ó 2ÄÈ[c @`sÞdZddlmZmZmZddddddd d d d d dg ZddlZddlZddlj j Z ddl m Z mZmZmZmZmZmZmZddlmZmZddlmZddlmZmZmZmZddlm Z m!Z!m"Z"de#fd„ƒYZ$d„Z%d„Z&de'd„Z(dd„Z)e'e*e'e*d„Z+d„Z,d„Z-d„Z.d„Z/d „Z0ej1d!ƒZ2d"d#„Z3d e4fd$„ƒYZ5ej6d%e$ƒdS(&s' Functions to operate on polynomials. i(tdivisiontabsolute_importtprint_functiontpolytrootstpolyinttpolydertpolyaddtpolysubtpolymultpolydivtpolyvaltpoly1dtpolyfitt RankWarningN(tisscalartabstfinfot atleast_1dthstacktdottarraytones(tdiagtvander(t trim_zeros(t iscomplextrealtimagt mintypecode(teigvalstlstsqtinvcB`seZdZRS(sÈ Issued by `polyfit` when the Vandermonde matrix is rank deficient. For more information, a way to suppress the warning, and an example of `RankWarning` being issued, see `polyfit`. (t__name__t __module__t__doc__(((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyRscC`s˜t|ƒ}|j}t|ƒdkrZ|d|dkrZ|ddkrZt|ƒ}nQt|ƒdkrŸ|j}|tkr«|jt|jƒƒ}q«n t dƒ‚t|ƒdkrÁdS|j}t d d|ƒ}xIt t|ƒƒD]5}t j |td|| gd|ƒddƒ}qïWt|jjt jƒr”t j|tƒ}t jt j|ƒt j|jƒƒkƒr”|jjƒ}q”n|S( s Find the coefficients of a polynomial with the given sequence of roots. Returns the coefficients of the polynomial whose leading coefficient is one for the given sequence of zeros (multiple roots must be included in the sequence as many times as their multiplicity; see Examples). A square matrix (or array, which will be treated as a matrix) can also be given, in which case the coefficients of the characteristic polynomial of the matrix are returned. Parameters ---------- seq_of_zeros : array_like, shape (N,) or (N, N) A sequence of polynomial roots, or a square array or matrix object. Returns ------- c : ndarray 1D array of polynomial coefficients from highest to lowest degree: ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` where c[0] always equals 1. Raises ------ ValueError If input is the wrong shape (the input must be a 1-D or square 2-D array). See Also -------- polyval : Compute polynomial values. roots : Return the roots of a polynomial. polyfit : Least squares polynomial fit. poly1d : A one-dimensional polynomial class. Notes ----- Specifying the roots of a polynomial still leaves one degree of freedom, typically represented by an undetermined leading coefficient. [1]_ In the case of this function, that coefficient - the first one in the returned array - is always taken as one. (If for some reason you have one other point, the only automatic way presently to leverage that information is to use ``polyfit``.) The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` matrix **A** is given by :math:`p_a(t) = \mathrm{det}(t\, \mathbf{I} - \mathbf{A})`, where **I** is the `n`-by-`n` identity matrix. [2]_ References ---------- .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trignometry, Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," Academic Press, pg. 182, 1980. Examples -------- Given a sequence of a polynomial's zeros: >>> np.poly((0, 0, 0)) # Multiple root example array([1, 0, 0, 0]) The line above represents z**3 + 0*z**2 + 0*z + 0. >>> np.poly((-1./2, 0, 1./2)) array([ 1. , 0. , -0.25, 0. ]) The line above represents z**3 - z/4 >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0])) array([ 1. , -0.77086955, 0.08618131, 0. ]) #random Given a square array object: >>> P = np.array([[0, 1./3], [-1./2, 0]]) >>> np.poly(P) array([ 1. , 0. , 0.16666667]) Note how in all cases the leading coefficient is always 1. iiis.input must be 1d or non-empty square 2d array.gð?tdtypetmodetfull(i(RtshapetlenRR$tobjecttastypeRtchart ValueErrorRtrangetNXtconvolveRt issubclassttypetcomplexfloatingtasarraytcomplextalltsortt conjugateRtcopy(t seq_of_zerostshtdttatkR((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR s*W  6    & -cC`sxt|ƒ}|jdkr*tdƒ‚ntjtj|ƒƒd}t|ƒdkretjgƒSt|ƒ|dd}|t|dƒt|dƒd!