{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# SageMaker/DeepAR demo on household electricity consumption dataset\n", "\n", "This notebook complements the following two notebooks:\n", "* [DeepAR introduction notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb). \n", "* [Individual household electric power consumption dataset](https://github.com/amirrezaeian/Individual-household-electric-power-consumption-Data-Set-/blob/master/data_e_power.ipynb).\n", "\n", "The household electric power consumption dataset is available at:
\n", "http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption\n", "\n", "In summary, the dataset consists of the following attributes:\n", "* `date`: date (dd/mm/yyyy)\n", "* `time`: time (hh:mm:ss)\n", "* `global_active_power`: household global minute-averaged active power (in Kilowatt) \n", "* `global_reactive_power`: household global minute-averaged reactive power (in Kilowatt)\n", "* `voltage`: minute-averaged voltage (in Volt)\n", "* `global_intensity`: household global minute-averaged current intensity (in Ampere) \n", "* `sub_metering_1`: energy sub-metering No.1 (in Watt-per-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered). \n", "* `sub_metering_2`: energy sub-metering No.2 (in Watt-per-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light. \n", "* `sub_metering_3`: energy sub-metering No.3 (in Watt-per-hour of active energy). It corresponds to an electric water-heater and an air-conditioner. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In particular, we will see how to:\n", "* Prepare the dataset\n", "* Use the SageMaker Python SDK to train a DeepAR model and deploy it\n", "* Make requests to the deployed model to obtain forecasts interactively\n", "* Illustrate advanced features of DeepAR: missing values, additional time features, non-regular frequencies and category information\n", "\n", "For more information about DeepAR, see the [documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html) " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", " \"This module will be removed in 0.20.\", DeprecationWarning)\n", "Using MXNet backend.\n" ] } ], "source": [ "%matplotlib inline\n", "\n", "import sys\n", "import os\n", "import json\n", "import zipfile\n", "import random\n", "import datetime\n", "from urllib.request import urlretrieve\n", "from dateutil.parser import parse\n", "from random import shuffle\n", "\n", "import boto3\n", "import s3fs\n", "import sagemaker\n", "import numpy as np\n", "import pandas as pd\n", "import statsmodels.api as sm\n", "import matplotlib.pyplot as plt\n", "from scipy.stats import randint\n", "import seaborn as sns # used for plot interactive graph. \n", "\n", "from __future__ import print_function\n", "from ipywidgets import interact, interactive, fixed, interact_manual\n", "import ipywidgets as widgets\n", "from ipywidgets import IntSlider, FloatSlider, Checkbox\n", "\n", "from sklearn.model_selection import train_test_split # to split the data into two parts\n", "from sklearn.cross_validation import KFold # use for cross validation\n", "from sklearn.preprocessing import StandardScaler # for normalization\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.pipeline import Pipeline # pipeline making\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.feature_selection import SelectFromModel\n", "from sklearn import metrics # for the check the error and accuracy of the model\n", "from sklearn.metrics import mean_squared_error,r2_score\n", "\n", "## for Deep-learing:\n", "import keras\n", "from keras.layers import Dense\n", "from keras.models import Sequential\n", "# from keras.utils import to_categorical\n", "from keras.optimizers import SGD \n", "from keras.callbacks import EarlyStopping\n", "from keras.utils import np_utils\n", "import itertools\n", "from keras.layers import LSTM\n", "from keras.layers.convolutional import Conv1D\n", "from keras.layers.convolutional import MaxPooling1D\n", "from keras.layers import Dropout\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# set random seeds for reproducibility\n", "np.random.seed(42)\n", "random.seed(42)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "sagemaker_session = sagemaker.Session()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before starting, we can override the default values for the following: \n", "- The S3 bucket and prefix that you want to use for training and model data. This should be within the same region as the Notebook Instance, training, and hosting.\n", "- The IAM role arn used to give training and hosting access to your data. See the documentation for how to create these." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "s3_bucket = sagemaker.Session().default_bucket() # replace with an existing bucket if needed\n", "s3_prefix = 'deepar-household-electricity-notebook' # prefix used for all data stored within the bucket\n", "\n", "role = sagemaker.get_execution_role() # IAM role to use by SageMaker" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "region = sagemaker_session.boto_region_name\n", "\n", "s3_data_path = \"s3://{}/{}/data\".format(s3_bucket, s3_prefix)\n", "s3_output_path = \"s3://{}/{}/output\".format(s3_bucket, s3_prefix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we configure the container image to be used for the region that we are running in." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "image_name = sagemaker.amazon.amazon_estimator.get_image_uri(region, \"forecasting-deepar\", \"latest\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Importing household electricity consumption dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After downloading the original dataset from the UCI ML repository, we load and parse the dataset. In addition, we modify dataset into a time-series formation supported by Pandas, so that we can utilize many features to handle time-series dataset (e.g. datetime, resampling, aggregation, basic statistics, etc.)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* https://www.allaboutcircuits.com/textbook/alternating-current/chpt-11/true-reactive-and-apparent-power/\n", "* https://circuitglobe.com/what-is-power-triangle.html\n", "* https://en.wikipedia.org/wiki/AC_power\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### White noise\n", "In discrete time, white noise is a discrete signal whose samples are regarded as a sequence of serially uncorrelated random variables with zero mean and finite variance. Depending on the context, one may also require that the samples be independent and having identical probability distribution (a.k.a. _i.i.d_). In particular, if each sample has a normal distribution with zero mean, the signal is said to be **Gaussian white noise**. \n", "\n", "Some properties of white noise:\n", "* White noise is the simplest example of a **stationary process**.
\n", "* if the lag is 0, auto-covariance will be a variance of probability distribution. Otherwise, auto-covariance will be 0. That is:\n", "

\n", "\\begin{equation}\n", " \\gamma_l = \n", " \\begin{cases}\n", " Var[e_t] & \\text{for $l = 0$} \\\\\n", " 0 & \\text{for $l \\neq 0$} \n", " \\end{cases}\n", "\\end{equation}\n", "
\n", "* if the lag is 0, auto-correlation will be 1. Otherwise, auto-correlation will be 0. That is:\n", "

\n", "\n", "\\begin{equation}\n", " \\rho_l = \n", " \\begin{cases}\n", " 1 & \\text{for $l = 0$} \\\\\n", " 0 & \\text{for $l \\neq 0$} \n", " \\end{cases}\n", "\\end{equation}\n", "
\n", "* Gaussian white noise can be expressed by:\n", "

\n", "\\begin{equation}\n", "e_t \\sim \\text{ $i.i.d$ } N(\\mu,\\sigma^2) \\text{ for all $t$}\n", "\\end{equation}\n", "\n", "**Prewhitening:**\n", "A technique to process a time series data to make it behave statistically like white noise. (The 'pre' means that whitening precedes some other analytical approaches enabling to work better if the additive noise is white).\n", "\n", "https://datascienceschool.net/view-notebook/6b963e771dc54f8c8cb23437274a86d6/
\n", "http://hosting.astro.cornell.edu/~cordes/A6523/Prewhitening.pdf" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "FILE_NAME = './household_power_consumption.csv'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Note that dataset includes `nan` and `?` as a `string`. They need to be converted to numpy `nan` in importing stage and treated both of them the same.\n", "* Two columns `Date` and `Time` can be merged into one column `Date_Time`.\n", "* The index of dataset need to be reset (with `Date_Time`)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Data can be downloaded from: http://archive.ics.uci.edu/ml/machine-learning-databases/00235/\n", "* Just open the zip file and grab the file 'household_power_consumption.txt' put it in the directory that you would like to run the code.\n", "* `infer_datetime_format`: to allow speedups for homogeneously formatted datetimes. `pd.read_csv` and `pd.to_datetime` learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. (http://pandas.pydata.org/pandas-docs/version/0.17.1/whatsnew.html#id55)\n", "* `low_memory`: Please refer the following link: https://stackoverflow.com/questions/24251219/pandas-read-csv-low-memory-and-dtype-options)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/dateutil/parser/__init__.py:46: DeprecationWarning: _timelex is a private class and may break without warning, it will be moved and or renamed in future versions.\n", " warnings.warn(msg, DeprecationWarning)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Global_active_powerGlobal_reactive_powerVoltageGlobal_intensitySub_metering_1Sub_metering_2Sub_metering_3
Date_Time
2006-12-16 17:24:004.2160.418234.8418.40.01.017.0
2006-12-16 17:25:005.3600.436233.6323.00.01.016.0
2006-12-16 17:26:005.3740.498233.2923.00.02.017.0
2006-12-16 17:27:005.3880.502233.7423.00.01.017.0
2006-12-16 17:28:003.6660.528235.6815.80.01.017.0
\n", "
" ], "text/plain": [ " Global_active_power Global_reactive_power Voltage \\\n", "Date_Time \n", "2006-12-16 17:24:00 4.216 0.418 234.84 \n", "2006-12-16 17:25:00 5.360 0.436 233.63 \n", "2006-12-16 17:26:00 5.374 0.498 233.29 \n", "2006-12-16 17:27:00 5.388 0.502 233.74 \n", "2006-12-16 17:28:00 3.666 0.528 235.68 \n", "\n", " Global_intensity Sub_metering_1 Sub_metering_2 \\\n", "Date_Time \n", "2006-12-16 17:24:00 18.4 0.0 1.0 \n", "2006-12-16 17:25:00 23.0 0.0 1.0 \n", "2006-12-16 17:26:00 23.0 0.0 2.0 \n", "2006-12-16 17:27:00 23.0 0.0 1.0 \n", "2006-12-16 17:28:00 15.8 0.0 1.0 \n", "\n", " Sub_metering_3 \n", "Date_Time \n", "2006-12-16 17:24:00 17.0 \n", "2006-12-16 17:25:00 16.0 \n", "2006-12-16 17:26:00 17.0 \n", "2006-12-16 17:27:00 17.0 \n", "2006-12-16 17:28:00 17.0 " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(FILE_NAME, sep=\",\", parse_dates={'Date_Time': ['Date', 'Time']}, \n", " infer_datetime_format=True, na_values=['nan','?'], \n", " low_memory=False, index_col='Date_Time')\n", "data.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We need to check the type of data for each column. If some of them has `object` type, they should be converted into the numerical format (e.g. `float64`, `int64`).\n", "For example, we can use the following codes for the above tasks:
\n", "```\n", "data = data.convert_objects(convert_numeric=True)\n", "data.info()\n", "```" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "DatetimeIndex: 2075259 entries, 2006-12-16 17:24:00 to 2010-11-26 21:02:00\n", "Data columns (total 7 columns):\n", "Global_active_power float64\n", "Global_reactive_power float64\n", "Voltage float64\n", "Global_intensity float64\n", "Sub_metering_1 float64\n", "Sub_metering_2 float64\n", "Sub_metering_3 float64\n", "dtypes: float64(7)\n", "memory usage: 126.7 MB\n" ] } ], "source": [ "data.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we want to build an ML model, we need to understand dataset in the following perspectives:\n", "* The meaning of data for each feature (column)\n", "* Summarized information from the basic statistics\n", "* Relaionship or Association between features\n", "* Features having similar patterns\n", "* Trend or Periodicity\n", "* Outliers, Noisy data, Missing values\n", "* Data type (categorical data, numerical data, etc.)\n", "... " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Global_active_powerGlobal_reactive_powerVoltageGlobal_intensitySub_metering_1Sub_metering_2Sub_metering_3
count2.049280e+062.049280e+062.049280e+062.049280e+062.049280e+062.049280e+062.049280e+06
mean1.091615e+001.237145e-012.408399e+024.627759e+001.121923e+001.298520e+006.458447e+00
std1.057294e+001.127220e-013.239987e+004.444396e+006.153031e+005.822026e+008.437154e+00
min7.600000e-020.000000e+002.232000e+022.000000e-010.000000e+000.000000e+000.000000e+00
25%3.080000e-014.800000e-022.389900e+021.400000e+000.000000e+000.000000e+000.000000e+00
50%6.020000e-011.000000e-012.410100e+022.600000e+000.000000e+000.000000e+001.000000e+00
75%1.528000e+001.940000e-012.428900e+026.400000e+000.000000e+001.000000e+001.700000e+01
max1.112200e+011.390000e+002.541500e+024.840000e+018.800000e+018.000000e+013.100000e+01
\n", "
" ], "text/plain": [ " Global_active_power Global_reactive_power Voltage \\\n", "count 2.049280e+06 2.049280e+06 2.049280e+06 \n", "mean 1.091615e+00 1.237145e-01 2.408399e+02 \n", "std 1.057294e+00 1.127220e-01 3.239987e+00 \n", "min 7.600000e-02 0.000000e+00 2.232000e+02 \n", "25% 3.080000e-01 4.800000e-02 2.389900e+02 \n", "50% 6.020000e-01 1.000000e-01 2.410100e+02 \n", "75% 1.528000e+00 1.940000e-01 2.428900e+02 \n", "max 1.112200e+01 1.390000e+00 2.541500e+02 \n", "\n", " Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering_3 \n", "count 2.049280e+06 2.049280e+06 2.049280e+06 2.049280e+06 \n", "mean 4.627759e+00 1.121923e+00 1.298520e+00 6.458447e+00 \n", "std 4.444396e+00 6.153031e+00 5.822026e+00 8.437154e+00 \n", "min 2.000000e-01 0.000000e+00 0.000000e+00 0.000000e+00 \n", "25% 1.400000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", "50% 2.600000e+00 0.000000e+00 0.000000e+00 1.000000e+00 \n", "75% 6.400000e+00 0.000000e+00 1.000000e+00 1.700000e+01 \n", "max 4.840000e+01 8.800000e+01 8.000000e+01 3.100000e+01 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dealing with missing values 'nan' with a test statistic" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "## finding all columns that have nan:\n", "\n", "droping_list_all=[]\n", "for j in range(0,7):\n", " if not data.iloc[:, j].notnull().all():\n", " droping_list_all.append(j) \n", " #print(df.iloc[:,j].unique())\n", "# droping_list_all" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "# filling nan with mean in any columns\n", "\n", "for j in range(0,7): \n", " data.iloc[:,j]=data.iloc[:,j].fillna(data.iloc[:,j].mean())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Global_active_powerGlobal_reactive_powerVoltageGlobal_intensitySub_metering_1Sub_metering_2Sub_metering_3
count2.075259e+062.075259e+062.075259e+062.075259e+062.075259e+062.075259e+062.075259e+06
mean1.091615e+001.237145e-012.408399e+024.627759e+001.121923e+001.298520e+006.458447e+00
std1.050655e+001.120142e-013.219643e+004.416490e+006.114397e+005.785470e+008.384178e+00
min7.600000e-020.000000e+002.232000e+022.000000e-010.000000e+000.000000e+000.000000e+00
25%3.100000e-014.800000e-022.390200e+021.400000e+000.000000e+000.000000e+000.000000e+00
50%6.300000e-011.020000e-012.409600e+022.800000e+000.000000e+000.000000e+001.000000e+00
75%1.520000e+001.920000e-012.428600e+026.400000e+000.000000e+001.000000e+001.700000e+01
max1.112200e+011.390000e+002.541500e+024.840000e+018.800000e+018.000000e+013.100000e+01
\n", "
" ], "text/plain": [ " Global_active_power Global_reactive_power Voltage \\\n", "count 2.075259e+06 2.075259e+06 2.075259e+06 \n", "mean 1.091615e+00 1.237145e-01 2.408399e+02 \n", "std 1.050655e+00 1.120142e-01 3.219643e+00 \n", "min 7.600000e-02 0.000000e+00 2.232000e+02 \n", "25% 3.100000e-01 4.800000e-02 2.390200e+02 \n", "50% 6.300000e-01 1.020000e-01 2.409600e+02 \n", "75% 1.520000e+00 1.920000e-01 2.428600e+02 \n", "max 1.112200e+01 1.390000e+00 2.541500e+02 \n", "\n", " Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering_3 \n", "count 2.075259e+06 2.075259e+06 2.075259e+06 2.075259e+06 \n", "mean 4.627759e+00 1.121923e+00 1.298520e+00 6.458447e+00 \n", "std 4.416490e+00 6.114397e+00 5.785470e+00 8.384178e+00 \n", "min 2.000000e-01 0.000000e+00 0.000000e+00 0.000000e+00 \n", "25% 1.400000e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n", "50% 2.800000e+00 0.000000e+00 0.000000e+00 1.000000e+00 \n", "75% 6.400000e+00 0.000000e+00 1.000000e+00 1.700000e+01 \n", "max 4.840000e+01 8.800000e+01 8.000000e+01 3.100000e+01 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# another sanity check to make sure that there are not more any nan\n", "data.isnull().sum()\n", "data.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can make a transformed dataset with different frequency by using `resample()`.
\n", "**down-sampling:**
\n", "* To transform the original dataset to a lower frequencey\n", "* Summarize or aggregate the higher frequency data points (i.e. original dataset)\n", "* Example: 1 minute-based timestamps → 5 minute-based timestamps \n", "\n", "**up-sampling:**
\n", "* To transform the original dataset to a higher frequencey\n", "* the lower frequency data points (i.e. original dataset)\n", "* Example: 1 minute-based timestamps → 0.5 minute-based (i.e. 30 second-based) timestamps \n", "\n", "https://machinelearningmastery.com/resample-interpolate-time-series-data-python/
