# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convolutional Neural Network Estimator for MNIST, built with tf.layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO) def serving_input_fn(): inputs = {'x': tf.placeholder(tf.float32, [None, 28, 28], name="input_layer")} return tf.estimator.export.ServingInputReceiver(inputs, inputs) def parse_args(): import argparse, os parser = argparse.ArgumentParser() parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST']) parser.add_argument('--model_dir', type=str) parser.add_argument('--sm-model-dir', type=str, default=os.environ['SM_MODEL_DIR']) parser.add_argument('--training-steps', type=int, default=20) args, _ = parser.parse_known_args() return args def cnn_model_fn(features, labels, mode): """Model function for CNN.""" # Input Layer # Reshape X to 4-D tensor: [batch_size, width, height, channels] # MNIST images are 28x28 pixels, and have one color channel input_layer = tf.reshape(features["x"], [-1, 28, 28, 1]) # Convolutional Layer #1 # Computes 32 features using a 5x5 filter with ReLU activation. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 28, 28, 1] # Output Tensor Shape: [batch_size, 28, 28, 32] conv1 = tf.layers.conv2d( inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #1 # First max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 28, 28, 32] # Output Tensor Shape: [batch_size, 14, 14, 32] pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # Convolutional Layer #2 # Computes 64 features using a 5x5 filter. # Padding is added to preserve width and height. # Input Tensor Shape: [batch_size, 14, 14, 32] # Output Tensor Shape: [batch_size, 14, 14, 64] conv2 = tf.layers.conv2d( inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # Pooling Layer #2 # Second max pooling layer with a 2x2 filter and stride of 2 # Input Tensor Shape: [batch_size, 14, 14, 64] # Output Tensor Shape: [batch_size, 7, 7, 64] pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # Flatten tensor into a batch of vectors # Input Tensor Shape: [batch_size, 7, 7, 64] # Output Tensor Shape: [batch_size, 7 * 7 * 64] pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64]) # Dense Layer # Densely connected layer with 1024 neurons # Input Tensor Shape: [batch_size, 7 * 7 * 64] # Output Tensor Shape: [batch_size, 1024] dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) # Add dropout operation; 0.6 probability that element will be kept dropout = tf.layers.dropout( inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) # Logits layer # Input Tensor Shape: [batch_size, 1024] # Output Tensor Shape: [batch_size, 10] logits = tf.layers.dense(inputs=dropout, units=10) predictions = { # Generate predictions (for PREDICT and EVAL mode) "classes": tf.argmax(input=logits, axis=1), # Add `softmax_tensor` to the graph. It is used for PREDICT and by the # `logging_hook`. "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) # Calculate Loss (for both TRAIN and EVAL modes) loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) # Configure the Training Op (for TRAIN mode) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=labels, predictions=predictions["classes"])} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): args = parse_args() train_dir = args.train test_dir = args.test model_dir = args.model_dir sm_model_dir = args.sm_model_dir training_steps = args.training_steps #def main(unused_argv): # Load training and eval data #mnist = tf.contrib.learn.datasets.load_dataset("mnist") #train_data = mnist.train.images # Returns np.array #train_labels = np.asarray(mnist.train.labels, dtype=np.int32) #eval_data = mnist.test.images # Returns np.array #eval_labels = np.asarray(mnist.test.labels, dtype=np.int32) import os train_data = np.load(os.path.join(train_dir, 'image.npy')).astype(np.float32) * 1./255 train_labels = np.load(os.path.join(train_dir, 'label.npy')).astype(np.int32) eval_data = np.load(os.path.join(test_dir, 'image.npy')).astype(np.float32) * 1./255 eval_labels = np.load(os.path.join(test_dir, 'label.npy')).astype(np.int32) # Create the Estimator mnist_classifier = tf.estimator.Estimator( model_fn=cnn_model_fn, model_dir=model_dir) #mnist_classifier = tf.estimator.Estimator( # model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model") # Set up logging for predictions # Log the values in the "Softmax" tensor with label "probabilities" tensors_to_log = {"probabilities": "softmax_tensor"} logging_hook = tf.train.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=50) # Train the model train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={"x": train_data}, y=train_labels, batch_size=100, num_epochs=None, shuffle=True) mnist_classifier.train( input_fn=train_input_fn, steps=training_steps, #default:20000 hooks=[logging_hook]) # Evaluate the model and print results #eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( # x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) #eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) #print(eval_results) # Evaluate the model and print results eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False) eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print(eval_results) mnist_classifier.export_savedmodel(sm_model_dir, serving_input_fn) if __name__ == "__main__": tf.app.run()