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KEY TAKEAWAYS 
 

We present here the results of a benchmarking study investigating the impact of scaling compute 

instances and dataset sample size on HuggingFace model (distilBERT) training time, 

performance, and job cost in Amazon SageMaker. The instances investigated were the 

ml.p3.2xlarge (1GPU), ml.p3.8xlarge (4GPUs), ml.p3.16xlarge (8GPUs), and multi-node 

training with SageMaker Data Parallelism (2 Node ml.p3.16xlarge (16GPUs), 4 Node 

ml.p3.16xlarge (32GPUs)). The per GPU batch size was fixed during benchmarking (32), and we 

observed an exponential decrease in training job execution time (18h decreased to <1h) with 

scaling compute (number of GPUs in instance type) and global batch size. Training job cost 

ranged from $65-$100USD on average, with 2-Node data parallelism on 16xl instances yielding 

the best value with respect to execution time and job cost (2 hours, $80USD). However, scaling 

the global batch size (by means of scaling instance type and at a fixed per GPU batch size) led to 

a marked decrease in model performance, moreso for the training jobs with 100,000 samples 

than 1,000,000 samples. While scaling compute can significantly reduce model training times, it 

is advisable to anticipate how the global batch size, learning rate, and per device batch size may 

need to be adjusted to mitigate changes in performance with scaling compute. Pitfalls and best 

practices learned from executing this study are provided to help data scientists get started with 

running HuggingFace on SageMaker while scaling compute with SageMaker data parallel 

distributed training. 
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INTRODUCTION 

In 2021, a series of machine learning features were released on AWS to help customers fine-tune 

and deploy pretrained natural language models quickly with HuggingFace. Hugging Face Deep 

Learning Containers (DLCs), the HuggingFace framework in the SageMaker Python SDK, and 

built-in compatibility with SageMaker data parallelism together reduce undifferentiated heavy 

lifting for customers interested in fine-tuning (“training” used equivalently to fine-tuning herein) 

pretrained HuggingFace models to meet their business objectives.  

Some important factors for customers to plan for at the outset of a HuggingFace project are the 

downstream impacts of model size. HuggingFace pretrained models range from having multi-

millions to billions of model parameters to fine-tune on customer datasets. Selecting a right-sized 

compute instance for the job of fine-tuning a pretrained model can reduce training times on such 

large models from days to minutes with Amazon SageMaker. 

However, anyone who is new to working with HuggingFace and SageMaker shares the same 

common questions: 

• How much will SageMaker distributed data parallelism reduce my model training time? 

• How will the cost of running training jobs change? 

• How will model performance change, if at all, by using distributed data parallelism to 

reduce training time? 

• How do all of these factors change again for different amounts of sample data used in the 

fine-tuning process? 

We have performed a benchmarking study to help customers and data scientists dive deeper into 

these trade-offs between training time, model performance, and cost when fine-tuning 

HuggingFace models on SageMaker with distributed training. The results from this study will 

help customers and data scientists build intuition around points of diminishing returns when 

selecting compute resources to allocate for their machine learning projects with HuggingFace 

and SageMaker.  
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METHODS 
 

Experimental Design 
 

Model training time, model performance, and training job cost were the responses of interest in 

this benchmarking study. The independent variables during benchmarking were scaling compute 

resourcing (i.e. instance type, number of nodes) and dataset size (i.e. number of training samples) 

as described in Table 1: Experimental Controls All experiments with data parallelism utilized the 

built-in SageMaker Data Parallelism.  

 
Table 1: Experimental Controls 

 

Instance  
Type 

 

Num. 
GPUs 

 

Data 

Parallel 

Enabled? 

 

Per Device 

Train Batch 

Size 

 

Global 

Batch 

Size 

 

Learn 

Rate 

 

Num. 

Total 

Steps 

 

Num. Samples 

Tested 

 

ml.p3.2xlarge 

1 No -1 

Node 

32 32 5E-05 84375 100,000 (30 epoch), 

600,000 (5 epoch), 

1,000,000 (3 epoch) 

 

ml.p3.8xlarge 

4 No -1 

Node 

32 128 5E-05 21094 100,000 (30 epoch), 

600,000 (5 epoch), 

1,000,000 (3 epoch) 

 

ml.p3.16xlarge 

8 Yes -1 

Node 

32 256 5E-05 10547 100,000 (30 epoch), 

600,000 (5 epoch), 

1,000,000 (3 epoch) 

 

ml.p3.16xlarge 

16 Yes - 2 

Nodes 

32 512 5E-05 5273 100,000 (30 epoch), 

600,000 (5 epoch), 

1,000,000 (3 epoch) 

 

ml.p3.16xlarge 

32 Yes - 4 

Nodes 

32 1024 5E-05 2637 100,000 (30 epoch), 

600,000 (5 epoch), 

1,000,000 (3 epoch) 

 

 

Dataset & Task Selection 
 

The HuggingFace Datasets Hub contains hundreds of natural language datasets suitable for 

benchmarking tasks, or exploring different HuggingFace models.  

