
 1

Describing the trade-offs between training time, cost, and

model performance for HuggingFace distributed training

on Amazon SageMaker

Samantha Stuart, Inchara Bellavara Diwakar

 2

KEY TAKEAWAYS

We present here the results of a benchmarking study investigating the impact of scaling compute

instances and dataset sample size on HuggingFace model (distilBERT) training time,

performance, and job cost in Amazon SageMaker. The instances investigated were the

ml.p3.2xlarge (1GPU), ml.p3.8xlarge (4GPUs), ml.p3.16xlarge (8GPUs), and multi-node

training with SageMaker Data Parallelism (2 Node ml.p3.16xlarge (16GPUs), 4 Node

ml.p3.16xlarge (32GPUs)). The per GPU batch size was fixed during benchmarking (32), and we

observed an exponential decrease in training job execution time (18h decreased to <1h) with

scaling compute (number of GPUs in instance type) and global batch size. Training job cost

ranged from $65-$100USD on average, with 2-Node data parallelism on 16xl instances yielding

the best value with respect to execution time and job cost (2 hours, $80USD). However, scaling

the global batch size (by means of scaling instance type and at a fixed per GPU batch size) led to

a marked decrease in model performance, moreso for the training jobs with 100,000 samples

than 1,000,000 samples. While scaling compute can significantly reduce model training times, it

is advisable to anticipate how the global batch size, learning rate, and per device batch size may

need to be adjusted to mitigate changes in performance with scaling compute. Pitfalls and best

practices learned from executing this study are provided to help data scientists get started with

running HuggingFace on SageMaker while scaling compute with SageMaker data parallel

distributed training.

TABLE OF CONTENTS

KEY TAKEAWAYS ... 2

INTRODUCTION .. 3

METHODS ... 4

EXPERIMENTAL DESIGN ... 4
DATASET & TASK SELECTION.. 4
PRETRAINED MODEL SELECTION ... 5
SELECTING NUMBER OF TRAINING EPOCHS ... 5
SAGEMAKER DATA PARALLELISM .. 6
GENERATING EXPERIMENTAL DESIGN ... 6
CAPTURING METRICS ... 8
LIMITATIONS OF EXPERIMENTAL DESIGN .. 8

RESULTS & DISCUSSION:... 9

TRAINING TIME & JOB COST .. 9
MODEL PERFORMANCE .. 11
REMEDIATING PERFORMANCE DROP BY SCALING LEARNING RATE .. 12
ALTERNATIVE APPROACHES TO CHANGING HYPERPARAMETERS WHEN SCALING .. 13

PITFALLS & POINTS OF CONFUSION... 14

RECOMMENDED BEST PRACTICES ... 15

LINKS TO ADDITIONAL READING ON HUGGINGFACE, SAGEMAKER, & DISTRIBUTED TRAINING 15

REFERENCES ... 16

 3

INTRODUCTION

In 2021, a series of machine learning features were released on AWS to help customers fine-tune

and deploy pretrained natural language models quickly with HuggingFace. Hugging Face Deep

Learning Containers (DLCs), the HuggingFace framework in the SageMaker Python SDK, and

built-in compatibility with SageMaker data parallelism together reduce undifferentiated heavy

lifting for customers interested in fine-tuning (“training” used equivalently to fine-tuning herein)

pretrained HuggingFace models to meet their business objectives.

Some important factors for customers to plan for at the outset of a HuggingFace project are the

downstream impacts of model size. HuggingFace pretrained models range from having multi-

millions to billions of model parameters to fine-tune on customer datasets. Selecting a right-sized

compute instance for the job of fine-tuning a pretrained model can reduce training times on such

large models from days to minutes with Amazon SageMaker.

However, anyone who is new to working with HuggingFace and SageMaker shares the same

common questions:

• How much will SageMaker distributed data parallelism reduce my model training time?

• How will the cost of running training jobs change?

• How will model performance change, if at all, by using distributed data parallelism to

reduce training time?

• How do all of these factors change again for different amounts of sample data used in the

fine-tuning process?

We have performed a benchmarking study to help customers and data scientists dive deeper into

these trade-offs between training time, model performance, and cost when fine-tuning

HuggingFace models on SageMaker with distributed training. The results from this study will

help customers and data scientists build intuition around points of diminishing returns when

selecting compute resources to allocate for their machine learning projects with HuggingFace

and SageMaker.

