U C^W@sddlmZmZmZddlZddlZddlZddlZddlZddl Z ddl Z ddl Z ddl m Z mZddlZddlmZddlmZddlmZddlmZmZdd lmZdd lmZdd lm Z m!Z!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*dd l+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4ej5dd kr6ddl6m7Z7nddl8m9Z9ddl:m7Z7edddZ;ddddddddddddddd d!gZdd"Z>Gd#d$d$e?Z@d%d&ZAGd'd(d(e7ZBeddNd,dZCdOd-d.ZDe>eDdPd/dZEd0d1ZFe>eFd2dZGd3d4ZHe>eHd5dZIdQd6d7ZJd8d9ZKd:ZLedeMd;ddddd)ddd?ZOe>eOdSdEdZPeddTdFd ZQedeMd;ddddddddddCReSe!jTdGd)d*dHdd)d*d*dd>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" cCst||_dSN)weakrefproxy_obj)selfobjr0r0r1__init__XszBagObj.__init__cCs4zt|d|WStk r.t|YnXdS)NrC)object__getattribute__KeyErrorAttributeError)rDkeyr0r0r1rH\szBagObj.__getattribute__cCstt|dS)z Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. rC)listrGrHkeysrDr0r0r1__dir__bszBagObj.__dir__N)__name__ __module__ __qualname____doc__rFrHrOr0r0r0r1r?:sr?cOs4t|dst|}ddl}d|d<|j|f||S)z Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. readrNT allowZip64)hasattrrzipfileZipFile)filer.r/rWr0r0r1zipfile_factoryks  rZc@sneZdZdZdddZddZdd Zd d Zd d ZddZ ddZ ddZ e j jdkrjddZddZdS)NpzFilear NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: False .. versionchanged:: 1.16.3 Made default False in response to CVE-2019-6446. pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> _ = outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> sorted(npz.files) ['x', 'y'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) FNcCst|}||_g|_||_||_|jD]0}|drN|j|ddq*|j|q*||_t ||_ |rx||_ nd|_ dS)N.npy) rZnamelist_filesfiles allow_pickle pickle_kwargsendswithappendzipr?ffid)rDrgown_fidrarb_zipxr0r0r1rFs    zNpzFile.__init__cCs|Sr@r0rNr0r0r1 __enter__szNpzFile.__enter__cCs |dSr@close)rDexc_type exc_value tracebackr0r0r1__exit__szNpzFile.__exit__cCs>|jdk r|jd|_|jdk r4|jd|_d|_dS)z" Close the file. N)rermrgrfrNr0r0r1rms    z NpzFile.closecCs |dSr@rlrNr0r0r1__del__szNpzFile.__del__cCs t|jSr@)iterr`rNr0r0r1__iter__szNpzFile.__iter__cCs t|jSr@)lenr`rNr0r0r1__len__szNpzFile.__len__cCsd}||jkrd}n||jkr*d}|d7}|r|j|}|ttj}||tjkr||j|}tj ||j |j dS|j|Sn t d|dS)NFTr\rarbz%s is not a file in the archive) r_r`reopenrTrur MAGIC_PREFIXrm read_arrayrarbrI)rDrKmemberrmagicr0r0r1 __getitem__s$      zNpzFile.__getitem__r#cCstjdtdd|S)NziNpzFile.iteritems is deprecated in python 3, to match the removal of dict.itertems. Use .items() instead.r'r()r*r+r,itemsrNr0r0r1 iteritemss zNpzFile.iteritemscCstjdtdd|S)NzgNpzFile.iterkeys is deprecated in python 3, to match the removal of dict.iterkeys. Use .keys() instead.r'r()r*r+r,rMrNr0r0r1iterkeyss zNpzFile.iterkeys)FFN)rPrQrRrSrFrkrqrmrrrtrvr}sys version_infomajorrrr0r0r0r1r[zsB   r[FTASCIIc CsT|dkrtdtjddkr,t||d}ni}t|drD|}d}ntt|d}d }zd }d } tt j } | | } | t | t|  d | |s| | rt||||d } d}| WS| t j kr|rt j||dWfSt j|||dWRSnJ|stdztj|f|WW,Stk r:tdt|YnXW5|rN|XdS)a Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. .. warning:: Loading files that contain object arrays uses the ``pickle`` module, which is not secure against erroneous or maliciously constructed data. Consider passing ``allow_pickle=False`` to load data that is known not to contain object arrays for the safer handling of untrusted sources. