
10/25/21, 2:32 PM README.md - Grip

localhost:6419 1/30

 README.md

Accelerate data preparation using Amazon SageMaker Data
Wrangler for Diabetic Patient Readmission Prediction

Patient readmission to hospital after prior visits for the same disease results in additional burden on healthcare providers, health system

and patients. Machine Learning (ML) models if built and trained properly can help understand reasons for readmission, and predict

readmission accurately. ML could allow providers to create a better treatment plans and care which would translate to reduction of both

cost and mental stress for patients. However, ML is a complex technique that has been limiting organizations that do not have the

luxury to recruit a team of data engineers and scientists to build ML workloads. In this example, we show you how to build a machine

learning model to predict diabetic patient readmission easily and quickly with a graphical interface from Amazon SageMaker Data

Wrangler.

Amazon SageMaker Data Wrangler is an Amazon SageMaker Studio feature designed to allow users to explore and transform tabular

data for machine learning use cases without coding. Amazon SageMaker Data Wrangler is the fastest and easiest way to prepare data

for Machine Learning. It gives you the ability to use a visual interface to access data, perform exploratory data analysis (EDA) and

feature engineering. It also seamlessly operationalizes your data preparation steps by allowing to export data flow into Amazon

SageMaker Pipelines, Amazon SageMaker Data Wrangler job, Python file or Amazon SageMaker Feature Store.

Amazon SageMaker Data Wrangler comes with over 300 built-in transforms, custom transformations using either Python, PySpark or

SparkSQL runtime. It also comes with built-in data analysis capabilities for charts (eg, scatterplot or histogram) and time-saving model

analysis capabilities such as Feature importance, Target leakage and Model explainability.

In this step-by-step example, you will be running machine learning workflow with Amazon SageMaker Data Wrangler and Amazon

SageMaker features using a HCLS dataset.

Here are the high-level activities:

1. Load UCI Source Dataset into your S3 bucket

2. Design your DataWrangler flow file

3. Processing & Training Jobs for Model building

4. Host trained Model for real-time inference

1. Source Dataset

UCI diabetic patient readmission dataset. The dataset represents 10 years (1999-2008) of clinical care at 130 US hospitals and

integrated delivery networks. It includes over 50 features representing patient and hospital outcomes.

You will start by downloading the dataset and uploading it to a S3 bucket for you to run the example. Please review and execute the

code in datawrangler_workshop_pre_requisite.ipynb. The data will be available in

s3://sagemaker-${region}-${account_number}/sagemaker/demo-diabetic-datawrangler/ if you leave everything default.

2. Design your DataWrangler flow file

Data Wrangler flow overview and highlights

This project comes with a pre-built Data Wrangler flow file that can be customized with your s3Uri for reusability:

datawrangler_diabetes_readmission.flow.

https://aws.amazon.com/sagemaker/data-wrangler/
https://aws.amazon.com/sagemaker/studio/
https://aws.amazon.com/sagemaker/pipelines/
https://aws.amazon.com/sagemaker/feature-store/
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
http://localhost:6419/datawrangler_workshop_pre_requisite.ipynb
http://localhost:6419/datawrangler_diabetes_readmission.flow

10/25/21, 2:32 PM README.md - Grip

localhost:6419 2/30

It has multiple files from S3 loaded in: diabetic_data_hospital_visits.csv , diabetic_data_demographic.csv and

diabetic_data_labs.csv for demonstration. It performs a inner join between the tables in diabetic_data_hospital_visits.csv and

diabetic_data_demographic.csv by encounter_id . It has 28 transformation steps applied to process the data to meet the following

requirements:

no duplicate columns

no duplicate entries

no missing values (either fill the missing ones or remove columns that are largely missing)

one hot encode the categorical features

ordinally encode the age feature

normalization (Standard scaler)

Custom Transformation (Feature Store - EventTime needed)

Analysis (Quick Model, Histogram)

ready for ML training (Export notebook steps)

These are analyses created at different stage of the wrangling to serve as indication of the value these wrangling steps add. Most

noticeably the Quick Model tells us that patient readmission prediction increases F1 score after performing transformation steps

between 1 and 28 (in datawrangler_diabetes_readmission.flow). Data Scientists can use Quick Model analysis to perform iterative

experimentation leading to efficient feature engineering for ML.

In this lab, we will perform data preprocessing using a combination of transformations described below to demonstrate the capability of

Amazon SageMaker Data Wrangler. We will then train a XGBoost model to show you the process after data wrangling. We will then be

hosting a trained model to SageMaker Hosted Endpoint for real-time inferencing.

