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“If your application is cloud-native, 
or large-scale, or distributed, and 
doesn’t include a messaging
component, that’s probably a bug.”

Tim Bray
Distinguished Engineer

AWS Messaging, Workflow Management



Potential drawbacks of 
synchronous systems

Synchronous systems are tightly 
coupled

A problem in a synchronous 
downstream dependency has 
immediate impact on upstream 
callers

Retries from upstream callers can 
all too easily fan out and amplify 
problems
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Point-to-point (queue) Publish-subscribe (topic)

AWS service for queue functionality (non-serverless):

Amazon MQ (managed Apache Active MQ)

For apps constrained to protocols like JMS, AMQP, etc.
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Message channels

Topic-queue-chaining

Allows fan-out and receiver scale-out at the same time
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Message routing

Message filter Recipient list

Receive only a relevant subset of messages

Controlled by subscriber

Publisher remains completely unaware

Send only a relevant subset of messages to a subscriber

Controlled by publisher or separate component

Potentially adds coupling

Subscribers

Publisher

Subscribers
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Message routing

Scatter-gather

Requester

Topic

Responders

Queue

Aggregator Processor

How to distribute a request across potentially interested/relevant parties and capture their individual responses?

- RFQ scenarios, or search for best response

- Parallel processing scenarios; for example, divide and conquer
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Message routing

Pipes and filters

Event triggers chain of processing steps (“filters”)

Knowledge of destination for next step(s) is wired into each filter

Similar patterns: Chain of responsibility, processing pipeline, saga choreography

Event source Pipe Filter FilterPipe Pipe Result target

…

Filter

Step 1 Step 2 Step n
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Saga orchestration

AWS service for saga orchestration (serverless):

AWS Step Functions
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Context: Wild Rydes, Inc.



Choose your path

We have four labs for you today, 
plus a common foundation lab

After intro of use cases, context, and 
patterns, you can pick the most 
relevant labs for you

We will summarize the labs again 
for you afterward

Photo: Dirk Fröhner
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Use case: Submit a ride completion

AWS Cloud

{
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"duration": "...",
"distance": "...",
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"fare": "..."
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Location: ...
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{
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Use case: Submit a ride completion
Fan-out, message-filtering
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Use case: Submit a ride completion
Topic-queue-chaining, queues as buffering LBs
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Lab 2 architecture
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Unicorn management service

Use case: Instant ride RFQ
Scatter-gather

Wild Rydes 
customer

Wild Rydes 
customer app

AWS Cloud

Unicorn 
management 

resource

Unicorn 
management 

resource

Unicorn 
management 

resource

Request for 
quotes topic

RFQ response 
queue

…

Lab 3 architecture

Ride booking
service



Use case: Fare collection
Saga orchestration

Saga orchestration
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Resources/Call-to-action
AWS blogs and other content about application integration

Find these resources linked from the lab guide website

Hands-on workshop on implementing the patterns from this talk
API315 during this re:Invent (Monday + Tuesday + Wednesday + Thursday)

Ask your AWS SA for an application integration immersion day

Chalk talk about how to select the right app-int service
API312 during this re:Invent (Wednesday)

Keep in mind
Loose coupling is better than lousy coupling
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Free foundational to advanced digital courses cover AWS services and 
teach architecting best practices

Learn to architect with AWS Training and Certification

Visit aws.amazon.com/training/path-architecting/

Classroom offerings, including Architecting on AWS, 
feature AWS expert instructors and hands-on labs

Validate expertise with the AWS Certified Solutions Architect - Associate
or AWS Certification Solutions Architect - Professional exams

Resources created by the experts at AWS to propel your organization and career forward



Thank you!
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Dirk Fröhner
froehner@amazon.de | @dirk_f5r

Christian Müller
cmr@amazon.de | @ChristianM
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