


© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Decoupled microservices:
Building scalable applications

A R C 3 1 4 - R

Dirk Fröhner
Solutions Architect
Amazon Web Services

Christian Müller
Solutions Architect
Amazon Web Services



Agenda
Introduction

Application integration patterns

Concrete use cases – Our labs today

Choose your own adventure – Work on your most relevant labs



Related breakouts
API315 Application integration patterns for microservices

API304 – Scalable serverless event-driven apps using Amazon SQS & Lambda

API306 – Building event-driven architectures
API307 – Build efficient and scalable distributed applications using Amazon MQ

API309 – Durable serverless architecture: Working with dead-letter queues
API311 – Managing business processes using AWS Step Functions

API312 – How to select the right application integration service

API316 – Building serverless workflows using AWS Step Functions
API318 – Deep dive on event-driven development with Amazon EventBridge



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

“If your application is cloud-native, 
or large-scale, or distributed, and 
doesn’t include a messaging
component, that’s probably a bug.”

Tim Bray
Distinguished Engineer

AWS Messaging, Workflow Management



Potential drawbacks of 
synchronous systems

Synchronous systems are tightly 
coupled

A problem in a synchronous 
downstream dependency has 
immediate impact on upstream 
callers

Retries from upstream callers can 
all too easily fan out and amplify 
problems

Photo: Dirk Fröhner



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Message exchange

One-way Request-response



Message exchange

One-way Request-response

Message 
channel

Receiver

No response expected

Synchronous vs. fire-and-forget

Sender



Message exchange

One-way Request-response

Message 
channel

Receiver

No response expected

Synchronous vs. fire-and-forget

Response expected

Return address

Correlation ID

Sender

Message 
channel

ResponderRequester
Message 
channel



Message channels

Point-to-point (queue) Publish-subscribe (topic)



Message channels

Point-to-point (queue) Publish-subscribe (topic)

Consumed by one receiver

Easy to scale

Flatten peak loads

Receivers

Sender

Queue



Message channels

Point-to-point (queue) Publish-subscribe (topic)

Consumed by one receiver

Easy to scale

Flatten peak loads

Consumed by all subscribers

Durable subscriber

Receivers

Sender

Queue

Subscribers

Publisher

Topic



Message channels

Point-to-point (queue) Publish-subscribe (topic)

AWS service for queue functionality:

Amazon Simple Queue Services (Amazon SQS)

Serverless & cloud-native

AWS service for topic functionality:

Amazon Simple Notification Service (Amazon SNS)

Serverless & cloud-native

Receivers

Sender

Subscribers

Publisher

Amazon SQS Amazon SNS



Message channels

Point-to-point (queue) Publish-subscribe (topic)

AWS service for queue functionality (non-serverless):

Amazon MQ (managed Apache Active MQ)

For apps constrained to protocols like JMS, AMQP, etc.

AWS service for topic functionality (non-serverless):

Amazon MQ (managed Apache Active MQ)

For apps constrained to protocols like JMS, AMQP, etc.

Receivers

Sender

Subscribers

Publisher

Amazon MQ Amazon MQ



Message channels

Topic-queue-chaining



Message channels

Topic-queue-chaining

Publisher

Topic



Message channels

Topic-queue-chaining

Publisher

Topic

Queue

Queue



Message channels

Topic-queue-chaining

Publisher

Topic

Queue

Queue

Application 1



Message channels

Topic-queue-chaining

Allows fan-out and receiver scale-out at the same time

Publisher

Topic

Queue

Queue

Receivers

Application 1

Application 2



Message routing

Message filter Recipient list



Message routing

Message filter Recipient list

Receive only a relevant subset of messages

Controlled by subscriber

Publisher remains completely unaware

Subscribers

Publisher

Topic

color = blue

color = yellow



Message routing

Message filter Recipient list

Receive only a relevant subset of messages

Controlled by subscriber

Publisher remains completely unaware

Send only a relevant subset of messages to a subscriber

Controlled by publisher or separate component

Potentially adds coupling

Subscribers

Publisher

Subscribers

Publisher

Topic

color = blue

color = yellow Recipient 
List



Message routing

Scatter-gather



Message routing

Scatter-gather

How to distribute a request across potentially interested/relevant parties and capture their individual responses?

