import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def _get_transform(): return transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) def get_train_data_loader(): transform = _get_transform() trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) return torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) def get_test_data_loader(): transform = _get_transform() testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) return torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # function to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0)))