}t |j j tj tj fƒsÕ|jtƒ}nt|ƒ}|dkrDttj|df|j ƒdƒ}|d |d|ddd…f>> coeff = [3.2, 2, 1] >>> np.roots(coeff) array([-0.3125+0.46351241j, -0.3125-0.46351241j]) isInput must be a rank-1 array.iiÿÿÿÿiN(RtndimR,R.tnonzerotravelR(RtintR0R$R1tfloatingR2R*tfloatRRRRtzeros(tptnon_zerottrailing_zerostNtAR((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR”s$2  %!  %#!icC`s]t|ƒ}|dkr'tdƒ‚n|dkrHtj|tƒ}nt|ƒ}t|ƒdkr|dkr|dtj|tƒ}nt|ƒ|kr°tdƒ‚nt |t ƒ}tj |ƒ}|dkrî|rêt |ƒS|Stj |j tjt|ƒddƒƒ|dgfƒ}t||dd|dƒ}|rUt |ƒS|SdS(sv Return an antiderivative (indefinite integral) of a polynomial. The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part .. math:: \frac{k_{m-1}}{0!} x^0 + \ldots + \frac{k_0}{(m-1)!}x^{m-1} of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. Parameters ---------- p : array_like or poly1d Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : list of `m` scalars or scalar, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first. If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list. See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method Examples -------- The defining property of the antiderivative: >>> p = np.poly1d([1,1,1]) >>> P = np.polyint(p) >>> P poly1d([ 0.33333333, 0.5 , 1. , 0. ]) >>> np.polyder(P) == p True The integration constants default to zero, but can be specified: >>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=[6,5,3]) >>> P poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first: >>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0 is0Order of integral must be positive (see polyder)is7k must be a scalar or a rank-1 array of length 1 or >m.iÿÿÿÿR=N(RAR,tNoneR.RDRCRR(Rt isinstanceR R3t concatenatet __truediv__tarangeR(REtmR=ttruepolytytval((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyRès,C       : cC`s³t|ƒ}|dkr'tdƒ‚nt|tƒ}tj|ƒ}t|ƒd}|d tj|ddƒ}|dkr‡|}nt||dƒ}|r¯t|ƒ}n|S(sb Return the derivative of the specified order of a polynomial. Parameters ---------- p : poly1d or sequence Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of differentiation (default: 1) Returns ------- der : poly1d A new polynomial representing the derivative. See Also -------- polyint : Anti-derivative of a polynomial. poly1d : Class for one-dimensional polynomials. Examples -------- The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: >>> p = np.poly1d([1,1,1,1]) >>> p2 = np.polyder(p) >>> p2 poly1d([3, 2, 1]) which evaluates to: >>> p2(2.) 17.0 We can verify this, approximating the derivative with ``(f(x + h) - f(x))/h``: >>> (p(2. + 0.001) - p(2.)) / 0.001 17.007000999997857 The fourth-order derivative of a 3rd-order polynomial is zero: >>> np.polyder(p, 2) poly1d([6, 2]) >>> np.polyder(p, 3) poly1d([6]) >>> np.polyder(p, 4) poly1d([ 0.]) is2Order of derivative must be positive (see polyint)iiÿÿÿÿ( RAR,RKR R.R3R(RNR(RERORPtnRQRR((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyREs4    cC`sGt|ƒd}tj|ƒd}tj|ƒd}|dkrQtdƒ‚n|jdkrotdƒ‚n|jdkrtdƒ‚n|jdks«|jdkrºtdƒ‚n|jd|jdkrãtd ƒ‚n|d krt |ƒt |j ƒj }nt ||ƒ}|} |d k râtj|ƒd}|jdkr`td ƒ‚n|jd|jdkr‰td ƒ‚n||d d …tjf9}| jdkrÕ| |d d …tjf9} qâ| |9} ntj||jd dƒƒ} || }t|| |ƒ\} } } }| j| j} | |krk| rkd}tj|tddƒn|r„| | | ||fS|r?tt|j|ƒƒ}|tj| | ƒ}t |ƒ|dkrÝtdƒ‚n| t |ƒ|d}|jdkr| ||fS| |d d …d d …tjf|fSn| Sd S(sÍ Least squares polynomial fit. Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` to points `(x, y)`. Returns a vector of coefficients `p` that minimises the squared error. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (M,), optional Weights to apply to the y-coordinates of the sample points. For gaussian uncertainties, use 1/sigma (not 1/sigma**2). cov : bool, optional Return the estimate and the covariance matrix of the estimate If full is True, then cov is not returned. Returns ------- p : ndarray, shape (deg + 1,) or (deg + 1, K) Polynomial coefficients, highest power first. If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``. residuals, rank, singular_values, rcond Present only if `full` = True. Residuals of the least-squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular values, and the specified value of `rcond`. For more details, see `linalg.lstsq`. V : ndarray, shape (M,M) or (M,M,K) Present only if `full` = False and `cov`=True. The covariance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for the `k`-th data set are in ``V[:,:,k]`` Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', np.RankWarning) See Also -------- polyval : Compute polynomial values. linalg.lstsq : Computes a least-squares fit. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution minimizes the squared error .. math :: E = \sum_{j=0}^k |p(x_j) - y_j|^2 in the equations:: x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] ... x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] The coefficient matrix of the coefficients `p` is a Vandermonde matrix. `polyfit` issues a `RankWarning` when the least-squares fit is badly conditioned. This implies that the best fit is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious: including contributions from the small singular values can add numerical noise to the result. Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is large or the interval of sample points is badly centered. The quality of the fit should always be checked in these cases. When polynomial fits are not satisfactory, splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting .. [2] Wikipedia, "Polynomial interpolation", http://en.wikipedia.org/wiki/Polynomial_interpolation Examples -------- >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) >>> z = np.polyfit(x, y, 3) >>> z array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) It is convenient to use `poly1d` objects for dealing with polynomials: >>> p = np.poly1d(z) >>> p(0.5) 0.6143849206349179 >>> p(3.5) -0.34732142857143039 >>> p(10) 22.579365079365115 High-order polynomials may oscillate wildly: >>> p30 = np.poly1d(np.polyfit(x, y, 30)) /... RankWarning: Polyfit may be poorly conditioned... >>> p30(4) -0.80000000000000204 >>> p30(5) -0.99999999999999445 >>> p30(4.5) -0.10547061179440398 Illustration: >>> import matplotlib.pyplot as plt >>> xp = np.linspace(-2, 6, 100) >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') >>> plt.ylim(-2,2) (-2, 2) >>> plt.show() igisexpected deg >= 0sexpected 1D vector for xsexpected non-empty vector for xisexpected 1D or 2D array for ys$expected x and y to have same lengths expected a 1-d array for weightss(expected w and y to have the same lengthNtaxiss!Polyfit may be poorly conditionedt stacklevels[the number of data points must exceed order + 2 for Bayesian estimate the covariance matrixg@(RAR.R3R,R>t TypeErrortsizeR'RJR(RR$tepsRtnewaxistsqrttsumRtTtwarningstwarnRR Rtouter(txRQtdegtrcondR&twtcovtordertlhstrhstscaletctresidstranktstmsgtVbasetfac((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR ‰s\“      -cC`sxtj|ƒ}t|tƒr'd}ntj|ƒ}tj|ƒ}x,tt|ƒƒD]}||||}qXW|S(sH Evaluate a polynomial at specific values. If `p` is of length N, this function returns the value: ``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]`` If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned. Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, an array of numbers, or an instance of poly1d, at which to evaluate `p`. Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is "substituted" in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also. See Also -------- poly1d: A polynomial class. Notes ----- Horner's scheme [1]_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully. References ---------- .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720. Examples -------- >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval([3,0,1], np.poly1d(5)) poly1d([ 76.]) >>> np.polyval(np.poly1d([3,0,1]), 5) 76 >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) poly1d([ 76.]) i(R.R3RKR t zeros_likeR-R((RER`RQti((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR as; cC`sït|tƒpt|tƒ}t|ƒ}t|ƒ}t|ƒt|ƒ}|dkre||}nq|dkr¢tj||jƒ}tj||fƒ|}n4tjt|ƒ|jƒ}|tj||fƒ}|rët|ƒ}n|S(s6 Find the sum of two polynomials. Returns the polynomial resulting from the sum of two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The sum of the inputs. If either input is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval Examples -------- >>> np.polyadd([1, 2], [9, 5, 4]) array([9, 6, 6]) Using poly1d objects: >>> p1 = np.poly1d([1, 2]) >>> p2 = np.poly1d([9, 5, 4]) >>> print(p1) 1 x + 2 >>> print(p2) 2 9 x + 5 x + 4 >>> print(np.polyadd(p1, p2)) 2 9 x + 6 x + 6 i( RKR RR(R.RDR$RLR(ta1ta2RPtdiffRRtzr((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR¦s,     cC`sït|tƒpt|tƒ}t|ƒ}t|ƒ}t|ƒt|ƒ}|dkre||}nq|dkr¢tj||jƒ}tj||fƒ|}n4tjt|ƒ|jƒ}|tj||fƒ}|rët|ƒ}n|S(sð Difference (subtraction) of two polynomials. Given two polynomials `a1` and `a2`, returns ``a1 - a2``. `a1` and `a2` can be either array_like sequences of the polynomials' coefficients (including coefficients equal to zero), or `poly1d` objects. Parameters ---------- a1, a2 : array_like or poly1d Minuend and subtrahend polynomials, respectively. Returns ------- out : ndarray or poly1d Array or `poly1d` object of the difference polynomial's coefficients. See Also -------- polyval, polydiv, polymul, polyadd Examples -------- .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) >>> np.polysub([2, 10, -2], [3, 10, -4]) array([-1, 0, 2]) i( RKR RR(R.RDR$RLR(RrRsRPRtRRRu((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyRâs     cC`sbt|tƒpt|tƒ}t|ƒt|ƒ}}tj||ƒ}|r^t|ƒ}n|S(s' Find the product of two polynomials. Finds the polynomial resulting from the multiplication of the two input polynomials. Each input must be either a poly1d object or a 1D sequence of polynomial coefficients, from highest to lowest degree. Parameters ---------- a1, a2 : array_like or poly1d object Input polynomials. Returns ------- out : ndarray or poly1d object The polynomial resulting from the multiplication of the inputs. If either inputs is a poly1d object, then the output is also a poly1d object. Otherwise, it is a 1D array of polynomial coefficients from highest to lowest degree. See Also -------- poly1d : A one-dimensional polynomial class. poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval convolve : Array convolution. Same output as polymul, but has parameter for overlap mode. Examples -------- >>> np.polymul([1, 2, 3], [9, 5, 1]) array([ 9, 23, 38, 17, 3]) Using poly1d objects: >>> p1 = np.poly1d([1, 2, 3]) >>> p2 = np.poly1d([9, 5, 1]) >>> print(p1) 2 1 x + 2 x + 3 >>> print(p2) 2 9 x + 5 x + 1 >>> print(np.polymul(p1, p2)) 4 3 2 9 x + 23 x + 38 x + 17 x + 3 (RKR R.R/(RrRsRPRR((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR s 1c C`sxt|tƒpt|tƒ}t|ƒd}t|ƒd}|d|d}t|ƒd}t|ƒd}d|d}tjt||ddƒf|jƒ}|j|jƒ}xVt d||dƒD]=} ||| } | || <|| | |dc!