
PostgreSQL Snapper Lab
The PostgreSQL Snapper tool enables periodic collection (snapping) of PostgreSQL performance related statistics and
metrics. The config file used by the tool can be customized to add and remove database dictionary views and queries
to be snapped as required. Snapper collects and stores the PostgreSQL database metrics in separate OS level files to
have minimal impact on the database. These files can be loaded into another PostgreSQL instance by the loader script
for doing analysis.

Snapper tool can be installed following the Quick Start instructions documented in Snapper Github . For the purpose of
“Aurora PostgreSQL Performance Package” workshop, the Snapper CloudFormation stack is already setup in your AWS
Account.

! Note: To allow Snapper to collect PostgreSQL statistics while a load test is running or database is doing some
activity, you need to run this lab in conjunction with Lab6:RDS Performance Insights in which you will generate
database load using pgbech. The “Setup and Configuration“ section below should be completed before you start
 Lab6:RDS Performance Insights to schedule Snapper to run every 1 minute and capture workload statistics. Then head
to Lab6:RDS Performance Insights and complete it. After Lab6:RDS Performance Insights is complete, you can come
back to this lab to finish rest of the steps.

Setup and Configuration: Schedule Snapper to run every 1 minute using an EC2 instance.

Generate Load on the PostgreSQL database: Head to Lab6:RDS Performance Insights and complete it to generate
load on Aurora PostgreSQL using pgbench.

Package Snapper output: Once the load test is over, package the Snapper output so that it can be loaded to
another PostgreSQL database.

Import Snapper output: Import Snapper output to another PostgreSQL database. For the purpose of this lab, we
will use the same Aurora PostgreSQL cluster from which we captured the statistics.

Analyze performance metrics of the PostgreSQL database: Snapper comes with a set of sample queries for
analysis. You will use some of those queries to do analysis and derive insights like top tables and indexes by size,
top SQLs by elapsed time, top tables by sequential scans, Foreign Keys with no indexes and Table bloat analysis.

1.

2.

3.

4.

5.

Setup and Configuration

In this step, you will complete the pre-requisites for Snapper and schedule it using an EC2 instance to run every 1
minute.

Make sure the pre-requisites https://aurora-pg-lab.workshop.aws/lab1.5-client.html are complete before
proceeding.

Open a Cloud9 terminal window and run the following commands to install pg_stat_statements and
aurora_stat_utils extensions. pg_stat_statements module provides a means for tracking execution statistics of all
SQL statements executed by a server. aurora_stat_utils extension provides aurora wait and log related statistics.

1.

2.

psql

create extension IF NOT EXISTS pg_stat_statements;

create extension IF NOT EXISTS aurora_stat_utils;

\dx

The lab contains the following tasks and it should take ~30 minutes to complete excluding the time needed to
complete Lab6:RDS Performance Insights .

https://github.com/aws-samples/aurora-and-database-migration-labs/tree/master/Code/PGPerfStatsSnapper
https://github.com/aws-samples/aurora-and-database-migration-labs/blob/master/Code/PGPerfStatsSnapper/README.md
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab1.5-client.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html

3. In the CloudFormation console , select the CloudFormation stack with description “Amazon Aurora PostgreSQL Labs
Stackset” and go to the Output tab. Take a note of the value for the following CloudFormation Output Keys. You will
need them during the later steps.

SnapperEC2InstanceID - This is the EC2 instance ID where snapper was setup.
clusterEndpoint - Aurora PostgreSQL cluster endpoint
Port - Aurora PostgreSQL cluster port
DatabaseName - Aurora PostgreSQL database name
DBUsername - Aurora PostgreSQL master user name
SnapperSecretARN - AWS Secrets Manager secret ARN storing Aurora PostgreSQL master user password

https://console.aws.amazon.com/cloudformation/home

In the EC2 Dashboard select the Snapper EC2 instance and click Connect. Select Session Manager tab and click
Connect again.

4.

https://console.aws.amazon.com/ec2/v2/home?#Instances:instanceState=running

Session Manager uses ssm-user user to connect to the EC2 instance by default. Change user to ec2-user by
running the following command:

5.

sudo su -l ec2-user

Review the Snapper script usage by running the following command.