Walk through

Create a new flow

http://localhost:6419/images/data_wrangler_flow.png
http://localhost:6419/datawrangler_diabetes_readmission.flow

10/25/21, 2:32 PM README.md - Grip

localhost:6419 3/30

Please click on the SageMaker component and registry tab and click New flow.

Rename your DW dataflow file

Right click on the untitled.flow file tab to reveal below options. Then choose Rename file to change the file name.

http://localhost:6419/images/create-dataflow-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 4/30

Load the data from S3 into Data Wrangler

Select Amazon S3 as data source in Import Data view.

http://localhost:6419/images/rename-flow-options.png
http://localhost:6419/images/rename-flow-dialog.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 5/30

Note: You could also import data from Athena: how databases and tables in Amazon Athena can be imported.

Select the csv files from the bucket: s3://sagemaker-${region}-${account_number}/sagemaker/demo-diabetic-datawrangler/ one at

a time.

Join the CSV files

1. Click the + sign on the Data-types icon for diabetic_data_demographic.csv Select Join and new panel is presented for

configuring input dataset join.

http://localhost:6419/images/data-sources-image.png
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-import.html#data-wrangler-import-athena
http://localhost:6419/images/s3-object-section.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 6/30

2. Select diabetic_data_hospital_visits.csv dataset as Right dataset.

3. Click Configure to setup Join criteria.

http://localhost:6419/images/dataflow-join-option.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 7/30

4. Give a name to the Join and choose join type and Left & Right columns for join condition

5. Click Apply to preview the joined dataset and Add for the previewed join configuration to be added to the data-flow file.

http://localhost:6419/images/join-new-screen.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 8/30

Built-in Analysis

Before we apply any transformations on the input source, let's perform a quick analysis of the dataset. SageMaker Data Wrangler

provides number of built-in Analysis types like Histogram , Scatter Plot , Target Leakage , Bias Report & Quick Model . You can
find all analyses types documentation under SageMaker Data Wrangler Analyses.

Target Leakage

Target leakage occurs when there is data in a ML training dataset that is strongly correlated with the target label, but is not available in

real-world data. For example, you may have a column in your dataset that serves as a proxy for the column you want to predict with

your model. Data Wrangler calculates the predictive metric of ROC which is computed individually for each column via cross validation

to generate Target Leakage Report.

1. Click + sign next to Join flow icon and choose Add analysis

http://localhost:6419/images/apply-join.png
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-analyses.html

10/25/21, 2:32 PM README.md - Grip

localhost:6419 9/30

2. Select Target Leakage from the list of Analysis type drop down on the right panel.

3. Give a name to your analysis and specify Max features as 50 , Problem Type as classification and Target as readmitted .

4. Click Preview to generate below report.

5. As shown, there is no indication of Target leakage in our input dataset. However, a few features like encounter_id_1, encounter_id_0,

weight & payer_code are marked as possibly redundant with 0.5 Predictive ability of ROC. This means these features by

themselves are not providing any useful information towards predicting the target. Before making the decision to drop these

uninformative features, you should consider whether these could add value when used in tandem with other features. For our use-

case, we’ll drop these in Transforms section in an effort to prepare our training dataset.

6. Click Save to save the analysis into your Data Wrangler data flow file.

http://localhost:6419/images/add_analysis_screen.png
http://localhost:6419/images/Target-leakage-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 10/30

Bias Report

AI/ML systems are only as good as the data we put into them. ML based systems are more accessible than ever before and with the

growth of adoption throughout various industries, further questions arise surrounding fairness and how it is ensured across these ML

systems. Understanding how to avoid and detect bias in ML models is imperative and complex. Using Data Wrangler’s built-in Bias

Report analysis, data scientists can quickly detect bias during data preparation stage of ML workflow. Bias Report analysis uses

Amazon SageMaker Clarify to perform bias analysis.

To generate a bias report, you must specify the target column that you want to predict and a Facet/Column that you want to inspect for

potential biases. For example, we can generate a bias report on gender feature for Female values to see whether there is any Class

Imbalance (CI).