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: False .. versionchanged:: 1.16.3 Made default False in response to CVE-2019-6446. fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files in Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) )rlatin1rz.encoding must be 'ASCII', 'latin1', or 'bytes'rr#)encoding fix_importsrTFrbTsPKsPKr)rhrarb)moderwz@Cannot load file containing pickled data when allow_pickle=Falsez'Failed to interpret file %s as a pickleN) ValueErrorrrdictrVrxrrmrurryrTseekmin startswithr[Z open_memmaprzr!r9 ExceptionIOErrorrepr) rYZ mmap_moderarrrbrgrhZ _ZIP_PREFIXZ _ZIP_SUFFIXNr|retr0r0r1r9#sLp       cCs|fSr@r0)rYarrrarr0r0r1_save_dispatchersrcCsd}t|dr|}n(t|}|ds.|d}t|d}d}tjddkrVt|d}nd }z t |}t j ||||d W5|r|Xd S) a< Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the filename if it does not already have one. arr : array_like Array data to be saved. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. Any data saved to the file is appended to the end of the file. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> with open('test.npy', 'wb') as f: ... np.save(f, np.array([1, 2])) ... np.save(f, np.array([1, 3])) >>> with open('test.npy', 'rb') as f: ... a = np.load(f) ... b = np.load(f) >>> print(a, b) # [1 2] [1 3] Fwriter\wbTrr#)rNrw) rVrrcrxrrrrmnp asanyarrayr write_array)rYrrarrhrgrbr0r0r1r:s$=       cos(|D] }|Vq|D] }|VqdSr@valuesrYr.kwdsavr0r0r1_savez_dispatcher/s rcOst|||ddS)a1 Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the filename (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. When saving dictionaries, the dictionary keys become filenames inside the ZIP archive. Therefore, keys should be valid filenames. E.g., avoid keys that begin with ``/`` or contain ``.``. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_0', 'arr_1'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> _ = outfile.seek(0) >>> npzfile = np.load(outfile) >>> sorted(npzfile.files) ['x', 'y'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) FN_savezrYr.rr0r0r1r;6sOcos(|D] }|Vq|D] }|VqdSr@rrr0r0r1_savez_compressed_dispatchers rcOst|||ddS)a Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored filenames are arr_0, arr_1, etc. Parameters ---------- file : str or file Either the filename (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- numpy.save : Save a single array to a binary file in NumPy format. numpy.savetxt : Save an array to a file as plain text. numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is compressed with ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> test_array = np.random.rand(3, 2) >>> test_vector = np.random.rand(4) >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) >>> loaded = np.load('/tmp/123.npz') >>> print(np.array_equal(test_array, loaded['a'])) True >>> print(np.array_equal(test_vector, loaded['b'])) True TNrrr0r0r1r<s>c Csddl}t|ds,t|}|ds,|d}|}t|D]0\}} d|} | |kr`td| | || <q8|rv|j} n|j} t |d| d} t j dkr| D]H\} } | d } t | } | j| dd d }tj|| ||d W5QRXqnddl}t|rtj|nd \}}|j||dd\}}t|z| D]\} } | d } t|d}zpz6tj|t | ||d |d}| j|| dWn4tk r}ztd||fW5d}~XYnXW5|r|Xq6W5t|X| dS)Nrrz.npzzarr_%dz,Cannot use un-named variables and keyword %sw)r compression)r#r\T) force_zip64rw)Ntmpz -numpy.npy)prefixdirsuffixr)arcnamezFailed to write to %s: %s)rWrVrrc enumeraterMr ZIP_DEFLATED ZIP_STOREDrZrrr~rrrxrrtempfilerospathsplitmkstemprmremoverr)rYr.rcompressrarbrWZnamedictivalrKrZzipffnamergrZfile_dirZ file_prefixfdZtmpfileexcr0r0r1rs`        & rcCsdd}|j}t|tjr"ddSt|tjr4tjSt|tjrFtjSt|tjrZddSt|tjrltjSt|tjr||St|t rddSt|tj rt St|tj rt StSdS)z; Find the correct dtype converter. Adapted from matplotlib cSs"|d|krt|St|S)N0x)lowerfloatfromhexrjr0r0r1 floatconvs z_getconv..floatconvcSs tt|Sr@)boolintrr0r0r1z_getconv..cSs tt|Sr@)rrrr0r0r1r$rcSstt|ddS)N+--)complexrreplacerr0r0r1r*rN)type issubclassrZbool_Zuint64Zint64integerZ longdoubleZfloatingrbytes_runicode_rr)dtypertypr0r0r1_getconvs*         riP#rc  sdk rHtttfrgddDddDtd dk rXt} dkrndd} nd } dk rz t} Wntk rg} YnX| D]F}z t |Wqtk r}zd t |f|_ W5d}~XYqXq| d }zdt|t r t |}t|rDtjjj|d d td dtd}nt|t|d dWntk rxtdYnXdk rndkrddl}|tdd}tdd  fdd f dd}zt|}t|tD]}tq d}z|s:t  }q Wn0tk rld g}tj d|ddYnXt!px|||\} t!|dkrdd|Dn*fddtDdkrЈt"fg | pi#D]f\}}rz$|}Wntk rYqYnX| r:d d!}t%j&||d"|<n||<qއfd#dDd|t'D]b}dkrt(||nDtj)}|d}|dt!|7<j*|d d$||dd%f<qdW5|rڈXdkrt(g|j+d&krj)ddd'krd(_)|d)kr.td*|j+|krDt,j+|kr||dkrft-n|dkr|t.j/|rt!|dkrfd+d|j0DSj/SnSdS),a Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence of str, optional The characters or list of characters used to indicate the start of a comment. None implies no comments. For backwards compatibility, byte strings will be decoded as 'latin1'. The default is '#'. delimiter : str, optional The string used to separate values. For backwards compatibility, byte strings will be decoded as 'latin1'. The default is whitespace. converters : dict, optional A dictionary mapping column number to a function that will parse the column string into the desired value. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines, including comments; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionchanged:: 1.11.0 When a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as ``usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 encoding : str, optional Encoding used to decode the inputfile. Does not apply to input streams. The special value 'bytes' enables backward compatibility workarounds that ensures you receive byte arrays as results if possible and passes 'latin1' encoded strings to converters. Override this value to receive unicode arrays and pass strings as input to converters. If set to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 max_rows : int, optional Read `max_rows` lines of content after `skiprows` lines. The default is to read all the lines. .. versionadded:: 1.16.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO(u"0 1\n2 3") >>> np.loadtxt(c) array([[0., 1.], [2., 3.]]) >>> d = StringIO(u"M 21 72\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([(b'M', 21, 72.), (b'F', 35, 58.)], dtype=[('gender', 'S1'), ('age', '>> c = StringIO(u"1,0,2\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([1., 3.]) >>> y array([2., 4.]) NcSsg|] }t|qSr0)r).0rjr0r0r1 szloadtxt..css|]}t|VqdSr@)reescape)rcommentr0r0r1 szloadtxt..