3 am @sjddlZddlZddlZddlZddlZddlZddljZddl j Z ddl j j Z ddljZddlZddlZddlmZmZddlZddlZddlZddlmZddlmZddlmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z%ddl&m'Z'ej(e)Z*e*j+ej,e*j-ej.ej/GdddeZ0d d Z1d d Z2d dZ3ddZ4e)dkrfej5Z6e6j7de8dddde6j7de8dddde6j7de8dddde6j7de9dddde6j7d e9d!d"d#de6j7d$e8d%d&d'de6j7d(e8ddd)de6j7d*e:dd+d,e6j7d-e;ejdS)8N)Dataset DataLoader)Image) print_config)Compose LoadImageResizeScaleIntensityToTensor RandRotateRandFlipRandZoom) densenet121c@s$eZdZddZddZddZdS) DICOMDatasetcCs||_||_||_dS)N) image_fileslabels transforms)selfrrrr-/home/ec2-user/SageMaker/repo/source/test1.py__init__!szDICOMDataset.__init__cCs t|jS)N)lenr)rrrr__len__&szDICOMDataset.__len__cCs|j|j||j|fS)N)rrr)rindexrrr __getitem__)szDICOMDataset.__getitem__N)__name__ __module__ __qualname__rrrrrrrrsrcKstjdttddttddddtdddtdd tg}t |||}|r`t j j j j|nd}t j j j|f||dk|d |S)NzGet train data loaderT) image_onlyg?)range_xprob keep_sizer) spatial_axisr!) spatial_size) batch_sizeshufflesampler)r$r*)loggerinforrr r r rr rtorchutilsdata distributedDistributedSamplerr)r'trainXtrainYis_distributedkwargstrain_transformsdataset train_samplerrrr_get_train_data_loader-s     r9c" Cs<t|jdko|jdk }tjdj||jdk}tjdj|j|rRdddni}tj|rbdnd }|rt|j}t |t j d <|jj |j }t |t j d <tj|j||d tjd j|jtjdjtj|jtj|j|rtjj|jg}g}|jd} tj| } g}g}d} xLt| j| jD]:\} } t| | |jd| }|j||j| ggq2Wtdt|t|j||df|}t ddddj!|}tj"j#}tj$j%|j&d}|j'}d}d}d}t(}t(}xHt)|D]:}tj*d tj*d|dd||j+d}d}x|D]}|d7}|dj!|}td|j,|j-dddd}td|j,|ddj!|}|j.||}|||} | j/|j0|| j17}tj*|dt|j2|jd| j1dt|j2|j}!q,W||}|j|tj*d|dd|dqWt3||j4dS)!Nr%zDistributed training - {}rzNumber of gpus available - {} T) num_workers pin_memorycudacpu WORLD_SIZERANK)backendrank world_sizezCInitialized the distributed environment: '{}' backend on {} nodes. z+Current host rank is {}. Number of gpus: {}z /meta(1).csv/zTraining count =F) spatial_dims in_channels out_channelsgh㈵>-zepoch zinputs shape is -----zinputs shape after is -----z, train_loss: z.4fz average loss: r*r*z ----------)5rhostsrAr+debugformatnum_gpusr-devicestrosenvironr current_hostdistinit_process_groupget_world_sizeget_rank manual_seedseedr=data_dirpdread_csvzip annotationfilesprintappendextendr9r'rtonnCrossEntropyLossoptimAdam parametersepochslistranger,trainshapepermute zero_gradbackwardstepitemr7 save_model model_dir)"argsr4use_cudar5rOrC host_rankimage_label_listimage_file_listmetadatar^ num_classijfilename train_loadermodel loss_function optimizer epoch_num val_interval best_metricbest_metric_epochepoch_loss_values metric_valuesepoch epoch_lossrq batch_datainputsroutputsloss epoch_lenrrrrlDs              , "rlcCs0tjdtjj|d}tj|jj|dS)NzSaving the model.z model.pth) r+r,rQpathjoinr-saver> state_dict)rrtrrrrrss rsc Cs`tjtjjrdnd}tdddd}ttjj|dd}|j tj |WdQRX|j |S) Nr=r>rFr%rD)rGrHrIz model.pthrb) r-rOr= is_availableropenrQrrload_state_dictloadrc)rtrOrfrrrmodel_fnsr__main__z --batch-sizedNz-input batch size for training (default: 1000))typedefaultmetavarhelpz--test-batch-sizez+input batch size for testing (default: 100)z--epochsz&number of epochs to train (default: 5)z--lrg{Gz?LRzlearning rate (default: 0.01)z --momentumg?MzSGD momentum (default: 0.5)z--seedr%Szrandom seed (default: 1)z--log-intervalz7how many batches to wait before logging training statusz --backendzIbackend for distributed training (tcp, gloo on cpu and gloo, nccl on gpu))rrrz--hostsZSM_HOSTS)rrz--current-hostZSM_CURRENT_HOSTz --model-dirZ SM_MODEL_DIRz --data-dirZSM_CHANNEL_TRAINz --num-gpusZ SM_NUM_GPUS)?argparsejsonloggingrQsysr-torch.distributedr0rTtorch.nnrdtorch.nn.functional functionalF torch.optimrftorch.utils.dataZtorch.utils.data.distributedrr torchvisionpandasr[numpynpPILr monai.configrmonai.transformsrrrr r r r r monai.networks.netsr getLoggerrr+setLevelDEBUG addHandler StreamHandlerstdoutrr9rlrsrArgumentParserparser add_argumentintfloatrPrjloadsrR parse_argsrrrrsf      (   g