1. While on the Analysis tab, click Create new analysis button to open analysis creation panel.

2. Select Bias Report from the list of Analysis type drop down on the right panel.

3. Give a name to your analysis and select the target label as readmitted and choose Value as NO .

4. Select gender for column to analyze and provide value as Female .

5. Leave everything else as default and click Check for bias to generate the bias report.

https://aws.amazon.com/sagemaker/clarify/
http://localhost:6419/images/create-new-analysis.png
http://localhost:6419/images/Bias-Report-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 11/30

6. As you can see there is no significant bias in our input dataset, which means the dataset has fair amount of representation by

gender feature. For our dataset, we can move forward with a hypothesis that there is no inherent bias in our dataset. However,

based on your use-case and dataset, you might want to run similar bias reporting on various other features of your dataset to

identify any potential bias. If any bias is detected, you can consider applying suitable transformation to address that bias.

7. Click Save to add this report to the dataflow file.

Histogram

You can use histograms to see the counts of feature values for a specific feature. You can inspect the relationships between features

using the Color by option. You can also use the Facet by feature to create histograms of one column, for each value in another column.

Here we’ll use Histogram to gain insights into target label patterns inside our input dataset.

1. While on the Analysis tab, click Create new analysis button to open analysis creation panel.

2. Select Histogram from the list of Analysis type drop down on the right panel.

3. Give a name to your analysis and select the X axis as race , Color by as age & Facet by as gender . Which means we want
to plot histograms by race with age factor reflected by color legend and also faceted by gender .

4. Click Preview to generate resulting Histogram as shown below.

As you can see, this ML problem is a Multi-class Classification problem. However, here we see that there is major target class

imbalance between readmitted <30 days, >30 days and NO readmission. We also notice that these two classifications are

proportionate across gender and race . To improve our potential model predictability, we can decide to merge <30 & >30 into single

positive class. This merge of target label classification will turn our ML problem into a Binary Classification . As you’ll see in next
section, we can do this easily by adding respective transformations.

Transformations

When it comes to training ML model for structured/tabular data, decision-tree based algorithms are considered best-in-class. This is

due to their inherent technique of applying ensemble tree methods in order to boost weak learners using the gradient descent

architecture.

http://localhost:6419/images/histogram-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 12/30

For our medical source dataset, we’ll be using Amazon SageMaker built-in XGBoost algorithm as it is one of the most popular decision-

tree based ensemble ML algorithm. XGBoost algorithm can only accept numerical values as input, hence a pre-requisite here is we

must apply categorical feature transformations on our source dataset.

As stated, Data Wrangler comes with over 300 built-in transforms which require no coding. Let’s use built-in transforms to apply a few

key transformations and prepare our training dataset.

Handle missing values

1. Click + sign next to Join flow icon and choose Add Transform

2. Pick Handle missing from the list of transforms on the right panel and choose Impute for Transform

http://localhost:6419/images/add_transform_screen.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 13/30

3. Choose Column type as Numeric and select Input column as diag_1 . Let's use Mean for Imputing strategy . You can also
provide optional Output column name. By default, the operation is performed in-place, however, you can also provide optional

Output column name which will create new column with imputed values.

4. Click Preview to preview the results as show below. Once verified, click Add to include this transformation step into Data

Wrangler dataflow file.

5. Repeat above steps 1 through 3 for diag_2 & diag_3 features and impute missing values.

http://localhost:6419/images/handle_missing_screen.png
http://localhost:6419/images/new_diag1_missing.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 14/30

Search and edit features with special characters

As our source dataset has features with special characters, we need to clean them before training. Let's use Search and Edit Transform.

1. Pick Search and edit from the list of transforms on the right panel. Select Find and replace substring

2. Select the target column race for Input column and use \? regex for Pattern. For the Replacement String use Other . Let’s
leave Output Column blank for in-place replacements.

3. Once reviewed, click Add to add the transform to your data-flow.

4. Repeat the same technique for other features to replace weight , payer_code with 0 and medical_specialty with Other as

shown below.

http://localhost:6419/images/new-race-edit.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 15/30

http://localhost:6419/images/new-weight-edit.png
http://localhost:6419/images/new-payer-code-edit.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 16/30

One-hot Encoding for categorical features

1. Pick Encode categorical from the list of transforms on the right panel. Select One-hot encode and race for input column. For

Output style , choose Columns . After filling the fields click Preview

2. After review the transformation results, Click Add to add the change to the data flow

3. Repeat above 2 steps for age and medical_specialty_filler to one-hot encode those categorical features as well.

Ordinal Encoding for categorical features

1. Pick Encode categorical from the list of transforms on the right panel. Select Ordinal encode and gender for input column.