 

The open source amazon_polarity dataset was selected for this experiment from the 

HuggingFace Datasets Hub. The modeling task was binary sentiment classification. The 

amazon_polarity dataset is a labelled collection of over 35 million Amazon product reviews and 

their sentiment (positive, or negative). The review text column (labeled ‘content’) and 

corresponding binary sentiment labels were loaded into the benchmarking repository, subset into 

100,000, 600,000, and 1,000,000 samples, and then loaded to S3 for benchmarking according to 

the experimental design. 

 

https://huggingface.co/datasets


 5 

Pretrained Model Selection 
 

The pretrained “bidirectional encoder representations from transformers,” or BERT, model 

represents the state of the art in natural language processing for text classification tasks.  

distilBERT is the smallest model in the BERT family in the HuggingFace Hub, with 66,955,010 

fine-tunable parameters. distilBERT has 40% fewer parameters than BERT base, runs 60% 

faster, and preserves 95% of BERT’s performance. These unique benefits make distilBERT a 

valuable model to benchmark, and an appropriate choice for use cases requiring fast iteration. To 

maximize time and cost savings, ‘distilbert-base-uncased’ was selected for this benchmarking 

project. “Uncased” means the model does not distinguish capitalized words as distinct from 

uncapitalized words. 

 

Using ‘distilbert-base-uncased’ with the HuggingFace AutoModel class simplified the process of 

fine-tuning in SageMaker. A different AutoModel could be benchmarked equivalently in the 

future using the present repository by changing the environment variable HF_MODEL in .env to 

another AutoModel checkpoint name. 

 

Selecting Number of Training Epochs  
 

To facilitate reasonable comparisons across datasets with differing numbers of samples, a fixed 

number of steps was enforced for a given global batch size and dataset size by fixing the number 

of epochs. Steps refer to the points where model weight updates (“learning”) occurs. 

 

𝑁𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ =  
𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝐺𝑙𝑜𝑏𝑎𝑙 𝐵𝑎𝑡𝑐ℎ 𝑆𝑖𝑧𝑒
 

 

𝑁𝑒𝑝𝑜𝑐ℎ𝑠 =  
𝑁𝑠𝑡𝑒𝑝𝑠 𝑡𝑜𝑡𝑎𝑙

𝑁𝑠𝑡𝑒𝑝𝑠 𝑝𝑒𝑟 𝑒𝑝𝑜𝑐ℎ
 

 

For example, in the case of a 1GPU experiment, a number of total steps of 84375 was selected 

through guess-and-check. In all experiments, 90% of the samples were reserved for training, 

10% for validation. Calculating the number of training epochs to enforce equivalent steps in all 

dataset sample sizes: 

 
Table 2: Calculating Number of Training Epochs 

 100,000 samples 600,000 samples 1,000,000 samples 

Num. training 

epochs  

84375

(
100,000

32
∗0.9)

 = 3 Epochs 
84375

(
600,000

32
∗0.9)

 = 5 Epochs 
84375

(
1,000,000

32
∗0.9)

 = 30 Epochs 

 

Equivalent epoch enforcements (3, 5, and 30) were made as global batch size increased to allow 

dataset comparisons, and consequently the number of steps performed at a given compute 

configuration decreased as global batch size increased. Figure 1 shows the downstream impact of 

enforcing a consistent number of steps during model training across dataset sizes – the model 

training times measured for 100,000 sample runs (left) and 1,000,000 sample runs (right) are the 

same. Therefore, as a result of fixing the steps at a given dataset size and compute configuration, 
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differences in model performance with number of samples used in training can be quantified. 

This is examined later on in Figure 6. 

 

 

 
Figure 1: By fixing the number of steps at a given dataset size and global batch size in this experiment (methodology described in 

Table 2) the downstream training times for 100,000 sample runs (left) and 1,000,000 sample runs (right) are the same. 