\n", "**Resampling**
\n", "Resampling involves changing the frequency of your time series observations.\n", "\n", "Two types of resampling are:\n", "\n", "1. Upsampling: Where you increase the frequency of the samples, such as from minutes to seconds. For upsampling, `ffill()` (i.e. forward filling) or `bfill()` (i.e. backward filling) can be required to fill the newly created data points that was not available. \n", "1. Downsampling: Where you decrease the frequency of the samples, such as from days to months. For downsampling, some kind of aggregation operation can be needed. (e.g. `mean()`, `first()`, etc.)\n", "\n", "In both cases, data must be invented.\n", "\n", "In the case of upsampling, care may be needed in determining how the fine-grained observations are calculated using interpolation. In the case of downsampling, care may be needed in selecting the summary statistics used to calculate the new aggregated values.\n", "\n", "There are perhaps two main reasons why you may be interested in resampling your time series data:\n", "\n", "1. Problem Framing: Resampling may be required if your data is available at the same frequency that you want to make predictions.\n", "1. Feature Engineering: Resampling can also be used to provide additional structure or insight into the learning problem for supervised learning models.\n", "There is a lot of overlap between these two cases.\n", "\n", "For example, you may have daily data and want to predict a monthly problem. You could use the daily data directly or you could downsample it to monthly data and develop your model.\n", "\n", "A feature engineering perspective may use observations and summaries of observations from both time scales and more in developing a model.\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Date_Time\n", "2006-12-31 41817.648460\n", "2007-01-31 69014.045230\n", "2007-02-28 56491.069230\n", "2007-03-31 58863.283615\n", "2007-04-30 39245.548781\n", "2007-05-31 44008.872000\n", "2007-06-30 35729.767447\n", "2007-07-31 29846.831570\n", "2007-08-31 34120.475531\n", "2007-09-30 41874.789230\n", "2007-10-31 49278.553230\n", "2007-11-30 55920.827230\n", "2007-12-31 72605.261615\n", "2008-01-31 65170.473615\n", "2008-02-29 49334.346845\n", "2008-03-31 55591.685615\n", "2008-04-30 48209.992000\n", "2008-05-31 45724.043230\n", "2008-06-30 42945.063615\n", "2008-07-31 35479.601230\n", "2008-08-31 12344.063230\n", "2008-09-30 42667.792000\n", "2008-10-31 50743.399447\n", "2008-11-30 59918.584535\n", "2008-12-31 56911.416668\n", "2009-01-31 62951.099615\n", "2009-02-28 50291.953362\n", "2009-03-31 54761.169230\n", "2009-04-30 49277.707230\n", "2009-05-31 45214.196460\n", "2009-06-30 37149.767696\n", "2009-07-31 27594.810460\n", "2009-08-31 30049.032998\n", "2009-09-30 42631.838845\n", "2009-10-31 51089.811615\n", "2009-11-30 55068.733615\n", "2009-12-31 60907.189230\n", "2010-01-31 62797.504679\n", "2010-02-28 55473.889230\n", "2010-03-31 50368.601679\n", "2010-04-30 44379.215615\n", "2010-05-31 48893.491615\n", "2010-06-30 41887.607230\n", "2010-07-31 32188.843615\n", "2010-08-31 29991.384254\n", "2010-09-30 42026.211946\n", "2010-10-31 51934.045615\n", "2010-11-30 44598.388000\n", "Freq: M, Name: Global_active_power, dtype: float64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Global_active_power'].resample('M').sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Visualization" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I resample over day, and show the sum and mean of Global_active_power. It is seen that mean and sum of resampled data set, have similar structure." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEYCAYAAAD4czk4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXeY3cTVh3/n7q7XvffGGheMjY1t3ADTmwsEQiBgmiEk1ISQEIIhhV5CCBAIEHoLNfAlAUwzxgXcsA0YcF8XbOPe1l6XbXe+PzS6O1dXZaSr28/7PPvslTSSRqPRnDlnzpwhIQQYhmEYJpuIZDoDDMMwDGOFhRPDMAyTdbBwYhiGYbIOFk4MwzBM1sHCiWEYhsk6WDgxDMMwWQcLpxRCRC8Q0V2aaQUR9Qp4nzVEdHKQcwPe7wMimpCu+zHhQETHE9H6dJ+bToioTH5LxSm49tVEtJmIKomoTdjXZ+Jh4ZQERHQ+Ec0lor1EtEX+voaIKNN5Cwsiuo2I/qXuE0KMEUK8mKk8MUy6IaISAA8COFUI0VQIsT3Tecp3WDgFhIhuAPB3AH8F0BFABwBXATgaQIMMZo0JETJw/U5S0UtnEslwOXcA0BDAIr8n6tQhJhEusAAQUQsAdwC4RgjxlhBijzD4SghxoRCiyuG8XxBRORHtIKJ3iKizJclYIlpFRNuI6K9mhSainkT0KRFtl8deIaKWPvM8nIhmE9EuItpIRP8gogbK8f5ENFnmbTMR3UJEowHcAuA8acpYKNNOI6KfE1GpvN5hynXaEdF+Imovt08noq9lullENFAjr2uI6GYiWkxEO4noeSJq6FWORHQ7ET0qf5dIjfZ+ud2IiA4QUSu5PVLmZxcRLSSi45XrTyOiu4loJoB9AA52yONNRPQNgL1EVExEnYnobSLaSkSrieg6S/nPJ6LdsnwfVI79m4g2EVEFEc0gov7KsReI6HEyTKmVRDSTiDoS0cOybJYS0WDdsrM8g1t+G8l77ySixQCGebyzo4honnyGeUR0lNx/PhHNt6T9DRG9I3+XEtEDRLRWlss/iaiRPHY8Ea2X5bwJwPM29y2S528jolUAxlmOX0ZES4hoDxnf1pXKse+I6Axlu0ReZ5DlGn0ALJObu4joU7dnlsd06tBNRPSDzNsyIjpJ7o8bDiCLSVW+4xuJ6BtZx58log6yjuwhok/Mep7TCCH4z+cfgNEAagEUe6R7AcBd8veJALYBGAKgFMCjAGYoaQWAqQBaA+gOYDmAn8tjvQCcIs9rB2AGgIeVc9cAONkjL0cAGAmgGEAZgCUArpfHmgHYCOAGGL3DZgBGyGO3AfiX5VrTlLw9B+Bu5di1AD6Uv4cA2AJgBIAiABNkXks98roGwHcAusnymKlTjvLYt/L3UQBWApirHFsof3cBsB3AWBgdtFPkdjvl+dYC6C/Lq8Qhj1/LPDaS11kA4M8wNOeDAawCcJpMPxvAxfJ3UwAjlWv9TJZ5KYCHAXxtqUPb5PtrCOBTAKsBXCLL9C4AUzXL7ngA6+Vvr/zeB+AzeY1u8prrHd5XawA7AVwsy2u83G4DoDGAPQB6K+nnAThf/n4YwDvyGs0AvAvgXiW/tQD+Isumkc29rwKwVHneqTC+pWJ5fByAngAIwHEwBMUQeez3AN5QrnUmZP2xuU+Z5bqOz6xThwAcAmAdgM7K9Xta2w3re1Pe8RwY2lwXGN/YlwAGy3L6FMCtmW4nk/3LeAZy8Q/ARQA2WfbNArALwH4Ax8p9sUoG4FkA9yvpmwKoAVAmtwWA0crxawBMcbj/WQC+UrbXwEM42VzjegD/kb/Hq9ezpLsN7sLpZACrlGMzAVwifz8B4E7LucsAHOeRtzUArlK2xwJY6VWOMITEARiN4kQYWt96meZ2AI/Ic24C8LLlnh8BmKA83x0aefyZsj0CwFpLmpsBPC9/z5B5aOtx3ZayLrRQ6tDTyvFfAViibA8AsEuz7I5HvXDyyu8qS328As7C6WIAX1j2zQZwqfz9LwB/lr97wxBWjWEIjL2QjbI8fiSA1Up+qwE0dCmvTy3PeyoUIWKT/r8Afi1/d5Z5aS633wLwe4fzyhAvnLye2bUOwehwboHx/VgF1wvwFk4XKttvA3jCUkf+61bPcuGPzXrB2A6gLSk2cCHEUUKIlvKYXbl2BvC9kr5Spu2ipFmn/P5engMiak9Er0sTwG4YH3tbPxkmoj5E9J40H+0GcI9yjW4wtIwgfAqgERGNIKKDAAwC8B957CAAN0jT2S4i2iXvZTVn2mFbFnApRyHEfgDzYfSQjwUwHUan4Wi5b7qSr3Mt+RoFoJPD/XXyeBCAzpZr3gKjdwsAlwPoA2CpNAGdDsTMUvcR0Ur5XtbI9Or73az83m+z3dQlX2rZqXjlt7PNdZzobHP8e9TX7VdhdIAA4AIYDec+GFaAxgAWKHn4UO432SqEOOBxb8d8EtEYIppDhgl4Fwxh3RYAhBAbYHSmfkKGmXwMgFdc7mW9r9szAy51SAhRDqODeBuALfL71vkuTPzWiZyDhVMwZgOogmEG0GUDjAYBAEBETWD08H9Q0nRTfneX5wDAvTB6bQOFEM1haG5+PQKfgGH+6C2vcYtyjXUwTB92CLeLCiGiAN6E0fhcAOA9IcQe5bp3CyFaKn+NhRCvaeTXqSy8ynE6DBPeYBjmo+kATgMwHIb2YubrZUu+mggh7tN9bps062D0+NVrNhNCjAUAIcQKIcR4AO1hmKneknm/AEY9OhlACxg9dMD/+1VxKjsV1/zCMPNar+NE3DtR0pvv5GMYnblBMOrJq3L/NhgNaX8lDy2EEGrD6vUeHPNJRKUwtIoHAHSQncf3EV+2L8L4ns4FMFsIoX6Pbng9s2fehRCvCiFGyesIGPUCMLTJxkrSjpp5yitYOAVACLELhonmcSI6h4iaElFEfnxNHE57FcBlRDRIfjT3wBgPWaOkuZGIWhFRNwC/BvCG3N8MQCWMwdguAG4MkO1mAHYDqCSivgCuVo69B6AjEV0vB6ibEdEIeWwzgDJy9zZ6FcB5AC5EfcMDAE8DuEpqVURETYhoHBE108jvtUTUlYhawxCkZll4leN0GOMxi4UQ1ZAmSBgN8VaZ5l8AziCi06Tm0lAOOnfVyJcTXwDYLQe5G8nrHkZEwwCAiC4ionZSmO+S59TBeC9VMLS/xvJ5ksWp7LTzC6PDcbOsj11hmIqceB9AHyK6gAzHkPMA9INRryCEqIVhMvsrjLGayXJ/FEYdeYjqHWi6ENFpPp71TQDXyedtBcOca9IAxhjMVgC1RDQGhtlP5b8wxi9/DeAlH/d1fWYviOgQIjpR1uEDMIR0nTz8NQznqNZE1BGGhlVwsHAKiBDifgC/hTGougVGI/4kjPGMWTbppwD4E4ye3EYYmsr5lmT/gzFI/TWASTDGVwBDEA4BUCH3/1+ALP8ORi99D4wGIdZgSU3nFABnANgEYAWAE+Thf8v/24noS7sLCyHmwujtdQbwgbJ/PoBfAPgHjMHicgCXaub3VRg97lXy7y55Ta9ynAVj7MnUkhbD+PjNbQgh1sHQVm6B0XCtgyHwA38PQog6GOU3CIbDwjYAz8DQhgDDiWYREVXCmIJwvjRXvQTDHPSDzOucoHlQsC07n/m9XeZrtbzWy043E8acn9NhONRsh/FNnC6E2GbJ08kA/i2FlclNMOrFHGnW/ASGs4AuT8MYL1wIwykg9m3Ien0dDAG2E0b9f8eS9/0w6lIP+PiuNJ/ZjVIYTifbYHxz7WHUR8Ao64UwTLwfw75zkfeQHEBjmKyBiNbAcLj4JNN5yTW47PxDRH8G0EcIcVGm88LUw5MHGYYpWKTp83IY3ndMFqFlxpCTvr4lYzLlfLmvNRmTNlfI/+bkRiKiR8iYJPkNEQ1RrjNBpl9BHJstdKh+oqb17xbvs9MHEXV3yGclEbkNvDNMaBDRL2CYdD8QQszwSs+kFy2znjQVDFXtqWTMvN8hhLiPiCYCaCWEuImIxsIYPB0LYy7F34UQI2QPZT6AoTA8UxYAOEIIsTPsh2IYhmFym2QcIs6E4YYJ+f8sZf9LwmAOgJZE1AmGO+9kIcQOKZAmwxgkZhiGYZg4dMecBICPiUgAeFII8RSMeQMbAUAIsdF0BYUxCU2dfLZe7nPaHwcRXQFjNjqaNGlyRN++fX08DsMwDJPNLFiwYJsQop1XOl3hdLQQYoMUQJOJaKlLWrvJg8Jlf/wOQ/A9BQBDhw4V8+fPTziJYRiGyU2IyC3aSAwts54M8wEhxBYYoWmGA9gszXWQ/7fI5OsRP2O7K4zZ1E77GYZhGCYOT+EkZ/U3M3/DmGH9HYzJbKbH3QQYE0gh918ivfZGAqiQ5r+PAJwqZ5y3ktf5KNSnYRiGYfICHbNeBwD/IWNx12IArwohPiSieQDeJKLLYYSGP1emfx+Gp145jPD0lwGAEGIHEd0JI94ZYETs3RHakzAMwzB5Q1ZHiOAxJ4ZhmPyCiBYIIYZ6pePYegzDMEzWwcKJYRiGyTpYODEMwzBZR0EIp2Wb9mDdjn2ZzgbDMAyjSUFEJT/tYSOm45r7xmU4JwzDMIwOBaE5MQzDMLkFCyeGYRgm62DhxDAMw2QdLJwYhmGYrIOFE8MwDJN1sHBiGIZhsg4WTgzDMEzWwcKJYRiGyTpYODEMwzBZBwsnhmEYJutg4cQwDMNkHSycGIZhmKyDhRPDMAyTdbBwYhiGYbIOFk4MwzBM1sHCiWEYhsk6WDgxDMMwWQcLJ4ZhGCbrYOHEMAzDZB0snBiGYZisg4UTwzAMk3WwcGIYhmGyDhZODMMwTNbBwolhGIbJOlg4MQzDMFkHCyeGYRgm62DhxDAMw2QdLJwYhmGYrIOFE8MwDJN1sHBiGIZhsg5t4URERUT0FRG9J7d7ENFcIlpBRG8QUQO5v1Rul8vjZco1bpb7lxHRaWE/DMMwDJMf+NGcfg1gibL9FwAPCSF6A9gJ4HK5/3IAO4UQvQA8JNOBiPoBOB9AfwCjATxOREXJZT9cHv5kOT5fsS3T2WAYhil4tIQTEXUFMA7AM3KbAJwI4C2Z5EUAZ8nfZ8ptyOMnyfRnAnhdCFElhFgNoBzA8DAeIiwe/mQFLnp2bqazwTAMU/Doak4PA/g9gKjcbgNglxCiVm6vB9BF/u4CYB0AyOMVMn1sv805MYjoCiKaT0Tzt27d6uNRGIZhmHzBUzgR0ekAtgghFqi7bZIKj2Nu59TvEOIpIcRQIcTQdu3aeWWPYRiGyUOKNdIcDeBHRDQWQEMAzWFoUi2JqFhqR10BbJDp1wPoBmA9ERUDaAFgh7LfRD0nLezaV42WjRuk85YMwzBMADw1JyHEzUKIrkKIMhgODZ8KIS4EMBXAOTLZBAD/k7/fkduQxz8VQgi5/3zpzdcDQG8AX4T2JBr89s2F6bwdwzAMExAdzcmJmwC8TkR3AfgKwLNy/7MAXiaichga0/kAIIRYRERvAlgMoBbAtUKIuiTu75vte6vTeTuGYRgmIL6EkxBiGoBp8vcq2HjbCSEOADjX4fy7AdztN5NhYTfoxTAMw2QfBRUhglg6MQzD5AQFJZz88OF3m1A2cRJ2H6jJdFYYhmEKjoISTn4Up8enlQMAVm3dm5rMMAzDMI4UlHBiGIZhcoOCEk4UYNCJh6kYhmHST2EJp0xngGEYhtGioIQTwzAMkxsUlHAK4kqeEPyPYRiGSTkFJZz8wCZAhmGYzFFQwol8iBzWmBiGYTJHQQmnIOoQa1AMwzDpp6CEUxBBwxoUwzBM+iko4aTLc5+vxg8792c6GwzDMAVLMktm5By63np3vLc4tRlhGIZhXGHNiWEYhsk6Cko4ba+sxoGacNc3nPj2N7iBV9hlGIYJlYISTiu2VGL803MCn79uxz48OX1l3L7X563D21+uTzZrDMMwjEJBjTkBwFdrdwU+9+Jn52LN9n04e0hXtGtWGmKuGIZhGJWC0pySpbLKMAkKdjBnGIZJKQUvnOav2YEde6sznQ2mwFizbS/W7diX6WwwTNaS18LpQE0d7njX3S38nH/OxvinnMehhGAtiQmf4x+YhmPun5rpbDBM1pLXwumVuWvx3MzVjsfroobgWbZ5j2OaHz8+C7V1UbnFgophGCYd5LVwqotGXY/XSKHjNTnXavYzA8h+tXZn8MwxDMMwjuS1cPKiVmpORV7Syebw1+t24cePz0pBrhjGngXf78CyTYaWv7+6Dut38pgVk7/ktXDyWiLDNNcVRfyHhN1UwbH3AGDV1ko8NrU809koCH7yxGyc9vAMAMDlL87DqL/wmBWTvxTcPCeVmjpDcyqOkJbjg5mECKhztxgWDOc9NQdb91Th4iMPQvOGJZnOTsEwa+X2TGeBYVJKXmtOTrw6dy0AoDaqpzmZGpiIbdefW+js3l8DQMM0yjAM44O8Fk5O7eUt//kWAFBrak5FEfjxGBcAouxiDqDeqYRLg2GYMMlr4eRFdcAxJyHYrGcifUpYWDMMEyoFO+b0zGerYt56JRFy7flbNTABgWiUG2MVwcKaYZgQyWvhRC7jIHdNWhL7XVSkpznFnCYEUMeaQhysOTEMEyYFbdYzKSI9bz2TQhxz+nTpZlTsq3E8Xmjl4ZcZy7die2VV6Nddt2Mfdu3j2JBM/pHXwkl3JClCHmY9y7YQKCiz3o691fjZC/Nx5b/mO6YpoOLwTTQqcMlzX9iuJZZsPTrm/qk44YFpSV2DYbKRvBZOuuyvqcO/5nyvnV5AxMarCgEzBuGKzZWOaXgZEWfMkinfklh+YWicO100WobJVfJaOOlOvdlYcQC3e0QvB+LdpQtINsW8GWtcXBTZqueMm8mYxy4Zxh5P4UREDYnoCyJaSESLiOh2ub8HEc0lohVE9AYRNZD7S+V2uTxeplzrZrl/GRGdlqqHit0vpOuYzUfMH6LAzHpm4+qmLfKYkzNuJcNzuRnGHh3NqQrAiUKIwwEMAjCaiEYC+AuAh4QQvQHsBHC5TH85gJ1CiF4AHpLpQET9AJwPoD+A0QAeJ6KiMB8mVVjbXQH3hjrfMB/VTXMqoOLwjVp/7v1gCS58pn7siYU6w9jjKZyEgWksL5F/AsCJAN6S+18EcJb8fabchjx+Ehk+3WcCeF0IUSWEWA2gHMDwUJ4izQghCqpRMTUnMxahHYWkSfpFHY97cvoqzCyvj4vHZj2GsUdrzImIiojoawBbAEwGsBLALiFErUyyHkAX+bsLgHUAII9XAGij7rc5R73XFUQ0n4jmb9261f8TxV8rqfNNzMbFbKQLzayn86jcxgbDqR5t3n0AW/YcSHNuGCZ70BJOQog6IcQgAF1haDuH2iWT/+0kgnDZb73XU0KIoUKIoe3atdPJXuqxaT8KqceroyUWkibpF7eicRL8I+6ZguF3T0lNhhgmB/DlrSeE2AVgGoCRAFoSkRlhoiuADfL3egDdAEAebwFgh7rf5pyUkKpA2UIUlqaQjHDafaAGV748H9tSMAE1H6grIA2cYfyg463Xjohayt+NAJwMYAmAqQDOkckmAPif/P2O3IY8/qkw7GHvADhfevP1ANAbwBdhPUgqsTYfhTanR0cQOyV544t1+GjRZjwxbWWoecol3DWnwqpLmWTH3mp8vW6XZ7rNuw9g9wGeO5ZpdGLrdQLwovSsiwB4UwjxHhEtBvA6Ed0F4CsAz8r0zwJ4mYjKYWhM5wOAEGIREb0JYDGAWgDXCiHqwn2ceEJzJa8PqRe3XShoCSeZ6Jv1u9CpRSO0a1YKoF57LbQyU3HrzOgKJz/htRh7znliFlZt24s1941zTTfinino1KIhZt98UppyxtjhKZyEEN8AGGyzfxVsvO2EEAcAnOtwrbsB3O0/mwFJkV2v0JoJPbOe0TP90T9m4sS+7fHcpcMA1DulFLKG4Pbouma9Ai6+0Fi1ba922o0V7IySafI6QkRYxHq+buaZPB470B1zMr3Lvv2hAgCwsWI/Kg/Uup1WEIQxCVd1wHlp9ppkssO48MG3GzOdBUaS10tmhEXCJFybxjoqBCKhGRKzCx25G40mKqpH3vtp7Hchm6Xcnl1Xo1TT/fl/i5LOE2PP1a98meksMJK81pzCFhVC+W9tUvJYccJv3/zaM01UCFfTUzLF89aC9Xhz3jrvhFmKsPxX0Z2SwGGOmEKDNScNErz1bNqTfB1TEULgm/UVCfuEACLK8vZCAILqJyknXid4Hn7374UAgJ8O6+aRMvfQNQfna/3KBEKI0CboM6kjvzWnlNW/xIYiX9sOu+e65T/f4uBb3o/bN+H5Lzw0pzwtIA3McrGrjroadyFN+naiujYaysKKTkX5lw+X2u6viwrXuJJMashv4RSSYc86ZmBXufO18bB7qte+SDSx7dhb7S6c8rN49EiTt96Bmjr8+PGZWKgxlycX+cVL8zHojslJX8dJC3Wai/eTJ2ah9x8+SPq+jD/yWjiFhV1Uciv5anZxG8xPENouoyv5WTp6hDHPSacAF2/cja/W7sKf38lPh4npy5OLtWmiq61+uXYnAGhN3M1lpi7bgrKJk7Bzb/JaaZjktXAK26ynBn5NOJanWr/bd/z0Z6vi08rE2yqrE8ZS8lR2axFGhAg/ZlEeTXFHt8yfn7kmtRnJEp6abnzHSzbuznBO4slr4RQm7y7cgL3VRkALu4YifzUn52OTvomfE6ImrdgfH/4lqCv5sk17Ap2XTbg9uW6x5LM3aLZSKEI+FsUls9lIgIWTBkIAv3rtq8SdCnkrnFyqbGlJ/FqRqgDS8XDU4bSHZwQ7MYvwM89px95qjLwnMRq5l3Bf8P2O+rQ+85cv/OPTFVqdGd1vtVAc+rI1xFheC6dU1a18d4iYumwLfti1H9OXb3WtsF+s3hG37aohFGyT6VUu8UxfvgWbdieGzvEqvZ88MdtvtnKWdxduwHc/xE9vqKmL4oGPl+PHj8/0PN9OC91jE+i1QGRTzHEs277RvJ7nFFbPx/rShEi8eL7IJiEELnt+Xmz71V+M8HWu3W9jO/m85SPWcnGabOun/PK9UTWtGHYBXKtrvQd/7TSnq/61IGHf/pqUxqXOGlhzymESvfVE3pr1rK7NO/fqLx2gFkGCWS+JPOU6ZrnYjxtZPR4drlHQJeiNn/XC7D7Vby0TzQHgo0Wbk8kSkyR5LZzCmudkxT5CREpulXasz+FH+1RPTYxHGDhLOY+bYNGJ2ygvwrhgxnHUqa92ZVwU0avo2yqrUDZxEl6du9ZX/rIZM1qGWSqTF29G2cRJGV8gNK+FU1jotAv5EpXcqgFO8hGlWT3Vep2C7vm7Rs4AZpZvw0eLNrkm1Sm9Qu4A+MHuU41o9sK+374PAPDm/NyN9WjFfHLzm31+5moAwNKNmfWUzW/hFNaYk8b4Sb40DAnC6Rs/wqn+3ITIBw7ls2LzHtz7wZK8jlru5Up+4TNzceXLC+S2fWpfY075PuikMHvldvT5Y330hpo64VmXzDr+7OerMeKeTwBAO9ZetrpdJ0Ps0YVlO8Pkt3BKEXZaQL5463mF0/nlq85LCqhnWq+zaIP9BL+Lnp2LJ6evwlaLCaF8yx4cyJMBaT+TcJ2K38+Y5v7qOlRWFcY6Wo9NLU9wgnhn4QbXc8yyvPO9xdi826h3RZotYZa02ykhwfErwyI4r4VTaMu0W7dtx5zyQzh5WSffc9Gk1DKwBspcttneRFBbZ5yjjg/urarFyQ/O0FqqIxfQHXOqrYs6CjI/tWvppj047NaPXNPU1EVxxJ2TPRvybMeubJd4mKOmLd2a0PHRNevlI9Ynj7mWZ7hJy2/hFFKF03lJ+WKWSmrsTG1odQOayv/qqzJ7wrNWbg+elyzCrWrc+s53sd+1UeEoyPTql/6723OgFtv3VuPP//vOO3GO4RW5/Pdvf4M//bf+uX/Ytd9xWXZnB5X8+N4BxSGCzXq5j0BiM5An/hBJaYDqmaZG5HmOMDWnesyPI1+cTNyeYvnmythvtwUbg7yWqtq6mKOFlUielbGKTuO6cmt9uf/2DWcNvcpiMszHdaBiQ056w8Rpg4WTFlaHiMTXli9mvWTGzuJMVDazSe3KzctZoJCIinA18Ps/XIYrX16A2TYaaLaYblKD8WwV+2qw2ybyA6DfmXT6rheur8AmB20r1zDl7fVvfI1PFtfP7cq0NSivhVNoY06Wd/TLV7/Co5+Wx+3TXZcn20mmPqomqRobzcmuiOwmqJplmS8CX/cjr4sKx0ZTz7Qcvz1t2RYAQMX+RDOXWbb5UcLxmI3t4Xd8jOP/Os02jVq3mjV0DpRj/a7VNuWUh6YHzWKWYTxVZVUtfv7S/KzRDvNaOKWKH3btT9iXJ+1oUkLWOrifeFzgypfn49/KHJH6ZUjqTzazkCdFql03hHB2g9bxnLK+upVb97qkNRLnS6dKJULAi7PWADAC6Zqoba4qnJqWOgunAbd9HLetXmPPgfzwiMwSWZRAXgun8GLreZMvvfxknkM999pXv7I5boSEufGtbxKOmebEdxZuwLC7P0k6L7lIVCTWtbKJk7B59wEtM5TTxFC3iCb5WMYEwq02Cy6qzYFqdS7W9SNH6qLOZBL1iRopKw1kumawcNJAp3eZCx3Qtxasx1dydU8nnAKP6rBb6UnahT6xawhF7Jjx/4536xuVMNrN7ZVVtppuOtF9jrqovUPEwnW7tEyDyx3c9e2ImfVyoN66YZd/p+9eNVepdVEzclHeopZXk9LirBG/eR2VPCz0hFP2f+W/+/dCAPbRnE2SeY7rrGte6WD24KOJjWUYRXrEXYYW5vbMqUZ3MqMQwrb87TQq+/Od7h9/DyJSxpyyv946sftATZzXnYnOnCW1rHTj6uUrqjbYsETRV3ieU+oISwXXabDzxSU3lZEu1HI0F8cz96zbuS9u25oeAH7/1kKUb0lsjLKRqtr6SZ66RepchZxdzOPPd0/0yeLN6HHz+1i1tTJ2r1weczr/yTmxCA86qDJIred+HACydXwmGdRnihApIZrYWy/r8WvWe3XuWpz3ZG4u/ubXffTK4w7WTquWo7k4nnm/C56em3B/a2P75vz1wbSzNPPF6h045I8fYtbKbQD0O6B1LpqTzlW8PP3kAvhTAAAgAElEQVSmSu+9z1Zsi3Wmclg2YfFG+5BYjmY9pbO6U3GUKMpHieMD9fGJsidEEwsnDbQ0JyXNLf/5FnMtq8RmE25ano2TnSsnHtLex33rfxdH4sP0A8CVL8+PN0HZXCMX2pE5q4x5RbPK/UW4iDqMOblNzlXx6lh0aN4QAKSDRQ5LJQ/szHpfrN6BaqVyb1eE09od+9KSr1xALTuzilRW1WZkTldeC6ew1FKdBjuXPvYnZ6xyPOb3OYoihLZNG2il/d1bC2O/G0qvIDWSxEeLNoc+5pQJ6oM8J7rJu/HQ5OW2NTYqgE+WbPE83+s2JdIr7fFpK3Gcw/yffMCu//JTF0vG9OVb9a8doHNUsa8Gx94/FYs2JC5omA2oGiUhMZzRGY9+jpH3Tkl7vvJbOIXUuOmY9fzcqy4qYr1rIURCkNRU4zZu41c4EREO7dRcK+1kZfa5OfBqjSTh1ZDnguZkms9MdEv0/776wd6jUQj85cOlnuc7vbt91bUyHzkq7X2SbXVk1sptWLtjHx6ZsiLTWbFHnbtVVYvV2+Lnx1m300VeC6ew0Gmw/QwsPz61HOc/NQezVm7D7e8uRu8/fJBWhwo35yS/ruRBHZ1Kiw3NSXPZpxjZOM9k8+4DcUL1y7W7AABfrd2FlVsrfXVc7OqB9iReh/3mvLJc0ESFEHjms1Wo2GcfdkiHTRYnidts5jwFJRfK0A/7q+vi1mzbuqcqJowy/ah5LZzSqTm5CTDr+eXS/fWb9RV4Qc5kT2dFWL9zv+NaSUHMekHKuUGxfdXzupbaK566bAuemrHS/81DZOG6XRhxzxT8e/76hGOzVm7HSX+bDj9v1y6au3aE9zxoOb9cuwt3TVqC37+90DuxA+9algExv7FkOfGBadrvIle4+/3FjscyXZ/yWjiFRTJmvdkrt6PnLe/jS2Xyq9m+3vdBvakmnRVh9qrtsUUDZ5Vvi3u+zbv9DXxGiAKZi5xML37K4bLn5+Ge973NXanENJH+/u1vUDZxkm0aP6/24U8STT+6Pf88kE2xOUdOS1hkklXb9qIyQMgia10//PaPceS9U3DJc19k3JU/UyY7HfJaOIX12v1666nMWGEMtppjTM7n+89XMny6dAue/Xw1LnhmLh6fWh/E9gq5XLguQe37TqftrXZf/TbbjHoRjS8o2Veru6qtVz3NdE/YiyUbd2OjjOaxz6Me5DIV+2uwseIAZizfahtJJZ3s2BvcfJpqPD8tIupGRFOJaAkRLSKiX8v9rYloMhGtkP9byf1ERI8QUTkRfUNEQ5RrTZDpVxDRhNQ9lkFYH6OO4LjzPWf12MhL/W+7SX/pHqyOivo8l9vMstclm1YQnbpsC/45Pb1mPr/RCFKJVz110+6zgTF//wxXv2Jo9HuzdJn5mmTie8EY41F5+JMVsSC1maC61rkTIACUb6kPieU0FJAqdDSnWgA3CCEOBTASwLVE1A/ARABThBC9AUyR2wAwBkBv+XcFgCcAQ5gBuBXACADDAdxqCrRsR0dzWrM9ubkSmyuqstbV1I0IBRtzCoyLMLjs+XlxptJ0YBVO9mtWpaeA3OqpEM65GP/0HHy+Yhs+W6HvUp1qrJqTOmk2k+guounEoX/+MG77tS/W2gapTYa7Jy3GiQ9MS/o6d7y7GCc/OCO2HaZjiQ6ewkkIsVEI8aX8vQfAEgBdAJwJ4EWZ7EUAZ8nfZwJ4SRjMAdCSiDoBOA3AZCHEDiHETgCTAYwO9WmseQ/rOmlofU96cBrGPfJ5yq7v9gzJPF6E0jvWkT16moFVOGVyCMHtPXgN5F/07Fxc/OwXcfsmPPcFbrKJIJ8OVEG7aEMFBt85OSP5sGJdCubBj5dhVvk2rXPd3k/ZxEn48Dv7VYv98vRnq7FKYyypujbquqyKNWByusenfI05EVEZgMEA5gLoIITYCBgCDIAZKqALADV2/3q5z2m/9R5XENF8Ipq/dWuSPbmQGopkGl9rY7p1TxWqaxNNA+bifKkShKkSIOlemIwIWLW1Mmti7FlXWxh8x8cJadJn1nO+UXVt1Fc+tlVWYfryrXjDYRmOdLI2SatEmFRbhNMjn5bjgmfmxmJF2qP3jTw2tRxTl3pPtg6L52eu9pU+3f0ubeFERE0BvA3geiGEfVArmdRmn3DZH79DiKeEEEOFEEPbtWunm72UEkZv2BQ6w+7+BJO+3eiYTnfw2y9uAV3fWbgBFfuDDYy2a1oaNEuBOfFv03Hyg9mxCqlVOO+28eZKl3Byu09NXVTbvDh/zQ4MldHcs4HmjUoynYUYTmY9HccCr9L/9ocKXPbCvLQ5rvhua9IsnbSEExGVwBBMrwgh/k/u3izNdZD/TZG/HkA35fSuADa47E8ZYdn6kwlN5FexCCokvPB6hsenlQf6KFo0Lgl1TMVr+YJsN+vZka4xJ7f73PneEqzbobeu1aINbn3P9NNQWQAv0zi5fu/eX4Mte8Jxf0+He/na7ft8t2vpDtHmuZ4TGV3DZwEsEUI8qBx6B8AEAPfJ//9T9v+SiF6H4fxQIYTYSEQfAbhHcYI4FcDN4TyGPWGVZdDLqI29/lLdAW+W5HX3VtX6vvdtZ/TTurYfvD5MOzPizr3VaNVEL75f2OgsopoN3npvf