# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=unused-argument, too-many-arguments """Extra symbol documents Guidelines ---------- To add extra doc to the operator `XXX`, write a class `XXXDoc`, deriving from the base class `SymbolDoc`, and put the extra doc as the docstring of `XXXDoc`. The document added here should be Python-specific. Documents that are useful for all language bindings should be added to the C++ side where the operator is defined / registered. The code snippet in the docstring will be run using `doctest`. During running, the environment will have access to - all the global names in this file (e.g. `SymbolDoc`) - all the operators (e.g. `FullyConnected`) - the name `test_utils` for `mx.test_utils` (e.g. `test_utils.reldiff`) - the name `mx` (e.g. `mx.nd.zeros`) - the name `np` The following documents are recommended: - *Examples*: simple and short code snippet showing how to use this operator. It should show typical calling examples and behaviors (e.g. maps an input of what shape to an output of what shape). - *Regression Test*: longer test code for the operators. We normally do not expect the users to read those, but they will be executed by `doctest` to ensure the behavior of each operator does not change unintentionally. """ from __future__ import absolute_import as _abs import re as _re from .base import build_param_doc as _build_param_doc class SymbolDoc(object): """The base class for attaching doc to operators.""" @staticmethod def get_output_shape(sym, **input_shapes): """Get user friendly information of the output shapes.""" _, s_outputs, _ = sym.infer_shape(**input_shapes) return dict(zip(sym.list_outputs(), s_outputs)) class ActivationDoc(SymbolDoc): """ Examples -------- A one-hidden-layer MLP with ReLU activation: >>> data = Variable('data') >>> mlp = FullyConnected(data=data, num_hidden=128, name='proj') >>> mlp = Activation(data=mlp, act_type='relu', name='activation') >>> mlp = FullyConnected(data=mlp, num_hidden=10, name='mlp') >>> mlp Regression Test --------------- ReLU activation >>> test_suites = [ ... ('relu', lambda x: np.maximum(x, 0)), ... ('sigmoid', lambda x: 1 / (1 + np.exp(-x))), ... ('tanh', lambda x: np.tanh(x)), ... ('softrelu', lambda x: np.log(1 + np.exp(x))) ... ] >>> x = test_utils.random_arrays((2, 3, 4)) >>> for act_type, numpy_impl in test_suites: ... op = Activation(act_type=act_type, name='act') ... y = test_utils.simple_forward(op, act_data=x) ... y_np = numpy_impl(x) ... print('%s: %s' % (act_type, test_utils.almost_equal(y, y_np))) relu: True sigmoid: True tanh: True softrelu: True """ class DropoutDoc(SymbolDoc): """ Examples -------- Apply dropout to corrupt input as zero with probability 0.2: >>> data = Variable('data') >>> data_dp = Dropout(data=data, p=0.2) Regression Test --------------- >>> shape = (100, 100) # take larger shapes to be more statistical stable >>> x = np.ones(shape) >>> op = Dropout(p=0.5, name='dp') >>> # dropout is identity during testing >>> y = test_utils.simple_forward(op, dp_data=x, is_train=False) >>> test_utils.almost_equal(x, y) True >>> y = test_utils.simple_forward(op, dp_data=x, is_train=True) >>> # expectation is (approximately) unchanged >>> np.abs(x.mean() - y.mean()) < 0.1 True >>> set(np.unique(y)) == set([0, 2]) True """ class EmbeddingDoc(SymbolDoc): """ Examples -------- Assume we want to map the 26 English alphabet letters to 16-dimensional vectorial representations. >>> vocabulary_size = 26 >>> embed_dim = 16 >>> seq_len, batch_size = (10, 64) >>> input = Variable('letters') >>> op = Embedding(data=input, input_dim=vocabulary_size, output_dim=embed_dim, ... name='embed') >>> SymbolDoc.get_output_shape(op, letters=(seq_len, batch_size)) {'embed_output': (10L, 64L, 16L)} Regression Test --------------- >>> vocab_size, embed_dim = (26, 16) >>> batch_size = 12 >>> word_vecs = test_utils.random_arrays((vocab_size, embed_dim)) >>> op = Embedding(name='embed', input_dim=vocab_size, output_dim=embed_dim) >>> x = np.random.choice(vocab_size, batch_size) >>> y = test_utils.simple_forward(op, embed_data=x, embed_weight=word_vecs) >>> y_np = word_vecs[x] >>> test_utils.almost_equal(y, y_np) True """ class FlattenDoc(SymbolDoc): """ Examples -------- Flatten is usually applied before `FullyConnected`, to reshape the 4D tensor produced by convolutional layers to 2D matrix: >>> data = Variable('data') # say this is 4D from some conv/pool >>> flatten = Flatten(data=data, name='flat') # now this is 2D >>> SymbolDoc.get_output_shape(flatten, data=(2, 3, 4, 5)) {'flat_output': (2L, 60L)} Regression Test --------------- >>> test_dims = [(2, 3, 4, 5), (2, 3), (2,)] >>> op = Flatten(name='flat') >>> for dims in test_dims: ... x = test_utils.random_arrays(dims) ... y = test_utils.simple_forward(op, flat_data=x) ... y_np = x.reshape((dims[0], np.prod(dims[1:]).astype('int32'))) ... print('%s: %s' % (dims, test_utils.almost_equal(y, y_np))) (2, 3, 4, 5): True (2, 3): True (2,): True """ class FullyConnectedDoc(SymbolDoc): """ Examples -------- Construct a fully connected operator with target dimension 512. >>> data = Variable('data') # or some constructed NN >>> op = FullyConnected(data=data, ... num_hidden=512, ... name='FC1') >>> op >>> SymbolDoc.get_output_shape(op, data=(128, 100)) {'FC1_output': (128L, 512L)} A simple 3-layer MLP with ReLU activation: >>> net = Variable('data') >>> for i, dim in enumerate([128, 64]): ... net = FullyConnected(data=net, num_hidden=dim, name='FC%d' % i) ... net = Activation(data=net, act_type='relu', name='ReLU%d' % i) >>> # 10-class predictor (e.g. MNIST) >>> net = FullyConnected(data=net, num_hidden=10, name='pred') >>> net Regression Test --------------- >>> dim_in, dim_out = (3, 4) >>> x, w, b = test_utils.random_arrays((10, dim_in), (dim_out, dim_in), (dim_out,)) >>> op = FullyConnected(num_hidden=dim_out, name='FC') >>> out = test_utils.simple_forward(op, FC_data=x, FC_weight=w, FC_bias=b) >>> # numpy implementation of FullyConnected >>> out_np = np.dot(x, w.T) + b >>> test_utils.almost_equal(out, out_np) True """ def _build_doc(func_name, desc, arg_names, arg_types, arg_desc, key_var_num_args=None, ret_type=None): """Build docstring for symbolic functions.""" param_str = _build_param_doc(arg_names, arg_types, arg_desc) if key_var_num_args: desc += '\nThis function support variable length of positional input.' doc_str = ('%s\n\n' + '%s\n' + 'name : string, optional.\n' + ' Name of the resulting symbol.\n\n' + 'Returns\n' + '-------\n' + 'Symbol\n' + ' The result symbol.') doc_str = doc_str % (desc, param_str) extra_doc = "\n" + '\n'.join([x.__doc__ for x in type.__subclasses__(SymbolDoc) if x.__name__ == '%sDoc' % func_name]) doc_str += _re.sub(_re.compile(" "), "", extra_doc) doc_str = _re.sub('NDArray-or-Symbol', 'Symbol', doc_str) return doc_str class ConcatDoc(SymbolDoc): """ Examples -------- Concat two (or more) inputs along a specific dimension: >>> a = Variable('a') >>> b = Variable('b') >>> c = Concat(a, b, dim=1, name='my-concat') >>> c >>> SymbolDoc.get_output_shape(c, a=(128, 10, 3, 3), b=(128, 15, 3, 3)) {'my-concat_output': (128L, 25L, 3L, 3L)} Note the shape should be the same except on the dimension that is being concatenated. """ class BroadcastPlusDoc(SymbolDoc): """ Examples -------- >>> a = Variable('a') >>> b = Variable('b') >>> c = broadcast_plus(a, b) Normal summation with matching shapes: >>> dev = mx.context.cpu(); >>> x = c.bind(dev, args={'a': mx.nd.ones((2, 2)), 'b' : mx.nd.ones((2, 2))}) >>> x.forward() [] >>> print x.outputs[0].asnumpy() [[ 2. 2.] [ 2. 2.]] Broadcasting: >>> x = c.bind(dev, args={'a': mx.nd.ones((2, 2)), 'b' : mx.nd.ones((1, 1))}) >>> x.forward() [] >>> print x.outputs[0].asnumpy() [[ 2. 2.] [ 2. 2.]] >>> x = c.bind(dev, args={'a': mx.nd.ones((2, 1)), 'b' : mx.nd.ones((1, 2))}) >>> x.forward() [] >>> print x.outputs[0].asnumpy() [[ 2. 2.] [ 2. 2.]] >>> x = c.bind(dev, args={'a': mx.nd.ones((1, 2)), 'b' : mx.nd.ones((2, 1))}) >>> x.forward() [] >>> print x.outputs[0].asnumpy() [[ 2. 2.] [ 2. 2.]] """