|rTFz\usecols must be an int or a sequence of ints but it contains at least one element of type %srtrrrz1fname must be a string, file handle, or generatorrc Ss|jdkr|j}t|dkr(|jgdfS|dtfg}t|dkrr|jdddD]}||dd||fg}qR|jgtt|j|fSnhg}g}|jD]P}|j|\}}||\} } | | |j dkr| | q| t| | fq||fSdS)z;Unpack a structured data-type, and produce re-packing info.Nrr) namesshaperubaserLrrprodfieldsextendndimrd) rDdtrpackingZdimtypesfieldtprZflat_dtZ flat_packingr0r0r1flatten_dtype_internals&         z'loadtxt..flatten_dtype_internalcSsv|dkr|dS|tkr t|S|tkr0t|Sd}g}|D],\}}|||||||||7}q.pack_itemscsFt|d}dk r&j|ddd}|d}|r>|SgSdS)z2Chop off comments, strip, and split at delimiter. rNr)maxsplitrz )rrstrip)line)comments delimiterrregex_commentsr0r1 split_lines   zloadtxt..split_linec3sg}tg}t|}t|D]\}} |tdkrDq& rZfdd Dtkr~|d}td|ddtD}|}||t||kr&|Vg}q&|r|VdS)aParse each line, including the first. The file read, `fh`, is a global defined above. Parameters ---------- chunk_size : int At most `chunk_size` lines are read at a time, with iteration until all lines are read. rcsg|] }|qSr0r0)rjvalsr0r1r8sz.loadtxt..read_data..rz"Wrong number of columns at line %dcSsg|]\}}||qSr0r0)rconvrr0r0r1r?sN) itertoolschainislicerrurrerd) chunk_sizeXZ line_iterrrline_numr~) r convertersfh first_linemax_rowsrrskiprowsrusecolsrr1 read_data$s,        zloadtxt..read_datazloadtxt: Empty input file: "%s"r'r(rcSsg|] }t|qSr0)r)rrr0r0r1rescsg|]}qSr0r0rr)defconvr0r1rhscSs"t|tkr||S||dSNrrrencoderjrr0r0r1 tobytes_firstws zloadtxt..tobytes_firstrcs$g|]}|tk r|n fddqS)cs |Sr@)rr fencodingr0r1rrz$loadtxt...)rrrrr0r1rs )Zrefcheck.r#)rr)rr)rrr'z"Illegal value of ndmin keyword: %scsg|] }|qSr0r0)rr)rr0r1rs)1 isinstancerrrcompilejoinrrL TypeErroropindexrr.r rrrlib _datasourcerxgetattrrsrlocalegetpreferredencodingrrmrrrangenext StopIterationr*r+rurr~r functoolspartial_loadtxt_chunksizearrayrresizersqueezeZ atleast_1d atleast_2dTr)rrrrrrrunpackZndminrruser_convertersbyte_convertersZusecols_as_listZcol_idxeZfownrrrrZ first_valsZ dtype_typesrrrjZnshapeposr0)rrrrr rrrrrrrrrrrrr1r36st           &                         c Cs|fSr@r0) rrfmtrnewlineheaderfooterrrr0r0r1_savetxt_dispatchersr3%.18e  r # c  CsBt|trt|}t|}Gdddt} d} t|tr@t|}t|rt|dt j j j|d|d} d} t j ddkr| | |pd } n"t|d r| ||pd } ntd z|t |}|jdks|jdkrtd |jnD|jd kr|jjdkr t |j}d } n t|jj} n |jd } t |} t|ttfkrtt|| kr^tdt|t|tt|}nt|t r|!d}td|}|d kr| rd||fg| }n |g| }||}n4| r|d| kr|n| s|| kr|n|}ntd|ft|dkrD|"dd|}| #|||| r|D]P}g}|D]}|$|j%|$|j&qZ|t||}| #|"ddqNnX|D]R}z|t||}Wn,t'k rt'dt|j|fYnX| #|qt|dkr*|"dd|}| #|||W5| r<| XdS)a Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : 1D or 2D array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: * a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` * a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns * a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 encoding : {None, str}, optional Encoding used to encode the outputfile. Does not apply to output streams. If the encoding is something other than 'bytes' or 'latin1' you will not be able to load the file in NumPy versions < 1.14. Default is 'latin1'. .. versionadded:: 1.14.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language `_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation c@s@eZdZdZddZddZddZdd Zd d Zd d Z dS)zsavetxt..WriteWrapzEConvert to unicode in py2 or to bytes on bytestream inputs. cSs||_||_|j|_dSr@)rr first_writedo_write)rDrrr0r0r1rF?sz#savetxt..WriteWrap.