set -e set -x if [ -z "$2" ]; then echo "usage download_and_preprocess_coco.sh [data dir] [output dir]" exit fi echo "Cloning Tensorflow models directory (for conversion utilities)" if [ ! -e tf-models ]; then git clone http://github.com/tensorflow/models tf-models fi (cd tf-models/research && protoc object_detection/protos/*.proto --python_out=.) mv tf-models/research/object_detection . rm -rf tf-models # Create the output directories. COCO_DIR=$1 OUTPUT_DIR=$2 TRAIN_IMAGE_DIR=${COCO_DIR}/train2017 VAL_IMAGE_DIR=${COCO_DIR}/val2017 TRAIN_OBJECT_ANNOTATIONS_FILE=$COCO_DIR/annotations/instances_train2017.json VAL_OBJECT_ANNOTATIONS_FILE=$COCO_DIR/annotations/instances_val2017.json TRAIN_CAPTION_FILE=$COCO_DIR/annotations/captions_train2017.json VAL_CAPTION_FILE=$COCO_DIR/annotations/captions_val2017.json mkdir -p "${OUTPUT_DIR}" python create_coco_tf_record.py --logtostderr \ --include_masks \ --train_image_dir="${TRAIN_IMAGE_DIR}" \ --val_image_dir="${VAL_IMAGE_DIR}" \ --train_object_annotations_file="${TRAIN_OBJECT_ANNOTATIONS_FILE}" \ --val_object_annotations_file="${VAL_OBJECT_ANNOTATIONS_FILE}" \ --train_caption_annotations_file="${TRAIN_CAPTION_FILE}" \ --val_caption_annotations_file="${VAL_CAPTION_FILE}" \ --output_dir="${OUTPUT_DIR}" rm -rf object_detection