ELF>@h @8@ p p)p)Pk  ))$$Ptdv v v QtdRtdp p)p)GNUH_u9wAwX=߸)VC p"  #@012a@AT% $@  RmHJݼ(y a aף{6}tkm@tOjt#H)M ,,qғ75kΑ(B9 S fQ{`ܪJ  ?]CZ q i x,5 PuK a  ]r  c z g-  /& Wp ) K VI    l x  P V8 F | 9L R" U 57 2    q И  pS y   9" @g & L  I К2 p`  9 @KV p :[  P  f P ( `,, t о/) J  @ 0| ;   Ш `    9 @  ` 0  N Z @ l  " o `G W PQ0  N@ @  0l(,, ^  ,) 9` > `i P Ъ/   О90G,] D :L 0>? p?[ ' P pq 8     Ws(,, Ц  %__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Py_NoneStructPyBaseObject_TypePyThreadState_Get_Py_CheckRecursionLimitPyObject_Call_Py_CheckRecursiveCallPyErr_OccurredPyExc_SystemErrorPyErr_SetStringPyObject_GetAttrPyTuple_PackPySlice_New_Py_EllipsisObjectPyTuple_NewPyCode_Newmemcpy_PyType_LookupPyExc_AttributeErrorPyErr_SetObjectrandom_bounded_uint64PyExc_DeprecationWarningPyErr_WarnFormatPyExc_TypeErrorPyErr_Format_Py_Dealloc_PyThreadState_UncheckedGetPyFrame_NewPyEval_EvalFrameExPyObject_GC_UnTrackPyErr_FetchPyThread_free_lockPyErr_RestorePyBuffer_ReleasePyObject_CallFinalizerFromDeallocPyLong_FromSsize_tPyErr_NormalizeExceptionPyException_SetTracebackPyErr_ClearPyObject_RichCompareBoolPyObject_GetAttrStringPyExc_ValueErrorPyOS_snprintfPyErr_WarnExPyModule_GetDictPyDict_NewPyImport_ImportModuleLevelObjectPyList_NewPyCapsule_NewPyDict_SetItemPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyDict_SetItemStringPyErr_ExceptionMatchesPyInterpreterState_GetIDPyModule_NewObjectPyLong_Type_Py_TrueStruct_Py_FalseStructPyFloat_TypePyObject_RichComparePyUnicode_TypememcmpPyObject_IsTrue_PyUnicode_ReadyPyList_TypePyObject_SetItemPyTuple_TypePyObject_GetItemPyExc_OverflowErrorPyDict_NextPyUnicode_ComparePyEval_EvalCodeExvsnprintfPy_FatalErrorPyObject_GC_TrackPyExc_NameErrorPyErr_GivenExceptionMatchesPyObject_FreefreePyLong_AsLongPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_AsUnsignedLongPyTraceBack_Here_PyObject_GetDictPtrPyObject_NotPyObject_SetAttrPyUnicode_FromStringPyUnicode_FromFormatPyMem_Realloc_PyDict_GetItem_KnownHashPyMem_MallocPyLong_FromLongPyDict_SizePyNumber_InPlaceMultiplyPyNumber_MultiplyPyList_AsTuplePyList_AppendPyUnicode_FormatPyObject_GenericGetAttrPyExc_NotImplementedErrorrandom_logseriesrandom_geometricrandom_zipfrandom_poissonrandom_negative_binomialrandom_waldrandom_rayleighrandom_lognormalrandom_logisticrandom_gumbelrandom_laplacerandom_powerrandom_weibullrandom_paretorandom_vonmisesrandom_standard_trandom_standard_cauchyrandom_noncentral_chisquarerandom_chisquarerandom_noncentral_frandom_frandom_gammarandom_normalrandom_exponentialrandom_betaPyDict_TypePyDict_GetItemWithErrorPyExc_KeyErrorPyNumber_AddPyNumber_InPlaceAddPyFunction_TypePyCFunction_TypePyMem_FreePyErr_NoMemoryPyGILState_EnsurePyGILState_ReleasePyExc_BufferErrorPyExc_StopIterationPyExc_ZeroDivisionErrorPyObject_GetIterPyMethod_TypePyErr_WriteUnraisablePyErr_PrintExrandom_hypergeometricPyNumber_Remainderrandom_uniformPyFloat_AsDoublePyFloat_FromDoublerandom_standard_normal_fillrandom_standard_normal_fill_frandom_standard_uniform_fillrandom_standard_uniform_fill_fPyBool_Type_PyObject_GenericGetAttrWithDictPyDict_DelItemPyType_ModifiedPyExc_RuntimeErrorPyObject_SizePyNumber_InPlaceTrueDividePyNumber_SubtractPyNumber_FloorDividePyEval_SaveThreadPyEval_RestoreThreadPyLong_FromUnsignedLongPy_GetVersionPyFrame_TypePyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyImport_AddModulePyObject_SetAttrStringPyUnicode_InternFromStringPyUnicode_DecodePyObject_HashPyLong_FromString__pyx_module_is_main_numpy__random___generatorPyImport_GetModuleDictPyType_ReadyPyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyCFunction_NewEx_PyDict_NewPresizedPyThread_allocate_lockPyObject_GetBufferrandom_standard_exponential_fill_frandom_standard_exponential_inv_fill_frandom_standard_exponential_inv_fillrandom_standard_exponential_fillrandom_standard_gammarandom_standard_gamma_fPySequence_ListPyNumber_MatrixMultiplyPyNumber_NegativePyExc_UnboundLocalErrorPyNumber_Absolute_PyLong_CopyPyBytes_FromStringPyBytes_TypePySequence_TuplePyUnicode_DecodeASCIIrandom_binomialrandom_triangularPyObject_IsInstancerandom_intervalPySlice_Type_PyList_ExtendPy_OptimizeFlagPyExc_AssertionErrorPyErr_SetNonePyObject_Mallocmallocrandom_multinomialstrlenmemsetPyNumber_OrPyLong_FromSize_trandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsPyInit__generatorPyModuleDef_Initrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialexplograndom_standard_exponential_fexpflogfrandom_standard_normalrandom_standard_normal_fpowsqrtpowfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_ffloorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllogfactoriallibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5H ui bui p) x) ))`+9,h+?,p+;,+A,+@A,+9,+(:,+9,+9,+?,+ =,+;,+=,+>,+9,+?, +?,@+A,H+9,P+p:,X+;,`+HA,h+9,+=,+>,+9,+9,+?,+;,+=,+(:,+9,+9,+9,+?,+;, +9,(+(:,0+9,@+?,H+@,P+9,`+?,h+@,p+`<,x+9,+@,+9,+@,+`<,+9,+9,+@,+9, +<,(+>,0+9,@+A,H+9,`+A,h+9,+A,+9,+=,+(:,+9,+=,+(:,+9,+=,+(:,+9,+P=,+9,+9, +(:,(+9,@+P=,H+(:,P+9,`+=,h+=,p+P:,x+9,+<,+;,+9,+<,+;,+9,+>,+9,+A,+9, +;,(+9,@+<,H+<,P+(<,X+9,p+;,x+9,+P=,+@@,+9,+@,+8,+ =,+<,+;,+9,+@,+(<,+9,+ =,0+A,8+9,`+88,h+HA,p+;,+88,+HA,+88,+HA,+ A,+9,+ >,+(?,+=,+A,+<, +;,(+@?,0+?,@+:,`+:,h+:,p+:,+D,+/( +D,+& +D,++D,+`B +D,(+ BH+D,P+Ap+D,x+A+D,+ +D,+@A+D,+ 7+D,+x$ 8+xD,@+6`+pD,h+6+hD,+@# +`D,+  +XD,+` +PD,+ (+HD,0+ P+@D,X+` x+8D,+ +0D,+ +(D,+@ + D,+ +D, +`6@+D,H+  h+D,p+ +D,+ +C,+  +C,+ +C,+0+C,8+ 6X+C,`+5+C,+5+C,+`5+C,+ 5+C,+ +C,(+ H+C,P+`p+C,x+ +C,+ +C,+ +C,+ +C,+ 8+xC,@+ `+pC,h+4+hC,+4+`C,+`4+XC,+ 4+PC,+` (+HC,0+  P+@C,X+ x+8C,+ +0C,+@ +(C,+ + C,+  +C, +" @+C,H+3h+C,p+" +C,+3+B,+@3+B,+3+B,+20+B,8+ X+B,`+-( +B,+" +B,+ +B,+  +B,+ +B,(++( H+B,P+2p+B,x+`! +B,+& +B,+! +B,+1+B,+ 8+xB,@+ `+pB,h+h$ +hB,+)( +`B,+0# +XB,+1+PB,+`1(+HB,0+ P+@B,X+ 1x+8B,+++0B,+++(B,+! + B,+" +B, + @+B,H+ h+B,p+0+B,+( +A,+( +A,+( +A,+'( 0+A,8+'( X+A,`+ +A,+0+A,+ +A,+@0+A,+( +A,(+( H+A,P+X$ p+A,x+ +A,+& +A,+(% +A,+' +A,+% 8+xA,@+& `+pA,h+ % +hA,+ +`A,+% +XA,+% +PA,+' (+HA,0+' P+@A,X+%( x+8A,+%( +0A,+' +(A,++ A,+P! +A, +P! @+A,H+' h+A,p+0+A,++@,+#( +@,+#( +@,+% 0+@,8+% X+@,`+% +@,+! +@,+/+@,+`+@,+ +@,(+H$ H+@,P+H$ p+@,x+& +@,+ +@,+ +@,+% +@,+`/8+x@,@+% `+p@,h+ +h@,+ +`@,+' +X@,+% +P@,+& (+H@,0+@! P+@@,X+' x+8@,+ /+0@,+.+(@,+% + @,+! +@, +` @+@,H+( h+@,p+( +@,+& +?,+& +?,+& +?,+& 0+?,8+' X+?,`+ +?,+' +?,+% +?,+& +?,+ +?,(+' H+?,P+' p+?,x+& +?,+" +?,+% +?,+8$ +?,+& 8+x?,@+ # `+p?,h+' +h?,+& +`?,+& +X?,+' +P?,+(+H?,0+|& P+@?,X+v& x+8?,+$ +0?,+$ +(?,+% + ?,+$ +?, +$ @+?,H+' h+?,p++?,+ +>,+0! +>,+@+>,+($ 0+>,8+.X+>,`+$ +>,+|+>,+# +>,+|' +>,+`i +>,(+( H+>,P+% p+>,x+$ +>,+% +>,+p& +>,+j& +>,+d& 8+x>,@+^& `+p>,h+w' +h>,+$ +`>,+\+X>,+r' +P>,+$ (+H>,0+X& P+@>,X+# x+8>,+# +0>,+" +(>,+m' + >,+# +>, +` @+>,H+R& h+>,p+R& +>,+' +=,+' +=,+ +=,+h' 0+=,8+# X+=,`+" +=,+c' +=,+p" +=,+' +=,+' +=,(+^' H+=,P+`" p+=,x+Q+=,+@+=,+5+=,+Y' +=,+' 8+x=,@+P' `+p=,h+" +h=,+% +`=,+' +X=,+ +P=,+F' (+H=,0+F' P+@=,X+`.x+8=,+` +0=,+ .+(=,+$ + =,+% +=, +-@+=,H+-h+=,p+A' +=,+P" +<,+( +<,+( +<,+'0+<,8+ X+<,`+`+<,+!( +<,+!( +<,+8' +<,+% +<,(+/' H+<,P+/' p+<,x+*' +<,++<,+`-+<,+' ,<,,L& 8,x<,@,L& `,p<,h,` ,h<,, -,`<,,%' ,X<,,%' ,P<,,@(,H<,0,P,@<,X,@x,8<,, ,0<,, ( ,(<,,$ , <,,$ ,<, ,@ @,<,H,@ h,<,p,` ,<,,@ ,;,,F& ,;,,@ ,;,,0,;,8,,X,;,`,! ,;,, ,;,,' ,;,,# ,;,,@& ,;,(,' H,;,P,@ p,;,x,,;,,( ,;,,( ,;,, ,;,, ' 8,x;,@,`,p;,h,9& ,h;,,,`;,,,X;,,x% ,P;,,# (,H;,0, P,@;,X,p x,8;,,,0;,,,,(;,,  , ;,, ,;, ,' @,;,H,3& h,;,p,3& ,;,,P ,:,,! ,:,, ! ,:,,@" 0,:,8," X,:,`,# ,:,, ,:,,0" ,:,,-& ,:, ,k% ,:,( ,H ,:,P ,'& p ,:,x ,!& ,:, , ,:, ,d% ,:, ,#  ,:, ,! 8 ,x:,@ ," ` ,p:,h ,$ ,h:, ,$ ,`:, ,! ,X:, ,# ,P:, ,& ( ,H:,0 ,& P ,@:,X ,$ x ,8:, ,' ,0:, ,' ,(:, ,& , :, ,&  ,:, ,! @ ,:,H , ' h ,:,p ,# ,:, ,0 ,9, ,& ,9, ,&  ,9, ,$ 0 ,9,8 , X ,9,` ,' ,9, , & ,9, , & ,9, ,' ,9,,& ,9,(,& H,9,P, " p,9,x, ,9,,,9,,,9,, ,9,,`8,x9,@,y`,p9,h,& ,h9,,% ,`9,,& ,X9,,& ,P9,,' (,H9,0,  P,@9,X,x,89,, ,09,,$ ,(9,,p! , 9,,]% ,9, ,p# @,9,H,@,h,9,p, ,9,,' ,8,,' ,8,,`# ,8,,& 0,8,8,& X,8,`,$ ,8,,' ,8,, p,8,,( ,8,,V% ,8,(,O% H,8,P,H% p,8,x,% ,8,, ,8,,,,8,,@f,8,,A% 8,x8,@,:% `,p8,h,3% ,h8,,@Z,`8,, ,X8,,& ,P8,,& (,H8,0,P# P,@8,X,@Mx,88,,( ,08,,L,(8,,% , 8,,' ,8, ,B,k,4,,,,,NX, p,/, ,.,-(,@,8,,x,P,\, @,aH,0[`,sh,Y, , ,,,,P,(,q@,@,X, `,P,,,,,@,`P,@ X,6`,7,@ ,p,,,|,\, 0,8,aX,`,,,_,,W,,W,,@^ ,(,\,,,,,,0,,,a,m ,s(,plx,,,0 ,`  ,H, ,, X,  ,a ,6 ,s( ,@Sx , ,B ,@", ,", ,v!,",H!,#,X!,",!,pk", ", ",0y ",x@", X",",",Y#,#,P #,a(#,u@#,sH#,0t#,#,p#, $,00$,@8$, @$,h$,%,x$, %,$,0$,`  %,4(%, 8%,H%,*P%,!X%, %,9%, %,F%, %,S%,`&,$&,&, + &,(&,8&,+@&,H&,0X&,+`&,h&,x&, +&,+&,&,@+&,&,0&,+&,n&,P&,@+&, &,u&,`+',',',+ ',(',8',y+@',H',X',n+`',h', x',b+',',',U+',',ж',I+',',',`A+',',',6+(,(,P(,-+ (,|((,p8(, +@(,sH(,X(,+`(,lh(,0x(,+(,d(,P(,*(,^(,p(,*(,V(,Л(, *(,O(,0(,*),F),),`* ),<(),8),`*@),3H), X),@*`),.h),x),*),%),p),*),%),),`*),),`),y*),),), p**,*,*,@f* *,F(*,@8*,_*@*,AH*,VX*,@M*`*,h*,|x*,@B**,*,*,.**,o*,p*,@!**,4*,9*, **,0*,@*,`*+,_+,@?+,) +,:(+,8+, )@+,PH+,xX+,)+,+,D+,+, +,)+,h)p)x) )) )) )))))!))%)))))))5):); )<()>0)?8)@)H)P)X) `)h)p)ax)c))e)f))i)k)))r)w)) )})~)))))) ) ()0)8)@)H)P)X)`)h)p)x)))))))))))))))))) )()0)8)@)H)P) X)`) h)p)x)))))))))))))))) )")#)$)&)' )()0)(8))@)*H)+P),X)-`).h)/p) x)0)1))2)3)4)6)7)8)9))=)@)A)B)C)D)E)F)G)H )()I0)J8)@)KH)LP)MX)N`)Oh)Pp)Qx)R)S)T)U)V)W)X)Y)Z)[))\)])^)_)`)b)d))g)h )i()j0)l8)@)mH)nP)X)o`)ph)qp)x)s)t)u)v)x)y)z){)|)))))))))))) )() 0)8)@)H)P)X)`)h)p)x))))))))))))))))))))) )()0)8)@)H)P)X)`)h)p)x)))))))))H JH5 )% )@% )h% )h% )h% )h% )h% )h% )h% )hp% )h`%z )h P%r )h @%j )h 0%b )h %Z )h %R )h%J )h%B )h%: )h%2 )h%* )h%" )h% )h% )h% )hp% )h`%)hP%)h@%)h0%)h %)h%)h%)h%)h %)h!%)h"%)h#%)h$%)h%%)h&%)h'p%)h(`%z)h)P%r)h*@%j)h+0%b)h, %Z)h-%R)h.%J)h/%B)h0%:)h1%2)h2%*)h3%")h4%)h5%)h6% )h7p%)h8`%)h9P%)h:@%)h;0%)h< %)h=%)h>%)h?%)h@%)hA%)hB%)hC%)hD%)hE%)hF%)hGp%)hH`%z)hIP%r)hJ@%j)hK0%b)hL %Z)hM%R)hN%J)hO%B)hP%:)hQ%2)hR%*)hS%")hT%)hU%)hV% )hWp%)hX`%)hYP%)hZ@%)h[0%)h\ %)h]%)h^%)h_%)h`%)ha%)hb%)hc%)hd%)he%)hf%)hgp%)hh`%z)hiP%r)hj@%j)hk0%b)hl %Z)hm%R)hn%J)ho%B)hp%:)hq%2)hr%*)hs%")ht%)hu%)hv% )hwp%)hx`%)hyP%)hz@%)h{0%)h| %)h}%)h~%)h%)h%)h%)h%)h%)h%)h%)h%)hp%)h`%z)hP%r)h@%j)h0%b)h %Z)h%R)h%J)h%B)h%:)h%2)h%*)h%")h%)h%)h% )hp%)h`%)hP%)h@%)h0%)h %)h%)h%)h%)h%)h%)h%)h%)h%)h%)h%)hp%)h`%z)hP%r)h@%j)h0%b)h %Z)h%R)h%J)h%B)h%:)h%2)h%*)h%")hSH5Hx+1|Hl+Hu H5w+1UHl+HtHl+H5l+1/Hhl+HtH5v+1H9l+HtH5v+1Hl+HqH5zv+1Hk+HNH5p+1Hk+H+H5H5i+1H$c+HH5Tp+1xHb+HH5i+1UHb+HH5vi+12Hb+HH5f+1HHs+L s+VA11AQh5l+5k+RRPRRHPHIH5e+1Hb+H&H5e+1Ha+HH5te+1`Ha+HH5l+1=Ha+HH5^l+1Hca+HL f+Lf+1H f+Hf+H5f+HbHr+L r+Q11AAQj5Jf+5d+RRPRRHPH[UHSQH5h+":HHu1Ht%HHŅxH uHZ[]AVEAUIHATIUHSHHHH@u H)HLH5[H81mLK M9s#H)MHLH5WH81]AAuKM9vFIPLIAQHML11L1ZYyH uH1HH[]A\A]A^UH1HS1QHtCH5d+HHH\HxHʽHuHPHHuH>Z[]AWIAVIAUIH57?ATIUSAPHLHHHHu(L*LH5HH)H81,vLHOu9HLHIMLHH=)H5H81.LHIHtH1HPHHuHVH uHGZ[]A\A]A^A_AWIAVIAUIH58>ATIUSAPHLHHHHu(L+LH5HH)H81-vLHPu9HLHIMLHH>)H5H81.LHIHtH1HPHHuHWH uHHZ[]A\A]A^A_AVEAUIATIHUSHt3H;r)Hu1AtHLLH u'HH)H8t1[]A\A]A^AUATIUSQHxH )HuH )Ht"H9tH)H5H8p1Hn+HtHH5s<LIHtHFIMHuL%HtHIHAH )<HLH'<xkAH <LLH<xHAH <LLH<px%E1H ;LLH;PxHHMHlZH[]A\A]HGHv)H9u 1USQ4HHu-HHxXH.)H0t111H=HZ[]AWE1AVAUATIUSHH5Jd+-HH)H5_+HH IHzH5_+L4H$H^I9H5_+HHHLH5p_+L3IH<H9uH5H_+LIHu"_H5/_+HSADžu1E1AI$H5_+HI$H5^+ADžyL99HE1H5>^+L3HHBH5^+L-HHt8I$H5]+H_xfI$H5]+WADžyIHtAHu:Lg`1E1H$E1HE1E1H1E1 11HpHuH|)IT$H5 H81>AMtIMuLH<$u%1E1H$H $HHD$HHuHMt IuLHt H uHuHt,HMu&HbH5\+H}HD[]A\A]A^A_AVAUATUSHHHi+Ht)1H9+H)H5!H8+Ld$0A1H;LLl$8H;LH1D$88D$0u D$:8D$2t?Hl$@1MH HLL>L1H''H0)1H@ HHh+Hh+H'1H=8Hh+H'1H=8H_h+H'HHHyh+tHeh+H'HH=:EH>h+H'HH=:&Hh+H'HH h+H5:Hn*H=h+"s'L3MtvC C!H{t7{"t I7HCHSHpHt 1nIIHCHpIHH8H)Hs)H(WH]X+HU)HgH8X+H8)_HJHX+H)bH-HW+H(1FHW+H(,HW+H(HW+H(HiW+H(2HGW+H(1 H%W+He(ʚ;HW+HK(11H=8HV+H+(HqHV+H(H(8u@HH%5HS\+H5[+H=e+yϽL%6AH5;HHtH=:Y+ OHtD1He+H5:HyӽL%`6AH=X+NHuL%86AH=F`+NHBc+HtH=\+NH"c+HtH=V`+qNHc+HtH=~`+YNHb+HtH=>`+ANHb+HmH=z`+%NHb+HQH=_+ NHzb+H5H=*`+MHVb+HH=n`+MH2b+HH=\+MHH=a+MHa+HH=`+MHa+H#H(H=Y@+HHvb+Hgb+HXb+HIb+H:b+y L%4AH5`+H=c+H?+HxH?+H=<+H/b+HQ+H9c+HHQ+~xH5c+H==+H<+oH_H=a:+Ha+5DH=F:+d0H2:+H Ha+HP+H=V5+Hb+HFHL$~D$H 2HD$HzD$HL$H )P+~D$HD$HD$HL$)P+~D$HD$H݆HP+D$)P+etH5a+H=5+H-4+RHvBHO+H2+H5a+HHa+HHO+HHH-^`+HO+H-2+H5\a+H=2+`HH=3H`+mHHApHH|3H53HqH uHH=3HHYA HH4H5T3H"H uH;H=23HH A HH<3H53HH uHH=3HHA`HH2H520H_+H}AH HH2H52H_+HLA0HH2H52Hr_+HAXHH{2H5[2H9_+HAHHR2H5*2lHAHH02H52BHAHH2H51H^+HeAHH1H51H;AHH1H5{1HAHH1H5Q1HAHH}1H5'1iH]+HAHHE1H508HAHH+1H50HbAHH 1H50H8AHH0H5x0HH uH'H=0HHA`HH8/H50kHA@HH0H5p0AHHH5P+HHtz1HIHu HuH(H5&H8nHMuH`Mt5AHH0H5/HtH u.H($H uH L%-AH=/HHMH /H[+HH5/xH /Ho[+HH5/sSH /HB[+HH5/N.H uHnH=?HHH GHP[+HH5b/H "H#[+HH5J/H HZ+HH52/H HZ+HH5/oH HZ+HH5/oJH HoZ+HH5.J%H iHBZ+HH5.%H DHZ+HH5.H HY+HH5.H uHH=-HH^H -H~Y+HH5].lH XHQY+HH5I.lGH L.H$Y+HH5W.G"H fHX+HH5<."H AHX+HH5#.H dHX+HH5 .H gHpX+HH5-H bHCX+HH5-iH UHX+HH5-iDH HW+HH5-DH HW+HH5-H uH@H=yM+11,HHH5]M+H=X+H[H uHH=I+11,HHRH5I+H=gX+H+H uHHH(HS+HHHxS+HCHH=Q+13,IHH uHZH5CS+L{BHHBH5(S+H=W+HH uHI $uLH=wL+11+IHH5L+H=tW+HI $uLIHbHYL+LHHLL+ID$HH=K+1>+HHI $uLdH5L+HAHHH5K+H=V+H#HMuHH uHHHH R+HHHQ+HCHH=J+*IHH uHH5Q+L@HHH5Q+H=$V+HtH uHoI $uLaHD$HD$ HD$(HD$0HD$8HD$@HL$(HT$ HHt$IlH=J*HHH5O*HeHMHuHHuH(H5.*H8?H(H9Ct,H((H5H8H H1HH HU+uH]HT+HuH(H5)H8;= HT+t& H5H(H81e HT+w'H5H[(H81)RAŅuH;(H5H81+tH(H5H81 H|$Hu)1H(I|$XH0u`raHuDHD$H|$ Ht Hu'HD$ H|$(HHH (raH=(`]HL$@HT$8LHt$0$x>H5nB+H=Q+1 HHt-H4H u,H߽a"aa aI$HL$(HT$ Ht$ -H|$0Ht Hu5H|$8Ht Hu!H|$@HHHQ+IHH-Q+H5F+LHI $uLH=P+H6R+H ?+H9Hu)H?+Ht HL%?+.H="G+m;IH=G+H?+H5?+>*IMAH5I+LHHkI $uLHQ+H3B+H +H5>+)HHH5XI+HHH H uHHQ+H-A+H >+H9Hu)H>+Ht HL%v>+.H=E+H:IH=E+HU>+H5V>+)IMJH5H+LnHHSI $uLHP+H@+H =+H9Hu)H=+Ht HH=+.H=jE+9HH=YE+H=+H5=+(HHH53H+HHH H uHbHO+H-d@+H U=+H9Hu)H@=+Ht HL%1=+.H=D+#9IH=D+H=+H5=+'IMSH5G+LIHH;I $uLHD+1H=3+H?+HHH5@H+H=1O+H H uH|*HHHB+H5`K+H@ HYA+H5"K+H" HF+H5K+H HH+H5K+H HH+H5K+H~ H?+H5J+Hq H@+H5|J+Hd HMC+H5J+HnW H@+H5HJ+HPJ HE+H5J+H2= HF+H5J+H0 HB+H5NJ+H# H7G+H5J+H HB+H5J+H H?+H5I+HH?+H5fI+H~Hg>+H50I+H`HYA+H5I+HBH>+H5H+H$H@+H5.I+HHwC+H5I+HH9D+H5I+HHB+H5DI+HHB+H5I+HH?+H5H+HpzHQ=+H5H+HRmH=+H5H+H4`HE+H5I+HSH/A+H5`H+HFH?+H5 H+H9Hs<+H5tG+H,H-C+H5^H+HHB+H50H+HHA+H5G+HbH@+H5G+HDH@+H5G+H&H@+H5G+HHaC+H5G+HH>+H5G+HH-=+H5F+HH>+H5F+HHG+H5"C+HrH5;+H=J+HTH uHO1H5H=zHH HoH+H5=+HHBH uHH==H+ H5 8+H="H+1KH H=G+HG+HuH57+H=G+1Hd H=G+HG+HuH57+H=G+1HE H=wG+HpG+HuNH5O7+H=G+1H& H=9G+H2G+HuH57+H=JG+1sH H=F+HF+HuF+H5+LH5+@H5+4H}5+(Hy5+Hu5+Hq5+Hm5+H޹1H_5+H= F+H5H=0HHc HpF+H5;+HHgH uH H=>F+11H5H=,HH H F+H5B;+HHH uHH=E+H3B+1H=++HHH5:+H= G+H[H HRH H߽ L%A*H=F+tAH=F+tLDH=PH=F+Ht7HHF+u' JHuH(H5H81H=UF+SL%A)L%AE18L%AM=AL%E1\L%AIL%^AE1nL%A|MsAL%fbE1L%RAHE1ơL%8A.L%!AL% L%L%L%L%L%L%L%L%~L%qmL%`\L%OKL%>:L%-)L%L% L%L%L%L%L%L%L%L%L%rn L%a] L%PL L%?; L%.* L%L% L%L%L%L%L%L%L%L%L%srL%edL%WVL%IH&L%A4L%A% L%A L%H uHrM?I6LX)H H߽L%A0H ޽~H=L%A(K;AYJA LYA?qA2A%AA ֡AdML% L%AGĠL%A0ŠL%AƠL%AL%AL%AL%rAL%[AL%DAL%-AxL%Aa'L%AJ3L%A3HL%A TL%AiL%AL%AL%uAL%^AL%GAġL%0A{ԡL%AddL%AML%<$L%A%1L%uA?L%^AML%GA [L%0A#iL%A$L%A%L%AL%s L%A\L%AEL%A.H[]A\A]A^H=A +HHA(HtHDH="+H"+H9tH(Ht H="+H5"+H)HHH?HHtH (HtfD=i"+u/UH=(Ht H=(hA"+]{f.HG8HHGHHGWl1~HGxHDf.Hu+10HtH_(HHPHHH(1H5X<+8ATIUHSHHHt HՅu!H1Ht[LH]A\[]A\Ðf.HGHHGHu#10HtH(HHPHfH(1H5;+8HHHt H1DHGHHGHxHHxf.HGE1LH@ uLGuLA1LAHL (HLM9tMu HxHuLHxH:H@HHHtHHHtHHHtHÐHt;Ht6H9HOHVH9t(\Ht 1~\HtÐ1H91DF\f9G\u΋GX;FXuATUSH_H9^H_ H9^ tmH_(H9^(tZH^0H9_0tGH_8H9^8t4H^@H9_@t!H^HH9_HtHFPH9GP\St[]A\1^`9_`uH_LfHtcMtH;I4$Ht_HtHSI9T$u1tHcH@HHI H:H1Ht%Ht HAH9Bt1x1Mk1I<YAVAUATUSHGLM|HIHVL-O(p NH A;MhLHHAH,H QP AEH=~9|HtTH[]A\A]A^ @9}@$[]A\A]A^H=\t1@3HHuH(H5H8襳HGHHtfDsAWAVIAUIATUSH8HIDd$pL|$xHD$HH$AH~hIAA1IHD$(I@IHD$HAHD$ HFHD$AWLLHATLL$8LD$ HL$0Ht$(jLl$Lt$XZH9uH8[]A\A]A^A_f.HD$H~ H<$~I9tJ1H~LLd$L,$LHLH޴MHLH9uH8[]A\A]A^A_ÐL9<$uH$H8HLH[]A\A]A^A_陴fAWMAVMAUATIUSH(L*Ht^H~CA1D$ HBHD$HFHD$L$ HT$LMHt$MHMH9uH([]A\A]A^A_H~1fLLLHMH9uH([]A\A]A^A_ATIUSHHHoH覵Ht9HPHHtHHHH[]A\fDHH[]A\H!(LHD$H:1HD$f.AUATUSH^HH9=IIH@H1E11L螱HLHDHHHTHI9~H[]A\A]DSHGHL@t+H(HLH81軷H؅u [H(HHH54H81蒶H+t 1[H1@AVIAUATIUHSHH蓭1LLHIHtwIH!4+H~%1I fDHHHHHH9u1L AE I,$tAm H[]A\A]A^LHD$kHD$1SHH HGHH|$HT$Ht$軴HH=(H9{VH9{PH{0H1+1H9=1+:tyH;=1+tgH;=1+tUH;=1+tCH9=1+t1H;=v1+tH;=l1+t H;=b1+H+H|$HT$Ht$ǫH{HtHCH/t`H{ HtHC H/t9H{(HtHC(H/tHCH@H [ߐ۬fˬfH{Hf0+98H P0+HH4H4H<DH/HCPZaP@HG苮9fDvfDffDVfDFfD6fD&@f.AWAVAUATUSHL.M~HHIEătLHB1DyHD$HFH$HT$H4$HEDHII9uH[]A\A]A^A_Eu;1H;H/tHII9tH;H/u&HII9u1H HHII9ufSHGHu?H跳H{HtHCH/tHCH[H@裪HtGu۬t[DUHHSHHtJHHEHHH@pPH+tH[]fHHD$3HD$H[]1ff.SHGHuoHײH{HtHCH/t@HHtHǃH/tHCH[H@f諩f蛩fHtGu˫t[ÐUSHHGXHo`H$H_hHt$~D$HOh$GXHtH(tHHtHmt,HtH+tH[]f.HH[]fHfDHfDAUfIATIUHSHH(HGXHT$Ht$HD$HG`GXHD$HGhHGhH|$HD$˨H{XHt$Ht H|$̦HD$HtHHD$HtHHD$Ht HHD$HT$IUI$HD$HEHH8HhHHT$HXHPHT$HPHtH/t=HtHmtAHtH+tH(1[]A\A]fH踧fD諧fH蘧fDH|$IEI$HEHtH/t8H|$HtH/tHH|$HtH/t(H([]A\A]+ff fHY(HWHHGHtH*t 1HH̦1HDUHSHH(HHH]HHHt H/tCHHHHHHtH/tH1[][H1[]fKfAVAUAATIUSHtuH=++H辭IH HHLEHHLMIH+t[L]A\A]A^Hȥ[L]A\A]A^@1豣HHthH=B++=IHtE萫HHt8LEHHLԪHmIuHbH+tfDHmuHAE1[]LA\A]A^fUHSHH(HHH]HHHt H/HH} HH] HHt H/tbHH}(HH](HHtH/t5H}PHtHEPH/tH1[]D蛤H1[]f苤f{fkgfDATIUHSHHHt HՅuAH{ Ht LՅu/H{(Ht LՅuH{P1Ht[LH]A\fD[]A\Ðf.H9t[HXHt/HJH~H;rt@1 @H9tt1HH9u1DHH9tHu1H;5V(ff.H9t7HGH;P(u>HGHuHtH(H@HuuHE(HH;I(t魣DfH*f.Gzt@ATUSHH9H(H9GHH9F ~ HSH9VHCHNH9@H@t H{ DF D8@ H{HA lHN0HHA@HEȃ`gDA9uEHH1u)1 L%9(L9ut1H[]A\L9uuH߉5HHH;(H;(uL9u4H+uH߉D$gD$뙐1H[]A\H耦fDHK0HH@HHDHt$&Ht$N7HHt$Ht$-@HvHD@Dff.UHSHHt:HHH}H/tH]H1[]@kH]H1[]fDH(Df.USHHHoH$H_Ht$~D$HO$HtH(tJHtHmt.HtH+t H[]@HH[]ڟf.HȟfDH踟fDHGHHGUSHHHGH;(tH@hHtIH@(Ht@H[]HGHHGHuHuH(H@HutHU(HH;Y(t齕DfH*f.Gzt@UHHSH蟗HtJHHEHHH@pPH+tH[]fHHD$ÔHD$H[]1ff.LVMH9~1DH9|HI9uE1fJTHBt>@t5H9tbHXHt4LIM~H;QtG1H;Tt;HI9uIM9u1@HDHH9tHuH;(uθUSHHH-(HxHEHxHtH/tMHH9t(Ht#H@@~BHǃtAHǃH1[]DKf0H=B1HHtHǃH/u@ATIUHSHHHt HՅuQH{ Ht LՅu?H{(Ht LՅu-H{PHt LՅuHx1Ht [LH]A\[]A\Ðf.SHH HGH?HT$Ht$H|$ۘHHPHHH;(HHB@HǃHǃHHH|$HT$HHt$PHxHtHǃxH/tH苒HCH [D蓑ސHǃH G賓f0H=R1HH:HǃH/%HHfUHSHHH=}+HGHHtHHt#HH[]f諘HfDH(HH5"H81HHH?H9t}HXHtOHJH~H;rtb1 @H;ttSHH9uH(HNH5nHWH81舗1+@HDHH9tHuH;5(uH@H٫(H5~H8ڐ1fDUHSHHGHHtHHtHH[]苗HfDH(H8QtH~(HH5H81–HG@HFH@t{H9t^HXHt2HJH~!H;rtC1H;tt1HH9u1DHH9tHu1H;5(ff.雏tff.HOD_@GDHt?H1HLHH9t8HQLNHLSHH( }w%IcLAGE=H }vу0 1CHK0p@ wDHTPp@ vHcHIW(|E1LeIG(HIG0AGEAGFCEo@AGDIG(9fDE1A8ODuE9o@uAGEA8GFuAGuIG(HIG0IG(fDKHSA<v dHADIG(IG({{HD$IG8HD$LfHCH|$AGDA)G0HD$JE1Ht$L8HHIL9l$uHD$H>IG85f.HAOE{:HCtfDH8:uHXfDI(}Lt`IGKHs1HLESX) VLHHuH5H(H81谈1fADtItLJtIL1LHIo8tAGDH}IO 1HHHtlHH)Io `L_IG(IG HAGEIG(IG0AGDAGFH(H5*1H8hH(H[]A\A]A^A_fDHќ(H5Z1H8(fDу0 HFvJЍVЀ wfDHLV0VЀ vtMA9~HcHcITH9,t ),ƒHH f A9uAGGH^IG(H(DH5BH81蠆Hb1ZH5̥H(H5ҩH81`HH(H5H81>Hm(H5ƨ1H8WHP(H5ѩ1H8:fAWAVAUATUSHH8HGH{HT$(Ht$ H|$HC`HHH{H{8ǀH+H|$HT$(Ht$ |H{PHtHCPH/tHH{XHtHCXH/t!HCH@H8[]A\A]A^A_D}f}fSheClHkuH{MDHS8L2M~K0Lc@E1t]ID$DyH$HBHD$H$Ht$HE1DII,$M9uHkD3}II,$M9tfDH}H/tII,$M9uHw@t GhH+X@f.AUATIUHSHvHHEHHhID$HHgL-`(p VP A;U1HLH;H QP AEH=~$9|*HH+t)HH[]A\A] @9}@$H{HH[]A\A]fH1[H]A\A]1HLHfDH=,G@1rfHHuHl(H5H8m|AUSHHHGHt)HkHUHH HcHHHDH+t HH[]HzHH[]fDkHcfDkCHH fkkCHH HfDHHH@`HtOHHtCHHt9H@H;6(HH5HHu3H3D~HuH(H5H8{H@f.ATUSHHGHPhH7HJH*HHH=(H9~#HVHrHweHuHtsH;(^H;(1HhhHHMHHHH[]A\fHuEHH fHHHCH;(t6H;'(uHCHH0HH9stHDHH[]A\fHSHH2H9vJHSHHH[]A\DHPH=(H5ޣH81H1[]A\HfH{HHHHqyHmkHHD$9xHD$THSH]@|HPHCH;w(H;(HhhHfHMHH[HEHhHt$HHt$HSHHMDf.HhIHdHzI,$HILHD$YwHt$2HCHHPfHtH2zHf.uUHH kfDHCHH;Q(tw1H;(rHCH1Hۓ(HH2wt,yHEH5 HPH1(H81}1HSHHS11Ht(Ht$H8xHt$tHt$|yHMHt$@f.HGH@pHtH@Ht f.SHHGt~HGHtHD$HHcllHtHfGH yHD$H=HD$AVAUATUHSHHLfHD$HuifI/h11AFALXH DDH=ZHE1&@HHtAFAVHH InDE1aH1LC_HHkI.AQA11LWKfH=zD[f.\HuHs(H5zH8XfDs_IH pAH=:H+HCWH iFH=E1H DQH=|ً0gH=~1IE7LYIAFAVHH HII.ALAH ìLH=`&fDHH *HWHH9HXHLFM~(H;N1fDH;LHI9u11lpxppphp`pXpPpHp@p8p0p(p ppp0HHtCHfDHH9tHuH; (s(NfHH=DMH n HD$H=3HD$Hff.AUATUSHH*L-8*HCHHXL%q(p VP A;$1HLHXH QP A$H=~L9|RHH߽}һH+tDH H=H1[]A\A]D @9}1X@$H0TfDH1LK[HHu}fH=vtW'f.KXHuHo(H5vH8T@f.AUATUSHH7*L-*HCHHoWL%hp(p VP A;$1HLHCWH QP A$H=~L9|RHH߽c}rH+tDH EH=oH1[]A\A]D @9}V@$HRfDH1LYHHu_}fH=uV'f.VHuH_n(H5uH8`S@f.AVAUIATIHcUSHUHIƅH-!o(HEUHHLd$~D$Lt$I$Hk(H-*D$CHELMaUL%n(H QP A;$1HHAHUp VP A$H= @9HaH+H}LtyHH[]A\A]A^fH-n(HE I.HmA}tqDH )1H=dHH[]A\A]A^@HPHH[]A\A]A^HPLT@$(fHPfDLxPeA}dDH1HWHHH+A}/H(P"H=sSjf.kTHuHk(H5sH8P@f.ATUSHHGH5m*HH=HHHEH5*HHH!HHEHHHEHHCH5*HHHHHHH HHtCRHH HhH=B*H*WHH+t+H[]A\fHNfDHNeHHD$NHD$H[]A\DA{DH ¤hH=D}H1[]A\@[VHKVHA{HEHuH9NVHA{HHtHNgHEA{HHA{HǐUHSHHHGHtAHKHHHQ0HtTH(tHk(HH[]@HMfDLtH H=X|H1[]fVt@AUATUSHH*L-*HCHHQL%j(p VP A;$1HLHPH QP A$H=~L9|RHH߽jH+tDH H={"H1[]A\A]D @9}qP@$HpLfDH1LSHHujfH=9oO'f.PHuHg(H5(oH8M@f.AUATUSHHw*L-X*HCHHOL%h(p VP A;$1HLHOH QP A$H=~L9|RHH߽Sj貲H+tDH H=zH1[]A\A]D @9}O@$HKfDH1L+RHHuOjfH=mTN'f.+OHuHf(H5mH8K@f.ATIUHSH]NHHtHH[]A\fHih(H8!LtMHEH5*HHHHHID$tBHELHHHt2HMHQHUHt&HHdHIWLHQɾiHt1H H=y#i|QH_Ht$ xIt$ fATUSHHGHHIHH5*HHHHLHGHx3HP1HHt H[]A\fHHH[]A\DHjHtJH H=Zx=H[]A\fPHjjfH߉t$ Ht$ HPHkd(H5,xH81OKUHSHHGH5*HHHHHCHHH@pHtKH@HtBH HQHHtAHt H[]DHHD$GHD$H[]fiHtFH ѝH=wH1[]DkOHLifH߉t$TGt$@f.AUATIUSH JHIAD$lH-d(HEJHHLd$~D$Ll$I$Hk(H-*D$CHELM1JL%c(p VP A;$R1HHAHoJH QP A$H= @9H1H+tkHH[]A\A]DH-c(HE#ImtyHmAit\DH 41H= voHH[]A\A]ÐHEHH[]A\A]f.I@$XfHEfDLEzA iyDH1HLHHH+AiDHHE7H=9hHf.IHuH`(H5(hH8F@f.AVAUIATIUHSH H4b(H^HD$HT$M)HHHH H HOHL LOL@HHa(SHךH5pH81KX?ZH š H=vt1H []A\A]A^fHV I|$HHHuE1H*AHH ]*jQPjQHPj5*WH=:`(<*HPHH+uHHD$CHD$H []A\A]A^f.HHHLAH5|*LIHVIHHD$HMH|$HT$H+t2] H ?HD$H=EsHD$fDHHD$BHD$@oFL)D$AH~HT$HLL%H5U*賥ap?HHFLHD$@I4H5*LHVGHtHD$IFI\$AVAUIATIUHSH H_(H^HD$HT$M)HHHHYH IHOHҙL cLOL@HHa^(SHwH5mH81IX]<ZH P H=q1H []A\A]A^fHV I|$HHHuE1H޷*AHH *jQPjQHPj5:*WH=r_(*HPHH+uHHD$@HD$H []A\A]A^f.HHHL>H5̺*LIHVIaEHD$HMH|$HT$H+t2~ H <HD$H=pHD$fDHHD$3@HD$@oFL)D$V>H~HT$HLLŜH5R*aM<HHFLHD$>I4H5*LHVmDHtHD$IFI\$AVAUIATIUHSH H\(H^HD$HT$M)HHHHH HOH"L LOL@HH[(SHH5JkH81PFX;ZH b H=voQ1H []A\A]A^fHV I|$HHHuE1H.*AHH *jQPjQHPj5ھ*WH=[(*HPHH+uHHD$L>HD$H []A\A]A^f.HHHLKHtHD$If.AVfAUIATIUHSH0H`W(H^)D$HT$ M)HHtyHH<H ,HMHSHML@HNV(H5eL H81@X:ZH l H=lj1H0[]A\A]A^HV(IL$ ID$HHHuE1H=iU(AHj5*5*j5)*QHj5U*Pv*H;HWHPHH?HyHHD$8HD$H0[]A\A]A^HV~tHtHHF(HD$ ID$ LHD$ID$HD$6IHtoHHt;MHD$HL$HT$ f.H^Lo6IH5u*LIHV>Y^:KI\$AWfAVAUATIUHSH8L5T(H^)D$Lt$ H:H HHV(ID$ ML$HHHuAH=T(HHAVj5*5Ŭ*j5ͮ*Pj5**HPHH+HHD$5HD$H8[]A\A]A^A_I\$HHCH 3HMHSHfL@HUR(H5aL H812HD$H=_ HD$H&^f.HHD$S-HD$@HFHHD$w+IIHT$HLLكH5>*!2Df.AVAUATIUSH0Hj*H S*H-,J(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHIt$I$H=I(AHUj5*Pj5ͤ*QHj5Y**H;HWHPHHHtH0[]A\A]A^fHHD$+HD$H0[]A\A]A^ÐHLHH$IH HkHIHH>H(I?SIH5WH8L yA12X1ZH / H=]ӺH01[]A\A]A^@HIH{HtHMHF(HD$ HF LHD$HFHD$*)IHHM~.H5*LHV{/H#HD$ IMLL$HL$HT$ H*$DHH(IM~H5*LHV/HtHD$IM~H5*LHV.HWHD$IDHtKz H 1HD$H=[iHD$H&^f.HHD$)HD$@HFHHD$'IIHT$HLLCH5:*职l1Df.AVAUATIUSH0Hʟ*H *H-F(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHIt$I$H=F(AHUj5*Pj5-*QHj5**H;HWHPHHHtH0[]A\A]A^fHHD$C(HD$H0[]A\A]A^ÐHLHH~IH q~H~HIHHD(I?SIH57TH8L A12/X0ZH D~H=Y3H01[]A\A]A^@HIH{HtHMHF(HD$ HF LHD$HFHD$%IHHM~.H5g*LHV+H#HD$ IMLL$HL$HT$ Hz*$DHH%IM~H5*LHVt+HtHD$IM~H5B*LHVN+HWHD$IDHtK* H |1HD$H=6XɵHD$H&^f.HHD$&HD$@HFHHD$7$IIHT$HLL|H57*0Df.AVAUATIUSH0H**H *H-B(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHIt$I$H=@(AHUj5f*Pj5*QHj5*S*H;HWHPHHHtH0[]A\A]A^fHHD$$HD$H0[]A\A]A^ÐHLHHzIH zH;{HIHH@(I?SIH5PH8L 9|A1+XV0ZH zcH=0V蓳H01[]A\A]A^@HIH{HtHMHF(HD$ HF LHD$HFHD$!IHHM~.H5Ǜ*LHV;(H#HD$ IMLL$HL$HT$ Hڙ*$DHHo!IM~H5`*LHV'HtHD$IM~H5*LHV'HWHD$IDHtKH ?y0HD$H=T)HD$H&^f.HHD$s"HD$@HFHHD$ IIHT$HLLyH5V3*AB0Df.AWAVAUATIUHSH(L5U?