- RFQ scenarios, or search for best response

- Parallel processing scenarios; for example, divide and conquer



Message routing

Scatter-gather

Requester

Topic

Responders

How to distribute a request across potentially interested/relevant parties and capture their individual responses?

- RFQ scenarios, or search for best response

- Parallel processing scenarios; for example, divide and conquer



Message routing

Scatter-gather

Requester

Topic

Responders

Queue

How to distribute a request across potentially interested/relevant parties and capture their individual responses?

- RFQ scenarios, or search for best response

- Parallel processing scenarios; for example, divide and conquer



Message routing

Scatter-gather

Requester

Topic

Responders

Queue

Aggregator Processor

How to distribute a request across potentially interested/relevant parties and capture their individual responses?

- RFQ scenarios, or search for best response

- Parallel processing scenarios; for example, divide and conquer



Message routing

Pipes and filters



Message routing

Pipes and filters

Event source Result target



Message routing

Pipes and filters

Event triggers chain of processing steps (“filters”)

Event source Pipe Filter Result target

Step 1



Message routing

Pipes and filters

Event triggers chain of processing steps (“filters”)

Knowledge of destination for next step(s) is wired into each filter

Event source Pipe Filter FilterPipe Pipe Result target

…

Filter

Step 1 Step 2 Step n



Message routing

Pipes and filters

Event triggers chain of processing steps (“filters”)

Knowledge of destination for next step(s) is wired into each filter

Similar patterns: Chain of responsibility, processing pipeline, saga choreography

Event source Pipe Filter FilterPipe Pipe Result target

…

Filter

Step 1 Step 2 Step n



Message routing

Saga orchestration



Message routing

Saga orchestration Event source Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Event source Orchestrator Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Event source Orchestrator Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Workflow participants remain as loosely coupled as possible

Processor

Event source Orchestrator

Step 1

Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Workflow participants remain as loosely coupled as possible

Processor

Processor

Event source Orchestrator

Step 1

Step 2

Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Workflow participants remain as loosely coupled as possible

Processor

Processor

Event source Orchestrator

…

Step 1

Step 2

Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Workflow participants remain as loosely coupled as possible

Processor

Processor Processor

Event source Orchestrator

…

Step 1

Step 2 Step n-1

Result target



Message routing

Saga orchestration

Event triggers orchestrated workflow

Knowledge of workflow is externalized into orchestrator component, as well as for potential rollback

Workflow participants remain as loosely coupled as possible

Processor

Processor

Processor

Processor

Event source Orchestrator

…

Step 1

Step 2 Step n-1

Step n

Result target



Message routing

Saga orchestration

AWS service for saga orchestration (serverless):

AWS Step Functions

Processor

Processor

Processor

Processor

Event source Orchestrator

…

Step 1

Step 2 Step n-1

Step n

Result target



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Context: Wild Rydes, Inc.



Choose your path

We have four labs for you today, 
plus a common foundation lab

After intro of use cases, context, and 
patterns, you can pick the most 
relevant labs for you

We will summarize the labs again 
for you afterward

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



Choose your path

Photo: Dirk Fröhner



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Use case: Submit a ride completion

Unicorn

Wild Rydes
unicorn app



Use case: Submit a ride completion

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completionWild Rydes

unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

Unicorn
management

service

https://...
submit-ride-completionWild Rydes

unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}
Interested in rides with

fare >= x
distance >= y

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

ServiceIntegration via database?

Interested in rides with
fare >= x

distance >= y

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

ServiceIntegration via database?

Oh my!

Interested in rides with
fare >= x

distance >= y

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

ServiceIntegration via REST APIs?

Interested in rides with
fare >= x

distance >= y

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

ServiceIntegration via REST APIs?

Absolutely, but…

Interested in rides with
fare >= x

distance >= y

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

https://...

https://...

https://...

https://...

https://...

Recipient list

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

https://...

https://...

https://...

https://...

https://...

Recipient list service

Unicorn

Request
distribution

service

https://...https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

https://...

https://...

https://...

https://...

https://...

Self-managed filtering

Unicorn

https://...https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Interested in rides with
fare >= x

distance >= y

Request
distribution

service

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

https://...

https://...

https://...

https://...

https://...

