# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable= arguments-differ """MobileNet and MobileNetV2, implemented in Gluon.""" __all__ = ['MobileNet', 'MobileNetV2', 'mobilenet1_0', 'mobilenet_v2_1_0', 'mobilenet0_75', 'mobilenet_v2_0_75', 'mobilenet0_5', 'mobilenet_v2_0_5', 'mobilenet0_25', 'mobilenet_v2_0_25', 'get_mobilenet', 'get_mobilenet_v2'] __modify__ = 'dwSun' __modified_date__ = '18/04/18' import os from ... import nn from ....context import cpu from ...block import HybridBlock from .... import base # Helpers class RELU6(nn.HybridBlock): """Relu6 used in MobileNetV2.""" def __init__(self, **kwargs): super(RELU6, self).__init__(**kwargs) def hybrid_forward(self, F, x): return F.clip(x, 0, 6, name="relu6") # pylint: disable= too-many-arguments def _add_conv(out, channels=1, kernel=1, stride=1, pad=0, num_group=1, active=True, relu6=False): out.add(nn.Conv2D(channels, kernel, stride, pad, groups=num_group, use_bias=False)) out.add(nn.BatchNorm(scale=True)) if active: out.add(RELU6() if relu6 else nn.Activation('relu')) def _add_conv_dw(out, dw_channels, channels, stride, relu6=False): _add_conv(out, channels=dw_channels, kernel=3, stride=stride, pad=1, num_group=dw_channels, relu6=relu6) _add_conv(out, channels=channels, relu6=relu6) class LinearBottleneck(nn.HybridBlock): r"""LinearBottleneck used in MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- in_channels : int Number of input channels. channels : int Number of output channels. t : int Layer expansion ratio. stride : int stride """ def __init__(self, in_channels, channels, t, stride, **kwargs): super(LinearBottleneck, self).__init__(**kwargs) self.use_shortcut = stride == 1 and in_channels == channels with self.name_scope(): self.out = nn.HybridSequential() _add_conv(self.out, in_channels * t, relu6=True) _add_conv(self.out, in_channels * t, kernel=3, stride=stride, pad=1, num_group=in_channels * t, relu6=True) _add_conv(self.out, channels, active=False, relu6=True) def hybrid_forward(self, F, x): out = self.out(x) if self.use_shortcut: out = F.elemwise_add(out, x) return out # Net class MobileNet(HybridBlock): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper. Parameters ---------- multiplier : float, default 1.0 The width multiplier for controling the model size. Only multipliers that are no less than 0.25 are supported. The actual number of channels is equal to the original channel size multiplied by this multiplier. classes : int, default 1000 Number of classes for the output layer. """ def __init__(self, multiplier=1.0, classes=1000, **kwargs): super(MobileNet, self).__init__(**kwargs) with self.name_scope(): self.features = nn.HybridSequential(prefix='') with self.features.name_scope(): _add_conv(self.features, channels=int(32 * multiplier), kernel=3, pad=1, stride=2) dw_channels = [int(x * multiplier) for x in [32, 64] + [128] * 2 + [256] * 2 + [512] * 6 + [1024]] channels = [int(x * multiplier) for x in [64] + [128] * 2 + [256] * 2 + [512] * 6 + [1024] * 2] strides = [1, 2] * 3 + [1] * 5 + [2, 1] for dwc, c, s in zip(dw_channels, channels, strides): _add_conv_dw(self.features, dw_channels=dwc, channels=c, stride=s) self.features.add(nn.GlobalAvgPool2D()) self.features.add(nn.Flatten()) self.output = nn.Dense(classes) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x class MobileNetV2(nn.HybridBlock): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- multiplier : float, default 1.0 The width multiplier for controling the model size. The actual number of channels is equal to the original channel size multiplied by this multiplier. classes : int, default 1000 Number of classes for the output layer. """ def __init__(self, multiplier=1.0, classes=1000, **kwargs): super(MobileNetV2, self).__init__(**kwargs) with self.name_scope(): self.features = nn.HybridSequential(prefix='features_') with self.features.name_scope(): _add_conv(self.features, int(32 * multiplier), kernel=3, stride=2, pad=1, relu6=True) in_channels_group = [int(x * multiplier) for x in [32] + [16] + [24] * 2 + [32] * 3 + [64] * 4 + [96] * 3 + [160] * 3] channels_group = [int(x * multiplier) for x in [16] + [24] * 2 + [32] * 3 + [64] * 4 + [96] * 3 + [160] * 3 + [320]] ts = [1] + [6] * 16 strides = [1, 2] * 2 + [1, 1, 2] + [1] * 6 + [2] + [1] * 3 for in_c, c, t, s in zip(in_channels_group, channels_group, ts, strides): self.features.add(LinearBottleneck(in_channels=in_c, channels=c, t=t, stride=s)) last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280 _add_conv(self.features, last_channels, relu6=True) self.features.add(nn.GlobalAvgPool2D()) self.output = nn.HybridSequential(prefix='output_') with self.output.name_scope(): self.output.add( nn.Conv2D(classes, 1, use_bias=False, prefix='pred_'), nn.Flatten() ) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x # Constructor def get_mobilenet(multiplier, pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper. Parameters ---------- multiplier : float The width multiplier for controling the model size. Only multipliers that are no less than 0.25 are supported. The actual number of channels is equal to the original channel size multiplied by this multiplier. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ net = MobileNet(multiplier, **kwargs) if pretrained: from ..model_store import get_model_file version_suffix = '{0:.2f}'.format(multiplier) if version_suffix in ('1.00', '0.50'): version_suffix = version_suffix[:-1] net.load_parameters( get_model_file('mobilenet%s' % version_suffix, root=root), ctx=ctx) return net def get_mobilenet_v2(multiplier, pretrained=False, ctx=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- multiplier : float The width multiplier for controling the model size. Only multipliers that are no less than 0.25 are supported. The actual number of channels is equal to the original channel size multiplied by this multiplier. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ net = MobileNetV2(multiplier, **kwargs) if pretrained: from ..model_store import get_model_file version_suffix = '{0:.2f}'.format(multiplier) if version_suffix in ('1.00', '0.50'): version_suffix = version_suffix[:-1] net.load_parameters( get_model_file('mobilenetv2_%s' % version_suffix, root=root), ctx=ctx) return net def mobilenet1_0(**kwargs): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper, with width multiplier 1.0. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet(1.0, **kwargs) def mobilenet_v2_1_0(**kwargs): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet_v2(1.0, **kwargs) def mobilenet0_75(**kwargs): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper, with width multiplier 0.75. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet(0.75, **kwargs) def mobilenet_v2_0_75(**kwargs): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet_v2(0.75, **kwargs) def mobilenet0_5(**kwargs): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper, with width multiplier 0.5. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet(0.5, **kwargs) def mobilenet_v2_0_5(**kwargs): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet_v2(0.5, **kwargs) def mobilenet0_25(**kwargs): r"""MobileNet model from the `"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" `_ paper, with width multiplier 0.25. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet(0.25, **kwargs) def mobilenet_v2_0_25(**kwargs): r"""MobileNetV2 model from the `"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" `_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. """ return get_mobilenet_v2(0.25, **kwargs)