(H^HD$Lt$HJH0HHV ML$HHHuH7*H=x>(AHH *AVjQPjQHPj5ڡ**H;HWHPHH=HHHD$G!HD$H([]A\A]A^A_I\$fDHHwH |wHOHyL vLOL@HH=(SHwH5-MH813(X/ZH EwH=S41H([]A\A]A^A_LIHHHHHH5ɠ*LIHVI%HD$H MLL$HT$kHt3^H v/HD$H=FRyHD$=HHD$HD$@oFH)D$H~HT$HLLvH50*諂\/fHFHHD$I'H5*LHV $HtHD$IG|f.AWAVAUATIUHSH(L5u<(H^HD$Lt$HJH0HHV ML$HHHuHW*H=:(AHH *AVjQPjQHPj5* *H;HWHPHH=HHHD$gHD$H([]A\A]A^A_I\$fDHHtH tHOH%vL sLOL@HH:(SHtH5MJH81S%X=/ZH etH=IPT1H([]A\A]A^A_LIHHHHHH5*LIHVI."HD$H MLL$HT$kHt3H sf/HD$H=O虬HD$=HHD$HD$@oFH)D$H~HT$HLLsH5-*\-/fHFHHD$I'H5*LHV-!HtHD$IG|f.AWAVAUATIUHSH(L59(H^HD$Lt$HJH0HHV ML$HHHuHw*H=89(AHH ?*AVjQPjQHPj5*,*H;HWHPHH=HHHD$HD$H([]A\A]A^A_I\$fDHHqH qHOHEsL pLOL@HH7(SHrH5mGH81s"X.ZH q9H=Mt1H([]A\A]A^A_LIHHHHHH5 *LIHVINHD$H MLL$HT$kHt3H p.HD$H=L蹩HD$=HHD$HD$@oFH)D$>H~HT$HLLpH5**|\.fHFHHD$I'H5ّ*LHVMHtHD$IG|f.AWfAVAUATIUHSH8L56(H^)D$Lt$ H:H HHV(ID$ ML$HHHuAH=|6(HHAVj5[*5u*j5e*Pj5D*F*HPHH+HHD$HD$H8[]A\A]A^A_I\$HHnH nHMHSH[oL@H5(H5DL KpH81X5.ZH nH=J覧1H8[]A\A]A^A_DLIHS~qHtHQHF(HD$ ID$ LHD$ID$HD$IHtlHHt8MLL$HD$HT$ oHHIH5ݒ*LIHVHD$HH5Г*LHVHD$HIM~H5V*LHVHt~HD$ ISH+t24H ^m^.HD$H=IHHD$fDHHD$HD$@HFHHD$I@HT$HLLhmH5'*yy#.HH2(H lH5BjL 1nAHmH81~Y^.fAWAVAUATIUHSH(L5U3(H^HD$Lt$HJH0HHV ML$HHHuH*H=3(AHH *AVjQPjQHPj5**H;HWHPHH=HHHD$GHD$H([]A\A]A^A_I\$fDHHkH |kHOHmL jLOL@HH1(SHkH5-AH813X-ZH EkH=G41H([]A\A]A^A_LIHHHHHH5*LIHVIHD$H MLL$HT$kHt3H j-HD$H=FyHD$=HHD$HD$@oFH)D$H~HT$HLLjH5$*v\-fHFHHD$I'H5*LHV HtHD$IG|f.AVAUATUHSH L%z0(H^Ld$H HHHHYiH IiHIHHmhH?L jHLIL@HH]/(SHiH5>H81X"-ZH iGH=E1H []A\A]A^fDHVHHHuE1L ۈ*H=|.(HH*HATjPAQjPAQjP*HPHthH+uHHD$HD$H []A\A]A^LIHHHFHHD$HXHT$NfH+t2H hK-HD$H=DHD$fDHHD$kHD$HT$HLLYhH5!*Vty-HhIH`H5U*LHVHtHD$IF5fDAWfAVAUATIUHSH8L51.(H^)D$Lt$ H:H HHV(ID$ ML$HHHuAH=T.(HHAVj5ې*5*j55*Pj5܎*Ɣ*HPHH+HHD$*HD$H8[]A\A]A^A_I\$HHsfH cfHMHSHfL@H,(H5&<L gH81%X,ZH 7fH=C&1H8[]A\A]A^A_DLIHS~qHtHQHF(HD$ ID$ LHD$ID$HD$| IHtlHHt8MLL$HD$HT$ oHH/ IH5u*LIHVHD$HH5*LHVtHD$HIM~H5ֆ*LHVJHt~HD$ ISH+t2BH d,HD$H=AȝHD$fDHHD$+HD$@HFHHD$O I@HT$HLL eH5.*p,HHt*(H *dH5:jL eAHdH81Y^,fAWAVAUATIUHSH(L5*(H^HD$Lt$HJH0HHV ML$HHHuH*H=*(AHH *AVjQPjQHPj5*l*H;HWHPHH=HHHD$ HD$H([]A\A]A^A_I\$fDHH cH bHOHdL bLOL@HH)(SHcH58H81X,ZH bH=?贛1H([]A\A]A^A_LIHHHHH( H5q*LIHVIHD$H MLL$HT$kHt3H bA,HD$H=?HD$=HHD$[ HD$@oFH)D$~ H~HT$HLLIbH50*+n\,fHFHHD$/ I'H5*LHVHtHD$IG|f.AWfAVAUATIUSHH8L5'(Hn)D$HD$ Lt$(HqHWHHV0HK(HC LKHI$It$AH='(HAVj5*QHj5*Pj5t*~*HPHH+HHD$ HD$H8[]A\A]A^A_fDLIH5&*LIHVfHD$HHk@HH_H _HMHUH`L@H&(H55L KaH81X+ZH _eH=<覘1H8[]A\A]A^A_DLHfIHpHcHHF0HD$(HC(HD$ HC LHD$HCHD$IH ~2H Hu+MLL$HD$HL$ HT$(&HM~HT$HLL_H5,*Wky+fH+tbH ^+HD$H=;舗HD$fDH51*LHV HwHD$(IdfDHHD$HD$@HFLHD$IH5*LHVI HD$HtoIH5T*LHV( HD$ Ht IHH#(H ]H53jL /_AHR^H81|Y^v+HH#(AH5H3jL ^H M]H8H ^17_p+AXf.AWfAVAUATIUHSH8L5$(H^)D$Lt$ H:H HHV(ID$ ML$HHHuAH=\"(HHAVj5*5|*j5*Pj5**HPHH+HHD$HD$H8[]A\A]A^A_I\$HHC\H 3\HMHSH\L@HU"(H51L ]H81 X*ZH \ H={91H8[]A\A]A^A_DLIHS~qHtHQHF(HD$ ID$ LHD$ID$HD$LIHtlHHt8MLL$HD$HT$ oHHIH5%*LIHVe HD$HH5*LHVD HD$HIM~H5|*LHV Ht~HD$ ISH+t2`H Z#+HD$H=8蘓HD$fDHHD$HD$@HFHHD$I@HT$HLLZH5~*f*HHD (H YH5/jL [AHZH81 Y^*fAWAVAUATIUHSH8Hy*L5 (HD$H^HD$Lt$ HVHDH*HHHdYH TYHOHZL nXLOLDHHk(SH]H5/H81 Xk*ZH YH=6 1H8[]A\A]A^A_f.LML$HHHuAH=(HHAVj5*5x*j5z*Pj5z**HPHaH+uHHD$HD$H8[]A\A]A^A_f.HV(ID$ efLIHsHtHHF(HD$ ID$ LHD$ID$HD$IHHM~.H5y*LHVHHD$ IMLL$HD$HT$ fHHOIH5}y*LIHVHD$HM~H5y*LHVHbHD$IOH+tJH W*HD$H=4HD$fDH0^f.HHD$SHD$@HFHHD$wIHHT$HLL;[H5*!cX*\I\$DAVAUATIUSH0Hjv*H Sv*H-,(H^HD$~D$HL$Hl$ D$)D$HpHV~$HHHV(HN LNfIHHHI$It$AHH=*UjWPj5w*QHjWH=(*HPHH+tH0[]A\A]A^fDHHD$HD$H0[]A\A]A^fHLHH$UIH UHBVHIHH>(I?SIH5*H8L yVA1X(ZH TH=2ӍH01[]A\A]A^@HIH{HtHMHF(HD$ HF LHD$HFHD$*IHHM~.H5v*LHV{H#HD$ IMLL$HL$HT$ Ht*$DHHIM~H5y*LHVHtHD$IM~H5u*LHVHWHD$IDH+tJ^H ~S(HD$H==1hHD$fDH&^f.HHD$HD$@HFHHD$IIHT$HLLTH5 *_(Df.AVAUATUHSH L r*L%(H^LL$Ld$HDH2HHHHcRIH PRHVHIHH}(I?SIH5(H8L SA1XZH #RQH=01H []A\A]A^LHHHuHq*H=x(AHH {*ATjQPjQHPj5s**H;HWHPHHHuHHD$ HD$H []A\A]A^fHV LNfLIHHtmHHIHLL$HT$HH PHD$H=.HD$oFH)D$H~HT$HLL8UH5H*3]{gHFHHD$?IMSH5,r*LHVHtHD$IFHHD$HD$2fH5Qr*LHV]HtHD$If.AWfAVAUATIUHSH8L5(H^)D$Lt$ H:H HHV(ID$ ML$HHHuAH= (HHAVj5ky*5o*j5x*Pj5Dy*V}*HPHH+HHD$HD$H8[]A\A]A^A_I\$HHOH NHMHSHOL@H(H5$L [PH81X ZH N&H=,趇1H8[]A\A]A^A_DLIHS~qHtHQHF(HD$ ID$ LHD$ID$HD$ IHtlHHt8MLL$HD$HT$ oHHIH5w*LIHV%HD$HH5w*LHVHD$HIM~H5fo*LHVHt~HD$ ISH+t2LH nM4HD$H=+XHD$fDHHD$HD$@HFHHD$I@HT$HLLMH5~*YHH(H LH5"jL ANAHqMH81Y^fAWAVAUIATUSHHHHrs*HHHds*HEHH=o*OHHHmHCH-*s*HHHHIMI<$H+yIEH5u*LHHHHHCH5"m*HHHHHHHHHVL=t*H(HLH9EHH7HHmIHI^IELH5@t*HHHHHCH5_l*HHHIMH+<HHLd$~D$Lt$I$Lx(D$@I,$tMHH[]A\A]A^A_HzLH+e@HLfDH AdAHfDHmuE1HnMtI/tCH IDD1H=%(ȂM+-f.H([LfDHH yIHH='cfDE1AMAD@I$H(H8qHAAPHfDHHHlKHH H_1H='豁@HAAaf.HHAdA^fDHAgAH@IGLH(H8{HLAlA@SII.uLJHAnAHfI.LAqAfH(HH5EAAPH81IHH]1HHEHH (H8H+)HI/AAqfH FqH=F%P@UHSHHGH5o*HHHHHCH5 h*HHHHH HQHx-HtHQ (HH[]fDHfDHt&H ?FH=$.H1[]DH߉t$ t$ fDsHD뫐[fDSHHGH5n*HHHHHCH5g*HHHH HQHHt3HtH[HHD$HD$H[HtVH ?EH=#.~H1[fDHXfkdfDH߉t$dt$@f.AUATUHSHHGH5Xm*HHHHHCH5Oi*HHHIHHHMHkHEH5pm*HHHHHHEH5l*HHHHHEHHHEHHCH5h*HHHHHHHHHH=m*HHHEHHHEH5sm*HcHHHHHHLHHEH\HHEI,$HIHPHHHt.HL[]A\A]HxHhHXHL[]A\A]f.H8H(!HsHHAHH vBDH=R!e{MNI$LE1H3fHLH{H`H AYE1H= zHL[]A\A]f;IL[AH'H A[H=| z|f.h޺LH gAH=H [zI$E1H5HjHEHuHH{H8m_fDHpDHvH @H=yZfDUHSHHGH5e*HHHHHEtYHCHHHHtIH HQHHtBHt H[]fDHHD$HD$H[]HH}iHt>H ?H=xH1[]DiӐ;H<H߉t$4t$@f.AVAUATUSHGHH;( H;U(HOQE1 Lat{H-(p VP ;UL1AHx WP EH=~9|%HrH[]A\A]A^fD @9}Y@$Lo|LL-m*M$H-(p VP ;U1LHAHp VVDLwLgLo H-(p VP ;UAFu6A~$Cu/MIIEIcVIH9WHK0HS(HK0HS(1MtIEIHE1E1LQL1R1PAUj9H0H=p VP E=Z@9@$fDHHt01z@H= t/1[D2H(H5 H86H= 41DLH1[]A\A]A^H= Y1AVL11LB7HLLL,7H@AUIATIUSHH(HGH;(|H;](HHI$L`IELh HCHLMoL-(p VP A;Uh1HHAI}H QP AEH=9MQHmH+H(L[]A\A]fDHWBፁ!Ht$~D$1Ll$D$)D$LB uH{Ht$AIfD @9`@$R@HH(L[]A\A]fH=Ht$~D$Ht$HT$D$)D$LIE11HHsIH=1@E1{IHuH'H5H81ɺAIfDAUATUSHH0H1HHLHcClM,M9sBI<$%HHtmHEH;E HHUHHHEH+t5IM9wHHHmu\HHD$'HD$HHfDAxHm/H<H 9DH=wZr1H[]A\A]DHH-ZHmuHH+Ax<uHH)f*L-V*HCHHQL%J'p VP A;$1HLH%H QP A$H=~^9|jHHAx:NIH+ZAx<<fD @@$DAxH1LHHkAx:zH=eHuH5'H5^H86@HHUe*LOL9IXHLAM~#H;A]1 H;DMHI9uHWxHLH>HGHHFlMKLL9H9AD L9AH9AE D!M9AL9AE DGo )No)VPAo)tjob)f oi)n`Aop)tFoz )~0oy )~pAo` )t"oB0)F@oI0)AoP0)9tHJHcHpyH;0utH'HHİ[f.Hq'HHİ[@nH +|HD$H= 6eHD$Hİ[+f.AWAVIAUIATLUHSHHHD$XHt$pHD$`HD$hHI~`HHyH$@HD$0H$AIFHH4$LP0HH(IHhIcVlHH9r7HH9#H8xHNX*L-H*HCLMvH-o'H QP ;U1HLAHJH QP EH=P9VHH߽0r;H+XH A*AsH== scfHT$`HD$XHHHt$XHD$`HD$hHHLpH@LhH $HL$h*fX~$H|$0L,$$)$]Hfo$H8LxLhLpHt H/Mt I/Mt ImHD$XH{XLs`LkhHCXHD$`HC`HD$hHChHt H/{Mt I.\Mt ImlHD$XHD$`HD$hH (DH= b1fH-'H}~IN`ALcHL$(AMlD$IH|$HHL$LHD$HL$HHHtH6'H2H9MImHSLFfI$ID$xHJ4I$JH(J<f.MIImpLt$T$rT$t$DH]EHH fHHrHL$HHHL$NHHL$HL$H'H9EHHL$HL$HtHHL$HD$̿HT$HL$HH*hHHL$蘼HL$QfDH9IlHHEc@H>HHL$aHL$H@LؾIHFH=M=*HMHH<I,$.H=W?*H\$(HGH;'gH;:'HWBfLbE1 詿L='H QP A;XHLAIH QP A=@9}M>H+LAA"I,$u\1hf]EHH MfDHi'H5ZAAH8fDDDH H=|GJpIm0H H=tE1JHt HmtH8L[]A\A]A^A_f.LIHbH=};*H}HHXI,$nH==*H\$(HGH;'AH;j'[HWBDLbE1 uLwٽL='H QP A;HLAI诽H QP A=x29MH+jLA^A I,$L`{HHHHd'H5AAH8!<@HLwA29ؼ@$uLиLHcIHH@HHD$H=H4Ht$( IMAAH+qHId@H8@DHHH;I듾p7߻@$IAAAAI,$QqH:IM AAY1H oE1H=AFOHt$(IH=A輺AA莻HH'H5'H8ATA AVAHt$(IH=5AYAAHHw'H5H8xH 'aHݾpo1Ht$(aIfAUATUSHHGH;'Ht$H;Q'HWBHHjE1 tfL%'H QP A;$HLH藹p VP A$H=~09|6HHH[]A\A]DLof. @9}A@$Ht$v8HHH[]A\A]DHt$AH@H=|=@1ffKHHuH'H5H8轵5LJE1 uLGHt$uLAH1ɺLAHAWAVAUIATUSH(HGH5$,*HHHHHCH;3'L{MHkIHEH+L|$H 'HEHL$H9H;4'HUBHZE1 裷L5'p VP A;*LLIzH QP A=s@9pM$I/LJMH?fH("H 'HL$H9+H;\'HKQE1 HiɶL5'H QP A;L1I衶H QP AH= @9MHMyHm&H=G2*H50*HGHHHHH=5*Ll$HGH;D$#H;|'HWBHZE1 uLL5'p VP A;bLLIµp VP A={29~MGHEH;'L}MLuIIHmLLL4I/HImHsI.HL螰HuI,$H+H([]A\A]A^A_ÐLl$H;D$`H;A'HUBHZE1 谴L5'x WP A;LLH致p VP AH=9HImILVHH@9@$t@Lc9LeO29@$L} @9M譳@$?@L訯jH蘯!HHD$胯HD$H([]A\A]A^A_LHD$[HD$7LH+@$fL`2IMmI$AHI$u LHtHmt,DH bH=Q>H(1[]A\A]A^A_H踮fDA苶HTI$AHI$xfD[HLH-3*M4L5-'H QP A;1HHAIx WbDHt$)ILH%1II/I$LAHI$I,$7AH+H荭H=yS˱H>H;'H5dH8<#LHe0HDLJE1 uLGHt$?LAIfLcHkL{ 述L5'p VP A;FAD$u A|$$CHK0HS(1MtIGIHLE1E1QH1R1PAWjJH0INH QP A=2H9$@$Ht$HFI,fDsHH+uHALJ1 uH}Ht$AIDH=fHt$HH fDH=i@I/HQLCDfD裯HuH'H5@H8fDLB1 uH}Ht$WAHqDH=L@1MfHHuH'H5H8荫@1DH=iAH1HHqIH=2譭&Mt>IGIcT$IH9HK0HS(nH'H5 H8AT$uLH11IZ1ɺLAI1ɺAI1ɺAHLHLfI LA`f.AVAUATUHSHH LfHD$H8IH^HH}H/H]HCHH5^(*HH6IM8H5LYQH5L"IHAoEH5$*EAoMM(IE HE8HCHHHHHHH/t!H1I,$t!H []A\A]A^@+fLD$D$H []A\A]A^fDIMtIHFHHD$ IMH\$蛯IH hH=78fH+*L5b*HCLM9H-2'H QP ;U1HLAH H QP EH=39;HH:H+&H OH=C6qfHfDHxH@H訤H5&*LIHVIHD$HzLc@HH'HH5oATL AH HH81_X:ZH qH=`5fD @D諩@$fH߉T$ t$蠥t$T$ H1L趬HHH=dߨ'HuH4'H5]H85PHT$LLLpH5M)C/fDHGtkHGHHHwUH5 HcHDGHËGWHH fG@GWHH H USHH@`H"HHHHH@H;'fDHCHHHH5J HcHHH5bHHHfH+trH[]CHCCSHH fCSHH HHH5"HHtBH@>fDHHD$[HD$wHاc讧HHOH@`HHHHHHH'H9EHEtHEHPHwiH  HcHHW'HmHHD$蟢HD$EHՋEUHH HËE뾋EUHH HǦHhH'H56H88MHԾ'H5H8AUIHATIUHSHHWH='*誦HHx'*H@IEI$HtHHH[]A\A]D#HuH=7'*HHGHHt'HHuHÿ'HH5H81ϨXHAWAVAUATUSH(H-'H^Hl$HHxHvH^H5{ *HFHCHHHHH(^HCH5; *HHHIMH5L3I,$H=$*wH\$HGH;'qH;¾'$HWBLbE1 1H-*'H QP ;UHLAHH QP E=`@9HTH! A"_H GD1H={6/~@HHH HIHH(H?L HLIL@HH'SHH5H81跦X^ZH H=1.H(H[]A\A]A^A_@HH=a#*HCH9#HXHHJH~&H;z1@H;|HH9uHU$*H V*H9HH=*HHL-)*MHIEH;'GH;'H\$H;'IUBLbE1 uMu%H-'H QP ;UlHLAIH QP E=429MLHEHM3HEH_H="*Ld$HGH;8'H;'HWBHZE1 uLobH-['H QP ;UILLH9H QP E=29H.I,$L fDHH9tHuH;='fHH=!*HLoa2L舜HxIH$HHFHHD$艚HH\$fDHѸ'H5H8赚fIH@XIT$`Ml$hAD$XID$hHtHHtHMtIEI|$XM|$`H$~ $Mt$hH$Ml$h $) $AL$XHt H/Mt I/Mt I.H=I|$Xfo$IM|$hID$`Ml$hAT$XHt H/2Ht H(Mt I/MLI.H=H*LH=3*fDÞ@$f.@DH=$LHmAe_H{fD@6DHX;UfDHxHHLLHH$H$fDLbLЙCÙ'fDH=*HB *H5C *IHT$HLLH5=)0^fDK@$if;@$fHxIHH5*LHVٝHzHD$IEfHt$!HfˠIHLIDLHHI,$Ah_L膘8Ht$H,H=Yԛ$lAW_`MuMImIHEImDHLHͱI.ILH=*I;@Ht$LIfDHt$HHt$LIfDHt$Hf諛HH'H5DH8{H= 脚S[H>H˲'H5H8̗#L迖H'H5̹H8褗Df.AWAVAUATUSHHHHH *HD$(HD$0HPHFHD$8HH9HXIH3H~H~&H;N1@H;LHH9u蟔H$HfHL0Mt L;5>'HPHuL`HhMMtI$HtHEA@f@ϘHcsHD$(HeAH'HHD$0,IHD$8HcHD$(HH s*I_IG HD$0HD$(IG(HAHD$0LMdHL$HL$p VP Hձ';eL1HAI躘p VP H'=@9MVL|$0H|$8H/"H+Ll$0HD$8HD$0Mt I.Mt I,$Ht HmIULHBHHHHt9HH[]A\A]A^A_f.HH9tHuH; 'HH$ԓH$HH[]A\A]A^A_ÐL`HhIH'H-29p@$Hh[fDLHL8H(A rHD$(H|$0Ht H/=HD$0H|$8Ht H/0H$L=m*HD$8HPXI9HIGH@HJ@A@HXHcHQH~$L;y^1 fL;|MHH9uAH$L4$~$L$$HH8$HPHHHhHt H/Ht H*Ht H)H|$(Ht H/H|$0Ht H/H|$8Ht H/DH DH=c HHP1GIOH'IwH9tb1 fDI;TtQHH9uE1HHL$LL$HT$u*LL$HL$HT$IL9KtH9u@H DH=M H<$HL$(HT$8Ht$0L-'H|$(IEH/HD$(H|$0H/rHD$0H|$8H/JHD$8H$L4$~$HL$$H8Lx$HPHhHt H/Mt I/]Ht H*fHHPLA4rH|$(HH/ŏ軏fD諏fD1LHÖHD$0HA?rDH=qHL$HD$0A?rb@諓HuH'H5HH8 fDfDfD\fDA`rALH赏LH$褎H$H萎HHPL`H$wH$RfDHL$H$ZHL$H$c@HH $I<$cImHHHHtH=)H5HHHvHH9I$ID$H;'H;['Hl$H;'3IT$BLjE1 uMt$~Hw'H QP ;HLAIUH QP H= @9MiLHmkHHMHHoLRImgH "H=] I,$uLzfD1H8[]A\A]A^A_HkHHM'HH5UL AH H81؁XZH H= oGHH Ll$ H1 hH=j)H5+)HGHHHHHEH;'0LuM#H]IHHmLLH莓I.IHHMHHL;-'t/IEH;'LL0HH(}I$LI$HLHD$fDHHD$kHD$wHxpcNpHHOH@`HHHHHHHt'H9EHEtHEHPHwiH 4HcHHHmHHD$?kHD$EHՋEUHH HËE뾋EUHH HogoHhH'H5H8kMHt'H5H8kAWfAVAUATUHSHXH'H^H<$)D$0HD$@HD$HH HH\HF0HD$L}(H] LuH)H(hE111AHLHH% H83H)L(hE111AHHAIH H8H_)L(hE111AHLAIH H8y AD$;EH)H5)H9pKH)HHH)HOHCH5,)HHHIM{H+H52)HuiHHHڄ'I9GXHLM蚲HH+MHI.H;'H;'>H;ׅ'1HHT$mHT$$ 1E1D$2>t @LpfIH5&)LIHVlHD$0H H]@HHcH SHMHSHL@Hu'H5L H81oX<ZH ' H=1HXH[]A\A]A^A_fHD$#fDHhgjHHT$SgHT$fH*s  H)H5])H9pHD)H;HL=0)MIGH5)LHHAHHI/ H5)L5gIHYH'H9CLHIZHI/ H8I. H;ۃ'AH;P'Du H;' AƉD$H* L$H)H57)H9pH)H HH )HHBH5)HHT$HHHT$IM#H* H*)H5)H9pyH)HHH~)H}HCH5)HHHIHHMHH H)H5 )H9pH)HHH )HdHAH5)LT$ HHL$HHHL$LT$ IMH)8 IFH;'11ɿH;'H;'*HL$ LT$t$(hLT$HL$ HIT HHct$(tHHHHELc1IlLLI$OdLT$ LD$aLD$LT$ HI I(QI.W IBH;'!E1H;-'H;'z L\$ LT$KgLT$L\$ HI MtLpLct$Hc1LLLD$O\IEMlLT$螯LT$LD$HHI(I* H'I9GHLHL$MHL$HH) HI.+ H;<'H;'? H;'2 HgAƅ H+ E[H$HIH='HHpHHL 9)j5)AUj5W)ATjHT$Hx)HH@HE1$ D$?1fLHT$aHT$?fHaHaA;E;3LIHA HHH\ LHD$Hu Iɚ; Hɚ; IH9D$T H$LLILT$cLT$HHD$ 5 HcLT$L\$ HI H|$cLT$L\$ HH H4$HE1LjAH=}'5D)HPj5)AWj5)ASHT$XL\$`LT$P)HPL$L\$HHI*CI+qI/OH+Hmt@I,$HtU@ImL `tH_z1HH$_H$HMtI,$uL_Mu)DHIHHcHHF0HD$HHE(HD$@HE LHD$8HEHD$0]IH3~7HLHu0MHD$HLt$0H\$8L|$@HD$HM~HT$0HLLǻH5q) y<>@$ E1E11D$0=1E1@E1E11Mt I/Ht H+Ht H*HtH)t`MtI.tmMtI(t:$t$H H=uHtHmT1bDL0^fDHLD$^LD$@LLD$^LD$|fLHL$ LD$HT$]HL$ LD$HT$DHHL$ LD$HT$]HL$ LD$HT$DHHL$LD$~]HL$LD$H=)H;=z'H5)HFt H;q{'^eHHH=)HH$H$HHH*?H=H+ $ 11E1D$c>H\E111E1$ D$?=f11E1$ D$N=DHHT$aHT$D$'$ 1E1D$O>qfIF@=HL$~D$Ht0HHl$LLT$(HL$ D$Ld$@)D$0HL$ LT$(HIHH)HL\$ LT$[LT$L\$ H5)LHV=`H\HD$HIIfDHLT$S[LT$fHFLHD$0oYIH5U)LHV_HD$8Hb IH5)LHV_HD$@H, ID$>$ fDI*91E1LHL$ LD$L\$ZL\$LD$HL$ M IHI1HLHL$ LD$HT$^ZHT$LD$HL$ f.HH$4ZH$L ZbHZrH=)HB)H5C)޷HfD1E1$ D$>LHT$YHT$f[aIWDLHT$CYHT$fHLT$#YLT$fLL\$H$XL\$H$LH$XH$LH$XH$z1$ D$!>f.HXr1M$ D$/>IOHMwHII/aHHLHL$ rHL$HH)qHHT$XHT$ZIB@=qLt$~D$Ht0HL\$LL\$Ll$@D$LT$)D$0LT$L\$HH Mt I.; I+LHL$LT$WLT$HL$dfLL\$ LT$^WL\$ LT$[H$ 11E1D$p=W[H$ 11E1D$z='S[H}$ 11E1D$=H=9)H;= t'H5)HFt H;t'^HHH=)HCIHMHHL菽I/$ 11E1D$=Rf.HV5LHL$UHL$fH51)H=z)1;HHHH+x$ 11E1D$=fLULLT$HD$ nUL\$ LT$H=)H)H5).I>fD1E1$ D$u>OH=)H*)H5+)H fD11$ D$9>E1E11E1D$=$ HT.HL$~D$Ht0HHl$LLT$(HL$ D$Ld$@)D$0藼HL$ LT$(HIE1D$>$ rf.\HT$IrfDD$=1$ IE1E11HIe1f.H=)H@H=q)I@1$ D$;>f.{[H1$ D$w>f.LHD$SSHL$LT$6@1$ D$>>bf.D$=$ @H=)H)H5)ްHfD1$ D$z>Lt$~D$Ht0HL\$LL\$Ll$@D$LT$)D$0LT$L\$HHD$>I*A$ D$>$ 2$ZILE1$ D$L>J$ D$|>IE1E111nH=)HwHKHHLsHIH+LHLHL$wkHL$HH)HHT$QHT$E1E1D$>$ H= )H^)LT$H5Z)5LT$HMH=)LT$'LT$H/YLT$ HL$IXE1D$>$ $LHL$PHL$INHI^HHI.HCI1һ!MrMIZIHI*HCI1һD$MGMRMwIII/HLLHL$LD$iLD$HL$HI((LHL$OHL$1M$ D$>1D$>$ HHWl'H5{L jAH HLH81V^<_$ 1E1D$>D$>LGO H:OH-O{E1D$>$ IH5b)H=)1lHH>H8H+$ 11E1D$>HNHNHHFk'L AjH5zH H8H81UAX<AYLHL$ L\$LT$KNHL$ L\$LT$HHL$*NHL$fLHL$ ILT$ NHC1һLT$HL$ sRH_LL\$MHCI1һL\$D$1E1$ D$=QHW1E1$ D$\>H$ D$=NLHL$LD$?MLD$HL$1E1$ D$=OE1$ D$^>8HL1i%E1D$>$ 1E1$ D$>D$>111ff.AWAVAUATUSHXL-)L%)Hi'H^H|$Ll$~D$Ld$HD$@D$)D$0HL H ~0HHHF(HD$Lf LnfHD$HbHs) H(hE111AHLHH H8H/) H(hE111AHLHH H8E;CNH)H )H9H H)HnHL=)M IGH5)LHHIIHM IHIAH;f'"E1E1AH;%h'7 H;h'LL$HNLL$HIMtLpIHEKlHK\IALML\$ LL$NLL$L\$ H L%g'QA;$P  1LL\$ LLL$AIMLL$L\$ H QP A$=q@93 MI+ I)H7)IEL0IH= H8H)H =)H9Hs H$)H HL5)Mw IFH5T)LHH IM I.QH)H )H9HH)H1HL)M I@H5)LLD$HHLD$IMI(H~d'I9F$LLAMHHI(HId'I9GHLHL$HL$MIH)bIHMIHn L;we'L;d'u L;7e'qDI( EJHL$HIAH=d'LHqIH)L5d'jP5 )jPATjPHT$X)IHPHI/ H+%LHmMt I,$MImLGHFeLLf.D$4LKf.tV\D$HA)H )D$ H9HH)H HL=o)M> IGH53)LHH HIHH IH_D$ HT$(HHT$(HIf Hb'H9B=HLHT$(͏HT$(III.hM I/UL;%Fc'L;%b'u L;%c'DI,$EhHD$D$LIL\$(HL\$(HID$ L\$GL\$HIHt$HLMH)5zb'AHH=a'jP5)jPATjPHT$XL\$``)HPL\$HIIzHII/I,$E1E1WHDE;CNHD$fDHHԚIH HHIHH`'I?SIH5pH8L )A1KX%ZH MH=X~1HXH[]A\A]A^A_IA@=QLt$~D$Ht0HHl$LH\$@D$LL$)D$0ύLL$HI{D$&fDMPIME1E1D$E1H2L8CH(CE1HLCH@HD$fDLLL$BLL$fHHHtH=HF(HD$@HF HHD$8HFHD$0@IHHM~.H5)HHVGH! HD$@IM HD$@Ll$0Ld$8HD$UHHO@IM~H5)HHVFHtHD$0IM~H5)HHVFHWHD$8IDLA HA(D$E1E11D$%E1E1E1MtI/tdMtI.tqMtI(t>T$t$H H={HH+1fLAfDLLD$@LD$@LLD$@LD$xE1E1E1E1D$D$&=L@LLL$@LL$L\$ LL$aDL\$ LL$@$fDLt$~D$Ht0HHl$LH\$@D$LL$)D$0TLL$HI MjI.`LLL$?LL$IfL?VLHT$(?HT$(fHLD$ L\$?LD$ L\$}LHL${?HL$)Lh?LLD$DLD$AvMD$E1D$7'LXDAŅqI$ME1E1D$`&E1E1D$HfDIHu1E1LLD$>MLD$KIHIHE10BHE1E1E1E1D$D$,&D$ BD$ HE1E1E1E1D$D$6&H=aALL$L\$ IME1E1D$&E1HD$fH=y)H)H5)覛I7fDLLD$E1=LD$fDLLD${=LD${Lh=H= )H:)H5;)6I3fDE1E1E1D$D$&f.L=@LL+1AD(HT$HLLH5:)肎j'HX+Hn/HHHA\(IH^(AH \(H=e~@1ɺLAH@AWAVAUATUSH8H+H'L5)H|$HnH\$Lt$H\$ H3H~'HEHLn(Lv LfDIIHaH=)Lt$HGH;G'H;H'oHOAXHiE1 .H H HF';<LLH-P P HF'=g@9dH@HI)H )H9HpH)HHL5)M<IFH5!)LHH~IIHMYIH-LH)IHI/'L;5F'L;5F'u I9nDI.EHD$MLH=F'LHpILE)HIHHIyHm\H8H[]A\A]A^A_@LV29H,@$IHѭ)H 2)H9HxH)HHL=)MDIGH5)LHHvIIHMqIHLHE(IIMvHIQL;=E'L;=D'I9L,AƅQI/E6HD$MLH=C'LHpIL)HHI/uL'hHHd}IH Q}H~HIHH~C'I?UIH5SH8L ~A1.XZH $}H=Pa1@L+ADžIOAHIHH |D1H=`轵HmH*&DL&zL&I}L%L%LHHH -|<1H=R`D&Lx%IHHtHMHF(HD$ HF LHD$HFHD$j#IHHCM~.H57)LHV)HHD$ IMpLd$Lt$Ll$ k@HH"IM~H5)LHV\)HtHD$IM~H5¢)LHV6)H_HD$ILHt$yHAHH=ٞ)H*)H5+)IfDH=)Io@JA}+IzL#H=F4'AMI/4L#'fD'HHS?'H5|FH8T$L@#L0#H=ѝ)I@A!{kLIE1 uLGHt$ LAHHfA!tYH=Y)H)H5)膀IfDH]A @[*IA!vHFHHD$ IHyA!@H=٢)H9HEt H;,@'H*HHH=k)HkIHMHHtsLA$Im>L!1A"HT$HLLyH57/)bjH8!HN%HHHA$IHA$H tw$H=[^@1ɺLAH@AWAVAUATIUSHXH>'L-)H='HnH|$HD$ H\$(H\$0Ll$8HD$@H#HaHNHcHL=Q='Ml$0ID$(HD$Il$ Md$I$HEH9H=N)Ll$ HGH;=' H;Q>'[HWBDHrE1H4$ uLw#H QP H<';$ LLH$H$#p VP H<'=29H<$, H)H >)H9H H%)H HL5)MIFH5%)LHH IIHM IHH<$LֺLT$kLT$HIIW HIL;5;<'L;5;'I9L# I.L;=;'AL;=i;'DI9L#AHD$HL1HLLHIAWHT$)_AXIIMHIH9\$H$IHHD$HHLI.I,$lHmHXH[]A\A]A^A_L=:'H\$H?@L=q:'H\$%L=Y:'@L~8LpIH5&)LIHV!HD$ HL Il$HHdsH TsHOHtL nrLOLHHh9'UHctH5IH81$XZH sH=uW1I.LD$gD$H)H5)H9pH)H#HL)MIBH5 )LLT$HHLT$IIHxMI:H6H<$LUIIMHIL;*9'L;8'5I9,LLT$ LT$AW I*E4L;=8'AL;=J8'Du I9a EHD$H1HLLLHIARHT$LT$ ۟)Y^LT$HII&HIL@9C@$5@HI$H+1L5)II,$LMKLLT$SLT$XfL8L(lH pH=T胩H4$HHD$HH.E1fH<$M fLEo LМH$H<$H o1H=OTDDH>IH@HcHHF8HD$@ID$0HD$8ID$(HD$0ID$ LHD$(ID$HD$ /IH HHcHfIEH5t6'LGHHH;,6'AH;5'Du H;L$fEH) EIm @H)H )H9H Hy)H HH e)H HAH5)HHL$HH HL$IHHM HH+ H3'I9A LLLL$aLL$IMIHxM I:H IGH5)LHH5 HIHH IHH5͜)HϺHL$HL$HIH HHL;=4'L;=4'>I95L-Å I/IEH2'I9E`LL`MHIHxH/I:H H $HHD$HHLLMb@DHPHt$ i~H$L(7H)H5ҁ)H9pH)HMHL5)MIFH5)LHHAIIHMIHUH<$LֺLT$LT$HIIHINL;52'L;5e2'"I9LiI. L;=2'AL;=2'D I9 L8A|HD$H1HLLLHIAWHT$)IXIZMH1E1MmAbDH=9)HZ)H5[)frI5fDSINH=)LI @1ɻAIHLHL$LT$LT$HL$MHtHHHHtDH kjDH=N\H$HHD$HHfHfDLH=6HxAI:HaLMTHH/'H5D6H8LLT$LT$PfIA1E1H@LfH50'L<HHs H;!0'AH;/'DbH9YHHL$HL$AM H)rEHڗ)H5})H9pHr})HHH ^})HwH5)HHL$Y_HL$HIH)@ H5ߍ)L/_HHI/( HLHL$4HL$HHH)0 H; /'AH;.'DH9HHT$HT$AH* ImhEAfHHL$SHL$AIEHIEHIH)1A4@LAD$#DD$Hx>H gH=rKH$HHD$HHH<$^fLLT$CLT$fLA3I*uLH pfDH=J_f.HFLHD$ IMH5)LHV`HtHD$(IM~zH5Ƈ)LHV:HtHD$0IM~TH5)LHVHtHD$8IM~.H5B)LHVHyHD$@IMgHD$0Ld$ Hl$(Ll$8HD$L|$@LJE1 uLGHt$  LAH$4HLL$LL$fLLHL$sHL$fHX9LHjHѓ)H y)H9H Hy)H HLy)M H5)LLT$P[LT$HII HIWH<$LNIIM HIL;#+'L;*'VI9MLLT$LT$A( I*EL;=*'L;=D*'}I9tL`A HD$H1HLLLHIARHT$LT$ )AZA[LT$HIIHxA UfDH +,H=9)HJx)H5Kx)fjIFfDD$DD$HfH1E1MA@EH=){I@A.LT$IfDL L H1ɻ1A_fH=9)Hv)H5v)fiHAfDA5dE[LD$4 D$H=х)zH@A5HL$IfDA5wIIHMQHII)3HLLHL$LT$e$HL$LT$IH)HLT$q LT$M MA5f.+HDHxIA5fIMMA51HH IEMMA4HEgHT$ HLLEaH5)ls@H )H u)H9HHt)HHL5t)MH5])LVIIMiHI*H<$LֺLT$ LT$HIIiHI L;5[&'L;5%'|I9sL hI.NL;=&'AL;=%'DI9L Aƃ HD$HE1HLLLHIAWHT$0)AXAYIIMH1E1MA"fH=)Hs)H5s)eIXHxAAJH=T)vI1ɻZARpILpA6)M}MMUIIImLLLLT$ I/LT$HhLLT$LT$QHxA]LLT$LT$.I_A1E1HDLHHLHD$HL$LLT$HL$hHL$LT$HHD$LHT$H2IEMMA4HIEHH)H q)H9HHfq)HHLRq)MdH5|)LLT$ SLT$HII(HIH<$L IIMmHIL;"'L;V"'I9LLT$m LT$AI*EL;="'L;="'I9L AǃHD$HLELLHIQ1ARHT$LT$ )^_LT$HIIHxA$DD$DD$Hmjf.H=~)Ho)H5o)bIH=~)sIHxALLT$LT$H1ɻALLLT$LT$_IEMMA4HEH=!~)Hn)H5n)NaH@ELD$AD$A#H=})rHIEH IEMLMA4HIEH1ɺLAH$-DIEMHMA4H\M!bH=!})Hn)H5n)N`ID$DD$H+ H)H m)H9H~Hm)HZHL5um)M7H5%y)LEOIIMHIH<$LֺLT$CLT$HII HIL;5'L;5'UI9LLI.j2L;='AL;=A'DI9 L\AƃE HD$E1HLLLHIASAWHT$څ)IXIZMH1E1MA&H1ɻA!lLH=;{)oI9HxA! LLT$]LT$DyLB*IA!1E1HH)H5{k)H9p0Hbk)H HLNk)MH5v)LLT$)MLT$HIIHIPH<$L'IIM=HI L;'L;r'I9LLT$LT$AI*2EL;='L;='I9L9AǃHD$1HLLLHIAPEARHT$LT$ )AYAZLT$HIIHxA(I-H("HxA##H=x)BmIpH=x)Hi)H5i)\INEA#H1ɻA#LD$D$LLT$LT$LIA%1E1HaHxA% DH)H h)H9H)Hh)HHL5h)MH5|)LJIIMHIH<$LֺLT$LT$HIILHI2L;5Z'L;5'I9LI.L;='AL;='D`I9WLAƃ2HD$EHLLLHIQ1AWHT$)^_IIM H1E1MuA*L[H$;H1ɻ A%%H=Wv)jIH=Cv)Hg)H5g)pYI{D6LLT$bLT$LPH1ɻ9A'A'; H*rpHxA'6'4MH=u)iIH=zu)H+f)H5,f)XILHxA)e%LLT$yLT$_H1ɻbA)&)`4H=t)>iIH=t)He)H5e) XIEH5v)H<$[GIHH;p'AH;'DI9LLT$LT$AI*EH=az)H9H$H@t H;'ukH4$IMH=|)LLT$%CLT$HIIHILl`I.1kH4$IH5n)H=|)1PEHHtQH `H+t,,#L A+H,,Lp1LY0HxA11E}+LD$ D$jIgA)1E1HSH(F36H&IA4KLHL$HL$fH9AUATUSHHHHFHHHW@@HXHt6HJH~H;rte1 H;ltWHH9u1H[]A\A]HH9t2Hu1H;-v'HuIM9tJtH9u]H[]A\A]fHHH[]A\A][LfM{HvH9t1 fDH;\tHI9uE1HCs@fHFHt[@tRHXHt^HJH>H;rG1DH9t3HH9uéH`HH9Ht*HH9u@HH9Hu1H;5 'fAW1AVAUATIUSHHHH|$8H$PHL$0HHH$ HHz)ILD$H5b)LL$@HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$H9p#H b)HG%HL5 b)L$M#IFH50t)LHHE$IH$M?$H/=HDŽ$IH$H$HHXIH$H%H'H5r)HH$H$L?IH$Hp ImEH$H/#H$HDŽ$H/H+H$HDŽ$H$H$H5 n)HDŽ$HGHHH7IL$Mj6H53i)L9tIFH;'u7I~ H#'HHD$ H$I.!H$H;|$ HDŽ$H;=e'H'H\$u H9i H/d!HDŽ$hH$H$HH$HXHH;HZ 'HD$PH9E#LuM#HUIHHm6HLHT$:HT$H$I.7H$Ho<H*u5H$HD$PH9G<H$:H$H$H/W5H$H$HDŽ$<H/26H$L$HDŽ$HDŽ$Ht H/{2H$HDŽ$Ht H/h2H$HDŽ$Ht H/U2H5^f)LHDŽ$eIH$HiOH;D$ L;= 'u L;|$1I/5HDŽ$/Hu)H])H9X2H\)HXZHL=\)L$M:WH5h)L0H;|$30~H$ÅvTH/4HDŽ$H5_)H=m)1i6IH$HzH-QH$H/_H$E11E1HDŽ$HDŽ$D$ +D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(ffA.Fz \fDH'Hr'HH\$ J@H$ÅH$E11E1H$E1E1HDŽ$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(HY'E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$DHt H/Mt ImH$Ht H/H$Ht H/Ht HmH$Ht H/Mt I(-T$@t$ H 6=1H=!(vH$HT$H9tHtH@@3()Mt I.Mt I/HL$(HtHHD$HHH$HtHHD$HHHt$HtHHD$HHHL$0HtHHD$HHHT$HHtHHD$HHH$Ht H/Ht$hHtHHD$HHH$HtHHD$HHmHT$xHtHHD$HH^Ht$PHtHHD$HHOHL$XHtHHD$HH@HT$`HtHHD$HH1Ht$pHtHHD$HH"HL$8HtHHD$HHH+Mt I,$!H\$HtHHD$HHHH[]A\A]A^A_DL$KL$fDLL$(L$L$ L$fDL$L$fDHL$L$L$L$fDLLLpH`HP1H@@H0OH ^hfDHtHHHHHHHH+H~fLhHXHH4;fD+fDLHi&E11E1H$D$ E1HDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(HD$ DHD$H\$H9H5HHBHf)H5N)H9pVFHN)H#HL=mN)L$MLFH5 Y)L5.IH$H HH$H/)H@f)H5N)HDŽ$H9p\)H|$HDŽ$H+HD$(H$HdHDŽ$HEH;D$PFpA1H;.