import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.llms import HuggingFaceHub from langchain.vectorstores.pgvector import PGVector from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.text_splitter import RecursiveCharacterTextSplitter import os def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter( separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""], chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") if text_chunks is None: return PGVector( connection_string=CONNECTION_STRING, embedding_function=embeddings, ) return PGVector.from_texts(texts=text_chunks, embedding=embeddings, connection_string=CONNECTION_STRING) def get_conversation_chain(vectorstore): llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":1024}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): try: response = st.session_state.conversation({'question': user_question}) except ValueError: st.write("Sorry, please ask again in a different way.") return st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): st.set_page_config(page_title="Streamlit Question Answering App", page_icon=":books::parrot:") st.write(css, unsafe_allow_html=True) st.sidebar.markdown( """ ### Instructions: 1. Browse and upload PDF files 2. Click Process 3. Type your question in the search bar to get more insights """ ) if "conversation" not in st.session_state: st.session_state.conversation = get_conversation_chain(get_vectorstore(None)) if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("GenAI Q&A with pgvector and Amazon Aurora PostgreSQL :books::parrot:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", type="pdf", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) if __name__ == '__main__': load_dotenv() CONNECTION_STRING = PGVector.connection_string_from_db_params( driver = os.environ.get("PGVECTOR_DRIVER"), user = os.environ.get("PGVECTOR_USER"), password = os.environ.get("PGVECTOR_PASSWORD"), host = os.environ.get("PGVECTOR_HOST"), port = os.environ.get("PGVECTOR_PORT"), database = os.environ.get("PGVECTOR_DATABASE") ) main()