5k4SdiJrHDAFI4bGcXJW+8GjbXSdIu1NipQnEJ5vHrbXpwQwGEi3cJJR3M6GsDFAE4koq/l31gYQukUIloB4BS5DQDvA1gFoBzA0wCuAQAhxA4AdwKYJ//ukPuynqBqthDx4XZ0rpOq9+9VsfZXRwPF1Us3dnf843+/S9i3sWJ/3NyyZz5zDnabVH6yoiU32LonnDkz2fBEak1Mp5NJWZvGrseT8dbTPTPVUSh27gvm+ZhuZx9PzUkI8Tmc6+tJNukFgGsdrvUcgOf8ZDAZ0jkJ1+v+AnovN1UmIK97762qTelCg6lkb3Wi7Xz0w5/FmUjvmrQEPz9Gf+0p2/tU1eLcf87G/ecMxGFdWgDIrnlOYRGWkAuLdMad9LqVTpDmjRX7ceS9n+Klnw3HsX3a+dZErR6BYdOkQbAF0LPWIaKQCdq4GEti12/rCLlUNWRe5rJvf6gI/pwBzlm5dS+EEOjSslGwmypYv/0+f/ggJWN3X63dhcUbd+PeD5bE9mlpw1lklvJi6abdeOTTcu+EaSSdPXavd6Wj1Sz43ghVds/7S+ImE+t+X6nWnAJ3trPQrJezhFWWQetKnOYkNGP0BbuVJ49Pc29wqmrrgg/EBjztg+82aa8FZaLTC7W6+4aFeW912CHXtCIvRj/8WaazkMBdk9yjr4SJVwCIGptpICplEydh5RZjPtDSTXtw+YvzfOch2Ym+XgT9zrNxzClnybS3XlSIWK9+Y8V+rYYsVRXgyenuYy7bKqsDjDklkyNgz4Ea36ZEuyUzvv2hwjHoqh1j/v4ZjvvrVF/3Ne5toNarTGrD+YzaS0+n96CXdlCj0bB/tKh+Mu2cVfXD6p8s2WyXPAHrGmdhE7SN+e6H9Hpx5rVwCo3AZr3636/PW6fVEGeyIZv//U7vRJK+HZvh3COMmQFBOwGNGhT7Xj/KbvRzW6W/Ad4lG3fj+wATO60rhAK644iMXwSM+VZ/t4nSngoO79YS7ZuVotjD/VJnPMiqufvtw81dlVo/sVxZ9iOvhVN4Zj29C9n2uhT1Qk+dzlzFWbpxj3ciyQPnHo5GDZLzd23SoCitpoKyiZOSCgxrvsp44aTT4ciNxiDbOOefs/HQJ8uTvs4xvdt6pvnftUfjiz+cjEYec6p0Gna7CDB+MN3Sk2X9zn220TXS6WCSDPktnEK6ju67tPaYrG1SJl3Jw2D6jcfHfpcoPcygeW5YUuTb/p2sm3MygWFNzzxVU9yi4dmWxa+0IDjIwz1cpaFHh0unYVeFUyZnGoz6y1QcazFfR6PCV6DZET1ah50tbfJaOIWFbu++xjKQKSDiGtMDNd49qmQbss27D+ADl/BIbnh9SAe1aYLurY0PvbgonK/O95hTBj92VXNasnE39lbV4k82c6ys6Dyiee1Hxg/GoG4tk8hl+rnuta/w7yyIwWfHUxcfoR0ZAwAalSQ2ia2VCd469bVKWYYim5aUAYANFft9jeGV6MwyTxH5LZySVEMOl42ErlnG6skjRHxjOvLeKZ7XSFZzuvaVL3H1K19i3pod+GSx3gCsid1n1K9T87htU9MpUVbZU7PcrbW+a3hUCN/Pa+cQkS7MO1fVRuPWHvLG+yHNRmxQ15bo0ip59/p08s7CDbgx5OjlYVkQWjQq8WVmG96jTcI+1dSnky/1fh7RuBxJxVyzJ6evxMJ1/pblCasTGoT8Fk5JctNphwDQN+tZJ+h9tmKr7bLbbgR1LqjYX4PnZ66OBXM895+z8fOX5mP55j1JzfmxdvxMLbLIptI+cO7hmPyb47SvHdV0r88WTIcIc+7KV2v1HEh0GjShlKvf3vadZx3mK30QVmzeg2c/Xx36dfv/+UNc+vwXCfvD8rQtKY74Gtf89Um98d6vRsXt+/Hg+sUTdK6lruYcIQoURWTY3Z/EaWBhcO8HS3Htq7odKoNinaWeU0ReCyezGj1zyVCt9K0d4rPpak7WMacb3vQ/sBm0x/iH/3yL299djKWb4p0aTn1oBs5+fKbWNey+Ies+c0C4WOkSmuXTuWVDXw1rVAjfwun77eldU0bFfGRznZtSzQBodk/YrGH8LH2zGIqI4LezenjXFv5OCMAZ//jcc7XnIOytrsO0ZYlL4+iYwHVoUBTx9U0VRSgW/cNErdJ+66uxGGewj3pTRXwg2XlrdsSF5Eo1391+GnYFDHUUBvktnGSdGNxdz4Y/dkDH+B3mpEvNumVduCuIy6ZXPb7g6Tk4/dHEiZK79jlrR24LinlhCps/jD0UQP2AsCqEYnZpEW/GeOLCIa7XFkL49tbbUBFO5OcgmD3gKmm28Wp0zAnGdovIdWze0Pacoggh4tMWNKBLaoXTt+srYsJCCIE9B2qS9khLFyVFkaS1MLWO+v2kIxR8Er91SYtz/zkb5z81x/d1Pl60CV+v2+X7vKalxSlbwkeHvBZOJjpqdbOGxQm9fnN8Q7cBnfBcvHkiiJu014c0a+X2tE6GM0vkkI7NANQPCKtLW5hLGlTVRuP2jxnQCU1LneN4RaPpn3WeDNZatMdm7SaVk/p2AABbc5haTq/8fETcfj/a59lDuqQ8+Ozv364fT4oKYMBtH+PiZ+cGutaBmjqt+HRhUVJEgYTDm1ceGfutnm/XIRk/vBueuvgI2+sYHY1gddy6VH1Qrnh5Ac56TM96kqo8BCGvhZOuOn3DKX3wwa+PCd2zxuq9p0Mm22o7ZwOz4TOL5g9jD0WD4kicWaqh9HCqqq2LpW9QHIk7DwB6tG0Sd23DrBda9tNOQxvPLhU3c70pnLq0bISje7WN219kqYfz/nCy43XuPXuAca8UyqclG+s7Q2ZnYu7qHZix3P9K1X3/9CHOePTz0PLmRUmR85jTEQe1st0PAGVt693P1fPtzHpHHNQap/bvmLAfMDo0YWlOXjzz2SqMfnhGsJs5sJc1p9Rg1gmv7/bSo8vQtVXjRM0pZtbLnd59MtjJZmHRlM4d2g3L7xoT52Jqjr2Ypp8/nd4vNqislmldVKBl4/pVTaMWs17bDKyq6wdrLTh7SFfHtM9fNixBo7l5TN/Y72IHaWKY9eL3tWtWireuOjIh7Xu/GhUre6/IBmGhvq+Jb3+DAzX+e9ZLN+3Bc5+v9oz3GAaGcLI/ZnYuTj60fcIxtYOgfv52ruRu7cPuA7VYGMCkBgD7quoQjQptk9wnSzYnjDkni5d1IJXktXAy0VWIrO2FuenV8+nQ3GhUdWaie5FtcrBaan9uq5GaH7nZUF0+qgf6dDDMgKOUMqmpi8Z1FExvvfOHdcPSO0fjR4d3Djn34WLVxF+YtcYxbdPS4oROkWrKc1rxt9jBrDe0rHXCQnbq5NKSVKpOCmoRNC4txtmPzwp0nTveW4z7P1wW2/58xbZks2ZLcRE5flTm7mP7tEs4pr4DdeKtec7jyniq18TcJ2cEW0tsb1Ut/jljJc56bCbmr/EOaZQKx1erk1c6o0vktXBS6+SzE4YmmJVMzPhuTg2Gl8CoqRPo27EZGicZzgcIrqWFYZG0u7UZS6y02LmqmIKojY3m87dzD8f71x0DALjm+J5xAigqBKJRgUYNitCwpCg7VmB1YP6aHXjIx7SAkqJIwvOo9eveswcCAH46tFtCGq+l6k1UzSxdmpNq1irfUonFG8MZ/7wo4BiWFyURZ83JdBEf1SuxU6k6pajnm89f1qYJxg/vnnBch2Yu47Aqe6trsUSGFNuo4QiUimkZvds3jduutFk7LVXkt3CS/wmEkw7tgEM7GY3oodaJpbJVtpphzG0vgVFdGwVRsIFXK1EhcMVL8zGz3L0nObN8G3re8n7Srp5DFbv7ii3Gh2BOvO3aqlFs8NrNbfpnR/fAKz8fYWseaVhShH6dm2PNfeNw8ZFl+PMZ/fH21YaJKiqM5822WfR2nPPP2b7GWBoURRKeyxQ6B7dtgkM6NsPyu8bgupN6xachfYcINVVJgMmSTqZFN94PGH0kU0Qizt/vMKmNHtyuacIxtWjivfXMtgIw+wN+o5yUuHT0VL77YTdWba3Uvm4Q4TTQYxrCG1ceiVaKKd7vxP5kyGvhFMPyDZqNaK/2TXH9yb1jhZ9g1ouFq/EQTnVRw2U0BOl0oCaKjxdvxmUvuK8D89jUctRFRdLLCajt4IZdRu/s5cuHY/Edp2HKDcfFnDrcNKdIhHB0r7ZaXmNFEUKrxoaLtRACdUJoawq5hJ1ZL2JxLmlQHEkos4gPbz01WZAwM35d1gGEHgkiGc4cFG8G7t85vtN57Qk90bS02LHT6FbOap3sqkTsMJsCovrz/X73uvPS3v5yva/vO4jVpayNvTXJpHWTBhjYtX4qTiuHuaCpIK+Fk5NQOaRjMzxw7uF4++qjcP3JfWINhFMj6VX3qqULdRiOE6YruZ+lmg/U1GHz7uTn/3wutbUIERo3KEZpcVFMcwozxlZE0UijUaXRDu0OmaNds1I8dsEQdG/TOEHwmPXLS/joygy1pxwkzEyuzFVywhq9YNJ1x8SNy914Wl+QZRLs1cf3jP12ew3qO7r0qDJcdnQZAEVzAtWbBR3GmscP75aw77g+7TCqd+IYlxc6LUuQRQr99k/asHAKF7Oeqa7S5xzRFS0alVjSWec5GegInbDMemaD4+dav3hpPpZv1lf/rfz1nIFx22oxxCJChBhjq77HCak5Jd43Vzl/WDeMG9gJQOLzmJt2wulfl4/AhSOMMQxdTbKBos2WWBrqpy4+AjNuPAH3SVdzO8z7hcVd7y3Gog3+Yrclg1qMw8qc3cLVz/eyo8piv900R/UdFRdFcNHIgwDUf58RAgZ3b4U1941DTxuz4B/HHQq77la31o1S1ikI0jnW0Z7Vq5rzHdNBQQgnXcz3NOawjnh0/GDFldz9vAtGdJczwZOXTm52Y3VtFvVWnyXp6WR1FFGFeF9ZGd289fyiuuhHhUiY15MpfvLELNzxbnIhen5zcp/Yb6cgtXaPO6p3W9z94wHyuHd5rLh7TNw4oLXz0KNtE3Rv0zihA6bSN+SG5pnPV+PCZ1Lj2GCH+sTXnNDLMV1c/SbbnwlYOwjWjqrXK+rdoZl9ODAQTunXwf1kG3TGloNEpPHz7b1w2TDtkF1hkNfCKWYfdthvxXxRB7drgjNUt2YPoXP3WYchQuGY9VTh9P32vfjuB6MnWr6lMmFtFpMGSZjcCJTYw1cu98RFR+DNK490jfTgF7O3ZkYlr5/o6/yh6MZHTIYF3+/EczOTC26q9kStj2O+WS/NSH2dqhlKxWpmtZq4dNqcDjYhlJJ9z+l0biEC/nHBYLz2i5E44ZB4Z5yT+tZvP/DTw23z55ZX8xWZ00TqnaNid3fNWxHZd02IEGiRTrtFA60EGfPOZmek8FqcLEY3vEt9oxk707LtfP0iIv9Ljtug9n6O++s0AMCa+8Zhwy77NWkIRuil7Xu9e1bjBnTCJFtvK/teImAsOTA85AXHzA+/fIthijQba/O+Pzu6B4aVtYpbkqJjC/tYdMmwt6oW//36B2yuOIDfnnpI0tczY+mZOMkgrwZB7c3qNh1Wbz23Oj9uYCf07dDMdnD7lyf2SmpBxiAegH6466zDsHJrJZ6fuQYEwukDE+fGrb53bNzzNy0tRrPSYuypqo0rT7esEhEeGT8YQ2RcTjNtrWLWcyMSse8gRIgCzUnTCfmUK8uv65LXwslvwEdrRAg/ESIoJLOeU+/H7cqNGhQBGrFdJ47payucrB9RqntT5vWf/szQUqyaRIfmpRgzoFPcvlR49PW/9aPY72SF0x1n9sexloFuJwHh9SjqebqvwjrPyTxtoM3ChY9dYEwgXfB9/MTOZqXFGDegU1LCKVWL040f3h3XntATXVs1xhPTVgJwLhs3wRyJK1v3wlXn5Jl6UJ3sgXrVx+JIxNGsG2ROWo2G4FGtLsPLWuMLjYm7KqYAzxYKy6zn8aGbPVZTQNTbmRPT9mwXP05jhMYPlk8Vu97Pdz9UoNIljIhuA2Y7bkSJwijVmr6TMDQ1V7sySHWPPNlB6kuOLENZwtidPV6NYhBBbD3HLNMuLRs5RkC35vDwbi2T7gQEmW+lwyn92qNrKyMiRszBKcCt1HP8PKt53sxyY8kKT+3XQXNqWFIUyLlIx3s3rnNMwPQbj3dNXxQhXHzkQbHtUodYkUGX/EiWvNacTHQrcZHFrKe6PKtcfXxP/Pqk3uj7pw9j+yKR+lA/yWCnfZ3uEijTjybvNDZlLZ5UrzZr/bDNNqK1nP+0vTLRRJnquVD7UjHz3dGs536aelz3XVgHttVNJ43e+l1EQ5hzlqpIFQ2K6jtW/o2eyoR8i7kvKF5tSsRmzOmikd3xqxN7BbJM6LiJq506AnCQxxymlfeMdTzfjlRHv7eS35qTZdtJ2Jj8dFg3jO7fMTYIbaZX1eXHLxyCm0b3TdBCwnKI0J2rYJosdVdjBQyPrleV5RkA4JwhXRMdIlJcB50iJ3SQ40r7bYKJpspcZLI3BUsDODVC3r3u+mf127Gyu4dTjbLmIxThlKJOxJE965dPN7MdpEqoj9xAM1IDkOhyrWPWs/KHsf3QpLQ4kOakY9ZThwSCfMNB5kmlkrwWTiZmH8YciHR6Cc0bluCfFx8Ri45t1i9VOI21jIWYROQ8Jz/Cwg6/IUj+Nnk51u2wd5awUlIUwVFKHLF7zx6Anw7rltA7T71wsm4bO8Ye1hFXHdcTN56WOP6Tcs3Jw9Y+yGbsxgtrjtvJejXEZakGIL7RTNBqHcdZnLed+kzWS0VF8sJl6aY9sZWCw+LoXm1s338Qt+agT2c9z3MidSRR0zDfa5Ay1jHrxWtOxj3swhPdekY/21BjtWF4dIVIXgsn60dZFBvT0HsJVs3pjStGuqQ1bLM/Dhil2SSVHjdO4wGJk0VTKwicIicUF0UwcUxftLbxImvuMl9Hh36WeIpWvDQnMy6jyhCPFZat5dqzfVN8eP0x+L2N8FWJa7wsF5l7y0mYcsNxCeckzMtRNScH6dRGehceIgP3CovmFHSS7oLvd2Lq0i34eFHiCsA6qNHWAaDKsmS7OT7oFlLLjauP74kRPj1Q/VoX7DqZMa/UAL2/D2xWU7Zipzm9+ovENuuyo3vgmQnDEvanInBsMuS1cDq0UzOMH94trvED9BcBjAknh8Cw1rRhvNy6FPZetF3q0645uaf/5rZTk55/42VyNTUnp3E5u9P/75qjXa9pN7bWt2Nzz3EZNa/WomnfrKFtRALrmJNapodLre+5S4di0nWjYvu7tmqMT357LP4w7tDYPtUcdcvY+v1+uO61r3DZC/NwxcsLfJ979uAumH7jCXH7rMs2VNV6ByO2ogrom0b3xRtXJq6P5UaCKdrjW4oKPQtEt9aN4raPPLiNQ8p6Fny/E2u2Jbrn1toIJz/fTba5oue1cDr+kPa49+yBMXXa1Bx0hUgs6nCd96zwsMMXpQMzAGtirzC9DhFez9y8obPWdFp/vdn2XsJpvTRFOXssad0mDr+mIBO1OHRfhds7e3T8YPz32qNxYt8O6N853szTq32z2GqnLRs3iNOcmpQWe2qHYdPQZoKqVXOKCSePlYjDxM+7fPqSoRjUrSV+dnQPz+t+esPxcdtWj087fvLELEx4/ou4fUKIuLlQQZwuzDr+l58MwKyJJyYcT687RJ4LJyvmh6czoQ2o/+BjmpPrtcNxudTtvcxZpT+HYfzw7gkL1QH1DbvVjJd6zSn+Bhs1g9aaq+ua3Hlmfzx58VDccEofhzPq6daqsevx38to23sO1GLPgZqE437nzAFIkCy67UWQemR2pA7p0AxDureMM402KS12HTMzNZOyNo0dx/Z0evRh0Eg6GqmL+Z1vCaBaJR1m/Jj1eknTZeCxS6u273IdMzxRt9bOda6kiDDhyIMSxp903/33logRu/fXhqb59OvUAp1bNkrYn269qiBcyU1Mjy/dl2gNie9l1kt1bL2gWE0HJvVhg+z3pwrr5d28hNSe+2Fd7JcauOSoMvxt8nLHazx/6TA0KS3GlKVbtPJ3xqOfY5rFtOT0WsYN6OToBOPk+OFFkHpkNron9G2Picpy8DqMG9AJm3cfwCVHljl2TAIJ5wCYwmnsgE747PcnoChCCQ2lKRj8mPVeuHQYvv2hAo0bBGvynKY/qLRoVIKK/YkdGztW3D3Wdr+f73/Zpj2xQKxbK+M7eMl8w2EGeU6GghJOxTFvPV2HCON/bdTerNe1VSOs37lfptUbc2rfrBT/uGAIfvrkbNvjfhcu02G/x2B/usNrWT/0Azau44AR3NStQa+fu1K/r1+n5gmrs57Qtz0Wrtulnb81NnHMnF7LYzDfYxoAABkoSURBVEoP30qiRhrArKdpTHHqaOhQXBTBFcfax/BLd2/ZjP4NOGsepw/sjMUbduNUTZMuYKxDZLccuy46Zr13fzkKXzp0VHRXybZ+/yf2bY9PHTpVlVX1gnDrHmNuYOsmDbBjb3VSJrhUT9vQpbCEU1CHiKi9WW/KDcfFLT6mI1cO79bSNVbd/R8u08qbH648Lr7hefFnw+M891LtnWfFalqpcojOoPuRqOV+3Um9cdW/Egfik+0NBtEcEiNh6J0X5xCheY45QB/2m+zcohG+wq6YRgMYYxLz1uzEWwvW+7rWrJXu0fOHl7XWiqF4xEGtfDs0JIuTh6lK9zaN0d3iadiycQl27auJje96YW1DDm7bBJ/K38URcrT6bK2sAmB0fnfsrXasN9c4BBJWSVWUD794fv1E9BwRbSGi75R9rYloMhGtkP9byf1ERI8QUTkRfUNEQ5RzJsj0K4hoQmoexx1Tc9JVnSOW9NYKWlpcFJuMa7fYoLq8caYYO6BjgsfOcX3a4aie9fOd0q85xW87CScvYsUt1H0C/7nmKLx11ZH4+ageuPPM/gBg657u72b+T0lcWVmvoNXxHd1XU++mrHmCJvf9ZAD+fv4g9FVc8RuWFCUss6LDBU+7L6fx5lXpFTh+sBarbjk/LaPp28zJtcVsa8zlTFQheN6w+LE3tT5tl8KpXbPShPyqa3rpWGacvEmz0SHiBQCjLfsmApgihOgNYIrcBoAxAHrLvysAPAEYwgzArQBGABgO4FZToKUTs/dcoz3Pyfiv4xBhTsJVaWQTy86sGxcr5otUUl2rEbQ2DfmIu5/ly/7p0K5JXU/ViqLCWARuaFlr/PH0frj4yDIAQKcWjXDCIdbArPbvyA5rKTbRMNMkLMGuWdCDu7eKRSnR99aT/0N+m80aluDMQV3ievQ92zXVdiq6KI3rO6WSxDEnvXI2pybopjfX3zI9VNWOtJslwRy3NZ1E1LqnaqNuy2qYpwSJmp4KPIWTEGIGAKtr2JkAXpS/XwRwlrL/JWEwB0BLIuoE4DQAk4UQO4QQOwFMRqLASzlDDzLMacPL9CbgFVnNeq6u5Ika2a9O6m2T0kizLwXhcuzQaUTSrTkB9Q31lccejGN8LFutrtNjejY1kUsiAO7mt0M6xk/E9ePtpXpRXXdiL3x4/bHa55oEce/V1bbMuhpWu2L17jPL9dKjynBYlxbaoW4+L9dbCNNcPThrsZSr7iJ9puajm/7msX1x+4/6x8bTVE0nIdyU0t6Y6azLzwDxHSs3ZzDznGwZcwqaiw5CiI0AIP+bLUYXAOuUdOvlPqf9CRDRFUQ0n4jmb926NWD27BneozW+ue1UnHSo3kAqWYWTS6+0OBLvENG/c3Occ0SiRmDWtf016QlNb6r5bqQ7oCOgfGg+bz3TYdziOKkV+XF2LCmK6Lt3K79P6Nve1U3YJHHMKXXlHDP/hHCPBX88Ga9bo6HIAjAXKOzVPnEisBNvzFuLrz0cUi5JkyUhKEHjT/oxt375p1PQuEExJhxVhmYNjc5WE8W70NrxUMfOzbbHbF8WKI4ZbRSTtp1V76bRffHweYNi7UC2eOuFLSLtnkq47E/cKcRTQoihQoih7doF965xwm1CpxWzMugszdygOBKnpdRFBUqKIlhz3zj81mYejo7m1F2jAXTjqJ5tcNuP+numy0RVjC2T4bMxVXvsagW6aXRfHNenXZxmZcWqVfm5t/pR6wrAhOv7eFS/Tpsxbz1/p9nSpmlpQmBjs8EyB8vPHNQ5YdkYJ256+1uc9dhMx+Pjh3fDME1rRqZIXFZGr6R16vmj4wfj7auPihsX/cmQrrjxtENwrbL8vHVu1Vfr6gWQqUWZ3sO79tV78g3s2hKj+3cEYD/efvXxPXHW4C6x9s6qOWVoxYzAwmmzNNdB/jd9HdcDUEftugLY4LI/q7GLSu5ESVEkLsyKVVCZmL/MIKBOPDp+MD749TE+cpvIWYO6aIUvyYTmZN7SrxnKySzRrXVjvPiz4WjiI1xLNCowpLve0Kfq7KI7DynR/Vg3Z/WCVPfVhKg42XLN8b1w+ageMVdvIkqINhGU35zSx3VSazYQNHdmXXETTmcc3hlHWIIBFxdFcO0JveKWdLdeQfXsNT8LJ0+7Ub0NByg3hwjT4cIpMG3aHacCnvcOANPjbgKA/yn7L5FeeyMBVEiz30cATiWiVtIR4lS5L6uxLn7nqjkVReLCrKgCKU44ycpxq4dGc8bhnbUa2pk2YUZi99J0Mcuk5pTMAL7vHp1Mf6LUrkYc3Bp/++nhfk4F4D6o7HQO4FNLNKcoaJZPGOXpRpPSYvzp9H5xGlVYHeoSXVe2DBK0YY4JpxCEr1sn0hQ6Tp52pnelGeTXjtt/dBgW3X5aytbk8ouOK/lrAGYDOISI1hPR5QDuA3AKEa0AcIrcBoD3AawCUA7gaQDXAIAQYgeAOwHMk393yH1ZTcyspzHmJACL5pQ4WAkAl8p4W01LizHjxhNsTX4dmnuPE5l0sQkzcrCsiIdrLvOQSYcIv9/s5aN6BL6n+RaG92iNj39zLB4ZP1h7cqTaEgcN4uHLjCj/+/XWy3IFxJaiLBnjcCPoeKHpGBzGe3G7RjQqECHnNEf3aov3fjUKlygr31opipBth9hcJqjMY/HCsPHsmgshxjscOskmrQBwrcN1ngPwnK/cZZjEqOTOaT9bET9Qb6c5TRxjjIuYdG/TGNed1BsPWkLvJNv7Pf6Q9vj4N321e0DpnoQLqBEN/N370qPK8OznqwEk13PvI3uQuivgqlpo26bBJlT6Upw0pi/EXTvAPbKFVC1QmA2YY3VJz7ND4rtV50DVyeVO3IYgnMJ/eTF+eDecPaRLwjhkqskO/S1LMV++jiu51dSjrhllnq/7ESYboy8qhC/VPBMNWtDGNBlPIrsGXzcQqBDAwe2aYNJ1o9DbxTTiRhAHDL9RydM5fqguWHfzmL7aEeKt2K0am20ELda+HZvh1jP64eHzBiWdB7P+tGhUgjGHdYxZSADjmyfNEGp+IaK0CyaAhZMrZoXUcSW3CpSWSrgS83zdhjDZ+pVti4bZEjND+fvq1TL0G73bLrnu/BMhjM5FMk4AfpYFj5n1NHWnacsMn6TVNuv8pIozB3XBANkbP7xbSzx58dDYKtJ+yAXNKah1gYhw2dE90CZAuZicOagzGjcoiuWgKEIJWlI0KlBElJLYnJmChZMLZsNpui+7CRe1UhzVsw1e+tnw2LapRemH60+ugvmtoJk0Bfltl5LpZZvfsioQtTUnCN8NlGkKPPeIrlh6Z7A5537nYa3aWhnoPkFpKNdUMrN5rku0j04OcfOy3VMPyOxY3t/PH4zFd4zGoTKE1I691SgpisR5rtZFjbqsOzk6F2Dh5ILZiJmODm49vLZN6ntGF408KC7Mv+kn4dQQThzTF+OH1y+JrStb+ne2X3pc15vMJBOu5EHvHXg9HgC79huRm1soMQ/V+48b4BylQAj/Qtx8j3bzhnTP1eWv5xheh+nWms18mgLGSRO1i6CSS2TyGzEZM6ATbv9Rf/z32qOlIKofOogKwyEijGV7sgUWTi6Y7WC1DEzqNt7x13MHxn5bl/o2l153+nCvOq4nxisLqulUsN+c3Afv/HKU7TG/jUAmPrvAY05JCKcdew3hpOvQoGIsux3UtOP/HL9R0Fs3MQRuZVV6Io+Y3H5mf4w8uHXMvOekBfXv3DyuXl91nHd07GxCfSqn9dHSwYSjyjCoW0uUFMVHKI8KgUiEUhqFJN0U1JIZfiEiENVHzXYzKak2ZevYgpfmBMRP2tWRLQ1LIgnXa9awGF1aNooFDdUls2a99GlOfz69H5qULo+LyG5ySr8OHlJapFWI1ztE6N3VHOsZ2DW9y6r379wCr19RH03cKbc1tQJ1UYGmpcU4c1BnTBzTF0f2bIOpmgtAZhr1NWjGjU4p1jGnOjnm1K5ZKZZu2oPbzuiXwdyFAwsnDyJEqK41Qg25aU5qj94qnBo1iMj/zqYdNXq42sM8rX8HfLRoc+L9bLzxWjVuECggaSZcyevv7Y9kNKeD2zXFYxckLg648NZT0bhBEW54c6HjuUHMemGge8uWjRvgo+uPxUFtkgt5lSpqolFEBXDOEV1jIbWO69MubmpFNpMNZj2V4kjE0qE1NKfrT+6NOau2Y9zAzhnMXTiwWc+DkiLCgRrvMaciF+F00+i+uOGUPhhzmPOYhlrR1Ls8efFQrLlvXEJ6u7wE/X4y0ugGjK0X760XTl5aNCpBSVHE9f0KJFG+Ac6Jub37OPmQjs0y4vKr4vRKauqicqJodjXyfnhQRhPJhkewBpqORo1hiCMOao0Vd4/VCvic7bDm5EGDogh2ywjibnOH1PEk65hTs4YlDstn1OMVzeGY3m3jJvqGGTk4kx+b33unsgfr5jUmhH9vvWSodyXPMRx6DDW1Qk4UTXN+QuTHg7tgxZZK/GRIcuuPhUGRZcypTgjtaRG5Qg5XlfSgakFuPeuIi+akQ4tGJXhRcT+38vLlI9C1Vf1ArF1egkYxz0yECPN/EpNqQ4vuZhC25uR3Hlb8ucb/bDMnBaU2GkVdVOSE27gTRISbRvf1tVxIqrAu2R7N8bK1g4WTB2r4eN3xDqvmpH2v2Nov3vcpsnHO+Mf4xPEUHTI5lhLke/p5EvH13HBzthDCvxbjN8pDPqCK42OV8aTq2qh0dy6gwkghxZEI6qICl78wDzv3VsfCF+UTLJw8ULUg3ZcfRHMC6s2GOt+vXWh8df6OHzJZpYOtDmv8D3tKh7fmlF8ff6ppWlo//lVTJ2IeZUzymHV1ytItePWLtYiK1C5mmQlYOHnw/fZ9AIzKoNs4BRVOTmux2BFmLykTje5OuRia27LRTpir0HZ0iDgQFDtt1EQIkVYNyO96TtnGSX3bo0Ujo7MUIekQIXIjGkQuoEZyjxDFopLnEyycNPHTiGovw2DB9LRyCkGiNlRhBsvMZJ02Y8L54aIRB+GFy4bhR4eH6y7rZo0NZNaT/4OM6fXtaET/SPcyBcliarODurWMdXrUUDvJjMMx9ahDBx8u2oRJ325kzYlxplXjEhzbpx0aNwjmBNlc9jQP1Hgv4R5msMxM1ukgIW0iEcLxh7QPXeNz1ZwgAodaCqLlXjiiO9771ai4cZtcQHVSGXOYsTT4IMUTdfnmPWnPUz4ybmCnWMizhet2AQB6d8i8o0aYsCu5JgM01kKZ/8dTktJCmjU0XoeOlhamK3lQM2QY9OtkHx8wEzRv5Pw5BNGcfnR4ZyzbtCeQ6zERBV5/J5M0LDa0/8qqWhzTux2+u/00PDplBeauNtYW/eO43I9ckA10atEI9549AGcP6YKpS7egV/umOKlvsCVLshUWTh48efEREEJgtMsEWpNkx4GaemhcqnkoTLNe4wbFmPq743HCA9NCu6YXr/58BBaur8DPRpWl7Z5eXDj8IPz9kxWxcFUqQSJEdGvdGI+MHxxS7nKD8SO6Y/KSzThbCuSmpcXoKscIP/j1MbHxQiYchpW1xrCy1pnORkpg4eTBaf07pu1eZviRY3rbm3ImjumLa175EkC4mhMA9GjbxDYSRao4qldbHNUrMcZdJmnRuARXHdcTf5+yQjpAKNEoAiyZUYi0bVqaEJD4guHdMfawjkmtacQUHiycsozrT+7jeGzsgE7o37k5Fm3YnfEwNfmKuvqx2gHIVGy9fKAoQiyYGN+wQ0SOYTpLNGLhlBJiwsniVcbCiWHSCwunHMMcDzFXIGXCxXTH3V8d7zHJZj2GSS/cwuUY1THhxJpTKjB9WgbdMRnfrN8V28+aE8OkFxZOOYZp1jNddplwUc15K7dWxn4ns2QGwzD+YYeIHKNZwxLsPlCLUsWsN/k3x7ou58Hos21Pdey3uuJpupfMYJhCh4VTjvHaL0bi8/JtcWa93h2aZTBH+cV1J/XCczNXAwB27qsXVKw5MUx64e52jtG9TWNcMKJ7prORt7Rs3ACvXzESAHDXpCU45I8f4OkZq/DV2l0eZzIMEyYsnBjGwsiD2+CxC4ZgeI/WqKqN4u73lwAAjnWYHM0wTPiwWY9hbBg3sBPGDeyE736owLOfr8Yp/Tpg7ADvEFYMw4QDCyeGceGwLi3w0HmDMp0Nhik42KzHMAzDZB0snBiGYZisg4UTwzAMk3WwcGIYhmGyDhZODMMwTNbBwolhGIbJOlg4MQzDMFkHCyeGYRgm6yBhWfEzmyCiPQCWhXzZtgC2hXzNFgAqQr5mqq6bqrwWermm6rqFXq5cX/OvXA8RQnhHqxZCZO0fgPk5cs2nUvT8oV83hXkt6HJN4fsq6HLl+pp/5apb9mzWC4d3c+i6qcprKsilck3ldcMml54/V8oU4HINlWw3680XQgzN9msyXK6pgss1NXC5pgadctUt+2zXnJ7KkWsyXK6pgss1NXC5pgadctUq+6zWnBiGYZjCJNs1J4ZhGKYAYeHEMAzDZB05L5yIqBsRTSWiJUS0iIh+Lfe3JqLJRLRC/m8l9xMRPUJE5UT0DRENkftPIKKvlb8DRHRWJp8tk4RVrvLY/fIaS2QaytRzZZqQy/UvRPSd/DsvU8+UDQQo175ENJuIqojod5ZrjSaiZbLMJ2biebKFkMv1OSLaQkTfad08Fb7u6fwD0AnAEPm7GYDlAPoBuB/ARLl/IoC/yN9jAXwAgACMBDDX5pqtAewA0DjTz5fr5QrgKAAzARTJv9kAjs/08+VBuY4DMBnGatZNAMwH0DzTz5dD5doewDAAdwP4nXKdIgArARwMoAGAhQD6Zfr5cr1c5bFjAQwB8J3OvXNecxJCbBRCfCl/7wGwBEAXAGcCeFEmexGAqQWdCeAlYTAHQEsi6mS57DkAPhBC7Ev5A2QpIZarANAQxodeCqAEwOa0PUiWEWK59gMwXQhRK4TYC6MRHZ3GR8kq/JarEGKLEGIegBrLpYYDKBdCrBJCVAN4XV6jIAmxXCGEmAGj069FzgsnFSIqAzAYwFwAHYQQGwGjgGFIdMAo2HXKaevlPpXzAbyWyrzmEsmUqxBiNoCpADbKv4+EEEvSk/PsJsn6uhDAGCJqTERtAZwAoFt6cp7daJarEzrtQ0GSZLn6pjjsC2YKImoK4G0A1wshdrsMa9gdiPnTy17pAAAfhZ7JHCTZciWiXgAOBdBV7ptMRMfKXlTBkmy5CiE+JqJhAGYB2ArDXFqbkszmED7K1fESNvsKfr5NCOXqm7zQnIioBEbBvSKE+D+5e7NprpP/t8j96xHfw+wKYIOy/VMA/xFCJKilhUZI5fpjAHOEEJVCiEoY4ycj05H/bCWs+iqEuFsIMUgIcQqMRnVFOvKfrfgsVye82oeCI6Ry9U3OCyfp+fUsgCVCiAeVQ+8AmCB/TwDwP2X/JdILaiSAClM9lYwHm/TCLNe1AI4jomJZyY+DYbcuSMIqVyIqIqI28poDAQwE8HFaHiILCVCuTswD0JuIehBRAxgm/nfCzm+uEGK5+ifT3iDJ/gEYBUPt/gbA1/JvLIA2AKbA6E1OAdBapicAj8HwyPkWwFDlWmUAfgAQyfRzZfovrHKF4f30JAyBtBjAg5l+tjwp14ayPBcDmANgUKafLcfKtSMMLWk3gF3yd3N5bCwMr7SVAP6Q6WfLo3J9Dca4c43cf7nbvTl8EcMwDJN15LxZj2EYhsk/WDgxDMMwWQcLJ4ZhGCbrYOHEMAzDZB0snBiGYZisg4UTwzAMk3WwcGIYF4iojowlVBYR0UIi+i0RuX43RFRGRBcEuNcAql+yZQcRrZa/PyGizkT0VvAnYZjcguc5MYwLRFQphGgqf7cH8CqAmUKIW13OOR7GcgGnJ3HfFwC8J4RggcQUJKw5MYwmQogtAK4A8EsZTqiMiD4joi/l31Ey6X0AjpFaz29kqKG/EtE8MhYMvNLvveW9vpO/LyWi/xLRu1K7+qXU6L4iojlE1Fqm60lEHxLRApnPvmGVBcOkGhZODOMDIcQqGN9NexjBLk8RQgwBcB6AR2SyiQA+E0ZQ1ocAXA4jJt4wGAux/YKIeiSZlcMAXABj/aG7AewTQgyGEZ38EpnmKQC/EkIcAeB3AB5P8p4MkzbyZskMhkkj5noBJQD+QUSDANQB6OOQ/lQAA4noHLndAkBvAKuTyMNUYSz+toeIKgC8K/d/K+/VFMYqxP9Wljf4//buHiWCIAjD8PuZiIgYeQEDM1kzr2FiJB7AOwieQRA1FExMPICRNxD1AoaCJqIILizbBj3CJori/nTwPtHMQFOVNEUXzdT8P+JJU2Vxkv4gySq1ED0BB9Spvj3qaerju2XUE8w4Z4T1R56HI+9D6r6eA15KKRtjjClNjW096ZeSrACnwFGpN4mWgcdSyhDYpf6BHeANWBpZegXsdSNDSLKWZHGSuZZSXoGHJNtdzCTpTTKmNE6enKSfLSS5pbbwBsA58DXX5hi47ArANfDefb8HBknugDPgkDqO5aabj/MMbE0h9x3gJMl+l/8Fdby71DyvkkuSmmNbT5LUHNt60gwkWae2CEf1Symbs8hHao1tPUlSc2zrSZKaY3GSJDXH4iRJao7FSZLUnE+CuV/e9lrF7AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEYCAYAAAD4czk4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXe4FsX1x7+HIkVQUVGkKMbeAUuwBfRnAUs0saGImqiEqLFEjQ2JscQaY9egJhaU2BEV7FhQQQHBhgURFUUpSlfg3ju/P2YnO+/eLbO7s+/uvvd8nud93i2zs7Ozs3PmnDkzQ0IIMAzDMEyRaJZ3AhiGYRjGCwsnhmEYpnCwcGIYhmEKBwsnhmEYpnCwcGIYhmEKBwsnhmEYpnCwcEoIEd1DRJcbhhVEtGnC+8wion2SXJvwfmOJ6Phq3Y+xAxH1JaLZ1b62mhBRd+dbapFB3H8kou+JaCkRrWM7fiY+LJwCIKIBRDSRiJYR0Vxn+xQiorzTZgsiuoSIRujHhBD9hRD35pUmhqk2RNQSwPUA9hNCtBNCLMg7TQwLJ1+I6GwANwK4FkAnAOsDGAJgdwCr5Zg0xiIkCf0GsmilM43JOZ/XB9AawIdxLzQpQ0wyOFM9ENGaAC4FcIoQ4lEhxBIheVcIMVAIsSLgupOJaAYR/UBEo4mosyfIAUQ0k4jmE9G1qkAT0SZE9DIRLXDOPUBEa8VM8y5E9BYRLSSiOUR0CxGtpp3fhohecNL2PRFdSET9AFwI4CjHlDHNCfsKEZ1ERK2c+LbV4ulIRD8R0XrO/kFENNUJ9yYRbW+Q1llEdAERfUREPxLRf4iodVQ+EtHfiOhmZ7ulo9Fe4+y3IaKfiaiDs9/bSc9CIppGRH21+F8hoiuI6A0AywH8IiCN5xHRewCWEVELIupMRI8R0Twi+oKITvfk/yQiWuzk7/XauUeI6DsiWkRErxHRNtq5e4joNpKm1KVE9AYRdSKiG5y8+ZiIeprmnecZwtLbxrn3j0T0EYCdI97ZbkT0jvMM7xDRbs7xAUQ0yRP2LCIa7Wy3IqLriOgrJ1/uIKI2zrm+RDTbyefvAPzH577NnevnE9FMAAd6zv+OiKYT0RKS39YftHMfENHB2n5LJ54enjg2B/CJs7uQiF4Oe2bnnGkZOpeI3nPK6t1EtL7zrpcQ0YuqvDrhw8ps2HOqfDybpIVnDhH9rtFLLCNCCP5pPwD9ANQBaBER7h4AlzvbewOYD6AXgFYAbgbwmhZWABgHYG0AGwL4FMBJzrlNAezrXNcRwGsAbtCunQVgn4i07AigN4AWALoDmA7gTOdcewBzAJwN2TpsD+CXzrlLAIzwxPWKlrZ/A7hCO3cqgGed7V4A5gL4JYDmAI530toqIq2zAHwAoJuTH2+Y5KNz7n1nezcAnwOYqJ2b5mx3AbAAwAGQja99nf2O2vN9BWAbJ79aBqRxqpPGNk48kwEMg9ScfwFgJoD9nfBvARjkbLcD0FuL6/dOnrcCcAOAqZ4yNN95f60BvAzgCwDHOXl6OYBxhnnXF8BsZzsqvVcBeN2Jo5sT5+yA97U2gB8BDHLy62hnfx0AbQEsAbCZFv4dAAOc7RsAjHbiaA/gKQBXaumtA3C1kzdtfO49BMDH2vOOg/yWWjjnDwSwCQAC0AdSUPRyzv0FwENaXIfAKT8+9+nuiTfwmWOWoQmQWlkXyG9lCoCezvO+DOCvhmU27DlVPl4KoKUTx3IAHfKuS9P+ck9A0X4AjgXwnefYmwAWAvgJwK+cY/fArRjuBnCNFr4dgFUAujv7AkA/7fwpAF4KuP+hAN7V9mchQjj5xHEmgCec7aP1+DzhLkG4cNoHwEzt3BsAjnO2bwdwmefaTwD0iUjbLABDtP0DAHwelY+QQuJnyErxfEitb7YT5m8AbnKuOQ/A/Z57PgfgeO35LjVI4++1/V8C+MoT5gIA/3G2X3PSsG5EvGs5ZWFNrQzdqZ3/E4Dp2v52ABYa5l1fuMIpKr0zPeVxMIKF0yAAb3uOvQXgBGd7BIBhzvZmkMKqLWRFugzAJtp1uwL4QkvvSgCtQ/LrZc/z7gdNiPiEHwXgDGe7s5OWNZz9RwH8JeC67qgUTlHPbFqGBmr7jwG43fOuR5mU2Yjn7AtZL7XQzs+F1kAq64/Neo1ZAGBd0mzgQojdhBBrOef88qwzgC+18EudsF20MF9r218614CI1iOi/xLRN0S0GPJjXzdOgolocyJ62jEfLQbwdy2ObpBaRhJeBtCGiH5JRBsB6AHgCefcRgDOdswQC4looXMvrznTD9+8QEg+CiF+AjAJsuX4KwCvQjYadneOvaql6whPuvYAsEHA/U3SuBGAzp44L4RsFQPAiQA2B/CxYwI6CPifWeoqIvrceS+znPD6+/1e2/7JZ79dSLr0vNOJSm9nn3iC6Oxz/ku4ZftByAYQABwDWeEuh7QCtAUwWUvDs85xxTwhxM8R9w5MJxH1J6IJJE3ACyGF9boAIIT4FrIxdRhJM3l/AA+E3Mt737BnBszKkOm7DS2zYc/psEAIUaftL0fjclM6uLO3MW8BWAFpBnjM8JpvIQsYAICIVods4X+jhekGt8N1Q+caALgSstW2vRBiAREdCuCWmGm+HcC7AI4WQiwhojMBHO6c+xpu5eFFhEUqhGggooed678H8LQQYokW7xVCiCtiphWQeaHQ8yIqH1+FNOH1hDQfvQpgfwC7QGovKl33CyFODns0gzTqYb6GbPFv5htQiM8AHE2yH/G3AB4l6Y78W8hytA+kYFoT0jyUxuMzKO90QtMLaeb1lscgKt6JFv5ZZ/t5yMZcD8hycpZzfD5kBbyNEOIb+BP1HlQ69fsCkP1ZkN/ncQCeFEKsIqJRqMzbewGcBFnPvRWSDi9Rz2yS9jgEllnD56xJWHPyIIRYCGmiuY2IDieidkTUzPn4Vg+47EEAvyOiHk5h+jtkf8gsLcy5RNSBiLoBOAPAQ87x9gCWQnbGdgFwboJktwewGMBSItoSwB+1c08D6EREZ5LsoG5PRL90zn0PoDuFexs9COAoAAOdbcWdAIY4WhUR0epEdCARtTdI76lE1JWI1oZs0au8iMrHVyE/0o+EECvhmCAhK+J5TpgRAA4mov0dzaW102nc1SBdQbwNYDHJzvs2TrzbEtHOAEBExxJRRyFEA6T5FwDqId/LCkjtr63zPGkJyjvj9AJ4GMAFTnnsCmliCmIMgM2J6BiSjiFHAdgaslzBabE/CunZujaAF5zjDZBl5J/kOtB0IaL9YzzrwwBOd563A6Q5V7EaZN/NPAB1RNQf0uynMwqy//IMAPfFuG/oM2dAWJk1ec6ahIWTD0KIawD8GbJTdS5kJf4vSNvwmz7hXwJwMWQLZw5k5+UAT7AnITuppwJ4BrJ/BZCCsBeARc7xxxMk+RxIk8oSyArhfxWWo+nsC+BgAN8B+AzAXs7pR5z/BUQ0xS9iIcREyL6DzgDGascnATgZUsv7EcAMACcYpvdByBb3TOd3uRNnVD6+Cdn3pLSkjyD7odQ+hBBfQ2orF0J+0F9DCvzEZV0IUQ+Zfz0gHRbmA7gLUhMCpBPNh0S0FHIIwgDHXHUfpDnoGyetE5KmQcM372Km929Our5w4ro/6GZCjvk5CNKhZgHkN3GQEGK+J037AHjEY146D7JcTHDMmi8C2CLGs94J2fcyDdKZ4H/fhlOuT4cUYD9Clv/RnrT/BFmWNkaM78rwma0RVmZNnrNWIacDjWGqAhHNgnS4eDHvtJQNzrv4ENEwAJsLIY7NOy1MPLjPiWGYmsQxfZ4I6X3HlAw265UEcgdqen8X5p02HSLaMCCdS4korOOdYaxBRCdDmsfGCiFeiwrPFA826zEMwzCFgzUnhmEYpnDk1ue07rrriu7du+d1e4ZhGCYHJk+ePF8I0TEqXG7CqXv37pg0aVJ0QIZhGKZmIKKwGUn+B5v1GIZhmMLBwolhGIYpHCycGIZhmMLBwolhGIYpHCycGIZhmMLBwolhGIYpHCycGIZhmMJRfuH044/A+PF5p4JhGIaxSPmFU//+wJ57AitX5p0ShmEYxhLlF07vviv/GxryTQfDMAxjjfILJ4ZhGKbmqB3hRJR3ChiGYRhL1I5wYhiGYWoGFk4MwzBM4agd4cQr+jIMw9QMtSOcGIZhmJqhdoQTa04MwzA1Q/mFk/LSY+HEMAxTM5RfOLFQYhiGqTnKL5wULKQYhmFqhvILJzbrMQzD1BzlF04MwzBMzVE7wok1J4ZhmJqhdoQTwzAMUzOUVzh9/DHQpQuwYoXcZ82JYRimZogUTkTUmojeJqJpRPQhEf3NJ0wrInqIiGYQ0UQi6p5FYiuoqwO+/dbdZ+HEMAxTM5hoTisA7C2E2AFADwD9iKi3J8yJAH4UQmwK4J8ArrabTB+alVfpYxiGYcKJrOGFZKmz29L5edWUQwDc62w/CuD/iDJeYMkbPWtODMMwNYOR+kFEzYloKoC5AF4QQkz0BOkC4GsAEELUAVgEYB2feAYT0SQimjRv3ryUKfcknYUTwzBMzWAknIQQ9UKIHgC6AtiFiLb1BPHTkhpJCyHEcCHETkKInTp27Bg/tTps1mMYhqlZYtXwQoiFAF4B0M9zajaAbgBARC0ArAngBwvpC4bNegzDMDWLibdeRyJay9luA2AfAB97go0GcLyzfTiAl4XIWFqwWY9hGKZmaWEQZgMA9xJRc0hh9rAQ4mkiuhTAJCHEaAB3A7ifiGZAakwDMkuxImN/C4ZhGCY/IoWTEOI9AD19jg/Ttn8GcITdpEXAmhPDMEzNUl6vAtacGIZhapbyCifWnBiGYWqW8gon9tZjGIapWcornHicE8MwTM1S3hqeNSeGYZiapbzCifucGIZhapbaEU5RfPUVcMIJwMqVmSSHYRiGsUd5hVNcs94ppwD33gs891x2aWIYhmGsUF7hFNes17y5/G9oyCY9DMMwjDXKK5ziDsJVwqy+3n5aGIZhGKuUVzh5Nafx48PDs+bEMAxTGsornLya01FHhYdXwok1J4ZhmMJTXuEU11uPhRPDMExpKK9wStrnxGY9hmGYwlNe4RRXc2KHCIZhmNJQXuEUV3PyOkQccgiw335208QwDMNYwWQl3GKSts9p9Gi76WEYhmGs0fQ0JzbrMQzDFJ7yCqekfU7sEMEwDFN4yiuceIYIhmGYmqXpCCeeIYJhGKY0lFc4AfFMe9znxDAMUxrKLZziaE8snBiGYUpDpHAiom5ENI6IphPRh0R0hk+YvkS0iIimOr9h2STXQxzNiR0iGIZhSoPJOKc6AGcLIaYQUXsAk4noBSHER55wrwshDrKfxBDiaE7sEMEwDFMaIlUPIcQcIcQUZ3sJgOkAumSdMCOS9Dmx5sQwDFN4YvU5EVF3AD0BTPQ5vSsRTSOisUS0TcD1g4loEhFNmjdvXuzE+kQYP+xXXwHXXZf+3gzDMExmGE9fRETtADwG4EwhxGLP6SkANhJCLCWiAwCMArCZNw4hxHAAwwFgp512ilhX3YA4mpMSTsOHp74twzAMky1GtTsRtYQUTA8IIR73nhdCLBZCLHW2xwBoSUTrWk2pf8IyvwXDMAxTfUy89QjA3QCmCyGuDwjTyQkHItrFiXeBzYT64tWcvv/e/j0OPBC48EL78TIMwzCBmGhOuwMYBGBvzVX8ACIaQkRDnDCHA/iAiKYBuAnAACFEerNdFF7h1KlTuvheeQV4+OHKY2PGAFdemS5ehmEYJhaRfU5CiPEAQu1nQohbANxiK1HG2Dbr7bWX/D/ySLvxMgzDMLEo9wwRSRwiGIZhmMJTbuEUJXB++AF47TW5XQUrI8P48tNPwPjxeaeCYUpFuYVTlOa0335Anz48KwSTL6edBuy5JzBjRt4pYZjSUG7hFKU5TZ4s/4UIDjt0qN00MYyXDz+U/zYGnjNME6Hcwsm0zynMpHfFFcHXvPVW/DQxjJfVVpP/K1fmmw6GKRHlFk6mTg5J5tO7+WZgt93iX8cwXlq1kv9xhdODDwLLlsntefOA+fPtpothCky5hZOf5uSnJSVxhnj//fjX1DLXXeeap5h4KM1pxQrzayZOBAYOBE49Ve6vtx7QsaP9tDFMQSm3cPLTnPy0pCTCiZ0oXOrrgXPPBXbdNe+UlBOlOcURTj/9JP+/+MJ+ehimBJRbOPlpTj17Nj7GwikdP/8s/7nPJBlJzHrcT8U0ccotnPw0Jz9zHAundKgWf8uW+aajrCQRNEn7qRimRii3cIrjrRd3hggWTi5Kc1KVLBOPJH1OLVrEv4Zhagjj9ZwKSZBw+uQT4BZtqj8h4mtPLJxcWHNKhxI0ccqU6jtlzYlpopRbOAVpQ0ceCbz3nrufxJW8ri5ZmmoR1pzSoRpRccqhEmQsnJgmSm2a9Vp4ZG4Ss14SgVZ23nuvUqgrlHBizcmM99+vzMckwkmFXbWq8viHH7Kpj2kS1KbmpDqTFewQYcYOO8h/b36pypA1JzO2317+q3xMozl5G2Dbbgv87nfAv/+dLo0MU3BqU3PyCqdx44BJk+LF3RSFUxDKtOTVSBkz0mhOfg2w119PnyaGKTjlrm1MNafDDosfN/c5uShBzWtiJUPlmw3NiWGaCOUu+UEfbuvW6eNmzcklrBXPRGNbc+K1yZgmQLmFU1BlaaNvhIWTC+dFMiZMkA0lNWEra04MY0y5S76pt14SuEJ2Yc0pGf/4h3QmUX1EtjQnhmkClFs4ZfnhsnBy4bxIhiqfJn1O775baa5jzYlp4pS75Ad9uDbGKHGF7NIUx3zZwFQ4vfgi0KsXcNtt7jHuc2KaOJHCiYi6EdE4IppORB8S0Rk+YYiIbiKiGUT0HhH1yia5HoKEk42PlysAFxMT0/PPA+ecU530lA2Vb0Fl6vPP5b8+cJc1J6aJY1Ly6wCcLYTYCkBvAKcS0daeMP0BbOb8BgO43WoqgwiqLLmlbxcTV/L995d9LIxLHLOeF+5zssfUqcC330aHmzXLXUeLyZ1I4SSEmCOEmOJsLwEwHUAXT7BDANwnJBMArEVEG1hPrZcszXqMi7ei/PlnaYpiwlH5pcppkKnYT7NizckePXsCG24YHkYIYOONgcMPr06amEhilXwi6g6gJ4CJnlNdAHyt7c9GYwEGIhpMRJOIaNK8efPipdQ/Qf7HbZjkmnKL1Zt/3kr1178G9t0XmDOnemkqI6aak59wYs3JLlF9yCrvx4zJPi2MEcbCiYjaAXgMwJlCiMXe0z6XNJIQQojhQoidhBA7dezYMV5K/QhqVdpwZmjKfU7eZ/dWlC+8IP/VhLAffFCddJUNr9CJU6ZUGV61ivvyqsG//pV3ChgPRgOCiKglpGB6QAjxuE+Q2QC6aftdARgYeVPCfU7ZEKU56eGeeAL47W+zT1MZ8WpMSfqcPvlE/nSacsMpK045Je8UMB5MvPUIwN0Apgshrg8INhrAcY7XXm8Ai4QQ2dt8svTWa2rcequ7HaQ5eWlosKs1PfYYcNNN9uLLmzTCiYcyME0cE81pdwCDALxPRFOdYxcC2BAAhBB3ABgD4AAAMwAsB/A7+0n1Ics+p6bGaae52yr/6uuB5s2D+z+SrJMVhuqMPv10e3HmSVzh5NfnxDBNlEjhJIQYD/8+JT2MAHCqrUQZw9562SAE8NlnwOabA48+6rbiJ02qNDFxPpuhhE4chwjWnFy++w7o1Cm7+Pv18z9eXy/fGS+ymQvl9lPlPqdsaGgARo2S26+8UpmfzzxTqRGwN1kwXqETJZx0wrR/dW7ePDmzxBdfJE9j0fnvf4ENNgDGj8/uHs895398l114gc0cKbdwytJbrykjBLBkidzu2BFYtsw9p1ekfmY9Nqm6eM16ccqlST6OHCnn5PvnP+OnrSyoSXOnTavePZWwnzKlevfMi4YGOVG23udcEMotnLjVng1CVFaOZ53lbhO5+f7YY43fAWutLmkcIkyEkwrD34FdHvdzSK5R6uvl74xGs9LlTrmFk63R80IAV17Z+FhTJezZ9Ypw2DB7mtPHHye7rsh4hVNU3sR1iGhKZbSaz9qUZuWImvcxR8r9FmwVogkTgAsvtBNXLRBWUL15bktz2mqrZNcVGRPN6YorgJNOanw87B3MmgV8+SVrToD8dm+80W6cTSk/kwwQrxLlFk62CtGKFXbiKRMTJwIffSRne1AzPSj0SvSvf60816xZeL6zWc/FRHMaOtTd1s9HVRbHHNO0hNPUqdI5wsuuuwJnnpk83tmzk19bCxRYOFlYMjZHbA3CNbXv11Il0Lu3u+0dHe/tc9LR+5zUvvdaRpJm+qKosKtWuWGaghnq7rvlb8AAu/F269b4mLexVssU+Hstd6m2NQjXpLVfyxpBnOlxogR0LedTXO66S/5nIZwAnhw2KyFywQXZxFtEWDhlhE2HiChq2T3dm49pNCcWTo3J2iGiqQqnQw6p3r1+/lnm86WXVu+e1cCvTK69diG898otnGx9lE1dc3rnncr9NA4RBW6J5YYunJYvl16OUa3+qHwMayDUElGrL1cLNe6vluZ+DOLHHwvxnOUWTllqTqaTn9YCCxdW7mdh1hs3Drg+aN7gGkf31rvtNuCyy6IHzsYZ59SUqKuT/927Vx6fOdM8jgMOAE44Id59C+xynYoCP0+5hRNrTtmw7rrB56LMekHeT3vvDZx9duPj06fXfge0rjm1aiW3o7zE4gin5csrZ/GoJbz5sHKl/P/yy8rjm2xiHufYscC998ZLR61qpyycMiJIc/JqAlH4vSBvYazlPic/ggqt15Xcm0/bbWd+j0WLgK23jt+KLRu6Q4QS/PPnB4fzbgehhN6ttwJrrhkdfs89gYsvjg5XZNIM+3jxRXvpqBVYOGVEUGvm3XfjxcOakzk2W5A//ST/x42zF2cRUWXnvvuAt9+uPBZEXLOeSeNp/Hjg8sujwxWZNMJp333lDOeKN96IH0eBK/NEFPh5yi2cuM8pO8K89cL246DeX63nrf58N9wg/6NmIk8yfdHPPwNPPhk/fUXGm08rVqSrUJcvd7f32CN+OgpcmSeiwM/DwgmIZ0JpKoSZ9WwVaO8MCrWKX35FlV0Tt3NvmHPPBQ49NJlGUBZWrYouL97+KJ2kZU3l9cKFwOefJ4ujiOhl6OST80uHD+UWTlk5RGy1FTB5cuWxptbnFARRZYFO00AwHf9TdvwqxKiym8Rb75ln5P+PP5qlq4yEjcED5Dpk3btLpwc/kn7H+j033TRZHEVHDRovCOUWTllpTn4zZNd6694Uosq88MuXH34Att1WeuKFoSoKbxy1JqyyEE7TpjUOU8uLDiqECP4WFy8GfvMbuf399/5hlCt6FE1l/F6Bn6vcwoldybMjrM9Jz4s//7lxmKefBj78EPj734Pjv+suoEsXue3N21rTUk28QQHg/vuBvn2Dr9FZuRL49NPUSSsdYZrTww+722ut5R8mqct9gSvxVBT4ucotnLjPqTH/+pecwTkt11zjf/zNN+0UaN2+7c3bpHk9ZUoxPzZT4QQAr74afI2XuXPN71crNDSk+xaTjqkry/cflwKXlXILp2pqTmVpzQ8ZAvTsmV38t91mP04bnpFPPAHsuCMwYoSdNGVNVMPK1mKDBa58EiGE647vdy4KXTg1bx7vvrVIgZ+r3MKJNadiovJzxAhg3rzKc36d9d68/fOf43ucqX7Cjz6Kd50NVq6M/5HbcIgIKpPq2kmT5Dfy+uvx0lZkXn7ZNX16MRnErMbWAUCLGCsGFbgST0WBn6vcwslWxsbtc/rPf4Ddd7dz71rnqqsq9088sXEY73u8/fZ4Y1D84qgWCxbIKYmuuy7edTaEUxQTJ8r/smiTJsyaFXzOZJyYvjwMC6dCEymciOjfRDSXiD4ION+XiBYR0VTnN8x+MgPwWxkzCXGXzPj972XfS5Gx+TH16gW0a5fs3m3aVJ574gngD3+oPFZmrfTbb+W/7bnaTN5f1HpmyuFEpbEWCMs3r3ASwh30rDjvPHc7jnNErQonk+eaOdOd07CKmGhO9wDoFxHmdSFED+dXvQVP9NHeaahFb73hw4PPJVkpOM68ZHqF4BVOQOO0lS1vdZL2e95zj9S6/BDCzjRDq60m/59+unYnLg2ioUF6jJ51lp34kgqnP/2pUiAWjajnWrxYTqrrbVBWgUjhJIR4DcAPVUhLfmTR5/Tmm27naw6tDnz2WfC5uM/S0AB06GAefto0d9tPOKVNTxjVroRV31iSyitoqqGpU9OVGdVoq4XWfpz36dWc0szD5yVpGb3llmDP1yLgLSNeT1+1jtULL1QnPRq2+px2JaJpRDSWiLYJCkREg4loEhFNmuftKM8T25rTzJmyT+qUU+QktK1aAU89lTx9pugFLeyjjvuh1dcnr/Rbt44OU6ZK9NtvK9M7ZIj8/+yz+KbeoLxJ6xl6zDF24qkmw4f7LyMSp2zoA2zffFOum2WLMpXROHi7RryevjmutmxDOE0BsJEQYgcANwMYFRRQCDFcCLGTEGKnjh07pr9zUZZp955THmkTJgA33ii3x4xJlrY46OmYNSt4TEfcSquhIVvhFMWMGVLQ513ZTp8u+3HUO9VZtSq+k4xa28kvLhOi3kne+WXKokXSbPR//5cunqFD3e1bbrE3Ce6mm5q/kzJRVweceWZ4mDILJyHEYiHEUmd7DICWRBSyWp1FbAmnNJrTZ59Jr5+HHnKPqRc5fbrbUV6NlpeexkcfBQYOlNuvvVZp4gjq6wiLN2nhtPGOjjpKevDZGFycBjU90FlnyfxIa64dFuA7tNtuZtcnXZW4aKjnSDv90uLF6dPix+efNx4SkYT775fPesAB8vvMG5NnUvWWrbo2BqnvSESdiGTpIqJdnDhj1n4JqWaGBX3oqn/lkUeql5YgvGkcOxZ48EGgT5/KaYa6do0XrxC5FM7/UZSlNbx5oOzxSUk7JivqnZRBc/roI/cbMtFO8nLssHHff/xD/o8dCxxxRPr40hI0/6CO+uaKqDkR0UgAbwHYgohmE9GJRDSEiBxjOw4H8AERTQNwE4ABQlTJQGsrw0ySGzZPnEkc1Xi53sr7p59c7en999PFm6e3lxrJr55v3jy5eq7jyEA9AAAgAElEQVQtb01T8hTQSQgSTkVoSCm22Qb41a+CzxfFyzCtoBeisaay9952NLKkRH0/P/0kPR6B8PFlGWHirXe0EGIDIURLIURXIcTdQog7hBB3OOdvEUJsI4TYQQjRWwhRvQFANioLUy1iVGBXmhn19cCzz2Zr3gv7gNLcN41DhA3Ue1bPd8EF0lz6wANumGq0h7zlLe+KM+yZw+agO/JIufrwnXdmky5bLFpkPot4FMqtPilp+5xuvbXxeLNx4+RcmDa54gpgvfXMwkYJ3LZtgYMOSp+mhJSsKejBhnBKU6kJ4V9B+R27+26gf39pd86KrMxeDQ3J89qG0PCa9fKyg3vvl7eZMez+q1aFVz577w0MHlwZ5pFHZIWUdHJU26y1FnDHHXbiUhaEpHiF06BBcuyfqfAM8ta9+GK7jZyhQ821sZEj7d03A1g4pUGvHPSVMpcuDQ77ge9EG/bT4yWNkEhj1ktTgX/3nZzkM0g4VVtz8U4UasPjNA1hwmfFCjNTlKp0Fy0CzjhDmnKKPKPEtdcmuy7OJK9+eIXTiBHAvvs2np4rKa++Kr1Sq8ntt1f3fjGJMblUASmi5hQ0WFWtIPtDhuOZwyqjN96QlU7nzvHj7dgxH+G0zTYyv9REnybCKUuBlXdjyEtYq33FCrO8X7VKuvvr6x/V4pietOUiyKxnS6CYruPVhCjY1xYTGxVR1LLPUdf6bfuhPv6FC5Pdy4SoyuiUU5LFe9551RdORK4g9/Y5FUVzypuwxsg55/iv6OzFzx2+CBWk7TSkdfsPEk719WYCqgh5qvj++/SeplWg3MKpmoNwg64zrSDz8NbzknQcyBFHJM/rpF5Oen6pe0+aJP9zHBhYKMI0p/vuM5spvajCyXZ/XtqpjIKE24gRwGablcNtX9Gpk7RKFBwWTtXSnKpB1AeSdIlqIB/NSaHe8/nny39dOAkhBzSqfr4ol/80FOEd60yenD4OFk5mRHnr5TF/ZhhR7/Drr+PHWWUHIBZOaYRT3uN/vEQVnjSqfB59TgqvOU331hs3Tmp2ese0jcp17lxg223lPImKvL3zvNhIz8qVjSveIjyn7TSkdQU3FU6dOwMnnZTuXjbI4h1WWTsst3AqU59TNYgqkNOnJ487aV6//HLyewbdWz3nGWf4z8dmY2zMf/8rByDqy38UodK2zYsvAhddVHmsDGW52pgKpzlz5LCRr77KPk1h1IBwYm89wE6fUxE+6HPPzS7upHn95JPyQ1lzTemubIoukLwmE5XXQZ6PdXVAy5bx0hl0f/0jt/XBK3NkEfBzkilC/4ltN+e0+R0lnNZbD7jrLnd/o43yfcf19em/Ab84q0i5NScb3lNpNSdViX36aXTYrMlyWpo0WmpDQ/yCrd/vnXcqj0cNHlQVycyZMvzo0fHurd/fZOlvHZP3XBTBFIStWRnScPbZduPLWjgB4YsKVns9pCw0J93EXQXKLZxsmfWSvki9wH/yiVnYvPuo4s5Q8fzz8j9P4RRH4wLcimTiRPn/4IPxrgdcTTGucCqaOSoJeWpOX3wBnHpqde955JHRYUwcHmwsq/HNN+njALIph4cdZj/OEMotnGy1QNM4RJgWgqK0lsePNw+7/vpyFDxQfeGUhnXXlelV62olMUkmNevVgnDKU3M69ljgttvsx+v3/TVrJo/ry90EYSJ4fvopfrq8bLFF+jgAOeA+7az3Xmw8XwxYOKU165lWukXRnKJMoVde6WpLLbQuyTT9e2k1p6S89FLyuPw0pzlzoq8rQn9NWvJ8BlvCfdCgyn2/b7xFjC5309k20pJmuIfOFlv4j2WKI/i33bZyv8oNbBZONoVTWOG0+WLffTeeBqQTJZx23hno3r1x2DTCor7ejnBS6TJFVShpNaepU+XyAr/7nfk9w/jnP93tLLSEtERpTjNmAD16xF+00gRbjbd//7tyP4lw2n57d7sWNGIgnsnU+93YMjma3r6qd7NN2gq/T5948XjDefur1lkn+FqbhbtXL2DPPeUKt2+9Fe9aP+GkO1J06OBWEDaFkw3iznCh7ptEOKlrfvgB6NkTOP74ePcMY8st5X+bNnJV1KIR9QxXXSUXCHz8cfv3tiWcTLQiPYzfe2jVyt2upnBKO2DYj4ceiv++cp6uq9zCKe6Krl62285fc9pjD//wXs3onXeAo49298MGudpYUXLq1ErPsz595JLekyebL3PgV+D0yrtDB7dyCjLrLVkCbLWVebqTmDv88inupLlp8lxdo+6ppk4yvWcYbdrI/2bNklUATzwR/5o41NXJb+LKK/2XTk9rol5tNeC3v/U/l5XZ268Bquf9I480tkbss4+7XU1TZ69e9uMcMCC+Q8P++9tPRwzKLZyeesrcE2vEiMbH1HgTb8ENqjC8LZpzzjG7N+DeI42217MncMghjY/vtBPwhz+YxeGnRejH1l7b/RCDNKd27czupUginGx0vtoQTmoF0Natza4zqcRUXM2aJdPqNt88/jVxqK+XJpwLL/TXKNIKp1WrggXsl18mizMKv0aD3vhq2xbYemt3v3v3ym81iXBKKtD8HBkef9xsIl9bDBsG/P731bufD+UWTuuvX6m5hPGLXzQ+FjSANkg4ef3843g1mQqlOXNkuoIWJwviTcMFiP2eTT+25pruc+kfr27i0Hnooej+LxsdxUmwYdZTwilqJdWDD5b/en9SECovk2hOZ56Z/dIdQ4e6ZWD5clmx61prls49s2fbjzMIr+nPW8bTDsC2We4POyyetULxxhvA2LHxr1t//fSrB6ek3MIpDhtv7H/cT3MK+vh79KjcjyOcTFvxajLPuMs3m9qpw8x6e+4p//00p6AlyrfZBth99/B75iWcbDhEKKLmJezXT/5ffnl4uIsuctf8SiKc9tsve+E0eXKlALriCtmf+t138lhc4bR8ef5ejCYOEW3bAg8/7H+Nn3Bq3VouEhi0lHle5V5njz2S9WsS2Z9hIiZNQzgNHy6nifdiatZTfQRe4iw0Zqo5+QkGE9L0Oalj6gPcdFP5f8klwfGsvrr896son322cj9v4ZTGlVwR1Yo0fV+XX+6GDTLrBWmixx4L9O9fnUUPp06V/82auR3pe+xRKWRM83X11Ru7dhcBP/O0btrTBZKfcP3Nb4Bf/UpqGX5k4dgQxA03VHoXpoWFU5U4+WT/46ZmvaDVbeNgahbIWjiF9Tmp//btZZ4cemhwPI8+Clx6qet5puOtyHUNM0iDzQKVl2n6nBR+fX2Ks85qnK/eyVR1VFgi//e8++7+9n41d1s1Ko2BA+W/ng+ffy4Xy0ziQj5yJHDZZfm5zvs1Dp9+uvEx/X34mfXWXts9FqUNppkfsK5ODiL/5BOzuuPpp4H3309+Py9EbNazgr7EdFz8pi/yVhi77ir/jzkm3X2A6IoyqSnKVDiFaXBxCuOGGwIXX+z/PN6pXpTmdPXVslP31782v08a0vQ5eZ/rmmuCw66xRuPwYY0LFTbMIeLuu4F58yqPqT6RalQayiGFqPLZli1zK/W4Qn/YsMpxNq+8kiqJsfAr93790EHCSZWlu+9ufD4oH4YNi5dGnaVLgR13lI0/k6mTbJtNWXOyxOTJsuKLS5BZz1thrFwpK+M0lULWZj1T05lfIVbXpnm+b75xP9ztt5dTCCnUx9W+fXVbY0kF/ZNPxmvht2rVuILS7zlihP9o/SDNSRF0rpqVhjfv9LWK0jpE7LVXuuvjoH9/Q4cGh9O1Wj/htNZa0mqgH8uCJUtcN34T4WR7yqkyaE5E9G8imktEHwScJyK6iYhmENF7RJSBk34Ev/hFMq3GVDitWCGP2SiMRHIJ7aCR2rpwGjTIzmSLuh39vffcbVVhmgqnTz5xvde8dO4sTVFCABtsINezufXWyvhVZVutKZyS9jkdeqi59yMg881bZvT9gQPloFWVD/piiUUXTgsXyhlJFPrs2nlPxRUH/Ru/7LLgxqL+TH5mPb1BYWPsYhB6v22WmlOXLv7HiaTDyBtvJIvXAiZNynsA9As53x/AZs5vMADLC7EY4ldArrkmfClr0z6nFSvkMRujxIWQsw0Etcz11v6IEfZH4StX3fHjgSlTZAtNFf6oSm/zzeU6NSa0aSPNXUD+wilrB4JOncI1J0A+u/IO09MVlrYg4VTNFq3XtKhj8h6zmI+tY8fgc0cf7d+wSDILjF7WdUGk3llcgRBn0oDBg93tLDWnoPKn3u1uuyWL1wKRX60Q4jUAYUPzDwFwn5BMALAWEW1gK4HG6B/KtGlyBdZzz40ebe2nOXk//pUr5UusxhQmQWa9sErChPXWk/+qFdysmXzOdu3smPX8UAXfK5yqRZo+J1P+8x9ZIUYJJx1dOIXlSVAcOfcF/A8T4ZTFN6PHOX++/H7VJKXnn+/2EeskccQ46yx3oL3uXLPzznJ7yBD/63TrhE7SWcKz1JyCylg1PEIjsJGCLgC+1vZnO8caQUSDiWgSEU2al7aybRy5u7399mb27LhmPRsfWlKHCCVckt5z1KjgdJhqTnFRz6BadWUx65kyaBBwwgn+GlDYx92lizRDP/64uebUvr3/ccXrr8vZFe67Lzg+tfyJLb78Urbww1rtWWhOfvNZqnwM+kaTDGBt0QL44x/ltt7Q2WAD+VwHHiiP6eWrW7fg70h/h3FQLulhZSWp5hT0bfgdNxlgbhEbwsnv6XxLpBBiuBBiJyHETh3DVPNEqYhRAY0cKVsxQWY9b1wDB9rrcwpj2TK5Dgtgv+XSuXPlvv6M6l3YnhbHqzlVuzUWJOjnzZPPn9ZbTJ/5Oo7m1Lw58MADctopL9deWxlOodam8rsXIL26Ntyw0tXZS9CckUm56CLgzjvD+yWy0JyUd67+PFHCKWkDxbuuV1Q8e+0VboFQ4wPjoKZ0Cqszk9ZNcYTTmWcmu0dCbNQWswF00/a7AvjWQrzxiFP4BgxwW1ImS2acdZa9Piedujo5x5gqWLvu6noS2TaBhVWeBx4IPPNM+DLTSQgy64W9K91VNy1BZj01yPWGG9LFr88wEEc4haF7w+lxRJUHv/WnvChzlG3CNO4shNMLLwDXXSe1RYXKt25aVTRlirttWj8owaIac97+Jb949GNRLth+4wKjUKtshy1EmFWfU47YEE6jARzneO31BrBICGGwKlsBCDLreV+M6gS1bda7+mo5O/N118l9fRBdUuH0j39E39e7TySnOLEtEFXBf+cd+e8VTtdf39jhI6zlHxf1vlatkuN2Dj9ctvKXL5fH27a1d684Zj3TeMIqCO/UO2Fhzz1XVt5+pm4bpr6shdPTT7sDkAFgk02As8+uDHPKKfI71rWLnj3j36tbN9mPqMqlytc4/Zdh+RFngUOFGnMWppFVQ3OqMiau5CMBvAVgCyKaTUQnEtEQIlK9gWMAzAQwA8CdAE7JLLXhCU1+jYldPAuzntKSvvrK/35J+NOf/I/batnHQd1Dmaq8wq9rVzkFjI7Nfi9VMd54oxREjz0GHHGEu9poUuF0++2NO71t5a/pdd5KTl3nVyFfc400v/nlrQ1v0KyE0xprSOemAw+M9hqzWZmecILbx6vi9fabht07LD+SNACVcAoTbLrmtP325t+RKjfe5TEKIJwixbgQInTabyGEABBjecWMSCqcGhqiNScgW4eIhQvlR6iTVIvxK8DeUf5B6bCN9xnUvkqj38DhJC3LIPwaEy1bptecBg8OnghXkbVw8uatuq5LFzk3ot+8j35lKu7yJ36ElaU030y/fu58cXlVlipfn3yycj8M25qTmv0lrE7wznn47bf+fVQbbCBXPgDkeK8HHpDb3rAFEE75+wvaIunkng0NjT+ggQOBRYsqj9nsc9pww8r9Bx9sPON5UuFkqqZXo/D5jfUB3Nkj5s9vfI1NzcnPDr9smdsSTSqcotbEApLnr6lwsnU/G4RZFNJ8M/r7yev54kxLpfCW4d12cwcvJ/FeVOU17N56WSeS35jfuKru3eX/qFHScuOdV1NRgOEKFpupOWNSaB59FPjwQ3dfCSe9wHzyib/Xms1xTltu6W/K895PMX16vPiff14uraA4+eR8zXrefdVp7bfsetaa08Ybu2a9JJ5TQVRbcwq7X7Ur8qyEk+qLBYojnPzeT5RZ75hj3FV1k8zQrzSnsDzwmy3er49Kn9fRb19hsz82IbWjOZlI+sMOq5yMsXnzSoeIP/852J1a9TlNmJA+rSYfrC5s9emHTNA7uW+/HTj99GJpTqefLgc3nnFG42tsttj8lnXfZ59sHCKyFE5+s3Lk8T4B//FCu+wSHD7NOCc1hgnI36wXtO9FiMYNZX0RwzTCKaze0DUnlUa9gaq4/HI53Ztauy1Ic8p5Xj2gloRTkszU3URbtgz2dANcs57f6PO4mDhW2PKcC5oNPQ/NST1TmzbSScJvUKLX5JmGpUsbH6uvd4VTUJnx+6j33jv8Xn6V2NdfA3PnRqczLJ4PPvCfgius0oyqyIPy2ESQhM1WcMMNjWdBMNWcogao2hBOW24pPUTjYGLW08OoMXQ6unBK4vJ9773yP+z9+GlON97YONwuu8ilT9RYsSDNiYWTRZK0uHXhFFX4bZr1TOKxLTyKpDkFsXBh8ESUtqirc816QR+73/GXXgqP10/4d+0aPnDSJJ5ttqnUIPT4g/Z33FH+jxoFvPVWZbhZsyrH/3iJGmcWJJxGjpTjAXv3rjxuUtb339/fxKtjo7xOny7TGIe4jTq/9x2kOcWZaw+Qefn888D33zc+5+1zAqSA8S6UGuRI433OoAUUq0jtCKckhVe9qLo6M+Fka1byrDQnv0pMfSxlEE5rrin//T4MG15lgJxMV83CEfQekpiibGmmpu8l7H3edZec/PSQQxoLi402Ch9LdnSoc67UBv1QXl9KK1WYCCcT82pRzHphmtPBBwM339z4vJ9wmj4d6NPHPW4yofKnn0pB7hWwQlQ2GvS88qY/aAiC+t9iC2DcuGTTPVmmdoRTEvLSnEyE01VXxYvz9tv9vd/Ukhu2BonGIa5wUnhb+7vtJmdPf/759GmaN09OCgxI5xg/QRQ1EbAf1c5ffdbo/farzNu2bcPNz+pavdJUJDUnB3mUmXwzyjFl3Dj3mFdIFtkhQrHvvu5M/LoGqufzX/4i/7t2rYzLpLyo4QEjR1YeX7iwUiPzDrDXCdKcVBlv2xbo2zc6LVWAhRNgJpxsuZKrsVVRxO04VaYcv/vp/97jWeL9EMI0En2eOe9S7uq6qNkMrr7anerFhLvv9rfLB72fQYMqF1HUqXafnop/0CDguefiv8/77pP9WV6SCielMSURTkpz6tsX+O47uVrygw9WhklaXidO9B/zZYpJn5Pqv9G9P/XvVxdOJ50ky3O7duEaThT6t/Tdd5VpC4s3qB5Qacxiot6E1I4reRJMzHqq8ziO5vTYY+GLBGYxgax3XJaXIjhEBC0lr5YkSUvv3vEnr/Xzvgz6QMNm/M5LOCWttAcNCo83LkGzGJh8M/qcjuuv72/W7dRJTr+klrAwJcyT0AST9zp0qDSVHn+8e0w3s6mBxGFx+8W7116V2qROfb2b10o4de4sza56vKZzMrZuLf8LJJxYcwKCNafly6WdV4U1ESrNmsn58oIYMQKYNCl+WsPYccfG86aNHeuar4Bi9DkFCaeWLcM/Ir8PZt115QS+3mNx8Xun3vuZTm8Vtm+bII3YVrz6BKpAtPYRZNbzmqC87LyzdG2OonVrWZ4POCA6rE1MTNOtW8thKPo5XSj69QUD0cLpyCPdba+Hpa6ZKeGknIn0eHXB6LfsToE1JxZOgNSc/ApHmzbuS/Mz6/m10tXLtekSHcU55zT+aPr1qxRYRRBOqgKzQUMD8K9/yc7/N96QHcWbbSbPeStWABg9OjgeL0mEUxrNyW/pDNP7ZSEEn3qqcb/fJpuEXxMknC64IPy6t9+Ol7Zqk/S9/vKX0WGi+px0zz81s4NC18zUcIVOneS/nmZ97kS/hhgLp4IS11vPW5H5tdTVyx0zJn36TDFZKbMIZj2TD1ahPPeAYKeFNdYATjxROgU8+6w7nMA7TyEQPJDZRDh5KwY/0uRvkgo6rVkvjIMOqnTpN3l+JZwWLKj6onSZkuV3EyWcdE3He17/5tVihMptXA/boYO77VfWlQu/EoQsnDIkTp9DXG89b8vj0kuj464GSYRTtTWn+++Pp01eeaX/cbWGT1hfhv5BKoKmRYoy691xh9mihGnMekknLU56rZfttgs/r0/5FYRusr38crP7DhxoFi5PknqcmqC/u/33l+Z+NQcfEC6cdLOe+hZUGQ/y1vMr62rMlGqAsHDKiOXLK9dEiiKOcGrRonKg27bbylkD1ljD39XYdCS4riH4EdZ/pTAZA5S35hS3Ep03z93WPxhlQ4/rORkknKI0pyOOMBsYXDaHCJ0JEyrz24vJOCTdZEskG27fRqw5emr+ixlEkuV7VbNiXHKJ9DTdcUc5vZbqo9IbWd506A1SJXSU4HztNf/7+Qmn0aOBP/zBtQKxcMqINm3iTbsRx6zXqlXjAkEkveSeeaZxeDULQRR+U+XoRH0MN99c2XEaRN6aU9yPOkgbbN9eTqTpl+dhBLV4o4RT0kGx1XKIsHGftm3NnElUx7sfesW3YAHw17+Ga0ZnnNF4gHARSTIruSl/+5vMpwsvrGw8TZgghznorune9/zxx+62ynvvAGiF8vjzE0677iqtAyr+Agmnpu1KHkdzWm21StNF0KA3hcl0Sl9/LReCC8M7/YiXk082q6DyHudkSzgRubMRxCHoo/P7YHWBlXQJizJpTkGMGFHpaRZ3SpugyhKQFXNeA2vjkOV7bddOak1eNt1U/vSy6b1v//5umfZqTl7UgOwwb2P1br0esDlSW5pTXOIKJ30iUV04+VV8O+4oTUJBPPJI41Hifqy1ln8BVpi25Mpm1lOdvEC61pxy6W3dGvj97xufj9KcTO9d7Yo2K1dynYEDpddnUsLKWAHWCzIiS80pCtPGXUND+FAXlddhkxevs450jlCrcxeApi2c4pj16uoqB7rqwknvX9LXoHnwQTnA0M8RQNmbTQq7n5ebqjRMP5aokeJZkMasd/jhdtLwyitySfUOHfxdzKMcIkz7trz5uWCBcRITUQ3NKS1h79zmul1ZkkejziQdOvX1Ml1B/dzNmkkz4GOPhd+jffvg51PDNKpI0xZOcTSnhx6q3NcLgto+4ADg7LPd4y1ayDny/Exz6uM0Kex+YW66yUyoKvLWnOLeT603A6TTnNq0cb3R/KaEitKcTFv43ufLWjhlOc7JFrUgnLL01kuSDjVprz7It75epivMbLfFFskX11y5svFSKFWgwCW7CsQRTt5KTK/oVKEI+uD8Bp+qQh5VuRD5h2nRIt6HkrdDRBFa+H4tyyDNaa+9pAt11DpDCu/zqelgsqIaZj0/dO/SqLWRwoY4FFmo6qRp1I0bV+kangZ13y23lJYU3ZNPCacka0WZ0LJlLo2JkpSQjIhj1vNWYnpHsSoUQS/Qb9qetJpT3BZc3sIpTWVky4MojnBq0ybeCsTe/BwyJF7a4qK8tUy9Qm2hL5541ln+M+ErlizJPj1Zk+a76dvXXZ49KWuvLU3cqux26NB4WIuJ5lRCmrZwUhXmqlXRLQP9xffrB7z4oruvCkqQwPDTnNIKp7iUzayXBaYzvQsRX3jrz/fjj9VracZdaTct3qEaQfPGAdELCDLRLFggnad22EHuL1smNRnvINwsNaecMKoxiKgfEX1CRDOI6Hyf8ycQ0Twimur8TrKf1AxQFcqKFdGVyQYbuNtDhlQuDhalOY0Z03jMh6lw8q7Vo4jbSmLNyX1Pt90Wfb+46VX52a6du4RCllx0kfwvsnbSq1feKagdLr1U/u66izUnBRE1B3ArgP4AtgZwNBH52TseEkL0cH53WU5nNqhK/+efozu+n3jC3fYu0hYlnPbYQ44Z0TERTt98Axx4oH+YtMKp6K7kWaBam/p78hN8DQ3x01vtPiA1yWfUUilZMHQocO210eG8/W7nN2rXlgu/xRmrRYsWwMUXywl4vZqT8tbLy1kjI0xsD7sAmCGEmAkARPRfAIcAqL77hm1U5blyZfTMEl27utveQhrlEOGHiXBSnfF6mHPPlbNwx531vGyDcHWSaE6XXdZ4KYa+fWXLs2fP8LjTmPWqJZyUB2IOLr647DKzcKqvtXNnYPBgORvCrrsC48dnl7amQJDmpKw7+vpYJcakxugC4Gttf7ZzzMthRPQeET1KRD4DSgAiGkxEk4ho0rywubyqhapQTDQnXfB4hZO6Vi3RbIKKL2ygrp8A69NHCqc40zT5USazXhKGDpXTHOkMHCjnkItaoiKJcKq2Ztinj5wo9IwzqnvfOKi+1vPPl4IJAH796+hZUYqKjZWwbRDU56TWlPrjH/NLm0VMagy/r87b3HwKQHchxPYAXgRwr19EQojhQoidhBA7ddTXKskLVcGrTsYwwoTT0UdLe7DpbMz6vbfeWlaGv/lN4zAqTUGzDKehTGY9m/N9mcwhl0Y4VVNI7bhjMRxNggha46lsKOenojxHkObUo4c8rveHlxiTkj0bgK4JdQVQMd2wEGKBEELNN3MngB3tJC9jlJBZtizaJBcmnJQ9OGp28OOOc7e9ms8FFzQerKs+hiwqvFrXnEyxbdZjXGpFOP3f/0nNz7sAY1749TmVPY99MPmi3gGwGRFtTESrARgAoGJZUSLSXNnwawDT7SUxQ5SQqatLpzmZcq+mUHqF0847N54o06+CjFpiw5QyuJKfeKL8z3KmZFvCqQgOH0VD9TnVQsV5ySVSMykCfppTDTaOIp9ICFEH4DQAz0EKnYeFEB8S0aVE9Gsn2OlE9CERTQNwOoATskqwVXQBUQ3hFHTvKPSCt/vu6e8NlENzOu00e2mJQ1nMevAt7FIAAApBSURBVEWnVjSnotGiBfDll7IrYPnymtWcjNzLhBBjAIzxHBumbV8A4AK7SasCupCJMuvplWu1hZOq8Gy23Mo0fVEemlNcYVqDLdfUsHDKBtWQHjUKeO451yGixmjaX1QczUmvXPMSTjYpg1lPmTC33dZOevywPc6pKaOvwNqmDQunrNAb0kRNW3OqWXQhE2d9magFAE1IUphsahDVHudkOnWQzsYby8kz9RmYqwGb9ZKhj7lac0135dwarDhzRW/YDh8OjB3rTm9UQzRtzUkXTiYzLrRpA/z2t3Y0pziVmAprUzhVW3NKOq6tb1+5jHg1SeOtp5Y0iMt33wGzZye7tii0aOGOZ9Inzf3hh3zSU6ucdJLr+Tt2rPzP0rqQE01bc9LVY5OWx5Il+fQt1IIruT7FfxFYf33g++/98yGJcNpkE1lhnHBC8vSUnebNgWHD5Cwmal69Vq0aD4Zm0rHVVtLzd+BAOSB/s82Agw7KO1XWadrCqUMHOXh2wACzaWDyNk+k1ZzmzzcbhGqL5s3lnILLlgH77lu9+5rw7LNyGiO/SVqTCKfVVqscKtCUGD0auOEGdyXV1VcHevcGPv1Uasyma2Ix8dhvP/mrUZq2cCKSg2erycsvA++8E3x+l12At9+uPKY0kLTCaZ11svV888M7G3tR6NFDTsgbtJ5TU+47isvBB8ufzvDhrsBimAQ0beGUB3vtJX9BTJwYPElrtQVLrdO8efAy7ewano5WrfKdxZspPfwFlgkWTnZp1sxfc0riSs4wjFVYOJUB1pyyQa0eqqbZUbBZj2Fyh4VTGeCKMhuaNwcmTJBDBHQNioUTw+QOC6cyoDqVt/ZbgJhJzJw57vbChe42CyeGyR12iCgD3boBL71U/ZkSap333nO3f/xRejMCLJwYpgCw5lRERo4E3n238tjee0evF8XE4+9/d7fnz3e3WTgxTO6w5lREBgzIOwVNg/PPl/1O550H7Lqr7HsaPlya+1g4MUyusHBimi5EwF/+ItfEeeklYPx4YNAgeW7PPfNNG8M0cdisxzCXXAK8/jowZgxw7LHAq6+6QophmFxgzYlhFP37yx/DMLnDmhPDMAxTOFg4MQzDMIWDhRPDMAxTOFg4MQzDMIWDhRPDMAxTOFg4MQzDMIWDhRPDMAxTOFg4MQzDMIWDRE4L2BHREgCfWI52XQDzI0PFZ00Aizhezt8qxJ1FHnP+upSpDNdq/m4hhGgfGZMQIpcfgElliNOJdzjHy/lb1jzm/M02f7NKb63mr+k7YLOeGU9xvJlSxnwoUx5z/mZPFult0vmbp1lvkhBip6LHybhw/mYP53G2cP5mi0n+mr6DPDWn4SWJk3Hh/M0ezuNs4fzNFpP8NXoHuWlODMMwDBME9zkxDMMwhYOFE8MwDFM4Ci+ciKgbEY0joulE9CERneEcX5uIXiCiz5z/Ds5xIqKbiGgGEb1HRL2c43sR0VTt9zMRHZrnsxUBW/nrnLvGiWO6E4byeq6iYDl/ryaiD5zfUXk9U5FIkL9bEtFbRLSCiM7xxNWPiD5x8v78PJ6naFjO338T0Vwi+sDo5ln50Vv0m98AQC9nuz2ATwFsDeAaAOc7x88HcLWzfQCAsQAIQG8AE33iXBvADwDa5v18ef9s5S+A3QC8AaC583sLQN+8ny/vn8X8PRDAC5CrV68OYBKANfJ+vrx/CfJ3PQA7A7gCwDlaPM0BfA7gFwBWAzANwNZ5P1/eP1v565z7FYBeAD4wuXfhNSchxBwhxBRnewmA6QC6ADgEwL1OsHsBKC3oEAD3CckEAGsR0QaeaA8HMFYIsTzzByg4FvNXAGgN+WG3AtASwPdVe5CCYjF/twbwqhCiTgixDLLy7FfFRykkcfNXCDFXCPEOgFWeqHYBMEMIMVMIsRLAf504mjQW8xdCiNcglQIjCi+cdIioO4CeACYCWF8IMQeQGQgpsQGZcV9rl812jukMADAyy7SWkTT5K4R4C8A4AHOc33NCiOnVSXk5SFl+pwHoT0RtiWhdAHsB6FadlJcDw/wNwqTeaNKkzN/YtLAdYVYQUTsAjwE4UwixOKQ7w+/E//zlnVbodgCes57IEpM2f4loUwBbAejqHHuBiH7ltJaaPGnzVwjxPBHtDOBNAPMgzaZ1mSS2hMTI38AofI7xOBsHC/kbm1JoTkTUEjJjHhBCPO4c/l6Z65z/uc7x2ahsUXYF8K22fySAJ4QQjdTOpoql/P0NgAlCiKVCiKWQ/Sa9q5H+omOr/AohrhBC9BBC7AtZmX5WjfQXnZj5G0RUvdFksZS/sSm8cHI8vu4GMF0Icb12ajSA453t4wE8qR0/zvF66g1gkVI/HY4Gm/T+h8X8/QpAHyJq4RTmPpD26SaNrfwlouZEtI4T5/YAtgfwfFUeosAkyN8g3gGwGRFtTESrQZr+R9tOb9mwmL/xydsbJOoHYA9I9fo9AFOd3wEA1gHwEmTr8SUAazvhCcCtkJ437wPYSYurO4BvADTL+7mK8rOVv5DeTv+CFEgfAbg+72crws9i/rZ28vUjABMA9Mj72YrwS5C/nSC1pMUAFjrbazjnDoD0RvscwEV5P1sRfpbzdyRkf/Qq5/iJYffm6YsYhmGYwlF4sx7DMAzT9GDhxDAMwxQOFk4MwzBM4WDhxDAMwxQOFk4MwzBM4WDhxDAMwxQOFk4Mo0FE9SSXVPmQiKYR0Z+JKPQ7IaLuRHRMgnttR+4SLj8Q0RfO9otE1JmIHk3+JAxTbnicE8NoENFSIUQ7Z3s9AA8CeEMI8deQa/pCLg9wUIr73gPgaSEECySGAWtODBOIEGIugMEATnOmE+pORK8T0RTnt5sT9CoAezpaz1nOVEPXEtE7JBcM/EPcezv3+sDZPoGIRhHRU452dZqj0b1LRBOIaG0n3CZE9CwRTXbSuaWtvGCYasPCiWFCEELMhPxO1oOc3HJfIUQvAEcBuMkJdj6A14WclPWfAE6EnBNvZ8iF104moo1TJmVbAMdArjt0BYDlQoiekLOTH+eEGQ7gT0KIHQGcA+C2lPdkmNwozZIZDJMjan2AlgBuIaIeAOoBbB4Qfj8A2xPR4c7+mgA2A/BFijSME3KxtyVEtAjAU87x9517tYNcjfgRbTmDVinuxzC5wsKJYUIgol9ACqK5AP4KubrvDpDa1M9Bl0FqMDbXDFuhbTdo+w2Q33EzAAuFED0s3pNhcoPNegwTABF1BHAHgFuE9BxaE8AcIUQDgEGQM7EDwBIA7bVLnwPwR2fpEBDR5kS0epZpFUIsBvAFER3h3JOIaIcs78kwWcKaE8NU0oaIpkKa8OoA3A9ArWNzG4DHHAEwDsAy5/h7AOqIaBqAewDcCLk8yxRnPZx5AA6tQtoHAridiIY66f8v5PLuDFM62JWcYRiGKRxs1mMYhmEKB5v1GKYKENF2kCZCnRVCiF/mkR6GKTps1mMYhmEKB5v1GIZhmMLBwolhGIYpHCycGIZhmMLBwolhGIYpHP8PNwf0ZTOFUp8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data.Global_active_power.resample('D').sum().plot(title='Global_active_power resampled over day for sum') \n", "#df.Global_active_power.resample('D').mean().plot(title='Global_active_power resampled over day', color='red') \n", "plt.tight_layout()\n", "plt.show() \n", "\n", "data.Global_active_power.resample('D').mean().plot(title='Global_active_power resampled over day for mean', color='red') \n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I show mean and standard deviation (std) of 'Global_intensity' resampled over day." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEaCAYAAADqqhd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8FFXXx39nU0kIAUKoAULvvXdQEBE7Nh57V+wdsWH3sb0oPhaUZldUbAgCClIFE4r0HiD0BBJCSN297x93ZndmdmZ3Zvsm9/v5QHan3rl759xzzz3nXGKMQSAQCARVC1u4CyAQCASCwCOEu0AgEFRBhHAXCASCKogQ7gKBQFAFEcJdIBAIqiBCuAsEAkEVRAj3EENEs4joJZPHMiJq7eN9cohopJdjJhHRJ75cP1gQ0bVEtDDc5QgnVtpIIM8NJUQ0mYg+D3c5qjJCuAcYIrqGiNYQUTERHZc+TyAiCnfZtDDGXmGM3Wbm2FC9jIyxLxhj5ynu63MHJxBUZ4RwDyBE9AiAdwC8AaAhgAYA7gIwCEB8GIsmAEBEseEuQ3WAiGLCXQaBEO4Bg4hSAbwAYAJj7DvGWBHjrGeMXcsYKzM473Yi2k1EJ4noZyJqrDnkAiLaS0R5RPQGEdmk81oR0Z9ElC/t+4KIalsss1MbJ6JMSUu+kYgOSNd8Stp3PoBJAK4mojNEtFF+ZiKaTkRHiOgQEb0kv9hEdBMRrSCiN4noFBHtI6IxinvfJD1XkbTvWuV50udl0uEbpfteTUSbiegixXXipLJ213m+4USUS0RPENFRADOl7RcS0QYiKiCiVUTUVXHOE9KzFBHRDiI6V9rel4hWS+ccIaL3iChecR6TRmi7pHNflH6j1UR0moi+lY9XlGuSVPYc+fkNfidP5e1BROuke34DINHDdWxE9DQR7ZdGlZ9K7RZEtICI7tUcv5GILpc+tyeiRVI73UFEVymOm0VEHxDRb0RUDGCEzr1bENFfUjkXAain2T+HiI4SUSERLSOiTtL2PkR0jBQdMxGNI6INRs8pkGCMiX8B+AfgfACVAGK9HDcLwEvS53MA5AHoCSABwFQAyxTHMgBLANQF0AzATgC3SftaAxglnZcOYBmAKYpzcwCM9FKWyQA+lz5nSvf7GEANAN0AlAHooD1Wcf6PAD4CkAygPoC1AO6U9t0EoALA7QBiANwN4DAAko4/DaCddGwjAJ0U563Q1EFrxffHAXyj+H4JgE0Gzzdc+k3+K9VTDamujwPoJ5XrRqmuEgC0A3AQQGNFnbSSPvcC0B9ArLR9G4AHNeX8GUAtAJ2kuvsDQEsAqQC2ArhRU663pfsOA1CsqI9ZcLURT+WNB7AfwEMA4gBcIdX5Swb1cQuA3VKZagL4AcBn0r4bAKxUHNsRQIF0n2SpXm6Wnr8neLvtpChvIfgI1QYgUefeqxXPOxRAERTtSSpbirR/CoANin1bAYxRfJ8L4JFwv/OR/i/sBagq/wBcB+CoZtsq6QUpATBU2qZ8cacDeF1xfE3p5cyUvjMA5yv2TwDwh8H9LwWwXvE9B74J9wzF/rUArtEeK31vAC7Aaii2jQewRPp8E4Ddin1J0vUbSsKiAMA45fmK8zwJ98aSYKglff8OwOMGzzccQLlS2AD4AMCLmuN2gAvY1uCCdCSAOC919yCAuZpyDlJ8zwbwhOL7W5A6X7iEe7Ji/7cAntFpI57KOxRSh6lpc0bC/Q/wkaX8vZ3U3mLBBWsxgObSvpcBzJA+Xw1gueZaHwF4TlHeTz3UVTOd5/0SGmVBsa+2VJ+p0vcnAHwhfa4L4CyARsF4j6vSP2GWCRz5AOoph4+MsYGMsdrSPr26bgyuecnHn5GObaI45qDi837pHBBRfSL6WjIhnAbwOTRDXR85qvh8FrzD0aM5uLZ4RDIXFIC/8PX1rsUYOyt9rMkYKwYXGHdJ588jovZmCscYOwxgJYBxxM1QYwB84eGUE4yxUk25H5HLLJW7Kbi2vhtcaE8GcFyqX7m+2xLRr5Lp4DSAV+Be38cUn0t0vivr8pRUDzLO31aDYXmlf4eYJPUU1zGisWb/fnDB3oAxVgRgHoBrpH3XwFWvzQH005ThWvCOWkbZTvXuq/e8ALiNnoheI6I9Ut3mSLvk+v0cwEVEVBPAVeAdzREP9xNA2NwDyWpwTfYSC+ccBn9xAABElAwgDcAhxTFNFZ+bSecAwKvg2k1Xxlgt8JFDMD1ytOlDD4I/bz3GWG3pXy3GWCdTF2Psd8bYKHCTzHZwc5BZZoM/75UAVjPGDnk4Vq/cLyvKXJsxlsQY+0oq15eMscHgvwsDN+kAXIPeDqCNVN+T4F9915F+bxnlb2u2vEcANCFSeWI183BPVXuDS6OWO6GvAIwnogHgJqwlijL8pSlDTcbY3YpreUove8TgeWX+A/7ejAQ3YWVK2wkApN93NYDLAFwP4DMP9xJICOEeIBhjBQCeB/A+EV1BRDWlCazu4GYIPb4EcDMRdSeiBHBtcA1jLEdxzGNEVIeImgJ4AMA30vYUAGcAFBBREwCPBeGxlBwDkEnShK6kOS0E8BYR1ZKetRURDfN2ISJqQEQXSy97Gfhz2D3ct6Vm24/gdt8HAHxq8Tk+BnAXEfUjTjIRjSWiFCJqR0TnSL9FKbi2LZcrBXye4Iw0yrhb//KWeJ6I4oloCIALAcyxUl5wgVcJ4H4iipUmP/t6uN9XAB6SJjdrgre3bxhjldL+38CF/wvSdoe0/VcAbYnoeuIT2HHSRGcHMw/JGNsPIEvxvIMBXKQ4JAW8HeSDm+9e0bnMp+DzLV3Abe4CLwjhHkAYY68DeBi8ER4HF0wfgdsMV+kc/weAZwB8D67dtIJrWCzzE7j9dgP4sHm6tP15cAFXKG3/IbBP44YsePKJaJ30+QbwSb2tAE6B278bmbiWDcAj4JrkSXD78QSDYycDmC2ZA64CAMZYCXidtYDF52aMZYFP8r4nlXk3uJ0f4JN5r4FPFh4FNzFNkvY9Cq5hFoEL3G/gH0el+x8GN3/cxRjbbqW8jLFyAJdL30+Bm7o81ccMcK13GYB94B3YfYp7lUnnjwRXPOTtRQDOA2+bh6Wyy5PUZvkP+KTwSQDPQd0pfwpupjkE3pb+1jl/LnjHM1dj3hEYQGpznUAQHRDRswDaMsauC3dZrEJEw8EnEzPCXZZogoj2gHtjLQ53WaIBEdQhiDqIqC6AW8Htr4JqABGNA7fr/xnuskQLwixTxSGi+cQDgLT/Jnk/O/IgotvBJ/jmM8aWeTteEP0Q0VLwCe17FPMAAi8Is4xAIBBUQYTmLhAIBFUQIdwFAoGgCiKEu0AgEFRBhHAXCASCKogQ7gKBQFAFEcJdIBAIqiBCuAsEAkEVRAh3gUAgqIII4S4QCARVECHcBQKBoAoihLtAIBBUQYRwFwgEgiqIEO4CgUBQBRHCXSAQCKogQrgLBAJBFSRsKzHVq1ePZWZmhuv2AoFAEJVkZ2fnMcbSvR0XNuGemZmJrKyscN1eIBAIohIi2m/mOGGWEQgEgipI1Ar3EW8uxWNzNoa7GAKBQBCRRK1w35dXjDnZueEuhkAgEEQkYbO5CwQCgTcqKiqQm5uL0tLScBcl5CQmJiIjIwNxcXE+nS+Eu0AgiFhyc3ORkpKCzMxMEFG4ixMyGGPIz89Hbm4uWrRo4dM1otYsIxAIqj6lpaVIS0urVoIdAIgIaWlpfo1Yok5zP1Vcjn35xeEuhkAgCBHVTbDL+PvcUae5r9yTh8vfXxXuYggEAkFEE3XCPdZWPXtxgUAgsELUCXdbNR2iCQSC8JCTk4P27dvjtttuQ+fOnXHttddi8eLFGDRoENq0aYO1a9eiuLgYt9xyC/r06YMePXrgp59+cp47ZMgQ9OzZEz179sSqVdzqsHTpUgwfPhxXXHEF2rdvj2uvvRaMsYCWO+ps7jFCcxcIqiXP/7IFWw+fDug1Ozauhecu6uT1uN27d2POnDmYNm0a+vTpgy+//BIrVqzAzz//jFdeeQUdO3bEOeecgxkzZqCgoAB9+/bFyJEjUb9+fSxatAiJiYnYtWsXxo8f70y7sn79emzZsgWNGzfGoEGDsHLlSgwePDhgzxZ1wt0mhLtAIAgxLVq0QJcuXQAAnTp1wrnnngsiQpcuXZCTk4Pc3Fz8/PPPePPNNwFwL58DBw6gcePGuPfee7FhwwbExMRg586dzmv27dsXGRkZAIDu3bsjJyenegt3YXMXCKonZjTsYJGQkOD8bLPZnN9tNhsqKysRExOD77//Hu3atVOdN3nyZDRo0AAbN26Ew+FAYmKi7jVjYmJQWVkZ0DJHnc09RtjcBQJBhDF69GhMnTrVaTdfv349AKCwsBCNGjWCzWbDZ599BrvdHrIyRZ1wt2KWWbU7DyeKyoJYGoFAIACeeeYZVFRUoGvXrujcuTOeeeYZAMCECRMwe/Zs9O/fHzt37kRycnLIykSBnqE1S+/evZkv+dz/yTmJKz9c7fye89pYw2MzJ85Ds7pJWPb4CJ/KKBAIwsu2bdvQoUOHcBcjbOg9PxFlM8Z6ezs36jR3q94yB06eDVJJBAKBIHKJPuGusbmXVoTOhiUQCATRQvQJd43m/v6S3abOu/3TLDz/y5ZgFEkgEAgijqgT7toI1eJyfc1dO5ewaOsxzFyZE6xiCQSCIBGuecFw4+9zR51w12ruRiZ4R/VsDwJBlSIxMRH5+fnVTsDL+dyVfvFWibogJq1wN0qLWd0ag0BQFcnIyEBubi5OnDgR7qKEHHklJl+JfuFucJxStE9fsS9o5REIBMEjLi7O55WIqjuWzTJENIOIjhPRZsW2ukS0iIh2SX/rBLaYLrTeMsaau+vzi79uDVZxBAKBICLxxeY+C8D5mm0TAfzBGGsD4A/pe1CwaUr82eocFJe5cjJsPlSIDQcL4LBolsk7U4bMifOwak9eAEopEAgE4cWycGeMLQNwUrP5EgCzpc+zAVzqZ7kMidVI9+JyO17+bZvz+4VTV+DS/630ep1vsw4ic+I8HC/iaxRuOFAAAPhkuTDhVEcWbT2GlbtFxy6oOgTKW6YBY+wIAEh/6+sdRER3EFEWEWX5OkGi1dwBoOBsuds2I8X9cEEJAODbfw4CAHLyeASrbMu3Czebasntn2bh2k/WhLsYAkHACKkrJGNsGmOsN2Osd3p6uk/X0MsKSTrTqkZmmYvfW8HLIp9LwNHCUsxclePxPIFAIIgmAiXcjxFRIwCQ/h4P0HXd0MstU1bpHshkJKLzznAtX3aVJHCtbdlOPpKotFdt4b77+Bl8snxvuIsR1ZRW2PHwNxtwtLAUmw8VInPiPKzYJUw6gsgiUK6QPwO4EcBr0t+fAnRdN/SE++Jtx/H2wh14909XKgKzfu5EfDJVxl7FNffL/rcSRWWVuHFgJuJioi6GLSL4a+cJ/LD+EIrKKtG/ZRoAYPG2Yxjcpl6YSyYQuPDFFfIrAKsBtCOiXCK6FVyojyKiXQBGSd+DglFWSKVgB7xHqCp3l1U6nJ+ris29tMKOtfu0895AkeRZVNVHKN7I3n8Sn/2936dzUxK4TnS6pMK5TawhI4g0LGvujLHxBrvO9bMsptDmljGi2/MLPe53KeiEiioo3J/7aQu+yTqIpY8OR2Y99wUCKhwO1EBMGEoWGYz7gK8JcH3/5pbPjYvlOlFxucsFd96/R9C9aW1c0r1JYAooEPhJ1I3LreZzN0I5oVpmr3rCffeJMwCA4wYrUSk7tOrM7FU5yJw4z9I5FVJ7IZDT/He8qAwPfL0h4OUTCHwl+oR7oMa/ignV8iqouSfFc638bLn+orsV1dwsI/Pq/G3eD9Ig112gFA2BIBhEnXC3soaqL1QVV8gacVy4lxikRK6wO3CmrBL78oqd2wrOliNz4jx888+BkJQxEtCa+cx07pWS5h4rhLsggok64R4oXGYZ6y93NBAbw5/L6HEq7A48//MWjHhzKU4Vl6PwbAWWSe58s1b5NtEYjWiFe4Xd3Vy1bOcJfLxsr9sxQnP3nTNlldh8qDDcxajSRKVwD4RlRlbQtZeqKsLdIckoo7qqsDOs3psPADhSWIoL31uO+79aD8C3dMmVdgcWbz0WdamWtfWjJ9xvmLFWleKiXJhlPFJYUoH+r/yBDQcLdPf/vTcfnZ/7HRdOXeEcBQkCT1QKd7MeM55gku6uFUVVwc9948ECLNhyFICrE9MK3Qq7w1mPDsZw8GSJc58vpqn3luzGbZ9mYemO6Mq7rW1JZuYi5MnoVXvy8dI86zb7aKGwpMIn7Tor5ySOni7Fu3/s0t0/W4oGB4BKSZk6UVSGQwUluscLfCNKhbt/5zscDLLCoBVkVcH/+4/trgBhB2P4cf0htHt6AXYfP+Pc/sxPm531mHtK/VL5MniRr3HijL53TqSincPR09y1VDo8H2N3MGw9fNqvckUC109fgwunrrB8nlJp0GP+5qPOz39JkeF9Xl6MQa/96UMpIwuHg2FO1kGVk0a4iErhbpTD3SxXfrQa247wl0+r0UbrhOqRwhLdBGoOxvDrv0dQbnc4XyQAWH+gwFmPd32erT7HB+l+SBLu0WaW0Y4CzbyUnuT/oYISTFm8Exe8u9zZxqKVf3O51q73m5ZW2FFaoT9ZL1epmWZ052fZ3g+KIn759zAe++5f/G/Jbu8HB5moFO7+au7Z+085P2sbYGWU2twHvPonur+wCFMW71S9jLyz4t+1i5YYVaPVDm7L4UKn/T7aqu9ksbpD1M65dJ38u9s5nupn0Gt/Om3NRjEG0UaLJ39TmVIAoMvk39H9Bf1AQbnD1OsUhr2xJODliyROl3LX40gYwUapcA/cRJZWS432CdUpi3ep0g7YHcbpj42ku9V5h/35Z52fo0xxd8PBGE6XVjjbhfyyao+pbignlJfvOoEKO0Nphf4QRn4/9d4lZVsxYn9+MX5cf8jHkoYXWfGUm8ikuZvQ68VF4SlLWO7qJwEV7pr2F+3CHQDWKIT7o3M24ujpUt3jjGpRa4OX2X38jFv97M8vVn1nhvk4o4OSCju6Tl6IF+cZL81o1my182hRRNheA4H8HOsOnML109c6tx/QEdYuswyvp4Kz5dhxtMjw2rmn1Ne4cOoKPPhNdEb7OucbpDby5ZoDyC92N5eGpCxhuaufBDJJk5vNvQoIdy3bDV4sT+vPaoOfdh8/g5Fv/4V3FB4Q8/49gmFvLMVfCg+ZaK8+2Ttk5socw2PMzrm//Ns2vPDrFpRW2HXb1ed/70fmxHmqZSIjncvfX6X6fs201W7HyM3q770n8dTcTbjovRUYPWWZ4TW1prEiabQUbfM3gCuCPhJGd1Ep3AOpuf9Hs/pOVXCF1GLkj+2pFssq7dh8qNCpqcsrWK1TzFdsPlyo+gtE5wup5InvNzk/Gz2Lt2dU7l6xKw/tn1mAJ77/1+24GSv4ko5GI6tooKCkApV2B26Z9Q8WbD4CQJ0i5Is1B5xuts/9tFn3GkU6pi8AyFK0tWhBfvQ52blYviu8bsFRKdyDmV41EidUF2w+ih/W5fp8vpFpwFNHtu1IES6cugLvLN4JwKWJyHX/b24BpkvCSek+anXks3THcfyT456aOBIo17jFyOX0ZrpTmqZyJLPFnGz330+OIjbjfhmpxBDh+ulr8ef243h1/nYAxilCZq/Wj3xetPWY7vYrP1yNM1E0qgHUiqfSfBUOolK4BxOlcHpt/nbLGQODwV2fZ+PhbzcG/Lp7TxQb7pMDSt79czfsDubURmUTz8XvrXR2GhUKv+9Zq3Lw+5ajMMtNM//BlR+6D+0DjcPBVIuymEE7YXjlh6uRvf+UV9PTyt35hvtOFZfjyzUHwBhzLpZSURl5CoUeH/21x22bzUZOTykj10hvzNJ44iiJtuylyjWe5fxO4SIqhXvB2QrvB/mIUnP/UGrMjDEUnq1QTQqdLq1AiyfnYcmO49h+9DR+3ng4aGWS2X1c33YeDFPIrmOue/2+5ahTcz9RVIaXNZONSs09J/9sRPou/2/JbvR+aTGOFJqPgtRbvvFoYalf9tTXf9+OSXM34Yd1h5wae7ndN6EYamTNXImeyS+QzdHMpdYfOGXpdw0mSs29RrxauJ8pq8SjczaisCR48ktVlpDcJcpxMGDch6tUk0K7jhWBMeDmmf/g/CmuvCzB5PZPs3UFuRUPn7uGtTJ13EeKRFkxNlJpqx8v36c6NhLzg2w+VOj05HE4GN5axM1LnyzfZ3oCU0+JqHQ4dFe4Mos8yHlkzkbsPMYjhs8aZO4MFadLK1QBblbQs8CsOxA4W7mZjvSy91dh6OuR4T+/bKdrLV1tO5u9KgffZefqjoCCQaDWUK3SOBhThe6Hi315xXjqx824uFtjlJTbMaJ9fQDADxZ8glulu6/K5I2UhFjn8nx6HC40nhC8fvoaZKYl48VLO6Ok3I7/LtiOR0e3Q82E4DY9OWx+fN9mePS8ts7t01fsUy2P54mJOpOg+/KKfRaEx06XqobtMuG0uX+8bC9mrNyHI4Wl+OORYWiVXtPS+fKC8wBw7HSZ32ZM7dKHZudw5JxAk3/egmOnS9G6fk08PKot9uYVo9LO0K5hil/lMsPhghJ8r5gbUy7fyRhzKmGBdAjxhBDuOpwtr0RSvKtqlJoxk5Jsrd7jbledtXIf2jRIwaDWwVso+cs1B/DlGp5vfdfLYxAXY8Pj37kLISN8aVgO5rv///JdeVi+Kw8vXtoZn/+9H7NW5aBmQiweHd3Op+tZ5au1B9CvRV3VNrPeKesOuGc1nLJYPxmWGf7em69rsnj1t+1oUa8mDpw8i2Ft053bS8rtSIi1BXUNA2Vw0p7jZ5zCPStMk9zP/Kj2qLHi4FBSblfZ76cq1lXOeW2sz2UqKq3AHZ9m4/UruqJp3STD4/5U5HTS0uLJ35yf31uyOyTtv9qZZS7o0tDrMXM1mrDyhaywMwx9YwneXLjT7bzJv2zFtRrXymDiS4CML0K6wuGwrF3uPl6E7UfVuVVk75NQ+wA/+cMm1fdwLbJxpqxS99l3HT+DEW8uxY0z1qK4rBI7jxWh+wsL0eHZBfjvAnc7d7CQNU3GGK4IwSS3GV6etw3/t2gn8k1Mhnd4doHhvi6Tf1ctTGOFBZuPYvXefPzfYvd3XsnTP+q7eoaLaifcvST0A+AewKN0GYwkt7VOz7nnPfGGL4K10s4sdyQj316G86csd35njDmH2Hq5R+ZvOmK5XGYp0XhxxMaEp9k/NXczvs3y7NJaXF6J6cv3Oe3932QdDEXRVATKGzguxv9OdN6mI3jnj13o9dJivL1wh8/XKSqtxLc+1qU8aWxkIjpdWqEbqRtuAtrKiSiHiDYR0QYiygrktQOFmfB4rXB3RKhwB6yXZ3i7+pbvcaKozO81V9cdKMApSWCdKCrDWwt3qIaqVuYNtOw6VoTMifOQY1IzC4TQCRYl5XYUlLjs2KFMhyHfyVtKY7PUTor36Twjy+G7kpmluKzSYzoDI3yd+HcKd4Of4vrpazE0AhOiBUOFGcEY684Y6x2Ea/uNmXdFKzCVPbaerT2YyFF/Rijtit6omRCLhqmJlsswae4mvzu1cR+swoyV3Mvmm6yDbuXec/wM9ucX4++9+ejwzAIUWnB3lTuGeSa1/1i9Wc0IYdLcTfh9iyuoJ5QWLIeDoaTcHrCkXb52oZ6eefvR07jzs2yMnrIMT/6wyVLQnK8Kipymwyjob6PBilPhJnJbeZAw87JoJ3GUs97P/2KcUMpfHA7mFgjy+u+eh6JGq93oUTspzqdyAcEfsezNK8awN5biPx//jZIKO/49ZP6FiVFkITTjQxzu4BJPaAOgQjk/caSwFB2eXaBKweAPwXAKOX/KcqzYzd0Nv1p7AEcspG6YtSrHp0AruX39vScfT/6gdl7wNRdVKFadCrRwZwAWElE2Ed0R4GsHBDMBP9oeWhlB6W8ekH9zC1BUqhZADgdD9v6TeGneNrR/ZgEyJ87D3Z9n45eNh91MRP7w1e39fT5XG4ofLOR3JcaCZJC9Saav2Iduzy/06kesDS6JZGSzTGmF3a3tniwuR++XFlleCm/dgVO6cxwHTwXWbkw6uvvTYzvgl3sHB+weZRaFtTx6tII8RZNfXI6v1h5Epd0BxhjeWbzL52UWF2w2H8XtK4EW7oMYYz0BjAFwDxENVe4kojuIKIuIsk6c8D2pTkKsb8Xu0KiWqYg37VJ7B04GptGXVthx8Xsrcffn61TbP1q2F+M+WK1qePM3H8V9X61H/hn/0oUuf3wEAKBRaqJHNy5vhDpE3sri03JHIGvtepGUSuJ9bD/hgDGesqD9Mwvw4V97wRhzCvnlu04g70y5M5La+7UYcvKKcfn7q3D3F+vctE7ZxdZX5tw1QH0/nbfttiEt0blJLY/X6dmstul7GiUdM+L1BTuwUxF97XAwLNxy1KPSp3UfPl5UhmW78vB/i3ea7iwu7d5Y9X3V7jyDIwNHQFs5Y+yw9Pc4gLkA+mr2T2OM9WaM9U5PT9e7hCnWPzsK658ZZfm8uBgypblPX7EvKFGXZVKukn9z1SYHZai/Fn805v/0a+Y0MekJtJ/uGeTcPv1Gz1MkgZpkM4sl4W6xFXtb/u66/s2cn1+7vIvp694yqIW1gpig3O7A67/zzurH9Ycw8LU/0eLJ33BQoXB4W3Yy/0wZRry5FI999y+Gv7nUuT3QGVC1gUJG6xETEV4f11W1rb3iXCu+7UZrD3hCuWDIjJX7cMdn2fj1X/35mp82HHIuNi8z8LU/ceMM80nBhrSph7uGqyPDY0MwqR8w4U5EyUSUIn8GcB6AoDh+JsXHIiXRc/zVhV0boWMjtYZAMO/mVepHwqLSCrtukipZUMfF2FBwttxl/wvS7/zshR2dkaAjFF4ysrdIRp0aeOWyLkhLjsfwdvVxZa8M3evUSYoLmVlGxmzgTuHZCmcYvzcukbSn5buMtaaOjWrhyTEdnN+tuE0+MLKN6WOt8NVa7sLHwHBEigYe8voSZ855b1X15ZoD2JdXjO80mSnbPj0/oOVMjle/k9o2k5bs8p65qk9T56gSABrXruH8rDfxOfPmPrr3vOfLdbrbPZF76iwe/24jMievzPfvAAAgAElEQVTOc0ae640A8s6U4YGvN+CHdf5PMCfFqevGivLiK4HU3BsAWEFEGwGsBTCPMWYcVeAnsTE23H9Oa919V/XOwNTxPRCn0VaJyKtZpn9LHs3oj+Z+08y16P3SYrftcmOPjSF0f2ERxn/8NxwOhhNBWmszIdaG9JQELHtsBJ4e6xJY/VumAeAN7IpeGch+ZhRibIQnL+jgHD7eOtilhVbaGSoqGeJjbFjxxAjcNDAzKOVVYlapvHb636aTtj1wrlr4junsCmiTA5uapyWpRjlat8nNz49G87Qk9G5eR7V97VPn+mwuNIu2E5PXas0/U+7Vq0qPQM/VagWWdhL+Fc0oSGkmVB5bYXegS5NU1bEjfHDhNeL5X7Y64w3ktBrJCe7zMIGc79LO83gbbQWCgLVGxthexlg36V8nxtjLgbq2EQ+f5wrhvaZPU2TUqYGnx3bA0xd2BBEhTtPYiLxPqDasxV0F/fHr/nsvD91W2jTXHziFQa/9CQDOVK/rDxRg9uocj5qkES9f1ln1fXzfpvj1vsFY9JBrmkNuQM3SklQa6AfX9cJnt/Z180OumxyPKdf0wPpnRmHSBR3w7Z0D0KFRLVQ6GCrsDtRMjEVGnaSg5tOXUXqJnCouR+bEefj1X3chvvmQZxOLkrrJ6udV1sn6Z0fhpoGZeOGSzqrJ3DiN5l4zIRZ/PTZCpaW3rJeM+imJQRfuRqzYnYe7Pl+nm8UynMhmmYlj2qNX8zoe03L0aObqLCvtDtgI2PfqBQCAc9oHTrBr2ZTLJ6O1ow5APyuoL1TaGdJTElSmKCsOA75SZXLLvHp5F7feUGnXuqZPU+w6fsarttI7sy5+3HA4IDbmr/85iL92Hsf71/ZSDe2UAkMvf4kZUmvEYVDrNKfrXK/mddFZo+0YUTMhFkPaGM951JGEYN8WdTG8XTqmHz+DCrvDqcWGIvGR7KF0cbfGzpQR32fn4sKujT2dpsuv9w1GbAy5dWbKNAQpiXGYfHEn1f5r+jQ1TFWgrIOXL+MaqZ42NnfCQBwqKMG9XwY/a2h5pQMJse4aaKAU9PSUBOcoc82kc7HhYIEzvbMsiJU0rZuEfXnFaNcwxWs20odGtsHpkgrMWpWDCjuDzUYgIqx4YgTq1UxwO/6j63vpppYe2CoNqyzEopw6yx0W9EIfygKUSz6/mNfZUEXeoGCZ8JREj9uAF/ReLFmIzrq5D14b11WyuRs39capLu3LaDLICnJASpunflNlu1MWNS3ZexSfUSZHpYBRKphrJ52LpY8Ot1xePWJthHK7A1//c9A5X+FJtCfGBbZJ/bzxsDPzYCOFXdYKnZukon1Ddw8NTzlmdrx0Pl65rIvKtKd8OeWq79eiLga0SnNu12rvPZrVMeyQplzd3W3bZT2aGJbJG0ajzUCZXx4c2QYXd2uMPx4Zhga1EjG6E+90ezev43z/lEnamki/lxllgIjQSzJ1ldsdTs02o04SEnXiEpQJ1mQa1ErAPSP0TbVGyKYXPStsoIT7sdNcuMvNLTHOZjn7pi9UGeGuh9zQGkimFpuN3MK5lZ4R5XaHs0OQV5fxhUGt01TftZO4ypfN0yo0rjI2d9uWGBujemmUn+vXSkRmPeupffVQRnPKWltNaTL7jqEt8cyFHVXHN68bmPsqOS3FBXibRNdyXf9m2PrCaMP9njwWEmJjYLMR4hTPr+wLZB9ureA062aZ89pYXKojyJ84v72p8/VYaGEFLG/Ex9qw79ULsPG589C2ARdEacnxeHd8D5Vg2v3yGHx7p8sFcvYtLgc52WHAk7nq1/sGY/HDwwC4bPYnisq8epPE60x0P3F+eyRbTCUte+bYdUbq2nxK8+4f7Oyw9OilmYeRkeNa5A5Qz/8/GFRp4T5heGssfngYOkheM3ExpHKz+vneQXjp0i7IfnokAO6qKDcqK2l0tXjLVW51XciDJ0uw5xXXsPeCLg1xTvv6Xr0kAoHeSzauZwZsxD2StGUwk7vHKjNW5ABw9zgAgCsMPHwAbrpK0rGlysjCRJsSWIlSWCsfVbbft26g1sCMRgNGk9DtNe6D/tjtJ/6wCRsPFuC9P9VRy778Jj/fOwhEhNQacc7lBmvo1GVsjDolsVLJkD1Q5HksPTo3SUXr+rwOlR2ldq5Di9abavYtfXF5zwyfo4/nbz6KWRqfda3mHmMjzLhJ32tneLt0fH/3QN19soIUCg8ZJVVauNts5Gw4AK9kuTd+aGRbdM3gwRKyACizOwKSd8RbCLxV75ibB2WqGsYrl3WBzUYhsX3rCaumdZOw99Wx6JpRW/VCfnxDb+coSclgP/Pby26l/7d4J7L3q1f50WrKF3RpiAcle2aMl98y1mbD1hdG4/Pb+hkeo+yolfXdrmEKvry9H57VjFyMXuCMOi6N73rFSOz7uwdizaRznd+VJojXr1D7gpvhkv+tdEtHfcZLoM+dw1piwYNDVNuUZqwCyS5txoSofP53x/fAnUNbonmaueA5pcnUk3DX057l30k5V9ahkedgKSU/bTiMyb9sxVHFwjPaeAgbke6iH388MgwfXNvL8NqyRh/qTNNVWrhriYsh5wy4su3I2tLF3RqbzhjY2EMCLtlbJhDkvDbWLbJUnhgMdBCKHt60DbnzfP2KrhjVsQHevaaHav+zF3bELAMfZZm5EwaaNrloF9/Wej+l10zAuJ4ZSEuON/Tbl4m1EZLiYz0KEmW5tPM6A1vVc7MHy/XVvmGKyv305kEtMPPmPtj36gV48VKXp1NyQiwa1ErExzf0xoIHh6g096t6N/VYfk8ozY+frPAcRXl5jwy0b1gLm58fjcGt6+Gda9RzAbKQrF/LfWJTi9xcmtSugXYNU/DkBR1Mu/0phbvewhe1pN9ixRPcP17ZsdZP4WVrUz8FQ9um45d7ByO1huu365qhdjZIraGfZ+lFxfrAOzXBhXrKVN3keLRKr2mY0uKVy7rgw+u54A+F+6OSKuMtYwal5q6saJuNsPHZ85CcEIOVOjPt7RumYLsmxeiqJ8/FTTPXYukO39MoeOOvx4arvs+4qTdqJboaZSAmfb3hbXg8tG06Fj40FG0kIV9Ho93VTopDbIwN9WomODXwX+8bjLX7TqLS4UDTOkno0awO5tw1QJX/3Qit77R2DqVucgKa1k1CtokIZjMBSmrN3evhzonAO4e1xGU9XJ1LjI08+mqP6thAd/sLl3RCfIwNE6UFR9o3TEHNhFhk7fe8Tukbv+9A7+Z1VCNXPT66vpdTG62ZEKs7inn2oo7YeawI9VO8ZxQlIky7vpdzVGwFb0nSljw6HKfOljvf3Qu7NsILv3JhLI+M4mNt+FSy+ytH4Vobfb8WdbFw6zFoUeaqOX66DA1qJbhNiD48qi3eltbk1ZsUVzKyY31nRyI0d4u8dGlntGtgbn3E2BhyCndtL5wqCSG9iZr5DwzB/13dzW27HAwULJppNPZz2jdA70yXfTgUKQGUmrvWT1ymbYMUVWepl33yB8ke2bBWIjo3ScUtg1vgjqGtMKZLIwDQ9WaRtTElbumYFfLg6bEdcPdwcwuAA0BJufe5j9pJcU5XPDOKV0yA3EVHduDC/oYBmbimr2vS/7Nb++EGE0FkH/61B7d9moXz31lmeMy4nhlOjxdPdGqcquqovHFep4Y+pZb2FjeYVjMBreu73vX6ChOgnlbcuDbfnxQfgw+v74WbBmY6R5F6k9kAsDHXlYSt3O5Q+b/L78KQNi4zo7Y9ak1GyvOdE6ohEvJRL9yv698cvysCdzwRF2NzTpIYKW16k6FEpNu4tcJXSdO6NfDZrX0N9wP85TJi6aPDvQ7jQpHuRWmmWv3kOabOaaPQFmVlrFlaEtZMOhcLHzb3WwHAvToRyFpNXRkodm2/5paSgs1evd/rMUSEFy7h/u9mBLasufsj3Dc/PxofXNdTte3FSzvji9v6IT0lARd1bWT6WvJkqJanLuiAt65yV1jCSaDTGz93USf8d1wXbHl+NOrVTMDkiztheLv6yHltrKFni3I+rMLuUJnd5N+0R7M6yJTmEbQeNd/dPQDz7h+MdEkx0ZvgDZUCX83MMsaau4wZ2++747ldeUznhlj00FC0rl9TtaoQANw7orXHQCEAGNYuXbVaOsC9Koa2rWfKlbEiJJq7S1jqBcjo0bdFXfyTw80GyhdWb7JVj+WPj4DdwaP6nv1pi2qf1pdbeX2rc+F3DG1p6jj5HmYEtuzF4Y9nhJ6CoZyEJSI0qV3Dr5zgITb/msJMUj8rJCfE4uo+zXT3GY1ClVTYHUgysKV/eXt//HfBdozQRM82Sq2BRqk1MHfCQGw8WKjy6pEVpfM7m++c/SHqNXcrxMbYUGZ3t7kr0frJXq4zfLu4W2PnNdpoTBIyeoEXWuromC+a1K6Bc9rr21+1hGIJNl8Wk757uLVAEi1N6yYhs16yrhaufWY7414cX9/R33TnA/Dc9pMu6OD9QChMPyaqQi5fsO2rbyg8abKeHum0M5slFJ5WVvGlOb9xRVe3DJNmiIux4bbBLTBT4dooz3vIo8GKSqaaKFUmQmtcuwbeuaaH4XueUScJYzUjrITYGPzz1Ei8Ns58plF/qFbCPU5hczcavitn0e8c1tL00FXW5mW8CZrnL+6k6yJYL8X8upP+rmtqBl9SkyqHolZKWDc5Hj0UubzljqWRwn6r1e4cjKF2Upzl+Q89lzYjmAXNXW5fhwr8W9TFGwNb13OaFurVTECbBvoTp9o5JDkNgNZ7JBJQjsLM9j1X9m6Kq/r45lX09IUdMaJ9fUwd3wM3DcxE96a87cmm2wq7QzWKMtLirZCekuDVSSFQVDOzjKtSjYId4mNt6N28DrL2n0KtxDiVVv7wqLY4Way/eMbF3RpjyuKd2HuCL9Is9/gTx7THku3HsWaf2j3ysp5N3DT+6Tf2tpQkyZclw6zii+auNElYGWpnPTVS1RkQET6/tR/aNqyJvi//AcBdu3M4mE9aqBWzicss4/3YR89rh0fmbEQo1uD+4rZ+zjUC9BwBAJfp7oFz2+C2IS2QkhiHO4e2dPNqigSU8yfe1hcIJBd1a4yLujXGbClavLTCjhrxMSi3O1AjPgbvX9sTxWWVaJTqW/qLcFGthLuy5/UUySbPgNfS2N/vP9dzsp/pN/bBCGkxhJpSCtG7hrXCXcNa4XhRqVNAATx9gJKW9ZJxbgdz5hgZq0uM+YK/QV1WzKh6OdwHt1GPbrSTbg7GfLJvWzlHvqWZTuTynk1QIz7G0LUxkCTGxTjNAtr01jJy2fu3TEOK5EYbiYIdAMb1ysDkX7bC7mDo2Cj0Iws5L9JX/xzAnUNbocLuQHyMDRd0CY2NPNBUK+FeUyGsa8QbC61yydxR02Iukxb1kpEcH4Picrub7V7rI6wNlvphgn7osieUC4oEK54pxkcVtE39mjwLZ4DLo72e3eFbcIiVEYmZhGkyRBQWYaDU3Md0boj5mjU642Mjz8auJSk+VpVmI9TIHeXrC3agsKQCx06XhcyEEgyit+Q+kKdwc/I04SlrxGnJ3iPytMjakVYz16IVSNp0tGYotpijxhfifNTc5bmKoTrZ+/zCLQkbs7zMHmBNc5ePDMXSaL6iFEK3DWmBlIRYlc91HR/aV3WjhcJD7aO/9gLQj7WIFqqV5q6cLPVkP3v76u7YlFvgU06UZy/qiIe+2aAbqp0YZzP0O/aFIW3SsXgbj7IL1kIRCT6m8O2aURs5r40NWDlm3NQbt8zKciuPnVmzuZ/XsQEWbj1mabGEC7s1wsbcAjw0sq3pc0JNjI1w59CWyKhTA72a18WG587Dsp0n8Pnf+zFhRCu0DEGK2Wina0Zt7H3lAvyTcxKr9+ajVmIc/tNP35UyGqBA+5aapXfv3iwrKyuk9yyvdOCvnSfQN7MuUnXcEIPNyeJy9HxxEQA4BV/mxHmq71YoKq3Aj+sPYfG245h5Ux/T645aodLuwPtL96B709qB18ItMuLNpSivdGDuhIHO6MQbZqzF6ZIK/HjPIFPXKCm3o6TCbsrPWSCIRIgomzHmdca5Wmnu8bG2kEx0GRFogZKSGIfrB2Ti+gGZAb2uktgYm9eJ5FCxL497Ig15fQl2vDQGgOwtY/4aNeJjDJM8CQRViWol3COBFvWSVfmtZ9/S1y2NrUCfZnWTcODkWZRVOvDg1+vRoFYiVuzOQ59M/VBygaA6U63MMoLohjGG5bvyMGnuJuSecoXe3zCgOV64pLOHMwWCqoMwywiqHESEoW3TseKJc1BaYcfvW46iad0k9GwmNHeBQIsQ7oKoJDEuBpd0930xaYGgqlOt/NwFAoGguiCEu0AgEFRBwjahSkRFAHYE6HL1AOQF6FqpAAq9HhXd1wKqR50F+nqizqwTqXUW6OuFss7aMca8pzVljIXlH4CsCL3WtKp+repSZ0Eom6izKlJnkfwbeKszs3UqzDLu/FINrhVoIvk5I7XeRJ1ZJ5KfM+LqLJxmmSxmwlcz1NeqLog6s46oM+uIOrOOtzozW6fh1NynRei1qguizqwj6sw6os6s463OTNVp2DR3gUAgEAQPYXMXCASCKogQ7gKBQFAFEcJdIBAIqiBCuAsEAkEVRAh3gUAgqIII4S4QCARVECHcBQKBoAoihLtAIBBUQYRwFwgEgiqIEO4CgUBQBRHCXSAQCKogQrgLBAJBFSRsC2TXq1ePZWZmhuv2AoFAEJVkZ2fnMcbSvR0XNuGemZmJrKyscN1eIBAIohIi2m/mOGGWEQgAoKIEqCwLdykEgoAhhLtAAAAvNwTe7hDuUggEAUMId4FA5mx+uEsgEASMsNncA075WeDIRqD5gHCXRCAQhJGKigrk5uaitLQ03EXxi8TERGRkZCAuLs6n86uOcP/5PmDzd8BDW4DUjHCXRiAQhInc3FykpKQgMzMTRBTu4vgEYwz5+fnIzc1FixYtfLpG1THLHN3E/xbmAmdPhrcskczyt4Hfnwp3Kao2ZUVAwcFwl6LaUlpairS0tKgV7ABAREhLS/Nr9FF1hDtJjzJjNPC6bz1dteCP54HV74W7FFWbGecDUzqHuxTVmmgW7DL+PoNX4U5E7Yhog+LfaSJ6UHPMcCIqVBzzrF+l8gUrFVF+FqgsD15ZBNWbY5vDXQJBhDFlyhScPXtWd9+sWbNw7733BvyeXoU7Y2wHY6w7Y6w7gF4AzgKYq3Pocvk4xtgLgS6odywI91caAR+PCF5RBAKBQIEn4R4srJplzgWwhzFmKkIqpJDFRxHalTuMAUtfA04fDndJIpvcbODDIXwEKBBoKC4uxtixY9GtWzd07twZzz//PA4fPowRI0ZgxAiuVM6cORNt27bFsGHDsHLlyqCUw6q3zDUAvjLYN4CINgI4DOBRxtgWv0pmBsYARyUQE2fNLCPQ5+gmYOmrwJ4lwK2/h7s0kcvvTwJH/xWut0acOQ682Qa4fi7Q6pzwlmX+RJezRaBo2AUY85rh7gULFqBx48aYN28eAKCwsBAzZ87EkiVLUK9ePRw5cgTPPfccsrOzkZqaihEjRqBHjx6BLSMsaO5EFA/gYgBzdHavA9CcMdYNwFQAPxpc4w4iyiKirBMnTvhSXjVZM4AX63FNUwh3/2EO/reiOLzlEEQ3h7L5378/DG85wkSXLl2wePFiPPHEE1i+fDlSU1NV+9esWYPhw4cjPT0d8fHxuPrqq4NSDiua+xgA6xhjx7Q7GGOnFZ9/I6L3iageYyxPc9w0ANMAoHfv3szHMrvYJPUzJ/fBks1doI/cQfr/y1QPFj4NXPcd8N0twCXvA7UahbtEEYL8LkZAQ/KgYQeLtm3bIjs7G7/99huenDgR54061+2YUHjzWDFUj4eBSYaIGpJUWiLqK103dLHcRNZt7gIdPLyUx7YA/+sPlBaGtEQRzaEsYOPXwJ4/gRX/F+7SCCKEw4cPIykpCddddx0eve0qrPt7OVJSUlBUVAQA6NevH5YuXYr8/HxUVFRgzhw9Y4j/mNLciSgJwCgAdyq23QUAjLEPAVwB4G4iqgRQAuAaxljwu235Ft/dChSJSUBdvrsFKDnF7Z9GZM8GfrkfuEWys+v9dH++DJzYBuxbBnS4KDhlDSX5e4BT+4DE2sCGL/y4kEIDm5wKdB7nd9EE0c2mTZvw2GOPwWazIQ4V+ODVSVi9+yTGjBmDRo0aYcmSJZg8eTIGDBiARo0aoWfPnrDb7QEvhynhzhg7CyBNs+1Dxef3AIQhMkYSQkKwG7P5e+N9B9dyrVM2b+XvlnZ46pcNhpMOB3B4HZDR25dShgaHHVj0LDDgHmBqT74tNhGotBoF6GFI7am+qwtO814EmGXCwOjRozF69Gj+5fB6AEDvMT1w3333OY+5+eabcfPNNwe1HNFtywhU4zm1Hzi0LjDXihRKC4GtP3s+Zvoo7h0j1+NP9/C/vtTr6veAT84F9v5l/dxQUFkGvD+Al/PHCYodQbR9LnujmrqV+lCnn10OTOkS+KJUY6I8cZhFITT/CaD9WPft73TlfydXIXvyjxOA7b/6eLJevXqp6xPb+d/CCM2psvl7IG8H/8wUQ2Cf5mpMtrs/XwJ2La7GbqUW3s89fwSvGNWU6qO5V5QCaz4EZmvsxZ+MCmyZIoWCA+aPdVSov3uqV71Z/uJ8l91adqeMNOyKdBNKge6L14LeMxbm6h9bUQ0DnbyZZYrzuaeRvTJ0ZaqGRLdwt6IZvNxAf3vuWv+LkTUD+PwK/68TSGwx7ts2/6B/rF0j3PXq1ZPAz1muOC4ChXtlGc/UKKMS7l5egXd7AL89pt6mrIsFT/C/O+bpn18tvbgk4V58HCg74757wURg1VTjOgsAofDn0MVeARzdzJVJP/H3Gap+yys9zSs7mPz6ELB7UXDvYRXSEe7fKSZwTuW4Pp85rj5Ot1HJ27xoupE4ifZ+f64pOiGDzzqc3AusnabeZqUD0+tkqwpvdeAT1EYc3QR8NMR9u11aqzZIikBiYiLy8/PDI+BLC/hIuNi/IE05n3tiYqLP14hym7sJvrwaOLAq3KWwjr0CyJoJ9L6Zp1eQKc4DQEBymuGpALxrjNt/c31mWjcs6aVgjE80Z/Ry7frxbiApDbh/nfvxuteKAE7uVX9Xae6aY/ev9p5SwIpQ8vQ7lBVxxWDM60BSXfPXjATKznAvtZXvAKM85AnU1n0IyMjIQG5uLgISBW+VsjNAyUkg/iyQdAYokBSnwm2WLyWvxOQr0Svc968G8nZ7Py4aBTsA/PMJH746Krjrnswbrfhfvcnfw+uBRt39D+pijA8r180G5j8OXKcw55QW8H/a4/U+RyrkQXOfeT5w469ACx2NEwAObwCObDB/r1P7gX3L9a+XPZu7oSanA+e/av6akcCrTYz3aTvMNR/xv/3udDs0GMTFxfm8epHfZM8Gfr8f6HEdcMn/gMn9+fYwOGtEp1mGMf4SlpmoMCtC7shGPtljBnslMPduHgwTDEpO8b+lp7m2XnTU8/HbfgGmDQeer8218oN/q/dPTtU9TZeTe/gcxb5l/HvhQfNCOyqEu5cJ1dkXAus+1T932jBr9yo+zq+nhzwCqAp2+cMbFO+Opk7nP87/VQdskr7sCP/cU3S2KrMh8FkzrQ2hPxoKvNFSylXjhUNZwMYvXcEwwYKIa+tvtfN83DfXuT5/Pd7EhU0IYdlHW89+b3Qtq3bUsyd5BxZKzEyoLp4c/HJEunA/uJbPVZzazyelPTFtGFe4vFGcH/rfO5TIcywRYJ6M0FblBYdJF6pfH3TfphRU+5a77wd4yL43Sgq8H+MPzOQEpq8obe7e8CZ8mI5wP7QOOLDG+7Vfb+EyNYUMExOqoRiBRLJw37uUB7mtmsrjQH6cwEd/P9zh7gkir2qWt5P/9eRe+kZLYO8S/vnwBvXEflVA/i0dOsK94CDwZtuQzUNEYKsygV7FaTF6OZUvkrfhsie+Ck6aTkUh+B/li6J8ESanAu90BzZ959vl968wf6wtBm6a/rxH9U09jgr+sn88AphxnnrfoXX8nBzN4gT2EC95qKxTI0HEHMEX8JEg3D+/Qj8176eXqL/vmM///vuNu1vxWZOmTG17WTkFeKebuXOjBU+a+7/fAGeOGZv8Al2UkNwl0JgZ8qz9WH+7maAVf1+2VVOBDwaZO/bYFmDWhUBFiXq7nuaufRFO7QO+v9XnYnpFKXy0gu4fg/pd9CzwUrr+vr1L+d9dYY7YVLYBI5c1eSEYmd1/WJu3MIOzfsOYrnr3Ipevvic8dcDyBHtcUmDKVHAA2PqT/j7GgNNH1NuWv81zJEUCsmXAjAIaZKJTuJsxicx/TH+7GS3R35dt4dPml/Gb/wQPAjqoDaaSNXf/iuIXsnDz1NmZjTIsOMAnavkF/SqWKeyVxi+Ymc6bOdTCfd3swJRLew+z5Qk32ihmJXKAWEy8tMHP33facODbG/T3/fMJ8HZ7dezKH88Dn13m3z0DhVNzD/+EanS6Qgb9h/TSOAMZNi2/2NrGYMXmHmiNUkaOXCWC4QTs3iXq6E8jVEmhQmDPfjGNL4d2l475yaxwV0bu2uKMj/UV+Tf2OmEd4ciTrbJSZFU5+ucT9XdPZp59UmK6/N1Aw87W7hMK5GR9HjX30Ghs0Sncz3hxC/QX2exzci9w4G+g+3/U+z+7VP+8yjLrwzGncDcIJArnkF1OtOVJ+HwRYWkXlBiunWmiTrWau1MrDSB6mntFKf/NYxMCf79gYffiSeONeY/obz99GKjVWH9fJC6reeYEsOlb/jlavGWIKIeINhHRBiLK0tlPRPQuEe0mon+JKMj+gX7QtJ/3Y2TNfGovHpGpJcfAy2ZqL+AVg6XWTh8GZo7lWvbi513bncJdo83K33ct9l7eYLPZx0lbQwL4Ym7+nqeLtXR7H8wyMQHQ3PN2qVM96An3lxsAb3cEjm/3/36hQtbcS07x9h0ob/OF7dkAACAASURBVJC3OwDlFhOvndqvn88mFCg7uSizuY9gjHVnjOmtxjAGQBvp3x0APghE4YJCWhvvx8j2RfnlM+s14Snd7YopLg8VOWIPMBbusuYeCRG2234JgeeIj9f/7hbr6WLNaH3MwX3wZfwV7iWngPd6c8GtvIdeec7mAe/3A3IseDSFE60PvBU3W29oHQ20KNuNw8HdNpUxH6FE5RIcXcLdE5cA+JRx/gZQm4gidLVgE0JEO+nqsHM3vjfb+v7C6UVFTunqSjimbQzREOkZSP75hI9SQvHcZjR3RwUXsDIJKf7dU041rZyYlH9zo84m30R6jUhA+74E2qTEGI8e10OpIZ8+xP8eWB3Y+3vDXsFjOt5T6L1azX3vX3DKngjzc2cAFhJRNhHdobO/CQCl2porbQs8/g5XzcxiayufObjt/cwxYIuHtUi1KEOQVb7VUrUX7Hdt2/SdS7AxFhGz7Wp8FLo5K9wF9vZ5fPiuTN3w26PAF+OAf7/1vYgyG3TXcXfhi3dKcn3fyiKjtP9PTuWjAm/eMhHXBgzQau4BXY2L8Y7/o6HAniXuu5WdZblkjkmoFcD7m2D+4zymQ7lcoyodA4BPL+bbAGDrjyEpltlWPogx1hPc/HIPEQ3V7NdTPdykARHdQURZRJTlc8Y2P1Np+qQZHsoCNnzJP1ux5ylfTm/5TDZ/x80fAM8PszoMS9J6wleNetZYYKNG2Obv4n8PZbsff9pg0Qtv/PYY/23y9wA/3uXafmq/zsE+2PzNRkWbJW+nq00ZCfdfHwp9jpLDG6x7X2k193IT3lNmYQ5Xoja9BWiUHk3BtHN7sv3rzYuVFwFzNXpwiBduMSXcGWOHpb/HAcwF0FdzSC6AporvGQDcFo9kjE1jjPVmjPVOTzcIdAk2vmhDM8cAxyTNa58FrcRwOTcD4fLt9ZaLFhUY5dP/4Xb97UXHrN9j7TSeqXC+JiBHXkJRiS+au9FKS77isLtc/jx1nNoMnMFiciqPH/FlgW9veWf8wVHpcnBQeizJdabsdPXMXAUHzeWK8sTRzdxRwmixG6MEhtLi2K7yhbaj9trKiSiZiFLkzwDOA6B9W38GcIPkNdMfQCFjTBNGFij8tcn6eX6Rhcf64XZXpKrZ1X/cVkWqAhz91/yxq6YCb/mRf8PMoim+OOus/cj7MVY4tsX1OW8nsP4L4KWG7sed8aGjM8Je6XnO6OQe30Yolf6vOmSIw+4yvcTEwe3HU74vH8kGBcUxUzoD73b3rwyySW3nAte2zT8oTLQGDUr7nssR2iHCjArTAMAKItoIYC2AeYyxBUR0FxHJ49/fAOwFsBvAxwAm6F8qAPgz4Va3VWh7z60/uSJV9WzuemwP3tJjAIBEXwOe/Kh3I9dRPeRUx+/2ME4h4S+RMFmtjKDe8AXw0wSgUsczZJZB/iNfWPoKN5MZJXT7+Bz3VbnMoNVQ/cHNJdjuEuA2TViOvUJ/ZHPmKM+rrnftrJnWk5XZdFIKfHczMOcm/tloQjxcLpkSXoOYGGN7Abhl92GMfaj4zADcoz0mKHgKg/aGXo6UUGFWc59zY3DLMfZt3/LRhGNyL2sm0NfAdOMP8mLe0cDZvMBdS3ZG2PcX17Zb6uSm9yWmYfuv/pVLya8Pqb877C6NWe74ZT67zFhx+OV+9RoIaz7icQZyTiQri2d4TeNrINz1OusQEn0RqpV+ZBAkCp8HgjLKk8hD9GSQ8bVzC8dK9YGexBRwlrzM/z4XInu+FbJnqr8fXOOasP31QaDDxa593kaES19xffZnsRBnMjCD9hiJ0bKIxsRh/tj3yIaQ5DXRUnRU7VFANmDmBaEvBwCfn9+fEZOv5O2IjAjdqoC9wl04LX8zPGWxgpuHjNR+T7v5awQPWXOXvdncEMI9MDQfCNTyddFYHc39smn6hwaSt9rx3NXOYtiCm8P8nn+M9/kajBPqnOsyX4zj+VamdAF2V3NB77Cr4zwY4/MSZmy7L9ZzT7X850uBLV8wWGbQAf3+ZOjKoLX1a4nQrJ6RWSpPpDQEHt4C3LLQ+rl6NvfMwervzQcFJ0mUuiDBbRDpbY1tijXqeD//Up3FG8JhlpE5lcM1uM/HAfvDlI4h6G3CC9mzgBfq8qjZEzt4jMDOBTz4a/Fz4S1bMAnHiFGLt6ydwiwTYGIMetMJBp4AaW0km7tGuMcnq7+TLfjuiGQLTW/fXVqBHQAyhwDDngAytCEKOuiFj4fzJVOOtuQVgUJOmF/gXx5wff5fX+7ZIq9roJ1orMoYmkYs0HK4teNt3t5VIdwDS2wN/e3127s+y4Ls8k+AO/+ShLtmxlsr3AEALLjRbuT8L7hc+j+gx3V8lHPtHGDEJBMNFVyYNpf88zOH8GGpXnRgqFAK92BOiHe8xHifv2lt/cFoElyef4r2fPChRjl6LTnlPV+Up/rN3+PdbBMmole4xyWqvw+8D7jmS/W2eGnZr6S6khDXsblrs/3JP3wgg0fc0OlkPGEmTbEnmvUD4gw6QyOu+wF4bA/QrD+fiJMFybjpQJ0W/pXHMsrMf+HPthdyjm/V377qXf7X2ygwWPECWoxGzZGGsg19Po77/pv1wtv8gzo9w0/3+pYorfS09XMsEr3CXau5D3oIaD+Wf77tT+A/cxSNXl74wuZZOKQ04sIMAD4YGNDiqijYby3PRN2W5hJX1WkBXByAnDQOO+88k+u5ay1drgB63eT/PaygNJMFU3OPidAFMhYYTB7KUbz5u40nHktOcbt8KKjTPDT38RdlG5LzG1UUmzv+u5vV+04fsq44AeoI5SARxcJd8yIqJzUyegFtz4PT9OFczsyLn/udy10/VETZMUn9fP10FhABgAc2AD19yE+jHfEo68imMyTteLH7tmCidH8NZp7spLpAfAoAAtpfCNw834+I3gDiLZ/RoSzgzxeBjd+ot//zCXDEQuoHb6R38Lw/NtHzfk90NFjdLBicPqzOSAp4TgzmKTakYL9vk+3aYK0gEMXCXdOQ9Iam2vVJyWYsHJr0BmqmB24Fd19JSAWGazQ1Iqhs9GNeC8y9LpvG/7W7ALjue6Dr1dIORWPW8wSo29JahJ+/KF88f8wyo1/xvD81A5iUC0wuAK75grvdXvSO7/cLNXPvcI1yGOPL130awI7YyIlBxi+vkRDGnxxeB0zVLBbnaVEQr6NFH8p+/qvWz7FI9Ar3uBpAWmvXd4/CXbHYtF4v/EwecOtC13WDTWpT431j3wSGT9RsDNLka7er+T8ioPVILuQBoKEik2IkTNYpIxGtmmX+I+WHT20KDPCSIaO/TkqkSHh+K8gLfATDfBXIicP0DsBNAVyxyV/0zDJFR4HCQ97r0oy9vr0mR1CrEebL5iPRK9yJgPsU+cD1hHvXq/jf+h1cx8iaX+3mwJVScqGYOJf5IU7PeybAeFqOT+uG2fES4JynvS/zZsbFUebqL4DzdAJYOl0KPHVUvaq8nlkm1CgnFM2aZc59FrhylksB8CaYUhrpP6vyvPT26o4vEpHT7wbCnbfvnervnoTcJA/ZUse+7b6t65VA5iDfyhUo/p3j+qynub/VDvi/jvCqmR83YT8f8rClogWC6BXuWvSEe5cruPlAnuhR2tx73cSFmZZwrzqv9Se/6lOgViNuNvHE4AfN36PDhdy7SA/tyCVQmmuny4z3Tfjb87lJ9VyftYtXdDJYHDu9Pb+nHHKv1zn2V2jyRh5ASoHfsAvQ8wb94yYXAg9v09/niRFPe7dlW0GOhA5EXp6EmkCyYt0FWTFq0MX9WNkzLUWxuqY8Qa309rplITD+G2CQpr0OfAAh54fbXJ9njAb+el3/uECMgvTqLMhUHeFuRsNU2tyN7IPh9lmVNa7hTwI9FRki09sBd60A7lunf16wsl16qlel0M3o4/k6V85Sf1cmgKrvRbj9+7Xrs1ZzN/q9ZEFUtyXQ9nzgMp2oWyLeaZ77HLex66F6fnKlYWikkyNcb0LxpnnAaA/21UH3A/cYdG6P+ZDTXs4xLq925Q+OSuBaRZZIeeJQTymSuWcNcPufwFPHXAJfWYfN+gHtzndtm3gQmHSYO0GEmyUvA/t11l/1V7i3uwCIDX2Ec9UR7mYiPm2xihwpBsLd31Xu/UXWuIZPBC5+V72vYRcgrVVoy+OpXh/azF/Oi6d69ixJ0Gx/eBtw9WdAjbouO3+b84zvo3y53CZUDTo1uROIiQP+8w3QREd4yHMNQx7mnjJ6aEcu8shGeXwLKXWu3tqdmYOBARP0Nf4uV3oeKSanGe/zxrThvp8rY68EGis6MXkE7Mk7JDGV13VcIo8KBwCbh3cqsZZ+IGHb8/WPbyq5Ko94yn1fINZOXfaG+za5/aW15oqAEYaja0nWeKqHIGBmJaamRLSEiLYR0RYichs/EdFwIiokog3Sv2eDU1xPBTUh3GPiXZMfhpq7BTPEoCAMJc3aSjtfodkQJM3dU73G1eAvZ88buBAdcK/+cc01MQO1GvO/T+wDxkvrq176gckCaRdzMHhuU141JiaqtSODHjdwTXyw5MrWYihw48/8c0wsUMtoXXjpXgPvAx7ays044z4xUUYfOO3nImj12vG/WtNO/Y78b1KauRHu+K/5vxq1rZdBueqRTO3mwA0/AY/s1FckApH/p0xn/VdZuF/9OVcELjcICms90vO1Q6w4mtHcKwE8whjrAKA/+ALZHXWOW84Y6y79eyGgpTSDWeHuDCO3aJbRazi+ZliU0RvGJ5nU1q6Yrg5sCodZRsuwx3lUa6LiZR5wLy+rN8x6Kbk9J+MrbD2yg9uum/Tmm80IdzOue3JHJBMTyzXx5oN5536ZZvk9ozkK+V51WgCpRh2AB2pbCBB6u733Y2Tu1pghWo9yLZAiz//c9idPJjfoAT452m08P++yaUCdTP5dj+Q0oN0Y3/Mo3blM/d0Wy0cEKQ3023sgJv/1hHtuFv/r63PIv70cTxKiYDmvpWWMHWGMrZM+FwHYBsCH1hlkzLyoMXEmNHdN79pScllKawP00awK1KAz/OKGn9Xfr5xl/KLowgw+BxCrE6rJ9YChiojIBp1dw+4L3uRpDfTQNvheNwH3rNU5UKu5O/hLl9KQ265l7xhTXjUm2kzdlq4JT2WbsdmAUS+4C385d0+dFpqRnXyul99pkkGe8mAtXNKgI3DjL9y7COACssuVQKtzgCHS75jRC+g+npuQ+tzKnzG9LXejfWCj/nyGL7TUuAdq214jxYJwur+v4vfxNV7lhM6k+Gop6lsW7nInopwkNRyxKZDnpULkgWapKyKiTAA9AOglkRhARBuJaD4RdQpA2QJPTLwi2tGE5t5/Am/oAH+xxypCvCce5DZwIy56B3gy13j/jb/yySUlnS4zl9hLJhRLBvqiraheSkUZ+94OtD5X/xxtgMxF76gnbJ2X0zHLKIWuPDSurze41JbThHAnsmZ+k+trxFNc+Gvv5e0309PqYmtwDTjQyK6OLYa6Ath63sDNKNfP9W2EoYfZNuQMopOQ38WYeO4TL2c4BfQnOZW2+7otedI7Lf5ozfJzdLgYGHi/OhBJNtU8uBm44y911Lfb84cmi6TpN5eIagL4HsCDjDFt1pt1AJozxroBmArgR4Nr3EFEWUSUdeLECV/L7Dsx8a4JVTM2d1us4ofRHJ9Yi0c0Xv25/nXia3KzzWAD/9bmAfDxVWVLjACzjD/n+HwdBtVv0/VK4Ikc9USgEZY7LjOdgVRmK520Em0n9+Qh4PG9wPn/NT7noneN9xmR0lgd65CawecB5PxMgcR05KqmDTvXLnVwn/h4hTbe8wa1x9I5T/MJTTlYqE6mq3MYcC9Qry3/3PES4PF9Xoph8C7JzxETB5z3Ih+lyshlq92Utz1lPTpNraFdBc5UCySiOHDB/gVjzG1czRg7zRg7I33+DUAcEbmpXYyxaYyx3oyx3unp6drdwSc23hXkYcZbJibO9YMatc8OFwHPnnTfLguO9Hb652lffm0Emyki0CwDBC5XvZlJO8bc72dmQRIAQdGgZIGkLZPcmTewOKhNqMkFR0ws8Owp4JqvXPuGPcHNhb18WFS9350hdM8zWc9abdwtwlxBYipw+xLX96GPAXVbcJfWyz/hWr68EE+P64DLpRXXWg7jnk6XvG9cDqP5Gu1vqmyfem31ZmntgQ7Sux2XzN/z8V+5HxsEvL49REQApgPYxhjTCTUDiKghgGOMMUZEfcE7jfyAltSICWuAg16CYGSUE6pGWqHqB4sz1txV58QAXa7iQmWtNMEmn9fpcp68KXMw8LUHe7ocLWuFUCz27YsWfniD67MvIwrZt1r33no2dx+FtK8apcdrGgj3LldIS0Q2dj8H4IKqTBoQpzYDet/sfozNpq6TEZP4P88Fgm75Q7l6kNnOXttWnO+iQf3bbFxDV6YhAfjoDeCj5o6XAvWk/Q9v53MzAB95G2Ev18+jY9T5APpKUPOB3Hwr38tmM46nCAJmInYGAbgewCYikt/aSQCaAQBj7EMAVwC4m4gqAZQAuIaxUBiEwRfnqG/SO0Dp8WLklmTTaO6yUPf2MoyTbG5HNwEHVrl++Nh44HwvCasA70mZ9FAp7sHS3H0QAqcP+XfPNqP4Xz1tSPc5fRVUFs8zO2kP6As0I8EOAE0Uiawe2uShDAadbUpjoEhnMjaxFlCql+QtlMLdT7OMJ+7NMu48bDaXYAd4pLdMMw8pvY1WHdMuNelNcwc8dyJBxqtEYYytgJeWwBh7D0AAEokHGZXJxWBIqjSXKM0yZpEbZEhmxCPULKPy1bdQroe2qu2quvf2MqFqBbPnWek4ZffYYC2jaFTm2/8A3taJ9DWKmwjlos7+au6e6t9X3/HkNOMO0Wi9YK3QV83PRUAOJg2RuT5UsFAKdKNoMaXvuZ5Z5r51wFkdG7vzHvJ1Q6AZRapZRumzbkUwar0zbMq6N7qOZkLVCsGYUI2vyf8G67cxKrNRLnWjVLYhXdTZR83d2bkHSXG5YwlwcA3wrSZ62G6Q5bFmA/V3M5p7GKk66QfMoNLcDX6MuBquIBzVhKr0N60V0NRDHhXZHzkUCciUgjNoZhmFcJ9och3VsW8F7v7n/xe4e5XruzdXSEsEweYue+nIQj7QmJkrUmFU9gi3ucclBV8bTmnoSnPQ43qeRgMwNsska3xESONZF2FEXomCicrm7sFTIDkdKC2QhLvF/k8OkgpFXvhQuFYpXzCzqxKpNBw/y9j/Ls/7QzKhaoH+dwONewAthwf+2oAH+7KXV7n1KL5YSXwy8P1tQLdrAl82I3yxuV8/NzSmjtgE18Iz8kpWeqYsvdQaEW6WqWaauwmzDOBqjDbFhKpZTUf2xtELlhj6mLlrmCUUZhlfbLPBzKGhl37AVy3UbDnltmLGdTAxFWg7OnhmD6M5EG/CfdjjPKo0tQlwy3zjRGnBwBfNPSbOt/kef5AFdHGe+zKbdVsaHw8IzT3skGay1PhA1zHyOWZf1tQM4PB6/WRJ5zytn3XOV0JilvFBuIdSi/HHLCNnLfRG58v5ggxGAWmhxFBz91LnYV1RygfN3V4ZeoEpm1Rn6GQo1Rvpq2zuQnMPL4fXuz57Eu5OzT1WIThMNtBL/sejVkORmteZBA0ImonG30YbqE5HnjDcMU8zSagTxGQWs9prTBxPJeBLdsNAY/R7KOvg6i94BKcyc2hIzIQG+OKV5KgMvcDseKm0oplOefWEu7C5RyiezDJyylRfbO6JqTxqNRTY4ownfwKF38I5QML9mi+Bz6VVl/58CRj9snR5ByyZZeKSgAppwW1/s3qGAyNBSQT8Zw63qWcO4lGRBQd4+8gc4n1BlGBiVrj/f3tnHm3XfMXxzzdDQ/JkMKRiiCmDOYTEPNVQyjKkCFLKMpUaiizUohRdq11WWWaNRlmxSgwpMSxKaYkKYh66ssRQQkXUlNAgye4fv9/1bp733r3nvXvOPefe/VnrrnfuGff5vnv2+Z39+529y98DWLo4+6eN3svBMQ+FmPviRaEebSkvfnuNwZyHZZqr5V5esKGzlvU2J4Yf1upbUPVLTF1lZDdyefxsRujtX25gejeUIaNC5+CECmX+2jJ0m9raUZ5wbOG81umkYZnxU1qn+9UhBUZ36czhjdhj2bqkA4eGMo1jj8146GMXGfmjkImydz8YsmnrUNiWVbO1o2fvcOMvb9i1N/qt/H+Rw0Lq+bvdpMmYY4KTaK9zpJydz4Ydzww/rg9eiTNTujjG39z1jtHB64cqQ2nSd8VQICEp4ybBtONDoqZas8zTRMIO1WG7hWRc815pfRW9SGT58lHWSLDreeFT4uApYfRRXewpc9jtxtzL/hc5bLnnz6I0kSo79hI92nSk1qrlc8Afli1m0aMHDfkANXBoGJWRBt9puSfUr08LDN26tjZlRQ477lJlw30rr5MWVQ/AoOtZQFMkfxbljaQdqpUYdUgoEOx0nbcfhwtXhtkPwDszsxkSmhcaueWeN5Zx7tkXuO4u/kuphF9M+eGsf7emzl36DdwyPowYWtzBK/aNiP8es2MZ555Nabxa0lxhmS6RcoeqUz3LD4Sj7oePXof5s2HqhDD6pSvpkotKDjvuGpbyEFjGxa1rgTv3SlSTz93JlpWHh88F7aWybXC8kZEd5Vp7WKYB8YvJyRPN1qFaT5J0qOaQasvs7SlptqQ5ks5uZ3kfSVPj8qdiIe0GwcMyTo5IK9uk810qjXPPORWdu6SewNXAXsCGwKGS2paWPxr4xMyGAZcBnVTzLRilf3BHdRUdJ0uK+FZtUak0zj3nVNNyHwvMMbM3zexr4Fag7Zsp+wGlXq07gF1j7dXiU8rh/MX8+trhOFDIFmRhaYKwzOrAu2Xf58Z57a5jZouBz4CV2u5I0nGSZkmaNX9+QZxl/3iq6+xQXzscp5zyVBpFYbXRldfJE+UlH3t1kHht+UHLvpSYI6oZLdNeC7xtNqhq1sHMJgGTALbccstsCmh3lz4tobZnEfOQOI3JxNeLF3svos3LDYCfPx3CM707KGN4wpNkUjSnC1Tj3OcCa5Z9XwNoW1W2tM5cSb2AAUAnhUYLRtvano5TT1oG19uC5BTRZoBVRna+vP+QbOzoAtWEZZ4BhktaR9L3gEOA6W3WmQ78NE4fCDxillb1CMdxHKcSFVvuZrZY0knAg0BP4AYze1XShcAsM5sOTAamSJpDaLFnWKDRcRzHaYvq1cCWtACYXaPdrQx8VKN9DSB0CDfyvqA5NKv1/lyz5ORVs1rvL0vNRppZ5TGxZlaXD6HVn8d9TWr0fTWLZinY5po1iGZ5/h9U0qxaTT39wHe5pwn2VWvyfJ551c01S06ezzN3mtUzLDPLzLbM276aBdcsOa5Zclyz5FTSrFpN69lyn5TTfTULrllyXLPkuGbJqaRZVZrWreXuOI7jpIfH3B3HcRqQwjh3SaMlfSdfjdMxkoqX7SgnNEziuwyImWNds4RI6dZMzL1zl7S5pIeBp/DKUVUhaWtJtwKXSNq43vYUAUnbSLpC0pEA5vHKikjaTtJNwLmSVnTNKiNprKRTAMzSreyeW+ceC4BcB1wPXAM8Buwdl3kLoQMkHQRcC9wLLAecHue7Zh0g6UDgKkKqjd0kXew3xc6RtC7hunwUWAu4SNLe9bUq30j6BfAXws1wrzgvtdJauXXuwBDgWWB7M5sG/BVYSZK8hdApw4F7zOxmQuEUJPV2zTplI2CamU0BJgJbAQdJymcu13ywBfAvM7sROAN4AdhH0pqdbtXczAH2AU4AfglgZkvSanjlyrlLOljSREljzextM7vezBbFxS3AmmZmad7tikbU7HRJ28RZs4Fxks4EngRWA66WNKZuRuaMdjT7GOgjaYCZfQDMA4YCW9fNyJwRQ30jymY9A6whaU0z+wR4AvgUOKAuBuaQdjS7D3gp/l1YCs8QcnbVnFw4d0k9Jf0KOAtYCkyWNC4uK9l4F7CvpL5m1vQ179poBnC9pH2BacCpwI7AEWa2JzAf+LGkVetjbT7oQLMfAk8D3wf+KOk2wsW2EFg1bte0IS1JAyXdBzwEHCyplJR9ETADODh+nw28Rni67iD5eXPQjmb9SovMbElssP4eOFrSyhYKHNWcXDj36KxHAmeY2aXA+cBJkjYo63SYDzwCrF8nM3NFB5qdBowws78RLr5SYra7gU2BL+pha15oR7MLCCGFBYTH5DuAB8zsUEIH/l5xu2YOafUjZIQ9OU7vGOfPB2YCm8Qn7SXAe8B2ZU/bzUq7mrXpQP07Qb+TIXS01tqIujl3SUdI2qksrjkPGCSpV4yxv0a465VsXAgMI5Y9acbWVAXN7gReBQ6JLfQ3CLn1ATYnOPumo4JmdwCvA+PN7GMzm2pmN8T1RhKeFpuOMs36m9l7hDcibyP8hsZKWj0685nA88BlsUW/EfCOpL4d7rxBqaDZVpJWi+sJvm1oXAycJekzYHStfVqmzl2BIZIeJRT3mECIB7cQUlxuQoitA1wJjCM8LmNmHwP/BX4QvzdFayqhZlcRYp5LCB3QYyTNBA4CzjGzBZmfQB1IqNkVwP6ShsRtd5X0KuGGOCN76+tDB5pdG8MGi8zsS+BhYBCt1+AHZnY54SnnBuAnwO/iug1PFzUzST0kDQP+TOir2N7Mrqu5T6tVmsoq0lj2jH9HADfH6V6E4VSTgYGER5kdgb5x+VTglLJ99M/K3jx8uqjZ7cCJcboF2KTe51EAzaYCp8bp9YAD6n0eOdHsSsIoovJ1TyO0OAcAK5S2L003y6cbmpV+c4OBXdK0MfWXghRqql4I9JR0P9Cf0LLEWqs8fQBcSriTHUIYBjkVWExoFRDX/zxte/NANzX7mjCEFDNbCLyc+QnUgRr8zmbGdd8ghLQanio0OwV4X9JOZvaPuNn1BEf1ELCWpM3N7H1Cv0XDUyPNtjCzucCHadqaalhG0k4ERzOItzRpaQAAA/NJREFUMMbzIuAbYJdSB4KFToZfA5eY2U2EcMIRkp4n3AmbwjmVcM2S45olp0rNjODILijbdG/gROBFwlPh+xmaXVdqqNncTOyNjwjp7FzaAVjbwsshSLqGcBH9DzjZzLaIHaaDCfHi08zs3dgh2NfM3kzNuJzimiXHNUtOQs2uAM40s7cl7Qd8YmaP1cv2elE0zdLuUH0WuE2tLx09AQy18FZbT0knxxbVGsA3ZvYufNtR03QXXMQ1S45rlpwkmi0xs7cBzOzuZnTskUJplqpzN7Mvzewra33paHfC+FiAo4ANJN0L3AI8l6YtRcE1S45rlpyuaFbroXpFo2iaZZJlMd7pjDCscXqcvQA4B9gYeMvC2FAn4polxzVLThLNLM0YboEoimZZjXNfCvQmjDHeNN7dzgOWmtkMv+DaxTVLjmuWHNcsOYXQLLMye5K2Bv4ZP38ys8mZHLjAuGbJcc2S45olpwiaZenc1wAOBy41s68yOWjBcc2S45olxzVLThE08wLZjuM4DUguskI6juM4tcWdu+M4TgPizt1xHKcBcefuOI7TgLhzdxzHaUDcuTuO4zQg7tydQiFpiaQXJL0q6UVJp6u1FGNH26wt6bAuHGuTeKwXJH0s6a04/bCk1STd0fUzcZx08XHuTqGQtNDMWuL0YGKpMjM7v5NtdgYmmtk+3TjujcC9FuquOk7u8Za7U1jM7EPgOOCkWM9ybUmPS3oufraNq/4W2CG2uk+T1FPSJZKekfSSpOOTHjse65U4faSkuyTdE1v3J8UniuclzZS0YlxvPUkPSHo22rl+rbRwnLa4c3cKTczHXiqQ8CGwu5mNBsYTCiYAnA08bmabmdllwNHAZ2Y2BhgDHCtpnW6asjFwGDAW+A3wpZltDjwJHBHXmUQs6gBMJNR1dZxUyCTlr+OkTClndm/gKkmbEepajuhg/T0I2fwOjN8HAMOBt7phw6NmtgBYIOkz4J44/+V4rBZgW+D2shTffbpxPMfpFHfuTqGRtC7BkX8InA/MA0YRWvOLOtqM0IJ+sIamlCePWlr2fSnhOusBfGpmm9XwmI7TIR6WcQqLpFWA64CrYlGEAcB/Yqmzw4FSObQFwAplmz4InCCpd9zPCEn90rTVzD4H3pJ0UDymJI1K85hOc+Mtd6doLC/pBUIIZjEwBbg0LrsGuDM60EeBL+L8l4DFkl4EbgQuB9YGnotl0OYD+2dg+wTgWknnRvtvBV7M4LhOE+JDIR3HcRoQD8s4juM0IB6WcRzC26iEEE85X5nZVvWwx3G6i4dlHMdxGhAPyziO4zQg7twdx3EaEHfujuM4DYg7d8dxnAbEnbvjOE4D8n+06axfIlv0egAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "r = data.Global_intensity.resample('D').agg(['mean', 'std'])\n", "r.plot(subplots = True, title='Global_intensity resampled over day')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I show mean and standard deviation (std) of 'Global_reactive_power' resampled over day." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEaCAYAAADqqhd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXeYFUXWh39nhkGCgBJUkGhABANZDKtgQpRFXUFRMayo62L2c2XNmF1F15wVI4ppFRSzYMIACAbEgDjACChBEJCBGeZ8f5wuu27fzrdvmqn3ee7TfTtWV1efOnXq1CliZhgMBoOhdlGS7wQYDAaDIXmMcDcYDIZaiBHuBoPBUAsxwt1gMBhqIUa4GwwGQy3ECHeDwWCohRjhHgARPUpE14Y8loloh5j3KSeiA+OcmwuI6HgiejPf6TBEJ5OyVejlUkFEU4no1Hyno5Co88KdiIYT0adEtI6IfrXWRxER5Ttt+YKIOloVVT21jZmfYuaD85kug8EQnjot3Ino/wDcDuBmANsA2BrAGQD2BlA/j0kLhS58DckSJm9N/mcfk8fxqbPCnYiaAbgawChmfp6Z17Awi5mPZ+YNHuedRkTziGglEU0kojaOQw4lovlEtJyIbiaiEuu87YnoXSJaYe17ioi2iJjmMUT0PBE9SUS/AziZiEqI6N9E9KN17WeJqLl2znNEtJSIVhPR+0TUTdvXkIhuIaIF1v4PiaghgPetQ1YR0Voi2pOITiaiD63z7iOisY60vUxEF1jrbYjoBSJaRkQ/EdE5EZ5tAhGtIaLPiWh3bf/OVtN7FRHNIaIh1vZO1jaVzw8R0a/aeU8S0XnWejMiepiIlhDRz0R0LRGVWvtOJqKPiOi/RLQSwJhM85+IGljHrrDSOJ2Itrb2/Z2I5lrPOp+I/qHdpz8RVRDRRVZrcgkRHUFEhxLR91bZuyRs3jmeIai8nGCVhxVEdGnAO2tGRI9b73kBEV1mXX8z63l30Y5tRUTriWgr6/9gIpptHTeNiHbTji0notFE9CWAdeQi4InoICL61iq3dwEgbZ/nt0ZE/yKiFxzXupOIbvN71qKEmevkD8AhAKoB1As47lEA11rr+wNYDqAngM0A3Angfe1YBjAFQHMA7QF8D+BUa98OAA6yzmsFEaC3aeeWAzgwIC1jAFQBOAJSMTcEcB6ATwC0ta59P4CntXNOAdDE2ncbgNnavrsBTAWwLYBSAHtZx3W0nqWeduzJAD601vcFsAgAWf+3BLAeQBsrXTMBXAFp/WwHYD6AgSGfbSiAMgAXAvjJWi8DMA/AJdY19wewBsBO1rkLAfSy1r+z7reztq+Htf6SlT+NAWwF4DMA/9CerxrA2QDqAWiYaf4D+AeASQAaWfnbC0BTa99hALaHCKX9APwBoKe1r7+VliusZz8NwDIA46132Q1AJYDtgvLOWbYC0tsVwFrr/W4G4FYrHa7lEsDjAF620tQRUt5HWvseAXCdduyZAF631nsC+BXAHla+nGSlcTMtvbMBtPN4Dy0B/K497/lWOgO/NQCtAawDsIX1v56Vll75lkmJy7h8JyBvDw6MALDUsW0agFUQQbWvte1R2ML9YQA3acdvbn1UHa3/DOAQbf8oAO943P8IALO0/39+gD5pHgOtMrG2zQVwgPa/tZWmtEoLwBZWGptBhNN6ALu7HNcR/sKdIEJT5dFpAN611vcAsNBxvYsBjAvxbJ9o/0sALAHwF+u3FECJtv9pAGOs9ScAXAAxrX0H4CaIea2T9T5LICa3DbqwAHAsgCna8y0MkcbQ+Q+pWKcB2C1EeXwJwLnWen/r3ZRa/5tY72MP7fiZAI4Iyjtn2QpI7xUAntH2NQaw0a1cQoTyBgBdtW3/ADDVWj8QwHxt30cATrTW7wVwjeN63wHYT0vvKT55daLjeQlABSzhHuJbew3Aadb6YADfBL2fYvzVZXvWCgAtiageM1cDADPvBQBEVAF3k1UbAJ+rP8y8lohWQDTfcmvzIu34BdY5sJqjd0AEVRPr+r/FSPcix/8OAP5HRDXatk0AtiaipQCuAzAMosGoY1pCtJoGAH6MmgBmZiJ6BiIc3wdwHIAntfS0IaJV2imlAD4Icek/n42Za6z3oMxei5hZf8YFkHwHgPcADIF84O9DWiMnQLTbD6xrdYBoeUvI7isvQWp+OvPWN40WnvkPqXTaAXjGMgs8CeBSZq4iokEArgTQ2UpHIwBfaddYwcybrPX11vIXbf96iHKRli6XvAub3jaO66yzyrcbLSGtqAXaNv2dvAugIRHtAamYuwP4n5aGk4jobO3c+o70+r0LZzqZiP78H+JbewzAPwE8CFHynvC5V9FSZ23uAD6GaB6HRzhnMaRgAgCIqDGAFgB+1o5pp623t84BgBsg2tduzNwUUqjieOQ4w3guAjCImbfQfg2Y+WeI0D0cokU1g2jksO67HCL8tg9xDzeeBjDUEpp7AFB2zEUAfnKkpwkzHxrimn/mnWVDbwvJv8UA2im7ukV72Pn+HuRD7m+tfwjpFN/P+q/StQFASy1dTZm5m3bNMM8dOv+ZuYqZr2LmrhCT12AAJxLRZpD8Ggtga2beAsBkxCsPCq+8c+JXXpY4rtMIUr7dWA7R+Dto2/58J1ZF/CxEATgOwCvMvEZLw3WONDRi5qe1a/m9C2c6CanfXdC39hKA3aw+gcEAnvK5V9FSZ4U7M68CcBWAe4hoKBFtbnUGdYc0R90YD+DvRNTd+kCvB/ApM5drx/yLiLYkonYAzgUwwdreBGLPXEVE2wL4V0KPch+A6ywhqzquVIXVBCLQVkA0w+vVSdbH9wiAW0k6QEtJOk43g9h3ayD2cleYeZZ13EMA3rDyExA79u9Wh1hD67q7EFGfEM/Si4j+ZnWgnWel/RMAn0LspBcRURkR9QfwVwDPWGn5AaLJjoCYTX6HaLlHwRLuzLwEwJsAbiGipta73p6I9guRLj8885+IBhDRriSdtr9DhOEmiJaq8rna0uIzdTP1yrvQ6QXwPIDBRLQPEdWHOBy4ygirVfGsda0m1vUugN2CA+R7OQbA8da64kEAZxDRHiQ0JqLDiKhJyGd9FUA37XnPgZjkFL7fGjNXWs86HsBnzLww5H2Lijor3AGAmW+CFMiLIJ0qv0A6mEZDbKXO498BcDlE61oC0XqHOw57GWIPnQ0phA9b26+CdCSttra/mNBj3A5gIoA3iWgN5IPew9r3OKSp/DOAb5D+sV8IMQVMB7ASwH8gdu0/IOacjyxvhn4e934a0ir488O1Pvq/QprhP0E0vIcgLYcgXoYIg98gZpW/WdrvRojZZZB1vXsg9ttvtXPfg5gyFmr/CcAs7ZgTIYL1G+sez0Nszpngl//bWPf4HWLrfg/Ak5YGew5EOP4G0WwnZpgO17yLkl5mngPp+BwPKd+/QUxdXpwNqXTnQ1pL4yEKA6zrqUq5DcTOrbbPgPTT3GXdYx6kzyMUzLwcYmq8EaK47Aix6SvCfGuPAdgVtdQkA9jeDgZDXiGiMQB2YOYR+U5LsWHyLjpE1B7AtwC2sVp6tY46rbkbDIa6h9UncQHEM6hWCnbACPeCg4heIxk45PxdEnx2YVObn81QHFhOEL9D/OCvzHNysooxyxgMBkMtxGjuBoPBUAsxwt1gMBhqIUa4GwwGQy3ECHeDwWCohRjhbjAYDLUQI9wNBoOhFmKEu8FgMNRCjHA3GAyGWogR7gaDwVALMcLdYDAYaiFGuBsMBkMtxAh3g8FgqIWEEu5EdAgRfUdE84jo3y77zyCir4hoNhF9SERdk0+qwWAwGMISGBXSmiLse0iIzArIrD3HMvM32jFNVVxkIhoCYBQzH5K1VBsMBoPBlzCae18A85h5vjXd2TNwTCrtCHjfGOEmGjYYDAZDlqgX4phtIbOVKypgzxH5J0R0JmR2k/oA9ne7EBGdDuB0AGjcuHGvLl26RE2vwWAw1Glmzpy5nJlbBR0XRriTy7Y0zZyZ7wZwNxEdB+AyACe5HPMAgAcAoHfv3jxjxowQtzcYDAaDgogWhDkujFmmAkA77X9bAIt9jn8GwBFhbm4wGAyG7BBGuE8HsCMRdSKi+gCGA5ioH0BEO2p/DwPwQ3JJNBgMiXDffQARUFWV75QYckCgWYaZq4noLABvACgF8AgzzyGiqwHMYOaJAM4iogMBVAH4DS4mGYPBkGcuvVSWq1cDLVvmNy2GrBPG5g5mngxgsmPbFdr6uQmny2AwJMno0cDKlbK+aVN+0xKBqqoqVFRUoLKyMt9JyTkNGjRA27ZtUVZWFuv8UMLdYDAUOTfdZK8XkXCvqKhAkyZN0LFjRxC5+XbUTpgZK1asQEVFBTp16hTrGib8gMFQ16iuzncKQlNZWYkWLVrUKcEOAESEFi1aZNRiMcLdYKhrFJHmDqDOCXZFps9thLshGT75BBgypOgER52kiDR3Q3yMzd2QDMccAyxcCCxaBHTsmO/UGPwwrpB1AqO5G5KhjjadC4LPPweeeSb88Ua4h6a8vBxdunTBqaeeil122QXHH3883n77bey9997Ycccd8dlnn2HdunU45ZRT0KdPH/To0QMvv/zyn+f+5S9/Qc+ePdGzZ09MmzYNADB16lT0798fQ4cORZcuXXD88ccjKIBjHIzmbjAUO716yXL48HDHF6tZ5rzzgNmzk71m9+7Abbf5HjJv3jw899xzeOCBB9CnTx+MHz8eH374ISZOnIjrr78eXbt2xf77749HHnkEq1atQt++fXHggQdiq622wltvvYUGDRrghx9+wLHHHgsVcmXWrFmYM2cO2rRpg7333hsfffQR9tlnn0QfzQh3Q7JkQQMxJIzR3CPRqVMn7LrrrgCAbt264YADDgARYdddd0V5eTkqKiowceJEjB07FoB4+CxcuBBt2rTBWWedhdmzZ6O0tBTff//9n9fs27cv2rZtCwDo3r07ysvLjXA3FCjGLFM8FKtwD9Cws8Vmm23253pJScmf/0tKSlBdXY3S0lK88MIL2GmnnVLOGzNmDLbeemt88cUXqKmpQYMGDVyvWVpaiuostKaMzd1gqGsYj6ZEGThwIO68884/7eazZs0CAKxevRqtW7dGSUkJnnjiCWzKcb4b4W4w1DWMcE+Uyy+/HFVVVdhtt92wyy674PLLLwcAjBo1Co899hj69euH77//Ho0bN85pugKn2csWJp57LaNTJ6C8HPjxR2C77fKdmrqFMon5fcu62eyNN4CDD85umhJi7ty52HnnnfOdjLzh9vxENJOZewedazR3QzIYm3vxUFOT7xQYcoAR7gZDXcOYZeoERrgbkiWqme+XX4z7ZK4xmnudwAh3QzKEsfs6mTcP2GYb4NZbs5Mmg+B8J0WmueerXzDfZPrcRrgbkiGOzf2nn2T52mvJpsWQilNIFJHm3qBBA6xYsaLOCXgVz133jY+KGcRkyB9xtH1DdJzCvIg097Zt26KiogLLli3Ld1JyjpqJKS5GuBvyR4nVcDTCPbsUsXAvKyuLPRNRztmwASgrs8t1nimMVBiSZ9064I47ct8EjyKoleZeRGaCgsYr7/3MMg8+CCxYkL001RWqqoAGDYALL8x3Sv7ECPfaykUXAeeeC0yalJv7xbG5G7NMsuj5ePrpwGRrTnsvzX3tWjluwIDcpK9Q6NkTOPDAZK+5caMs77sv2etmgDHL1FZ++UWWqtDlijiauxHuyVBTY5sEHnxQfszp+VtRAehzcy5dmrs0FgJW7BcwJzf4TuVxAZXl4tbcly8Hpk7NdyoKExX5r6wst/c1wj1/eJm3nNsvuQQYOtTO/yKywSdKSQkwbJisL1+eWuFFpQDzsLiF+/77F1aTcu5c4I8/8p0KwQj3uoeXcF+8OH3bq6/axxegYApFVVXmLdPnn5dlq1ZA//7xr6PysIDKcnEL96++kmUhZOjGjUDXrrYmkG9yLdwz6RwthPdXG1B578xPR5zxtOOLVbh37AhocdFD4VcZfPqp+/b164F77/Uv28Uq3InoECL6jojmEdG/XfZfQETfENGXRPQOEXVIPqk+5NLbYv169/spYfruu/GuO3OmbSdPgnwJ9yiFuwA/iKLGS7h7Uez57tYiCeKxx9K3BX2zl18OjBoFvPii9zEFWJYDhTsRlQK4G8AgAF0BHEtEXR2HzQLQm5l3A/A8gJuSTqgvuczQRo2A005L364+rDgdNBs3Ar17A/vum1nadIrBLFOAH0RRE1UT15UUP8GVLW65Bfjii+zfRy9f/07TTYG33/Y/f+VKWf7+u/cxBViWw2jufQHMY+b5zLwRwDMADtcPYOYpzKyMzZ8AiD+sKg41NaJRx6nJo6Be3COPpO/LZJqs9etlqc2xmDFKuNfLsUNUUOFWHwpgC5dPPpFKMcmWS13ETbj7mSH0d3XUUcD778e/9xNPAFFHkV54oUxQnU169QIGD5b1ZctSy58iqDJUHkh+xxWgaSuMcN8WwCLtf4W1zYuRAHIbLIQZGDQI2NYvWQndxwsl3ONo7novvZrJPlNyPU+ml819zBh733//C7RoASxcKP+dH8Q222Q1ibUelff6O1ixIvh4xbXXxlOQ5s0DTjwRGDEi+rnZ5vPPbX9/r+/3s8/8r6GEey20ubtJK9cnIKIRAHoDuNlj/+lENIOIZiQaK4IZeO+95K7nhV/tnITmDkhhTIKo9tekcN7vqqtkuWEDcPvtsq6atwWo7RQd5eX2upvmvny597nOd/XWW8Dhh7sf68dvv8nSryIpBLwUL92d2u17qcXCvQJAO+1/WwBp1TsRHQjgUgBDmHmD24WY+QFm7s3MvVu1ahUnve7kqkM1jHDPVHNPinwNqnDeT3kzrF5tV2J+/tW5bnHkkxdflLxQLZk46HFX3IT7unXe57p9N3EEtLpHlDlCo5bLI46wNfCk6dzZXnczY9Vi4T4dwI5E1ImI6gMYDmCifgAR9QBwP0Sw/5p8MgPQMzSbmZstzT0bwl2Rb+G++eay3Hpr4FeraKh8dMvP+vWzl7ZC4IUXgAMOkPWHHpKlcumNirOPwk24+5VLN2EVR1HKtnCvqQFefhk47LBo6XK7jhtt2tjrbt9ibbW5M3M1gLMAvAFgLoBnmXkOEV1NREOsw24GsDmA54hoNhFN9LhcdtBfWjYzWV3bLepbJpq7bpZJilxr7l42d7d41CqvvN5VNiu7fDN0qO16l6lHkxpGr3Czuft9D4sWpW+LI9zVwL2GDcOfE+U+SXzT//63d6tQL29+wr0Wau5g5snM3JmZt2fm66xtVzDzRGv9QGbempm7W78h/ldMGD1DM9GgnXzxRWpTMIxwj4NbD35S5Ftzd8srP80dENPAl18W1IeSFTIV7srWrfj2W+Cbb+xRl4C/YOzXL32bEmC9ewM33hguHeo9lZambn/zTW8PmqB3W1MTrARE4T//8XZ53KBZkd0ULfVcfmnW07h2rSg7Y8dGT2eCFPcIVUW2hHv37qlNQfUC3bTzTDT3bLoA5lu4uxEk3J94Ath9d+DJJ5NLV6HBbNt3kzJFHXAA0K2bDLhRRBWM6v3NnAlcfHG0c/SyX1UFDBwIHHyw+zlBmvtRR9mVXlKt8TVr3LfrAj1TzR0AliyR5T33REtfwtQO4a5nepLC3es+fsLdjVde8e/YWrUqs3S5oT64XHU2e41Qdcsr9SF4pW3aNFn++GP89NTU+Fc0y5bl16+eOTdjEaIKxpqaVPNFGGXFTbgrIfnDD6nHdu0K3HxzsBLw0kv2+ssvB6chDF7fYJJmGcDuoM3zpB21Q7jrBcWrMF9zTWaDNPRr6y9t4UJg+HBbK9AL+JIlwPz5wF//Cpx0kvd1symA821zX7s2/dggzX3GDFk2axY/PaWlwMiR3vu32iq/fvW6EI37jsIoMlGVnaVLZWxCFNzSr7RhZ+yXuXNlroEoz3zBBdHSU13tbl7xCuqnC/QNLo5+cTtUjXBPgDBmmSuuAPbbL7P7uAn3884DJkwAJjr6kD/9VHrhlWnhk0+8r5sN4V4orpBu/QnvvScfn9fHopq1SrjX1EjlcfXV0dIybly043OJblOO+/7DuI0681j3DPHi+utT/1dWin3eK7CWG0qQepmc/J75rLPCH+vG4MESJsSJl+OCLtzdyqSyufulw03uEMngSuUdlWNqh3CfOdNe1zP5/fflxSU1YYWbcFfrqjCrJnZFhSwnTJCl32CSbHr45Fq4V1QEe/9ccYXMABT03E2ayFJVEGE7qIqhI1afRCPu+48j3OO0hr76SgS7Errz56eGylDPMWGCdMQCdhnwEu5+7+juu8Mf68Ybb0S7Z5BwD2OWcXsXJSXA66/HDyaYIbVDuA8caK8r4f7996Kpn3mme0fKjTdKh9HXX9u2uM8/l9p2yhT3+/gJd2V+UM3Qli1lqWa5cWvuKfwmWbjwwniDXPKluR9zjGgrQUyfHj6mh8rDsAPfCtDnOA3VGgHipzeM0uLUtuMECLvySlnOmCGji7ffPjWMsF7GlKLlFO5LlwJ33mkfF1YbZ46fP85Wo9c9kxDufoOf8kTxCvezz3bffvvtEh9j9Wr5/8UXtnDXXc4uvlgE/K67AkcfLdveeUeWr77qfm03bxnVZHviCVkq4a4KQpjJO7wKzcyZEjnvuOOCr/HJJ+5uZ0kK96VLvTt/9TwJEwpi48bgj3boUNEalcvfFlu4H7dihXgmqGfN5dSCy5cDo0eLUjFkiAzhD0NYX/T589NdHhVhNPebtACtDz0EdOkicWCi8JoWKkp9Kzpu5VcpM+qbGzoUOOcce3/YcrlpU+r1P/gg3HlAuqtnmHu6PUsYm7sR7gly113u2//7X3G/0u1kqmb28kqYPDlVOHl5CPhp7gqlqahjda3AbUCPSqPf9jAf8Z57+vstJ0Hr1kDbCAE/gzSdMBrZNdfY/RVeg2ROOklaaLNny/9chjA45xwRoM8+K5ORe8Vmuekm20QHpAqamhrRat36hLbfXtxCn3tO/Ni//dbeF/U5leLh9EePgluIXrf36HQNVv0oCq+K2u06+vXdwmJPmCDXZ07NH6enThwzFpAqS1auFHPhhx+mHuMm3JOanzUmxSvc/fjmm9Ta1s8/Xeeii/z3u13HKdzVB+RWSLxMM0kJ4Pnz7fU4Zplly6SSUP0Fbvi5dDoJ0nTCCPdVq+z34tZJBtj9GaoizaVwV+80yCtl9GjxqlI4NfdzzpE+IjchsWiRaMw77yw/hXrOsDHRkxDubriVX6dwj/tOqqqCv4/hw4FDDpHWs54/TvS8vfxy92OCzDIffywm2Btu8L6287w8UXzCfePG9N58J8yptW1U4elVCajr6C/NKTxV51MUO6Ezfc7/mZhWopz72GOiJd92W/z76fgJvKqqcHmku1J6Cfd582SZD7OM0wU0rLbm5b6r+97/5z/+11ACc9ddw91TtRwzEe6q/0Px3Xfyc6IL9zFj3EMdhKG6Otz3u2hRqmOFG3oF49XRa2zueeTOO4FLLw0+Tn8hUTtkwpplvATUeed539NN4DkLjbOFMH26vyulG3E097ACatUqOUb3avAb2HX11cA++6TuC6OR6WkC3M0yr75