(captions), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(category_names), 'image/object/class/label': dataset_util.int64_list_feature(category_ids), 'image/object/is_crowd': dataset_util.int64_list_feature(is_crowd), 'image/object/area': dataset_util.float_list_feature(area), } if include_masks: feature_dict['image/object/mask'] = ( dataset_util.bytes_list_feature(encoded_mask_png)) example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return key, example, num_annotations_skipped def _pool_create_tf_example(args): return create_tf_example(*args) def _load_object_annotations(object_annotations_file): with tf.io.gfile.GFile(object_annotations_file, 'r') as fid: obj_annotations = json.load(fid) images = obj_annotations['images'] category_index = label_map_util.create_category_index( obj_annotations['categories']) img_to_obj_annotation = collections.defaultdict(list) tf.compat.v1.logging.info('Building bounding box index.') for annotation in obj_annotations['annotations']: image_id = annotation['image_id'] img_to_obj_annotation[image_id].append(annotation) missing_annotation_count = 0 for image in images: image_id = image['id'] if image_id not in img_to_obj_annotation: missing_annotation_count += 1 tf.compat.v1.logging.info('%d images are missing bboxes.', missing_annotation_count) return images, img_to_obj_annotation, category_index def _load_caption_annotations(caption_annotations_file): with tf.io.gfile.GFile(caption_annotations_file, 'r') as fid: caption_annotations = json.load(fid) img_to_caption_annotation = collections.defaultdict(list) tf.compat.v1.logging.info('Building caption index.') for annotation in caption_annotations['annotations']: image_id = annotation['image_id'] img_to_caption_annotation[image_id].append(annotation) missing_annotation_count = 0 images = caption_annotations['images'] for image in images: image_id = image['id'] if image_id not in img_to_caption_annotation: missing_annotation_count += 1 tf.compat.v1.logging.info('%d images are missing captions.', missing_annotation_count) return img_to_caption_annotation def _create_tf_record_from_coco_annotations( object_annotations_file, caption_annotations_file, image_dir, output_path, include_masks, num_shards): """Loads COCO annotation json files and converts to tf.Record format. Args: object_annotations_file: JSON file containing bounding box annotations. caption_annotations_file: JSON file containing caption annotations. image_dir: Directory containing the image files. output_path: Path to output tf.Record file. include_masks: Whether to include instance segmentations masks (PNG encoded) in the result. default: False. num_shards: Number of output files to create. """ tf.compat.v1.logging.info('writing to output path: %s', output_path) writers = [ tf.io.TFRecordWriter(output_path + '-%05d-of-%05d.tfrecord' % (i, num_shards)) for i in range(num_shards) ] images, img_to_obj_annotation, category_index = ( _load_object_annotations(object_annotations_file)) img_to_caption_annotation = ( _load_caption_annotations(caption_annotations_file)) pool = multiprocessing.Pool() total_num_annotations_skipped = 0 for idx, (_, tf_example, num_annotations_skipped) in enumerate( pool.imap(_pool_create_tf_example, [(image, img_to_obj_annotation[image['id']], img_to_caption_annotation[image['id']], image_dir, category_index, include_masks) for image in images])): if idx % 1000 == 0: tf.compat.v1.logging.info('On image %d of %d', idx, len(images)) total_num_annotations_skipped += num_annotations_skipped writers[idx % num_shards].write(tf_example.SerializeToString()) pool.close() pool.join() for writer in writers: writer.close() tf.compat.v1.logging.info('Finished writing, skipped %d annotations.', total_num_annotations_skipped) def main(_): assert FLAGS.train_image_dir, '`train_image_dir` missing.' assert FLAGS.val_image_dir, '`val_image_dir` missing.' # assert FLAGS.test_image_dir, '`test_image_dir` missing.' if not tf.io.gfile.isdir(FLAGS.output_dir): tf.io.gfile.makedirs(FLAGS.output_dir) train_output_path = os.path.join(FLAGS.output_dir, 'train') val_output_path = os.path.join(FLAGS.output_dir, 'val') testdev_output_path = os.path.join(FLAGS.output_dir, 'test-dev') _create_tf_record_from_coco_annotations( FLAGS.train_object_annotations_file, FLAGS.train_caption_annotations_file, FLAGS.train_image_dir, train_output_path, FLAGS.include_masks, num_shards=512) _create_tf_record_from_coco_annotations( FLAGS.val_object_annotations_file, FLAGS.val_caption_annotations_file, FLAGS.val_image_dir, val_output_path, FLAGS.include_masks, num_shards=512) if __name__ == '__main__': tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) app.run(main)