 4

METHODS

Experimental Design

Model training time, model performance, and training job cost were the responses of interest in

this benchmarking study. The independent variables during benchmarking were scaling compute

resourcing (i.e. instance type, number of nodes) and dataset size (i.e. number of training samples)

as described in Table 1: Experimental Controls All experiments with data parallelism utilized the

built-in SageMaker Data Parallelism.

Table 1: Experimental Controls

Instance
Type

Num.
GPUs

Data

Parallel

Enabled?

Per Device

Train Batch

Size

Global

Batch

Size

Learn

Rate

Num.

Total

Steps

Num. Samples

Tested

ml.p3.2xlarge

1 No -1

Node

32 32 5E-05 84375 100,000 (30 epoch),

600,000 (5 epoch),

1,000,000 (3 epoch)

ml.p3.8xlarge

4 No -1

Node

32 128 5E-05 21094 100,000 (30 epoch),

600,000 (5 epoch),

1,000,000 (3 epoch)

ml.p3.16xlarge

8 Yes -1

Node

32 256 5E-05 10547 100,000 (30 epoch),

600,000 (5 epoch),

1,000,000 (3 epoch)

ml.p3.16xlarge

16 Yes - 2

Nodes

32 512 5E-05 5273 100,000 (30 epoch),

600,000 (5 epoch),

1,000,000 (3 epoch)

ml.p3.16xlarge

32 Yes - 4

Nodes

32 1024 5E-05 2637 100,000 (30 epoch),

600,000 (5 epoch),

1,000,000 (3 epoch)

Dataset & Task Selection

The HuggingFace Datasets Hub contains hundreds of natural language datasets suitable for

benchmarking tasks, or exploring different HuggingFace models.

The open source amazon_polarity dataset was selected for this experiment from the

HuggingFace Datasets Hub. The modeling task was binary sentiment classification. The

amazon_polarity dataset is a labelled collection of over 35 million Amazon product reviews and

their sentiment (positive, or negative). The review text column (labeled ‘content’) and

corresponding binary sentiment labels were loaded into the benchmarking repository, subset into

100,000, 600,000, and 1,000,000 samples, and then loaded to S3 for benchmarking according to

the experimental design.

https://huggingface.co/datasets

 5

Pretrained Model Selection

The pretrained “bidirectional encoder representations from transformers,” or BERT, model

represents the state of the art in natural language processing for text classification tasks.

distilBERT is the smallest model in the BERT family in the HuggingFace Hub, with 66,955,010

fine-tunable parameters. distilBERT has 40% fewer parameters than BERT base, runs 60%

faster, and preserves 95% of BERT’s performance. These unique benefits make distilBERT a

valuable model to benchmark, and an appropriate choice for use cases requiring fast iteration. To

maximize time and cost savings, ‘distilbert-base-uncased’ was selected for this benchmarking

project. “Uncased” means the model does not distinguish capitalized words as distinct from

uncapitalized words.

Using ‘distilbert-base-uncased’ with the HuggingFace AutoModel class simplified the process of

fine-tuning in SageMaker. A different AutoModel could be benchmarked equivalently in the

future using the present repository by changing the environment variable HF_MODEL in .env to

another AutoModel checkpoint name.

Selecting Number of Training Epochs

To facilitate reasonable comparisons across datasets with differing numbers of samples, a fixed

number of steps was enforced for a given global batch size and dataset size by fixing the number

of epochs. Steps refer to the points where model weight updates (“learning”) occurs.

𝑁𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝐺𝑙𝑜𝑏𝑎𝑙 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒

𝑁𝑒𝑝𝑜𝑐ℎ𝑠 =
𝑁𝑠𝑡𝑒𝑝𝑠 𝑡𝑜𝑡𝑎𝑙

𝑁𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ

For example, in the case of a 1GPU experiment, a number of total steps of 84375 was selected

through guess-and-check. In all experiments, 90% of the samples were reserved for training,

10% for validation. Calculating the number of training epochs to enforce equivalent steps in all

dataset sample sizes:

Table 2: Calculating Number of Training Epochs

 100,000 samples 600,000 samples 1,000,000 samples

Num. training

epochs

84375

(
100,000

32
∗0.9)

 = 3 Epochs
84375

(
600,000

32
∗0.9)

 = 5 Epochs
84375

(
1,000,000

32
∗0.9)

 = 30 Epochs

Equivalent epoch enforcements (3, 5, and 30) were made as global batch size increased to allow

dataset comparisons, and consequently the number of steps performed at a given compute

configuration decreased as global batch size increased. Figure 1 shows the downstream impact of

enforcing a consistent number of steps during model training across dataset sizes – the model

training times measured for 100,000 sample runs (left) and 1,000,000 sample runs (right) are the

same. Therefore, as a result of fixing the steps at a given dataset size and compute configuration,

 6

differences in model performance with number of samples used in training can be quantified.