Self-managed filtering

Unicorn

Request
Distribution

Service

https://...https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

Service

Interested in rides with
fare >= x

distance >= y

Integration via messaging?

Absolutely!

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Publish-subscribe (topic)

Unicorn

Ride
completion

topic

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}
SNS message filter:

fare >= x
distance >= y

Message filter

Unicorn

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Ride
completion

topic

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}
SNS message filter:

fare >= x
distance >= y

Message filter

Unicorn

Ride
completion

topic

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Lab 1

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

AWS Cloud Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}
SNS message filter:

fare >= x
distance >= y

Message filter

Unicorn

Ride
completion

topic

Wild Rydes
Unicorn App

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Rides
store

Unicorn
Management

Service

Lab 1

Lab 1:
Fan-out,

Message-filtering



Use case: Submit a ride completion

Unicorn

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Ride
completion

topic

Topic-queue-chaining

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

SNS message filter:
fare >= x

distance >= y

Lab 1

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

Unicorn

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Ride
completion

topic

Topic-queue-chaining

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

SNS message filter:
fare >= x

distance >= y

Lab 1 Lab 2

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store

Unicorn
management

service

Wild Rydes
unicorn app



Use case: Submit a ride completion

Unicorn

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Ride
completion

topic

Topic-queue-chaining

Wild Rydes
Unicorn App

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Unicorn
Management

Service

SNS message filter:
fare >= x

distance >= y

Lab 1 Lab 2

Lab 2:
Topic-queue-chaining,

Queues as buffering LBs

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service
Rides
store



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Use case: Instant ride RFQ

Wild Rydes 
customer

Wild Rydes 
customer app

Scatter-gather



Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather

Wild Rydes 
customer

Wild Rydes 
customer app



Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

Ride booking
service

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather

Wild Rydes 
customer

Wild Rydes 
customer app



Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather
202 Accepted
Location: ...
Content-Location: ...

{
"links": { ... },
"status": "...",
"eta": "..."

}

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

{
"from": "...",
"to": "...",
"customer": "..."

}

Request for 
quotes topic

Scatter-gather
202 Accepted
Location: ...
Content-Location: ...

{
"links": { ... },
"status": "...",
"eta": "..."

}

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather

…

202 Accepted
Location: ...
Content-Location: ...

{
"links": { ... },
"status": "...",
"eta": "..."

}
Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather

RFQ response 
queue

…

202 Accepted
Location: ...
Content-Location: ...

{
"links": { ... },
"status": "...",
"eta": "..."

}

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
submit-instant-ride-rfq

AWS Cloud

{
"from": "...",
"to": "...",
"customer": "..."

}

Scatter-gather
202 Accepted
Location: ...
Content-Location: ...

{
"links": { ... },
"status": "...",
"eta": "..."

}

…

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
retrieve-rfq-status

AWS CloudScatter-gather

…

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
retrieve-rfq-status

AWS CloudScatter-gather

…

200 OK

{
"links": { ... },
"status": "running",
"eta": "..."

}

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
retrieve-rfq-status

AWS CloudScatter-gather

…

200 OK

{
"links": { ...

<link-to-result>
... },
"status": "done"

}

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn management service

Use case: Instant ride RFQ

https://...
retrieve-rfq-result

AWS CloudScatter-gather

…

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



Unicorn Management Service

Use case: Instant ride RFQ

https://...
retrieve-rfq-result

AWS CloudScatter-gather

…

200 OK

{
"links": { ... },
"from": "...",
"to": "...",
"quotes": "..."

}

RFQ response 
queue

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

Ride booking
service

Wild Rydes 
customer

Wild Rydes 
customer app



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Use case: Submit a ride completion

Unicorn

AWS Cloud Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Ride
completion

topic

Wild Rydes
unicorn app

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Rides
store

Unicorn
management

service

SNS message filter:
fare >= x

distance >= y



Unicorn

Customer
notification

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

Ride
completion

topic

Wild Rydes
unicorn app

Rides
store

Unicorn
management

service

Use case: Submit a ride completion

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

SNS message filter:
fare >= x

distance >= y

Customer
accounting

service



Use case: Fare collection

Saga orchestration



Use case: Fare collection

Saga orchestration

Payment 
service

Discrete transactions:

1. Credit card pre-auth

Payment 
gateway API



Use case: Fare collection

Saga orchestration

Discrete transactions:

