# coding=utf-8 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # Modifications Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate decay functions.""" import math import smdistributed.modelparallel.torch as smp class AnnealingLR(object): """Anneals the learning rate.""" def __init__( self, optimizer, start_lr, warmup_iter, plateau_iter, total_iters, decay_style, last_iter, min_lr=0.0, use_checkpoint_lr_scheduler=True, override_lr_scheduler=False, ): # Class values. self.optimizer = optimizer self.start_lr = start_lr self.min_lr = min_lr self.warmup_iter = warmup_iter self.plateau_iter = plateau_iter self.num_iters = last_iter self.end_iter = total_iters assert self.end_iter > 0 self.decay_style = decay_style self.override_lr_scheduler = override_lr_scheduler self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler if self.override_lr_scheduler: assert not self.use_checkpoint_lr_scheduler, ( "both override and " "use-checkpoint are set." ) # Set the learning rate self.step(self.num_iters) if smp.rank() == 0: print("Learning rate decay style: {}".format(self.decay_style)) def get_lr(self): """Learning rate decay functions from: https://openreview.net/pdf?id=BJYwwY9ll pg. 4""" num_iters_ = min(self.num_iters, self.end_iter - self.warmup_iter) # Warmup. if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter: return float(self.start_lr) * num_iters_ / self.warmup_iter num_iters_ = num_iters_ - self.warmup_iter if self.decay_style == "linear": lr = self.start_lr * (self.end_iter - num_iters_) / self.end_iter elif self.decay_style == "plateau": if self.num_iters <= self.plateau_iter: lr = self.start_lr else: lr = ( self.start_lr * (self.end_iter - self.num_iters) / (self.end_iter - self.plateau_iter) ) elif self.decay_style == "cosine": lr = ( self.start_lr / 2.0 * (math.cos(math.pi * num_iters_ / self.end_iter) + 1) ) elif self.decay_style == "exponential": # exp(-0.693) = 1/2 lr = self.start_lr * math.exp(-0.693 * num_iters_ / self.end_iter) else: lr = self.start_lr return max(lr, self.min_lr) def step(self, step_num=None): """Set lr for all parameters groups.""" if step_num is None: step_num = self.num_iters + 1 self.num_iters = step_num new_lr = self.get_lr() for group in self.optimizer.param_groups: group["lr"] = new_lr def state_dict(self): state_dict = { "start_lr": self.start_lr, "warmup_iter": self.warmup_iter, "num_iters": self.num_iters, "decay_style": self.decay_style, "end_iter": self.end_iter, "min_lr": self.min_lr, } return state_dict def _check_and_set(self, cls_value, sd_value, name): """Auxiliary function for checking the values in the checkpoint and setting them.""" if self.override_lr_scheduler: if smp.rank() == 0: print("Overriding {} value to {}".format(name, cls_value)) return cls_value if not self.use_checkpoint_lr_scheduler: assert cls_value == sd_value, ( "AnnealingLR: class input value " "and checkpoint values for {} do not match".format(name) ) if smp.rank() == 0: print(" > using checkpoint value {} for {}".format(sd_value, name)) return sd_value def load_state_dict(self, sd): self.start_lr = self._check_and_set( self.start_lr, sd["start_lr"], "learning rate" ) self.min_lr = self._check_and_set( self.min_lr, sd["min_lr"], "minimum learning rate" ) self.warmup_iter = self._check_and_set( self.warmup_iter, sd["warmup_iter"], "warmup iterations" ) self.end_iter = self._check_and_set( self.end_iter, sd["end_iter"], "total number of iterations" ) self.decay_style = self._check_and_set( self.decay_style, sd["decay_style"], "decay style" ) self.num_iters = sd["num_iters"] self.step(self.num_iters)