| |8+qÑWx=tj |ddddƒrQ|j ddkrQ|d}qW|rnt|ƒt|ƒfS||fS(sö Returns the quotient and remainder of polynomial division. The input arrays are the coefficients (including any coefficients equal to zero) of the "numerator" (dividend) and "denominator" (divisor) polynomials, respectively. Parameters ---------- u : array_like or poly1d Dividend polynomial's coefficients. v : array_like or poly1d Divisor polynomial's coefficients. Returns ------- q : ndarray Coefficients, including those equal to zero, of the quotient. r : ndarray Coefficients, including those equal to zero, of the remainder. See Also -------- poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub, polyval Notes ----- Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need not equal `v.ndim`. In other words, all four possible combinations - ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. Examples -------- .. math:: \frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 >>> x = np.array([3.0, 5.0, 2.0]) >>> y = np.array([2.0, 1.0]) >>> np.polydiv(x, y) (array([ 1.5 , 1.75]), array([ 0.25])) giigð?trtolg›+¡†›„=iÿÿÿÿ( RKR RR(R.RDtmaxR$R*R-tallcloseR'( tutvRPRcRORSRhtqtrR=td((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR Is$-) #2s[*][*]([0-9]*)iFc C`sad}d}d}d}x(trBtj||ƒ}|dkrCPn|jƒ}|jƒd}|||d!} |d}| dt|ƒd} dt| ƒd|} t|ƒt| ƒ|ksât|ƒt| ƒ|kr||d|d7}| }| }q|| dt|ƒd7}|dt| ƒd|7}qW||d|7}|||S(Nitt is s (tTruet _poly_mattsearchRJtspantgroupsR(( tastrtwrapRStline1tline2toutputtmatRƒtpowertpartstrttoadd2ttoadd1((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt _raise_power‹s.      cB`seZdZd!Zed„ƒZed„ƒZed„ƒZed„ƒZ ed„ƒZ e j d„ƒZ e Z eZ ZZeZed!d„Zd!d„Zd „Zd „Zd „Zd „Zd „Zd„Zd„Zd„Zd„Zd„Zd„Zd„Zd„Z d„Z!e!Z"d„Z#e#Z$d„Z%d„Z&d„Z'd„Z(d„Z)ddd„Z*dd „Z+RS("s8 A one-dimensional polynomial class. A convenience class, used to encapsulate "natural" operations on polynomials so that said operations may take on their customary form in code (see Examples). Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d([1, 2, 3])`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples). Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`: >>> p = np.poly1d([1, 2, 3]) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3 Evaluate the polynomial at :math:`x = 0.5`: >>> p(0.5) 4.25 Find the roots: >>> p.r array([-1.+1.41421356j, -1.-1.41421356j]) >>> p(p.r) array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) These numbers in the previous line represent (0, 0) to machine precision Show the coefficients: >>> p.c array([1, 2, 3]) Display the order (the leading zero-coefficients are removed): >>> p.order 2 Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c[-(i+1)]``): >>> p[1] 2 Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder): >>> p * p poly1d([ 1, 4, 10, 12, 9]) >>> (p**3 + 4) / p (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.])) ``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays: >>> p**2 # square of polynomial poly1d([ 1, 4, 10, 12, 9]) >>> np.square(p) # square of individual coefficients array([1, 4, 9]) The variable used in the string representation of `p` can be modified, using the `variable` parameter: >>> p = np.poly1d([1,2,3], variable='z') >>> print(p) 2 1 z + 2 z + 3 Construct a polynomial from its roots: >>> np.poly1d([1, 2], True) poly1d([ 1, -3, 2]) This is the same polynomial as obtained by: >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) poly1d([ 1, -3, 2]) cC`s |jjƒS(s' A copy of the polynomial coefficients (t_coeffsR8(tself((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pytcoeffs scC`s|jS(s% The name of the polynomial variable (t _variable(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pytvariablescC`st|jƒdS(s' The order or degree of the polynomial i(R(R(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyRescC`s t|jƒS(s1 The roots of the polynomial, where self(x) == 0 (RR(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyRscC`s |jdS(NR’(t__dict__(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyR#scC`s||jdR,RR(R.R(R‘tc_or_rR|R”Rm((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__init__/s,        cC`s-|rtj|j|ƒStj|jƒSdS(N(R.R3R’(R‘tt((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt __array__JscC`s$t|jƒ}|dd!}d|S(Niiÿÿÿÿs poly1d(%s)(treprR’(R‘tvals((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__repr__Ps cC`s|jS(N(Re(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__len__Usc C`s7d}|j}|jtjj|jdkƒ}t|ƒd}d„}xàtt|ƒƒD]Ì}t||ƒsŒ|t||ƒƒ}nct||ƒdkr¿d|t ||ƒƒ}n0d|t||ƒƒ|t ||ƒƒf}||}|dkr?|dkr!d|f} qÏ|dkr6d} qÏd} n|dkrˆ|dkr`d} qÏ|d kru|} qÏd ||f} nG|dkrd} n2|d kr¼d ||f} nd |||f} |dkr#| dkr)| j d ƒr d|| df}q d|| f}q)q]| }q]Wt |ƒS(Nt0iicS`s*d|}|jdƒr&|d }n|S(Ns%.4gs.0000iûÿÿÿ(tendswith(R{Rl((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt fmt_float`s  s%sjs (%s + %sj)s%sR~tbs%s %ss%s**%ds %s %s**%dt-s%s - %ss%s + %s( R”R’R.t logical_ort accumulateR(R-RRRt startswithR( R‘tthestrtvarR’RHR¥R=tcoefstrR‹tnewstr((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__str__XsJ "                  cC`st|j|ƒS(N(R R’(R‘RR((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__call__‘scC`st|j ƒS(N(R R’(R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__neg__”scC`s|S(N((R‘((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__pos__—scC`sFt|ƒrt|j|ƒSt|ƒ}tt|j|jƒƒSdS(N(RR R’R (R‘tother((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__mul__šs  cC`sFt|ƒrt||jƒSt|ƒ}tt|j|jƒƒSdS(N(RR R’R (R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__rmul__¡s  cC`s%t|ƒ}tt|j|jƒƒS(N(R RR’(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__add__¨s cC`s%t|ƒ}tt|j|jƒƒS(N(R RR’(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__radd__¬s cC`svt|ƒ s+t|ƒ|ks+|dkr:tdƒ‚ndg}x&t|ƒD]}t|j|ƒ}qPWt|ƒS(Nis$Power to non-negative integers only.i(RRAR,R-R R’R (R‘RRtrest_((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__pow__°s + cC`s%t|ƒ}tt|j|jƒƒS(N(R RR’(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__sub__¸s cC`s%t|ƒ}tt|j|jƒƒS(N(R RR’(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__rsub__¼s cC`s:t|ƒrt|j|ƒSt|ƒ}t||ƒSdS(N(RR R’R (R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__div__Às  cC`s:t|ƒrt||jƒSt|ƒ}t||ƒSdS(N(RR R’R (R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__rdiv__És  cC`sEt|tƒstS|jj|jjkr/tS|j|jkjƒS(N(RKR tNotImplementedR’R'tFalseR5(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__eq__Òs cC`s!t|tƒstS|j|ƒ S(N(RKR R¿RÁ(R‘R³((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt__ne__ÙscC`s;|j|}||jkr dS|dkr0dS|j|S(Ni(ReR’(R‘RRtind((s3/tmp/pip-build-fiC0ax/numpy/numpy/lib/polynomial.pyt __getitem__ßs   cC`s‹|j|}|dkr(tdƒ‚n||jkrztj||j|jjƒ}tj||jfƒ|_d}n||j|s8   :" t T] DØ E < / 8 A ÿl