#!/bin/bash MODEL_DIR=${SM_HP_MODEL_DIR} PIPELINE_CONFIG_PATH=${SM_HP_PIPELINE_CONFIG_PATH} NUM_TRAIN_STEPS=${SM_HP_NUM_TRAIN_STEPS} SAMPLE_1_OF_N_EVAL_EXAMPLES=${SM_HP_SAMPLE_1_OF_N_EVAL_EXAMPLES} if [ ${SM_NUM_GPUS} > 0 ] then NUM_WORKERS=${SM_NUM_GPUS} else NUM_WORKERS=1 fi echo "===TRAINING THE MODEL==" python model_main_tf2.py \ --pipeline_config_path ${PIPELINE_CONFIG_PATH} \ --model_dir ${MODEL_DIR} \ --num_train_steps ${NUM_TRAIN_STEPS} \ --num_workers ${NUM_WORKERS} \ --sample_1_of_n_eval_examples ${SAMPLE_1_OF_N_EVAL_EXAMPLES} \ --alsologtostderr echo "==EVALUATING THE MODEL==" python model_main_tf2.py \ --pipeline_config_path ${PIPELINE_CONFIG_PATH} \ --model_dir ${MODEL_DIR} \ --checkpoint_dir ${MODEL_DIR} \ --eval_timeout 10 echo "==EXPORTING THE MODEL==" python exporter_main_v2.py \ --trained_checkpoint_dir ${MODEL_DIR} \ --pipeline_config_path ${PIPELINE_CONFIG_PATH} \ --output_directory /tmp/exported mv /tmp/exported/saved_model /opt/ml/model/1