&AXH;&NL$RL$HHD$(H$<|H$HtHt$(HDŽ$HFH$HcHL$(McHHHTH0b)1HH$JDHDŽ$l)HD$(H$HaxH$H/THDŽ$HmRH$H;|$ H;=&GH;|$GH$Ņ'sH/{RHDŽ$SHa)H5I)H9pUHtI)H1HH-`I)HH5HT)Hp)HD$(H$HHmJnHa)H I)H9HHH)HHHH)HD$(H$HH5gY)H(HD$(H$HǜH$H/rH5Y)H|$HDŽ$(HD$(H$H H$HD$PH9GHt$($HH$H/)wHDŽ$HmH$H/vH5X)HHDŽ$$(HD$(H$HHmH$HD$PH9G)H$_$H$H$H/̈́H$HDŽ$HD$(HH$H/HDŽ$LIH$L$HH H;D$ H;-&FlH;l$;lH AŅHm$EH$HH$H$H$H/|H$HDŽ$H/TH$H$HH$H/$HDŽ$H$I/HDŽ$IDH^) H(hE111AHH|$HD$(H$H;QH$HH$H/8BH$Ht$HDŽ$H$HHD$HHAHDŽ$HL$H9$GUH$H5`S)Ho%HD$(H$HSH5N)HǺ4HD$(H$HVH$H/FH$H;|$ HDŽ$H;=&A8H;|$68H$AŅtZH/GHDŽ$E[H5O)H$$HD$(H$H^HǺLH$HD$(H$HhH/LH$H;|$ HDŽ$H;=&?H;|$?H$AŅjkH/LHDŽ$EmHH/[)H(\)HC)D$H9XtHC)H|HHvC)HD$(H$HuH5 S)H#H$HD$(H$HH/OD$HDŽ$HD$(H$HH$HD$PH9GHt$(H$H$H/HQH$HDŽ$HD$(HH$H/TH$H;|$ HDŽ$H;=Z&IH;|$IwH$ÅfH/UHDŽ$PHZ)H B)H9XɓHA)HHHA)HD$(H$HʒH5P)H"HD$(H$HH$H/[H$H5M)HDŽ$!H$HD$(H$HH/fH5J)1H$HDŽ$HD$(H$HmH$HD$PH9GVH_HVHGHHH$H$H/pH$H$HuH$H+~H$H/hH$HDŽ$HD$(HjH$H/5tH$H;|$ HDŽ$H;=2&SH;|$ROÅH$H/KoHDŽ$#D$\9fT9tHD$(H$HHǺL.HD$(H$H^H$H/xH$H;|$ HDŽ$H;=[&bH;|$bxÅH$H/yH$HDŽ$HD$H5G)H=U)1VHD$(H$H)H|$(9H$H/H$H$HDŽ$E1H$1E1HDŽ$HD$D$ *D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(LSfDH=iK)Hj>)H5k>).IJfDH&E11E1HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$IH)&E11E1HDŽ$E1HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$DH=I) >I@HY&E11E1HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$0_%H=R17H&E11E1H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$8HXHH$xE1L;d$ZHS&1HDŽ$HHD$ H95&É$HR)I$H :)H9XBH9)HCHH9)HD$H$HAH5`F)H HD$H$HBH$H//HDŽ$RHD$H$HdCI$L`^HD$H$HDHQ)H*9)H9XEH9)HIHH-8)HFH5H)H]HD$H$HIHm8H$H5 J)H$DH$H/O:H$H$HDŽ$H$HD$H$H|MH$H/L<H$HDŽ$H/$<H$HDŽ$H/;I,$H$HDŽ$;H&L$HDŽ$HD$(Ht$0HD$ H9H;5&HL$H9H:4HD$Ht$H9p-H5 I)HHH$HFH]&HDŽ$HD$PH9G8HGH$H8HWHHH$H$H/u9H$H$H7HD$H$H$HtH/<H$HD$H|$H$HDŽ$HH/X7H$1ɺHHDŽ$HHD$HDŽ$*HD$0H$HJH|$HH$HMH$H/<Ht$L$HDŽ$HHD$0HH;H5B)H|$8HDŽ$HD$0H$HFWHDŽ$Ht$PH9px=HH@H$H`=HVHHH$H$H/M>H$H$H|$0H=H$HH$H$HtH(>H$HDŽ$HO[H$H/<H$LH5U@)HDŽ$HDŽ$HD$0H$HnZPHD$HH$H[HL$0HH$HHPHD$HH$HeH?)H5?)HGH$H$H$oH$HD$HH$HzH/FH$HDŽ$H/FH$HDŽ$H/3GH$H l3)HDŽ$HDŽ$HD$HHL)H9HzH/3)H,{HH3)HD$hH$HzH5F)H~HD$hH$HVH$H/LHDŽ$HD$hH$HHt$HHH$HpHD$hH$HkH&H5lD)HtH K)H >2)H9HH%2)HHH=2)H$HH5)B)H$HHH/\aH5GC)HH$HDŽ$HmqH$H$H$+HD$hHH$H/pH$HDŽ$H/apH$HDŽ$H/9pHL$HHDŽ$HHD$HHooHD$hLd$HDŽ$HD$HHD$pHD$`HD$XHD$PHD$xHDŽ$HD$h$L\$HH5H)I{H5Q@)LHD$8H$H.H &H9H{WHhHnWH@HEHH$H$H/[pH9)H$HHmHD$8'pH|$8H$H/nHL$HHDŽ$HH$HHnHD$8HD$HH5=)H$HHH59)1H -HD$8H$HHmIH$H;|$ H;=m&:H;|$9ŅzH$H/THDŽ$FT$yZH5$=)H|$HZHD$8H$HƕH5M8)H|$81A,HHpH$H/ƊH;l$ HDŽ$H;-&oH;l$oHAąHmEYHF)H5m-)H9pHT-)HHH-@-)H[H58?)HpHD$8H$HHmHHH5?)H$*IHӟH5>)HHHD$ LD$ {I(H5 6)H$H HD$8HIH$H/fHDŽ$HmBHt$HH$ JIHH5E)H|$8HHD$ LD$ 3I(CHD$8IH$HH0LL$ÅH$E11E1H$D$ E1HDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(DŽ$HD$ HDŽ$HHD$(HLD)H-5)HHI,$H$L袾DLL$ÅH$E11E1H$D$ E1HDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(軽{fD諽fD蛽fD苽DfD{H=8)j,ImH= 8)H*)H5*)8IE11HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@nH$HHD$HHHkfDH&E11E1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@HD$UDI胻HT$ H5K)HSH$H$H$H$HH$H/ͧH$HDŽ$H/H$HDŽ$H/H$HDŽ$HPH;&HPHСHPH@ H$H$H$HH$HH$H/HDŽ$H$HD$HMt I.eHDŽ$L$Mt I/H5P)LHDŽ$dHH$H{HDŽ$HD$PH9AIHAH$H4HQHHH$H$H/H$H$H\H$H$Ht H/]H$HDŽ$$H$H/H$HDŽ$H/H5s)LHDŽ$WHH$H"HDŽ$HD$PH9AHAH$H؝HQHHH$H$H/H$H$HLHD$H$HH$H/HH$H$HDŽ$pwH$HD$H$H}H/HH$HDŽ$H/`HH$H;|$ HDŽ$@H;=~&@=>H;|$2>{Ņ+H$H/GHDŽ$H(ffH*L$XHD$HH$H_HD$HH5(HDŽ$L`HD$8HNHD$H$H?`HD$8H5(H HH$H`H}&HDŽ$HD$PH9GLHGH$HLHWHHH$H$H/LH$H$HLH$H$Ht H/IH$HDŽ$^H$H/LH$HDŽ$H/KHDŽ$F{Ht$XH|$8LHŸHH+T$0HHNHiH!sH$HtWH5(1H$HD$H/KH|$HDŽ$\HL$HHD$0HHVKHLb|HD$H$HZH$ARE1E1jH|$X11H$A[]H\H$H/JH$H5W(HDŽ$H$HD$H$HYH/JH$HD$PHDŽ$H9G`HGH$H`HWHHH$H$H/`H$H$H`袼H$H$Ht H/6ZH$HDŽ$H$H/Ht$HH$HDŽ$HHD$HH[HDŽ$Hl$HHDŽ$H|$HH5(H$HGHHЅIH$E11H$D$ b$E1D$@5HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0HD$-HHL$hqHL$CLd$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HD$ D$@遉ID$ |E11H$D$@E1HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$H=(H5(1芼HH$HOOQH$H/H;HDŽ$IH$HDŽ$D$ D$@HD$8E11HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$#E11HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ 'D$@rn/HnH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ yD$@錆HD$HIHD$8H$HHmwHm驑DϓmFm7vmHMH$HLmHIEHm 2IEL1A遏!m2Ld$E1I1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HD$ D$@iLd$E1I1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ D$@քH5h(H|$8εHD$8ŨLd$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hD$ D$@H$E1H$HDŽ$H$D$ {1E1HD$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(Oj IE11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ D$@͂ID$ E11H$D$@E1HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$WiH$E11E1HDŽ$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(^H5_(H=@(1HD$(H$H[HH|$(H$H/3H$H$HDŽ$E1H$1E1HDŽ$HD$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(JH5(H$޴IHH(H t(H9HH[(HHH-G(HCH5(HLD$ 肴LD$ HHD$8H$/RHm>LD$ jLD$ HHtRHD$HLD$ HHElLD$ HIRHE(H5(H9pTH(HTHHy(HD$8HD$8H$HTH57(H|$8LD$ 谳LD$ HH$FTH$H/ >H$H5Y(LLD$ HDŽ$lH$LD$ _NH/=H$LHLD$ HDŽ$-LD$ HH$MH$H/W=HDŽ$Hm)=Im=LD$ 4iLD$ HIwNH$LD$ HDŽ$IE1kLD$ HHH$sHT$@H5(kLD$ rH$LLLD$ RLD$ HHmrI(VrImoH$H/oHDŽ$IH$HD$8}HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@|cc͈Hc釴cGzc隞c髐H=?(H5((1HH$H2H$H/0ID$ H$HDŽ$HDŽ$D$@j!c_IE1E1H$H$D$ WHDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$4{IH$E1HDŽ$E1HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ KD$@zH=(H(H5(貿HD$(_Ld$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hD$ D$@yH$E1E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@;yH$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@xH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@w__H(H `(H9HjHG(HjHH3(HD$HD$H$HiH5(H|$HD$H$HeeH$H/S3HDŽ$AbHD$H$HEfHH$HXFdH$HeH(H5w(H9pgH^(HgHHJ(HD$HD$H$HfH5(H|$6HHDfH$H/4H5(HH$HDŽ$dCHm4H$H$H$թHD$HHEH$H/DH$HDŽ$H/DH$HDŽ$H/Df HD$HHDŽ$H*D$0YH@HD$`f/3H,HH (HH HHH HHH HHH HHH HH H H(Hl$hHH9H=BH(HBHH=(H$HxAH5(葩H$HD$H$H@H/@HDŽ$HEbH$H@H+bHD$H$Hk?HV(H5(H9p/?H(HlHH(HD$HD$H$H,lH5(H|$ƨIHkH$H/fkHIw&H$HDŽ$HD$PH9GGmHGAT$H;x&HcWlH;Vy&iH^IHiH$HtI@HDŽ$Ic1LLD$x~$$ADAD$HMlH$HDŽ$HDŽ$LD$xHHD$SI(SH$H/SHD$HL$HDŽ$H9]SH@HQ(H9QHXHQHq1H;TQHH9H|$H (1Ҿ=|H$HKH$HlLH(HaHDŽ$HD$x~L$xH$HT$xH.H$foH$@fH~HDŽ$D$xH$)$fo*H$)$ f)$03H$HJH$HHHJH$HBH@Hx\StH$HupHJIH$L (HP`L9\JH$HyX~BHAxHHKHHKH9KH$HHTKH$HnHHF@u MuHHt$HHD$xHHGHD$8H5(HHD$H$HHHD$8H5(HQH$HHHt$PH9pXIHPHKIH@HHH$H$H/IH$HHT$9HT$H*HHHH$H/FHDŽ$H(E]LL$XL+L$0IHD$8Ll$`MLd$hHHD$LMIHH;\$XEH|$HE111LT$hLL$PXLL$PLT$hHL!H9GEHL!HtHHuHIEHIH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@~nH$HH$H$|HUzU){U̦IH$E1HDŽ$E1HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ MD$@mH=(HD$(~~HT7HT鄐IH$E1HDŽ$E1HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ UD$@l!T齏T镏 TmTHSHD$8HD$HH$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@l5SJH(SKLSySySyRzyHȐR雏H_H}HGHHH$H$H/%H$H$HflH$H+|H|R|H$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@jQRDHH5h(H=Q(1HD$(H$H ^H|$(ҸH$H/f(H$H$HDŽ$E1H$1E1HDŽ$HD$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$([iP}~>HPvPIvIH$E1HDŽ$E1HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ XD$@hH=(H(H5(蹭HD$醳H$E1H$HDŽ$H$D$ 1E1HD$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(gN~|H=(H(H5(ʬHD$鹜IH$E11HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ D$@fH=(+HD$ NnIH$E11HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ D$@6fIE1E1H$HDŽ$D$ ]D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$eIH$E11HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ D$@eLd$E1I1HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hD$ D$@dH=r(H(H5(蟩HD$hgLd$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$D$ D$@cH=(HD$h΄H$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@cIE11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ D$@bIE1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ _D$@b6IH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@9aHoHHGHEHH$H$H/H$H$HbH$HmHH鮖H=( HD$ƫIE1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ ZD$@A`IH$E11H$D$ $E1D$@<HD$8_H=(HK(H5L(HD$(VkH$E1E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@_H$E1E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@j^Ld$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$D$ D$@]Ld$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$D$ 'D$@d]Ld$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$D$ "D$@\IE11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ D$@i\Ld$E1I1H$H$E1HDŽ$D$ )D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$h[IH$E1E1H$D$ $D$@<[IH$E1E1H$D$ $HD$8D$@<Y[H$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@ZH$E11E1H$HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@YH=(0HD$(WlH=ϻ(H (H5!(HD$(3lH=(HdH=(H(H5(ĞHdIH$E11H$D$ E1HDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$XHs(HD$pH@TH@?鎒Ld$E1I1H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$D$ 1D$@)XH=(H+(H5,(GHzLd$E1I1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hD$ *D$@WH=w(­HqyH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@VL>r}H=}H$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@VE11HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@UH$IE11HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HD$D$ * D$@TH$IE11H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ ( D$@TH=(RHD$MH=(Hҧ(H5ӧ(HD$)H;Ld$E1IE1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hD$ ,D$@MS:鉎:\Q"r:Ch:HoH_HGHEHH$H$H/TH$H$HSH$Hm_H9_H$E1E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@RH$E1H$HDŽ$H$D$ 1E1HD$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(EQIH$E11E1H$D$ $D$@9QIH$E11E1H$D$ $D$@9P@Ld$E1IH$H$D$ /E1HDŽ$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hRPH$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@O60uH6ruIE11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$  D$@NIE11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ D$@NH57(H=H(1 HD$H$H9NH|$ɜH$H/ IH$E11HDŽ$H$E1HDŽ$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$qMD$H4D$Hf444H$E11E1H$HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@LH=(ϢHD$(XE醊H5e(H=V(1HD$(H$HJNH|$(ךH$H/wH$H$HDŽ$E1H$1E1HDŽ$HD$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(`K2@HOHlWHGHHH$H$H/0H$H$HHL$LHL$HH)$WH42WH$E11E1HDŽ$H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$D$ D$@( Hk -YH$E1E1H$HDŽ$D$ D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$( EIH$E1E1H$D$ $HD$8D$@?DIH$E11E1H$D$ $D$@?DY0H#IH$E11H$D$ !E1HDŽ$D$@ HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$C9+R/+H$E11E1H$HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@*CH$E11H$HDŽ$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ aD$@B)n)JL)i)d}H$Ll$PE1E1Lt$XH$Lt$L|$`Ld$xL|$IHl$H$1HD$HDŽ$D$ g D$@HD$8HD$pHD$HHD$0A)H(h(h\H,H?H(G((w(%( (H(靴(a{(WQ?kLLD$ _(LD$ HLD$ H(LD$ 9(LD$ LD$ %(LD$ :(LD$ HLD$ 'LD$ H$IE11H$E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$HHD$0HD$D$ X D$@@S'1}H$E1H$HDŽ$H$D$ 1E1HD$D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(E?H$IE11HDŽ$E1H$HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ ; D$@>H$E1E1HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$(D$ D$@=H$IE11H$H$E1HDŽ$HD$D$ 9 D$@HD$8HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$F=H$IH$HDŽ$E1E1HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ 6 D$@HPHH@HH@H$H$XSQXI)XH$Lt$XE1Lt$L|$`Ld$PL|$IHl$1H$HDŽ$HD$8HD$pHD$HHD$0HD$D$ !D$@H$Lt$XE1E1Lt$L|$`Ld$PIL|$H$Hl$1HD$H$HDŽ$D$ !D$@HD$8HD$pHD$HHD$0HD$0H$E1E1Lt$XH$Lt$L|$`Ld$PL|$IHl$1H$HDŽ$HD$8HD$pHD$HHD$D$ !D$@jHD$0H$E1E1Lt$XH$Lt$L|$`Ld$PL|$IHl$1H$HDŽ$HD$8HD$pHD$HHD$D$ !D$@&\UHD$0H$E1E1Lt$XH$Lt$L|$`Ld$PL|$IHl$1H$HDŽ$HD$8HD$pHD$HHD$D$ D$@RH$Lt$XE1E1Lt$L|$`Ld$PIL|$HL$0H$Hl$1H$HDŽ$HD$8HD$pHD$HHD$D$ D$@H=t(iHSH=t(HYf(H5Zf(WHSLU[S3SIE11E1HDŽ$H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ !D$@IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ "D$@\IE11H$HDŽ$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ "D$@IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ "D$@>IH$E1HDŽ$E1HD$8H$HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ "D$@IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ "D$@H=q(SeHD$LH=p(Hb(H5b(THD$(IH$E11H$D$ "E1HDŽ$D$@HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$DIH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0HD$D$ "D$@ HL)IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ "D$@ H=n(IcHD$iH=n(H`(H5`(RHD$EIE11H$HDŽ$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$D$ !D$@d SH$E11E1H$HDŽ$HD$8H$HD$pHD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0HD$HDŽ$HD$D$ D$@ IH$1E1H$D$ $D$@FV IH$1E1H$D$ $D$@F) Li靍IH$HD$8H$D$ A%D$@K IH$1H$D$ @%D$@KHD$8 I1HD$8H$D$ >%D$@K IH$1HDŽ$HD$8H$HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0HD$D$ 7#D$@# HG@=>H$L$~$H$IcHk$)$H!;HD$HtwH$Ht H/H$HDŽ$H//H$HDŽ$H/HDŽ$Im(LuIH$E11HDŽ$H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0D$ .#D$@#鐔IH$E11HDŽ$H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0HD$D$ #D$@#IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0D$ #D$@#|H=mi(]HD$!H$L$~$H$IcHk$)$HVHD$HtIH$E11HDŽ$H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$0D$ ##D$@#HGH$HHWHHH$H$H/t'AH$o~tAH$CIH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ !D$@IH$E11HDŽ$E1H$HD$8HD$`HD$XHD$PHD$xHDŽ$HD$hHD$HHD$0D$ !D$@H50H&IHulH^H%H5<,H8>CfHHt(Hs[(HǀHPHe%HHxHDAWAVAUIATUSH8H8%L=K(L%jL(HnH\$L|$Ld$ H\$(H HgH H>HcHH$Lf(L~ HFHD$H=Z(L|$HGH;%H;%iHOARHiE1 uLwH H H%; LLHx WP H%=Y29\H H^Z(H ?(H9HH?(H} HL5?(MyIFH56R(LHH IIHM IHLHIHF I/L;5%L;5#%@I97L?ADž\ I.(E0HrY(H >(H9HI H>(Hy HL5>(MM IFH5RQ(LHHw IIHMJ IHLHIHJ I/L;5%L;57%,I9#LSADž I.E% L=I(M9H%I9D$I9GA|$  A  IT$I;WjID$IOH9@H@t HDA|$ EG D8 @  IL$0IH@HIDA  IO0IwHA@HEȃ  DA9Ht1H@MIuL$HT$H=%IL0V(HH I.LDH$H\$fH$H$HF0H$I9MIuL$HT$H=%ILU(HH I/aHmH8H[]A\A]A^A_I.DLEL=JG(M9H%I9D$I9GA|$ + A  IT$I;WID$IOH9@H@t HA|$ EG D8@ IL$0IH@HIDA IO0IwHA@HEȃDA9qH1H?@9e@$@L` HPfL@HH%IH %H*HIHH%I?UIH5OH8L &A1JX5ZH \%H=1I^@I9uuwI9uunLL.IH>H;%L;%%^I9ULI,$NMIuL$HT$H=%ILR(HHA@D LQHHH E$U1H=z-]H^IHP6HcHHF0HD$(HF(HD$ HF LHD$HFHD$IH~eHHu*M~.H5YG(LHVHCHD$(IM1HD$L|$Ld$ HD$HD$(H$mHufDL]Ht$4HfI9udLLIHtBH;%L;%r%'I9LI,$aA$@L AaDH "D1H=n[fH=F(H6(H56()I$fDMIuL$HT$H=e%IL P(HHIAH+LheKIcAIH1L1$@H=E(:Iz@H= +AfI/LfD3HH%H5H8IhAHIwHVI|$H2LlAs(H5((H9pHy((HHLe((MIBH58(LLT$HHLT$IMNI*HU%I9GkLLMIMI)I,$H;-m%'HEIH8'HEH@H(LH<$H5>0(HGHHIMdL蜼IH I/I IEH5/(LHH IM LGIHr!I/PIVH5_,(H=:(1HHHMH+N,D$PAMA 1E1E1E1HD$E1HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$fDH;%H5-(HOH5b5(H-AŅ!H+pEH5X+(H=9(1jHH&H6HmD$P@1E1E1HD$E1E11HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$L4$A Mt I+YMt I(rHt H)t$PH D1H=DHt Hm/Mt I/0Mt Im0HL$HtHHD$PHH!HT$(HtHHD$HHHt$ HtHHD$HHH|$0HtHHD$HHHL$HHtHHD$HHHT$8HtHHD$HHHt$@HtHHD$HHH|$HtHHD$HHHL$HtHHD$HHH$HHD$HHI,$HĸH[]A\A]A^A_L;-%uLHIH3H;%AH;Y%Du L;=%I/EL&H18(H9HXHtDHqH~'H;Q1DH;THH9uHEf.HH9HuH;d%HE@HȰHH5N.(HHHV.H$HtMefIHH HMHATHK LD@H%H5dL H81cX1@ZH uc H=Y1bA0DHбLL谱H蠱H萱H耱sfDH`HPH@,3>fDH JL^HCLHL$`LD$XHL$`LD$XLHL$XðHL$XwfH訰pL蘰L舰I.LvHhLXLH/L8IHHJcHHF8H$IE0H$IE(H$IE HH$IEH$ HIHJcHH蠯L萯H=1*(HR(H5S(^ I fDL4$1E1E1HD$E1E11HD$A HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@LخH5A'(L!IH 111HWIHI/QH5'(LLL$LL$HI"11ҾH LL$HI@$I/LLϺLT$LL$趮LL$LT$HIU%I)I*L;=}%AL;=%DnL;=7%aL Aą%I/4EH<$H5&(HGHH$IM111L IHI/IEH5%(LT$LHHLT$IM111LLT$LT$HII/NLL׺LL$LT$lLT$LL$HII*I)L;=3%L;=%L;=%LD$`bI/L$`HUHBpH6H@H)H5""(HHD$H+HI,IHI$HD$HI$iH5j$(H<$IH111HHD$} LL$HHD$n I)IW IGHt$HHH9 H9 HIWH4HIGH|$HHD$HH5H5^#(H|$HHD$H"H<%H9F{LfMnLVI$IHHD$HH:LLLLT$I,$LT$IM #I*RH5#(LLL$LL$HIz#I)H5#(H<$LT$LT$H#111HLT$HD$ LL$LT$HI$I)>IBH;5%&MJML&MbII$I*6ID$1ҿH;v%h H;1%L\$LL$t$ L$茭LL$L\$HIe&MHcL$t$ tLHH(HcLLHLD$HIT1M\LD$HHD$'I(iI,$dH5)(LIHn%H.(H=(H9x9&H(H&HL(MA&H5('(LLT$ LD$.LD$LT$ HHD$&I(H%I9B)IJHMJHII* HT$HLHL$ LL$.HL$ LL$IH) !Ht$HHD$HHZM&I)ImH5(H'FIHD$HH,HH(HH=(IEHH="(1hIH-IEHD$HIE%H5(LLT$LT$HHD$(-H8&I*&HD$H=F%HH9x0.LHIIM0ImQ'IBH;(%/IRHZ.IBHD$(IB HD$ IB(HD$0HD$(HHD$ HHD$0HI* 'HD$@HD$8HD$HH5#(H|$P{Y+HD$H5%(@HP1Lt$PH5(L)N1t"H5X(L >L9H5n(H2Hr+(H@7(H9y(AHd(HAHLP(M,BH5%(LL\$L\$HIAI+0H+(H(H9PK?H(H?HL(M?H5}#(LLD$hLT${LT$LD$hHIV<I*4H|$0\@H5%(H|$0LD$hL\$4L\$LD$hHI?H|$ }?Ht$ HLD$pL\$hHD$LT$L\$hHILD$pGI*>E1Ho%I9CHT$`ICH;%Hc<H;%7HLD$xL\$pLT$hLL$LL$LT$hHHL\$pLD$x HMtLPHcD$`Ht$01LLD$pLL@HHHtHHL$hL\$`'L\$`HL$hHHD$LD$pGH)=I+b=LD$`GLD$`HIHGHD$LL$IAI$Ma JLL$LD$`HIILt$XH5(HLD$hLL$`LHD$L\$LL$`LD$h<H5"(LLLD$`LL$X˩L\$LL$XLD$`(JLLLL\$hLL$`LD$XLD$XLL$`HHD$L\$hII(II)vII+2DH|$H;=%H;=^%0&H;=%#&H|$t$9c2H5E!(H~,#H|$@1HD$@HIH5"(LLL$P6LL$PHH1H|$HHLL$PHI.H+'H<$LLL$XLD$PLD$PLL$XHI.I('H\$HHD$PHH6(LLL$ПLL$HH^4IEH5(HH/6HLLL$m,H+)IELLL$1ٞHHM1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@H=(DI@HD$1E11HD$E1E1E1HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@L4$A DMtI)tEMLI*BLHL$hLD$`L\$X苟HL$hLD$`L\$XLHL$pLD$hL\$`LT$XTHL$pLD$hL\$`LT$XfD#L $ILXI/AEZL4$D$Pj@HD$1E11HD$E1E1A HD$@E1E1E1HD$8HD$HHD$0HD$ HD$(HD$HH+HHL$xLD$pL\$hLT$`LL$XUHL$xLD$pL\$hLT$`LL$XwHK0@LCHHIDfH(HFHH$,HH5(HHV薢H$HHHDL$L$H$H$H$HD$PH$HD$XDH5(HHV%HtH$HH~H5(HHVHtH$HHfH5k(HHVϡHH$HHyH+H$LHLH5'@LM1E1E1E1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PiAM1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAd@D$`?@L4$1E1E1HD$E1E11HD$A HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@MoM"MWIEII/LLLLT$ɴImLT$H$LLT$ؚLT$fDL4$D$Pp@1E1E1E1HD$E11A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@@H=(H (H5 (IyfD1E1E1E1HD$1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@H=A(I@kLT$IfDLHD$[LT$1E1E1E1HD$E11A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@@MwMMOIII/LLLLL$rI.LL$I^LLL$胘LL$GfHxYL`AM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P9AnfD賟IIuHLLT$HD$薗LT$LL$D$P;ALMA 1E1E1E1E1E1E1HD$HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$yfLALLL$LL$fH5 (H=j(1+HHHH+MD$PKAA LxEKIM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P]A~fDD@D$P_ALMA CILLMIfDH|$膕HH'HH0HV!HHnL$L$LHD$3LL$fL4$D$Pv@LL$L$L3M1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAfDSIDz@LHD$;LT$LL$@#fDH%HRMA H5eH81SD$PAfDLM1E1E1E1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PADLXWLLT$CLT$3fM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PA fD裚LT$IyfDLLL$蓒LL$fLxLLL$cLL$fLM1E1E1E1E1A HD$HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAOLHD$ˑLT$.HLT$贑LT$M1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAxID$@=OHK(HHLL$LL$L$L\$H$L\$LL$HHD$@%Mt I)I+lL譐_M1E1E1HD$1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PALLT$LL$"LT$LL$>LMD$PAA LLT$HD$L\$LT$HMA ȏD$PKAH5(H=U(1HHHH+ MD$PAA Ht$LLT$@LT$IM L4$1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P@zLҎLL\$LL$軎ID$1ҿLL$L\$M1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PgAH\$M1E1E1E1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAH5 (H:j{IHH (LLT$HIBH (HH=(1LT$HIeI*H5N (LLD$ALD$HHD$HH8I(HD$HH%HH9PLHIMIM%I*\I@H;ƨ%]IPH I@HD$ I@ HD$(HD$ HHD$(HI(HD$@HD$8HD$0HD$M1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAaM1E1E1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PlAM1E1E1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(D$PA L؊HLL$ƊLL$LLT$诊LT$H蝊LH\$MA 1E1E1E1E1D$PAE1HD$HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$LM1E1E1E1E1A HD$HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PnA L芉kL}iH'HHLL$LL$L$L\$H$lL\$LL$HHD$VM1ME1HD$E1A HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P BM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PqAM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(D$PALLL$ HL$·HL$LL$ GLMD$PtAM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAHLL$-LL$M1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAM1E1E1HD$E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAHHܢ%H5}L "jAH |H4H81f^?_M1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PGA%M1E1E1HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PAVIHH.(LLD$HI@H(HH=5'1LD$HII(4 H5(LL\$L\$HHD$8H8' I+ HD$8H|%HH9PLHI8MHD$@H|$@I(l HD$HHD$0HD$ HD$(HD$w1MԹE1HMA ۃD$PA1MԹM1Ll$E1E1AHD$HD$@HD$8HD$HHD$0HD$ HD$(HD$HD$D$P5BM1MHD$HD$E1A HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PBH={'H|'LT$H5x'LT$IM1Ll$E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$HD$D$P7BH='LT$$LT$I'M1Ll$E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$D$P9BH|$LT$蠁LT$M1ME1HD$E1A HD$@HD$8HD$HHD$0HD$ HD$(HD$D$P&BxM1Ll$E1E1MHD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$HD$D$PIBH讀LT$PL蜀MM1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(D$PAD$PVBLl$A1E1E1HD$HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$ZLLT$LT$LL\$L\$LHD$@HD$8HD$HL4$1E1E1E1E1E11HD$A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$Pj@`H5 'H>H|$(&HL(H'H9X&H'H'HH'H&H5'HIH7 H+^H|$  $H\$ H"%H9C2#HCHk#HH(%I9@"LHLD$PLD$PHMH+H$ImVH|$(HHL$P+~HL$PHI7$H)HHD$P}LL$PH9"'H 'HHL'MH5i'LL\$`L\$`HHD$I+< H|$ H|$X{IHH|$ 1HHD$X}L\$XHII+ HD$H=%H9xLl$LLL$XLLL$XHI)M H Im+H; %AH; %DH; Й%wHHL$蝁HL$AnH)xEP H%HHD$HD$H;%LHD$|LD$M1E1E1HD$E1E1A HD$HD$@HD$8HD$HHD$0HD$ HD$(HD$D$PA'LHD$z{L\$Lh{H[{L\$Ll$D$PBA !L1{BH${LD$&D$PzCLl$A1E1E1HD$HD$Ll$1E1E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$D$P`B HHD$XszLD$XLL$PLLL$PWzLL$PLLD$@zLD$Ll$1E1E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$D$PhBLyH\$Ll$1E1E1E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$HD$D$PeBL@yHD$@HD$8HD$0HD$HLL$P yLL$PHHHH LhHIEHHD$HHqHLLHL$苒HL$IH)HLT$xLT$sHH9HHpH LT$XHEH%H5ƳH81Ll$A1E1D$PBE1LT$XHD$HD$HD$@HD$8HD$HHD$0HD$ HD$(*H;P%LLT$u~LT$HI;I*IALLL$LALL$HHD$(6LALL$HI%LHD$ ALL$L\$ HHD$0LAվHLL$L\$ I)L\$ bHLL$wLL$L1Ll$E1E1E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$D$PBH|$(H'H'H9XH'HHH 'HwH5j'HHL$PHL$PHHH)OH|$ 9H%H9CHt$ HIſIMImH|$(LLD$PvLD$PHII(LHD$PuLL$PLl$A"1E1D$PDE1HD$Ll$1E1AHD$HD$@HD$8HD$HHD$0HD$ HD$(HD$HD$D$PHC铿ELHD$tLD$cD$PCLl$A11E1E1HD$HD$GLl$D$PCALL$A-1E1D$PLl$1E1AHD$HD$D$P%D8H=A'IH=-'H'H5'ZILl$D$PCHD$0LT$L~D$LL$H$HcD$`LD$xHkD$LT$pLL$hL\$`H)$)L\$`LL$hHHD$LT$pLD$xLLl$1E1HD$AD$PC%H?%LD$XH5H81mLLHL$PzfHL$PHHL$PcfHL$PhD$P DLl$LA1E1E1HD$HD$LLD$`fLD$`H='H'LD$H5'LD$IHLD$heLD$hL\$`5LHD$eLD$pL\$hLL$3H|$AeLl$D$PC{Ll$1E1AHD$HD$D$PCH='LD$BLD$IHD$XH%HH5SLD$`AH81flL\$1E1Ll$D$PCLLT$XE1LD$`HD$HD$?LLl$1E1E1D$PCAHD$HD$ H%LD$XAHH5L\$H81kL\$1E1Ll$E1HD$LD$PCE1LD$XHD$H='IlH='H'H5'IJLT$cLT$Ll$HLL训MIHcLHD$cLL$Ll$1HD$AHD$D$PCLl$1E1AHD$HD$D$PCLLD$P7cLD$P_HLD$ cLD$Lt$8LLMHD$@L1Ll$E1E1E1HD$A*D$PEALl$E1E1HD$D$PEA*CH=L'HEH=8'H'H5'eH#Hր%HH5A*H81iLl$1E1E1D$PEHD$ŬLsM#LkIIEH+HT$ LL{I.ILLD$PaLD$PH6%HH5A*H81iLl$1E1E1E1E1HD$D$P EHwaqLl$E1E1HD$D$PEA*E1E1I)L\$1L\$IHLL\$XH H5sAHEH}%H81HhH\$(1E1Ll$E1E1L\$XD$PBHD$HD$HD$@HD$8HD$HHD$0HD$ HD$(Ll$1E1E1HD$AHD$@HD$8HD$HHD$0HD$ HD$(HD$D$PB\Ll$1E1A*HD$D$PE鋪LLl$1E1HD$AD$PC9LLD$pL\$hLL$`_LD$pL\$hLL$`L\$(H\$1E1Ll$D$P&CA E1HD$HD$HD$@HD$8HD$0HD$ HD$(HD$E1H\$HHD$HHLT$LT$ IHLLT$XH nH5@A HEHW{%H81fLl$1E1D$P.CE1LT$XHD$HD$HD$@HD$8HD$0HD$ HD$(HD$陾LL$XD^LL$XL2^Ll$1E1E1E1D$PDA(HD$xH|$LT$]LT$]Ll$A 1E1D$P.CE1HD$HD$HD$@HD$8HD$0HD$ HD$(HD$˽HLT$s]LT$aLL\$\]L\$HD$@HD$8L\$ HD$H顶ALD$0H\$(1E1D$PBLl$AHD$HD$HD$@HD$8HD$HHD$0HD$ HD$(/Ll$1E1E1HD$AD$PC/LLl$1E1HD$AHD$D$PCԽH\$(Ll$1E1D$PBAE1E10LL\$(\L\$L\$Ll$1HD$HD$AD$PC鍦LLl$E1HD$HD$AD$PC4LLl$E1E1E1D$PCAHD$MSM&MkIIEI+MD$`MpM9MhIIEI(CHLLtI.H"LHL$P[HL$P H|$ LD$PG[LD$PHHLl$1E1A(HD$D$PD`HLD$PuMHD$ x]LD$PHLLD$pLT$hLL$ZMLL$D$`LT$hLD$p H|$ [LD$PHHgHXHx%LD$XH-H5bA(H81zaLl$1E1HD$LD$XD$PD镤LYLl$A 1E1D$P CHD$HD$HD$@HD$8HD$0HD$ HD$(HD$#Ll$E1E1HD$D$PDA(ME1Ll$D$PDHD$A(գLLl$1E1E1D$PDAHD$HD$wLL\$XXL\$XsLL\$`LL$XXL\$`LL$XHLLl$1E1E1D$P DAHD$LLl$D$P D>LHD$PzXLL$PoLl$1E1A HD$HD$@HD$8HD$0HD$ HD$(HD$D$PC鴢L XH='Ha'H5b'ݵH]HNv%HH5A(H81 _Ll$1E1E1D$PDHD$=Ll$1E1E1HD$A(D$PDH='hHLLl$1E1E1E1HD$AD$PqD騸HHD$P$WLT$PLl$E1E1HD$D$PfDA铡Ll$E1E1HD$D$PdDAlH='HNH=y'H"'H5#'莴H,H5'H=0'1HHtjHH+tRLl$A 1E1D$PDE1HD$Ll$A1E1D$PZDE1HD$鹠HVLl$1E1E1HD$A D$PD醠fDAWAVI1AUIATI1USHHH=^'yHHIFH5'HLHEAHL|$3HzIMTI}pYIHYIHLhHVq%I9FILLLL$TLL$HI-I)I.IGHHXL5q%H QP A;$ 1LLHXH QP AH=-9HW I/ImgHCH;p%L-q%L9 HHKHPHHS HH9ID$H9HC0@I9@HH)H!HHH)Hx1HHfoL A HH9uHHH2H9(A4HPH9PAT4HPH9PAT4HPH9PAT4HPH9PAT4HPH9PAT4HPH9PAT4HPH9PAT4HPH9v~PAT4HP H9vlP AT4 HP H9vZP AT4 HP H9vHP AT4 HP H9v6P AT4 HP H9v$P AT4 HPH9v@AD4fHHHH5IEHmH+LHHH[]A\A]A^A_fDHWHHYI}pVIHSHCH;n%LKMLkIIEH+IEH;]o%7H;p%LL$L$|ULL$HIMHcL$tLHHM|IMtIEHHLD$MUL5Fn%LD$H QA;P X1LLD$LHULD$H QP A=H @9OH2I(,ImHCH;&m%zHqm%L-"n%H:L9PH5LQ0vE1HLPHH+HgPf @9pHLL$>PIELL$RfDLP(LPLOLOqS@$MIAuHIE1I.,Mt I);E1MtImHMt I/)H D1H= Hm1DH@OIE@=iLL$~D$E1L|$HD$Lt$0Ht D$)D$ IELX@ uMULL$HLALL$HHwA vfI/E1LLL$NMLL$I.LLL$qNLL$LXNLHNL8NL(NB1۾uH ?H=HvH)1H T HATH9u8LMLD$QLD$@$LL$~D$HLL|$HD$LL$Ht Lt$0D$)D$ 臵LL$HHMtI)tI/EL)M8LMf.1۾uTI~THuAuIݻ#fDE1AuIME1AuHIIݹ1HD$E1|Iݹ1HD$_LLL$&SLL$HIAuUAvE1LLSHH`E1Au1LLLD$RLD$HHMLAvH=n OAuE1Hh%L-h%H:L9HHHt1IH5AuRE1nOH;HD$AuHf%H5nH8KLL$7H=mLD$VNLD$LD$LAv!OLD$MHHf%H5mH8KH&g%H8AvHHH1IH5A vQE1H1LALL$HYIHHHHtHHЅt1HJg%HHÐHt>H(uHIfD.H H=#1Bff.AWAVAUATUHSHHJHAHucH߽A蘰H sDH=H+t"DGH[]A\A]A^A_fDHIfDHH!