Therefore, differences in model performance with respect to the number of samples used in training (Figure 6) can be 

benchmarked. Global batch sizes indicated above with GBS. A log transformation was applied on the recorded training time and 

number of GPUs to map the equivalent linear relationships. 

SageMaker Data Parallelism 
 

SakeMaker Data Parallelism is an optimized method of distributed training machine learning 

models using one line of additional code in the SageMaker Python SDK. Implementing 

distribution in a training job can decrease training time and increase throughput. 

In data parallelism, each GPU available in the training job contains an identical copy of the 

model being trained. The training dataset is divided over each copy of the model, and the GPUs 

execute the model training in parallel, while periodically synchronizing model parameters using 

the Amazon AllReduce Algorithm. For a detailed background on SageMaker data parallelism, 

see its overview announcement from the AWS News Blog [1]. 

 

Another advantage of data parallelism is that with its implementation across multi-node compute 

clusters, a practitioner can fit larger global batch sizes in system memory. Increasing global 

batch size (and thereby decreasing the number of steps in training) is one mechanism of 

decreasing training time [2] and is the core focus of the present benchmarking study.  

 

Generating Experimental Design 
 

A baseline experiment with 15 runs was designed and evaluated for quality using a statistical 

software (JMP Custom Design Tool), and loaded into the present repository under data/raw. The 

field of experimental design is rigorous and comprehensive, and many alternative approaches to 

designing an experiment in the future could be pursued as desired by the reader.  

 

The generated runs and the accompanying colour map on correlations are shown below in Figure 

2. As evidenced by the colour map, the design is orthogonal, meaning that there is low (<0.2 

Pearson correlation coefficient) to no confounding effects present in measuring the number of 
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nodes tested and the dataset size as proposed. The runs comprising the baseline design are 

indexed as Run 0 to Run 14. 

 

 

 
Figure 2: Baseline experimental design with 15 runs, and corresponding correlation colour map. 

 

Several additional centrepoint runs were added to the experiment to test for additional curvature 

in the relationships between compute, dataset size and training responses of interest. Additional 

runs tested for additional variation in 1-node training jobs with different instance types 

(ml.p3.8xlarge, ml.p3.16xlarge), dataset sizes, and degrees of parallelism. The ultimate 

experimental design including centrepoint runs is displayed in Figure 3. Additional important 

details are also shared below such as EC2 instance type, number of GPUs, and hourly instance 

price. 

 

 
Figure 3: Complete experimental design with 21 runs. 
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Capturing Metrics 
 

As noted previously, the responses of interest in this benchmark are model training time, model 

performance, and cost. Metrics were systematically captured by the SageMaker training job 

corresponding to each experimental run.  

 

Model training time was captured by the training job execution time, model performance by 

validation F1 score, and job cost calculated given the training job billable seconds per instance, 

number of instances, and hourly instance price. 

 

Limitations of Experimental Design  
 

The results of this benchmarking study should be interpreted in the context of the deep learning 

hyperparameters applied in the training jobs. Specifically, the results should be contextualized 

given the learning rate was fixed global batch size increased with compute scaling. The 

implications of the experimental design on the results, and some alternative approaches that 

could be pursued for benchmarking in the future, are expanded upon in Results & Discussion. 
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RESULTS & DISCUSSION: 
 

Training Time & Job Cost 
 

Training job execution time decreased exponentially as compute resources increased, as shown 

in Figure 4 and described in Table 3. By fixing the per device batch size (i.e. the batch size per 

GPU) to 32 samples in all cases, the global batch size increased proportionally with any increase 

in the number of GPUs in the instance configuration.  

 

The greatest time saving was in vertically scaling from one ml.p3.2xlarge instance containing a 

single GPU to an ml.p3.8xlarge with 4 GPUs, saving nearly 13 hours in training time for an 

incremental cost increase running the job of $8.44. Interestingly, as noted in Figure 5 and Table 

3, two node data parallelism on ml.p3.16xlarge pays for itself by maintaining the same cost as 

training on one ml.p3.8xlarge instance, in approximately 4h less time. In view of all experiments 

performed, two-node data parallelism on 16xl instances delivered the best value. 

 
Table 3:  Time and money saved by scaling compute  

 1 GPU 4 GPU 8 GPU 16 GPU 32 GPU 
Instance 

Type 
1 Node 

ml.p3.2xlarge 

 

1 Node 

ml.p3.8xlarge 

1 Node 

ml.p3.16xlarge 

2 Node 

ml.p3.16xlarge 

4 Node 

ml.p3.16xlarge 

Global 

Batch Size 
32 

 

128 256* 512 1024 

Mean 
Train Time  

18h 17m  

 

5h 20m 3h 41m* 16h 24m 53m 

Std Dev +/- 6m 30sec 

 

+/- 4m 03sec +/- 42m 

58sec* 

 

+/- 4m 4sec +/- 1m 15sec 

Sample 
Size 

5 3 3* 4 6 

Time Saved 

by Scaling 
- +12h 57m 

 

 

+1h 39m +2h 18m +30m 50sec 

$USD Job 
Cost 

Difference 
by Scaling 

- +$8.44  +$25.54 - $25.47 +$20.57 

 

* Experimental run 16, (600,000 samples running on 1 node of a p3.ml.16xlarge with 8GPUs) 

was executed with a per device batch size of 16 rather than 32, to work around a CUDA out of 

memory error. Consequently, this change decreased the global batch size for this observation to 

128, which translated to increased training time and cost for one of the three total runs performed 

on 8 GPUs. 
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Figure 4: Training job execution time with respect to number of GPUs in the underlying compute instance used and global batch 

size. Per GPU batch size was 32. Learning rate fixed at 5e-5. Global Batch Sizes: p3.2xlarge (32), p3.8xlarge (128), 1 Node 

p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024). See Table 1 for a full outline of deep learning 

parameters used. 

 

 

 
Figure 5: Introducing 2-Node training with p3.16xlarge instances and SageMaker Data Parallelism can decrease job cost, 

despite the increasing compute. Per GPU batch size was 32. Learning rate fixed at 5e-5. Global Batch Sizes: p3.2xlarge (32), 

p3.8xlarge (128), 1 Node p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024). See Table 1 for a full outline 

of deep learning parameters used. 

 

17% cost decrease, 

equivalent to the 8xl 
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Model Performance 
 

Validation F1 scores trended down as compute resources increased, for all three dataset sizes, as 

shown in Figure 6. The decrease was greatest for the 100,000 sample dataset.  

 

 
Figure 6: Validation F1 scores trended down with increased compute and global batch size. Per GPU batch size was 32. 95% 

confidence interval highlighted, all original data points and their regression lines shown. Learning rate fixed at 5e-5. Global 

Batch Sizes: p3.2xlarge (32), p3.8xlarge (128), 1 Node p3.16xlarge (256), 2 Node p3.16xlarge (512), 4 Node p3.16xlarge (1024).  

The cause of the performance decrease was investigated. An important consideration was the 

selection of the deep learning parameters that were fixed in the experimental design. Generally, 

as global batch size increases, it is recommended in deep learning practice to proportionally 

update the learning rate [5]. The learning rate dictates the extent to which model weights are 

changed with each training step. Hence, as the step size (global batch size) increases, the learning 

rate should be proportionally adjusted to maintain equivalent model learning, and thus model 

performance.  

 

In this benchmarking experiment, the learning rate was kept constant (5e-5). The per device 

(GPU) batch size was also fixed (32). The global batch size was increased by means of 

increasing the number of GPUs in the compute configuration. As a result, this combination of 

deep learning parameters while scaling compute yielded a decrease in model performance.  

 

It is known that with larger compute configurations, a practitioner can fit larger global batch 

sizes during training, which decreases training time [5]. A key takeaway from this benchmarking 

study, however is that when scaling compute for model training jobs, the practitioner should 

examine how their baseline deep learning hyperparameters will be impacted by scaling. 

Similar advice is echoed in other practical literature on implementing distributed training and 

scaling compute to reduce training time [2]. Examining the changes in deep learning 

hyperparameters such as global batch size, learning rate, per GPU batch size, and number of 

GPUs in the compute configuration before and after scaling will suggest how model performance 

will change with scaling. If care is not taken to anticipate how hyperparameters will change with 
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scaling, some of the time saving benefits of scaling may be lost to the additional time taken to 

remediate performance dips [2].  

 

Remediating Performance Drop by Scaling Learning Rate 
 

There is empirical evidence that for the AdamW optimizer (used with HuggingFace by default) 

the learning rate can be adjusted by √𝑛 × ∝1 where n is the proportional increase in global batch 

size and ∝1 is the original learning rate. [3][4].  

