Background:
Customers use real time streaming frameworks handing large volumes of streaming data from multiple channels. This usually needs to maintain, set up and administer stream layer and processing layer which is time consuming.
Purpose:
This guide helps to implement real streaming processing framework with MSK cluster on AWS using spark on EMR with minimal and seamless setup.
Introduction:
Using MSK which is the AWS Managed Service for Kafka and AWS EMR which is the AWS Managed Hadoop Framework, we can build a stream processing framework.
MSK and EMR handle the setup and administration and we can focus on the processing logic to get handled.
Architecture:
[image:]

The typical architecture which captures data from various real time sources and is sent to the Messaging layer which is served by MSK. And further processed by Spark on EMR.
The first layer is the Data Source layer where the real time sources capture the information.
The intermediate block is the MSK which helps to send data between sources to the Real time processing platform.
· Data Producer sends records to the MSK using Kafka library using producer API.
· The intermediate layer is the MSK Layer which pushed these events to the further downstream systems. Kafka Topic partition replication/leader selection are automatically handled by the AWS MSK cluster. MSK is also responsible to retain the cluster and data in case of the broker failure and automatically recover from it and ensure the partition is still available to be read by consumers.
· Then the last layer is the data processing layer, which is Spark on the EMR cluster which could process the data in real time and send to the visualization layer.
Use case:
To demonstrate connectivity between MSK with EMR Spark, a simple example setting up EMR cluster with spark streaming and MSK cluster is show cased. Existing Spark word count example is used to consume the data from MSK topics. The final output is showcased on spark console and zeppelin.
Activities
Now let’s see how to set up this kind of framework on AWS. Main steps to implement a streaming application on AWS on EMR spark and MSK are as below
1. Messaging Platform :- We will leverage MSK for this.
2. Producer framework:- We will stub this using console Kafka Producer to send streaming data.
3. Processing Framework:- We would leverage EMR spark and try to make some config changes to connect to MSK cluster and run a simple word count example which can print real time word count.
4. Visualization:- We have showcased on the console and also on zeppelin to print real time word counts.
Workshop Activities
The below steps would guide in setting up and configuring the EMR and MSK cluster to communicate with each other and how to run the simple word count application.		
1. Setting up the MSK cluster.
2. Create EMR cluster with spark and zeppelin.
3. Open ports and update security groups between Kafka and EMR Cluster
4. Provide access for EMR cluster to operate on MSK
5. Install kafka client on EMR cluster
6. Create topic. Doing a sample test for connectivity.
7. Download kafka libraries.
8. Open zeppelin and configure interpreter
9. Run the streaming code in zeppelin
10. Send records from Producer
11. Alternative to zeppelin submit via spark shell
12. Verify the logs for output.
13. Cloud formation template to set up EMR with spark/zeppelin and Kafka bootstrap scripts.

1. Setting up MSK Cluster

First step is to create MSK cluster. Below steps outline how to create MSK though AWS console.

Key in the name and leave VPC as default. Use Kafka 2.1.0 version

[image:]

Select the subnet and AZs.

[image:]

Select no of brokers per AZ .
[image:]

[image: https://cdn-images-1.medium.com/max/800/1*7VwY56uMdmqM4wXJeVkH-w.png]

Leave the advanced details default. Click on create cluster. Wait for the MSK cluster to be created. This may take few minutes.

[image:]

2. Setting up EMR cluster with spark/Zepplin enabled.
[image:]

You can create it using cli or console also Ensure you select spark and zeppelin in advanced configurations while creating the cluster
Remember the security key, this would be needed in the subsequent steps while logging into the cluster.

[image:]

3. Open ports and update security groups

Access the MSK cluster link and click on Security Groups
[image:]

Go to EMR console and get the Security group (SG) of EMR Master.

[image:]

Update the Security Group as below entering all traffic from source as EMR SG name for MSK SG.

[image:]

Repeat the same steps for EMR cluster.

In EMR Master Security Group add Kafka cluster Security Group name as source for all traffic.

[image:]

4. Provide access for EMR cluster to operate on MSK

When launching EMR cluster, the default role EMR_EC2_DefaultRole won’t have access to describe cluster. We need to explicitly add that access and role to access MSK cluster as per the below screenshots.
Login in to the AWS console and access the IAM page link and add access to MSK. In the below screen shot, MSKFullAccess has been added. For the testing purpose full access has been provided.
[image:]

After this you can execute

[image:]
by logging into EMR cluster with secret key provided during cluster creation.

5. Install kafka client on EMR cluster

This step allows you to setup kafka client on the EMR cluster. EMR doesn’t come with kafka client installed by default. So this step allows you to download and access kafka client.
Kafka client is needed for running kafka producer and kafka console consumer command scripts.

Download kafka based on the server version selected.
wget http://archive.apache.org/dist/kafka/1.1.1/kafka_2.11-1.1.1.tgz
wget https://archive.apache.org/dist/kafka/2.1.0/kafka_2.11-2.1.0.tgz

Extract the zip file to a folder.

tar -xzf kafka_2.11-2.1.0.tgz
6. Create topic. Doing a sample test for connectivity

From console access the zookeeper url for creating topic.
cd /home/hadoop/kafka_2.11-2.1.0
You will get zookeeperConnectString from describe cluster command to be used while creating topicbin/kafka-topics.sh --create --zookeeper ZookeeperConnectString --replication-factor 3 --partitions 1 --topic AWSKafkaTutorialTopic

Display the bootstrap brokers url from console or from cli. aws kafka get-bootstrap-brokers --region us-west-2 --cluster-arn ClusterArn

Output
[image:]

You can also get the bootstrap servers list from the client information tab on the kafka Page as well.

bin/kafka-console-producer.sh --broker-list BootstrapBrokerString --topic AWSKafkaTutorialTopic

In another ssh prompt open console consumer and verify messages could be produced and consumed.

bin/kafka-console-consumer.sh --bootstrap-server BootstrapBrokerString --topic AWSKafkaTutorialTopic --from-beginning

[image:]

[image:]

7. Download Kafka Libraries

These libraries are needed to be installed on EMR to execute for spark shell submit command for step no 10.

wget http://central.maven.org/maven2/org/apache/kafka/kafka_2.10/0.10.0.0/kafka_2.10-0.10.0.0.jar

wget https://archive.apache.org/dist/kafka/0.10.0.0/kafka_2.11-0.10.0.0.tgz

wget http://central.maven.org/maven2/org/apache/spark/spark-streaming-kafka-0-10_2.11/2.4.0/spark-streaming-kafka-0-10_2.11-2.4.0.jar

8. Open zeppelin and configure interpreter

If you are using zeppelin you can skip step 7.
[image:]

Go to Spark interpreter, under dependencies add the below entries as per image. This is needed to connect o kafka and import statements to work from zeppelin spark interpreter.
org.apache.spark:spark-streaming-kafka-0-10_2.11:2.4.0
org.apache.kafka:kafka-clients:0.10.0.0
For multiple spark sessions to run, enable multiple session to true.
[bookmark: _GoBack]
[image:]

9. Run Streaming Code in Zeppelin.

This is a sample word count program where kafka consumer is run with the spark streaming and reads the kafka messages and prints words.
[image:]

[image:]
[image:]

Spark context is up and running.
Lets send sample input form console producer and verify tha data in zeppelin console
For the console producer to work, kafka download in the step 5 is pre requisite.
[image:]
Alternative to zeppelin submit via spark shell
10. Submitting the job via Spark shell
You can use spark examples and use sparksubmit command also to test the above
Step 7 jar files are needed to run. You can either pass jar file in command prompt or as a maven project. As we are using existing example, passing in command prompt.