[ec2-user@ip-172-31-14-11 ~]$ /home/ec2-user/scripts/pg_perf_stat_snapper.py -h

usage: pg_perf_stat_snapper.py [-h] -e ENDPOINT -P PORT -d DBNAME -u USER -s

 SECRETARN -m MODE [-o OUTPUTDIR] -r REGION

Snap PostgreSQL performance statistics and exit

optional arguments:

 -h, --help show this help message and exit

 -e ENDPOINT, --endpoint ENDPOINT

 PostgreSQL Instance Endpoint (default: None)

 -P PORT, --port PORT Port (default: None)

 -d DBNAME, --dbname DBNAME

 Database Name where Application objects are stored

 (default: None)

 -u USER, --user USER Database UserName (default: None)

 -s SECRETARN, --SecretARN SECRETARN

 AWS Secrets Manager stored Secret ARN (default: None)

 -m MODE, --mode MODE Mode in which the script will run: Specify either snap

 or package (default: None)

 -o OUTPUTDIR, --outputdir OUTPUTDIR

 Output Directory (default:

 /home/ec2-user/scripts/output)

 -r REGION, --region REGION

 AWS region (default: None)

Run the Snapper script manually once using the following command and review the log file generated under
/home/ec2-user/scripts/log/ sub-directory. By default, all the output will be stored under /home/ec2-
user/scripts/output/ sub-directory.

6.

7.

/home/ec2-user/scripts/pg_perf_stat_snapper.py -e <PostgreSQL Instance EndPoint. Cloudformation Output Key:
clusterEndpoint> -P <Database Port. Cloudformation Output Key: Port> -d <Database Name where Application objects
are stored. Cloudformation Output key: DatabaseName> -u <Master UserName. Cloudformation Output
Key: DBUsername> -s <AWS Secretes Manager ARN. Cloudformation Output Key: SnapperSecretARN> -m snap -r <AWS
Region for e.g. us-west-2>

e.g.

home/ec2-user/scripts/pg_perf_stat_snapper.py -e aupg-labs-cluster.cluster-cvmeikrm7zrz.us-west-2.rds.amazonaws.com
-P 5432 -d mylab -u masteruser -s arn:aws:secretsmanager:us-west-2:953779585674:secret:pg_snapper/mod-
b1799fbf52e44813-snapperstack-1HDFCDHC5ONIV-8PS4cI -m snap -r us-west-2

Schedule the Snapper script in crontab to run every 1 minute using crontab.8.

crontab -e

Press i to enter insert mode and Paste the following in the editor.

*/1 * * * * /home/ec2-user/scripts/pg_perf_stat_snapper.py -e <PostgreSQL Instance EndPoint. Cloudformation Output
Key: clusterEndpoint> -P <Database Port. Cloudformation Output Key: Port> -d <Database Name where Application
objects are stored. Cloudformation Output key: DatabaseName> -u <Master UserName. Cloudformation Output
Key:DBUsername> -s <AWS Secretes Manager ARN. Cloudformation Output Key: SnapperSecretARN> -m snap -r <AWS
Region for e.g. us-west-2>

Enter :wq! to save and exit the editor.

Verify that crontab was successfully installed by running the following command.

crontab -l

Generate Load on the PostgreSQL database

Proceed to Lab6:RDS Performance Insights now and complete it to generate load on the database. Once you are done
with that lab, come back to this lab to finish rest of the steps.

Package the Snapper output

In this step, you will package the Snapper output so that it can be loaded to another PostgreSQL database.

By completing Lab6:RDS Performance Insights , you generated some load on the Aurora PostgreSQL database as shown
by RDS Performance Insights dashboard below.

https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html
https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html

Since Snapper was scheduled using crontab, it has been collecting PostgreSQL statistics every 1 minute. Go ahead and
comment out the Snapper job in crontab since we have already collected all the required PostgreSQL performance
statistics for analysis. We will package the output next so that we can load it into a PostgreSQL database for processing.

If your EC2 session was lost, reconnect using Session Manager and change user to ec2-user by running the
following command:

1.

sudo su -l ec2-user

2. Edit the crontab and comment out the Snapper job

crontab -e

Press i to enter insert mode. Enter # to comment out the entry as follows:

#*/1 * * * * /home/ec2-user/scripts/pg_perf_stat_snapper.py -e <PostgreSQL Instance EndPoint. Cloudformation Output
Key: clusterEndpoint> -P <Database Port. Cloudformation Output Key: Port> -d <Database Name where Application
objects are stored. Cloudformation Output key: DatabaseName> -u <Master UserName. Cloudformation Output

Key:DBUsername> -s <AWS Secretes Manager ARN. Cloudformation Output Key: SnapperSecretARN> -m snap -r <AWS
Region for e.g. us-west-2>

Enter :wq! to save and exit the editor.

Verify that crontab was successfully installed by running the following command.

crontab -l

Package the snapper output by running the following command:3.

/home/ec2-user/scripts/pg_perf_stat_snapper.py -e <PostgreSQL Instance EndPoint. Cloudformation Output Key:
clusterEndpoint> -P <Database Port. Cloudformation Output Key: Port> -d <Database Name where Application objects
are stored. Cloudformation Output key: DatabaseName> -u <Master UserName. Cloudformation Output
Key:DBUsername> -s <AWS Secretes Manager ARN. Cloudformation Output Key: SnapperSecretARN> -m package -r
<AWS Region for e.g. us-west-2>

for e.g.