__init__cSs|jdSr@)rrmrNr0r0r1rmDsz savetxt..WriteWrap.closecSs||dSr@)r9rDrr0r0r1rGsz savetxt..WriteWrap.writecSs0t|tr|j|n|j||jdSr@)rrrrrrr:r0r0r1 write_bytesJs z&savetxt..WriteWrap.write_bytescSs|jt|dSr@)rrrr:r0r0r1 write_normalPsz'savetxt..WriteWrap.write_normalcSsBz|||j|_Wn&tk r<|||j|_YnXdSr@)r<rrr;r:r0r0r1r8Ss    z&savetxt..WriteWrap.first_writeN) rPrQrRrSrFrmrr;r<r8r0r0r0r1 WriteWrap;sr=FwtrTrr'rrz%fname must be a string or file handlez.Expected 1D or 2D array, got %dD array insteadrNzfmt has wrong shape. %s%z'fmt has wrong number of %% formats: %sz (%s+%sj)zinvalid fmt: %rr6rrz?Mismatch between array dtype ('%s') and format specifier ('%s'))(rrrrGr rrrxrmrrrrrrVrZasarrayrrrr(r)rurZ iscomplexobjrrLrrJstrrr%rcountrrrdrealimagr)rrr/rr0r1r2rrr=own_fhrZncolZ iscomplex_XrZ n_fmt_charserrorrowZrow2numbersrr0r0r1r2s| !               c Cs d}t|ds&tjjj|d|d}d}zt|tjs>t|}|}t|t rht|tj j rht |}n t|tj j rt|t rt |}t|dst|}||}|rt|dtst||jd}tj||d}||_ntj||d}|WS|r|Xd S) a Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file Filename or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. encoding : str, optional Encoding used to decode the inputfile. Does not apply to input streams. .. versionadded:: 1.14.0 Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> _ = f.write("1312 foo\n1534 bar\n444 qux") >>> f.close() >>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')], dtype=[('num', '>> output['num'] array([1312, 1534, 444]) FrTrrTmatchrrN)rVrrrrxrmrrrTrcompatunicoderrrrfindallrrr%) rYregexprrrDcontentseqZnewdtypeoutputr0r0r1r=s.<       _zf%icQs|dk r$|rtd|dkr$td|r8ddlm}m}|p>i}t|tsZtdt||dkrld}d }nd }zTt|trt |}t|t rt j j j|d |d }t|}n |}t|}t|}Wn$tk rtd t|YnX|t||||d}t| | || d}zvt D]t|qd} | stt||}!d krz|dk rz||!krzd|!|dd}!||!} q0Wn0tk rd}!g} tjd|ddYnXd kr| d}"|dk r|"|kr| d=| dk rNzdd| dD} Wn@tk rLz t| } Wntk rF| g} YnXYnXt | pX| }#d kr~|dd| Dd}!n2t!r|dddDnr|dk rt"| | || ddk rt| rt#| D]>\}$t!|$r$|$| <n|$dkr|$t | | <qdk rrt |#krrj%t &fdd| Dtj'n*dk rt |#krfdd| Dndk rdk rtj'|pd}%t|%t(r|%)d}%ddt|#D}t|%tr|%*D]\}&}'t!|&r@z$|&}&Wntk r>YqYnX| rlz| $|&}&Wntk rjYnXt|'tt+frdd|'D}'n t,|'g}'|&dkr|D]}(|(-|'qn||&-|'qnt|%tt+frt.|%|D]&\})}*t,|)})|)|*kr|*/|)qnJt|%t r>|%d}+|D]}*|*-|+q*n|D]}*|*-t,|%gqB|},|,dkrlg},dg|#}t|,tr|,*D]t\}&}'t!|&rz$|&}&Wntk rYqYnX| rz| $|&}&Wntk rYnX|'||&<qnHt|,tt+fr@t |,}-|-|#kr2|,|d|-<n |,d|#}n |,g|#}dkrjd dt.||D}nRt0d d!}.t |.dkrt.|.||}/d"d|/D}nt.||}/fd#d|/D}g}0|*D]\}1t!|1r z$|1}1|1Wntk rYqYnXn8| r@z| $|1Wntk r<YqYnXn|1t |!rX| |1}2nd}2t(krlt1}3n"|rd$d%}4t2j3|4d&}3n}3|j4|3d |2||d'|0/|3fq|4|0gj/}5|rg}6|6j/}7g}8|8j/}9t#t56|!g|D]\}:||: t };|;dkr&q| rvz fd(d| D Wn0t7k rr|9 d|;fYqYnXn"|;|#kr|9 d|;fq|5t+ |r|7t+d)dt. |Dt |krqސqW5QRXdk rt#|D]\}<fd*dD}=z|<8|=Wnt9k rd+}>t:t;}=t#|=D]X\}1})z|<<|)Wn>t=tfk r|>d,7}>|>|1d |)f;}>t=|>YnX qRYnXqt |8}?|?dk rlt |?|d-|# |dk rt  fd.d|8D}@|8d|?|@}8||@8} fd/d|8D}>t |> rl|>>dd0d1|>}>| r\t|>ntj|>t?dd|dk rd| | r|6d| }6| rtt.fd2dt#|Dntt.fd3dt#|D}Adk rd4d|D}Bd5dt#|BD | rx rxtjd6t j@dd fd7d8zfd9d|AD}AWntAk r`YnX D]t jB|B< qf|Bdd}Ct#|BD]<\}Dt C|Dt jD rtEfd:d;|AD}E|D|Ef|C< qdk rdt#|CD}H| rbfd?dt#|CD}In&tt.