spark-submit --class org.apache.spark.examples.streaming.JavaDirectKafkaWordCount --master yarn-client --jars /usr/lib/spark/examples/jars/*.jar,/home/hadoop/kafka_2.11-2.1.0/libs/*.jar,/home/hadoop/spark-streaming-kafka_2.11-2.4.0.jar --num-executors 1 --driver-memory 512m --executor-memory 512m --executor-cores 1 spark-examples*.jar b-2.f3q7nz429i3uooyl3wy41sjin.c2.kafka.us-west-2.amazonaws.com:9092,b-1.f3q7nz429i3uooyl3wy41sjin.c2.kafka.us-west-2.amazonaws.com:9092,b-3.f3q7nz429i3uooyl3wy41sjin.c2.kafka.us-west-2.amazonaws.com:9092 groupid AWSKafkaTutorialTopic

11. Output

[image:]

12. Cloud formation template
Sample cloud formation template to create an EMR cluster and submit spark step CF Link
This CF has been added with additional SG. Ensure these SG for master/slave are updated with entry from MSK security group for the Kafka port.
Also it has a reference to install Kafka client and download some Kafka and spark streaming libraries in the bootstrap action which is bundled in the install script and needs to be placed in the referenced s3 location. Install Script
Conclusion

With Kafka offered as a Managed service on AWS, users can focus more on the consumption part instead of worrying on managing the coordination between the brokers which usually needs a detailed understanding of kafka. Features like leader selection/in synch replica brokers availability could be managed by the MSK platform. Users can then focus on processing layer to consume data from MSK and further propagate to visualization layer.

image5.png
Brokers.

Brokers per Availability Zone
Number of Kafka brokers deployed i each Availability Zone. You can't decrease this number after you create the cluster.

3

Minimurm 1

® 9 total brokers will be deployed in your cluster, distributed evenly across your 3 availabil

v Advanced details
To customize advanced settings, use the CLI to create a cluster. Learn more [

Broker instance type
kafka.ms.large

EBS storage volume
1000 GiB

Customer master key
Default

Apache Kafka configuration
Default

Monitoring
Default

image6.png
-
Clusters (1)
ey

e T . . X

image7.png
v Hadoop285 @ Zeppein081

Jopytertub 0.9.4 Tez091
Gangia 372 HBase 149
¢ Hw234 Presto 0215,
MXNet 131 Sqoop 147
< Heaso Phoenix 4.14.1
v spark240 HCatalog 234

AWS Glue Data Catalog settings (optiona)
Use for Hive table metadata ©
Use for Spark table metadata @

Edit software settings ©

@ Enter configuration Load JSON from S3

Add steps (optional) ©
Septype (vactasip ¥ [Con
Autotermintecsta shor th st step s completed

Ly 050
Flnk 17.1
Pig0.170
ZooKeeper 3413
Mahout0.130
Oozie510
TensorFlow 1,120

image8.png
Create Cluster - Advanc

Step 1: Software and Steps
Stop2 Hardware

Stop 3 GoneralChstr Satings
I5t0p : Socuriy

Security Options

Pemissions ©

@ Defaur) Custom

Use dofault AW ols. I les are ot presan. they il e automatical created
for you with managed poles for automatc polcy updates.

EMRrole EMR Oetsutiok B O
EC2instance profle ER_cC2_ocoutRok 3 O
Auto Scalingrole EMR_AvtoScalng DetauiRoe (2 @

» Authentication and encrypton
» EC2 securty groups

image9.png
Amazon Managed X MSK > Clusters
Streaming for Kafka

KafkaCluster

Clusters

Cluster summary

General Cluster-Level Broker Details Networking

okers per Avaiabilt

e 1

EC2instance t

afkams arge

Creation time

Fi, 12 Apr 2019 17:48:08 GMT Custom master

p—
I

Apache Kafka versio

I

210

oEFAULT

image10.png
Amazon EMR
 Clsters:

Securty conturations

VPG subnets

Evens

Natsbooks

Hap

Whats new

Connections: Enable Web Connaction - Hue, Zeppein, Spark History Servr, Resource Manager . (View Al)

woserpicons: I <

Tags: - Viow Al /8t
Summary Configuration details
10: E— Roloase label: emv 5230
Craation date: 2015:04-12 2320 (UTC+5.30) Hadoop distrbution: Amazon 285
Elapsed time: 27 minutes ‘Applications: Hive 234 Pig0 170, Hue 430,
Autoterminate: No ‘Spark 2,40, Zeoooln 081
Termination On Change Log UR: 3/ I
protection ’ west Zastcmapreducel 85
EMRES consistent Disabled
Custom AMIID:

Securty and access.
Key name: ectestkey
EC2nstance profile: ENR_EC2_Defautoe
EMR role: ENR_DefautRole
Auto Scaling role: EMR_AutoScaling DefautRole
Visible o al users:

Securty groups for I
Core & Task: (EkstiMapReduce-save)

Nety

image11.png
Ao«

Q. GroupD: sg-ae0Tbedd - Aca e

® me - GowD = Group Name - veco - Description -
. sg-seDtbedd aetaut — oot VPC secuty gD

SecurityGroup: sg-ae01bedd

Descrpion Inbound | Oubound | Tags

Edit
Type (i Protocol (i Port Range (i Source (i
Antatfic a I

Anvatfic a A sgrasibedd (Gefaut)

image12.png
Actions

roup.

Name oD B
. —
Secury Grovp: I
Descipion | inbound | | Oubaund || Toge
Ea
Type (0 Protoco (7
natce e
natee Tcp
e e
i] @

roup Name

EastapReacemaster

vecio Descripton

I 2o roupforEstc MapFoduc.

PortRange (i Sourc 3 l
0-es535 ——
0-e553 ——
0-e553 —

image13.png
Permissions | Trustrelationships Tags

Access Advisor

~ Permissions policies (3 policies applied)

»

»

»

Policy name ~
W AmazonElasticMapReduceforEC2Role.
W8 AmazonElasticMapReduceFulAccess

W AmazonMSKFullAccess

Revoke sessions

Policy type ~
AWS managed poly
AWS managed poly

AWS managed polcy

image14.png
aws kafka describe-cluster --region us-west-2 --cluster-arn
"arn:aws:kafka : IEE—————— C1uster/KafkaCluster /I
| ————————

image15.png
BootstrapSrokerSring - WE——
— ;s o

zonaws com0S

2amazonaws or

est.2amazonais com 9092

image16.png
bin/kafka-console-consumersh --bootstrap-server NG| kafka.us-
west-2.amazonaws.com:9092 I k2 ka.us-west-

2.amazonaws.com:9092, I 2 kafka.us-west-

2.amazonaws.com:9092 --topic AWSKafkaTutorialTopic --from-beginning

image17.png
[hadoop: A—— b1 kaka-Console-producer-sh --broker-1ist b SN2 5. Us-West-2
20nows Con:0002, -1 MUNESRSSSUSUBYSUREUBSRRSUSRSRS. 1051 -2 34320035 . CoR: 9092,5-3. 347024201 3000y 13wy 15 1n. ¢2. kafka. Us-west -2

azonaws. coa:9092 --topic AWSKafkaTutorialTopic

enis is my first message

image18.png
ZEppelin.pySpark uselPymmon
zeppelin spark concurentsaL

zeppeln spark enableSupporteaVersionCheck
zeppelin spark importimplicit

zeppein spark maxResult

zeppelin spark pANIREPLOUIpUL

zeppeln spark sqlinterpolation

2eppelin spark sql stacktrace

zeppeln spark uihidden

zeppeln spark uiebUrt

zeppein spark useHiveContext

zeppelin spark useNew

Dependencies
arttact

org apache spark spark streaming-kafka-0-10_2 11240

org apache kafka-kafka-clients:0.10.0.0

[A 2R SEAE-SE AR AN AN

H

H

image19.png
Zeppelin Notebook - Job Qsearn

name value action
angs x
maser yam et x
sparkappaame Zeppan x
spark cores.max F
e x
spark executormemory x
sparkhome hssoanc x
sparkyam far x
zeppein R cma " x
zeppein R image vidth oo%, x

zeppein Rkt

zeppein R render optons.