For Invalid handling strategy select skip . After filling the fields click Preview

http://localhost:6419/images/new-medical-splty-edit.png
http://localhost:6419/images/new-1hot-race.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 17/30

2. After review the transformation results, Click Add to add the change to the data flow

Custom Transformations – Add new features to your dataset

If we choose to store our transformed features into Amazon SageMaker Feature Store, a pre-requisite is to insert Event-Time feature

into the dataset. We can easily do that using Custom Transformations

1. Pick Custom Transform from the list of transforms on the right panel

2. select Python (Pandas) and enter below line of code in the text box. Then click Preview to view the results.

Table is available as variable `df`

import time

df['eventTime'] = time.time()

3. Click Add to add the change to the data flow

Transform the target Label

The target label readmitted has 3 classes: NO readmission, readmitted <30 days and readmitted >30 days. We saw in our Histogram
analysis that there is a strong class imbalance as majority of the patients did not readmit. We could combine the latter two classes into

a positive class to denote the patients being readmitted, and turn the classification problem into a binary case instead of multi-class.

Let's use Search and Edit Transform to convert string values to binary values.

http://localhost:6419/images/new-ordinal-gender.png
http://localhost:6419/images/custom-event-time.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 18/30

1. Pick Search and edit from the list of transforms on the right panel. Select Find and replace substring

2. Select the target column readmitted for Input column and use >30|<30 regex for Pattern . For the Replacement String use
1 .

3. So, here we are converting all the values that have either >30 or <30 values to 1 . After making your config selections, hit
Preview to review the converted column as shown below.

4. Once reviewed, click Add to add the transform to your data-flow.

5. Let's repeat the same to convert NO values to 0 . Pick Search and edit from the list of transforms on the right panel.

6. Choose Find and replace substring transform. Select the target column readmitted for Input column and use NO regex for

Pattern . For the Replacement String use 0 .

7. After making your config selections, hit Preview to review the converted column as shown below.

http://localhost:6419/images/new-readmitted-1.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 19/30

5. Once reviewed, click Add to add the transform to your data-flow. Now our target label is ready for ML.

Position the target label as first column to utilize XGBoost algorithm

As we are going to use XGBoost built-in SageMaker algorithm to train the model, the algorithm assumes that the target label is in the

first column. Let's do that.

1. Pick Manage Column from the list of transforms on the right panel. Select Move Column for Transform and select Move to start
for Move type. Provide a name to new column readmitted . After filling the fields click Preview

2. After reviewing the transformation results, Click Add to add the change to your data flow

Let's Drop redundant columns

http://localhost:6419/images/new-readmitted-0.png
http://localhost:6419/images/new-readmitted-move2start.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 20/30

1. Pick Manage Columns from the list of transforms on the right panel

2. Choose Drop Column transform and select encounter_id_0 for column to drop

3. Click Preview to preview the changes to the data set. Then Add to add the changes to flow file.

4. Repeat above steps 1 through 3 for other redundant columns patient_nbr_0 , encounter_id_1 , patient_nbr_1 .

At this stage, we have done a few analyses and applied a few transformations on our raw input dataset. If we choose to preserve the

transformed state of the input dataset, kind a like checkpoint, you can do that using the Export data button shown below. This option

will allow you to persist the transformed dataset on to an Amazon S3 bucket.

Quick Model Analysis

http://localhost:6419/images/new-encounterid0-drop.png
http://localhost:6419/images/export-transforms-s3.png
http://localhost:6419/images/export-transforms-s3-button.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 21/30

Now that we have applied transformations to our initial dataset, let’s explore Quick Model analysis. Quick Model helps to quickly

evaluate the training dataset and produce importance scores for each feature. A feature importance score indicates how useful a

feature is at predicting a target label. The feature importance score is between [0, 1] and a higher number indicates that the feature is

more important to the whole dataset. Since our use-case relates to classification problem type, Quick Model also generates F1 score

for current dataset.

1. Click + sign next to Join flow icon and choose Add analysis

2. Select Quick Model from the list of Analysis types on the right panel.

3. Give a name to your analysis and select the target label in Label field.

4. Click Preview and wait for the model to be results to be displayed on the screen

http://localhost:6419/images/add_analysis_screen.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 22/30

The resulting Quick Model F1 score shows 0.618 (your generated score might be different) with the transformed dataset. Under the

hood Data Wrangler performs a number of steps to generate F1 score which includes Preprocessing, Training, Evaluating & finally

calculating feature importance. More details about these steps can be found in our Quick Model documentation.

