{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import boto3\n", "import os\n", "\n", "from .create_pipeline import create_pipeline\n", "\n", "region = boto3.Session().region_name\n", "\n", "# TODO: for testing, set the account_id value to your AWS Account Id\n", "account_id = 'XXXXXXXXXXXX'\n", "namespace = 'apspe'\n", "\n", "pipeline_name = os.environ.get('PIPELINE_NAME', f'abalone-pipeline-{account_id}')\n", "default_bucket = os.environ.get('MODELS_BUCKET_NAME', f'{namespace}-models-{account_id}-{region}')\n", "pipeline_bucket_name = os.environ.get('PIPELINE_BUCKET_NAME', f'{namespace}-ml-pipeline-{account_id}-{region}')\n", "processing_image_uri = os.environ.get('TRAINING_IMAGE_URI', f'{account_id}.dkr.ecr.{region}.amazonaws.com/{namespace}-prediction-processing')\n", "base_job_prefix = os.environ.get('BASE_JOB_PREFIX', namespace)\n", "role = os.environ.get('PIPELINE_ROLE_ARN', f'arn:aws:iam::{account_id}:role/{namespace}-SagemakerPipelineExecutionRole-{region}')\n", "\n", "# create the pipeline\n", "pipeline = create_pipeline(\n", " region,\n", " pipeline_name,\n", " default_bucket,\n", " pipeline_bucket_name,\n", " processing_image_uri,\n", " base_job_prefix,\n", " role,\n", ")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# pipeline_inst = pipeline.upsert(role_arn=role)\n", "# print(pipeline_inst)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# get the pipeline's JSON descriptor\n", "pipeline.definition()" ] } ], "metadata": { "language_info": { "name": "python" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }