"""Amazon S3 Read PARQUET Module (PRIVATE).""" import concurrent.futures import datetime import functools import itertools import json import logging import pprint import warnings from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union, cast import boto3 import pandas as pd import pyarrow as pa import pyarrow.parquet from awswrangler import _data_types, _utils, exceptions from awswrangler._config import apply_configs from awswrangler.s3._fs import open_s3_object from awswrangler.s3._list import _path2list from awswrangler.s3._read import ( _apply_partition_filter, _apply_partitions, _extract_partitions_dtypes_from_table_details, _extract_partitions_metadata_from_paths, _get_path_ignore_suffix, _get_path_root, _union, ) _logger: logging.Logger = logging.getLogger(__name__) def _pyarrow_parquet_file_wrapper( source: Any, read_dictionary: Optional[List[str]] = None ) -> pyarrow.parquet.ParquetFile: try: return pyarrow.parquet.ParquetFile(source=source, read_dictionary=read_dictionary) except pyarrow.ArrowInvalid as ex: if str(ex) == "Parquet file size is 0 bytes": _logger.warning("Ignoring empty file...xx") return None raise def _read_parquet_metadata_file( path: str, boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], use_threads: bool ) -> Optional[Dict[str, str]]: with open_s3_object( path=path, mode="rb", use_threads=use_threads, s3_block_size=131_072, # 128 KB (128 * 2**10) s3_additional_kwargs=s3_additional_kwargs, boto3_session=boto3_session, ) as f: pq_file: Optional[pyarrow.parquet.ParquetFile] = _pyarrow_parquet_file_wrapper(source=f) if pq_file is None: return None return _data_types.athena_types_from_pyarrow_schema(schema=pq_file.schema.to_arrow_schema(), partitions=None)[0] def _read_schemas_from_files( paths: List[str], sampling: float, use_threads: bool, boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], ) -> Tuple[Dict[str, str], ...]: paths = _utils.list_sampling(lst=paths, sampling=sampling) schemas: Tuple[Optional[Dict[str, str]], ...] = tuple() n_paths: int = len(paths) if use_threads is False or n_paths == 1: schemas = tuple( _read_parquet_metadata_file( path=p, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, use_threads=use_threads ) for p in paths ) elif n_paths > 1: cpus: int = _utils.ensure_cpu_count(use_threads=use_threads) with concurrent.futures.ThreadPoolExecutor(max_workers=cpus) as executor: schemas = tuple( executor.map( _read_parquet_metadata_file, paths, itertools.repeat(_utils.boto3_to_primitives(boto3_session=boto3_session)), # Boto3.Session itertools.repeat(s3_additional_kwargs), itertools.repeat(use_threads), ) ) schemas = cast(Tuple[Dict[str, str], ...], tuple(x for x in schemas if x is not None)) _logger.debug("schemas: %s", schemas) return schemas def _validate_schemas(schemas: Tuple[Dict[str, str], ...]) -> None: if len(schemas) < 2: return None first: Dict[str, str] = schemas[0] for schema in schemas[1:]: if first != schema: raise exceptions.InvalidSchemaConvergence( f"Was detect at least 2 different schemas:\n 1 - {first}\n 2 - {schema}." ) return None def _validate_schemas_from_files( paths: List[str], sampling: float, use_threads: bool, boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], ) -> None: schemas: Tuple[Dict[str, str], ...] = _read_schemas_from_files( paths=paths, sampling=sampling, use_threads=use_threads, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, ) _validate_schemas(schemas=schemas) def _merge_schemas(schemas: Tuple[Dict[str, str], ...]) -> Dict[str, str]: columns_types: Dict[str, str] = {} for schema in schemas: for column, dtype in schema.items(): if (column in columns_types) and (columns_types[column] != dtype): raise exceptions.InvalidSchemaConvergence( f"Was detect at least 2 different types in column {column} ({columns_types[column]} and {dtype})." ) columns_types[column] = dtype return columns_types def _read_parquet_metadata( path: Union[str, List[str]], path_suffix: Optional[str], path_ignore_suffix: Optional[str], ignore_empty: bool, dtype: Optional[Dict[str, str]], sampling: float, dataset: bool, use_threads: bool, boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], ) -> Tuple[Dict[str, str], Optional[Dict[str, str]], Optional[Dict[str, List[str]]]]: """Handle wr.s3.read_parquet_metadata