Using this feature, Data Scientists can iterate through applicable transformations until they see desired transformed dataset that would

potentially lead to business expectations.

5. Click Create button to add the quick model analysis to the data flow.

Export Options

We are now ready to export dataflow for further processing.

1. Save the DW flow file as shown below

http://localhost:6419/images/new-quick-model.png
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-analyses.html#data-wrangler-quick-model

10/25/21, 2:32 PM README.md - Grip

localhost:6419 23/30

2. Click Export tab and select Steps icon to reveal all the DW flow steps. Click the last step to mark it as check (as shown in figure

below)

3. Click Export step to reveal the export options. You currently have 4 export options

Save to S3 Save the data to an S3 bucket using a Amazon SageMaker Processing Job.

Pipeline exports a Jupyter Notebook that creates an Amazon SageMaker Pipeline with your data flow.

Python Code exports your data flow to python code.

http://localhost:6419/images/dw_flow_save.png
http://localhost:6419/images/new-export-steps2.png
https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html
https://aws.amazon.com/sagemaker/pipelines/

10/25/21, 2:32 PM README.md - Grip

localhost:6419 24/30

Feature Store exports a Jupyter Notebook that creates an Amazon SageMaker Feature Store feature group and adds features to

an offline or online feature store.

You can find more information for each export option in this page.

4. Select Save to S3 to generate a fully implemented Jupyter Notebook that creates a processing Job using your data flow file.

3. Processing and Training Jobs for Model building

Processing Job submission

https://aws.amazon.com/sagemaker/feature-store/
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-data-export.html
http://localhost:6419/images/new-export-options.png
http://localhost:6419/images/generated-notebook-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 25/30

1. We are now ready to submit a SageMaker Processing Job using the data flow file. Run all the cells upto Create Processing Job .
This cell Create Processing Job will trigger a new SagaMaker processing job by provisioning managed infrastructure and running

the required DataWrangler docker container on that infrastructure.

2. You can check the status of the submitted processing job by running next cell Job Status & S3 Output Location

3. You can also check the status of the submitted processing job from Amazon SageMaker Console as shown below

Train a model with Amazon SageMaker

1. Now that the data has been processed, you may want to train a model using the data. The same notebook has sample steps to

train a model using Amazon SageMaker built-in XGBoost algorithm. Since our use case is binary classification, we need to change

the objective to "binary:logistic" inside the sample training steps as shown below.

http://localhost:6419/images/create-processing-job-image.png
http://localhost:6419/images/job-status-notebook.png
http://localhost:6419/images/processing-job-console-status.png
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

10/25/21, 2:32 PM README.md - Grip

localhost:6419 26/30

2. All set. Now we are ready to fire our training job using SageMaker managed infrastructure. Run the cell below.

3. You can monitor the status of submitted training job in SageMaker Console under Training / Training jobs tab on the left.

http://localhost:6419/images/configure-training-job.png
http://localhost:6419/images/start-training-job.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 27/30

4. Host trained Model for real time inference

Deploy model for real-time inference

1. We will now use another notebook provided under project folder hosting/Model_deployment_Steps.ipynb .
This is a simple
notebook with 2 cells - First cell has code for deploying your model to persistent endpoint. Here you need to update model_url
with your training job output S3 model artifact . Here are image for reference.

http://localhost:6419/images/jobs-monitor.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 28/30

2. The second cell in the notebook will run inference on sample test file test_data_UCI_sample.csv .

http://localhost:6419/images/training-job-console-output.png
http://localhost:6419/images/model-hosting-cell-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 29/30

Clean up

After you have experimented above steps, perform the below 2 clean-up steps to stop incurring charges.

1. Delete hosted endpoint. You can do this from within SageMaker Console as shown below.

2. Shutdown Data Wrangler App. You can do this from within SageMaker Console by navigating to your SageMaker user-profile - as

shown below.

http://localhost:6419/images/inference-cell-image.png
http://localhost:6419/images/endpoint-delete-image.png

10/25/21, 2:32 PM README.md - Grip

localhost:6419 30/30

Conclusion

This concludes the example. In this example you have learnt how to use SageMaker Data Wrangler capability to create data

preprocessing, feature engineering steps using simple to use Data Wrangler GUI. We then used the generated notebook to submit a

SageMaker managed processing job to perform the data preparation using our data flow file. Later we saw how to train a simple

XGBoost algorithm using our processed dataset. In the end we hosted our trained model and ran inferences against synthetic test data.

http://localhost:6419/images/dw-shutdown.png