 

To explore the implications of this adjustment on the present benchmarking study, experimental 

runs 21and 22 repeated runs 11 and 2 respectively, only using empirically adjusted learning 

rates. Specifically, run 21 repeats the training job with 100,000 samples and a global batch size 

of 1024 with the proportionally adjusted learning rate (2.83e-4 = √32 × 5e-5 for a 32x increase 

in global batch size). Run 22 runs the equivalent run with 1,000,000 samples. Figure 7 shows the 

result. The validation F1 performance did improve for the case of 100,000 samples, however not 

in the case of 1,000,000 samples. Albeit, the experiment using 1,000,000 samples did not 

materially drop in performance with the increased global batch size in the original experiment. 

Further optimizations with hyperparameter tuning could be further explored to fully remediate 

the performance drop if desired. However, as noted above, this will consume some of the time 

saved by scaling the training job.  

 

 

 

 

 

 
Figure 7: Increasing the learning rate according to the empirical scaling rule (√32 ×  5𝑒 − 5 for a 32x in global batch size) 

increased improved performance at 100,000 samples (F1=0.897 to F1=0.924). However, remediated performance was still 1% 

below the F1 score obtained on 1 GPU at the original global batch size of 32 (F1=0.931). 
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Alternative approaches to changing hyperparameters when scaling 
 

To bypass the need to vary both global batch size and learning rate with scaling compute, other 

parameters can be adjusted. Specifically, the global batch size and learning rate originally 

yielding acceptable model performance should be fixed at the outset of the scaling project. The 

parameter to vary instead is the per device (per GPU) batch size. This parameter should be varied 

as required preserve the global batch size while more GPUs are added to the compute 

configuration. This configuration for benchmarking is expected to maintain performance.   

 

Future work is necessary to benchmark an absence of performance changes when pursuing this 

approach. This aws-samples repo can be easily modified to pursue the aforementioned 

alternative approach in future work with distilbert. Simply reconfigure the experimental design 

(in get_results.ipynb) to vary the number of epochs and per device batch size in such a way that 

global batch size is fixed while scaling the number of GPUs in the compute configuration. 

Equations for calculating epochs are previously described in Table 2, and in the get_results 

notebook. Similarly, to compare performance at different dataset sizes, ensure the number of 

steps are fixed at a given global batch size, and the number of epochs are varied to enforce the 

same number of steps for all dataset sizes. Equations for setting step size are similarly described 

in the methods section. The resulting benchmarking experiment configuration will have a fixed 

global batch size, learning rate, and number of steps in all cases, with a varying per device batch 

size, and a varying number of epochs. Epochs will vary as the dataset sizes being benchmarked 

change, such that the same number of steps is enforced. Some guessing and checking may be 

required to ensure the resulting epochs are reasonable whole numbers, and the per device batch 

sizes required are compatible with device memory in all cases (i.e. avoiding CUDA out of 

memory errors). 
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PITFALLS & POINTS OF CONFUSION 
 

To aid others interested in working with HuggingFace and scaled compute to reduce training 

times with SageMaker, some pitfalls and points of confusion identified during this benchmarking 

study are expanded below.  

 

• CUDA out of memory errors 

o An important factor in scaling compute is managing SageMaker training job 

compatibility with device memory. A device in this context is a GPU. The 

HuggingFace training job arguments include a per_device_train_batch_size 

hyperparameter which refers to the per GPU batch size. See the HuggingFace 

docs for further details. 

o If you are encountering CUDA out of memory errors, the per_device_batch_size 

may require an adjustment down, such that the batches can fit in device memory. 

Additionally, adding save_total_limit = 1 to TrainingArguments() in the 

SageMaker training script will drastically reduce the model size saved and can 

help with conserving memory. 

 

• Ensure version compatibility 

o When running SageMaker data parallelism with HuggingFace, make sure to use 

version 4.3.0 of the transformers library or newer in the training script 

o The HuggingFace Deep Learning Container Image URI used in this work was:  

 763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-

training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04 

o The PyTorch version used was: ‘py36’ 

 

• Transfer Learning vs Fine-Tuning 

o HuggingFace can be used for fine-tuning (where all model parameters are 

adjusted by re-training a pretrained model with a custom dataset) or transfer 

learning (freezing encoder weights and just training the classification head).  

o Transfer learning can be faster than fine tuning as it drastically reduces the 

number of tunable parameters (for distilBERT, about 67 million tunable 

parameters are reduced to about 67,000). However, model performance was not as 

good as with the fine-tuning approach, and fine-tuning was pursued for this study. 