|C}Htt.tFgt |C}It jG|A|Hd@}J|r8t jG|6|Id@}Kn rj'dk r_'t |.dk r@dAdBd;|.Dk rtH rtIdCnt jG|Ad@}Jn"t jG|AdDd|.Dd@J}J|r8t jG|6t &dEd|.Dd@}L|}I|LJ|I}Kn| rd }Mgt#dFd|DD]j\}N|k r|M|NjkM}Mt C|Nt jD r|NtEfdGd;|ADf}N/d|Nfn/df q`|M st dk rt &n t &|Nt G|A}J|r8j'dk r&dHdj'D}IntF}It jG|6|Id@}K|Jj&j'|rrt.|D]B\}OfdIdjKD}|D]}P|K|O|J|O|PkO<qvqV|r|JJ|}J|K|J_L|r|JMjNS|JMS)Jak Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first line after the first `skip_header` lines. This line can optionally be proceeded by a comment delimiter. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 encoding : str, optional Encoding used to decode the inputfile. Does not apply when `fname` is a file object. The special value 'bytes' enables backward compatibility workarounds that ensure that you receive byte arrays when possible and passes latin1 encoded strings to converters. Override this value to receive unicode arrays and pass strings as input to converters. If set to None the system default is used. The default value is 'bytes'. .. versionadded:: 1.14.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy `_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO(u"1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '>> _ = s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '>> _ = s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, b'abcde'), dtype=[('myint', '>> s = StringIO(u"11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, b'abcde'), dtype=[('intvar', '>> f = StringIO(''' ... text,# of chars ... hello world,11 ... numpy,5''') >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',') array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], dtype=[('f0', 'S12'), ('f1', 'S12')]) NzPThe keywords 'skip_footer' and 'max_rows' can not be specified at the same time.rz'max_rows' must be at least 1.r) MaskedArraymake_mask_descrzNThe input argument 'converter' should be a valid dictionary (got '%s' instead)rTFrrzRfname must be a string, filehandle, list of strings, or generator. Got %s instead.)rr autostripr) excludelist deletecharscase_sensitive replace_spacer z"genfromtxt: Empty input file: "%s"r'r(cSsg|] }|qSr0rrrRr0r0r1rszgenfromtxt..,cSsg|]}t|qSr0)r@rr[r0r0r1r(scSsg|] }|qSr0rZr[r0r0r1r+s) defaultfmtrrVrWrXrYcsg|] }|qSr0r0r[)descrr0r1rCscsg|] }|qSr0r0r[)rr0r1rGsr0rcSsg|]}tdgqSr )rLr[r0r0r1rRscSsg|] }t|qSr0)r@r[r0r0r1rhscSsg|]\}}td||dqS)N)missing_valuesdefaultrrmissfillr0r0r1rs)Z flatten_basecSs"g|]\}}}t|d||dqST)lockedr`rarb)rrrdrer0r0r1rs cs g|]\}}td||dqSrfrbrcrJr0r1rs cSs"t|tkr||S||dSr r rr0r0r1rs z!genfromtxt..tobytes_firstr)rg testing_valuerar`csg|] }|qSr0r0r[rr0r1rscSsg|]\}}||kqSr0rZ)rrmr0r0r1r scsg|]}t|qSr0)r)r_mrr0r1rsz0Converter #%i is locked and cannot be upgraded: z"(occurred line #%i for value '%s')z- Line #%%i (got %%i columns instead of %i)cs g|]}|dkr|qS)rr0r[)nbrows skip_headerr0r1r'scsg|]\}}||fqSr0r0)rrnb)templater0r1r0szSome errors were detected !r6cs,g|]$\}fddtt|DqS)csg|]}|qSr0)Z _loose_callr_rrr0r1rFs)genfromtxt...r%rr rowsrr1rFscs,g|]$\}fddtt|DqS)csg|]}|qSr0)Z _strict_callrprr0r1rJsrrrsr rtrr1rJscSsg|] }|jqSr0rrr0r0r1rQscSsg|]\}}|tjkr|qSr0)rr)rrrr0r0r1rSs zReading unicode strings without specifying the