{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Cleanup\n", "This notebook is provided to help you clean up any resources you have created by running through the example. You should also go to the [CloudFormation console](https://console.aws.amazon.com/cloudformation/home) and delete the stack that you created." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sagemaker import get_execution_role\n", "import sagemaker\n", "import boto3\n", "import json\n", "import sys\n", "\n", "role = get_execution_role()\n", "sm = boto3.Session().client(service_name='sagemaker')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delete feature groups" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "try:\n", " sm.delete_feature_group(FeatureGroupName='cc-agg-batch-fg') \n", " print('deleted batch fg')\n", "except:\n", " pass\n", "\n", "try:\n", " sm.delete_feature_group(FeatureGroupName='cc-agg-fg') # use if needed to re-create\n", " print('deleted fg')\n", "except:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sm.list_feature_groups()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stop the KDA SQL App" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import boto3\n", "kda_client = boto3.client('kinesisanalytics')\n", "\n", "try:\n", " kda_client.stop_application(ApplicationName='cc-agg-app')\n", "except:\n", " pass\n", "\n", "print('Stopped the KDA SQL app')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delete the KDA SQL App" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import time\n", "try:\n", " ready = False\n", " while not ready:\n", " app_desc = kda_client.describe_application(ApplicationName='cc-agg-app')['ApplicationDetail']\n", " if app_desc['ApplicationStatus'] == 'READY':\n", " ready = True\n", " else:\n", " print('Waiting for KDA SQL app to be ready for deletion...')\n", " time.sleep(15)\n", " create_timestamp = app_desc['CreateTimestamp']\n", " response = kda_client.delete_application(ApplicationName='cc-agg-app',\n", " CreateTimestamp=create_timestamp)\n", " print('Deleted KDA SQL app')\n", "except:\n", " print('FAILED to delete KDA sql app')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Remove the trigger from Lambda" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import boto3\n", "\n", "%store -r \n", "\n", "lambda_client = boto3.client('lambda')\n", "paginator = lambda_client.get_paginator('list_event_source_mappings')\n", "mapping_iterator = paginator.paginate(FunctionName=lambda_to_model_arn)\n", "\n", "for m in mapping_iterator:\n", " if len(m['EventSourceMappings']) > 0:\n", " uuid = m['EventSourceMappings'][0]['UUID']\n", " print(f'Deleting mapping: {uuid}...')\n", " lambda_client.delete_event_source_mapping(UUID=uuid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delete the Kinesis data stream" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kinesis_client = boto3.client('kinesis')\n", "try:\n", " kinesis_client.delete_stream(StreamName='cc-stream')\n", "except:\n", " pass\n", "print('deleted Kinesis stream')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delete the SageMaker endpoint" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%store -r\n", "try:\n", " sm.delete_endpoint(EndpointName=endpoint_name)\n", "except:\n", " pass" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "conda_python3", "language": "python", "name": "conda_python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.10" } }, "nbformat": 4, "nbformat_minor": 4 }