internally.""" path_root: Optional[str] = _get_path_root(path=path, dataset=dataset) paths: List[str] = _path2list( path=path, boto3_session=boto3_session, suffix=path_suffix, ignore_suffix=_get_path_ignore_suffix(path_ignore_suffix=path_ignore_suffix), ignore_empty=ignore_empty, s3_additional_kwargs=s3_additional_kwargs, ) # Files schemas: Tuple[Dict[str, str], ...] = _read_schemas_from_files( paths=paths, sampling=sampling, use_threads=use_threads, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, ) columns_types: Dict[str, str] = _merge_schemas(schemas=schemas) # Partitions partitions_types: Optional[Dict[str, str]] = None partitions_values: Optional[Dict[str, List[str]]] = None if (dataset is True) and (path_root is not None): partitions_types, partitions_values = _extract_partitions_metadata_from_paths(path=path_root, paths=paths) # Casting if dtype: for k, v in dtype.items(): if columns_types and k in columns_types: columns_types[k] = v if partitions_types and k in partitions_types: partitions_types[k] = v return columns_types, partitions_types, partitions_values def _apply_index(df: pd.DataFrame, metadata: Dict[str, Any]) -> pd.DataFrame: index_columns: List[Any] = metadata["index_columns"] ignore_index: bool = True _logger.debug("df.columns: %s", df.columns) if index_columns: if isinstance(index_columns[0], str): indexes: List[str] = [i for i in index_columns if i in df.columns] if indexes: df = df.set_index(keys=indexes, drop=True, inplace=False, verify_integrity=False) ignore_index = False elif isinstance(index_columns[0], dict) and index_columns[0]["kind"] == "range": col = index_columns[0] if col["kind"] == "range": df.index = pd.RangeIndex(start=col["start"], stop=col["stop"], step=col["step"]) ignore_index = False col_name: Optional[str] = None if "name" in col and col["name"] is not None: col_name = str(col["name"]) elif "field_name" in col and col["field_name"] is not None: col_name = str(col["field_name"]) if col_name is not None and col_name.startswith("__index_level_") is False: df.index.name = col_name df.index.names = [None if n is not None and n.startswith("__index_level_") else n for n in df.index.names] with warnings.catch_warnings(): warnings.simplefilter("ignore", category=UserWarning) df._awswrangler_ignore_index = ignore_index # pylint: disable=protected-access return df def _apply_timezone(df: pd.DataFrame, metadata: Dict[str, Any]) -> pd.DataFrame: for c in metadata["columns"]: if "field_name" in c and c["field_name"] is not None: col_name = str(c["field_name"]) elif "name" in c and c["name"] is not None: col_name = str(c["name"]) else: continue if col_name in df.columns and c["pandas_type"] == "datetimetz": timezone: datetime.tzinfo = pa.lib.string_to_tzinfo(c["metadata"]["timezone"]) _logger.debug("applying timezone (%s) on column %s", timezone, col_name) if hasattr(df[col_name].dtype, "tz") is False: df[col_name] = df[col_name].dt.tz_localize(tz="UTC") df[col_name] = df[col_name].dt.tz_convert(tz=timezone) return df def _arrowtable2df( table: pa.Table, categories: Optional[List[str]], safe: bool, map_types: bool, use_threads: bool, dataset: bool, path: str, path_root: Optional[str], ) -> pd.DataFrame: metadata: Dict[str, Any] = {} if table.schema.metadata is not None and b"pandas" in table.schema.metadata: metadata = json.loads(table.schema.metadata[b"pandas"]) df: pd.DataFrame = _apply_partitions( df=table.to_pandas( use_threads=use_threads, split_blocks=True, self_destruct=True, integer_object_nulls=False, date_as_object=True, ignore_metadata=True, strings_to_categorical=False, safe=safe, categories=categories, types_mapper=_data_types.pyarrow2pandas_extension if map_types else None, ), dataset=dataset, path=path, path_root=path_root, ) df = _utils.ensure_df_is_mutable(df=df) if metadata: _logger.debug("metadata: %s", metadata) df = _apply_timezone(df=df, metadata=metadata) df = _apply_index(df=df, metadata=metadata) return df def _read_parquet_chunked( paths: List[str], chunked: Union[bool, int], validate_schema: bool, ignore_index: Optional[bool], columns: Optional[List[str]], categories: Optional[List[str]], safe: bool, map_types: bool, boto3_session: boto3.Session, dataset: bool, path_root: Optional[str], s3_additional_kwargs: Optional[Dict[str, str]], use_threads: bool, ) -> Iterator[pd.DataFrame]: next_slice: Optional[pd.DataFrame] = None last_schema: Optional[Dict[str, str]] = None last_path: str = "" for path in paths: with open_s3_object( path=path, mode="rb", use_threads=use_threads, s3_block_size=10_485_760, # 10 MB (10 * 2**20) s3_additional_kwargs=s3_additional_kwargs, boto3_session=boto3_session, ) as f: pq_file: Optional[pyarrow.parquet.ParquetFile] = _pyarrow_parquet_file_wrapper( source=f, read_dictionary=categories ) if pq_file is None: continue if validate_schema is True: schema: Dict[str, str] = _data_types.athena_types_from_pyarrow_schema( schema=pq_file.schema.to_arrow_schema(), partitions=None )[0] if last_schema is not None: if schema != last_schema: raise exceptions.InvalidSchemaConvergence( f"Was detect at least 2 different schemas:\n" f" - {last_path} -> {last_schema}\n" f" - {path} -> {schema}" ) last_schema = schema last_path = path num_row_groups: int = pq_file.num_row_groups _logger.debug("num_row_groups: %s", num_row_groups) for i in range(num_row_groups): _logger.debug("Reading Row Group %s...", i) df: pd.DataFrame = _arrowtable2df( table=pq_file.read_row_group( i=i, columns=columns, use_threads=use_threads, use_pandas_metadata=False ), categories=categories, safe=safe, map_types=map_types, use_threads=use_threads, dataset=dataset, path=path, path_root=path_root, ) if chunked is True: yield df elif isinstance(chunked, int) and chunked > 0: if next_slice is not None: df = _union(dfs=[next_slice, df], ignore_index=ignore_index) while len(df.index) >= chunked: yield df.iloc[:chunked, :].copy() df = df.iloc[chunked:, :] if df.empty: next_slice = None else: next_slice = df else: raise exceptions.InvalidArgument(f"chunked: {chunked}") if next_slice is not None: yield next_slice def _read_parquet_file( path: str, columns: Optional[List[str]], categories: Optional[List[str]], boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], use_threads: bool, ) -> pa.Table: s3_block_size: int = 20_971_520 if columns else -1 # One shot for a full read otherwise 20 MB (20 * 2**20) with open_s3_object( path=path, mode="rb", use_threads=use_threads, s3_block_size=s3_block_size, s3_additional_kwargs=s3_additional_kwargs, boto3_session=boto3_session, ) as f: pq_file: Optional[pyarrow.parquet.ParquetFile] = _pyarrow_parquet_file_wrapper( source=f, read_dictionary=categories ) if pq_file is None: raise exceptions.InvalidFile(f"Invalid Parquet file: {path}") return pq_file.read(columns=columns, use_threads=False, use_pandas_metadata=False) def _count_row_groups( path: str, categories: Optional[List[str]], boto3_session: boto3.Session, s3_additional_kwargs: Optional[Dict[str, str]], use_threads: bool, ) -> int: _logger.debug("Counting row groups...") with open_s3_object( path=path, mode="rb", use_threads=use_threads, s3_block_size=131_072, # 128 KB (128 * 2**10) s3_additional_kwargs=s3_additional_kwargs, boto3_session=boto3_session, ) as f: pq_file: Optional[pyarrow.parquet.ParquetFile] = _pyarrow_parquet_file_wrapper( source=f, read_dictionary=categories ) if pq_file is None: return 0 n: int = cast(int, pq_file.num_row_groups) _logger.debug("Row groups count: %d", n) return n def _read_parquet( path: str, columns: Optional[List[str]], categories: Optional[List[str]], safe: bool, map_types: bool, boto3_session: boto3.Session, dataset: bool, path_root: Optional[str], s3_additional_kwargs: Optional[Dict[str, str]], use_threads: bool, ) -> pd.DataFrame: return _arrowtable2df( table=_read_parquet_file( path=path, columns=columns, categories=categories, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, use_threads=use_threads, ), categories=categories, safe=safe, map_types=map_types, use_threads=use_threads, dataset=dataset, path=path, path_root=path_root, ) def read_parquet( path: Union[str, List[str]], path_suffix: Union[str, List[str], None] = None, path_ignore_suffix: Union[str, List[str], None] = None, ignore_empty: bool = True, ignore_index: Optional[bool] = None, partition_filter: Optional[Callable[[Dict[str, str]], bool]] = None, columns: Optional[List[str]] = None, validate_schema: bool = False, chunked: Union[bool, int] = False, dataset: bool = False, categories: Optional[List[str]] = None, safe: bool = True, map_types: bool = True, use_threads: bool = True, last_modified_begin: Optional[datetime.datetime] = None, last_modified_end: Optional[datetime.datetime] = None, boto3_session: Optional[boto3.Session] = None, s3_additional_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]: """Read Apache Parquet file(s) from from a received S3 prefix or list of S3 objects paths. The concept of Dataset goes beyond the simple idea of files and enable more complex features like partitioning and catalog integration (AWS Glue Catalog). This function accepts Unix shell-style wildcards in the path argument. * (matches everything), ? (matches any single character), [seq] (matches any character in seq), [!seq] (matches any character not in seq). If you want to use a path which includes Unix shell-style wildcard characters (`*, ?, []`), you can use `glob.escape(path)` before passing the path to this function. Note ---- ``Batching`` (`chunked` argument) (Memory Friendly): Will anable the function to return a Iterable of DataFrames instead of a regular DataFrame. There are two batching strategies on Wrangler: - If **chunked=True**, a new DataFrame will be returned for each file in your path/dataset. - If **chunked=INTEGER**, Wrangler will iterate on the data by number of rows igual the received INTEGER. `P.S.` `chunked=True` if faster and uses less memory while `chunked=INTEGER` is more precise in number of rows for each Dataframe. Note ---- In case of `use_threads=True` the number of threads that will be spawned will be gotten from os.cpu_count(). Note ---- The filter by last_modified begin last_modified end is applied after list all S3 files Parameters ---------- path : Union[str, List[str]] S3 prefix (accepts Unix shell-style wildcards) (e.g. s3://bucket/prefix) or list of S3 objects paths (e.g. [s3://bucket/key0, s3://bucket/key1]). path_suffix: Union[str, List[str], None] Suffix or List of suffixes to be read (e.g. [".gz.parquet", ".snappy.parquet"]). If None, will try to read all files. (default) path_ignore_suffix: Union[str, List[str], None] Suffix or List of suffixes for S3 keys to be ignored.(e.g. [".csv", "_SUCCESS"]). If None, will try to read all files. (default) ignore_empty: bool Ignore files with 0 bytes. ignore_index: Optional[bool] Ignore index when combining multiple parquet files to one DataFrame. partition_filter: Optional[Callable[[Dict[str, str]], bool]] Callback Function filters to apply on PARTITION columns (PUSH-DOWN filter). This function MUST receive a single argument (Dict[str, str]) where keys are partitions names and values are partitions values. Partitions values will be always strings extracted from S3. This function MUST return a bool, True to read the partition or False to ignore it. Ignored if `dataset=False`. E.g ``lambda x: True if x["year"] == "2020" and x["month"] == "1" else False`` columns : List[str], optional Names of columns to read from the file(s). validate_schema: Check that individual file schemas are all the same / compatible. Schemas within a folder prefix should all be the same. Disable if you have schemas that are different and want to disable this check. chunked : Union[int, bool] If passed will split the data in a Iterable of DataFrames (Memory friendly). If `True` wrangler will iterate on the data by files in the most efficient way without guarantee of chunksize. If an `INTEGER` is passed Wrangler will iterate on the data by number of rows igual the received INTEGER. dataset: bool If `True` read a parquet dataset instead of simple file(s) loading all the related partitions as columns. categories: Optional[List[str]], optional List of columns names that should be returned as pandas.Categorical. Recommended for memory restricted environments. safe : bool, default True For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not. map_types : bool, default True True to convert pyarrow DataTypes to pandas ExtensionDtypes. It is used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. use_threads : bool True to enable concurrent requests, False to disable multiple threads. If enabled os.cpu_count() will be used as the max number of threads. last_modified_begin Filter the s3 files by the Last modified date of the object. The filter is applied only after list all s3 files. last_modified_end: datetime, optional Filter the s3 files by the Last modified date of the object. The filter is applied only after list all s3 files. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. s3_additional_kwargs : Optional[Dict[str, Any]] Forward to botocore requests, only "SSECustomerAlgorithm" and "SSECustomerKey" arguments will be considered. Returns ------- Union[pandas.DataFrame, Generator[pandas.DataFrame, None, None]] Pandas DataFrame or a Generator in case of `chunked=True`. Examples -------- Reading all Parquet files under a prefix >>> import awswrangler as wr >>> df = wr.s3.read_parquet(path='s3://bucket/prefix/') Reading all Parquet files from a list >>> import awswrangler as wr >>> df = wr.s3.read_parquet(path=['s3://bucket/filename0.parquet', 's3://bucket/filename1.parquet']) Reading in chunks (Chunk by file) >>> import awswrangler as wr >>> dfs = wr.s3.read_parquet(path=['s3://bucket/filename0.csv', 's3://bucket/filename1.csv'], chunked=True) >>> for df in dfs: >>> print(df) # Smaller Pandas DataFrame Reading in chunks (Chunk by 1MM rows) >>> import awswrangler as wr >>> dfs = wr.s3.read_parquet(path=['s3://bucket/filename0.csv', 's3://bucket/filename1.csv'], chunked=1_000_000) >>> for df in dfs: >>> print(df) # 1MM Pandas DataFrame Reading Parquet Dataset with PUSH-DOWN filter over partitions >>> import awswrangler as wr >>> my_filter = lambda x: True if x["city"].startswith("new") else False >>> df = wr.s3.read_parquet(path, dataset=True, partition_filter=my_filter) """ session: boto3.Session = _utils.ensure_session(session=boto3_session) paths: List[str] = _path2list( path=path, boto3_session=session, suffix=path_suffix, ignore_suffix=_get_path_ignore_suffix(path_ignore_suffix=path_ignore_suffix), last_modified_begin=last_modified_begin, last_modified_end=last_modified_end, ignore_empty=ignore_empty, s3_additional_kwargs=s3_additional_kwargs, ) path_root: Optional[str] = _get_path_root(path=path, dataset=dataset) if path_root is not None: paths = _apply_partition_filter(path_root=path_root, paths=paths, filter_func=partition_filter) if len(paths) < 1: raise exceptions.NoFilesFound(f"No files Found on: {path}.") _logger.debug("paths:\n%s", paths) args: Dict[str, Any] = { "columns": columns, "categories": categories, "safe": safe, "map_types": map_types, "boto3_session": session, "dataset": dataset, "path_root": path_root, "s3_additional_kwargs": s3_additional_kwargs, "use_threads": use_threads, } _logger.debug("args:\n%s", pprint.pformat(args)) if chunked is not False: return _read_parquet_chunked( paths=paths, chunked=chunked, validate_schema=validate_schema, ignore_index=ignore_index, **args ) if len(paths) == 1: return _read_parquet(path=paths[0], **args) if validate_schema is True: _validate_schemas_from_files( paths=paths, sampling=1.0, use_threads=True, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, ) return _union(dfs=[_read_parquet(path=p, **args) for p in paths], ignore_index=ignore_index) @apply_configs def read_parquet_table( table: str, database: str, filename_suffix: Union[str, List[str], None] = None, filename_ignore_suffix: Union[str, List[str], None] = None, catalog_id: Optional[str] = None, partition_filter: Optional[Callable[[Dict[str, str]], bool]] = None, columns: Optional[List[str]] = None, validate_schema: bool = True, categories: Optional[List[str]] = None, safe: bool = True, map_types: bool = True, chunked: Union[bool, int] = False, use_threads: bool = True, boto3_session: Optional[boto3.Session] = None, s3_additional_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]: """Read Apache Parquet table registered on AWS Glue Catalog. Note ---- ``Batching`` (`chunked` argument) (Memory Friendly): Will anable the function to return a Iterable of DataFrames instead of a regular DataFrame. There are two batching strategies on Wrangler: - If **chunked=True**, a new DataFrame will be returned for each file in your path/dataset. - If **chunked=INTEGER**, Wrangler will paginate through files slicing and concatenating to return DataFrames with the number of row igual the received INTEGER. `P.S.