encoding argument is deprecated. Set the encoding, use None for the system default.cs,t|}D]}||d||<q t|Sr )rLrr)Zrow_tuprFr) strcolidxr0r1encode_unicode_cols]sz'genfromtxt..encode_unicode_colscsg|] }|qSr0r0)rr)rxr0r1rdsc3s|]}t|VqdSr@rurrFrkr0r1roszgenfromtxt..cSsh|]\}}|jr|qSr0)Z_checked)rcZc_typer0r0r1 tszgenfromtxt..csg|]\}}||fqSr0r0rrrr]r0r1r|scsg|]\}}|tfqSr0rr~rr0r1rsrJOcss|] }|jVqdSr@)charr[r0r0r1rsz4Nested fields involving objects are not supported...cSsg|] }d|fqSr_r0r[r0r0r1rscSsg|] }dtfqSr_r)rtr0r0r1rscSsg|] }|jqSr0rvrr0r0r1rsc3s|]}t|VqdSr@rzr{rkr0r1rscSsg|] }|tfqSr0rr[r0r0r1rscsg|]}|dkr|qSr_r0r[rr0r1rs)OrZnumpy.marSrTrrrrr rrrrrrx contextlibclosingr"rsrrrr rrrr!r*r+rrJrLrurrrrr^rrrdecoder~rr@rrerdrrr"r#updaterr IndexErrorZ iterupgraderr%rupgraderinsertrZVisibleDeprecationWarningUnicodeEncodeErrorrZ issubdtype charactermaxrr%rNotImplementedErrorviewr`Z_maskr'r))QrrrrrmZ skip_footerrr`Zfilling_valuesrrrVrWrYrUrXr]r*usemasklooseZ invalid_raiserrrSrTr+r,rgZfid_ctxZfhdrZvalidate_namesZ first_valuesrZfvalZnbcolscurrentZuser_missing_valuesrKrrdvalueentryZ user_valueZuser_filling_valuesnZ dtype_flatZzipitZ uc_updaterrhZ user_convrZappend_to_rowsmasksZappend_to_masksinvalidZappend_to_invalidrZnbvalues converterZcurrent_columnerrmsgZ nbinvalidZnbinvalid_skippeddataZ column_typesZsized_column_typesZcol_typeZn_charsrZ uniform_typeZddtypeZmdtyperQZ outputmaskZrowmasksZ ishomogeneousttypenameZmvalr0) rr]r^rrxrrrlrurmrwrorr1r4s8                                                                                         cKs$d|d<tjdtddt|f|S)a Load ASCII data stored in a file and return it as a single array. .. deprecated:: 1.17 ndfromtxt` is a deprecated alias of `genfromtxt` which overwrites the ``usemask`` argument with `False` even when explicitly called as ``ndfromtxt(..., usemask=True)``. Use `genfromtxt` instead. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. FrzGnp.ndfromtxt is a deprecated alias of np.genfromtxt, prefer the latter.r'r(r*r+r,r4rr/r0r0r1r5scKs$d|d<tjdtddt|f|S)a  Load ASCII data stored in a text file and return a masked array. .. deprecated:: 1.17 np.mafromtxt is a deprecated alias of `genfromtxt` which overwrites the ``usemask`` argument with `True` even when explicitly called as ``mafromtxt(..., usemask=False)``. Use `genfromtxt` instead. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. TrzGnp.mafromtxt is a deprecated alias of np.genfromtxt, prefer the latter.r'r(rrr0r0r1r6scKsP|dd|dd}t|f|}|r@ddlm}||}n |tj}|S)a Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. rNrFr MaskedRecords) setdefaultgetr4numpy.ma.mrecordsrrrrecarray)rr/rrQrr0r0r1r7 s      cKst|dd|dd|dd|ddt|f|}|d d }|rdd d lm}||}n |tj}|S) a8 Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. rXrrTrr\rNrFrr)rr4rrrrrr)rr/rQrrr0r0r1r8) s         )NFTr)NN)TT)TN)NNNNNNN)r4r5r6r r r7N)N)Z __future__rrrrrrr"rr*rAroperatorrrrr&rr rrr Z numpy.corer Znumpy.core.multiarrayr r Znumpy.core.overridesr Znumpy.core._internalrZ_iotoolsrrrrrrrrrrrZ numpy.compatrrrrrrr r!r"rcollections.abcr$Zfuture_builtinsr% collectionsr-__all__r#Zarray_function_dispatchrGr?rZr[r9rr:rr;rr<rrr$rr3r3r2r=rsortedZdefaultdeletecharsr4r5r6r7r8r0r0r0r1s     4,   1* 2  U Q @ C    { b <