%tDHVHDHH)H1nQHHHHCH;d%H;f%Hl$H;f%>HSBLrE1 ;LL-4e%H QP A;ULHAILH QP AEH=9MIHmMt9I.LېAI/rLGeDI.֐AKLG>fDL{' @`DKK@$UfHHG]L8G\HHeI)ƐADH-q'HEULkM]LsIEIH+HLL`ImILFHt$HȮIXLB1 uH{Ht$uaAImH=ZiIE1QJIHuH!b%H5JiH8"G)HF=1ɺAI @f.AWAVAUATUSHH@lAAAAHLgLP1DpHՐyOHA9DHtP)HcHI LH9H|PH1H0HLHtHHݐxH='H5huFH _ZH=wCH1[]A\A]A^A_fH[]A\A]A^A_ff.SHHOHDOlHWxH|$Ht$HLHL$E(MLL9H9AD L9AH9A D!M9AI9AE DAIo D)L$ o)T$`Ao)$tvob)d$0oh)l$pAop)$tOoz )|$@ox )$Ao` )$t%oB0)D$PoH0)$AoP0)$DɃA9t$ANHcLT JHD`KHԠ HHkDH;`%H_HHHHt H[HHD$#CHD$H[DHH9AH9AE H9H9AD AOAIBo*Dfv)l$ o0)$)t$`tdoZ)\$0ox)$)|$ptCoj )l$@op )$)$tob0)d$PoX0)$)$DɃD9AN HcLL JHDŽԠHD`HHH -<H=je*H wH=mH1H HL$ HHL$`IH$AHJHL$(HHHL$hIHH$AHJHL$0HHHL$pIHH$AHJHL$8HHHL$xIHH$AHJ HL$@HH H$IH H$AzHJ(HL$HHH(H$IH(H$AOHJ0HL$PHH0H$IH0H$A$HR8HT$XH@8H$I@8H$@H'HHxH9HXHHqH~&H;Q1@H;THH9uH\%HJH5BhHWH81\GH+H *wH=zUH1[f.+H wH=H#HHP1TDH HL$ HHL$`HH$ALBLD$(L@H$LD$hALBLD$0L@H$LD$pALBLD$8L@H$LD$xA}LB LD$@L@ H$L$AVLB(LD$HL@(H$L$A/LB0LD$PL@0H$L$AHR8HT$XH@8H$H$@HX>aHHHHD$8Ht HAHD$8HcD$I$1HHL$LdIcLtH|$0HL$HIHD$@H)H|$0H/HD$@HD$0HH|$@H/Lt$0H'HD$@HD$0AvI~ L$$H5'HD$IFI$HD$ 萉IHnI$H5'pHD$@HHL$H9HRL`MEH@I$HH|$@HD$@H/=H|$@LhHD$0I,$HD$0HuH|$@H/HD$@H|$0H/HD$0?H|$HD$~gLd$ H$Hl$ Ht$L<$HH@HH\$LI4IIH@D$LLLH?HEH9uL<$H\$Hl$ H|$7H58'1LHD$XI/L|$XMtI/HD$XI>uLh8H+F fDHmuHA8uMfIHH HMHATHL@HT%H5MdL H81L?X6ZH ^ H=~E1JHĈL[]A\A]A^A_DH5'H;':H5β'H'4L;%T%' H'H Y'H9H'H@'HHL5,'M+IFH5@'LHH%HHD$0I"HI H~'H ϥ'H9H]H'HHL5'MaIFH5'LHHIIHMIH" LD$0H nR%I@HL$H91E1H;S%SH;T%F L$t$9IHD$8HMt$HcL$tLpHcI$1LHMdMlH|$0AIHH|$8H/HD$8H|$0H/Lt$0I> HD$0E1H$'AvI~ HHLL'HD$1AIH_H;R%HD$8Mt I,$ IGH5'LHD$8HHHD$8HLHZ'HD$0HH|$8H/U HD$8H|$0H/- H$L-r'HD$0LLIT$HHT$ 9HD$H7H@HT$ HH^ LH|$HD$HH$L-+'LLIT$HHT$ _9HHpHT$ HH] LHHD$8HHpHD$@H;t$? HPHT$@H- H@HHH|$8HD$8H/ Ht$@H|$8H U}H|$@HD$0HtH/ HD$0HD$@HH|$8H/ HD$8H|$0H/ HD$0E19HD$H$HH@HH|$H Ll$H$HHl$LLt$ MIfDH0LHL0H@H0H8H0H6l91IMHE -xfH(H0H0H@(;}}MHcHLH0H@H0Pt8H(HR8HcR H0;}|IM9,IH$Hl$Lt$ H|$0Ll$H5U'1L3~HD$XIEH$HIE H|$XHH/H HD$XI>M}I/Lh1Ht H+IHIu;HP0H;0HHP0H0H0H0HcLMH(M9(iI@(H0H(H)0+I@(H0H(H)0@H0HcLMH(M;(}ILL(H0H(H0H@0H0H@(H0H(H+0H0H0H0L<$H5ŭ'IqIHSIH5ǭ'RHD$8HQHD$@H K%H9H&HPHT$@HH@HHH|$8HD$8H/_Ht$@HD$8HH-yH|$@HD$0HtH/RHD$0HD$@HH|$8H/HD$8H|$0H/HD$0-HL$HHT$PHHt$XHD$,yH$D$LHP@Hx5H1IHD$0HHD$HL$HHD$0HT$PHt$XH01LL|$HH5'zHD$PI.Lt$PMII.HD$PLt$HHD$HH+fH.E1LM-MI/wjf.II+~qItIyHF(HD$pIF LHD$hIFHD$`+IItnIMt:M Lt$`Ll$hLd$pfMH+IH5'LIHV1HD$`HH5('LHV1HD$hHIM~H5&'LHV1H HD$pIM$71E1E1A< H|$0E1HtH/MtImtUH|$8HtH/tUH|$@HtH/tU4$H ۂDH=s̻MQI.9E1?L(,fD,f ,f+efDL+I@@=Lt$~D$Ht`HLd$LLl$pD$)D$`uIHMt I.U ImMfDE1E1A> $#7LH+H 'HH1IHH;sH%HD$0 H'H ڙ'HD$0H9H H'H HL5'MQ H5ܨ'LxIHD$8H I.H5 'LwHH H'H5@'H9p H''HS HL-'M H53'LHL$wHL$HI8 Im LD$8H5F%I@Ht$H9$ E1E1H;hG% H;#H%%HL$t$-HL$HHD$@y MHct$tLhI1JLLtH|$8HuIHD$0HI H|$@H/Z HD$@H|$8H/ HD$0HD$8HH|$0H/Z HD$0Lt$8HD$8HA@=HD$8Ht`HHLd$hHD$`Lt$prHD$@H$H|$8Ht H/ HD$8I.L(D{(fDH='dI(@S(fDC(_E1E1H ĂH=AG 蕷$7HD$0{$9E1Aa H)uE1H'MtIHIHtH|$0E1H$DL'fDL'Lt$0fD'fDs'fDc'fDE1E1AB $N7E1E1AC $W7'`fDL'&/fDHD$HfLt$~D$Ht`HLd$LLl$pD$)D$`IHAE $7HHD$8fH|$8V=HI=HD$0S&0fDC&fD3&fDH=Ѡ'H'H5'IfDE1AE $k7C-fD$m7HAE E1E1@%\fD%/fDHFHHD$`#IhH=!'HR'H5S'NIfDE1AE $p7)HuE1E1AX $8d@H|$$QfAE $r7fD,I=H=q'輓I@)HE1E1AY $8f.E1E1AZ $8MpM I@IHH|$0HD$0H/GLD$01ҿI@@E1E1A[ $8PH#eH v~`MH=NAL :$8HD$8D#;fD#CfDH5'HxM L|$81fDS#fDAM $+8fD+2fDHD$8Ht`HHLd$hHD$`Lt$p,HD$@H5IAa $9HDAM $-89fDL"L"#L"AE $7fDE1Aa $9H='H'H5'.I!fDH9@%LAN H8H"$:8d@E1AE $7KL!L)IH=y'ĐI@E1Aa $9I@@=Ll$~D$Ht`HHL$LHL$Lt$pD$)D$`kHL$HHD$0Mt ImH)I.L!H?%LH8.!$<8HD$8HL$AN HHD$HH&H L 5E1Aa $9H=H'H9'H5:'u~I$J8Ll HL$PM(IH='IIE1Aa $9L$ HqHt$8HHAHHH|$0HD$0H/HL$0A1ҿHAD$uHT$`LLLIvH51'訂#6Ae $9HL6bgXEIAa $9Hs$9I/E1Ae sAN $8a$ :Ll$~D$Ht`HHL$LHL$Lt$pD$)D$`ԆHL$HHD$0M$7H)MAH M$7AH H='H''H5('3|IoH5\'Hx蛍Ld$0H=˜' I9VML$7AH HH:%H5!JL ujAH tHYtH81 %^6_ME1AH $7L~.LAe E1hH= 'H'HL$H5'4{HL$IM$7AH 2LAe $K:[H='HL$HL$IM$7AH MhMI@IEHH|$8HD$8H/LD$81ҿAI@E1A^ $9hv$9I.E1E1A^ $9H0$7M$8AH H|$8Ht H/HD$8H|$@Ht H/H Rr_ )9HD$@H=b3H|$HL$@HT$8Ht$0raHL$@HT$81Ht$0'$H1HLHD$ gI.HL$ HH)HH;8%H;.8%kH;t8%^HHT$ A HT$ AH*MEHt$0EHt H.HD$0H|$8Ht H/>HD$8H|$@Ht H/HD$HL$HHD$@HT$PHt$XH&z1 LE1E1A^ 7LHL$%HL$M$ 8AL ^AE $7E1A^ $97HL$ALD$81ҿHL$I@H*DHIAa $9HE1E1AG $7HHT$ WHT$ LHD$(@HT$(HL$ $@9HD$HL$HE1A^ HT$PHt$XHxTE1H+Ll$@Ld$8H4$H4$LLH%o$U9HD$0HD$8HD$@Di$7$D9"$I9$M9 AN $:8z$<8(fDAWfAVAUATUSHHXHT5%HnH|$)D$0HD$@HD$HHW HHkHF0HD$L{(Lc H[HG' H(hE111AHHHHD H8H' L(hE111AHLAIHo H8H' L(hE111AHLAIHr H8@ AE;EKH\'H]'H9P+HD'HkHL%0'MID$H5'LHHIMI,$H'Hل'H9P?H'HHH 'HCHAH5h'HHL$HHHL$HHHHHH"HCH;1%q E1E1ۿH;53% H;3% L\$t$ TL\$HHMۋt$ tLXIHEHc1JlHHIELlHL$aHL$HIxH) H+ H1%I9G LL^MHI,$G HVI(| H;U2%AH;1%D.H;2%!HD$% H+c t$H'H5'H9pH؂'HOHL=Ă'McIGH5@'LHH IM'I/] H'Ho'H9PmHV'HHL=B'M1IGH5'LHH}HIHHIHr HAH;/%A1H;0%H;1% HL$ HL$ HIHtHXHcD$IEIc1HL\$ MlIMtLHL$o_L\$ HL$HII?HII H)_ H.%I9D$LL\MHI/ HZI( H;0%AH;/%D H;/% HD$H+> L$LH˗'H'H9PHs'HHL%_'MID$H5'LHHIMI,$HW'H'H9PXH'HjHH 'HHAH5g'HHL$ HHuHL$ IMPH)ID$H;F-%X1H;.%H;k/%mHL$(t$ Hct$ HL$(HH2HtHHHcD$HE1LHlILtH+]IHsH+I,$H,%I9GPLLLL$YZLL$MHI)~HI(H;-%H;H-%] H;-%P H`Aą~H+EHD$HIH=,%HHpHL I'HjAQAVjAQAUjHT$P'HH@HH+HHD$HL$@L IH5ދ'LIHV&HD$0HtHk@HHeH eHMHUHjL@H+%H5f;L gH81eX3ZH wex H=U1dHXH[]A\A]A^A_fHD$fDL\HH1HfA;FHf.uD$ Lzf.tD$  L^f.tf( d$f/T f/L$ p f.d$  HD$D$L$(HHHHD$ L$(f(fL\$HIE D$ L\$EL\$HI Ht$HMHHލ'5*%AHH='*%jPATjPAWjPHT$`L\$X'HPL\$HH H+I+I/gI,$<Hmt'ImHt>I.L 1HHL$ HL$HMtImuL MuH AljD$HIH|uHcHHF0HD$HHC(HD$@HC LHD$8HCHD$0l IH;~7HTHu0MDHD$HH\$0Ld$8L|$@HD$@H`M~HT$0HLLkgH5'ny3@HC@=L\$~D$Ht0HHl$HL\$ Ll$@D$)D$0UL\$ HIM'I+L3 fDD$3E1E11ɺ HtH)t5t$H zaH=QnH,Hm 1HωT$ T$fDE11ɺ D$ 4@LLD$ LD$fHx _1ɺ D$4L@LP wHA@=H\$~D$Ht0HLl$HLt$@D$HL$)D$0/THL$HIH H+HHL$ HL$@H5'LHVmHHD$HIfDLLD$ LD$fHh AljD$L[M'LcII$H+ ID$L1ҿAaDL lHFLHD$0'IH5e'LHV HD$8H) IH5'LHVl HD$@H IDLHL$HL$fD$E5 1HHH+>H߉T$HL$=T$HL$H HL\$~D$Ht0HHl$HL\$ Ll$@D$)D$0pL\$ HIuD$5MMI1E1 HIHHHHtFMt I/M^I,$SLT$HL$RHL$T$4@H߉T$HL$/T$HL$@D$5IE11ɺ IHy1L߉T$HL$HHL$T$EODLT$HL$T$HL$:L1ɺ D$4|@H=1'Hu'H5u'^dIfDKI1ɺ D$5@H=',uI@LHL$ HL$ wfH='Hzt'H5{t'cHfDE1 D$5=LHL$HL$fLHL$HL$fLHL$sHL$XfHL\$HD$NHL$L\$$H=',tH@ HL$H fDHIOHMGHII/DHLLHL$ LD$HL$ LD$HH)HLD$LD$1E1MǺ D$B5fDH D$=410H D$G41D$(oL$(H D$Q41@DD$%5H5!y'H=R'1PIH HjI/ D$i41aH\$~D$Ht0HLl$HLt$@D$HL$)D$0lkHL$HI=D$5H H E1HxfDH5ix'H='1[OIHJ H'jI/* D$T51fH D$05H H5w'H=*'1NIHHiI/ D$419fFH5w'H=ԅ'1NIHHaiI/ D$41L1ɺ D$f5@H=q|'H2p'H53p'_IZfDID$@=}HL$~D$Ht0HHl$LHL$ Lt$@D$)D$0KHL$ HIHH)HLL$%LL$v IH={'oI@1ɺ D$h5V@H1E1E1 D$4H)HY1ɺ D$k5@H=1{'Hn'H5n'^^IfDID$4E1 HI1H9!H{H=z'oI;L E1D$m5oLLL$LL$LLLD$LD$kI D$4HmHYHLyHIH)IGL1AD$LjI D$4HHD41Mĺ D$5IL$H]MD$HII,$HLLHL$ LD$HL$ LD$HH)'HLD$LD$HHD$LL$HL\$LID$1ҿAL\$D$5D D$51HL$~D$Ht0HHl$LHL$ Lt$@D$)D$0OfHL$ HII$M E1D$5HH5Os'H='1IJIHHeI/ D$51H D$5LHL$ LD$LD$HL$ H=x'Hk'H5k'F[IG1ɺ D$5*H=w'.lI1ɺ D$5I+L D$i41HH%AH5!)jL TH &SH8H\X1_3AXL D$T51wE1 D$5Lj D$41FH=v'Hj'H5j',ZHH=v'(kHL D$41 D$5lHL$ IIL$HI\$HHI,$aHCIܾ1ҿD$sHH7%L SH5'jAH QHWH81AY3AZU1E1MǺ D$6MgMMGI$II/LLLLL$ LD$I,$LD$HLL$ wLLL$ LD$LL$ LD$VH$I$M E1D$5H D$61"H5o'H=~'1FIHHaI/l D$$61,I$M E1D$6HE1Y D$A6LHL$ LD$LD$HL$ L D$51D$51ɺ D$e41ɺ D$P5q1ɺ D$4]1ɺ D$4ILHL$ IIHC1ҿD$HL$ ALLL$ LD$LD$LL$ D$5L D$$611ɺ D$5yI$M E1D$5Hu1ɺ D$ 6\ H1E1 Hff.AWAVAUATUHSHH%H^H|$ HDŽ$H$HoHUH L~ H]HDŽ$HHDŽ$HDŽ$HD$HHI}' H(hHE1AHHH$HH$HH$H/rH|'H$HDŽ$HDŽ$H Th'H9HH;h'HHL%'h'L$M>ID$H5v'LHHHH$H$HH/ H(|'H5g'HDŽ$H9pSHg'HcHLg'MWI@H5r'LLD$HHDLD$HHII(o HEH; %E1E1AH;q%H;,%> LD$LD$HI{MtL@Hl'IHK\HKDHELMadL5]%H QP A;1LHAI8p VP A=9 @9[ MRL$Im/ Hm H$H%H9GH$>H$H$H/ H$HDŽ$HH$H/ H$H;=%HDŽ$AH;=o%D H;=% H$LcEH/C HDŽ$EHCL;=k%HD$8xHD$(HDHH(Ht H;-6% HPHuLhH@HD$H MtIEHD$HtHH*y'H5d'H9p1Hd'HHH=~d'H$HHGH5Zp'HHH$H$HwH/H$H%HDŽ$H9G(LHs'H5^'H9pH^'HHL-^'L$MfIEH5k'LHHIMH$H/HDŽ$Hq %I9EIHL47MIH$L$HtH/L$HDŽ$MI( L$L;-Y %tHD$IMfHDŽ$HT$8HHL$HHD$PXHHuHD$ H5xj'H$LPHLHD$LD$HII/ I(. H$Ht H/gH$HDŽ$Ht H/:H$HDŽ$Ht H/+HD$(HL$LHHDŽ$HB @E1E1E1E1D$ H$APHD$E11BE1E1E1A(PH$D$ H=!]'HS'H5S'N@IgfDLH[H=9MIAZPE1HDŽ$H$E1D$ CfHLHLIHD$E1E1AQHD$(HL$LHLD$ E1E11HLT$-ALT$LD$ HD$H$L%IH$`DH=['$PI-@E1E1E1E1HD$E1A*PD$ uDH!fDHA@=JH$HHHL$LT$H$L$*H$LT$HHH$2Ht H/s HDŽ$I*ML-@H=Z'H:Q'H5;Q'=IfDH$E1E11HD$E1E1A-PD$ NfDHD$ H5]'H8/IHHD$ H5]'H/IHBHDŽ$Hm$I9@s I@H$H^ MpHII( H$H: L(H$H$HtH/$ H$HDŽ$HI. H$H/ HDŽ$nH|$0HD$X5Ht$HD$8Ld$`Hl$hHLl$pLl$HD$@HHHHt$PHH\$xHD$H1H@H|$HD$ M|Lt$8H\$(Ld$@fLHhAHIHL$L$CXM9u%DH|$H\$(^f(HT$H1DfAfYAHH9uHD$PH9D$tHIDYH\$H9\$0,Ld$`Hl$hLl$pH\$xH|$X.H5R'1L)ImI M I(ALf fDH=W'KI@LD$HfDE1E1E1E1H$A/PHD$D$ (LT$LT$@fDLEM^ LeII$HmID$LA1ҿAK+PfDE1E1E1E1AlPD$ KHoHHGHEHH$H$H/H$H$HH$HmH@fDDZD$ H$AoPE1E1E1E1HD$E11IH$E11HD$E1AOPD$ fonH)$+HH$HLL}6H5v&=OHFHH$IO@H5iO'H="^'1&HH$H HAH$H/H$A~PHDŽ$D$ fD1LH;IH$HMIE1AZPH$D$ @3H HDŽ$@H$HHHL$LT$H$L$AH$LT$HHH$E1E1E1AfQHD$D$f.H5YQ'LHVH"H$IEH$E1E1AMQD$H=qS'HI'H5I'6I fDH=IS'GI@E1E1E1E1HD$AOQD$KHH=R'HZI'H5[I'&6HfD#dfDH$E1E1ARQD$AH=R'HH'H5H'5IfD;fD2fDAP"DVfDH=Q'|FH@kgfD[fD1fE1E1E11HD$ATQD$fI1H=Q'EI@LAP;DHGH$HHWHHH$H$H/vH$H$HL<[CfDLHLD$fDL0HqH$HHAHHH$H$H/H$1ҿAHAGf.LHLD$LAID$1ҿALD$H$APLD$(aL$LD$((ML$E1E1E1AoQHD$D$MIAWAVAUATIUHSHL5BE'H^HD$pLt$xH HHHH%H $HOH&L $LOL@HH$SH*H5H81XWZH $H=1]HĘH[]A\A]A^A_Lv H]HD$@HHD$HHD$PHD$XHD$`HD$hHIHHHFS'H ?'H9H]H?'HHL=z?'MH S'H [?'H9HqHB?'HHL-.?'Ll$HM IEH5MH'LHHJILl$PMGH|$HH/`H|$PH$HD$HH9GIHIH|$HHt H/jHD$HMpH|$PH/HD$PIGH;$1H;$IH;$L $t$L$L $HIHD$HHD$PL$Hct$Ht IEHD$PHcI1LHMtMLL\IHD$@H[H|$HH/HD$HI/YHD$@I.H$6HCHP'HD$@H9HXHHqH~$H9QX1 fH9TGHH9uHP'H <'H9H'H|$@IHD$PH'H/a HD$@H|$HH/? HD$HH|$PH/W HD$PH5#@'H94$H $HAH;z$s$HyL- $AIELl$Ll$PImRHD$PEr$I$H5G'IH&I$H5!G'HD$HH,&HD$@H $H9H7HPHT$@H%H@HHH|$HHD$HH/Ht$@HD$HHHH|$@HD$PHtH/0 HD$PHD$@HD&H|$HH/HD$HH|$PH/HD$PHIHL$XHT$`Ht$hHHD$~HHLJ11HHI)HD$PH]11HH)HD$HH3 HCL=:$HT$PL9\H@hHH@(HrHHЅ H|$PH/KHCHT$HHD$PL9H@hHH@(HLHЅ H|$HH/HD$HHH|$hHt H/W,HD$hH|$`Ht H/D,HD$`H|$XHt H/1,H5G<'1LHD$XHD$XIm+Ll$XMV,Im+H-$L4$HD$XHEZ DIG@=HD$PHtpHLL$L $HD$pLt$xPL $HHD$@3A4X-E1fDHH9HuH;$rfH=a@'4I@fDL $L $fDLhLXL $GL $fDIHHHuHPH5;'LIHVIHD$pH!MH\$pLt$xHH5?'HHHD$@HrH5;'HǺ/H|$@IHH/H$H q$HD$@I9HD$I9HL$(u L;=$DI/EZH;I'HCH9H5G<'H_IHDH5\:'1HR.IHD$PHbI/HH$H|$PHD$H9H$@H9HD$(@H;=$H|$PHc4 H/HD$P~HH'H 5'H9H!H4'H"HL=4'M{!H5:'LlIHD$HH\"I/LL$HIAH;$"AE1H;L$H;$Ut$pHD$@Hf%MHct$tLhHIcH\H8'HHT$@HDH$1HHt$@HDH|$HH|$@IHD$PH%H/%HD$@H|$HH/ HD$HHl$PH+HG'H 3'HD$PH9H"Hu3'H$HL-a3'Ll$HM!H5?'LHD$@H$H|$HH/H5@6'HHD$HWKH|$@IHD$HH$HR$H9G$L HD$PH|$HH/.Ll$PH|$@HD$HM%H/I$H5>'HD$@Ll$PHD$PcIH%I$H5>'CHD$@H"%HD$HH $H9HHPHT$HHH@HHH|$@HD$@H/Ht$HHD$@HH H|$HHD$PHtH/0 HD$PHD$HHi$H|$@H/HD$@H|$PH/HD$PyHL$hHT$`HHt$XHD$ HH0$HXHMt$HLIH911HH#!HD$PHH5$HLCJ"H|$PH/11HHHD$P HD$PH%#HLHh#H|$PH/LHHHD$P:#H/H|$XHt H/$HD$XH|$`Ht H/$HD$`H|$hHt H/o$H53'1LHD$h HD$hI/#H|$hHB$H/#H$HHD$hHD$@HD$PHtpHLL$L $HD$pLt$x&L $HHD$@H|$PHt H/HD$PI)L謽H|$@AW)E1E1E1Ht(H/Mt I/Mt I)H|$HHt H/H|$PHtH/tvH D1H=yLMtImt@HtH+t%MI.LDHؼfDLȼfD軼fDLL $褼L $2L萼1L $L $fDk fDH|$@E1AX-H=6'H*.'H5+.'IfDE1AX-H|$@HzH=6'H-'H5-'IfDH54'H IHH;D$L;|$(L;=$LAŅI/E@H$HD$H9HCH52'HHD$HCHHIMIGH;$H;($JH@hH H@H 1LILL$@M I/H|$@HD$ H H|$@H/HCH58'HHD$@HH HD$@H HPH56'HHHA IH|$@M H/HD$@L#IH& ImH?'H +'H9H3 H+'H HL=+'M7 IGH57'LHH ILL$@M I/L\IH 6IHD$HHRLxLIHH>'H +'H9HH*'HHL *'MIAH55'LLL$0HHLL$0ILl$PMI)/HT$PH56'L蛿H|$PH/Ht$HH|$@LHD$PIHD$PHH|$@H/ HD$@H|$HH/ HD$HI/ Ll$PHD$PL;l$JIEH5J6'HHD$0]HD$PH_H505'H@IHH|$PH/] HD$PL;|$L;|$(DL;|$9LѼ…I/ H5N5'I$HD$(HtI$H5D5'HD$PHUHD$HH )$H9HHPHT$HHH@HHH|$PHD$PH/Ht$HHwH|$PIH|$HHt H/#HD$HMQH|$PH/HD$PI/ID$HHD$IxHHL$ HT$Ll$8Ll$0H\$ HHHL$f.H|$HcHL$LLHL<LhLLLZLLLLI)HuH\$ Ll$8Lt$(H5U+'1L3HD$hIHD$HIyH|$hHH/IHD$hHl$L4$HEYDL診AŅ(L4$AaXE1E1/9L8L $'L $WfD)fDIGHHHD$@+L%۴@fD軼IE1A X-DH=Q/'#IN@HGHD$HHHWHHH|$PHT$PH/nHt$HH|$PHrHImE1AX-DfDLIWHT$PHoMoHIEI/IEM1ҿLf.IGHL蘳A;X-vAFX-pkfDHFHHD$pIOoNH)L$p^H6HT$pHLLH5&WDDbff.A?9fL-$H:$E1IEI9HD$A'fL舲H57'H{!H|$@L4$3E1AwX@3IH|$@E1L4$AX4@H51'LHVŶHHD$xIFfD@mӱ:fDSHD$(HI$H5/'1HD$PHwHD$HH $H9HG HPHT$HH5 H@HHH|$PHD$PH/ Ht$HHD$PH H IH|$HHt H/\ HD$HMH|$PH/] HD$PI/= 蜷L}HD$8ID$HD$IW M}HD$ Hl$0H\$ Ll$0MIHMLd$H|$LöHL$LHHL<LȳLLL躳LLH謳I)IuH\$ Ll$0H|$8Lt$(H5%'1LHD$XIHD$HI H|$XHH/u HD$XQf1iIHU HLҰImILHD$ 藯LL$ [H|$@Ht H/RHD$@H|$HHt H/HD$HH|$PHt H/H fHD$PH=t>H|$HL$@HT$PHt$HHL$@HT$P1Ht$H苷IHG1HL2ImHI,$HH;l$H;-$H;-$H豳HmAE Hl$HE Ht Hm( HD$HH|$PHt H/ HD$PH|$@Ht H/ HD$HL$XHD$@HT$`Ht$hH H-2$L4$HE@+H H|$@L4$4E1AX fDAX5L4$E1f[fD[fDLH;fDL4$AX4@L4$AX5w@IfDKHML4$AXE1ɽ5E1DH=Y''Hz'H5{' IfDH|$@E1L4$AX:@cfDHCHLd$PLt$@CHLLHA[HD$HHD$PHD$@.A5YHL$(HHD$HHZH|$@L4$B\L AXHL$(HHD$HHH|$@L4$=褠FE1L4$AYJ~A[ACY\H='fI:A[eAXrMiMIAIEHH|$HHD$HH/LL$HA1ҿIA2A[HH|$@L4$AZK7H=m'H^'H5_'IH|$(蘟~ZARH|$@Ht H/HD$@H|$HHt H/HD$HH|$PHt H/H DHD$PH=v.H|$HL$HHT$@Ht$P cHL$HHT$@1Ht$P荧IH1HL4I/HI,$HH;\$AH;\$(DH;$H责H+AEnH\$PEHt H+HD$PH|$@Ht H/HD$@H|$HHt H/HD$HL$hHHD$HHT$`Ht$XHH4$HD$BH+E^H贝HL觝L蚝AZHD$HL$hHLHT$`Ht$XH'H|$@L4$TJ@H|$(1pAYL4$JMMJE1E1ZARiH=' I$H|$@L4$AwYB7远HA ZK"HL4$A ZKL4$AYJH|$@L4$AY=H_HHGHHH|$@HD$@H/HT$HH|$@HHD$PH+H HL4$AZKdZASYZASIZAT9HH|$@L4$A)ZLA9ZI/tYHH|$@L4$LA+ZܻNZAMf=\PHO E&L8Ld$@Lt$HHLLHAZHD$PHD$@HD$HaAZVAZKH|$@L4$AG[a4AZ'L讚 褚蚚萚L胚y>Llb$AAYH|$@L4$A[catHH|$@L4$AZLXHf$I9HD$L;-Զ$DPL;-$CLLl$PADž+H|$@L4$`E1A<[ff.AWAVAUIATUSHXHGt$ H1?HH+H'HIEH;$t H;<$ IEME1HD$HcD$E1E1E1Ll$(ILHH|$D$HD$0QHEH 1$H9MWI9HEN$II$Mt I*HMt I+#H{H;=H$H5'sHCL@IH0sH)LFHIEIHHMQHHL9%^'/It$H$H9tH~`H HEu E1H9AIu IEHHH9NH9EI$IuL$HIEH|$IMLL\$8HHD$LT$ LT$ L\$8HILT$ILLl$(L\$蟛L\$LT$HH=$H2H9 L\$LT$JLT$L\$NHLL$ ۖL9%4'LL$ D$I} IEH5 'IIL9H9HI}D|$H4HIELL\$ cL\$ fLHHtIELhIH Kd~E1H=%HXL[]A\A]A^A_fDH;=$HCIHHMD$~MILLl$(HAHHI,$MI)t$H DH=$$IEE1HPIUHHmHt H++M"I/L HMLE1HLL$MLL$SI,$HLLL$ŔLL$M6t$DH H=dA$ImG@L耔H=Hm2Hd%I9NdII$@H>HHG`HIfDHLlH|$(LL$јLL$HLD$0LL$ I)IILD$袑LD$LL$ HI1M~(DHa 'HIWH R 'H HI9uLLLL$MLL$HH(I/[D$A{CHH Hf.CsHH H)fDH='H;="$MILLl$(HFt H;Ұ$LL$躚LL$IMH= 'LT$HHGH;$H;$UHWBHJE1HL$ uLwLL$LT$ LT$LL$H QP H$;cLL$LLHD$LT$I̕LT$LL$H QP H$=292MI*'LLL$I.LL$ILE1D$XAHLLLL$ 踔LL$ IMLID$}LAE1Ll$(Hk@@KDLLL$[LL$IMLID$LAE1Ll$(HILLl$(I,$VH+mHEHHc\$H)ESH$HHL\$LT$֎LT$L\$HIL\$LT$LT$L\$HIH\$~D$MLLd$D$@ImOLLL$ A轏D$LL$ #HLL$蛏LL$\LLL$胏LL$fLLL$cLL$fLIHgH@HHD$HmIHL\$LT$螑LT$L\$HHH H=L\$LT$ALT$L\$MLOIMLID$~LAE1Ll$(HfDLL$LT$YLL$LT$@$XCILL\$LT$*L\$LT$HL\$LT$ L\$LT$rLLL$LT$(LL$LT$IM1ILMD$SAHL\$HILT$蚋LT$L\$HH1H~(DH Y'HHJH5J'H4HH9uHHL\$LT$HT$;HT$LT$HL\$H(H*HL\$LT$L\$LT$LL$LL$IUIMLIE1LALl$(HD$~ILE1D$QAHIMLMMIALHLl$(D$Ht$HLL$LT$oLT$LL$IR+LrE1ۨ uL_LL$Ht$HLT$LALT$LL$ILL$LT$CLT$LL$HH$H5ҮH8誌LT$LL$H= LT$LL$HHT$L\$LT$OHT$L\$LT$"HHMLD$AHHE1E1HTD$AH+I,$LM&E1HHE11D$~AHD$~AE1E1먾HMLAD$HTHL\$LT$LT$L\$DHHE1MLD$~AH1ɺLALT$LL$I-H .~AH=eImE11HAWAVIAUATUSHH$HHGhIwlL%HHH;$HPH&HhLh HEIEH(I,$L%Ȧ$L9AH;-:$D~H;-$tuHUÅykH :pqE1H=oHmu H؈MImH[]A\A]A^A_@AIFH4$LPIH*L9L;=}$*L;=å$L蕍IVLLHRpH&HBHHH3IFLHLPIHH+I,$HmI/LImL譇H蘇I,$FL腇9H$LLP IHH(t1HmHNfH(fDHHBHHHH;U$'IFH$HLPIHAqH+AH DDH=SHmfDH 'L5&HCLM7QH-J$H QP ;UA1HLAH%H QP EH=K9HHRH+9q^H H=MSfDKq@HY$ME11H5*AbqAH8莆H+t0H DDH=$Hw@HPfDHx.HH.H HEH$H5H81oMASqE11AhfDHL؄ @DHQ$H5H81뒐H蘄H߉T$ 4$聄4$T$ DAqAAzqA+@$fAqAc# H HAqA+AqAH'H LCL9IXH$H~H~&H;V1@H;THH9uH $HJH5AqIPH81覊uAqAH1LRHH 5qH={\HuHО$H5H8у5qHGH5wHPH$H81H$H5&AqH8|LHH9uHuH;$cf.AWAVAUIATUSHxH$HnH|$HD$PHD$XHD$`H H HD$HnIH~'HEIHV&H9P H=&Ht HH)&H HCH5'HHHz IHHMu HH9 ID$H;e$H;$Hl$PMH;$( IT$BPLz1ۨ  L-$H QP A;UHHAH$لP P AE=i @9f H<$LH<$H+ Hm L;5$ IFH;'HH5&LHHHH<$H5&HGHHIMLH袀IHMHH I,$ L;l$L;$L;($LL\$L\$fI+ H%'H &H9HlH&HHL=&M0IGH5%&LHHzHIHH=IH ߂IH{ILpH$HIG HH&H5+&HHD$超HL$HLHHL$HL$HHH+I/qH)WHm<HD$H;$JH'H &H9H"H&HHL=&MH'H=`&H9xHG&HHH3&HDHCH5&HHHHD$H|$jH+ HD$H=$H9xLHHcHHkHm IGH;i$A11H;К$H;$ L$L$HIHtHhHt$HcIc1HLHItLI\QHD$HImI/vH|$ Ń0HL$HHD$HHWl$PIFLH5&HH4HH3HgIH)H+IFH5&LHH0HH/Hct$P11HIHMdHHOLHD$HhI,$=IFH5j&LHHqIMHct$P11L8HHI/HzHH;H+H'Ht$PLXIH?H;$LmHD$HoH5H&L`HHH55&HEIHMHH[L;=J$L;=$ML;=$@LÅiI/HD$H5P&HIHHD$H5L&HHHu H5$H9CzHSHmHKHHH+HHHT$(HL$ HT$(HL$ H*)H H)H(HD$IL$I|$ HHD$(H9HL|$@Lt$8Lt$HD$0HD$HHD$I$0HD$IIL|$(MxwH\$0Ld$ MHH|$LIgHT$LHL<LLl|HLL^|HLLP|H)IuLd$ IL$I|$ AT$HIL$* I$(ID$(I$0H93Lt$8L|$@H5&1LI/HUH H+JH|$NwII,$H $LHHD$HHH(xHXvH5&LIHVI|HD$PH*Im@HH$HH5UL ^AH H81XSZH "eH=n1HxH[]A\A]A^A_DI\$TfD29H{@$H=&MLHLLH5Ʉ&S)f;uIHLH,$E1E1E1D$,THD$@{xH+E1E1佃TD$KxI(HHٽT1D$HHfH HpLHL$pHL$xfHHL$oHL$NfITHIHFD$E1E1HD$-@A$8II$(H@8Hc@ I$0@HHL㽇TE1D$_fITE11D$E1HD$H~fDH5)&H<$`IHhH5U&HpoHHI/ H;K$H;$6H;$)HsŅ#H+4 i L;5֋$AF@H& 1LhIHH;$]H5&H|$脻IH+H51&LiHHD$]sL\$HHH6&H5&HL\$tL\$H56&LHL\$L\$HHD$ILHIH+Hz$I9GIoHIOHEHI/HT$HHHL$HmHL$HHT$HHD$HH/HH)H+sH&Lp H$ u ~IL?IIDDH5i&H=2&1HHpHH+|E1E1余TD$DL@l}H0lE1E1佫TD$pH=&Hj&H5k&IfDME1E1THD$D$,@sH~H=Y&I;@HkKE1E1HD$TD$LHk{IT$0I$0I;$0G HI$0IT$0I$0RfDLj#HjLj~IME1E1HD$THD$DHjLjHl$~D$HtPHLH\$`D$)D$PvHD$H-HIHl$1E1UD$HzfH\$(H*L|$0Ll$ Ld$MIHIML|$LLI pHHH0I4$IuH0I$IEI)IuMLd$Ll$ IL$I|$ LxiHhiHE1E1qTMiD$E1E1UD$H=&Hj&H5k&IH,$E1E1E1HD$,TD$aIHuHD$H5&H=HHH$H9CgHSHZHKHHH+ HHHT$(HL$ 8HT$(HL$ H* H2H) H(w nIL$I|$ HD$8HD$HHD$(H9HL|$HLt$@Lt$HD$0HD$HHD$fDI$0HD$IL|$(MxwH\$0Ld$ MHH|$LImHT$LHL<LLjHLLjHLLjH)IuLd$ IL$I|$ AT$HIL$uvI$(ID$(I$0H97Lt$@L|$HH|$8eH5t&1LRI/H HZE1D$EWA$8t%I$(H@8Hc@ I$0x^IT$0I$0I;$0CHI$0IT$0I$0.fDH\$(HL|$0Ll$ Ld$MIHIML|$LLI1lHHH0I4$IuH0I$IEI)IuMLd$Ll$ IL$I|$ wITHE1E1HD$UD$H=&&H&H5&SHpH= &OI E1E1UD$\mHD$cH=&H!Hl$E1E1UD$'LhHMNHhIEHEHHD$ HHLLH~~ImH LdE1E1DTD$flIHfdIoH MoHEIEI/IEMA1ҿIE1E1FTHD$HD$^LceHE1E1余TcD$)LcLcI$0KL@(L9(_H@(H+(BI$0H/f.ID(I+(HI$0MD(M;(}LcKIH(L@(I$0mLcI$0KL@(L9(\H@(H+(BI$0H,ID(I+(HI$0MD(M;(}LcKIH(L@(I$0ifHD$HL$E1VHE1E11HD$H^$jHE1E1VD$tH|$H5p&cHHD$H H}$H9G HoHLHEIHHD$HHLHLt{HmHH I/jH+H4$ILHHHD$HH $HIaHHl$I۽U1D$HeHHHE1VD$1HhHE1E1VD$-LE1E1VD$HE1HD$ITD$HH1۽VD$Lm`dHME1E1"VD$HD$n!hIHwHI$(I+$0ID$0ID$(I$0E1E1-VD$5I$(I+$0ID$0ID$(I$0HvHH_E1E1HD$/VD$H5&H|$躬IHPH5g&L蟬HHD$H)eHHHf&H5G&HeH5x&HH]IHHEHD$HHEnH+WHz$I9GIoHtIOHEHI/HLHHL$HxHmHL$HI,$HH)H?^E1E1mTD$bHHHE12VD$1H E1D$=V>Hy$H5LE1E1H8^H,$,THD$D$H5i&H=&1HH&HH+UE1D$aVH5&HxI$L?VE1D$1H4H]E1D$sV\HH1۽uVD$H\HHD$ \HD$ H\H\|HHD$ \HD$ [E1E1TD$Ll\+HHT$(HL$ U\HL$ HT$(HHT$(HL$ 4\HL$ HT$(%E1xVD$HD$?E1E1何TD$OE1E1HD$TD$H[HLI薥HHHD$(HL$ [HD$(HL$ HHD$(HL$ {[HD$(HL$ (HHE1TD$1HaHt$LLHL+[QL[L[[PHZ_IUD$HD$H;HHL$ZHL$HZ6LZH5&I~E1E1TD$HjZE1D$VE1D$VH3Z?LLLHHE1aVZD$[I/e1ɽVLHL$YD$HL$HqE1I/b1ɽVLHL$YD$HL$LHL$YHL$7HHL$nYHL$HA1E1D$ UI/VD$n1ɺAH$QI/VD$E1D$U8H5&Hx8IELE1 UD$1HE1D$UHD$LHL$sXHL$HaXH|$RXE1E1dUD$bIUHD$D$H{L|$LLHeE1E1住UD$CE1E1HD$UD$E1D$V LHL$WHL$ HIHl$1E1UD$HHHL$cWHL$E1D$]VHUD$E1E1bUD$NE1E1`UD$6E1E1^UD$FE1IHD$.UD$E1D$eUE1E1IϽvUHD$D$D$VE1MD$E1E1HD$D$VzHs$E1GUH8WD$}f.AWAVIAUATIUSHX10HHH<&,s$CPfHCHs$)D$ Il$HH&HD$0HD$@HD$8MHHHHHɫH HMHUH4LDHq$H5{L H81z\ZndYzH 9H={H+ 1HXH[]A\A]A^A_DID$8HD$@ID$0HD$8ID$(AoL$I|$ Il$HD$0)L$ H}r$H9GHGHPHHDHHD$8H|$@Ld$0HD$H H;=q$H;=Dq$u H;=q$D$HEH;>p$t H;-mq$L;%`q$I$H;-Nq$X HEH C0L{H Mb ID$H;o$I$H{XH/LcXID$ Hc{0HC(HTHcS0HC8HHS@H HEH}HPHU1fHHS8JH9uLlLcHIUHBIEHp$I9ETMEI@HMAEI#IUHuLHD$H4$RHD$H4$kHDGII IIVIH[dzQWD$%VH_d{fL%yo$f RL;%do$LcXnHn$H5H8RCeL%3o$^fDE1VAEAUHH АHHtIMHQf.UH ImIIcL$DTIH L$LSIH UIH L,$~$HL<$H=s&$@6YIH I. H=&L|$ HGH;in$ H;$o$ HWB LrE1 xTH QP Hm$; LLAIjTH QP HZm$==@9/ M I/T L脷I. $eE1E1D$HmuE1HPMt ImMt I/Mt I.T$4$H H=ȗ;MUDLH4$|WHHHD$RHT$H4$H*HHD$fOHD$H4$IILAEA}HH UHH5"&LH6 HH Hj$H9BLJMLjIIEH*H&LLL $}hL $II)IEHMsIEHI,$IFH;j$IH{XMH/B8D$IUHLH$NH$qfDHk$1H5x&8Hf.HpHHcHfDID$8HD$@ID$0HD$8ID$(HD$0ID$ LHD$(ID$HD$ KIHHHcHfHEHHEHcH5&H|$5 H&HH{PH/NH&Hs@H{8HCPC0D@L1DHHHHHL9uD$HS LH5&Ch9MIHH;j$@H;i$@L;5i$LQŃtI.D$klLs LJQHHCH tnLHIH~aH5ri$H>H HHWi$HHHDHH9uHHH9!H5%i$H4HHHI,$LK{SIH HNI,$ILqK@L@H g$H\H5wHg$HIH81R:DHg$H H5H81qR@H NIdLH4$MH4$.H5&HH$襔H$IIfDLL$JL$LI%DH1g$H5H8zKdH H=jI,$WLJJJDd@Lo2H5&H|$HU&HH{PH/H<&S0H{@LC8HCPHcHH)LHHHIHHH9ufDDGII DHXIbLGIH5&LIHVMHD$ H$H5&LHVMHD$(HIH5&LHVMHD$0H;IMHl$ H|$(fH5A&LHVmMHtHD$8IM~H5&LHVGMHtHD$@IM~HT$ HLLXH5\&f}Kdz1ID$LHD$ fFIfDIEHD$E1$efLGLGLGH5a&H=Z&1HHHHmdHt$$sG$t$H5&H=&1軓HHH臮HmdLG#LE1E1G$eD$fDLF@pL;5!d$Hd$H{XHH/Hc$HCXfLFLxFH5&H=&1˒HHH藭HmD$$oeXH%FK J@$fHL $FL $8LEOHELIM~$eD$$eE1D$HEE1HHEy@E1E1$eD$QfDLXE$eD$$eD$$eD$@ efHt$ I fLHDfDLJE1 uLGHt$ DLAIH=rgG$eE1D$9HH|H)`$H5RgH8*EaLUD@D$$e*D$$TfVHH~D$$UfdJd;H a$HH<`$HH5ojL yAH ՙH81J^z_;dGD$$flD$$keXH=&H;=`$xHD$H@t H;8a$YHt$ KHHH=&H赌IHVHmLI/D$$7fLBH5&H=&1HHH跩HmD$$fxHH^$L 2AjHH5pnH8H {1oIAX5dAYzIl$1HA MHHHx^$HMH50H81ID$$1eHt$EHD$$}fHE1$2fD$GD$$0fs1ɺLAIfD$$eJDf.AWfAVAUATIUSHHQ^$H^H|$()D$pH$HRH HV Hn(ID$I\$ HD$HD$`HHD$hHD$pEHD$HH&L(hE111AHH|$AH$HH8H& L(hE1ɹAHHAIH@H8VIEH5^&LHD$ h&HD$H|$ HpC&f/H$pH5ʺ&H&H;-\$kH&H&H9X;H&H;HL%x&M?ID$H5;&LHHHI$HHI$HBIHHEHhDHHD$`HHA&H&H9PHɮ&HHH-&Hl$hHHEH5T&HHH]HHl$pHH|$hH/'HT$pH5c&HD$hH|$`EH|$pH/HT$`LHHD$pPHHD$pH?H+I,$H|$`H/{HD$pH G&HD$`H4$HL|$pHD$1HD$pLIH{H;Z$HD$pzHD$pIFLH5&HHHHl$pH HL&HHD$`Hb H|$pH/HD$pH|$`H/HD$`IFH53&LHHHHl$`HH|$k?HHD$pHM@@HH,HD$pH|$`HHEHD$p;HHD$pHLH|$`H/HD$`HmHD$pH5&HD$pHD$H&H9XH&H HH-&Hl$pHHEH5Z&HHHE IM H|$pH/HD$p??HHD$pH H\$HHD$pHXGAHHD$`H H&HH&H9X,!H/&H!HH&HU!H5&HKHHD$hH!H+HT$hH5&H|$`A H|$hH/DHT$`Ht$pLHD$hHHD$hI$H~!HI$tH|$pH/[HD$pH|$`H/9HD$`H\$hHLd$hHD$hH5&ID$HD$8IFHD$0HD$(H胉HH !HD$(H5۷&H_HD$`H!HD$pHU$H9PCHPHT$pH1H@HHH|$`HD$`H/(Ht$pHD$`HH:H|$pHD$hHtH/HD$hHD$pH H|$`H/HD$`H|$hH/HD$h?H|$0HD$@/Ht$HD$(E1Hl$HL\$8Ll$PHHP@HH\$8Ht$(LILLd$XLd$0L|$0II0MHLHL$ LD$H0H09ANIF 1+vfDH(H0H0H@(A;v}MHcI H0H@H0Pt8 H(HR8HcR H0A;v|HHl$(I9>H\$8Hl$HLl$PLd$XL|$0H|$@{6H5,&1H HmeHH(IHHI\$HHˍH HMHSH/L@HS$H5~cL #H81}>XEZH 0H=1|HĘH[]A\A]A^A_HH;-)T$ ^5HD$8HHL8Mt L;=S$HPHuHXLpH\$0MHD$0HtHMtIH&Hd&H9XHK&HHH=7&H|$hH)HGH5&&HHHD$pHH|$hH/ H|$pHQ$HD$hH9GHH|$hHD$`HtH/ HD$`HD$hH8H|$pH/y HD$pH|$N8HD$pH8&9HD$HD$hHHD$h~D$`HD$`D$p@HD$pMt I/* H\$0HtHHD$8HHMt I.Hm&HΤ&H9X< H&HHH-&Hl$`H; HEH58&HHH-HHl$pH|$`H H/# HD$`8HHD$`HOH\$HHD$`HX :HHD$hH/H&H&H9XHأ&H]HHģ&H;HCH5&HHHTHHHH*HHl H5ͱ&H|$hHp:PHmu HT$hHt$`H|$pIHsH|$pH/HD$pH|$`H/HD$`H|$hH/H&At$HD$hI|$ I$I\$H|$IGIHfH=&I*W&KHD$(H5r&HHHHD$(H5v&HHD$hHHD$`HTN$H9P HPHT$`H H@HHH|$hHD$hH/Ht$`HD$hHe H{HH|$`Ht H/HD$`H[H|$hH/ HD$hH) e8HD$0LHH|$HH~vHt$HD$(E1Hl$(Ll$8LIHHP@HLd$@Ht$IIDLD$HL$ HMLLHa2H\$I9uHl$(Ll$8Ld$@H|$0/H5&1Hm}HmIMI/I$LLE1HD$E1DHXLpH\$0I)fH0bH0HH~yHtHHF(H$ID$ HHD$xID$HD$py.IHtqHHt=MHD$pH\$xH$HD$Q@HH'.IH5-&HIHV4HD$pHOH5H&HHVl4HD$xHIMyH5ʧ&HHV>4HH$IC@HD$1E11HD$H|$`E1E1H$E1D$D$ EHt H/H|$hHt H/H|$pHt H/YHt HmYT$t$ H J1H=wL+H+L+H5&Hx3Lt$piH|$`1E1E1HD$1D$D$ Fit3H[D$ HHm(H|$`LE1E1HD$1D$#1E1E1E1HD$1D$D$ Gu;HP0H;0HHP0H0H0H0LcJH QP A=729HcL@HLLHHDAH+ASE11fDHHHILH.Lk@$fLh5HXAAR# INL !HE1ARAI.H+HtHmt)MIm~LqHfDI.LAAR6DHpL`lLPpE1ARA;@L(HHD$HD$f@DARA1DLH HImLfL-Y|&IUL]HH+&H-tm&H@Hqm&HHE fDE1ASA[@LHD$CHD$fH=&L-{&HGLHHqHHH6$LE1H5lUASAH813fDIASA@D{@$VfLHLIHfD1ARATDH@H=1#kE1ARA1fDAAS'IKHHoH$H5"ARAH8H=".