This is examined later on in Figure 6.

Figure 1: By fixing the number of steps at a given dataset size and global batch size in this experiment (methodology described in

Table 2) the downstream training times for 100,000 sample runs (left) and 1,000,000 sample runs (right) are the same.

Therefore, differences in model performance with respect to the number of samples used in training (Figure 6) can be

benchmarked. Global batch sizes indicated above with GBS. A log transformation was applied on the recorded training time and

number of GPUs to map the equivalent linear relationships.

SageMaker Data Parallelism

SakeMaker Data Parallelism is an optimized method of distributed training machine learning

models using one line of additional code in the SageMaker Python SDK. Implementing

distribution in a training job can decrease training time and increase throughput.

In data parallelism, each GPU available in the training job contains an identical copy of the

model being trained. The training dataset is divided over each copy of the model, and the GPUs

execute the model training in parallel, while periodically synchronizing model parameters using

the Amazon AllReduce Algorithm. For a detailed background on SageMaker data parallelism,

see its overview announcement from the AWS News Blog [1].

Another advantage of data parallelism is that with its implementation across multi-node compute

clusters, a practitioner can fit larger global batch sizes in system memory. Increasing global

batch size (and thereby decreasing the number of steps in training) is one mechanism of

decreasing training time [2] and is the core focus of the present benchmarking study.

Generating Experimental Design

A baseline experiment with 15 runs was designed and evaluated for quality using a statistical

software (JMP Custom Design Tool), and loaded into the present repository under data/raw. The

field of experimental design is rigorous and comprehensive, and many alternative approaches to

designing an experiment in the future could be pursued as desired by the reader.

The generated runs and the accompanying colour map on correlations are shown below in Figure

2. As evidenced by the colour map, the design is orthogonal, meaning that there is low (<0.2

Pearson correlation coefficient) to no confounding effects present in measuring the number of

 7

nodes tested and the dataset size as proposed. The runs comprising the baseline design are

indexed as Run 0 to Run 14.

Figure 2: Baseline experimental design with 15 runs, and corresponding correlation colour map.

Several additional centrepoint runs were added to the experiment to test for additional curvature

in the relationships between compute, dataset size and training responses of interest. Additional

runs tested for additional variation in 1-node training jobs with different instance types

(ml.p3.8xlarge, ml.p3.16xlarge), dataset sizes, and degrees of parallelism. The ultimate

experimental design including centrepoint runs is displayed in Figure 3. Additional important

details are also shared below such as EC2 instance type, number of GPUs, and hourly instance

price.

Figure 3: Complete experimental design with 21 runs.

 8

Capturing Metrics

As noted previously, the responses of interest in this benchmark are model training time, model

performance, and cost. Metrics were systematically captured by the SageMaker training job

corresponding to each experimental run.

Model training time was captured by the training job execution time, model performance by

validation F1 score, and job cost calculated given the training job billable seconds per instance,

number of instances, and hourly instance price.

Limitations of Experimental Design

The results of this benchmarking study should be interpreted in the context of the deep learning

hyperparameters applied in the training jobs. Specifically, the results should be contextualized

given the learning rate was fixed global batch size increased with compute scaling. The

implications of the experimental design on the results, and some alternative approaches that

could be pursued for benchmarking in the future, are expanded upon in Results & Discussion.

 9

RESULTS & DISCUSSION:

Training Time & Job Cost

Training job execution time decreased exponentially as compute resources increased, as shown

in Figure 4 and described in Table 3. By fixing the per device batch size (i.e. the batch size per

GPU) to 32 samples in all cases, the global batch size increased proportionally with any increase

in the number of GPUs in the instance configuration.