` `chunked=True` if faster and uses less memory while `chunked=INTEGER` is more precise in number of rows for each Dataframe. Note ---- In case of `use_threads=True` the number of threads that will be spawned will be gotten from os.cpu_count(). Parameters ---------- table : str AWS Glue Catalog table name. database : str AWS Glue Catalog database name. filename_suffix: Union[str, List[str], None] Suffix or List of suffixes to be read (e.g. [".gz.parquet", ".snappy.parquet"]). If None, will try to read all files. (default) filename_ignore_suffix: Union[str, List[str], None] Suffix or List of suffixes for S3 keys to be ignored.(e.g. [".csv", "_SUCCESS"]). If None, will try to read all files. (default) catalog_id : str, optional The ID of the Data Catalog from which to retrieve Databases. If none is provided, the AWS account ID is used by default. partition_filter: Optional[Callable[[Dict[str, str]], bool]] Callback Function filters to apply on PARTITION columns (PUSH-DOWN filter). This function MUST receive a single argument (Dict[str, str]) where keys are partitions names and values are partitions values. Partitions values will be always strings extracted from S3. This function MUST return a bool, True to read the partition or False to ignore it. Ignored if `dataset=False`. E.g ``lambda x: True if x["year"] == "2020" and x["month"] == "1" else False`` https://aws-data-wrangler.readthedocs.io/en/2.7.0/tutorials/023%20-%20Flexible%20Partitions%20Filter.html columns : List[str], optional Names of columns to read from the file(s). validate_schema: Check that individual file schemas are all the same / compatible. Schemas within a folder prefix should all be the same. Disable if you have schemas that are different and want to disable this check. categories: Optional[List[str]], optional List of columns names that should be returned as pandas.Categorical. Recommended for memory restricted environments. safe : bool, default True For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not. map_types : bool, default True True to convert pyarrow DataTypes to pandas ExtensionDtypes. It is used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. chunked : bool If True will break the data in smaller DataFrames (Non deterministic number of lines). Otherwise return a single DataFrame with the whole data. use_threads : bool True to enable concurrent requests, False to disable multiple threads. If enabled os.cpu_count() will be used as the max number of threads. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. s3_additional_kwargs : Optional[Dict[str, Any]] Forward to botocore requests, only "SSECustomerAlgorithm" and "SSECustomerKey" arguments will be considered. Returns ------- Union[pandas.DataFrame, Generator[pandas.DataFrame, None, None]] Pandas DataFrame or a Generator in case of `chunked=True`. Examples -------- Reading Parquet Table >>> import awswrangler as wr >>> df = wr.s3.read_parquet_table(database='...', table='...') Reading Parquet Table encrypted >>> import awswrangler as wr >>> df = wr.s3.read_parquet_table( ... database='...', ... table='...' ... s3_additional_kwargs={ ... 'ServerSideEncryption': 'aws:kms', ... 'SSEKMSKeyId': 'YOUR_KMS_KEY_ARN' ... } ... ) Reading Parquet Table in chunks (Chunk by file) >>> import awswrangler as wr >>> dfs = wr.s3.read_parquet_table(database='...', table='...', chunked=True) >>> for df in dfs: >>> print(df) # Smaller Pandas DataFrame Reading Parquet Dataset with PUSH-DOWN filter over partitions >>> import awswrangler as wr >>> my_filter = lambda x: True if x["city"].startswith("new") else False >>> df = wr.s3.read_parquet_table(path, dataset=True, partition_filter=my_filter) """ client_glue: boto3.client = _utils.client(service_name="glue", session=boto3_session) args: Dict[str, Any] = {"DatabaseName": database, "Name": table} if catalog_id is not None: args["CatalogId"] = catalog_id res: Dict[str, Any] = client_glue.get_table(**args) try: location: str = res["Table"]["StorageDescriptor"]["Location"] path: str = location if location.endswith("/") else f"{location}/" except KeyError as ex: raise exceptions.InvalidTable(f"Missing s3 location for {database}.