@LAf.[@$fKIHL腂HDHt$LVgHfDtLB1 uI~Ht$AHfHt$HfHfD+H*H$H5!H8LB1 uH{Ht$/AHDH=Q!Q@ImDL-7HuH$H5(!H8fDH@`H^HHNHIH=H@H;$f?MeIT$HH fHcHEeAMcImLcfDEeAEII I@EeIm?EeAEII ImLE1LH5VQMIH,H@@LPIB#HBLkHCHHH $H5gRH8iH@`H+HHLHH H$H9EHEt#LeID$HH~eHcHH荀IHmiH\DeAMcDeEII IDeDeEII HH51UKHH]ImLof.HIf1ɺAH1ɺAHbHuH$H5 QH8 AARfAWAVAUATIUSHH%HLAHL1HpIHtHc|HHHLII$MUHI$HmdHHCH;U$WH;$Ll$H;$HSBLbE1 uL{H-$H QP ;UdLLAIH QP EH= @9WMnHImMHmLA`I,$uLoH ODH=iU͈H+DH[]A\A]A^A_HAkI$t@HmuHHLHmyLHmUHhLHH=@E1K@$fLH}{IDAgDL%}&I$kI,$Ai{fL{MHkIHEH+tPLLHI/I LHt$H_IfDHxfDLB1 uH{Ht$uEAIfIHH$H5AH8f1ɺAITA}AWAAVAUAATUSHH$ L``AIcH0GHH0GHH0GHH0GtuHH0Gt\HH0tGtCHH0[Gt*HH0BGtHH0)-H$0_011H$8.tsH$@/t_H$H/tKH$P/t7H$X/t#H$`/tH$h/1҃uH1H9ACDvC$9C<ډ) HMcHJH@HĀJ@JԀEHKHHcHH@HĀH@H̀EHKHHcHH@HĀH@H̀EAHKHHcHH@HĀH@H̀EHKHHcHH@HĀH@H̀EHKHHcHH@HĀH@H̀EtyHKHHcHH@HĀH@H̀t9HcōKHHcHH@HĀH@H̀HDŽ$G-HDŽ$taHDŽ$tPHDŽ$t?HDŽ$ t.HDŽ$(tHDŽ$0t HDŽ$8HcH$@JH@H9))$@$@$Pt$`t$pЃ9tH$@HH@H$Hi,L$0L$1M9I|@HcAhIHLIH@LHHHHL$$~$HL4$H=n&HX($@FHHEHHHEH=t&H$HGH;n$H;)$HWBlHjE1 uLwL% $H QP A;$#HLHnp VP A$=29HH+(HAA/WHmfDDH ;FH=ML}De@H FAH=9QD9H[]A\A]A^A_DHpHH?k1H$0HpHHHH?HDHHكHD0fHAA'HEH. fHDŽ$pH$  L$8L$M9tI;HDŽ$xH$8L$@L$M9t IHDŽ$H$ktL$HL$M9t IHDŽ$H$'L$PL$ M9t IYHDŽ$H$L$XL$(M9t I HDŽ$H$dL$`L$0M9t IHDŽ$H$WtDL$hL$8M9t IvHDŽ$H$>H$0H$(H$pH=HHHHiH$8H$xHHHHHЃ3H$@H$HHHHHЃH$HH$HHHH!HЃH$PH$HeHHH"HЃH$XH$H/HHH!HЃt_H$`H$HHHH!HЃt-H$hH$HHHH"HH$J H$H$@HHHHH HHHiH$L$HHHIMvH3H$L$PHHIMPHH$L$XHKHIMZHH$ L$`HHIMY HH$(L$hHHIM3 Ht_H$0L$pHHIM Ht-H$8L$xH{HIM !HLH9v H9HD$-Do$ DSDo$0Do$@Do$PDo$`o$pD)$o$o$D)$ o$o$D)$0H$ )$`o$o$o$D)$@D)$P)$p)$)$)$)$)$)$HP`V$IcH̠uH;`gH Hƒ sHcH=H;`/H T sHcHH;`H  sHcHH9`H  sHcHH;`H  sHcHymH;`ucH  sHcHy@H;`u6H [ sHcHyH;`u 7 fH~D)$D)$ D)$0D)$@D)$P)$`)$p)$)$)$)$)$)$H, H;$` H$ Hƒ+H$ H9$h H$(H$ H9$p H$0H$ H9$x H$8H$m H9$_ H$@tsH$B H9$4 H$HtHH$ H9$ H$PtH$ H;$ o$H$o$o$)$o$ )$ o$0)$0o$@)$@o$P)$Po$`)$`o$p)$po$)$o$)$o$H$)$o$)$)$)$H@` H;$` H$ +H$ H9$h H$(H$ H9$pz H$0H$Y H9$xK H$8H$* H9$ H$@tsH$ H9$ H$HtHH$ H9$ H$PtH$ H9$ L$EL$0HcIfH(+HH=d&1H50= fAA)E McҍEJ0HH0JpHpJ԰HİCHMH0HcH0HpHİHpH̰CHMH0HcH0HpHİHpH̰CAHMH0HcH0HpHİHpH̰CHMH0HcH0HpHİHpH̰CHMH0HcH0HpHİHpH̰CtyHMH0HcH0HpHİHpH̰t9HcÍMH0HcH0HpHİHpH̰HDŽ$0HDŽ$8taHDŽ$@tPHDŽ$Ht?HDŽ$Pt.HDŽ$XtHDŽ$`t HDŽ$hHcH$pJHpH9UL$p$p$t$t$Ѓ9tH$pHHpH$H+@H=!a&H59xjf.H`HHI,$uLAAH=`&H59tf.AI,$I.tAHZDLfDH=1`&H58Qzf.AH=_&H5m8H^:f.H=_&H5=8{ f.H$DHfDHHH fH5o$o$o$H$)$o$ o$)$ o$0)$0o$@)$@o$P)$Po$`)$`o$p)$po$)$o$)$o$)$)$)$)$H@`H̠xH9`jH KHcH̠CH9`5H KHcH̠H9`H SKHcH̠H9`H KHcH̠H9`H KHcH̠ysH9`uiH KHcH̠yFH9`uMcJ DPAMcJ DPAMcJ DPAMcJ H$r 11H$tsH$t_H$tKH$ t7H$( t#H$0tH$81҃uH1H9ACDvC$L$0HcL|$8I4L9LHHHHHHHfo:LHHLf.ofoHfs fofofs fffofffs fH9ufofoHfsfs HfofoIfs fffofffs ffH~IH9t.HHJH9v!HBHJH9vHBHJH9vHBILLD$LD$HHD$ ~D$D$)D$@pCLLL$@LD$ H H|$PLL$HHL$(D$4LL$HL$(IH<$FLL$LD$ DT$4V IcDIDITHH)ʐLx@L8HH9u~ H|$P H|$Xu HDŽ$H|$`u HDŽ$tnH|$hu HDŽ$tUH|$pu HDŽ$t tH$ o$ HD$o$0<$F)$o$@o$P)$ o$`)$0o$p)$@o$)$Po$)$`o$)$po$)$o$)$o$)$o$)$)$)$H@`x IcH̠H9`H B HcH̠H;`|H ` A4 HcHQH;`CH 'A4 HcHH;` H A4 HcHH;`H A4 HcHH;`H A< HcHyuH;`ukH OA< HcHyEH;`u;H HƃAIcHĠyH;`u H$pt$8IIPISHT$XH$8_AXH|$ fot$@fo|$Pfo$$ fot$`$0fo|$p$@fo$$Pfo$$`fo$$pfo$$fo$$fo$$fo$$fo$$$$H$HEH=yHHHHAAMcJDSAMcJDSAMcJDSAMcJDSAMcJDSAtfMcJlDSAtJMcJPDSAt.McJ4DSAtMcJH$ 11H$ tsH$ t_H$ tKH$ 9 t7H$(f t#H$0H tH$8R 1҃uH1H9H$ TaH$?2#HHK$H$HE1DS\$L$HLd$HMHL$EHE1DLLIH$@L9uLd$<$Dl$\$H$@H$pATSH$H$8L$L$@L$L$XZMDT$~51ۉ,$HDLALLH7L$@L9uً,$PHHHHHH2H$pH$xH$H$H$H$H$H$1ɺH$@H$H(H$PH$XH$`H$hH$pH$xH$(H|$L&HH8LJE1 uLGH$LAH$C1HDŽ$1IH}H/HH$@I9u<$wH$@H$pATjH$H$8L$L$@NL$L$Y^M1I$HHL$@L9uHDŽ$ Hd#H5H8eE1J@HH?H$Ht1H@HHHH?HDHHكHDL$L|$PyL$L|$XL$L|$`tpL$L|$ht]L$L|$ptJL$L|$xt7H$L$IǃtH$H$tH$H|$P3HDŽ$H=I&1|H$ LD$HD$,E1ҺJ@HH?|1H$H@HHHH?HDHHكHDI11H$pHH?H1DSMcJCH$CH$@HH?H1H$(H$1J!HA<$@H$@H$pATSH$H$8L$L$@L$L$A[A^MDSL$HL$6<$FAALL$@@M&L$EuGL$0HcILL1DT$DT$D$H$HH$~Y1l$L$HL$\$ HDLE1LLHL$@H9,$uAڋl$\$ |$D$H$ D$L$0L$HP`HcID$IIuxHDEHL$LLNHD$ LHxL$HD$ L$HL$HLHվIUHIE@L,$~$DDH$$)D$@$$$$$$$$$$$$$$$$$$$$$$$$)$H$H$)$RPAAAAAAAAAAAvxAvpAvhAv`AvXAvPAvHAv@Av8Av0Av(Av AvAvAvA6$HĠfoD$-Hmt8fDI/RL)$躹fo$)|$PAo)$tsow)t$ o~)|$`Aop)$tLo )|$0oF )D$pAoH )$t%og0)d$@on0)$AoP0)$ȃ9t"HHpHxHHuH HEH#H5H81趏@H#pH5HH81莏@pfpAWfAVAUATIUSHL5A#HnH&H|$)D$`Lt$pH\$xH HHH HHH HMHUH'LDH#H5L UH81诎XIZH H=E1HĈL[]A\A]A^A_H^0ID$(HD$ ID$ Il$HD$HD$HHD$PHD$XHEHL%&H\$@I9: H#H9CI9D${ :#A|$ N#HSHL$@I;T$HCIt$H9@H@t H{ ED$ D@@8@ eH{HA #It$0IHA@IDDA$A&DDE9uSHL HL$E1H襈HL$A DL9uLuM9{ Hلp H5i&HlAą!H|$@H/ HD$@E ۃIH HL(Mt M9D HPHuHpL`Ht$M2 HD$HtHMtI$Hn &H5%H9pH%H HH=%H|$HHHGH5&HHHD$PHH|$HH/ H|$PH^#HD$HH9GHt$H|$HHD$@HtH/ HD$@HD$HH1H|$PH/j HD$PH|$@H/B HD$@Mt ImyHL$HtHHD$(HHjMt I,$:H5%H|$1IHD$HHH;#L;=m#u M9DI/HD$HE-HIHD$HHH|$H蓃IHD$PH" H|$HH/HD$HH|$PH;=V#H;=̟#L9H|$PAąH/Y HD$PEH|$HD$(H HD$HHL(M9t MHPHuLxH@HD$MtIEMtIHD$HtHH&H5%H9p H%H HH=%H|$HHT HGH5&HH HD$@H H|$HH/H|$@H#HD$HH9G HCH|$HHD$PHtH/HD$PHD$HH|$@H!H/HD$@Ld$PHmID$H5%LHD$PHH!HD$PH H54%H9SHPH;#!Hxu x1H !#HHHT$@H(HD$PH|$@H;=#@H;=k#@u L9@H/,HD$@H5l%LHD$@HwH5%HǺ蒀H|$@HD$PH^$H/E HD$@H|$PH;=X#H;=Μ#L9H|$P…&H/\ HD$PH&H@H91%)H%H)HH=%H|$@HX)H5%H|$@HD$HHz)H/q"H5R%LHD$@aHD$@H)LL$HIAH;#r*A1H;T#&H;#!HL$0DD$HD$HHLI/uLvHT$HH5%H|$Pb}qH|$HH/uZvHT$PHt$@HD$HH|$XIHD$HHH|$XH/uvHD$XH|$@H/uvHD$@H|$PH/uuHD$PHl$HI,$uLuH5%HHD$HIHD$HH H@'IGH HH#L{HD$H|$L|$HI/DHD$HL9LEH|$LD$H)IE11HHIL)H9HIH9uIH5%H~t Iɚ;H5u%HtHI9YL9d$(L9t$ H%H5%H9pH%HHL=%L|$HMH5%LuIHD$@H9H|$HH/H|$@H#HD$HH9GHt$ 謽IH|$HL|$PHtH/L|$PHD$HHL$@M H)HD$@H|$PH;=#H;=s#@L97xH|$PAŅ H/HD$PE HD$ H5B#H9p"HHD$@H|$msIHD$PH#vIHD$HHX$HD$PH|$@LHD$PIG"rIHD$PH $H|$@H/HD$@H|$HH/nHD$HL|$PHD$PH%H %H9HH%H HL-%Ll$PMH5%LsIHD$HHH|$PH/kHD$PuIHD$PH% IHD$PLxwIHD$@H' H=%H %H9He H%H"HL-%Ll$XM H5\%L輾IH"H|$XH/H5z%H|$@LLD$ HD$XxLD$  I(HT$@Ht$PH|$HdIH"H|$HH/dHD$HH|$PH/BHD$PH|$@H/ HD$@H|$JH5%LIH'$H|$HD$ pLD$ HHD$@$LH\yLD$ HHD$P/$I("H|$@H/!HD$@H|$P-HD$ H$H|$PH/!HD$PM9r$IEH5%HHD$0%$HD$H5%HH*IH&HD$H5%HHD$@H$Hi#H9X"HXH"H@HHH|$@HD$@H/$H|$@HHD$PH+ $H|$P$H|$@H/V#HD$@H|$PH/4#HD$PuH|$LAPHt$8LD$8HLL$0HL$ HT$_mH߉D$cmH5%1LIIHIAYAZH$M3%I(q$|$#IELI/tvImMfDL nLD$nLD$P@LD$mLD$L@LmJmQfD1LImcfDMJH|$@Ht H/o HD$@H|$HHt H/2 HD$HH|$PHt H/ L5%IWXHD$PI9HIFHHJX @K @ A@2 HXHwHQH~%L;q/1L;tHH9uAHILl$~D$H8HPD$LxL`Ht H/Ht H*MI/HL$@E1E1E1HmH)cHLD$lLD$L@INHWIvH9tb1 fDI;TtQHH9uE1HHL$ LL$HT$fu*LL$HL$ HT$IL9KtH9u@H HH=HL$HHT$PLHt$@H5`%H=%1躷HHHD$AJ~HD$HHSJHHkH k^@H=9%H%H5%H4fDjDfDOJfDr/fDH=%H@oH|$@Hc-L]IHD$PH HD$PHD$HHD$HIGHL$@LE1E1AnE1H|$@L^KAXYH5%H=%1XIHD$HH' HH|$HH/HL$@ ME1E1HD$HAoXX[XHL$@EME1E1AyE1"HL$@E1JAMHD$0>XHL$0[/X%XmHD$@Ht`HLHL$`HD$hH%HL$0HD$p HL$0HHD$P KH|$@Ht H/HD$@AXHtH)t H|$X`HWH|$XNHH+t#H5̃L qjAH ˭HH81^A[I[CWH6W,WHL$0YIHD$HH H=%H-_IHD$PH H|$HH/Ht$PH=y%HD$H裠IHD$HH H|$PH/LHD$PH|$HH|$HH/ HL$@iME1E1HD$HAzXV"H5<%H=%1订IHD$HH HuH|$HH/`HL$@ME1E1HD$HA}BE1eKAXH|$XH=~%H%H5%諳HcULgKAX.H=?%H2HD$ xULD$ -HL$@E1E1JAOHL$@E1MAH=%H%H5%ILUUTfjKAXH|$XHL$@E1JAOE1E1MAH=^%IoH|$@LKA[!TzTpTIIHIAHHH|$HHD$HH/LL$HA1ҿIASH=%H%H5%H|HL$@E1E1JAOHGHD$HHHWHHH|$@HT$@H/Ht$HH|$@HHT$ bmIE1MAH|$@H LA[KH=%JHH|$@L廫KAXHL$@ME1E1AE1K*H|$@LKA[E1E1LXLAb RHL$@E1E1LbLAakH=R%H%H5%IWHL$@E1NA1jR|KA[H|$XHL$@NAH=%/IH|$@L廞KAX RxRLQ1E1E1LmLA`LKA[]Hn#H5_}H8RHL$@E1NATHQE1"NAA[KHL$@E1$NA HL$@E1E1JADH=%Hy%H5z%IHL$@)NAE1H|$ WIHD$@HE1E1MAKA[tHoH4HGHEHH|$XHD$XH/*HT$@H|$XHDjHD$PHmH\PIHyHD$H5:%H辟HD$@HNH!l#H9XwHXHjH@HHH|$@HD$@H/H|$@H赙HD$PH+H|$PH|$@H/HD$@H|$PH/HD$PEVH|$LQHt$8LD$8HLL$0HL$ HT$(WH NH5%L1诛IIHI^_H|MI(L OHL$@E1E1NAH=%I_NHL$@E1&NAxNH|$@LKA[,HL$@E1E1NA;HL$@E1NA\NRNHL$@E1+NA0N<&NLNN[HL$@E1LAlBH@`HHHLIHHk#I9Eu%LImHD$@LM3LH5&IHuHL$0gMLL$HA1ҿHL$0IA|HL$@E1E1MAHL$@E1MAdHL$@E1LAkLE1E1MAHL$@E1E1MAHL$@E1E1LAlrHL$@E1MAoHpcHD$PH^cHD$PfHL$@E1MA}WLHL$@YNAHL$@E1E1YMA{HL$@E1WMA{ZHL$@]NAHL$@E1dMAz-K@KHKAKKHL$@vNAE1=[NAH5%I}˺vHL$@lNAE1OH/HL$@aNAE1K)KHJNI.HL$@AE1OI.^HL$@AE1rNLMIHD$PHH=%HRIHD$@HH|$PH/sHt$@H=%HD$P'IHD$PH3H|$@H/HD$@H|$PdH|$PH/HL$@NAE1HD$PLIKHL$@E1OAw%OLLD$ILD$mLLD$ILD$HL$@E1NA'L]IHD$PLFI\HL$@YOAHL$@NAIIHL$@NAHNA HL$@NAHL$HHL$A[Kjf.AWAVAUATIUSHXH-%H^H|$HD$0Hl$8HHHHHH HOH!L LOL@HHd#SHФH5ItH81OOXP\ZH ahH=1NHXH[]A\A]A^A_@Hn Md$HEID$HHL$H%H %H9H-Hֹ%HHL5¹%MIFH5F%LHHIIHMnIHL-c#M9h1LLLD$ѐLD$HMHmI.H|$H5/%HGHHIMM9nMfMMnI$IEI. HLL8`I,$I* MImI(HHPHHHHmMHF@fDH%H9kHXHHqH~#H;QH1 H;T8HH9uHM%H %H9H4H%HHL5%M`IFH5e%LHHIMlI.*L-Ka#M9hLLLD$ LD$HMH%I/;H%H M%H9H3H4%H HL5 %MHCH5%HHHIMIFL9VE1E1ۿH; b#\ H;b#7LD$(t$ L\$$HL\$Hct$ HILD$(IMtLXHEI1LKlMDLLT$ {LT$ HHD$hI* I. Hm HCH5%HHHIMmH5%L9 IFH;ra#<I~uA~ f.L q`#H-`#1II9MI. I/ H%HRH9e%|HP%H HL5<%M=IFH5Ⱦ%LHH(IIHMIHIGL9A1E1HD$H;`#.H;`#DD$ t$>FIHMHct$LcD$ tLpHH1LI\LI$OdL\$薎L\$HII+bI/QI9L;^# L;B_# LLD$GLD$I(H?%H г%H9HH%HHL%MUH5c%LLT$辎LT$HII*M9nHLMIMI+H+H|$H5g%HGHH'LT$LT$IMM9n I^H MnHIEI.*LHLLT$bZH+LT$IdM,ImI(IHl$LHPIHH9HuH;]#jLLD$@LD$fLLD$?LD$fL?L?HLM蒉IPf.IH H) H@H>mL>GLLD$s>LD$#fH9y%sHd%H[HLP%M4I@H5$%LLD$HHLD$IIHMIH HCH5S%HHHIMhI@Ht$LH@pH H@H LD$LD$IIHMNIH LT$*ALT$HILP@CIHH%H 6%H9HH%HlHH- %HHEH5Ź%LT$HHHxLT$IHEHHEM4H1 H5%LLLD$ LT$CLT$LD$ 6I( LLLLT$҈LT$HIqI. I/ I* H5%H|$肉IHL9hz HhHm LPHEIH( LLHLT$UHmLT$I MI* I( H5%HHHD$~9LD$HIHN%LLLD$LT$HIBH/%HBLT$LD$HII*Y I(B Ht$LL8L9IHHCLH@pHH@H LT$HLT$IMI* H+Hl$I,$Hl$L I/PLn:CfLX:HH:jL8:OLLD$#:LD$fH=%I$H=%IH=%ܨIfA.FPJf.H-1W#HEIDE1HL9fMtI,$uLl9M8fDLD$ L9D$ LD$ 49D$ L 9-L\$~D$Ht0HHl$LL\$(LD$@D$LD$ )D$0LD$ L\$(HHD$IME1MƺMA ]HfIH|E1E1Mt I.Mt I(MtI*t5H ގDH=,HH+1DL׉T$$8T$fDLLT$E1E1LD$T$7T$LD$LT$[fLLT$T$7LT$T$QLLT$LD$T$7T$LD$LT$E1E11ۺA\H=%H%H5%FIfDH=%H%H5%IfDE1E11ۺA\H=%Ic@E1E11E1ҺA\?DH=q%輥IZ@M1E1E1A\D{>IUk>IE1E1E1E1A\@MpMMxIII(FLLLOI.HL5DA\IE1E1E1H0MxMMpIII(LLLoOI/HL5DHFHHD$03HoNH)L$03HHT$0HLLH5LI%7@\-DE1E1亞A\f.E1E1亙A\uf.fE1E1Hl$A6]D ;I]L3GL2 IMMƺMA]H0LLLT$M|LT$I0LLD$2LD$fIME1E1A']HLLT$c2LT$fH;iN#oL2IIMHA8]IHLT$E11MT$E1Hl$qIL1 LLD$ 1LD$ LHD$1LD$LLg{MIHLT$ LD$j1LT$ LD$Lt$ ~D$ HLH\$ HD$Ld$@Ht0D$ )D$0WIHAZ]MIHLD$LD$I_L0*L0LLT$0LT$QLLT$LD$0LT$LD$&LLT$0LT$LLT$n0LT$L\0$LLT$J0LT$LLT$30LT$L!0HLT$LD$ 0LT$LD${E1E1Hl$A]{H=%H%H5%趍IE1E1Hl$AF]>H=L%H͡%H5Ρ%yI}HLT$t/LT$_LLT$]/LT$>LLD$ ML\$>/IG1ҾAL\$LD$ 7LD$IL.ULLD$.LD$4MHl$E1E1A]%AH]6IMwMIWIHI/3HBIAHLT$\.LT$jE1E1Hl$E1ҺA]6IdMHl$E1A]lHLT$LD$-LT$LD$)Hl$MǺAx]L-LLD$-LD$E1Hl$E1A]IHl$E1A]HAh]UME1Hl$E1M޺As]IHl$A]HH=֧%H'%LT$H5#%LT$HIHl$E1A]HBE1E1LHl$A]_LT$4LT$IL,H=I%LT$菛LT$HHIHl$A]HH4LT$ILME1E1Hl$E1ҺA]I\$E1E1Hl$A]H=%H%H5%؉IeIHl$E1A]H!E1E1Hl$A]6H=O%蚚IE1Hl$A^E1E1E1Hl$E1M޺A]InHM^HEII.7LHHL\$DHmL\$IHLT$ L\$*LT$ L\$E1Hl$A^OHLT$°LT$IE1Hl$A^(IME1MƺMA]HE1Hl$A^LHT$ E*HT$ Hl$A!^Hl$A1^Hl$A;^Hl$A=^wLL\$)L\$A1HD$Ab]HLT$LD$)LD$LT$H- G#HpI6I9@L;=uF#@ L;=F#@ HuLD$(T$ B)D$(T$ Li.Hl$A;]'MHl$E1E1ME1Hl$E1qHHH?Pf *YHÐf.HGH?H~3ATL$UHSHDH}HUCI9u[]A\fDH~CATL$UHSHDH}HUf *YJCI9u[]A\AUL-'ATL%UH-SHH(H;SfHH HH*@AY HH9DH;HC@A\L$HcAD\$\$L$D$f(fW%yf(&$YT$\$L$Xf/MH(f([]A\A]@ ލ\f() QH([]\A\A]f(fDH~3ATL$UHSHDHHL'CI9u[]A\DAVIAUL-ATL%UH-SHI>AVfɉ *@AY H9DI>IF@A\L$HcAD\$ \D$L$(W-1 ()f\$ L$*Y YT$X/KH([]A\A]A^f *Y \j+ H[]\A\A]A^(@f.H~3ATL$UHSHDHHl*CI9u[]A\DH~KATL$UHSHDH}HU ŋ\f(&fWCI9u[]A\ÐDf.H~kATL$UHSHDH}HUf a *YZ\f(&ZWCI9u[]A\Df.AWAVIAUL-`ATL%WUHSHDH(I>IFL$Hc\$\$L$%4D$Yf(Y#$YT$\$L$Xf/wAI>AVfII HLH!H*AYLtfW uI94CH(f([]A\A]A^A_I>IF5\f("% jI>Y $AV=‰\f($ $fWf(XYf/vX &AffW Y@H~3ATL$UHSHDHH(CI9u[]A\DAVIAUL-ATL%yUH-qSHI>IFTHcDT$ \D$%efZL$Y f(YE!fT$ *Y YL$XZf/wCI>AVf H*AYDD$t WD$A98D$H[]A\A]A^DI>IFf5o *Y\\('TI>YT$AVf/ *Y \&T$(W (YX/oXT$@WT$.fDH~3ATL$UHSHDHH<&CI9u[]A\Df.Rff.4SHH0=D$f/@H;SHD$  Ćl$T$\f/r. D$f(^!\$f/rH0[ÐD$rL$ \^D$!t$L$ f(f(T$Y\f( /^V!T$\$\f/,H0[fDf(\=Y|$(ff.Q5ȅ^t$fDH`%ff(D$YXf/sf(L$H;YYD$SL$$=\f(YYY\f/wZL$ w D$D$f L$ =\T$YXYT$(YXf/L$0D$(YD$H0[fDfDuL$%L$Df..f.fSHH 5D$t$5/fH;SfH *YT$T$ {" wl$T$ \/r. ZD$ (^"\$ /rH [D$&L$\^D$"t$L$((T$ Y\( ^!T$ \$\/ H [f.(\-fYl$.Q-=~^|$=h|$fH!f(D$YXC/s(L$H;YYD$ SL$f' =(*YYD$YY\/wYL$!D$D$ r!L$5\T$ YXYT$YX/L$%D$YD$ H [fDwU L$L$Df.HHH?PHHÐf.HHH?PHff.HHH?PHHÐf.HGH?f.XE„f. D„wUSH(-f/?f1X D$^f(\$YYXY\YXY\YXY\YXY\YL$L$X \$52d$^f(\ f/YX dX\v@H~;\L$Hf(\$?L$H9\$\}H(f([]f(f\H,H*Dff(Df.HL$$<L$YX$HHD$!YD$HfDHHH?L$$PL$YX$H@HL$1L$HYfHL$ AL$ HYfSHH 5~D$f/L$rf/sBD$HH$D$ $H [X^f(ff/wnH;SH;$S$ X~^L$D$f(sT$ 5~^L$$f(QX$=~f/r@<$H [^f(DHYHXfDSHH $D$ $Hf(Yf($\$$H[Y^f(f.SHHHD$L$H[^f(ÐHD$^D$\}Hfff.zu fHD$ |^L$HfHD$fW T |f(^L$H\f(SHH$L$ ff/wFH;Sf/(r &\\f(YD$$H[\f(@X_YD$X$H[@f.SHH$L$DH;S{{\f/f(vfWYD$$$H[\f(fSHH$L$DH;Sff/v `{\^YD$X$H[fHWH@f.HHH?$P {\f(9Y)ff.Qw$HYL$ L$fSHH D$]L$HY dD$f(L$L$ff(f.Qw"f.L$YQw5f(H ^[D$f(T$xf\$T$f(T$L$QT$L$Uf(HSHXf/+$stf.zu1HXH[]@$fW 1T yD$@H $H}U $Yf/L$wHXH[]DQff.l$$D$(D$YXf(D$Yxf(\ |\5f(p\%X^ tf(d$0Xl$HXHD$8B^\L$@@H}UH}f(\aT$UT$ JD$f(fTx\D$H^L$XD$YX$XL$f/ H,\$r|$@f/?H\-f/v f/Df(L$ %D$D$8L$ l$0D$D$Y^XL$HCXL$\fH*L$fH*YL$(\ $L$)L$\f/L$HXH[]f(f.(wSH\^f(H[f.AWfAVH*AUIATUHSHHD$xt H9rx vl$xLkf(k\l$Hf/|$@$ \$HT$Yf(fD$@CXL$[(f($L$$YL$@L,fT$Lc0f(L$`Qf. Y -5v5f(L$@Y \f(f(fTf.1f-I*f(Xl$ Xf(L$X\K8f({@$\Xf(L$pKP .t$0^$sHXL$HYfD(D$8CXf(\f(\f(^YXYf(Y|$@\f(L$X^K`Yf(XYfA(AXXfA(^L$hKhYT$SpD^Xf(D$PCxfA(XD$@H}UL$H}Y $U $f/L$f(nf/L$"l$|$8fI*\Yf(^f( tXT$(XD$0\X\$ fTt^\f/ $X+ $T$(H,IM)LH?HL1H)H~#\$`Y\$ fH*\f/IEfd$H^d$@H*YL96pf/I)l$xf/l$ IGHH[]A\A]A^A_fDfAf.DDf/L$Pwkf(L$($'^D$XXD$06H,HPEGL$(\L$$YrYL$Xf(L$($ l$p^D$h\f(H,I9E$L$(\L$PY/rYL$hi@ID$H9fff(H*H^f(\YH9}DHCL9ff(H*H^f(\^L9~UDf(^lt$`LIX_f(XYHXP^^XT$ YfH*^T$($f(u $T$(f(f(\f/Xl$(f/HCfEfML*ID$fM)H*fEIGL*IEH)H*fE(D$EYf(f($A^fE(D$YEYfD(,$DYD$$D$D$ D$$D$fA(^<$f(S \$@4$D$Yt$H$AYf(^ =͹D$l$(fA(f(5D$D^D$D$D$D$\f(f(^\f(%U^f(\f($^f(4fD(D\fI*XT$ Y$D^$Y$XfI*YfA(Xf(A^E^\f(f(A^DXfA(A^\f(f(A^E^\f(f(A^\f(f(A\\A^f(f(A^A^\f(f(A^\A^\f(f(A^\A^\f(A^\^$A^A^AXA^XXf/h$D$Y\f(XH,df.H,ffUH*f(f(fT\f(fV@f(|$H\l$@f.B}wz8rj Lb0|$z@Yt$H5ֵ$zHl$@|$0zPYt$ |$pzX|$8z`|$XzhL$`|$hzp|$zx|$P|$f(\$ $ T$\$ $PDAUIATIUHSHHD$t H9r_T$-)lfMeI*AE\AUAm f(l$L$/L$YT$L$d$f(AEfYYAUXX%kf.QY-ԴXf/VH,I]0\$H}U\$1f/f(vvfDHBH9}(\$H}U\$f/vN1f(HBH9|Lf\H)H*YT$YfH*YT$^f/v H@1HH[]A\A]f.Bb ZHZ0d$1f(T$8\$0l$(L$ d$ l$(Y-T$8L$ d$\$0Xf/f(T$ \$~ \$T$ fH,fDHff.Euj²fH*f/rYf/rI @iSH\Yf(гf/r" H)H[D1DH)H[Ðf.SHH D$f(L$L$ff./id$f/v[\HL$f(=HD$L$ff(f.Q|Xf(YXD$H [Y Hf(fHHH*XD$H [DH [fCD$H H[D$f(\$ \$T$^SHH $f(D$$$Hf(Yf( $6\$ $H[Y^f(ff(f(SHXf(H ^L$\$,$^\$L$Y ʱf(YYYf(YXff.QwU\Y$\$H;X$S\$$f(f(X^f/s Y^f(H f([\$T$d$D\$T$d$SHH@D$8f(L$ #ff/D$ wt$ f/ffl$D$^XD$00f(^f(XD$L$\f/D$syH;SYq\$0H;f(YXXL$f(L$ ^\d$(YL$SL$\Y\f/T$^H;SD$D$( wf/L$vfWT$8 ٯXf(fTeT$Xl$T$\f/v.fWH@[fDH;SX\.eY^H@[@H@[f8-ef|$Yl$YXf.QwYXL$t$f(Xf.QwN\t$ f(f(X^f(YXXL$^L$0:L$L$L$(T$L$(T$Df.SHH050dD$ \f(]D$(H;Sf/D$ D$H;SYD$(cT$\f(Yf/r~f(T$\$\$D$f(L$^cXH,HaT$ff.EфEH0[fDf/Ӹr@f.H$cHH?D$\$PL$$f/vf(fYHXf/wHfHHH?$Pb\f(b\$D$f(L$^f(HH,f/r1f.SHH \@bf(D$YD$H;SH;$S%b\$$D$ a^L$f( b=f(f(fTf.v7H,f%afUH*f(f(fT\f(fVf/a^=vaf/Lf(L$$^XL$$f(\9al$Y^Yf(\a^f/H H,[ff(f(H8H\\H?T$L$D$(f(\$^l$ 4$P4$\$L$T$f/r3l$ fd$(YYf.QwHXH8f(@f(\ X`\fYYf.Qw*\H8f(d$$ad$$f(T$ $@T$ $1HATIIUHI SHLHI LHL IIL III LH I ĸH9wfDH;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.Df.AWAVAUATIUSHHttIIHHH?H9wqIFAEJL$ Dl$ AME9v$1AAA9sI>AVAME9wI IHL[]A\A]A^A_@IFHEuTLbIHHI9v+H1HIIH9sfDI>AVIHI9wHL$DI>IFL!H9rL$pfDI>IFD!D9wL$PfDЉI>@I0fDAWAVAUATUSHteIẢAH?IFEucJL$ Dd$ IA9v%1AA9sI>AVIA9wH DH[]A\A]A^A_fDI>IFD!9rA\ff.AWAVAUATUSHH\$PfLAIE f AAEDrE T$ H?AUT$ E3EAfA9vY™AAf9r$FD3Ex}3AfA9v$uI}AUE3AfA9wA H[]A\A]A^A_Ð+EDHDMD!fA9s"EuI}AUED!fA9rHD[]A\A]A^A_fEuCH?AUEH[]DA\A]A^A_fD+Ex}+mDf.AWAVAUATUSHH\$PLAIE AAEDzE"T$ H?AUT$ E DA8vVE™AA@8r? ExD} A8v#uI}AUDE A8wfA4H[]A\A]A^A_f.+EDHDMD!A8s!EuI}AUED!A8rHD[]A\A]A^A_@EuCH?AUEH[]DA\A]A^A_fD+Ex}+mDf.USHHl$ tAtmA)EH[]@HLH?PEfAWAVAUATUSHHu]H~DHHLH4$$HHLDHH9uHHH9tI4H[]A\A]A^A_DLIHIH9EH~IDbH$MЉD$ I?AWID9s(D$ 1AA9sfDI?AWIA9wH HHHKH9$uP@HEH0ILbIH$DI?AWIIIL9s%L1III9sI?AWIII9wLHHHCH;$uDHM$I?HAWHHCL9uf.HM$I?HAWHHCL9u`@III LHI LHI LHI LHI LH I HM4I?AWL!I9rHHHCL9u@III LHI LHI LHI LHI HM4f.I?AWD!D9wHHHCI9ux1mDAWAVAUATUSHH~uHAHHʉ4$fn $LHHfpLfHH9uHHH9t(HxHA4H9~HAtH9~AtH[]A\A]A^A_ÐLAՉIEH~IADbH$MDl$ I?AWIA9v(D$ 1AA9sfDI?AWIA9wH HKH;$uH[]A\A]A^A_@HGM$I?HAWCL9uH[]A\A]A^A_@III LHI LHI LHI LHA HM4I?AWD!A9rHCL9uH[]A\A]A^A_1uf.AWAVAUATUSHfHHAHf4$HLHHfn$LfafpHH9uHHH9tcHxHfA4AH9}QHxfAtH9~BHxfAtH9~3HxfAtH9~$HxfAtH9~HfAt H9}fAt H[]A\A]A^A_fDALIfE H~DrIIE1H$A1D$ EI?AWAfA9vAD$ Af9s2EtE1fA9vI?AWȉfA9wAHDfKH;$'EE1fHI,IHDfCH9I?AWATfHSH9u@AHHH HHH HHH HH HM$I11t@1!fA9sI?AW!fA9rDHfSL9uH[]A\A]A^A_1DuH@HL@AWIAVAAUATUSLHE7HI, DjE1ɉD$ 1f.EI?AWAD@A8vk+D$ EݙAA8r3QI?AWD@A8vDA@A8v EtDA@A8wfHDKH9YH[]A\A]A^A_fH~I, 11HA KH9tuI?HAWASH9uAHHH HHH HH HlM, 11$I?AW!A8sH!A8st!A8r@DHSI9uH[]A\A]A^A_fDHSI9uf.AL@ADH~StWAT1I1UI, SL˅uI<$AT$#HH9t#HH9u[]A\D@HL!AWIAVAUATM`UHSH(H|$LD$M~lIM1 OL$A\LHI9tBADH|$LLL$^I)HDMH([]A\A]A^A_H~HD$L|H([]A\A]A^A_f.DAWAVAUATUSHxMAML$AuHu1Hx[]A\A]A^A_fILLD$IH<HL$@HH$iIHE11H<$LL$@MffDI4H~JHEHKHT$D$HHHHH9uHHIH9tIIHH9uHH|$H?HIHHD$ H9H$HH\$(HK>> from numpy.random import Generator, PCG64 >>> rg = Generator(PCG64()) >>> rg.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator __pyx_capi__name__loader__loader__file__origin__package__parent__path__submodule_search_locationsname '%U' is not definedMissing type objectcannot import name %Sendunparseable format string'complex double''signed char''unsigned char''short''unsigned short''int''unsigned int''long''unsigned long''long long''unsigned long long''double''complex long double''bool''char''complex float''float'a structPython objecta pointera string'long double'an integer is requirednumpy/random/_generator.c%s (%s:%d)stringsourceexactlyView.MemoryView.Enum.__init__at leastat mostlogseries_generator.pyxzipfpoissonnegative_binomialwaldrayleighlognormallogisticgumbellaplacepowerweibullparetovonmisesstandard_tstandard_cauchynoncentral_chisquarenoncentral_fbetaBitGeneratordefault_rng__pyx_unpickle_EnumtupleExpected %.16s, got %.200suniformstandard_normalrandomintegersassignmentdeletionbuffer dtypeBuffer not C contiguous.choice%d.%d%sbuiltinscython_runtime__builtins__4294967296complexnumpyflatiterbroadcastndarraygenericnumberunsignedintegerinexactcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequencenumpy.random._commondoubleLEGACY_POISSON_LAM_MAXuint64_tMAXSIZE_rand_uint64_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintcheck_array_constraintdouble (double *, npy_intp)kahan_sumdouble_fillfloat_fillvalidate_output_shapecontdisccont_fcont_broadcast_3discrete_broadcast_iiinumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is NULL pointer__init__.pxdnumpy.import_arraygetbuffer(obj, view, flags)init numpy.random._generator__cinit__standard_exponentialstandard_gammamultivariate_normalvhu'NoneType' is not iterableView.MemoryView._errnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3triangulardirichletshuffleView.MemoryView._unellipsifypermutedformatmultinomialnumpy.PyArray_MultiIterNew1View.MemoryView._err_dimDimension %d is not directView.MemoryView._err_extentsView.MemoryView.memview_sliceIndex out of bounds (axis %d)memviewsliceobjmultivariate_hypergeometricpermutationbase__reduce_cython____setstate_cython__Tstridessuboffsetsndimitemsizenbytesis_c_contigis_f_contigcopycopy_fortrannumpy.random._generator.Enumnumpy.random._generator.arraymemview__getattr___bit_generator__getstate____setstate____reduce__pp`PPPPppP``PpPp\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,<\\L\\\l|\\\\\\\\\\\\\\\\,\\<\\\ \||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||l|||||||4$||||||||||||||||||||dD||||||pppph8ppuuuh@p0(0((((((h0((((((((((p(`8p,%$$$% %(&&& &&t'''d',' 8<4$  27xH'&&'4'((&(($++*+ +,++++-,,--/<888 {zzzwzz$~~~~z JpHȵص*!dܶ۵cZȻx@;4p(w;`MN2I(IIIwMMMMN@ؐ<Tl͚Ӛ,tp(d40.-3) Unsupported dtype %r for standard_gammaUnsupported dtype %r for standard_normalunable to allocate shape and strides.sum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)probabilities are not non-negativenumpy.core.umath failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedmethod must be one of {'eigh', 'svd', 'cholesky'}method must be "count" or "marginals".memory allocation failed in permutedmean and cov must have same lengthgot differing extents in dimension %d (got %d and %d)covariance is not positive-semidefinite.cov must be 2 dimensional and squarecolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.check_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be a positive integer unless nosamples are takena cannot be empty unless no samples aretakenWhen method is "marginals", sum(colors) must be less than 1000000000.Unsupported dtype %r for standard_exponentialUnsupported dtype %r for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Out of bounds on buffer access (axis %d)Invalid mode, expected 'c' or 'fortran', got %sInvalid bit generator. The bit generator must be instantiated.Insufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dIndirect dimensions not supportedIncompatible checksums (%s vs 0xb068931 = (name))Generator.standard_normal (line 952)Generator.standard_gamma (line 1124)Generator.standard_exponential (line 389)Generator.standard_cauchy (line 1607)Generator.noncentral_f (line 1381)Generator.noncentral_chisquare (line 1527)Generator.negative_binomial (line 2924)Generator.multivariate_normal (line 3427)Generator.multivariate_hypergeometric (line 3783)Generator.hypergeometric (line 3203)Fewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayConstruct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then it will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in a `SeedSequence` instance. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Returns ------- Generator The initialized generator object. Notes ----- If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator` is instantiated. This function does not manage a default global instance. Examples -------- ``default_rng`` is the reccomended constructor for the random number class ``Generator``. Here are several ways we can construct a random number generator using ``default_rng`` and the ``Generator`` class. Here we use ``default_rng`` to generate a random float: >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) Cannot take a larger sample than population when replace is FalseCannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() `x` isn't a recognized object; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling. weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destinaton of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() out must have the same shape as xnumpy.core.multiarray failed to import normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given 1-D array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement p : 1-D array_like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. When method is 'count', sum(colors) must not exceed %dGenerator.permutation (line 4456)Generator.multinomial (line 3632)Axis argument is only supported on ndarray objects wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------- ValueError If any value in ``alpha`` is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") Unsupported dtype %r for randomGenerator.triangular (line 2680)Generator.standard_t (line 1672)unable to allocate array data.probabilities do not sum to 1a must an array or an integerGenerator.logseries (line 3346)Generator.lognormal (line 2431)Generator.geometric (line 3152)Generator.dirichlet (line 3999)Generator.chisquare (line 1459)Generator.vonmises (line 1766)Generator.rayleigh (line 2543)Generator.permuted (line 4197)Generator.logistic (line 2351)Generator.binomial (line 2780)nsample must be nonnegative.itemsize <= 0 for cython.arraya and p must have same sizeGenerator.weibull (line 1947)Generator.shuffle (line 4350)Generator.poisson (line 3000)Generator.laplace (line 2147)Generator.integers (line 442)nsample must be an integermean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 845)Generator.pareto (line 1849)Generator.normal (line 1022)Generator.gumbel (line 2232)probabilities contain NaNout must be a numpy arraynsample must not exceed %dInvalid shape in axis %d: %d.Generator.random (line 235)Generator.power (line 2046)Generator.gamma (line 1215)Generator.choice (line 598)Generator.zipf (line 3072)Generator.wald (line 2612)Generator.bytes (line 569)Cannot index with type '%s'p must be 1-dimensionalnumpy.random._generatornumpy.core.multiarraydefault_rng (line 4528)Generator.f (line 1293)normalize_axis_indexNotImplementedErrornsample > sum(colors)ngood + nbad < nsamplecline_in_traceback__pyx_unpickle_Enumascontiguousarraymay_share_memorysum(pvals[:-1]) > 1.0standard_normal__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectcollections.abcallocate_bufferView.MemoryView__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffer_generator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumnumpy.linalgdefault_rngcheck_validUserWarningPickleErrorMemoryErrorImportErrorstacklevel__pyx_vtable____pyx_resultmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexError__reduce_ex____pyx_statemarginalsleft > modehasobjectenumerateTypeErrorGeneratorwarningsswapaxessubtract__setstate__reversed__reduce____pyx_typepickleoperatoritemsizeisscalarisnativeisfiniteintegers__getstate__endpointcholeskyallcloseSequenceEllipsistobytesstridesshuffle__rmatmul__reshapereplacensamplememview__imatmul__greaterfortranfloat64float32castingcapsule at 0x{:X}asarrayalpha <= 0updateunpackuniqueuint64uint32uint16structreducerandom_picklenamemethod__matmul____import__ignoreformatencodedoublecumsumcopytocompatcolorsastypearangezerosuint8statestartsigmashapescalerightravelrangeraisepvals_pcg64ordernumpyngoodkappaisnanint64int32int16indexflagsfinfoerrorequal__enter__emptydtypedfnumdfdencount__class__arrayalphaPCG64ASCIIwarn__test__takestopstepsqrtsortsizesideseedsafertolprodpacknoncndimnbad__name__modemean__main__longlocklessleftitemintpint8highfull__exit__eigh__dict__copybool_baseaxisatolzigtolsvd__str__outobj__new__maxlowloclamepsdotcovanyalladd??/*p?3f?(_?xY?յS?N?J?F?DB?Qt??u+ ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: Aޓ=?~)@ lѿ3 ; @UUUUUU?"@m{??@@5gG8?SˆB?AAz?<ٰj_?$+K?88C?J?llf?UUUUUU?dg?$@= ףp=@n?[ m?h|?5?333333 @r?$~?B>٬ @r鷯?Q?Q?9v?(\@ffffff@0C.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT! @h㈵>-DT!@3?r?q?0@9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L0h>>p?? ?(@@ @24A`RB{hB0BC``CC @D@2D?EP@EOESEЊxFG G0HPLH``HIJKK!L!0L"DL@"tL"L#L# M0%xMp%M%MP&N'TN0(N*N@*N,4O/pO/O/O/O0O1P1P20P@2HP`2`P2xPp3P3P3P 4PP4Q4,Q4DQ`5pQ5Q 6Q@6Q6Q`7R0:PR`:lRER@GRGS I\SI|SpJS MS0NSNTN,TO@T`PdTpQT RTSU@TTUUUWLVWxVZV\\W`_WaQ]BBD A(A0I(D ABB44`eBDD E GBH AABlf|@`TBAC D02  AABH d  AABH 4|QADD ^ CAE M CAG 4 AAD0K AAE D DAO H @\ AAG0c AAB l CAH z CAA  dtb@ YAAG0~ DAD h AAF k AAC d [BEE B(A0D8H] 8A0A(B BBBF  8F0A(B BBBA ld BBB A(D0D@r 0A(A BBBG \ 0D(A BBBI ` 0D(D BBBB D pgCA M DBJ AABD` \ hBBE B(D0A8G@WHJPGXC`AhBpI@o 8D0A(B BBBF | AG ̠|4 8dAGD0h AAJ V AAH  p( ,AAG m CAF 4$ ТuBDD Z GBC AAB \ ~AG0 AF ( tmADG e DAJ  D E ( \pADD ^ DAD   \ QBB B(A0A8G`H`H 8A0A(B BBBF L 8F0A(B BBBE \ 8F0A(B BBBA H @^BEI B(G0K8G`q 8D0A(B BBBG HTBBB B(A0A8Gp 8A0A(B BBBF \LXBBI D(D0 (D ABBD d (D ABBC D (C DBBA 4cAAG a DAA L DAG ` BAA D0  DABK i  AABC f  AABF `  CABA H%<\.AD h AJ F AA J AM G AH 4cAAG a DAA L DAG yD E AA <ܿAD A AI  AH ^ AI G AH 8<BEB E(D0C8Dp 8A0A(B BBBJ N 8A0A(B BBBH wxTABBAAAAAIp,ID R J `ID R J L_BBB A(D0G@x 0A(A BBBF |HWP_HF@PAD O E 8lRBBA A(D0 (C ABBF 8RBBA A(D0 (C ABBF H BBB B(A0A8DPY 8D0A(B BBBD D0:BHD d ABK L ABA @ ABE Lx| BBA A(G@ (A ABBB  (C ABBD 8AJ0 AD R AE nA(@0(@AJi AK R AE nA )4CL4)0CmBBE E(D0D8G 8A0A(B BBBD <)PJBBB A(A0 (A BBBG l)L BBB D(A0DP 0A(A BBBH \ 0C(A BBBB f 0A(A BBBB d4*`PBBB B(A0A8DPF 8A0A(B BBBB  8F0A(B BBBE H*Wg BBB E(D0A8Dp 8D0A(B BBBK L*`BBA A(D@ (D ABBF ~ (G ABBF 8+Lb BBB E(A0A8D`S 8A0A(B BBBB  8A0A(B BBBH  8C0A(B BBBA :hJpFxCBBI`d+lZBBB A(D0GP 0A(A BBBE d 0A(A BBBD XW`_XFP(<,pyAD0 AAD 8h,|sBHD D(D0s (D ABBF T,s BBB B(A0A8D`hHpYhF`^ 8D0A(B BBBE d,h~BBB B(A0A8Gj 8A0A(B BBBK t 8A0A(B BBBB 8d-BBA A(D@\ (A ABBD 8-TWBBA A(D0T (A ABBD H-x\BBB B(I0A8DP 8D0A(B BBBE `(.BBB B(A0A8DP 8D0A(B BBBB x 8C0A(B BBBD .1BFB B(A0A8Gp 8A0A(B BBBA KxV_xFp> 8A0A(B BBBI YxW_xApNxV`xGp/Du G s E (KBA A(G0 (A ABBD B (F ABBC D (G ABBH F0$$3o'daAA ~AAHL3'BEB B(D0A8DP8D0A(B BBB3BDB B(D0A8J 8D0A(B BBBF pHXA;TM`A^SB4*BEB B(A0D8GJIAD 8A0A(B BBBA IYF\ 8C0A(B BBBJ @4)+BBB A(A0J+0A(A BBBd4l.gBBE B(D0A8D`hEpkhF`` 8D0A(B BBBE  hWp_hA`P5t6;DvXh56BBB E(A0A8Dp 8D0A(B BBBD xL`xFp5E BEB B(A0A8DpxoBAABADBFUpe 8D0A(B BBBD [xBLxAp xHYxFppX6 PeBFB E(A0A8G 8D0A(B BBBI ]ElF+W_FL6H BBG E(F0A8Di 8D0A(B BBBG 7Dj B H87<BBB B(A0D8GPN 8F0A(B BBBG \7BBB B(A0A8D@ 8C0A(B BBBC D8F0A(B BBB870AG AA Y AF B CK l 8%BFE B(A0A8GEkFb 8D0A(B BBBF W_F8TBFB B(A0A8GeBBBBBBRDkF^ 8D0A(B BBBC USSABBABBATQV`GW`G\d9PM)BBB B(A0D8G1HYFa 8D0A(B BBBF X9@9t5BBB B(D0D8GkHYFa 8D0A(B BBBI L :dnBBB E(A0A8Dc 8D0A(B BBBG Hp:}BBE B(A0A8DP 8C0A(B BBBE \:#,BBB E(A0A8DK V_F^ 8D0A(B BBBF |;ȰBBE B(D0A8DDlFh 8D0A(B BBBF =W_FVaGl;H(BFB B(D0A8G DkFa 8D0A(B BBBH %V`GL < BGB B(A0A8IF 8D0A(B BBBE \<aDZ B dx<,WBBB B(A0A8G`+ 8A0A(B BBBJ  8C0A(B BBBF H<$ BBB B(D0C8GP 8F0A(B BBBH ,= 7BEB E(A0C8I 8C0A(B BBBF D_Bc ISBA}A1B{CA|D =PD BDE B(I0A8J 8A0A(B BBBK jGGGGGGGGGGGGGGGGGGGGGGGaAGGGGGGGGGGDDDDDDDDDDDDDDDCSL>\ ]H\?D n(HAG R AM XAHgAG UAH8NAG DA IhDI$Ip^D B E @IAG0e EA DdIPAHDpa DAE M DAF ! DAA I&IXLI BFG E(A0D8J 8D0A(B BBBG 8J<:BED D(Dpk (A ABBD TJ@YiFPL<xJ/AG0 AD m AJ L AC P DE JWAG AA JIO0 EA 4JAGP AG ^ AA L AC 4K@AG@ AG XK,WD RpKt`D VK KNAG0?F K L@ I r E 0KMGG T ABF hHL\ZBBB B(D0A8DP} 8D0A(B BBBE HdLpBBB B(A0A8FPm 8C0A(B BBBG xLBDB B(A0A8DP 8A0A(B BBBB @ 8D0A(B BBBC \ 8A0A(E BBBG x,MBDB B(A0A8DP 8A0A(B BBBK ~ 8D0A(B BBBE \ 8A0A(E BBBG (M,GACD a AAE HMPBBB B(A0A8DPR 8A0A(B BBBF NBBB B(A0A8DP 8A0A(B BBBB  8A0A(B BBBE i 8A0A(B BBBE i 8A0A(B BBBA dN\BBB B(A0A8DP 8A0A(B BBBG  8A0A(B BBBA t OKbEE B(A0A8GP8A0A(B BBBAJP 8A0A(B BBBC ,Ol oKHE wABF`O BEB B(E0D8D`p 8A0A(B BBBA S8A0A(B BBBd,P LBBB B(A0A8De 8A0A(B BBBC  8C0A(B BBBH dP :aEF E(D0A8G&8A0A(B BBBCHLPBBB B(D0H8G 8D0A(B BBBB LQ` f  )HRb 0 tp)x)o`  )8X4y o4oo1o)Vfvƿֿ&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfvConstruct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then it will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in a `SeedSequence` instance. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Returns ------- Generator The initialized generator object. Notes ----- If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator` is instantiated. This function does not manage a default global instance. Examples -------- ``default_rng`` is the reccomended constructor for the random number class ``Generator``. Here are several ways we can construct a random number generator using ``default_rng`` and the ``Generator`` class. Here we use ``default_rng`` to generate a random float: >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> print(rng) Generator(PCG64) >>> rfloat = rng.random() >>> rfloat 0.22733602246716966 >>> type(rfloat) Here we use ``default_rng`` to generate 3 random integers between 0 (inclusive) and 10 (exclusive): >>> import numpy as np >>> rng = np.random.default_rng(12345) >>> rints = rng.integers(low=0, high=10, size=3) >>> rints array([6, 2, 7]) >>> type(rints[0]) Here we specify a seed so that we have reproducible results: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> print(rng) Generator(PCG64) >>> arr1 = rng.random((3, 3)) >>> arr1 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) If we exit and restart our Python interpreter, we'll see that we generate the same random numbers again: >>> import numpy as np >>> rng = np.random.default_rng(seed=42) >>> arr2 = rng.random((3, 3)) >>> arr2 array([[0.77395605, 0.43887844, 0.85859792], [0.69736803, 0.09417735, 0.97562235], [0.7611397 , 0.78606431, 0.12811363]]) permutation(x, axis=0) Randomly permute a sequence, or return a permuted range. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. axis : int, optional The axis which `x` is shuffled along. Default is 0. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: axis 0 is out of bounds for array of dimension 0 >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr, axis=1) array([[0, 2, 1], # random [3, 5, 4], [6, 8, 7]]) shuffle(x, axis=0) Modify an array or sequence in-place by shuffling its contents. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : ndarray or MutableSequence The array, list or mutable sequence to be shuffled. axis : int, optional The axis which `x` is shuffled along. Default is 0. It is only supported on `ndarray` objects. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr, axis=1) >>> arr array([[2, 0, 1], # random [5, 3, 4], [8, 6, 7]]) permuted(x, axis=None, out=None) Randomly permute `x` along axis `axis`. Unlike `shuffle`, each slice along the given axis is shuffled independently of the others. Parameters ---------- x : array_like, at least one-dimensional Array to be shuffled. axis : int, optional Slices of `x` in this axis are shuffled. Each slice is shuffled independently of the others. If `axis` is None, the flattened array is shuffled. out : ndarray, optional If given, this is the destinaton of the shuffled array. If `out` is None, a shuffled copy of the array is returned. Returns ------- ndarray If `out` is None, a shuffled copy of `x` is returned. Otherwise, the shuffled array is stored in `out`, and `out` is returned See Also -------- shuffle permutation Examples -------- Create a `numpy.random.Generator` instance: >>> rng = np.random.default_rng() Create a test array: >>> x = np.arange(24).reshape(3, 8) >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) Shuffle the rows of `x`: >>> y = rng.permuted(x, axis=1) >>> y array([[ 4, 3, 6, 7, 1, 2, 5, 0], # random [15, 10, 14, 9, 12, 11, 8, 13], [17, 16, 20, 21, 18, 22, 23, 19]]) `x` has not been modified: >>> x array([[ 0, 1, 2, 3, 4, 5, 6, 7], [ 8, 9, 10, 11, 12, 13, 14, 15], [16, 17, 18, 19, 20, 21, 22, 23]]) To shuffle the rows of `x` in-place, pass `x` as the `out` parameter: >>> y = rng.permuted(x, axis=1, out=x) >>> x array([[ 3, 0, 4, 7, 1, 6, 2, 5], # random [ 8, 14, 13, 9, 12, 11, 15, 10], [17, 18, 16, 22, 19, 23, 20, 21]]) Note that when the ``out`` parameter is given, the return value is ``out``: >>> y is x True dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : sequence of floats, length k Parameter of the distribution (length ``k`` for sample of length ``k``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n)``, then ``m * n * k`` samples are drawn. Default is None, in which case a vector of length ``k`` is returned. Returns ------- samples : ndarray, The drawn samples, of shape ``(size, k)``. Raises ------- ValueError If any value in ``alpha`` is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multivariate_hypergeometric(colors, nsample, size=None, method='marginals') Generate variates from a multivariate hypergeometric distribution. The multivariate hypergeometric distribution is a generalization of the hypergeometric distribution. Choose ``nsample`` items at random without replacement from a collection with ``N`` distinct types. ``N`` is the length of ``colors``, and the values in ``colors`` are the number of occurrences of that type in the collection. The total number of items in the collection is ``sum(colors)``. Each random variate generated by this function is a vector of length ``N`` holding the counts of the different types that occurred in the ``nsample`` items. The name ``colors`` comes from a common description of the distribution: it is the probability distribution of the number of marbles of each color selected without replacement from an urn containing marbles of different colors; ``colors[i]`` is the number of marbles in the urn with color ``i``. Parameters ---------- colors : sequence of integers The number of each type of item in the collection from which a sample is drawn. The values in ``colors`` must be nonnegative. To avoid loss of precision in the algorithm, ``sum(colors)`` must be less than ``10**9`` when `method` is "marginals". nsample : int The number of items selected. ``nsample`` must not be greater than ``sum(colors)``. size : int or tuple of ints, optional The number of variates to generate, either an integer or a tuple holding the shape of the array of variates. If the given size is, e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one variate is a vector of length ``len(colors)``, and the return value has shape ``(k, m, len(colors))``. If `size` is an integer, the output has shape ``(size, len(colors))``. Default is None, in which case a single variate is returned as an array with shape ``(len(colors),)``. method : string, optional Specify the algorithm that is used to generate the variates. Must be 'count' or 'marginals' (the default). See the Notes for a description of the methods. Returns ------- variates : ndarray Array of variates drawn from the multivariate hypergeometric distribution. See Also -------- hypergeometric : Draw samples from the (univariate) hypergeometric distribution. Notes ----- The two methods do not return the same sequence of variates. The "count" algorithm is roughly equivalent to the following numpy code:: choices = np.repeat(np.arange(len(colors)), colors) selection = np.random.choice(choices, nsample, replace=False) variate = np.bincount(selection, minlength=len(colors)) The "count" algorithm uses a temporary array of integers with length ``sum(colors)``. The "marginals" algorithm generates a variate by using repeated calls to the univariate hypergeometric sampler. It is roughly equivalent to:: variate = np.zeros(len(colors), dtype=np.int64) # `remaining` is the cumulative sum of `colors` from the last # element to the first; e.g. if `colors` is [3, 1, 5], then # `remaining` is [9, 6, 5]. remaining = np.cumsum(colors[::-1])[::-1] for i in range(len(colors)-1): if nsample < 1: break variate[i] = hypergeometric(colors[i], remaining[i+1], nsample) nsample -= variate[i] variate[-1] = nsample The default method is "marginals". For some cases (e.g. when `colors` contains relatively small integers), the "count" method can be significantly faster than the "marginals" method. If performance of the algorithm is important, test the two methods with typical inputs to decide which works best. .. versionadded:: 1.18.0 Examples -------- >>> colors = [16, 8, 4] >>> seed = 4861946401452 >>> gen = np.random.Generator(np.random.PCG64(seed)) >>> gen.multivariate_hypergeometric(colors, 6) array([5, 0, 1]) >>> gen.multivariate_hypergeometric(colors, 6, size=3) array([[5, 0, 1], [2, 2, 2], [3, 3, 0]]) >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2)) array([[[3, 2, 1], [3, 2, 1]], [[4, 1, 1], [3, 2, 1]]]) multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2)) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8, *, method='svd') Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. method : { 'svd', 'eigh', 'cholesky'}, optional The cov input is used to compute a factor matrix A such that ``A @ A.T = cov``. This argument is used to select the method used to compute the factor matrix A. The default method 'svd' is the slowest, while 'cholesky' is the fastest but less robust than the slowest method. The method `eigh` uses eigen decomposition to compute A and is faster than svd but slower than cholesky. .. versionadded:: 1.18.0 Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> rng = np.random.default_rng() >>> x = rng.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) We can use a different method other than the default to factorize cov: >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky') >>> y.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- multivariate_hypergeometric : Draw samples from the multivariate hypergeometric distribution. scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval (0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution. Must satisfy 0 < p <= 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 39%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype=np.float64, out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype=np.float64, out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use one of:: mu + sigma * gen.standard_normal(size=...) gen.normal(mu, sigma, size=...) Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0, shuffle=True) Generates a random sample from a given 1-D array Parameters ---------- a : {array_like, int} If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated from np.arange(a). size : {int, tuple[int]}, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : bool, optional Whether the sample is with or without replacement p : 1-D array_like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : bool, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random integers(low, high=None, size=None, dtype=np.int64, endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. Byteorder must be native. The default value is np.int64. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype=np.float64, method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. random(size=None, dtype=np.float64, out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, only `float64` and `float32` are supported. Byteorder must be native. The default value is np.float64. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) 9,?,;,A,@A,9,(:,9,9,?, =,;,=,>,9,?,?,A,9,p:,;,HA,9,=,>,9,9,?,;,=,(:,9,9,9,?,;,9,(:,9,?,@,9,?,@,`<,9,@,9,@,`<,9,9,@,9,<,>,9,A,9,A,9,A,9,=,(:,9,=,(:,9,=,(:,9,P=,9,9,(:,9,P=,(:,9,=,=,P:,9,<,;,9,<,;,9,>,9,A,9,;,9,<,<,(<,9,;,9,P=,@@,9,@,8, =,<,;,9,@,(<,9, =,A,9,88,HA,;,88,HA,88,HA, A,9, >,(?,=,A,<,;,@?,?,:,:,:,:,D,/( D,& D,3D,`B$D, B7D,A&D,A=D, D,@ABD, 7 D,x$ xD,6#pD,6&hD,@# `D,  XD,` PD, HD, @D,` 8D, 0D, (D,@  D, D,`6%D,  D, D, C,  C, C,"C, 62C,5*C,5(C,`5+C, 5#C, C, C,`"C, C, C, C, C, xC, pC,4&hC,4*`C,`4%XC, 4%PC,` !HC,  !@C, 8C, 0C,@ (C,  C,  C," C,32C," C,3"B,@3[B,3?B,20B, B,-( B," B, B,  B, B,+( B,2)B,`! B,& B,! B,1B, xB, pB,h$ hB,)( `B,0# XB,1!PB,`1"HB, @B, 1.8B,+)0B,+((B,!  B," B, B, 7B,0FB,( A,( A,( A,'( A,'( A, A,0-A, A,@08A,( A,( A,X$ A, A,& A,(% A,' A,% xA,& pA, % hA, `A,% XA,% PA,' HA,' @A,%( 8A,%( 0A,' (A, A,P! A,P! A,' A,0)A,s@,#( @,#( @,% @,% @,% @,! @,/4@,`@,q @,H$ @,H$ @,& @, @, @,% @,`/Tx@,% p@, h@, `@,' X@,% P@,& H@,@! @@,' 8@, /%0@,.)(@,%  @,! @,` @,( @,( @,& ?,& ?,& ?,& ?,' ?, 1 ?,' ?,% ?,& ?, ?,' ?,' ?,& ?," ?,% ?,8$ ?,& x?, # p?,' h?,& `?,& X?,' P?, H?,|& @?,v& 8?,$ 0?,$ (?,%  ?,$ ?,$ ?,' ?, ?, >,0! >,@J>,($ >,.6>,$ >,|)>,# >,|' >,`i>,( >,% >,$ >,% >,p& >,j& >,d& x>,^& p>,w' h>,$ `>,\ X>,r' P>,$ H>,X& @>,# 8>,# 0>," (>,m'  >,# >,` >,R& >,R& >,' =,' =, =,h' =,# =," =,c' =,p" =,' =,' =,^' =,`" =,Qd =,@=,5 =,Y' =,' x=,P' p=," h=,% `=,' X=, P=,F' H=,F' @=,`.#8=,` 0=, .%(=,$  =,% =,-'=,-2=,A' =,P" <,( <,( <,'< <, <,`<,!( <,!( <,8' <,% <,/' <,/' <,*' <,B <,`-$<,' <,L& x<,L& p<,` h<, -3`<,%' X<,%' P<,@ H<,= @<,@8<, 0<, ( (<,$  <,$ <,@ <,@ <,` <,@ ;,F& ;,@ ;,';,,";,! ;, ;,' ;,# ;,@& ;,' ;,@ ;,";,( ;,( ;, ;, ' x;,p;,9& h;,`;,X;,x% P;,# H;, @;,p 8;, 0;,,#(;,   ;, ;,' ;,3& ;,3& ;,P :,! :, ! :,@" :," :,# :, :,0" :,-& :,k% :,#:,'& :,!& :, :,d% :,# :,! x:," p:,$ h:,$ `:,! X:,# P:,& H:,& @:,$ 8:,' 0:,' (:,&  :,& :,! :, ' :,# :,0 9,& 9,& 9,$ 9, B9,' 9, & 9, & 9,' 9,& 9,& 9, " 9, 9,t9, 9, 9,`x9,y p9,& h9,% `9,& X9,& P9,' H9,  @9,!89, 09,$ (9,p!  9,]% 9,p# 9,@,N9, 9,' 8,' 8,`# 8,& 8,& 8,$ 8,' 8, pY 8,( 8,V% 8,O% 8,H% 8,% 8, 8,,&8,@f 8,A% x8,:% p8,3% h8,@Z `8, D X8,& P8,& H8,P# @8,@M 88,( 08,L(8,%  8,' 8,B k4,,N /D .-@,,P\ a0[sY  ,P,q@,D P,,`@ 67@ p,|\ a_WW@^\0amspl0 D`  , X a6s@SpB@",",v",#,",pk  0yx YPHaus0tp 0D@ %, %,0` 4 *! 9 F S`$ ++0+ ++@+0+nP@+ u`++y+n+ b+U+жI+`A+6+P-+|p +s+l0+dP*^p*VЛ *O0*F`*<`*3 @*.*%p*%`*`y* p*@f*F@_*AV@M*|@B*.*op@!*49 *0@`*_@?): )Px)D )UGCC: (GNU) 4.4.7 20120313 (Red Hat 4.4.7-23)GCC: (GNU) 8.3.1 20190311 (Red Hat 8.3.1-3)`14X48 0 @  t v  p)x)))h)))@,, D *7 K 0  f @  ` PG, E  ?  HQ ` h    ( _ @    & @B,l7,yB,x7,7,7,p7,A, `7,A,IX7,YA,P7,;,H7,A,@7,(;,$87,40;,`07,p ;,(7,D, 7,<,7,!pD,M7,]7,m7,}B,6,=,6,=,6,=,6,$p<,B6,R=,~6,8=,6,8@,6,@=,,6,<h7,L@,x6,E,0@,6,6,9, 6,=,H6,X<,~6,<,6,B,x6, <, p6,/ A,B h6,R ;,w `6, ;, X6, 0=, P6, H6, D,( 08,S @6,c D, 86, ;, 06, ;, xD,1 (6,A >,h  6,x 8, 6, 8, 6, D, 6,) h<,U 6,e 5,u D, 5, XB, 5, D, 5,) D,U 5,e 5,u 7, 5, 5, C, 5, 5, 5,:,F," @,8>,Q@9,{5,H9,5,89,5,p@, 5,h@,=5,M:,b;,|:,:,:,:,(9, G P- vJ [{ | pF, E, @E,@> i k d p   ;  w? Q[<,j { @ G, P c:, K J Iy ]%)? e\ fl | T Q @! ! D !g " 0#Y $[ & (' )hR +p +| p,d , - .u /~0 0mEG,M 0c 1pt 2 2 6 =^ B DX" FcE G] pK%t K. Lc @N `O QF,G,G,p,,*h,,H@,e WI WI X_<,+ YA YRJE,b 0[R \7, @^:9, _ # aVH bcE,~0A, kT plR mR 0or&E,< qU@,eB, s 0tR uR v(=,$ xA 0yY @zBq |8,A,;,E,;,p+ @[ +r A,A,+ 8,"=,0+G>,U `X<,<,+  ^ :,H=,E,CP=,R(:,b@+ y  +  9, 9,' + >  y =, =, +  0 +  Л6!