ó 2ÄÈ[c@`s‡dZddlmZmZmZddlZddlZgZd„Zedddƒedddƒedd d ƒedd d ƒedd dƒedddƒedddƒedddƒedddƒedddƒedddƒedddƒedddƒedddƒeddd ƒer}gZ ej ƒxëeD]ã\Z Z ej e ƒjd!d"ƒZejd!ƒZgZx~eD]vZejd#eƒZererej ejƒƒZejd$ejd%ƒefƒejd&ƒq™ejeƒq™Wd!jeƒZe jd'e efƒqVWd!je ƒZ eed(e ƒZ[ [ [ [[[[[[n[[dS()so ========= Constants ========= .. currentmodule:: numpy NumPy includes several constants: %(constant_list)s i(tdivisiontabsolute_importtprint_functionNcC`stj||fƒdS(N(t constantstappend(tmoduletnametdoc((s2/tmp/pip-build-fiC0ax/numpy/numpy/doc/constants.pyt add_newdocstnumpytInfsá IEEE 754 floating point representation of (positive) infinity. Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. For more details, see `inf`. See Also -------- inf tInfinitytNANsÌ IEEE 754 floating point representation of Not a Number (NaN). `NaN` and `NAN` are equivalent definitions of `nan`. Please use `nan` instead of `NAN`. See Also -------- nan tNINFs¡ IEEE 754 floating point representation of negative infinity. Returns ------- y : float A floating point representation of negative infinity. See Also -------- isinf : Shows which elements are positive or negative infinity isposinf : Shows which elements are positive infinity isneginf : Shows which elements are negative infinity isnan : Shows which elements are Not a Number isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Examples -------- >>> np.NINF -inf >>> np.log(0) -inf tNZEROsÚ IEEE 754 floating point representation of negative zero. Returns ------- y : float A floating point representation of negative zero. See Also -------- PZERO : Defines positive zero. isinf : Shows which elements are positive or negative infinity. isposinf : Shows which elements are positive infinity. isneginf : Shows which elements are negative infinity. isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite - not one of Not a Number, positive infinity and negative infinity. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is considered to be a finite number. Examples -------- >>> np.NZERO -0.0 >>> np.PZERO 0.0 >>> np.isfinite([np.NZERO]) array([ True]) >>> np.isnan([np.NZERO]) array([False]) >>> np.isinf([np.NZERO]) array([False]) tNaNsÌ IEEE 754 floating point representation of Not a Number (NaN). `NaN` and `NAN` are equivalent definitions of `nan`. Please use `nan` instead of `NaN`. See Also -------- nan tPINFtPZEROsÚ IEEE 754 floating point representation of positive zero. Returns ------- y : float A floating point representation of positive zero. See Also -------- NZERO : Defines negative zero. isinf : Shows which elements are positive or negative infinity. isposinf : Shows which elements are positive infinity. isneginf : Shows which elements are negative infinity. isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite - not one of Not a Number, positive infinity and negative infinity. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered to be a finite number. Examples -------- >>> np.PZERO 0.0 >>> np.NZERO -0.0 >>> np.isfinite([np.PZERO]) array([ True]) >>> np.isnan([np.PZERO]) array([False]) >>> np.isinf([np.PZERO]) array([False]) tesE Euler's constant, base of natural logarithms, Napier's constant. ``e = 2.71828182845904523536028747135266249775724709369995...`` See Also -------- exp : Exponential function log : Natural logarithm References ---------- https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 tinfsõ IEEE 754 floating point representation of (positive) infinity. Returns ------- y : float A floating point representation of positive infinity. See Also -------- isinf : Shows which elements are positive or negative infinity isposinf : Shows which elements are positive infinity isneginf : Shows which elements are negative infinity isnan : Shows which elements are Not a Number isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. Examples -------- >>> np.inf inf >>> np.array([1]) / 0. array([ Inf]) tinftytnansÐ IEEE 754 floating point representation of Not a Number (NaN). Returns ------- y : A floating point representation of Not a Number. See Also -------- isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. `NaN` and `NAN` are aliases of `nan`. Examples -------- >>> np.nan nan >>> np.log(-1) nan >>> np.log([-1, 1, 2]) array([ NaN, 0. , 0.69314718]) tnewaxiss9 A convenient alias for None, useful for indexing arrays. See Also -------- `numpy.doc.indexing` Examples -------- >>> newaxis is None True >>> x = np.arange(3) >>> x array([0, 1, 2]) >>> x[:, newaxis] array([[0], [1], [2]]) >>> x[:, newaxis, newaxis] array([[[0]], [[1]], [[2]]]) >>> x[:, newaxis] * x array([[0, 0, 0], [0, 1, 2], [0, 2, 4]]) Outer product, same as ``outer(x, y)``: >>> y = np.arange(3, 6) >>> x[:, newaxis] * y array([[ 0, 0, 0], [ 3, 4, 5], [ 6, 8, 10]]) ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``: >>> x[newaxis, :].shape (1, 3) >>> x[newaxis].shape (1, 3) >>> x[None].shape (1, 3) >>> x[:, newaxis].shape (3, 1) tpisv ``pi = 3.1415926535897932384626433...`` References ---------- https://en.wikipedia.org/wiki/Pi t euler_gammasœ ``γ = 0.5772156649015328606065120900824024310421...`` References ---------- https://en.wikipedia.org/wiki/Euler-Mascheroni_constant s s s^(\s+)[-=]+\s*$s%s.. rubric:: %sits.. data:: %s %st constant_list(t__doc__t __future__RRRttextwraptreRRt constants_strtsortRRtdedenttreplacetstsplittlinest new_linestlinetmatchtmtpoptprevRtgrouptjointdict(((s2/tmp/pip-build-fiC0ax/numpy/numpy/doc/constants.pyt sn     $ +   +  &   /