{table}.") from ex df = read_parquet( path=path, path_suffix=filename_suffix, path_ignore_suffix=filename_ignore_suffix, partition_filter=partition_filter, columns=columns, validate_schema=validate_schema, categories=categories, safe=safe, map_types=map_types, chunked=chunked, dataset=True, use_threads=use_threads, boto3_session=boto3_session, s3_additional_kwargs=s3_additional_kwargs, ) partial_cast_function = functools.partial( _data_types.cast_pandas_with_athena_types, dtype=_extract_partitions_dtypes_from_table_details(response=res) ) if isinstance(df, pd.DataFrame): return partial_cast_function(df) # df is a generator, so map is needed for casting dtypes return map(partial_cast_function, df) @apply_configs def read_parquet_metadata( path: Union[str, List[str]], path_suffix: Optional[str] = None, path_ignore_suffix: Optional[str] = None, ignore_empty: bool = True, dtype: Optional[Dict[str, str]] = None, sampling: float = 1.0, dataset: bool = False, use_threads: bool = True, boto3_session: Optional[boto3.Session] = None, s3_additional_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[Dict[str, str], Optional[Dict[str, str]]]: """Read Apache Parquet file(s) metadata from from a received S3 prefix or list of S3 objects paths. The concept of Dataset goes beyond the simple idea of files and enable more complex features like partitioning and catalog integration (AWS Glue Catalog). This function accepts Unix shell-style wildcards in the path argument. * (matches everything), ? (matches any single character), [seq] (matches any character in seq), [!seq] (matches any character not in seq). If you want to use a path which includes Unix shell-style wildcard characters (`*, ?, []`), you can use `glob.escape(path)` before passing the path to this function. Note ---- In case of `use_threads=True` the number of threads that will be spawned will be gotten from os.cpu_count(). Parameters ---------- path : Union[str, List[str]] S3 prefix (accepts Unix shell-style wildcards) (e.g. s3://bucket/prefix) or list of S3 objects paths (e.g. [s3://bucket/key0, s3://bucket/key1]). path_suffix: Union[str, List[str], None] Suffix or List of suffixes to be read (e.g. [".gz.parquet", ".snappy.parquet"]). If None, will try to read all files. (default) path_ignore_suffix: Union[str, List[str], None] Suffix or List of suffixes for S3 keys to be ignored.(e.g. [".csv", "_SUCCESS"]). If None, will try to read all files. (default) ignore_empty: bool Ignore files with 0 bytes. dtype : Dict[str, str], optional Dictionary of columns names and Athena/Glue types to be casted. Useful when you have columns with undetermined data types as partitions columns. (e.g. {'col name': 'bigint', 'col2 name': 'int'}) sampling : float Random sample ratio of files that will have the metadata inspected. Must be `0.0 < sampling <= 1.0`. The higher, the more accurate. The lower, the faster. dataset: bool If True read a parquet dataset instead of simple file(s) loading all the related partitions as columns. use_threads : bool True to enable concurrent requests, False to disable multiple threads. If enabled os.cpu_count() will be used as the max number of threads. boto3_session : boto3.Session(), optional Boto3 Session. The default boto3 session will be used if boto3_session receive None. s3_additional_kwargs : Optional[Dict[str, Any]] Forward to botocore requests, only "SSECustomerAlgorithm" and "SSECustomerKey" arguments will be considered. Returns ------- Tuple[Dict[str, str], Optional[Dict[str, str]]] columns_types: Dictionary with keys as column names and values as data types (e.g. {'col0': 'bigint', 'col1': 'double'}). / partitions_types: Dictionary with keys as partition names and values as data types (e.g. {'col2': 'date'}). Examples -------- Reading all Parquet files (with partitions) metadata under a prefix >>> import awswrangler as wr >>> columns_types, partitions_types = wr.s3.read_parquet_metadata(path='s3://bucket/prefix/', dataset=True) Reading all Parquet files metadata from a list >>> import awswrangler as wr >>> columns_types, partitions_types = wr.s3.read_parquet_metadata(path=[ ... 's3://bucket/filename0.parquet', ... 's3://bucket/filename1.parquet' ... ]) """ return _read_parquet_metadata( path=path, path_suffix=path_suffix, path_ignore_suffix=path_ignore_suffix, ignore_empty=ignore_empty, dtype=dtype, sampling=sampling, dataset=dataset, use_threads=use_threads, s3_additional_kwargs=s3_additional_kwargs, boto3_session=_utils.ensure_session(session=boto3_session), )[:2]