The greatest time saving was in vertically scaling from one ml.p3.2xlarge instance containing a

single GPU to an ml.p3.8xlarge with 4 GPUs, saving nearly 13 hours in training time for an

incremental cost increase running the job of $8.44. Interestingly, as noted in Figure 5 and Table

3, two node data parallelism on ml.p3.16xlarge pays for itself by maintaining the same cost as

training on one ml.p3.8xlarge instance, in approximately 4h less time. In view of all experiments

performed, two-node data parallelism on 16xl instances delivered the best value.

Table 3: Time and money saved by scaling compute

 1 GPU 4 GPU 8 GPU 16 GPU 32 GPU
Instance

Type
1 Node

ml.p3.2xlarge

1 Node

ml.p3.8xlarge

1 Node

ml.p3.16xlarge

2 Node

ml.p3.16xlarge

4 Node

ml.p3.16xlarge

Global

Batch Size
32

128 256* 512 1024

Mean
Train Time

18h 17m

5h 20m 3h 41m* 16h 24m 53m

Std Dev +/- 6m 30sec

+/- 4m 03sec +/- 42m

58sec*

+/- 4m 4sec +/- 1m 15sec

Sample
Size

5 3 3* 4 6

Time Saved

by Scaling
- +12h 57m

+1h 39m +2h 18m +30m 50sec

$USD Job
Cost

Difference
by Scaling

- +$8.44 +$25.54 - $25.47 +$20.57

* Experimental run 16, (600,000 samples running on 1 node of a p3.ml.16xlarge with 8GPUs)

was executed with a per device batch size of 16 rather than 32, to work around a CUDA out of

memory error. Consequently, this change decreased the global batch size for this observation to

128, which translated to increased training time and cost for one of the three total runs performed

on 8 GPUs.

 10

Figure 4: Training job execution time with respect to number of GPUs in the underlying compute instance used and global batch

size. Per GPU batch size was 32. Learning rate fixed at 5e-5. Global Batch Sizes: p3.2xlarge (32), p3.8xlarge (128), 1 Node

p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024). See Table 1 for a full outline of deep learning

parameters used.

Figure 5: Introducing 2-Node training with p3.16xlarge instances and SageMaker Data Parallelism can decrease job cost,

despite the increasing compute. Per GPU batch size was 32. Learning rate fixed at 5e-5. Global Batch Sizes: p3.2xlarge (32),

p3.8xlarge (128), 1 Node p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024). See Table 1 for a full outline

of deep learning parameters used.

17% cost decrease,

equivalent to the 8xl

 11

Model Performance

Validation F1 scores trended down as compute resources increased, for all three dataset sizes, as

shown in Figure 6. The decrease was greatest for the 100,000 sample dataset.

Figure 6: Validation F1 scores trended down with increased compute and global batch size. Per GPU batch size was 32. 95%

confidence interval highlighted, all original data points and their regression lines shown. Learning rate fixed at 5e-5. Global

Batch Sizes: p3.2xlarge (32), p3.8xlarge (128), 1 Node p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024).

The cause of the performance decrease was investigated. An important consideration was the

selection of the deep learning parameters that were fixed in the experimental design. Generally,

as global batch size increases, it is recommended in deep learning practice to proportionally

update the learning rate [5]. The learning rate dictates the extent to which model weights are

changed with each training step. Hence, as the step size (global batch size) increases, the learning

rate should be proportionally adjusted to maintain equivalent model learning, and thus model

performance.

In this benchmarking experiment, the learning rate was kept constant (5e-5). The per device

(GPU) batch size was also fixed (32). The global batch size was increased by means of

increasing the number of GPUs in the compute configuration. As a result, this combination of

deep learning parameters while scaling compute yielded a decrease in model performance.

It is known that with larger compute configurations, a practitioner can fit larger global batch

sizes during training, which decreases training time [5]. A key takeaway from this benchmarking

study, however is that when scaling compute for model training jobs, the practitioner should

examine how their baseline deep learning hyperparameters will be impacted by scaling.

Similar advice is echoed in other practical literature on implementing distributed training and

scaling compute to reduce training time [2]. Examining the changes in deep learning

hyperparameters such as global batch size, learning rate, per GPU batch size, and number of

GPUs in the compute configuration before and after scaling will suggest how model performance

will change with scaling. If care is not taken to anticipate how hyperparameters will change with

 12

scaling, some of the time saving benefits of scaling may be lost to the additional time taken to

remediate performance dips [2].