+ M! p!+! P!`+! 0&"@+=" ^x">,"<,"<,">," + " p#@,#@, #+7# P:y#+# ^#X<,#`<,#+ $ H$+_$ ж$?,$?,$?,$`+($@,$ ^)%@+ @% kx%9,%9,% + % %+ % 0=&+T& ^&8A,&@A,&+ & `&?,'X;,!' A,9'h9,I'A,a' ' ' 0(B,$(A,2( PJ( `c( PZ|( ((E,( P( p2) O) ) ) m) `)  * E,**B,M* c*@,o*?,* g *B,*D,* ` +   <+P9,J+XA,]+(?,n+ 0Z+@,+=,+++ + p,  H,@,Z,E,, 4,,4,,B,,@+, *- 3!- 5W2- 6\`-?,o-4,-4,-7,-4,-3,- @?.p8,!. D1U.B,k.P;,~.C,.E,.<,.`+ . @S/ S-/ V4n/(G,z/0,/0,/A,/7,/<,/0,/0,00,400,R00,k00,0=,00,00,0A,0x<,0 <,0<,1E,E1@+(\1A,1<,1(<,10<,1 ub1p/, 2h/,'29,:2`/,S2X/,q2A,2P/,2H/,2P>,2/,2x/,3=,3>,3E,93+ P3  37,3F,3/,3/,30?,4F,,4/,E4/,c48?,u4F,4;,4?,48B,4+ 5  <57,G5,,`5,,~5,,5x,,5HB,5`+ 5 7)167,<6`-,U6X-,s6>,6XF,6P-,6H-,6x>,7`F,87,,Q7,,o7xA,7@-,78-,7>,7PF,7,,8,,48x@,E8=,T8?,g80-,8(-,8p>,8HF,8+08 -,9-,198,B9F,z9-,9-,98,9F,9-,:,,1:8,B:xF,z:,,:,,:8,:pF,:,,;,,/;A,>;hF,t;@>,;PB,; >; d< <>,&<x:,:<:,M<:,e<:,x<:,< @<@/,<8/,=`@,=<, =0/,9=(/,W=>,g=(>,v= /,=/,=;,=/,=/,=/, >.,*>9,9>.,R>.,p>H?,>.,>.,>p?,>F,>.,>.,?0>,,?F,H?.,a?.,?.,?.,?F,?.,?.,@H>,'@.,@@.,^@=,s@:,@.,@x.,@p.,@h.,@X>,A(@,A:,#A:,:AH:,JA9,YA`.,rAX.,AP.,AH.,A-,A-,A?,B;,!B0.,:B(.,XBH@,pB .,B.,B(8,B.,B.,B:,B.,C-,5C-,NC-,lC8,}C`:,C9,C8,Ch>,C@.,C8.,C7, DX?,D?,(D-,AD-,_DpA,qD-,Dx-,DHA,D-,D-,D-,E-,%E-,>E-,\E?,kE-,E-,E+,hE7,E PFp:,F9,'F@+8>F N+ZFF,nF+?F8,F7,F7,Fx=,F:,FX:,F B,F>,G`B,GB,/GxB,HGB,^GE,xG(B,GB,GD,GC,GD,Gx?,HD,%HD,,OD,OA,OXD,O@,&PHD,KP8,vP@C,P9,PXC,P@<,QC,DQ9,nQ`C,Q?,Q0D,QP?,R8D,6RH<,aRC,R@,RPD,RP<, SC,8S9,bSpC,Sx9,SPC,Sh8,T8C,6Tx;,aTC,T@8,T(C,T8;,UC,)U=,SUD,zU>,U D,U=,UD,V=,IVC,rV:,VC,V`8,V0C,W8,>WHC,hW(A,W`D,W<,WC,XH;,,X(D,Y>,1YD,]Y=,YC,Y<,YC,Z<,3ZC,^Z<,ZC,Z?,Z@D,[`;,3[C,[[9,[xC,[h;,[C,\D,/\@,P\8,_\:,w\@4,@\B,\+, \ g\;,\@?, ]?,'] + >] P;\] ] 8,],,],,],,^,,^ =,0^@B,\^+(s^  ^/,^/,^/,_/,"_0B,P_+(g_ e_8,_P8,_?,_`1,_X1,`P1,)`H1,G`@,Z`9,t`h:,``A,`@1,`81,`?,`9,`;,a>,a:,%a01,>a(1,\aA,oa 1,a1,a?,ahB,a8:,aPA,a@@,a@,b8,b+8'b?,6b@,Ib0,bb0,b1,b1,b0,b0,b1,c0,%cX8,4c 9,Ec;,Tc xic {c |c %c@0,c80,d00,.d(0,Ld0,edx0,dp0,dh0,d`0,dX0,dP0, eH0,(e+ ?e p|e 0,e0,e0,e0,e>,e0,f/,3f/,Lf/,jf/,f/,f/,f/,fh?,f=,f`+(g=,gP:,-g @M)ig2,g2,g2,g2,g=,g2,h2,#h2,,j`3,kX3,&kP3,?kH3,]k>,qk+k (kD,k 7k @?#,l3,/l2,Ml2,fl2,lX@,l0:,l@,l2,l2,l2,m2,$m`+ ;mB,Gm;,WmD,cm pkvm@,mB,m?,mD,m ?,mB,mA,n+0nB,Cn p(n;,n1,n1,n1,n1,n1,o1,6o1,Oo1,mo1,o1,o1,ox1,op1,oh1,p;,"p+ 9px8,Jp`?,Zp 0Wpp-,ph-,p8,p8,p q 7!q>,Mq  nq 8q q r 02r !YFrp9,VrX9,er`9,tr 6r 9e?rp=,rP@,s`2,sX2,:sP2,SsH2,qs@2,s82,s02,s(2,s 2,s2,thA,2t2,Kt2,it2,t1,t8>,t1,t1,t1,u1,!u@,2u@,^u<,u+(u9,uB,uB,v x[v3,tv3,vA,v3,v3,v3,v3,w3,*w3,HwX=,cw3,|w3,w3,w3,w3,w3,x+x,h/x /( 9x & Gx 3ox `B$x B7x A&x A=y  4y @AB]y 7 y x$ y 6#y 6&y @# y   z ` Az  gz  z ` z  z  z @ {  8{ `6%a{  {  {  {  {  | "B| 62k| 5*| 5(| `5+| 5#}  2}  U} `"}}  }  }  }   ~  /~  S~ 4&|~ 4*~ `4%~ 4%~ ` !  !E  h   @      "  320 " C 3"l @3[ 3? 20    -(  " '  G  f   +(  2) `! ˁ & ف !  1  9 P h$ a )( k 0# } 1! `1"ς   1. +)J +(u !  "   7܃ 0F (  (  ( & '( 0  T 0-}   @08̄ ( ؄ (  X$    &  (% + ' 7 % F & T % d  ~ %  %  '  '  %(  ' ΅  P!   '  0)B sj #( t %  %  !  /4ц ` q ! H$ 2 & @  [ s %  `/T %   ؇   '  %  & " @! 8 ' D /%m .) %  !  ` ׈ (  &  &  '  1 2 ' > % M & [ s '  &  "  %  8$  & ω #  '  &  &   '   > |& L v& Z $ j $ z %  $  '   Ί  0!  @J# ($ 4 .6] $ m |) #  |'  `i܋ (  % >, $ >,) % 8 p& F j& T d& b ^& p w' } $  \  r' Ì $ Ԍ X&  #  #  "  m' $ # 5 ` Y R& g ' s  h'  #  " ̍ c' ٍ p"  '  ^'  `"  Qd @ @h 5  Y'  '  P'  " Ȏh=,َ %  '     F'  `.#C ` f .% $  %  -'׏ -2 A'   P"  ( + '< S { ` !(  8'  % ɐ /' ֐ *'  B  `-$4 ' @ L& N ` i -3 %'  @ Ǒ =  @  4 ( ? $ O @ r @  `  @ Ӓ F&  @  '' ,"P ! e   '  #  @&  '  @ ޓ " (   0 ' = e 9& s  Ô x% Ҕ #    p "  J ,#s     ' ȕ 3& ֕ P  !  !  @" , " > # O  i 0" | -&  k%  # '& ϖ !& ݖ   d%  # % ! ; " M $ ] $ m !  #  & @:, $ × ' З ' ݗ &  !  '   #  0 6 & D $ T B| '  &  '  &  &  " ј  t  F ^ ` y  &  % ʙ & י &  '     !2  O $ _ p! t ]%  p#  @,N ՚ '  `#  &  &  $  ' ( pY P ( [ V% j O% y H%  %    ,& @f  A%  :% + 3% : @Z b D  &  P#  @M Ϝ ( ٜ L %  '  B C4, Q,0g@,`,P,PŝP,@,,,4 ,`G@",Pb",|",#,",P%, %,x% +#_+@+5֟ +t@+ Z+s@+q ͠`+ +Ky+n+ ǡb+ U+ 5I+= u`A+6+ -+= + {+ +* ,* e * *)ڤ`*d `*S@* *D ǥ*Y `*Ay*B  p*@f* _*J6@M*x@B* .*@!*< ; *`*1 Ǩ) )B>)})  `  ϩ @,,x)  'p)FV 4 ` < j D t ( } ,  0  `  h  X  P  T  L Ȫܪ  r # 1)>)Gv Z(,,f)| Ϋ߫$ `GA p`\u 0> pS Ѭ 7H Lq & Ъ/ͭ߭+BS`w 9ٮ+ A(,,H @ ]i|`,,ʯ * ^: pVk ,z @ tŰ !1 Lc`p ͱڱ N(6CWes I Zв    @  `>L]o p? @K]ųӳ W q)<O\n~˴  '5Ldv `  Шϵ+: PPcs  %Ͷ  8  $7Q @`p N|÷׷ К2 '*;0G,@P_ pи W  P* E ^ t И (,,ɹ (׹ P#9EQc 9 P ` о/Ժ 0 PQ8MY j ܻ   Ц *? @gM 9j~ 9μܼ o(4D`q :  :  .?Sev"¾ 0Ⱦھ О9!.DRf~/usr/lib/../lib64/crti.ocall_gmon_start_generator.c__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_tp_new_5numpy_6random_10_generator_Generator__pyx_empty_tuple__pyx_tp_traverse_5numpy_6random_10_generator_Generator__pyx_getprop_5numpy_6random_10_generator_9Generator_bit_generator__pyx_tp_new_Enum__pyx_tp_traverse_Enum__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__Pyx_PyCFunction_FastCall__Pyx__ExceptionSave__pyx_typeinfo_cmp__Pyx_PyObject_Call__Pyx_PyObject_GetAttrStr__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_an_array_or_an_integer__pyx_tuple__10__pyx_kp_u_a_must_be_a_positive_integer_unl__pyx_tuple__11__pyx_kp_u_a_cannot_be_empty_unless_no_samp__pyx_tuple__12__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__13__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__14__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__15__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__16__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__17__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__18__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__19__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__29__pyx_kp_u_method_must_be_one_of_eigh_svd_c__pyx_tuple__30__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__31__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__32__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__33__pyx_slice__34__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__35__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__36__pyx_tuple__37__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__38__pyx_kp_u_method_must_be_count_or_marginal__pyx_tuple__39__pyx_kp_u_nsample_must_be_an_integer__pyx_tuple__40__pyx_kp_u_nsample_must_be_nonnegative__pyx_tuple__41__pyx_kp_u_When_method_is_marginals_sum_col__pyx_tuple__42__pyx_kp_u_nsample_sum_colors__pyx_tuple__43__pyx_kp_u_alpha_0__pyx_tuple__44__pyx_kp_u_out_must_be_a_numpy_array__pyx_tuple__45__pyx_kp_u_out_must_have_the_same_shape_as__pyx_tuple__46__pyx_kp_u_memory_allocation_failed_in_perm__pyx_tuple__47__pyx_tuple__48__pyx_builtin_UserWarning__pyx_kp_u_x_isn_t_a_recognized_object_shu__pyx_tuple__49__pyx_kp_u_Axis_argument_is_only_supported__pyx_tuple__50__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__51__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__53__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__54__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__55__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__56__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__57__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__58__pyx_tuple__59__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__60__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__61__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__62__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__63__pyx_tuple__64__pyx_int_neg_1__pyx_tuple__65__pyx_tuple__66__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__67__pyx_tuple__68__pyx_tuple__69__pyx_n_s_seed__pyx_empty_bytes__pyx_n_s_default_rng__pyx_kp_s_generator_pyx__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__72__pyx_kp_s_strided_and_direct__pyx_tuple__73__pyx_kp_s_strided_and_indirect__pyx_tuple__74__pyx_kp_s_contiguous_and_direct__pyx_tuple__75__pyx_kp_s_contiguous_and_indirect__pyx_tuple__76__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource_copy_strided_to_strided__pyx_memoryview__slice_assign_scalar__Pyx_PyObject_LookupSpecial__pyx_f_5numpy_6random_10_generator__shuffle_int__Pyx_PyNumber_IntOrLongWrongResultType__Pyx_PyFunction_FastCallNoKw__pyx_pyframe_localsplus_offset__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_Enum__pyx_sq_item_array__pyx_tp_dealloc_5numpy_6random_10_generator_Generator__Pyx_ErrRestoreInState__Pyx__GetException__pyx_tp_clear_Enum__pyx_tp_clear_5numpy_6random_10_generator_Generator__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_ImportType__Pyx_Import__pyx_m__pyx_tp_clear_memoryview__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.22666__pyx_tp_traverse_memoryview__Pyx_IsSubtype__Pyx_PyInt_NeObjC.isra.18__Pyx_PyUnicode_Equals__pyx_setprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx__ExceptionReset.isra.44__pyx_getprop_5numpy_6random_10_generator_9Generator__bit_generator__Pyx_SetItemInt_Fast.constprop.73__Pyx_BufFmt_TypeCharToAlignment.constprop.77__Pyx_GetItemInt_Fast.constprop.80__Pyx_ParseOptionalKeywords.constprop.82__Pyx_PyObject_GetSlice.isra.49.constprop.84__Pyx_Raise.constprop.85__Pyx_PyFunction_FastCallDict.constprop.87__pyx_fatalerror.constprop.90__Pyx_PyInt_EqObjC.isra.16__pyx_sq_item_memoryview__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_tp_clear__memoryviewslice__pyx_tp_traverse__memoryviewslice__pyx_tp_dealloc__memoryviewslice__Pyx_GetBuiltinName__pyx_b__Pyx_TypeTest.isra.9__Pyx_ImportFrom__Pyx_PyErr_GivenExceptionMatches.part.22__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__pyx_tp_dealloc_array__Pyx__PyObject_CallOneArg__Pyx_PyInt_As_Py_intptr_t.part.38__Pyx_PyObject_GetIndex__Pyx_PyObject_GetItem__Pyx_PyInt_As_size_t__Pyx_PyInt_As_int64_t.part.40__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_AddTraceback__pyx_code_cache__pyx_d__pyx_cython_runtime__pyx_dict_version.23422__pyx_dict_cached_value.23423__pyx_n_s_cline_in_traceback__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.20732__pyx_getprop___pyx_array_memview__pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_builtin_TypeError__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_fromslice__pyx_memoryviewslice_type__pyx_n_s_base__pyx_memoryview_copy_object_from_slice__pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_memoryview_new__pyx_memoryview_type__pyx_memoryview___str____pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_memoryview_setitem_indexed__pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_tp_getattro_array__pyx_n_s_memview__pyx_mp_ass_subscript_array__pyx_array___getitem____pyx_array_get_memview__pyx_pw_5numpy_6random_10_generator_9Generator_83logseries__pyx_float_0_0__pyx_kp_u__5__pyx_n_u_p__pyx_f_5numpy_6random_7_common_disc__pyx_n_s_p__pyx_pyargnames.19150__pyx_pw_5numpy_6random_10_generator_9Generator_79geometric__pyx_pyargnames.18981__pyx_pw_5numpy_6random_10_generator_9Generator_77zipf__pyx_n_u_a__pyx_n_s_a__pyx_pyargnames.18933__pyx_pw_5numpy_6random_10_generator_9Generator_75poisson__pyx_float_1_0__pyx_n_u_lam__pyx_pyargnames.18883__pyx_n_s_lam__pyx_pw_5numpy_6random_10_generator_9Generator_73negative_binomial__pyx_n_u_n__pyx_n_s_n__pyx_pyargnames.18832__pyx_pw_5numpy_6random_10_generator_9Generator_67wald__pyx_n_u_scale__pyx_n_u_mean__pyx_f_5numpy_6random_7_common_cont__pyx_n_s_mean__pyx_n_s_scale__pyx_pyargnames.18493__pyx_pw_5numpy_6random_10_generator_9Generator_65rayleigh__pyx_pyargnames.18442__pyx_pw_5numpy_6random_10_generator_9Generator_63lognormal__pyx_n_u_sigma__pyx_n_s_sigma__pyx_pyargnames.18387__pyx_pw_5numpy_6random_10_generator_9Generator_61logistic__pyx_n_u_loc__pyx_n_s_loc__pyx_pyargnames.18331__pyx_pw_5numpy_6random_10_generator_9Generator_59gumbel__pyx_pyargnames.18275__pyx_pw_5numpy_6random_10_generator_9Generator_57laplace__pyx_pyargnames.18219__pyx_pw_5numpy_6random_10_generator_9Generator_55power__pyx_pyargnames.18170__pyx_pw_5numpy_6random_10_generator_9Generator_53weibull__pyx_pyargnames.18122__pyx_pw_5numpy_6random_10_generator_9Generator_51pareto__pyx_pyargnames.18074__pyx_pw_5numpy_6random_10_generator_9Generator_49vonmises__pyx_n_u_kappa__pyx_n_u_mu__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.18023__pyx_pw_5numpy_6random_10_generator_9Generator_47standard_t__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.17974__pyx_pw_5numpy_6random_10_generator_9Generator_45standard_cauchy__pyx_pyargnames.17929__pyx_pw_5numpy_6random_10_generator_9Generator_43noncentral_chisquare__pyx_n_u_nonc__pyx_n_s_nonc__pyx_pyargnames.17879__pyx_pw_5numpy_6random_10_generator_9Generator_41chisquare__pyx_pyargnames.17830__pyx_pw_5numpy_6random_10_generator_9Generator_39noncentral_f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_pyargnames.17776__pyx_n_s_dfden__pyx_pw_5numpy_6random_10_generator_9Generator_37f__pyx_pyargnames.17723__pyx_pw_5numpy_6random_10_generator_9Generator_35gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.17669__pyx_pw_5numpy_6random_10_generator_9Generator_31normal__pyx_pyargnames.17547__pyx_pw_5numpy_6random_10_generator_9Generator_17exponential__pyx_pyargnames.16815__pyx_pw_5numpy_6random_10_generator_9Generator_15beta__pyx_n_u_b__pyx_n_s_b__pyx_pyargnames.16764__pyx_pw_5numpy_6random_10_generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_n_s_bit_generator__pyx_n_s_state__pyx_n_u_bit_generator__pyx_pw_5numpy_6random_10_generator_9Generator_9__setstate____pyx_pw_5numpy_6random_10_generator_9Generator_7__getstate____pyx_pw_5numpy_6random_10_generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_array___getattr____Pyx_PyObject_CallNoArg__Pyx_PyObject_Call2Args__pyx_getprop___pyx_memoryview_strides__pyx_builtin_ValueError__pyx_memoryview_get_slice_from_memoryview__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_getbuffer__pyx_memoryview___repr____pyx_builtin_id__pyx_kp_s_MemoryView_of_r_at_0x_x__pyx_array_getbuffer__pyx_n_u_c__pyx_n_u_fortran__pyx_memoryview_get_item_pointer__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_builtin_IndexError__Pyx_PyObject_CallOneArg__pyx_pw_5numpy_6random_10_generator_9Generator_3__repr____pyx_n_s_str__pyx_kp_u_at_0x_X__pyx_n_s_format__pyx_pw_5numpy_6random_10_generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_pyargnames.16545__Pyx_PyInt_As_Py_intptr_t__Pyx__GetModuleGlobalName__pyx_pw_5numpy_6random_10_generator_1default_rng__pyx_n_u_capsule__pyx_ptype_5numpy_6random_10_generator_Generator__pyx_dict_version.20243__pyx_dict_cached_value.20244__pyx_n_s_PCG64__pyx_pyargnames.20211__pyx_memoryview_is_slice__Pyx_IternextUnpackEndCheck__Pyx_IterFinish__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_n_s_dict__pyx_dict_version.20786__pyx_dict_cached_value.20787__pyx_int_184977713__pyx_dict_version.20789__pyx_dict_cached_value.20790__pyx_unpickle_Enum__set_state__pyx_n_s_update__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_MemviewEnum_type__pyx_n_s_new__pyx_pyargnames.22247__pyx_pw___pyx_MemviewEnum_3__setstate_cython____Pyx_PyInt_As_int64_t__pyx_pw_5numpy_6random_10_generator_9Generator_81hypergeometricPyArray_API__pyx_dict_version.19109__pyx_dict_cached_value.19110__pyx_n_s_any__pyx_int_1000000000__pyx_n_s_ngood__pyx_dict_version.19114__pyx_dict_cached_value.19115__pyx_dict_version.19118__pyx_dict_cached_value.19119__pyx_dict_version.19120__pyx_dict_cached_value.19121__pyx_n_s_less__pyx_dict_version.19122__pyx_dict_cached_value.19123__pyx_n_s_add__pyx_n_u_ngood__pyx_n_u_nsample__pyx_n_u_nbad__pyx_f_5numpy_6random_7_common_discrete_broadcast_iii__pyx_pyargnames.19031__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_n_s_nbad__pyx_n_s_nsample__pyx_n_s_np__pyx_pw_5numpy_6random_10_generator_9Generator_27uniform__pyx_dict_version.17453__pyx_dict_cached_value.17454__pyx_n_s_subtract__pyx_dict_version.17460__pyx_dict_cached_value.17461__pyx_n_s_all__pyx_dict_version.17462__pyx_dict_cached_value.17463__pyx_n_s_isfinite__pyx_dict_version.17448__pyx_dict_cached_value.17449__pyx_n_s_low__pyx_n_s_high__pyx_builtin_OverflowError__pyx_pyargnames.17381__pyx_pw_5numpy_6random_10_generator_9Generator_29standard_normal__pyx_k__24__pyx_ptype_5numpy_dtype__pyx_dict_version.17525__pyx_dict_cached_value.17526__pyx_n_s_float64__pyx_f_5numpy_6random_7_common_double_fill__pyx_dict_version.17528__pyx_dict_cached_value.17529__pyx_n_s_float32__pyx_f_5numpy_6random_7_common_float_fill__pyx_n_s_out__pyx_n_s_dtype__pyx_kp_u_Unsupported_dtype_r_for_standard_2__pyx_pyargnames.17485__pyx_pw_5numpy_6random_10_generator_9Generator_13random__pyx_k__4__pyx_dict_version.16742__pyx_dict_cached_value.16743__pyx_dict_version.16745__pyx_dict_cached_value.16746__pyx_kp_u_Unsupported_dtype_r_for_random__pyx_pyargnames.16702__pyx_pw_5numpy_6random_10_generator_9Generator_21integers__pyx_k__7__pyx_dict_version.16991__pyx_dict_cached_value.16992__pyx_n_s_int32__pyx_f_5numpy_6random_17_bounded_integers__rand_int32__pyx_dict_version.16994__pyx_dict_cached_value.16995__pyx_n_s_int64__pyx_f_5numpy_6random_17_bounded_integers__rand_int64__pyx_dict_version.17014__pyx_dict_cached_value.17015__pyx_n_s_array__pyx_dict_version.16996__pyx_dict_cached_value.16997__pyx_n_s_int16__pyx_f_5numpy_6random_17_bounded_integers__rand_int16__pyx_dict_version.17012__pyx_dict_cached_value.17013__pyx_n_s_compat__pyx_n_s_long__pyx_n_s_endpoint__pyx_dict_version.16998__pyx_dict_cached_value.16999__pyx_n_s_int8__pyx_f_5numpy_6random_17_bounded_integers__rand_int8__pyx_pyargnames.16936__pyx_dict_version.17000__pyx_dict_cached_value.17001__pyx_n_s_uint64__pyx_f_5numpy_6random_17_bounded_integers__rand_uint64__pyx_dict_version.17002__pyx_dict_cached_value.17003__pyx_n_s_uint32__pyx_f_5numpy_6random_17_bounded_integers__rand_uint32__pyx_dict_version.17004__pyx_dict_cached_value.17005__pyx_n_s_uint16__pyx_f_5numpy_6random_17_bounded_integers__rand_uint16__pyx_dict_version.17006__pyx_dict_cached_value.17007__pyx_n_s_uint8__pyx_f_5numpy_6random_17_bounded_integers__rand_uint8__pyx_dict_version.17008__pyx_dict_cached_value.17009__pyx_n_s_bool__pyx_f_5numpy_6random_17_bounded_integers__rand_bool__pyx_n_s_isnative__pyx_kp_u_Unsupported_dtype_r_for_integers__Pyx_PyErr_ExceptionMatchesInState.isra.23__Pyx_PyObject_GetAttrStrNoError__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce_2__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__pyx_pf_5numpy_6random_10_generator_9Generator_24choice__pyx_dict_version.17179__pyx_dict_cached_value.17180__pyx_n_s_copy__pyx_n_s_ndim__pyx_dict_version.17184__pyx_dict_cached_value.17185__pyx_n_s_index__pyx_n_s_item__pyx_dict_version.17194__pyx_dict_cached_value.17195__pyx_n_s_prod__pyx_dict_version.17200__pyx_dict_cached_value.17201__pyx_dict_version.17204__pyx_dict_cached_value.17205__pyx_n_s_sqrt__pyx_dict_version.17206__pyx_dict_cached_value.17207__pyx_n_s_finfo__pyx_dict_version.17208__pyx_dict_cached_value.17209__pyx_n_s_eps__pyx_ptype_5numpy_ndarray__pyx_dict_version.17214__pyx_dict_cached_value.17215__pyx_n_s_issubdtype__pyx_ptype_5numpy_floating__pyx_dict_version.17220__pyx_dict_cached_value.17221__pyx_dict_version.17222__pyx_dict_cached_value.17223__pyx_f_5numpy_6random_7_common_kahan_sum__pyx_dict_version.17237__pyx_dict_cached_value.17238__pyx_n_s_isnan__pyx_dict_version.17241__pyx_dict_cached_value.17242__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_dict_version.17245__pyx_dict_cached_value.17246__pyx_dict_version.17247__pyx_dict_cached_value.17248__pyx_n_s_intp__pyx_n_s_cumsum__pyx_n_s_random__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_dict_version.17257__pyx_dict_cached_value.17258__pyx_dict_version.17259__pyx_dict_cached_value.17260__pyx_dict_version.17358__pyx_dict_cached_value.17359__pyx_n_s_empty__pyx_n_s_operator__pyx_dict_version.17266__pyx_dict_cached_value.17267__pyx_n_s_count_nonzero__pyx_dict_version.17273__pyx_dict_cached_value.17274__pyx_n_s_zeros__pyx_dict_version.17275__pyx_dict_cached_value.17276__pyx_n_s_ravel__pyx_dict_version.17283__pyx_dict_cached_value.17284__pyx_dict_version.17290__pyx_dict_cached_value.17291__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_n_s_integers__pyx_dict_version.17263__pyx_dict_cached_value.17264__pyx_int_20__pyx_n_s_exit__pyx_n_s_enter__pyx_dict_version.17360__pyx_dict_cached_value.17361__pyx_n_s_asarray__pyx_dict_version.17362__pyx_dict_cached_value.17363__pyx_n_s_axis__pyx_dict_version.17324__pyx_dict_cached_value.17325__pyx_dict_version.17326__pyx_dict_cached_value.17327__pyx_dict_version.17328__pyx_dict_cached_value.17329__pyx_n_s_full__pyx_dict_version.17330__pyx_dict_cached_value.17331__Pyx_TypeInfo_nn_uint64_t__pyx_int_50__pyx_pw_5numpy_6random_10_generator_9Generator_25choice__pyx_n_s_replace__pyx_n_s_shuffle__pyx_pyargnames.17079__pyx_pymod_exec__generator__pyx_empty_unicode__pyx_string_tab__pyx_float_0_1__pyx_float_1eneg_8__pyx_int_2__pyx_n_s_main__pyx_n_s_range__pyx_n_s_reversed__pyx_n_s_ValueError__pyx_n_s_id__pyx_n_s_TypeError__pyx_n_s_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_MemoryError__pyx_builtin_MemoryError__pyx_n_s_UserWarning__pyx_n_s_NotImplementedError__pyx_builtin_NotImplementedError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_enumerate__pyx_n_s_Ellipsis__pyx_builtin_Ellipsis__pyx_n_s_IndexError__pyx_type_5numpy_6random_10_generator_Generatorgenericindirect_contiguous__pyx_n_s_Generator__pyx_type___pyx_array__pyx_vtable_array__pyx_vtabptr_array__pyx_type___pyx_MemviewEnum__pyx_array_type__pyx_vtable_memoryview__pyx_type___pyx_memoryview__pyx_vtabptr_memoryview__pyx_memoryview_setitem_slice_assignment__pyx_memoryview_convert_item_to_object__pyx_memoryview_assign_item_from_object__pyx_vtable__memoryviewslice__pyx_type___pyx_memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_memoryviewslice_convert_item