1. Credit card pre-auth

2. Charge card using pre-auth code

Payment 
service

Payment 
gateway API

Payment 
service

Payment 
gateway API



Use case: Fare collection

Saga orchestration

Discrete transactions:

1. Credit card pre-auth

2. Charge card using pre-auth code

3. Update customer account

Customer 
accounting service

Accounting 
system

Payment 
service

Payment 
gateway API

Payment 
service

Payment 
gateway API



Use case: Fare collection

Saga orchestration

Discrete transactions:

1. Credit card pre-auth

2. Charge card using pre-auth code

3. Update customer account

To be treated as one distributed TA, to leave the systems in a 
semantically consistent state

Customer 
accounting service

Accounting 
system

Payment 
service

Payment 
gateway API

Payment 
service

Payment 
gateway API



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Use case: Submit a ride completion
Fan-out, message-filtering

AWS Cloud Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}
SNS message filter:

fare >= x
distance >= y

Lab 1 architecture

Unicorn

Ride
completion

topic

Wild Rydes
unicorn app

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

Rides
store

Unicorn
management

service

https://...



Use case: Submit a ride completion
Topic-queue-chaining, queues as buffering LBs

Unicorn

AWS Cloud

{
"from": "...",
"to": "...",
"duration": "...",
"distance": "...",
"customer": "...",
"fare": "..."

}

Lab 2 architecture

https://...
submit-ride-completion

201 Created
Location: ...
Content-Location: ...

{
<cmpl-ride-repr>

}

SNS message filter:
fare >= x

distance >= y

Customer
notification

service

Customer
accounting

service

Customer
loyalty
service

Data lake
ingestion

service

Extraordinary
rides

service

Ride
completion

topic

Wild Rydes
unicorn app

Rides
store

Unicorn
management

service



Unicorn management service

Use case: Instant ride RFQ
Scatter-gather

Wild Rydes 
customer

Wild Rydes 
customer app

AWS Cloud

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

RFQ response 
queue

…

Lab 3 architecture

Ride booking
service



Use case: Fare collection
Saga orchestration

Saga orchestration

Discrete transactions:

1. Credit card pre-auth

2. Charge card using pre-auth code

3. Update customer account

To be treated as one distributed TA, to leave the systems in a 
semantically consistent state

Customer 
accounting service

Accounting 
system

Payment 
service

Payment 
gateway API

Payment 
service

Payment 
gateway API



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.



Resources/Call-to-action



Resources/Call-to-action
AWS blogs and other content about application integration

Find these resources linked from the lab guide website



Resources/Call-to-action
AWS blogs and other content about application integration

Find these resources linked from the lab guide website

Hands-on workshop on implementing the patterns from this talk
API315 during this re:Invent (Monday + Tuesday + Wednesday + Thursday)

Ask your AWS SA for an application integration immersion day



Resources/Call-to-action
AWS blogs and other content about application integration

Find these resources linked from the lab guide website

Hands-on workshop on implementing the patterns from this talk
API315 during this re:Invent (Monday + Tuesday + Wednesday + Thursday)

Ask your AWS SA for an application integration immersion day

Chalk talk about how to select the right app-int service
API312 during this re:Invent (Wednesday)



Resources/Call-to-action
AWS blogs and other content about application integration

Find these resources linked from the lab guide website

Hands-on workshop on implementing the patterns from this talk
API315 during this re:Invent (Monday + Tuesday + Wednesday + Thursday)

Ask your AWS SA for an application integration immersion day

Chalk talk about how to select the right app-int service
API312 during this re:Invent (Wednesday)

Keep in mind
Loose coupling is better than lousy coupling



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Free foundational to advanced digital courses cover AWS services and 
teach architecting best practices

Learn to architect with AWS Training and Certification

Visit aws.amazon.com/training/path-architecting/

Classroom offerings, including Architecting on AWS, 
feature AWS expert instructors and hands-on labs

Validate expertise with the AWS Certified Solutions Architect - Associate
or AWS Certification Solutions Architect - Professional exams

Resources created by the experts at AWS to propel your organization and career forward



Thank you!

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dirk Fröhner
froehner@amazon.de | @dirk_f5r

Christian Müller
cmr@amazon.de | @ChristianM



© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.