 

• EBS Volume Size 

o Originally, all EBS volume sizes passed into the training job were left to the 

default value of 30 GBs. 

o While the training jobs running on the 16xl instances were successful with the 

defaults, all other instance types required additional EBS volume in their training 

jobs (1024 GBs was sufficient to get all jobs to work) to avoid training job failure 

due to an ArchiveError. The volume size ultimately required by each training jobs 

is indicated in the experimental design. 

 

 

https://huggingface.co/transformers/_modules/transformers/training_args.html
https://huggingface.co/transformers/main_classes/trainer.html
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RECOMMENDED BEST PRACTICES 
 

• Troubleshoot training jobs on one instance before scaling 

o Start by successfully executing a custom training job on a single instance before 

scaling to multi-node training jobs with SageMaker parallelism 

o Errors are more challenging to debug on multi-node jobs 

o Use a warm start to the learning rate (turned on by default with HuggingFace, and 

warm start defaults were used presently) to help with convergence 

 

• Scale vertically before scaling horizontally  

o You may accomplish your training time goals by scaling vertically and enjoy the 

simplicity of working on one instance, as noted in a recently published practical 

guide to scaling compute [2]  

 

• If need to reduce time and cost further, scaling horizontally can in some cases be 

cheaper and faster than scaling vertically 

o As shown in Figure 4 and Figure 5 under the experimental conditions of this 

benchmark, multi-node parallelism with two ml.p3.16xl instances can be faster 

and cheaper than one node, and equivalent in cost but 4hours less in time than a 

single ml.p3.8xl instance 

 

• Plan in advance for how model performance may be impacted by scaling compute 

o Anticipate how your global batch size, learning rate, and per device batch size 

(AKA per GPU batch size) may need to be adjusted to avoid changes in 

performance 

o See Alternative approaches to changing hyperparameters when scaling for details 

 

• Review additional best practices from the SageMaker Parallelism documentation 

o Additional best practices on selecting a batch size elaborated on in the SageMaker 

Parallelism documentation 

 

Links to Additional Reading on HuggingFace, SageMaker, & Distributed Training 

• Free getting started with HuggingFace Course, Part 1 

• HuggingFace on Amazon SageMaker Big Picture 

• Using HuggingFace with Amazon SageMaker Overview 

• SageMaker Data Parallel Distributed Training Library Configuration and Pitfalls 

• HuggingFace Estimator class documentation 

• Preparing a HuggingFace transformers fine tuning script in SageMaker 

 

  

https://huggingface.co/course/chapter1
https://huggingface.co/docs/sagemaker/main
https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-config.html
https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/sagemaker.huggingface.html#hugging-face-estimator
https://huggingface.co/docs/sagemaker/train#prepare-a-%F0%9F%A4%97-transformers-fine-tuning-script


 16 

REFERENCES 
 

[1] J. Simon, “New – Data Parallelism Library in Amazon SageMaker Simplifies Training on 

Large Datasets,” AWS News Blog, 2020. https://aws.amazon.com/blogs/aws/managed-

data-parallelism-in-amazon-sagemaker-simplifies-training-on-large-datasets/. 

[2] O. Cruchant, The Efficient Machine Learning Practitioner. LeanPub.com, 2021. 

[3] Y. You, I. Gitman, and B. Ginsburg, “Large Batch Training of Convolutional Networks,” 

2017. [Online]. Available: http://arxiv.org/abs/1708.03888. 

[4] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better: closing the 

generalization gap in large batch training of neural networks,” 2017, doi: 

10.1016/j.jcjd.2014.02.001. 

[5] S. L. Smith, P. Kindermans, C. Ying, Q. V Le, and G. Brain, “Don’t Decay the Learning 

Rate Increase the Batch Size,” no. 2017, pp. 1–11, 2018. 

 


	KEY TAKEAWAYS
	INTRODUCTION
	METHODS
	Experimental Design
	Dataset & Task Selection
	Pretrained Model Selection
	Selecting Number of Training Epochs
	SageMaker Data Parallelism
	Generating Experimental Design
	Capturing Metrics
	Limitations of Experimental Design

	RESULTS & DISCUSSION:
	Training Time & Job Cost
	Model Performance
	Remediating Performance Drop by Scaling Learning Rate
	Alternative approaches to changing hyperparameters when scaling

	PITFALLS & POINTS OF CONFUSION
	RECOMMENDED BEST PRACTICES
	Links to Additional Reading on HuggingFace, SageMaker, & Distributed Training

	REFERENCES