zeppein ep agationalRemoteRepostory sparcpackapes i binvay comisparpackagesimaven e x
P e I T T e e

image20.png
Zeppelin Notebook

s @s (Blo[=]hwl- [a] (0

Spark Streaming NoteBook =

Separt org.apsche.kafka.comon, serialization.Stringoeserislizer
irport orgapache.spark. (SparkCont, SparkContext)

inport. org.apache.spark.stresming. (Seconds, SereamingContext)

inport. org.apache.spark.streaming. Kafkadld Kafkaltils

inport org.apache.spark.streaming.Kafkadld. Locationstrateies. PreferConsistent
irpart org.apache.spark.streaming Kafkadio. ConsumerStrategies. Subscrive

import. org.apache.kafka.comson. serialization.StringDeserializer
ieport. org.apache.spark. {SparkConf, SparkContext)

import o apache.soark.streoming. (Seconds, StreomingContext]

import. org.apache.spark.streaming Kafkadlo KafiaUtils
import.org.apache.spark.stresming kafkadlo. Locationstrategies PreferConsistent
import. org.apache.spark.stresming KefKe010. ConsumerStrategies. Subscrive

Took s Lty o g 162015, 1 0627 0

1)

51 56 = new SparkContext (cons)

51 stresmingCantext - nev StresmingContert(sc, Seconz(19)

image21.png
eppel Notebook

Spark Streaming NoteBook © @ = @+ zo/= s - a

a1 sc = new SparkContext(con)

a1 streamingContext = new StresmingContext(sc, Seconds(19))

3¢

81 kefsparans « Hag[s
rers™ o> b-1.F3a 13
err -5 classOf[Stringoeseriali:

r),
> classOrstringeserializer],

> Gerue: doba. ang.

otean)

)

(AuSKakaTutorialToptc")

o1 topies

21 stream = Kofkaltils crestedirectstresn(st:
stresmingContet,

preferconsistent,
Subscrivefstring, S
)

ng)(topics, kafkoParans)

Istresm.map(record => record.value)
“Flathap(iine - line LT 510
“map(word => word. ol owerCase)
Clter(_.size > 0)

Lmap(word => (word, 1)
Crecucesykey(_ + 3
Irepartition()
Ctranstora(raa =» rdd.zortsy(-_.
IsaversTextFiles(". /oltput/word:

stream.map(recorc = record.value)
~#lathap(line => line.splt("T \\.3\\1+"))
“eap(uora = word. oLouerCese)
[filter(_size > 6)

Leap(uord > (word, 1)

reducebykey(_ +)

image22.png
Zeppel Notebook Job.

Spark Streaming NoteBook © @ = @+ zo/= e . a 0

[TR ra ey

0

stresmingeontert.s
SereasingCortert

T

Tiae: 1555387590000 v

1555357610000

[rn——

image23.png
Job

[repre——

e
ity
)
s
(ressaze)

image24.png
T pa—

geEinnann
Y
TEETIIRNNNNNNY

Sszzzazzaases:

image1.png
Consumption Layer

i

EMR custr wit Apache Spark . Dashboards,
Reports

Zepplin Output

Stream Processing Layer

image2.png
MSK > Clusters > Create custer

Create Kafka cluster

General

pecofssan

Apache Kafka version

11
0210

Number of Availabilty Zones

image3.png
aws,

Availability Zones

Number of Avaabity Zones

3

First Availability Zone

Avalabity Zone

stz

Subnet

subnet-Bbacsel0

Second Availability Zone

Avalabilty Zone

st 2b

image4.png
Subnet

subnet-adecbddd

Third Availability Zone

Availability Zone.

uswest 2c

Subnet

Subnet.09260853

Brokers

Brokers per Availability Zone.

1

(© ' total brokers wil b deployedinyour duster,disributed vty across your 3 vaabilty zones