Remediating Performance Drop by Scaling Learning Rate

There is empirical evidence that for the AdamW optimizer (used with HuggingFace by default)

the learning rate can be adjusted by √𝑛 × ∝1 where n is the proportional increase in global batch

size and ∝1 is the original learning rate. [3][4].

To explore the implications of this adjustment on the present benchmarking study, experimental

runs 21and 22 repeated runs 11 and 2 respectively, only using empirically adjusted learning

rates. Specifically, run 21 repeats the training job with 100,000 samples and a global batch size

of 1024 with the proportionally adjusted learning rate (2.83e-4 = √32 × 5e-5 for a 32x increase

in global batch size). Run 22 runs the equivalent run with 1,000,000 samples. Figure 7 shows the

result. The validation F1 performance did improve for the case of 100,000 samples, however not

in the case of 1,000,000 samples. Albeit, the experiment using 1,000,000 samples did not

materially drop in performance with the increased global batch size in the original experiment.

Further optimizations with hyperparameter tuning could be further explored to fully remediate

the performance drop if desired. However, as noted above, this will consume some of the time

saved by scaling the training job.

Figure 7: Increasing the learning rate according to the empirical scaling rule (√32 × 5𝑒 − 5 for a 32x in global batch size)

increased improved performance at 100,000 samples (F1=0.897 to F1=0.924). However, remediated performance was still 1%

below the F1 score obtained on 1 GPU at the original global batch size of 32 (F1=0.931).

 13

Alternative approaches to changing hyperparameters when scaling

To bypass the need to vary both global batch size and learning rate with scaling compute, other

parameters can be adjusted. Specifically, the global batch size and learning rate originally

yielding acceptable model performance should be fixed at the outset of the scaling project. The

parameter to vary instead is the per device (per GPU) batch size. This parameter should be varied

as required preserve the global batch size while more GPUs are added to the compute

configuration. This configuration for benchmarking is expected to maintain performance.

Future work is necessary to benchmark an absence of performance changes when pursuing this

approach. This aws-samples repo can be easily modified to pursue the aforementioned

alternative approach in future work with distilbert. Simply reconfigure the experimental design

(in get_results.ipynb) to vary the number of epochs and per device batch size in such a way that

global batch size is fixed while scaling the number of GPUs in the compute configuration.

Equations for calculating epochs are previously described in Table 2, and in the get_results

notebook. Similarly, to compare performance at different dataset sizes, ensure the number of

steps are fixed at a given global batch size, and the number of epochs are varied to enforce the

same number of steps for all dataset sizes. Equations for setting step size are similarly described

in the methods section. The resulting benchmarking experiment configuration will have a fixed

global batch size, learning rate, and number of steps in all cases, with a varying per device batch

size, and a varying number of epochs. Epochs will vary as the dataset sizes being benchmarked

change, such that the same number of steps is enforced. Some guessing and checking may be

required to ensure the resulting epochs are reasonable whole numbers, and the per device batch

sizes required are compatible with device memory in all cases (i.e. avoiding CUDA out of

memory errors).

 14

PITFALLS & POINTS OF CONFUSION

To aid others interested in working with HuggingFace and scaled compute to reduce training

times with SageMaker, some pitfalls and points of confusion identified during this benchmarking

study are expanded below.

• CUDA out of memory errors

o An important factor in scaling compute is managing SageMaker training job

compatibility with device memory. A device in this context is a GPU. The

HuggingFace training job arguments include a per_device_train_batch_size

hyperparameter which refers to the per GPU batch size. See the HuggingFace

docs for further details.

o If you are encountering CUDA out of memory errors, the per_device_batch_size

may require an adjustment down, such that the batches can fit in device memory.

Additionally, adding save_total_limit = 1 to TrainingArguments() in the

SageMaker training script will drastically reduce the model size saved and can

help with conserving memory.

• Ensure version compatibility

o When running SageMaker data parallelism with HuggingFace, make sure to use

version 4.3.0 of the transformers library or newer in the training script

o The HuggingFace Deep Learning Container Image URI used in this work was:

 763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-

training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04

o The PyTorch version used was: ‘py36’

• Transfer Learning vs Fine-Tuning

o HuggingFace can be used for fine-tuning (where all model parameters are

adjusted by re-training a pretrained model with a custom dataset) or transfer

learning (freezing encoder weights and just training the classification head).

o Transfer learning can be faster than fine tuning as it drastically reduces the

number of tunable parameters (for distilBERT, about 67 million tunable

parameters are reduced to about 67,000). However, model performance was not as

good as with the fine-tuning approach, and fine-tuning was pursued for this study.