/home/ec2-user/scripts/pg_perf_stat_snapper.py -e aupg-labs-cluster.cluster-cvmeikrm7zrz.us-west-
2.rds.amazonaws.com -P 5432 -d mylab -u masteruser -s arn:aws:secretsmanager:us-west-
2:953779585674:secret:pg_snapper/mod-b1799fbf52e44813-snapperstack-1HDFCDHC5ONIV-8PS4cI -m package -r
us-west-2

Import Snapper output

Snapper output can be loaded to any PostgreSQL database for analysis. For this lab, we will import the output to the
same Aurora PostgreSQL database from which we collected the statistics. Import the output by running the following:

/home/ec2-user/scripts/pg_perf_stat_loader.py -e <PostgreSQL Instance EndPoint. Cloudformation Output Key:
clusterEndpoint> -P <Database Port. Cloudformation Output Key: Port> -d <Database Name where Application objects
are stored. Cloudformation Output key: DatabaseName> -u <Master UserName. Cloudformation Output
Key:DBUsername> -s <AWS Secretes Manager ARN. Cloudformation Output Key: SnapperSecretARN> -o <snapper output
directory containing the generated output files> -r <AWS Region for e.g. us-west-2>

for e.g.

/home/ec2-user/scripts/pg_perf_stat_loader.py -e aupg-labs-cluster.cluster-cvmeikrm7zrz.us-west-2.rds.amazonaws.com
-P 5432 -d mylab -u masteruser -s arn:aws:secretsmanager:us-west-2:953779585674:secret:pg_snapper/mod-
b1799fbf52e44813-snapperstack-1HDFCDHC5ONIV-8PS4cI -o /home/ec2-user/scripts/output/aupg-labs-
cluster.cluster-cvmeikrm7zrz.us-west-2.rds.amazonaws.com/mylab/ -r us-west-2

When prompted by the script, enter a database name e.g. mylab_snap which Snapper will create and then load all the
statistics into it.

Analyze performance metrics of the PostgreSQL database

Now that we have loaded all the Snapper collected statistics, lets analyze the data with sample SQL scripts provided
with Snapper and see what insights we can derive.

The analysis can be done from any machine where psql is installed and has connectivity to the database where the
snapper output was loaded. For this lab, we will use Cloud9, since it was setup with PostgreSQL client software.

Open a terminal window in AWS cloud9 and run the following commands to download the sample SQLs
provided by Snapper.

1.

mkdir -p /home/ec2-user/Snapper

cd /home/ec2-user/Snapper/

svn checkout " https://github.com/aws-samples/aurora-and-database-migration-labs/trunk/

cd SQLs

ls -l

 Connect to the PostgreSQL database where we loaded the snapper output for e.g. mylab_snap. 2.

psql

\c <database name where snapper output was loaded e.g. mylab_snap>

Run the Snapper menu showing list of available SQLs for analsysis.3.

\i snappermenu.sql

https://github.com/aws-samples/aurora-and-database-migration-labs/trunk/Code/PGPerfStatsSnapper/SQLs

List all the available snap IDs and then set the begin and end snap ID for analysis as per your requirement by
running the following:

4.

\i list_snaps.sql

\i set_snaps.sql

For this lab, we can set the begin Snap ID to the minimum snap_id and end Snap ID to the maximum snap_id shown
in the list_snaps.sql output.

Lets see the top 20 tables and indexes by total size, by running the following SQL:5.

\i tables_and_indexes_by_tot_size.sql

public.pgbench_accounts is the largest table followed by hr.employees.

Lets see the top SQL by elapsed time, by running the following SQL:6.

\i top_20_sqls_by_elapsed_time.sql

To see the SQL text and other execution statistics, run the following SQL and pass the queryid of interest shown in the
above query output.

\i sql_stat_history.sql

select hr.update_employee_data_fname($1) is the top query by elapsed time since it was not using index as we saw
in Lab6:RDS Performance Insights .

https://aurora-pg-lab.workshop.aws/lab6-perf-insights.html

To see the top tables by sequential scan (or Full table scan), run the following query:7.

\i top_20_tables_by_seq_scans.sql

The output shows some indexing opportunities for employees tables where we had 441 full table scans with average
4672352 rows returning in each scan.

To see the foreign keys which doesn’t have an index on them (as per schema design best practice), run the
following query:

8.

\i fks_with_no_index.sql

The output above shows that there are some tables in hr schema with missing foreign key indexes. Depending on the
number of queries accessing those tables and their execution frequency, indexing those columns will reduce full table
(sequential) scans and pressure on the IO subsystem.

To see the table bloat across all tables, run the following query:9.

\i table_bloat.sql

The above output shows that hr.employees table has 9% bloat which can be freed up using a Full Vacuum or
pg_repack.

This concludes the lab!

In this lab, we saw how we can derive insights using PostgreSQL dictionary stats with the help of Snapper tool. Feel
free to explore other sample SQLs provided by Snapper as time permits.