_to_object__pyx_memoryviewslice_assign_item_from_object__pyx_ptype_5numpy_flatiter__pyx_ptype_5numpy_broadcast__pyx_ptype_5numpy_integer__pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_7_common_MAXSIZE__pyx_f_5numpy_6random_7_common_check_constraint__pyx_f_5numpy_6random_7_common_check_array_constraint__pyx_f_5numpy_6random_7_common_validate_output_shape__pyx_f_5numpy_6random_7_common_cont_f__pyx_f_5numpy_6random_7_common_cont_broadcast_3__pyx_n_s_warnings__pyx_n_s_Sequence__pyx_n_s_collections_abc__pyx_n_s_numpy__pyx_n_s_normalize_axis_index__pyx_n_s_numpy_core_multiarray__pyx_n_s_pcg64__pyx_n_s_poisson_lam_max__pyx_dict_version.22697__pyx_dict_cached_value.22698__pyx_dict_version.22699__pyx_dict_cached_value.22700__pyx_k__6__pyx_dict_version.22701__pyx_dict_cached_value.22702__pyx_dict_version.22703__pyx_dict_cached_value.22704__pyx_dict_version.22705__pyx_dict_cached_value.22706__pyx_n_s_numpy_random__generator__pyx_mdef_5numpy_6random_10_generator_1default_rng__pyx_k__25__pyx_kp_u_random_size_None_dtype_np_float__pyx_kp_u_Generator_random_line_235__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_442__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_569__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_598__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_845__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_9__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_1022__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_11__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1215__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1293__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1381__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1459__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1672__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1766__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1849__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_1947__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_2046__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2147__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2232__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2351__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2431__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2543__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2612__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2680__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2780__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_3000__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_3072__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3152__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_32__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3346__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3632__pyx_kp_u_multivariate_hypergeometric_col__pyx_kp_u_Generator_multivariate_hypergeom__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_3999__pyx_kp_u_permuted_x_axis_None_out_None_R__pyx_kp_u_Generator_permuted_line_4197__pyx_kp_u_shuffle_x_axis_0_Modify_an_arra__pyx_kp_u_Generator_shuffle_line_4350__pyx_kp_u_permutation_x_axis_0_Randomly_p__pyx_kp_u_Generator_permutation_line_4456__pyx_kp_u_Construct_a_new_Generator_with_t__pyx_kp_u_default_rng_line_4528__pyx_n_s_test__pyx_n_s_pyx_getbuffer__pyx_t_4.22691__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_tp_new_memoryview__pyx_n_s_obj__pyx_n_s_flags__pyx_n_s_dtype_is_object__pyx_pyargnames.20835__pyx_tp_new__memoryviewslice__pyx_pw_5numpy_6random_10_generator_9Generator_19standard_exponential__pyx_n_u_zig__pyx_dict_version.16912__pyx_dict_cached_value.16913__pyx_dict_version.16915__pyx_dict_cached_value.16916__pyx_n_s_method__pyx_kp_u_Unsupported_dtype_r_for_standard__pyx_pyargnames.16867__pyx_pw_5numpy_6random_10_generator_9Generator_33standard_gamma__pyx_dict_version.17647__pyx_dict_cached_value.17648__pyx_dict_version.17650__pyx_dict_cached_value.17651__pyx_kp_u_Unsupported_dtype_r_for_standard_3__pyx_pyargnames.17604__pyx_pw_5numpy_6random_10_generator_9Generator_85multivariate_normal__pyx_n_u_svd__pyx_n_u_warn__pyx_n_u_eigh__pyx_dict_version.19274__pyx_dict_cached_value.19275__pyx_dict_version.19279__pyx_dict_cached_value.19280__pyx_n_u_cholesky__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_n_s_astype__pyx_dict_version.19293__pyx_dict_cached_value.19294__pyx_n_s_double__pyx_n_s_svd__pyx_n_s_numpy_linalg__pyx_n_u_ignore__pyx_n_u_raise__pyx_dict_version.19317__pyx_dict_cached_value.19318__pyx_n_s_allclose__pyx_dict_version.19319__pyx_dict_cached_value.19320__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.19202__pyx_n_s_eigh__pyx_n_s_cholesky__pyx_dict_version.19334__pyx_dict_cached_value.19335__pyx_dict_version.19326__pyx_dict_cached_value.19327__pyx_dict_version.19338__pyx_dict_cached_value.19339__pyx_dict_version.19330__pyx_dict_cached_value.19331__pyx_n_s_warn__pyx_n_s_struct__pyx_n_s_pack__pyx_memoryview_err__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_pw_5numpy_6random_10_generator_9Generator_71binomial__pyx_dict_version.18795__pyx_dict_cached_value.18796__pyx_dict_version.18797__pyx_dict_cached_value.18798__pyx_dict_version.18745__pyx_dict_cached_value.18746__pyx_dict_version.18747__pyx_dict_cached_value.18748__pyx_dict_version.18754__pyx_dict_cached_value.18755__pyx_dict_version.18756__pyx_dict_cached_value.18757__pyx_pyargnames.18668__pyx_pw_5numpy_6random_10_generator_9Generator_69triangular__pyx_dict_version.18621__pyx_dict_cached_value.18622__pyx_dict_version.18623__pyx_dict_cached_value.18624__pyx_n_s_greater__pyx_dict_version.18631__pyx_dict_cached_value.18632__pyx_dict_version.18633__pyx_dict_cached_value.18634__pyx_dict_version.18641__pyx_dict_cached_value.18642__pyx_dict_version.18643__pyx_dict_cached_value.18644__pyx_n_s_equal__pyx_n_s_left__pyx_pyargnames.18546__pyx_n_s_mode__pyx_n_s_right__pyx_pw_5numpy_6random_10_generator_9Generator_91dirichlet__pyx_dict_version.19727__pyx_dict_cached_value.19728__pyx_dict_version.19729__pyx_dict_cached_value.19730__pyx_n_s_less_equal__pyx_dict_version.19739__pyx_dict_cached_value.19740__pyx_dict_version.19748__pyx_dict_cached_value.19749__pyx_dict_version.19750__pyx_dict_cached_value.19751__pyx_n_s_max__pyx_dict_version.19761__pyx_dict_cached_value.19762__pyx_n_s_empty_like__pyx_n_s_alpha__pyx_pyargnames.19656__pyx_pw_5numpy_6random_10_generator_9Generator_95shuffle__pyx_dict_version.19992__pyx_dict_cached_value.19993__pyx_dict_version.19994__pyx_dict_cached_value.19995__pyx_dict_version.20048__pyx_dict_cached_value.20049__pyx_dict_version.20050__pyx_dict_cached_value.20051__pyx_n_s_stacklevel__pyx_n_s_x__pyx_dict_version.20023__pyx_dict_cached_value.20024__pyx_n_s_swapaxes__pyx_dict_version.20030__pyx_dict_cached_value.20031__pyx_n_s_strides__pyx_n_s_itemsize__pyx_dict_version.20004__pyx_dict_cached_value.20005__pyx_dict_version.20006__pyx_dict_cached_value.20007__pyx_n_s_hasobject__pyx_pyargnames.19939_unellipsify__pyx_kp_s_Cannot_index_with_type_s__pyx_mp_ass_subscript_memoryview__pyx_pw_5numpy_6random_10_generator_9Generator_93permuted__pyx_dict_version.19863__pyx_dict_cached_value.19864__pyx_dict_version.19871__pyx_dict_cached_value.19872__pyx_n_s_copyto__pyx_n_u_safe__pyx_n_s_casting__pyx_dict_version.19886__pyx_dict_cached_value.19887__pyx_dict_version.19888__pyx_dict_cached_value.19889__pyx_pyargnames.19814__pyx_n_u_K__pyx_n_s_order__pyx_n_u_A__pyx_tp_new_array__pyx_n_s_c__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_encode__pyx_n_s_ASCII__pyx_n_s_fortran__pyx_n_b_O__pyx_n_s_allocate_buffer__pyx_pyargnames.20448__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_pw_5numpy_6random_10_generator_9Generator_87multinomial__pyx_n_u_pvals__pyx_dict_version.19441__pyx_dict_cached_value.19442__pyx_dict_version.19443__pyx_dict_cached_value.19444__pyx_dict_version.19445__pyx_dict_cached_value.19446__pyx_dict_version.19447__pyx_dict_cached_value.19448__pyx_dict_version.19470__pyx_dict_cached_value.19471__pyx_dict_version.19479__pyx_dict_cached_value.19480__pyx_dict_version.19481__pyx_dict_cached_value.19482__pyx_n_s_pvals__pyx_pyargnames.19361__pyx_n_s_unpack__pyx_n_s_error__pyx_pw_5numpy_6random_10_generator_9Generator_23bytes__pyx_dict_version.17052__pyx_dict_cached_value.17053__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_memoryview_err_dim__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_10_generator_9Generator_89multivariate_hypergeometric__pyx_n_u_marginals__pyx_n_u_count__pyx_dict_version.19578__pyx_dict_cached_value.19579__pyx_dict_version.19586__pyx_dict_cached_value.19587__pyx_dict_version.19594__pyx_dict_cached_value.19595__pyx_dict_version.19600__pyx_dict_cached_value.19601__pyx_dict_version.19607__pyx_dict_cached_value.19608__pyx_n_s_ascontiguousarray__pyx_dict_version.19609__pyx_dict_cached_value.19610__pyx_dict_version.19616__pyx_dict_cached_value.19617__pyx_n_s_isscalar__pyx_dict_version.19620__pyx_dict_cached_value.19621__pyx_dict_version.19622__pyx_dict_cached_value.19623__pyx_n_s_colors__pyx_kp_u_colors_must_be_a_one_dimensional__pyx_kp_u_nsample_must_not_exceed_d__pyx_pyargnames.19513__pyx_kp_u_sum_colors_must_not_exceed_the_m__pyx_kp_u_When_method_is_count_sum_colors__pyx_kp_u_Insufficient_memory_for_multivar__pyx_pw_5numpy_6random_10_generator_9Generator_97permutation__pyx_dict_version.20122__pyx_dict_cached_value.20123__pyx_n_s_arange__pyx_dict_version.20130__pyx_dict_cached_value.20131__pyx_dict_version.20134__pyx_dict_cached_value.20135__pyx_dict_version.20141__pyx_dict_cached_value.20142__pyx_n_s_may_share_memory__pyx_dict_version.20147__pyx_dict_cached_value.20148__pyx_dict_version.20154__pyx_dict_cached_value.20155__pyx_dict_version.20156__pyx_dict_cached_value.20157__pyx_pyargnames.20081__pyx_moduledef__pyx_k_A__pyx_k_ASCII__pyx_k_Axis_argument_is_only_supported__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Construct_a_new_Generator_with_t__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Generator__pyx_k_Generator_binomial_line_2780__pyx_k_Generator_bytes_line_569__pyx_k_Generator_chisquare_line_1459__pyx_k_Generator_choice_line_598__pyx_k_Generator_dirichlet_line_3999__pyx_k_Generator_f_line_1293__pyx_k_Generator_gamma_line_1215__pyx_k_Generator_geometric_line_3152__pyx_k_Generator_gumbel_line_2232__pyx_k_Generator_hypergeometric_line_32__pyx_k_Generator_integers_line_442__pyx_k_Generator_laplace_line_2147__pyx_k_Generator_logistic_line_2351__pyx_k_Generator_lognormal_line_2431__pyx_k_Generator_logseries_line_3346__pyx_k_Generator_multinomial_line_3632__pyx_k_Generator_multivariate_hypergeom__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1381__pyx_k_Generator_normal_line_1022__pyx_k_Generator_pareto_line_1849__pyx_k_Generator_permutation_line_4456__pyx_k_Generator_permuted_line_4197__pyx_k_Generator_poisson_line_3000__pyx_k_Generator_power_line_2046__pyx_k_Generator_random_line_235__pyx_k_Generator_rayleigh_line_2543__pyx_k_Generator_shuffle_line_4350__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_11__pyx_k_Generator_standard_normal_line_9__pyx_k_Generator_standard_t_line_1672__pyx_k_Generator_triangular_line_2680__pyx_k_Generator_uniform_line_845__pyx_k_Generator_vonmises_line_1766__pyx_k_Generator_wald_line_2612__pyx_k_Generator_weibull_line_1947__pyx_k_Generator_zipf_line_3072__pyx_k_ImportError__pyx_k_Incompatible_checksums_s_vs_0xb0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Insufficient_memory_for_multivar__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_K__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_NotImplementedError__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeWarning__pyx_k_Sequence__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_r_for_integers__pyx_k_Unsupported_dtype_r_for_random__pyx_k_Unsupported_dtype_r_for_standard__pyx_k_Unsupported_dtype_r_for_standard_2__pyx_k_Unsupported_dtype_r_for_standard_3__pyx_k_UserWarning__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k_When_method_is_count_sum_colors__pyx_k_When_method_is_marginals_sum_col__pyx_k__2__pyx_k__3__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_samp__pyx_k_a_must_an_array_or_an_integer__pyx_k_a_must_be_a_positive_integer_unl__pyx_k_add__pyx_k_all__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_asarray__pyx_k_ascontiguousarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice_a_size_None_replace_True__pyx_k_cholesky__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_collections_abc__pyx_k_colors__pyx_k_colors_must_be_a_one_dimensional__pyx_k_compat__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_copyto__pyx_k_count__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_cumsum__pyx_k_default_rng__pyx_k_default_rng_line_4528__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_eigh__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_hasobject__pyx_k_high__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_imatmul__pyx_k_imatmul__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_marginals__pyx_n_s_matmul__pyx_k_matmul__pyx_k_max__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_memory_allocation_failed_in_perm__pyx_k_memview__pyx_k_method__pyx_k_method_must_be_count_or_marginal__pyx_k_method_must_be_one_of_eigh_svd_c__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_hypergeometric_col__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndim__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_normalize_axis_index__pyx_k_np__pyx_k_nsample__pyx_k_nsample_must_be_an_integer__pyx_k_nsample_must_be_nonnegative__pyx_k_nsample_must_not_exceed_d__pyx_k_nsample_sum_colors__pyx_k_numpy__pyx_k_numpy_core_multiarray__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_linalg__pyx_k_numpy_random__generator__pyx_k_obj__pyx_k_operator__pyx_k_order__pyx_k_out__pyx_k_out_must_be_a_numpy_array__pyx_k_out_must_have_the_same_shape_as__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation_x_axis_0_Randomly_p__pyx_k_permuted_x_axis_None_out_None_R__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_np_float__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_n_s_rmatmul__pyx_k_rmatmul__pyx_k_rtol__pyx_k_safe__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_axis_0_Modify_an_arra__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_stacklevel__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum_colors_must_not_exceed_the_m__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_swapaxes__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_k_unpack__pyx_k_update__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x__pyx_k_x_isn_t_a_recognized_object_shu__pyx_k_zeros__pyx_k_zig__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_10_generator_Generator__pyx_getsets_5numpy_6random_10_generator_Generator__pyx_doc_5numpy_6random_10_generator_9Generator_12random__pyx_doc_5numpy_6random_10_generator_9Generator_14beta__pyx_doc_5numpy_6random_10_generator_9Generator_16exponential__pyx_doc_5numpy_6random_10_generator_9Generator_18standard_exponential__pyx_doc_5numpy_6random_10_generator_9Generator_20integers__pyx_doc_5numpy_6random_10_generator_9Generator_22bytes__pyx_doc_5numpy_6random_10_generator_9Generator_24choice__pyx_doc_5numpy_6random_10_generator_9Generator_26uniform__pyx_doc_5numpy_6random_10_generator_9Generator_28standard_normal__pyx_doc_5numpy_6random_10_generator_9Generator_30normal__pyx_doc_5numpy_6random_10_generator_9Generator_32standard_gamma__pyx_doc_5numpy_6random_10_generator_9Generator_34gamma__pyx_doc_5numpy_6random_10_generator_9Generator_36f__pyx_doc_5numpy_6random_10_generator_9Generator_38noncentral_f__pyx_doc_5numpy_6random_10_generator_9Generator_40chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_42noncentral_chisquare__pyx_doc_5numpy_6random_10_generator_9Generator_44standard_cauchy__pyx_doc_5numpy_6random_10_generator_9Generator_46standard_t__pyx_doc_5numpy_6random_10_generator_9Generator_48vonmises__pyx_doc_5numpy_6random_10_generator_9Generator_50pareto__pyx_doc_5numpy_6random_10_generator_9Generator_52weibull__pyx_doc_5numpy_6random_10_generator_9Generator_54power__pyx_doc_5numpy_6random_10_generator_9Generator_56laplace__pyx_doc_5numpy_6random_10_generator_9Generator_58gumbel__pyx_doc_5numpy_6random_10_generator_9Generator_60logistic__pyx_doc_5numpy_6random_10_generator_9Generator_62lognormal__pyx_doc_5numpy_6random_10_generator_9Generator_64rayleigh__pyx_doc_5numpy_6random_10_generator_9Generator_66wald__pyx_doc_5numpy_6random_10_generator_9Generator_68triangular__pyx_doc_5numpy_6random_10_generator_9Generator_70binomial__pyx_doc_5numpy_6random_10_generator_9Generator_72negative_binomial__pyx_doc_5numpy_6random_10_generator_9Generator_74poisson__pyx_doc_5numpy_6random_10_generator_9Generator_76zipf__pyx_doc_5numpy_6random_10_generator_9Generator_78geometric__pyx_doc_5numpy_6random_10_generator_9Generator_80hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_82logseries__pyx_doc_5numpy_6random_10_generator_9Generator_84multivariate_normal__pyx_doc_5numpy_6random_10_generator_9Generator_86multinomial__pyx_doc_5numpy_6random_10_generator_9Generator_88multivariate_hypergeometric__pyx_doc_5numpy_6random_10_generator_9Generator_90dirichlet__pyx_doc_5numpy_6random_10_generator_9Generator_92permuted__pyx_doc_5numpy_6random_10_generator_9Generator_94shuffle__pyx_doc_5numpy_6random_10_generator_9Generator_96permutation__pyx_doc_5numpy_6random_10_generator_default_rngcrtstuff.cderegister_tm_clones__do_global_dtors_auxcompleted.7182__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrydistributions.cfe_doublewe_doubleke_doublefe_floatwe_floatke_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_mvhg_count.crandom_mvhg_marginals.crandom_hypergeometric.clogfactorial.clogfact__FRAME_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyNumber_NegativePyObject_SetItemPyList_Newrandom_laplace_PyUnicode_ReadyPyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyErr_RestorePyList_AsTuple_PyThreadState_UncheckedGetPyModuleDef_Initrandom_multivariate_hypergeometric_countPyEval_RestoreThreadPyFrame_NewPyMem_Freerandom_negative_binomialrandom_standard_cauchyPyCFunction_NewEx__isnan@@GLIBC_2.2.5PyCapsule_GetNamePyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyExc_BufferErrorPyImport_AddModulePyBytes_FromStringAndSizerandom_standard_exponential_fill_f_PyObject_GenericGetAttrWithDictPyBytes_TypePyObject_SetAttrStringPyErr_WarnExrandom_standard_gamma_edatarandom_binomial_btpe_Py_DeallocPyModule_NewObjectPyErr_NoMemoryPyErr_SetObject__pyx_module_is_main_numpy__random___generatorPyErr_NormalizeExceptionPyNumber_Absoluterandom_logseriesPyNumber_MultiplyPyLong_FromSize_trandom_rayleighrandom_standard_exponentialPyObject_RichComparerandom_uniformPyCode_Newrandom_poisson_finistrlen@@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstancePyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyGILState_EnsurePyInterpreterState_GetIDPyEval_EvalFrameExrandom_logisticPyErr_PrintEx_PyLong_Copymemset@@GLIBC_2.2.5PyMem_ReallocPyErr_SetNonerandom_standard_uniform_fill_fPyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_standard_gamma_frandom_triangularrandom_buffered_bounded_uint32PyOS_snprintfPyTraceBack_Herefmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_NotPyObject_Freerandom_noncentral_fPyNumber_InPlaceTrueDividerandom_standard_exponential_inv_fill_fPyLong_FromSsize_tPyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5_PyList_ExtendPyLong_AsSsize_tPyObject_RichCompareBoolrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_Clearmemcpy@@GLIBC_2.2.5PyList_Append_Py_CheckRecursiveCall_Py_CheckRecursionLimitPyCapsule_IsValidPyExc_KeyErrorPyNumber_Orrandom_beta_Py_FalseStruct__gmon_start__random_exponentialexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricPyNumber_RemainderPyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurredrandom_standard_uniform_f_Py_EllipsisObjectrandom_loggamPyInit__generatorPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashrandom_gamma_fPy_OptimizeFlagrandom_zipfPyDict_GetItemStringPyEval_EvalCodeExpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5random_standard_exponential_frandom_pareto_Py_NoneStructPyExc_ZeroDivisionErrorPyFloat_AsDouble_endPyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectPy_FatalErrorPyExc_AssertionErrorrandom_positive_int64PyThread_allocate_lockrandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_Comparerandom_vonmisesrandom_bounded_uint32_fillrandom_standard_normal_frandom_positive_int32random_standard_uniform_Py_TrueStruct__bss_startlogf@@GLIBC_2.2.5PyFunction_Typerandom_normalrandom_chisquarePyDict_NewPyExc_IndexErrorPyBool_TypePyObject_GetBufferPyLong_AsUnsignedLongPyDict_TypePyDict_NextPyBaseObject_Typerandom_standard_exponential_fillrandom_intervalrandom_waldPyLong_FromUnsignedLongrandom_noncentral_chisquarePyLong_TypePyFrame_Typerandom_standard_normalPyCapsule_Typerandom_standard_exponential_inv_fill_PyObject_GetDictPtrPyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringrandom_binomialPyExc_ImportErrorPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelrandom_standard_uniform_fillPyExc_StopIterationPySequence_Listrandom_standard_normal_fill_ffloor@@GLIBC_2.2.5PyUnicode_TypePyCapsule_NewPyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyNumber_InPlaceMultiplyrandom_multivariate_hypergeometric_marginalsPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedceil@@GLIBC_2.2.5PyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_Subtractrandom_standard_normal_fillPyNumber_MatrixMultiplyPyThread_free_lockPyTuple_PackPyUnicode_DecodeASCIIPy_GetVersionPyObject_GC_UnTrackPyExc_UnboundLocalErrorPyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_TypePyNumber_FloorDivide.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.got.plt.data.bss.comment$.o8 @``Ho11(Uo44@dX4X4ynB88x00s@@` ~tt ` v v   dQp)p x)x ) ) h)h ) ) hF @,,(,  0(, Y, .  Ϳm