• EBS Volume Size

o Originally, all EBS volume sizes passed into the training job were left to the

default value of 30 GBs.

o While the training jobs running on the 16xl instances were successful with the

defaults, all other instance types required additional EBS volume in their training

jobs (1024 GBs was sufficient to get all jobs to work) to avoid training job failure

due to an ArchiveError. The volume size ultimately required by each training jobs

is indicated in the experimental design.

https://huggingface.co/transformers/_modules/transformers/training_args.html
https://huggingface.co/transformers/main_classes/trainer.html

 15

RECOMMENDED BEST PRACTICES

• Troubleshoot training jobs on one instance before scaling

o Start by successfully executing a custom training job on a single instance before

scaling to multi-node training jobs with SageMaker parallelism

o Errors are more challenging to debug on multi-node jobs

o Use a warm start to the learning rate (turned on by default with HuggingFace, and

warm start defaults were used presently) to help with convergence

• Scale vertically before scaling horizontally

o You may accomplish your training time goals by scaling vertically and enjoy the

simplicity of working on one instance, as noted in a recently published practical

guide to scaling compute [2]

• If need to reduce time and cost further, scaling horizontally can in some cases be

cheaper and faster than scaling vertically

o As shown in Figure 4 and Figure 5 under the experimental conditions of this

benchmark, multi-node parallelism with two ml.p3.16xl instances can be faster

and cheaper than one node, and equivalent in cost but 4hours less in time than a

single ml.p3.8xl instance

• Plan in advance for how model performance may be impacted by scaling compute

o Anticipate how your global batch size, learning rate, and per device batch size

(AKA per GPU batch size) may need to be adjusted to avoid changes in

performance

o See Alternative approaches to changing hyperparameters when scaling for details

• Review additional best practices from the SageMaker Parallelism documentation

o Additional best practices on selecting a batch size elaborated on in the SageMaker

Parallelism documentation

Links to Additional Reading on HuggingFace, SageMaker, & Distributed Training

• Free getting started with HuggingFace Course, Part 1

• HuggingFace on Amazon SageMaker Big Picture

• Using HuggingFace with Amazon SageMaker Overview

• SageMaker Data Parallel Distributed Training Library Configuration and Pitfalls

• HuggingFace Estimator class documentation

• Preparing a HuggingFace transformers fine tuning script in SageMaker

https://huggingface.co/course/chapter1
https://huggingface.co/docs/sagemaker/main
https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-config.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html#hugging-face-estimator
https://huggingface.co/docs/sagemaker/train#prepare-a-%F0%9F%A4%97-transformers-fine-tuning-script

 16

REFERENCES

[1] J. Simon, “New – Data Parallelism Library in Amazon SageMaker Simplifies Training on

Large Datasets,” AWS News Blog, 2020. https://aws.amazon.com/blogs/aws/managed-

data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/.

[2] O. Cruchant, The Efficient Machine Learning Practitioner. LeanPub.com, 2021.

[3] Y. You, I. Gitman, and B. Ginsburg, “Large Batch Training of Convolutional Networks,”

2017. [Online]. Available: http://arxiv.org/abs/1708.03888.

[4] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: closing the

generalization gap in large batch training of neural networks,” 2017, doi:

10.1016/j.jcjd.2014.02.001.

[5] S. L. Smith, P. Kindermans, C. Ying, Q. V Le, and G. Brain, “Don’t Decay the Learning

Rate Increase the Batch Size,” no. 2017, pp. 1–11, 2018.

	KEY TAKEAWAYS
	INTRODUCTION
	METHODS
	Experimental Design
	Dataset & Task Selection
	Pretrained Model Selection
	Selecting Number of Training Epochs
	SageMaker Data Parallelism
	Generating Experimental Design
	Capturing Metrics
	Limitations of Experimental Design

	RESULTS & DISCUSSION:
	Training Time & Job Cost
	Model Performance
	Remediating Performance Drop by Scaling Learning Rate
	Alternative approaches to changing hyperparameters when scaling

	PITFALLS & POINTS OF CONFUSION
	RECOMMENDED BEST PRACTICES
	Links to Additional Reading on HuggingFace, SageMaker, & Distributed Training

	REFERENCES