qRzJUz5pLzT3Mh++Gl81dLx9uswbpVFWJqTFshaL8+pPS3E87TWz4N7lMvKaXYRX2OQ5hhXuYZ9IFsJeJ1k+4b9rk/T0Zs0wChDUL6BpV1KA+RKnxORTqBZaWyijK+vXdO9BmzwbGj3e/tpvnjrNAuQmnI4/0T7MXUYS720hDN9SEDnq/h99I1CZN3D++MDH99bxwE+56REU34Z7tUajquaMOFtIFVtzAd1VV4ePSPPww0KePrCc19aKKaulGJuE4dMIqASUlwfcKU+n7dahOnWrPwjZ5cqo7qBHuCRC12evsbQ/LsGHp25Rr1ZZb2r6rbvGvKyuBZ55xv67b8GZn+twEhd9H7ybA42juYYW70nr8BFq7duIhAYhgdwp35nB+63o/xbhx/vFOVD7qH9o222TXTON0Z1R5WFlpj7R1g9ndFTIoNAMgpqrFi6MJdz3GS7antgOSE+7ODlUvomjuI0Z4fxdu91LHTp8O/O9/9na9U9XZwQoYs0xkwmaYHv40KbOMEuQtWsS3g7ulxfkhP/64aLVe2l3Q+TpxhHtQHivhrj+LM88qKmzX0nr10j++sBWu08vCGalQ7x/wMsv4aWwXXhguHTrMwCWXyCxIXm5yp5wimvKvHtMbBJll/NK83XYypWQU4d66tb3erp33cUmR1FiD338PV4bDCHcVo2bkyGjC3ausKrt9RUWqJ5QijBt0Fik+4R5WE9D9zJ1zJD78cLx7qOnh1MjJOIQpPGefLS0HN43ODb/C77z24MHeYwTC2tz1PgdAbPB+Wryb5h5Wmw4Kh6ybXZjFcyaKf/Mtt8iyYUPvfFHpePNNWZ8zR7wlhg3zFu4qvKzXaF2nK6Ri0yZ5hsce806LMmeFFe5XXJGa/2FCEGSKarVlqrmHDTtcURE+3ERpqf2+nOVSf4/9+wPHH+/dWlR57zV71Zw59nplpXhM6QO5skwWw9FliajCfckS4NxzU/edemq8eygBVq9edjV3QAYC6Z2Qfpqu27yrKn1vvw107Ci+0oA9QMutkIXV3NVxKj+23NL/+Ew09ygwi1B0mr7CaJGVldKH4PXxHXGEDKBZvdqu1Kqq7LxyVm6qb8hr4pFFi+zrvPJKalqPOipckLuNG8MJd2eAND93wSTQn8cv7EYYvAZwuaGUryDq17fNfZtvbg94BFLLStBgPKW5KwXBj969bWHvp0QkSO3X3HWidKi6oXsAZFu4Rzlmjz289911V3gba1ibu0pL2E7E8vLgZnOUTj4vzyE9XotOEmGglbtfZaX9/KWl6R2qzrzzapr36WNfU4U4BqR8hA11/Ntv8YS7G2EHFYVBVzb8xkyEwS9sR1zKyuxK1+leG0XpUMJajU4Pc2wOKT7N3Uur3HLL1Fo+E5uf14wthSrc3fDrZA06J2nh/sMPwa2Bxo3Dx7X30gaPO85/5qdMUP0Muvur7qHhvMdmm4lgP+UUO5iWF3q/wqZN4fPVGYnUi27dgo9Jck6BJCuKbAj3+vVt4e7s04lxOiUMAAAgAElEQVRSVi6/3F+xyjO1R3PfccfU/27CsLIyXCH2Cm2qrrliRfpgjrDEFe5JCKigD8Vpc3/+edFynNqnSktYIdS1a3DwMzWRdhi83Bt/+SX9YwW8Z+Bxg1kminD2Cagm+MaNqZq70+auKkg1GnT2bH+XQSDVdNOvXzz3TX1CixYt7PVly+zJI4JIavBaJn1STty8UDKlfn27T8BpIon6nSWVZ1mg9gh3Z9wWr4kawg7V9jv3gw+A+++Pdw23whOmQG3YIM/+/ffi8+7VieOHLrD8XL6UwLr4YhHgzqZ1VM394ovd+wV09GBtBx3kf6xXXCEvnBW/H9OmSf46Q1Eo88eGDe6au3NcRDZnV3JjyBB7UJk+HqB58/DXOP30ZNKSdHgDJ5s22WMt4lBWJp2lzOlhBJ5+2jsqrBuTJwNNm8ZPSxapPcLdOePLN9+4HxdnvspLL5X7PvVU9HOdrFqVbh6JYnI5+WTRLG+/3f845z30DjzA3YvDaZbRNVSdKMJ91Khwgq5rV1ked1yqL7Ebs2dLGsNWcMxSMXfvHn4ycqddXxfuqtWma+5ffpl6fD58nFWo5dJS8RC74YZo6fAKbBeVbAze0SusCy4IVhb80GWA0+b+7rvA/vtLZRmWfM7o5UPxCXevwhp2yHmczrWgWDaK558P/kD22w944IHUbXE8R6La/Nu3B154wf7vNtLXS7g781x1DlVXAw8+6H9fP22wSxd7vaREKpzHH/cOxgakho3917/E5zsMI0eKgJ882f849f6cXhpKuFdW2k16wF2QzZ0bLwZ/HHTNU03Ecfjh0mHrF77g0UeBe+9NjQtDlFpG4pKN8A+6EL7jDpm6Mi56J7RXRTRpUvjr6SNVC4jiE+5eLyOs7242J9A+6igRUEEapbMjLIpw95qI2onb/n/8w153s787be5efu96dMOgprz6kI46Kn1fixb27D4lJSJYdW1Yseee9vrNN9sR/caNS42E6YdqqbgFH9Pzyi0IFmBXMHql+Mcf7uVRtUJygV7xNW8O/PxzONe8k04CzjhDKn2drbbKPE1JTWitk6TrbJzWexFSe4T7ffcF+68D3n7HmXLvvfZ68+Zisw07AKOmBujQIZod0Uu4q9gXQTiF++TJYm8EvIfUx0GZZJ59VpYdO6buv+OOdE3PKdx1zah+/ehzqQK2me6ee9I7S/UO1+OPl6XzmbfeWpY//2xv+/zz9FZYrnG2FNu0iWbvd5ozk/g+wnrx6Lz9tsTk9yprmQj3oUPtuDqAt/vo7NnAoYfGv48bapR2Hqgdwv2ww6SHPkwnp1/gMWdBD8uVV4oWpPOf/8iItDDU1IjGGjQYCEjXqp2MHCl25SCBvGGDHKeE1WGHAT/9JOvO+CaZeOooQVNSIp2muk+3imjoFEbKxt+3ryz/+CNdowxTkbvxzjvpFaDbvKI//JCqASvhHtdLKlvELbMKIvmdcIL8z9eQ+YMOkorXra+MOTPhfsIJqbGenBXi7NkSgG733b1nYQuLM/xynDlrE6L4hLubzV0XIEFNLj/hrttSoxC3I+r338VU8uST4dIOAB99JEs/4V1eHnydDRvEXu02s1KSwl3vjD30UIlxMmpU+j6dkhJJn+rA3mYb+fj0eN1jx4pZRzcRhSVsJ+OFF0oFs2CB/W6CJnSJyiGHZHZ+p06Zp2HDBjvcgVfM/DDsskvmaXEKcRWzJRPh3rBhat+Ms9ztvntq2h98UMIZO1EtEqcip+PsWM+jJ02oUk5EhxDRd0Q0j4jSemmIaF8i+pyIqokopoQMiZumomt+mQh3rzggQcQR7l99JXHfVbN+3rxong1+4XLDaF8bN6YOu9ZR/RJxhbs++7xbJaQmNPdzmatfX6aYu/FGud5WWwE9e9r7mzWTwUzKlBQF3Q88iOnTxc6fLe+XuGaA6dOl87N//8zTUFZmtwgPOMB9xOWNNwaHndaDkwHp7qFh5mHQv8+dd7bnbFXlSLUwFM8+697fdvPN9nrU7/PUU8XMuv/+wF57icnorbfkXY0dm9qiO/NM/2vl0b4fWGKJqBTA3QAGAegK4FgicvYYLQRwMgCPIOYJ4laDJyXc447S85rbU2e33ez1yZPlvx7zvUOHaPd85BFvwTZrVuoMRm74DWi6/nop3HGFe7t2tkbpdq762IIGuxCJacvZ6edF2I7MqPHMp0zJTiwcQCqwsLRqZa937gz87W/Jux0SSUhcfVJsQN7Diy+mxs934nzXzorHa9IOXQHQO+jnzk2/9mWXiZeUYtgw974q3cQZR/kqLRUT3kcfSYV34IGy7f/+T1o3qrJ3kyf6O3GTDWFa1gkQRh3pC2AeM89n5o0AngGQMgswM5cz85cAsvQFaLh9ZHpmBgl3v2b1dde5b9djYbvhV3gWLpRm/X33pe/TBazzownTxPXqsD3nnOCJMPR7u+XpqFGpwj1Kp2pZme2Z07Jl+v4+fUQ7+u9/w18zDHqL5cknvfMnqsfUN9+Er+Citv6UtuvVmtDHVhxzjCwbNcp+c193U9WFabdu3p32+sxcQGrL7JFH5P8VV6Sfp783r8pDldeWLe1O7732stPkRO8kT8p/X6dxY1m6BStT7/Kjj9y9j7w8shImjHDfFoA+AWKFtS0/6B/Zm2/K8OErr7S3eQn3oM7KI48EevWy///97/b64MH+ws1Pc2/XTjTPoFF7Sot96SXxIw8zSs5p34uC3krROzl1lHBfvdouzGGoX18q0epq9w6lLbcUu2ZYjTyISy8FBgywPT3mzxcBoL9PHTe3zCCypbmrPNDNCDp6eVZpCJp+Lwl086f+7onk23CbzKZLF3GxVNSrZ3tH6bF5nHiFnnAbWbzlltJpOXo0cOutsu2ww9KP0zXqbAj3xx6T1pNbK/CjjyQsgap8nIQdSJchYYS7W7svlm8cEZ1ORDOIaMayMFOsuaEK+IUXSlPpjjtStYwocyPqqPkoFY88YgcFCmoNhOmECmsKOPxwMS+4abxuxA2s9PXX9vpf/uJ+jLLJf/ttNI20cWMRAtkehq649loZWajSqISFei/O+O5xSGryCSfNm4vioCsTOm4mx1zYcfV35/ZNPf10qj+7soXrppjSUmDvvVPPi1JeBwyw12fNknENRGISufFG+/vUvy2l6LkJ90mTggfdheXII0UDd6usOndODTP+ww8yqlZx3HGpLrVZIoxwrwCgT93SFkCswA7M/AAz92bm3q10+2EUlHBXIQGcqF7uWbNE+CuC7OJVVenXU3Gvg9zNwjSRM9UevPJL968Pg/KOufba8OdE9XOPouUnibqvEu7qvSURWTBbwl0vc7oGutVWEltejzroDEqWTXTlwq3/prQ0Ndrlo4/KUk+bW+UeZcpDvVLp3l1Cb7ih8vDqqyUK59Zbp1aW6tsbPDi+C60X110nFdjTT4tLpRs77JBuCowyAjYmYYT7dAA7ElEnIqoPYDiAGKMUEsJrSLxi9GgR1N27Sw/3+vUSgvS226QwemmTqgaeMsW2BZ99toQL0CsJN8IMGsn0g/Sq6aN2AocdWKXzz39GOz4XwseNd9+V96wqcpWOykp5r5kMrc/2RNuAmOSWLRNzxGOPyehdXStVlVQuNPeSEltYeXn0KN//vfayv0ddiXFrrUYJTRB2MJY+9qN9exmLoJt0smGWUXTpIpErhw+3J8Rxw/n9ZuJyGpJA4c7M1QDOAvAGgLkAnmXmOUR0NRENAQAi6kNEFQCGAbifiLIXmV6PyOeGc1BMgwYSJ2T4cBHyXhqYKnT9+4uLIiCud1On2tru9Onu54aZkzKOwPvuO9FC69f3LuhRteRsCQa9AszXrO877ZTaHFZ5vnGjvFcvG2gYXn89o6S54nTrq1dPNObvv7f93/X3rlxBk/AnD8Puu0trwctsV1oqYw90LVTl+SGHuJeDc8/17v9yeoy52fW90gGkf9sq/kw2hXtYnB49OYgaGuoOzDwZwGTHtiu09ekQc0322XJLsWnFsef6veQwGoXXpAvZEu6dO0uvP7O3wPSLVd65c3pQoyS06q5d00cSDhgg5qkXX8z8+kmhvBaU7TbXYXiDCOMtpCrvLl3EpLDvvlKJFQr62APA2xSmTEo77yyCrmFDqXCnTrWPKS+3y7mzD8wPlUdOt8QJE8RbLarraza45ppUBShbZj6N4huheuqpotGG8S134mYbV4UrG5HsdDIRqn6asD4QyWmXZ04ddg1krrlfdFFqADLFgAEyaCUHhTY0zZvL4DDloucmLJKcWCIK06aFG0xVVib+3u+8I+WgkAS7G2o8h58pr0ED4OOPReN/6aXUfeq7jlIRq3foVHQaNiyc/DrggNRRr0a4J4ze7DvlFJmEWHlYZNtvWG816LO37LVX+GBfzMDDD6du0/1sVSwWRceO6SFxMzWZlJZKX8Rnn9nbysslcqPyZCgktt/ertDcWm7nny/a8FtvhY8FlAkHHCCeSnqkyyC6dAkf9TTftGol5VSZVFR5cJa7fv3E5Hj44RITSpXr8nKZeyAKw4ZJx3PSoSGSRh/rEiaOVKYwc15+vXr14pxz441qCmXm+fNl28KF8v/118NdQ52/cqUsO3YMd15NjX2ufp1Vq6I/BzPzQw/J+QcfbF/rtttk2acP88iRzL/+aqdT/V58MfV/1N9ll9lpmDOHubw8XvrzxcMPpz7P7ben7r/iCuZtt2Xu21f233OPez5ceilz06bh8mz33ZmXL2d+5538PHM+WbpUyuL69flOSWGwYQPz+PEiD2ICYAaHkLF1S7iPH29/cBUV8a7x/PPMkybJ+h9/MFdWhj9XF+7HHmuvx+G331IFyIwZsn3iRNmnc8gh9nFPPME8dSrzRx/Z2+66K7xwv/LK+GkuFPTn+ekn7+M2bZLlKafYz75xI/MHH8h2vcIGmAcNstcffJB58WLmadOy/TSGOkZY4V5gPUxZZvhwcUlasyZ+M1cf3RjV7v/dd3bnzvjxqbFlouKcYV75JbvNUHPXXeJrC0gz2GlnVh3Fbh2lTk45JXpaCxUO8N9XJgV1XLt28v722Uf+66aGV16RgGj77y9z7G67rYQWcAbTMhhyRN0S7kQysjVfhJ2FPg5+HVDbb+/vfbDHHsCMGdIZ9uOPUgGOGSO+uJ98Ytv1589PLmRAPlm0KJq3lRLubv0VixbJ9m2tiBy77CLCPVejcw0GD+qWcK9t1Ktnj3wL8i4I2q/isHTpIr8DDpD/d99tT4VXoLO8R8Ythr0fXtMNul1r7FhxDzzooHhpMxgSwgj3Yqa01BbucXx5P/rIHmXohR7UKV9ug/lGudOFMeU1apT8EHeDIQYF5rdmiESPHvZ6nFF4e+0VHE9ctxnXkYmF0xg9WiKQqklGDIYiwAj3YkZNQXbYYdmLVeGcE7IuUlpqzCyGosOYZYqZ9u2jR2yMSuvWEmGz0IbuGwwGX8wXawime/d8p8BgMETEmGUMBoOhFmKEu8FgMNRCiLNts/W6MdEaAEnNFNsSwPKErtUMwOrAo4r7WkDdyLOkr2fyLDomz6ITlGc7MXOwX3KYGAXZ+CFkfIQ8XOuB2n6tupJnWUibyTOTZ3nPs7B5aswy6SQ5uWGhXitpCvk5CzXfTJ5Fx+RZBPJplpnBzB5TG+XvWnUFk2fRMXkWHZNn0QnKs7B5mk/N/YECvVZdweRZdEyeRcfkWXSC8ixUnuZNczcYDAZD9jA2d4PBYKiFGOFuMBgMtRAj3A0Gg6EWYoS7wWAw1EKMcDcYDIZaiBHuBoPBUAsxwt1gMBhqIUa4GwwGQy3ECHeDwWCohRjhbjAYDLUQI9wNBoOhFmKEu8FgMNRC8jZBdsuWLbljx475ur3BYDAUJTNnzlzOzK2CjsubcO/YsSNmzJiRr9sbDAZDUUJEC8IcZ8wyhmSoqQFWJzklpcFgyAQj3A3JcMklwBZbGAFvMBQIRrgbkmHCBFmuXJnfdBgMBgB5tLkbahkllp5QU5PfdBjqNFVVVaioqEBlZWW+k5IxDRo0QNu2bVFWVhbrfCPcDclghLuhAKioqECTJk3QsWNHEFG+kxMbZsaKFStQUVGBTp06xbpGKLMMER1CRN8R0Twi+rfL/guI6Bsi+pKI3iGiDrFSYyhejHA3FACVlZVo0aJFUQt2ACAitGjRIqMWSKBwJ6JSAHcDGASgK4Bjiair47BZAHoz824AngdwU+wUGYoTJdw3bcpvOgx1nmIX7IpMnyOM5t4XwDxmns/MGwE8A+Bw/QBmnsLMf1h/PwHQNqNUGYoPo7kbDJ7cdttt+OOPP1z3PfroozjrrLMSv2cY4b4tgEXa/wprmxcjAbyWSaIMRYgR7gaDJ37CPVuE6VB1axuw64FEIwD0BrCfx/7TAZwOAO3btw+ZRENRYIR74VNZCVRUADvskO+U1GrWrVuHo48+GhUVFdi0aROGDRuGxYsXY8CAAWjZsiWmTJmCcePG4YYbbkDr1q3RuXNnbLbZZomnI4xwrwDQTvvfFsBi50FEdCCASwHsx8wb3C7EzA8AeAAAevfu7VpBGIqU0lJZGuFeuJx8soxHWLcOaNQo36nJPuedB8yenew1u3cHbrvN95DXX38dbdq0wauvvgoAWL16NcaNG4cpU6agZcuWWLJkCa688krMnDkTzZo1w4ABA9CjR49k04lwZpnpAHYkok5EVB/AcAAT9QOIqAeA+wEMYeZfE0+lofAxHaqFzxtvyLIW+IAXMrvuuivefvttjB49Gh988AGaNWuWsv/TTz9F//790apVK9SvXx/HHHNMVtIRqLkzczURnQXgDQClAB5h5jlEdDWAGcw8EcDNADYH8JzVw7uQmYdkJcWGwsSYZQof5X3BdaTRHKBhZ4vOnTtj5syZmDx5Mi6++GIcfPDBacfkwqMn1CAmZp4MYLJj2xXa+oEJp8tQbCjhXlcERzFSS1wEC53FixejefPmGDFiBDbffHM8+uijaNKkCdasWYOWLVtijz32wLnnnosVK1agadOmeO6557D77rsnng4zQtWQDMYsY4jK+PFAv37AdtvlOyWJ8tVXX+Ff//oXSkpKUFZWhnvvvRcff/wxBg0ahNatW2PKlCkYM2YM9txzT7Ru3Ro9e/bEpix8N8R50rR69+7NJp57LWKffYCPPgKmTgX2c3WWMuSbFi0ksNuvvwKtAud6yD5EEkn0t98Su+TcuXOx8847J3a9fOP2PEQ0k5l7B51rokIaksFo7oWPMssUUr/IqlX5TkGtxQh3QzIo4V5dnd90GIIpJOFuyBpGuNdWysuBl1/O3f3qmidGXJYvF/NVPimE1pUpJ1mnuIX7jz8CDz2U71QUJnvtBRxxRLSPiBl47rl4H38hNvkLkf79pX8iW7z/PvDUU+77CukdJZGGL74Apk9P25yvfsQU1q7NuBLN9DmKW7jvsQdw2mlGC3BjyRJZrlsX/pynngKOPjqef3BcwVFdDTz/fN15h3PmZPf6++0HjBjhf0y2NPe//x24/PJwxybxvrt3B/r2TdnUoEEDrFixIr8CvqoK+PZbaT3HRMVzb9CgQexrFLcr5IoVsmQ2PrxOmjQB1qyRDqvNNw93zi+/yPLnn+PfN6pwHzsWuPhiGRZ/9NHx7xuVm2+W/Ln66tzdUycfZTbbmvujj8rymmuCj81SGtq2bYuKigosW7YsK9f3Zc0aoGFDebfLl8u3t3Fj7MupmZjiUtzCXVFTY3fo6dx/PzBsGNC8ee7TlG+UcF+9GghbQJIQNlE1pooKWaqKJSlOOQUYOhQ49FD3/RddJMu6JNwVSQrWb76RZ7niCu9jNm6Ue+paaJw0DBgAHHectNY9KCsriz1zUUasWydKVMeOwOuvA4MGATvuCHz/fe7TYlHcZhmFW0H58kvgjDOAE05wP+fCC4GRI7ObrnxSz6q3c+W9ElcrzIaAYwbGjQMOOyz5aydFPu3eYc0yBx8c/H66dQN22QV48cX0farC3nln0Wh14phNpk4FTj89+nmZUl0NTJ7sf0xVlSx/+81+t24KZw6pHcLdrbCq5tDSpe7n3HIL8Mgj9n9mYO7c5NOWb6IIkUw8XjIV7knaSIshMFY+hLvK66oqO79ffVVMCG689Vb8e33wAbDNNtKfMn9++v5C6NQNyw03iKLwms80FUre1KtnyyMVKTVP1A7h7lZQVMaG1VKefBLo2tX/BeYDZmD0aGn+xiFXwj3O/QDgzjvjnefHmjWyzPPH5Us+hdtuuwG9ewN//AEMHgwMHOh//Jo1tmYali++kOXUqe778/n8Cxd6p8uNn36S5eK0SOc2unBXz2aEewIkIdxVYfz662j3XrkSuPLK7HkgLF0K3HSTNJGjoAR0rj6iTDvrKiqApDrBlHBv3DiZ6/mxYIF0BK9fH+28MPn07ruZdW7r3HabhB1QfP65nYagFmvTptJ/EYWyMll6dSjm05ulQwex34cljCzZYE1hoWvuxiyTAG4fStQQtMpGHVZIM0vHydlnS6fcTTcB//iHfb/164Ezz7SHV0+aBNx4Y7hruxG38ojzEUU9p7rabsLH/WhvuQXYaqt45zpRgjYLs9ukcf75MjYgaosvTD4dcACQ1CQO55/vnYYw/TITtSkcXn5ZvJv8UMLdS+OPqgRkozL4+mtRSr780v+4MP1XunA3NvcEqamRZtbo0fa2qJp71A7IJ5+UHvHx4+X/JZcADzwggn79erHn33MPcNVVsn/IEHH58+Pjj4FPPgl3/7DEMctEZa+9wt3v/vvFD3vxYnkvSsPWWbBAPuSpU+O3AtQ7z4U3ipcSUVnp/nyKsM8WtjWzdq3kXRRUPkXtdD/iCGD4cP9jpkzxv3bUd5uNlrGqoP73P//jwsgSN5u7Ee4JUFMjzaybbhJhOn++/WEnLdzvvFMGoixc6L7/qqtEiKvCG+XD2WsvYM893ffF1VwyMcs89ZTkoxoI9dRTwDvvpB+njxKcPds7yt8ZZ8gIym23BS67TKZBc9KxI3D33fI+44ZPyIZwX7LErsh19HL2l79ICw0A+vQRc4YXSZrLVq8G9t5b8i4KL70ky2xoxU8+KUtdc7emnYt1T7/v2K8S9UN1vI8Z439cVLOMeuaZM6Wc54niFe5XXmmv6x/KmDHi23zJJen7vFi+HJg1S9b9XuCmTcA558iH5Cc4liyJZoNmzmiwAwDg2WclHIMiExu4+vBUq0PZfUeMAA4MmJflpptkiP3QoTKYZcECd83olVe8fdtV7JW4s8VnQ7gPGgQcf7yY2davB7bfHnj7bVs7W7cO+PBDQE2ZFtR3U1Mj+fr++977w7LFFsGmBTf+/vfo50RFL9eDB9vvPEnNvWlTablEJew5Uc0y+nE33BA9XQlRvMJdH3zinINw9WpboGzaJB/joEF2x5HuKzt8uMS2VjZFvxeoNIQNG/wFB7P90S9fHixkrr7a2z4ctuVxzDHArrumpgHIzCyjrhFVSH75JfDCCzKwpXdv4G9/Sz+mpsbbm+CZZ2T57bdy3COPSBpWrw53/zjC/V//SrUrO1EV3MaNwA8/SOvwggviz0BVUyPudfvt5+66GabFt3Rpbj0ymjSJbsJxHq+02ij5VVMTPMjN2cpjtkNwbNggndNO7rsv3P3DaO7Km6201Bb0gKQ9Ty7WxSncnZms7HsKXePbtEk0wddfB0aNkm0PPmjvd3YMhWn+hfHCUILlhx+Cr6/72ztRwjnMx+DmsZFJ8z+ucNdRPtTO9G/aFCyYrr1WwhPcdZf8nzcv3D3jCPexY4HDD/fer3e4qzwlim7+UzDbsUfKy0Xz18dkhBGi/fuHe79hjnGa0tw6QteutTtKgXB+8MpMpV/3gw+kD8qL+++XFrLiyiuDZ2tyxtN56CGgTRtpkQ8fLp3TUfskFE7h/sMPqXm6dCnwz3/K+pIl6a6lXbvGu2+GFKdwDzJh/P67vV5TY4cfWLky+Np+H5VqxoUR7l7xzfVaXeEn5DLtSMrEW0YXYpmyaZMtINW1wxT6Bx+0NduwQdDc8ozZNr05t4dBvaPqaruyIUp/z37X0ytfveVSVQUceyzQurUtVJ3lZuTI9Pfw3Xfh0r5oUfAxzZuLd9fs2WLeq18/+Jyo7rmA9Eftuy/w6afex5xxhj3+ARBvpKgoTf3bb4Fp02R9+XJv89U553jnk26W+fproHNn4D//sffrnd75iGnjQe0U7jqbNtkfoC70vfD6YFavtn19GzcONsuo/V99lbov18Jd1zCYRcOYOdP9WK9BTG7P+t570WziVVWp3gM1NaJZBTFvnt2sjSrc16+3TTl33AH07Cnp1vGKPbN8eeqgFV1zf/hhe3uUSUoaNbLXa2pSR4wqDVeZEpyas2rdRY2bsnZt+I7We+4R18sddoh2Dyd+LYUgF0o33L6ZsMydawcY7N0b8JqI+s47pVLRefxxsQromrvS/j/4wD6uEOLju1Ccwj3KaLlffrGb2+XlwS9i8mTg6adl/bHHbBPOLbfYdrW5c/0rGN3m7sTNvuon3NWH8uuvwKWXuqff72PS9y1fLnZGtwEc1dX2tZVw99JCFywQk8Cpp3rf18m336ZWEjU10T+KIOE+cKCMvlTX/e036Ww88US7QnOGYX39dfdrtWolXj0KXctWbNpkP5OXcPfq+6ipsffp1/TS3BV6+sO0qILc/LJBUByWsCjTTCbC/ZprwpczZ36edBKw//7uNnf92yjQ2ceKU7hH9SzR3RbDNPE+/1yWJ5/sHahI99Zx8tVX3mFP3QqqUwPWC45eoK6/3n3YtJtwVwX14INFY5kzxx5Q5eY6ttNO6QNdvOz9yjylRvWGoWfP9I6mpIX7m29K3juv+8QT9r3j+h4rzV0ve9XV9vWUi6gzr5SwHjs2dfv559tmQv19KEHhJzDeeUfcRcM8S1IDw6IQx3PFDWWaCSvc331Xyn2UcqnjZYoK6lANI9zzMBlqE5EAAB02SURBVCK3OEP+ZuI2GKaglJam2wSjCAW/MJ9umrtTuG/YYIdHdRaosJq7XphmzpTIfX64BXdS13DeU+XFDz/ICN04xBHuYYWGW4X87LOyjOtdooS7no+6yc9LW1Xx9PUBdnp6ADv8MGALinvu8U6Lckf1K5M1NeJjnZSgjYLe6ZopzMBf/yqt6CBeeEGWb79th5KOQtCIZq8R5mGE+/r1qWa5HFA3NHedeiHqs5ISoF+/1G1J+Uy7CXenl8v69aKlLlmSLgBnzZK06AOHbr/dXg+rIXiZI/RreJkUlFCpqrI7F3XC5FVNTfTojV6Do4DUfgSvAWaA7Wbpd4+dd7b/q6BRbpVCdXXws269tbgQ+qF39CpN//rr7W1eComfOa60VHys9Y7JYmTjRqBFi/DHAhLO+8MPo9/LS3P3UkImTRJTZxjhHnegVQYUn3DfuDG14EcljObmdkxSwj2MWWb9evGBbtMmfTIJFcNEjS4EUjW/kpJwLoODBgUfowv3b79NvUeY8/xYvDj66L3LL3fvDB43TkxPYZg0yb+SWLgw9Vm3205G5ropBbrmrnB79ijuqF98ke5xoXfgFgPHHZfctdauTW8VEQHXXZd+bKbzKXtp7m4Tkbz+urhz/vWv4awBYZw5Eqb4hPuDD4ZronkRVnPX+e03f4EQhX79JMa1jnOQz4IFtleHcxIE1eT1M2m4mVic+Pl0K5RQKi9P1WaT8A6Ia4Ps3RuYMcP+f8QRMutSFJwtJd2M5ubeN2NG+mQTQDjNPSonn5xuJ8+kvOeDTEdb65x5Zmplq0hqWH+vXvZ6nEBzn30WztV0zhyZ89VtQF+WKD7hnmnPdBzNvXnzeJNGezFuXOr/bbZJ/a8H4nKiNFc/ARumkG6/vfc+5+QNztGByl0vX9x+uz26ME78GWdLaaed7HU9LK6iXj3xunGyYkV6RcEcfuRjWD77LNnrFRNxXCfDoL45Xdm76y6prN98M7y/ek1N+kBFN448UlplOfReCiXciegQIvqOiOYR0b9d9u9LRJ8TUTURRQz8HJGwkz17UQgzwDi1vSiasGpB+FVyYeYj9bvnc89JU9TLJXL//YOvH5Wbbw5/7JNPir9+3BmXonYylpW5C/cNG8QTx4karVio+FXs+YI5dwOAfv/dNku6uQUPHBjNy8htcJxi332jpS1BAoU7EZUCuBvAIABdARxLRM6hhQsBnAzAJWxewoQxq/gRZlRfphVIFL75RoZbR+W227wL1THH+DcViYJbQNdcYw+HT8KN68gj/ffH+QjcTCVhiCrcS0vDT/wRdcaiXNO+vYSmLjSuv14Eqt9sR0nRoIE9GKxPn8yv56cwZjJVYYaE0dz7ApjHzPOZeSOAZwCkGGyZuZyZvwSQfbXYa8abv/1NJssI4tJLg4/JdhxmXXP3M8EEoXvJRKFJEwmSNW2a+8TGTpIQ7vfe678/FxNrKKIOirn22rxPmeZL2Pdz2WUSXsCrUszUbXLvvf33e73j6mrbhp5U35YfZWXAv/8tJp8jj4ze0nKO+PXLfzcPnBkz7FGzWSSMFNsWgK4GVljb8oOXcN9ss3DxMMLgNmtNtogb1haQTpowJhidO+6QZumiRfIxHnWU9xB8RRKmLD8f32nTUltLJ5zgf62RIzPzyIjT4ZetiT/698/sfD+XVicdOgBbbina6sCB0sGnE9QSGjTIf7xEt27+5++6q3vLW3cVTcovXx9XoGLL6JSVyfSIRDKmQDkMPPaYeMD44fTMcos4qeP0TOvTJ3WcQ5YII9zdSnUsVY6ITieiGUQ0Y1lc+5qXLWzzzUVQ5YMePcTvXB/4dPzx3scrQbF2bWbN+BkzRAOJglsFGDRFXKamhkmTbOGuf8idOokJac897eBugH+UzKFDxeXtqafipyfOcPZsjTDMpJXYooUdgdBvYhCFEqz16kmlcPLJ6Wnxa8lNnuw+rkHx3/+m/ndqxH/84R4sTu87cY4vAVJbTa1be99fR6+EGjQIbtWrjvR995VWbWVlapkE7Ngzu+0WLg0qXpBbiybJgV4ehClZFQDaaf/bAohlGGPmB5i5NzP3btWqVZxLiNB0C//ZpInExv7uOzHRhPV7ToIzzpD79e0rPe1nnCFBhx5/3P14Jdz/7/8yv/ejj0Y7Pk7rxq/DKIiff5ZJGkpLxTSjD7469lh7UFGzZvb2evVkAM7XX6f7eOvhmhctErfPqHbNOJp70h4wCtUCGTky2nmDB6d6NS1fbofR9erDcQqUUaOAW29N3RYUWrdfP3lvbjRqlBri9+abgWHD7P9xtXK9Ajz66HDn6C3iBg2k7N15Z2r50VGzgrWzRN1mmwFnnZV6zD33iLfLxRd7m5g+/FAqwcpKeUeAu0kvB8IdzOz7g4QomA+gE4D6AL4A0M3j2EcBDA26JjOjV69eHJvff2c+9FDmM89kvvFG5vbtmVesSD1m4EBmgHnLLWVZr54ss/F7+GH3dP78s/c5zMxDhmQvTV6/p57K/j2+/tpeX7w4PV/UvssuS91+zTXM772XfvyPP6bmmxsff5z7vMz0N2CApP3rr5k3bIh27mGHpeeBKk/jxrmfM2GCe94tWMC8cKH9f9Ei5ltusc/bbDPmkSPd36H6rVwp22fMsLdVVjIfc4z9v3lz5t13j55PDRrY65dckrrv4Yfdz7nhBnt9/nzvcuPHddfZ13jzzdR9TZqk33OPPdyvc8016cc+9VS8NDEzgBnMwTI2UHNn5moAZwF4A8BcAM8y8xwiupqIhgAAEfUhogoAwwDcT0Rzkq6EUmjSROZjvOsusa0tWJDehFL2QxV3OZuR27w8ePxC2gbZsTt3jp8eP5Lql3BywAH2AKBu3YBzz5V1FSNHZ/58eV9Os8Bll7l7zQRpk4BolM573X138Hn5RHmtdOsm70UPIwukT0ARhPoGVIA4J17aYvv2tsYKAG3bpk6m8cQT/qM/jzhCbPmADApSppN69VL7Krz6y7zo0UOWuubuDMvrDIGs7Nu666pbGQyDrp07zWf6rGeA2N29Qh64tRQLxCwDZp7MzJ2ZeXtmvs7adgUzT7TWpzNzW2ZuzMwtmDmgZyUHqLjNO+4oboNhOjB0U06UDg+/zraffxbB52TDBqnDFdddlzpyVXfZbNkyfFqCyJZw79NHbPfKPn/LLRK8SX30Op06ibdA0v7Wqv/hqafEZKPst927pwqvQsHZtN9nn9T/2/r4LehlR3H55fIevPqeoggU3ZTg5uOvWLIkPV5PRYXERiotTRWKRNGCZ6mxGCUldnratUsVov37S+Wk+PvfZWDbaafZSldc4a5/K07hPnFiasd/hw7eSp5bDPlCMMtk65eRWSYM1dXM77xj/58927/pN3SoHKf+L1uWun/YMO9z77rLPy2ffZZ+zmuvSdNa/Vfcey/zTTfJ+lFHMQ8ezNyuXfSmrNfvtdcyO3/gwNSmtvqddlqy78/JE08wjxgR7RxlHtp5Z+a1a1Ob94XwW7o0Pc1q3xZbiFlDN6P17Mm8/fayfuih3s+tm3h+/JG5VStZf+ON8Hmnl//PPvNOZxCff24f27ixfIc9ezI//zzzK694580uu9gml6ZNmefNk7LLLN+2fv8LL7T/z5pl37tRI9m2dm3459a58077ulOnpu9/7jl7f3m5/7WcZuFJk+KliZmRlFmmaCktTR1JGWTmUDVzhw7ivdGyZaoLU0mJzMXqRpA3SZ8+8kp1jjlGTEtOzjhDJmsGRJOfNCl8Le/U/IB0t85Mffj79pWOqRNPTN3up90lwYgR7qNB/VCacWWlDEJyhlWIco2ohBmD4PYuVOvtpJPk3rrL58yZ4UIs61r3dttJh/h550UbWdyypd0Z6mYWO+GE1HhDXvTokTr71e67y3McdVR62A194N1XX9kml9JSaeUdcoj9/7LL0sNyjxqV6t75/vtS/uOG2tXfj9u70rcFjYNw5lUOZm+qvcLdScOGYvt68013zwf1osrLbb9YfYBRaan3gCOnHTAMUaLEhRXuboXYKQziDtlXlJTILEV6MKvJk4GrrsrsutlAmTXUAJk4JimnAAqLlxno/fdtd0LdQ0hx1FFiynNO7qEIUzk7j9l2W3FTjDq6e8IEKS9uIXcff9yemSwIL7Ol01zStm3qf/Ucbs98zTWiaOg4Bxf16iXeQHHHKCQp3J19bDkYyVx3hDsgQvKgg8Tnddw4mXFJaUZuBeCww+x1v48qrk0PEG3K2ZHm5K67pO9A0aIFcMkl6cfp6VU4QymsW+feB6Bo3z6188zpu6zn0/vvSzCkQYPihwLIJg0bSotJRY2ME7rC2UJRHY1OQbJ8eaqGqn/sb71lVzTbbiuRDpm9K5s2bbzTGka4JzXgiiiZkcMqzc50uYV0uO8+YMyY1POCnlkpNUnHTNfTa4R7EXHyydJkVE1PN7/7Hj3sWOnZGn7+zjvu5hSdAw+UsLQLF4qv8PLl6QGPKirE1KNz663pwr1fP5mpRk306+Tcc8XnWnX46p1VTv7yl/ADOgoBN6HnVkkq9tnHO8ibszXVokXqttJSO5xsgwYi0AH3DuYgPvhARiMD2Rspm0280tyhQ/q2f/zDnsJSCc+gby9bnmVBmrv+XEGKw0EHpf43wj0HDBkiQ/JvuMF9f1ABy0RrV7b1sLRrZ2s7Tht+s2Yy68+774pp6dtvxd7YoIHYw++9V85Rdsz27d178VWBVVqlU0N1i3derFx6qb/dmDl9RKXSwNxMZU7hrspMSYl48qxbF0+477OPnY5sxz3KBl6aO5E9JaKbGSqs5n7sseL2GnW0dhBJmmXGjk2dFcvPEyohinMO1SQpKfHvpPIqYNOni4CMYsf98UcpBG4aS1T22MNef+01W0N3avRE3sGYZs+W1sDYsTL6btOm9A+we3cxC7l1gBU706alTtbghFlGRFZX2z7nV18traj99ku3OevaWGmprc2pfE1iDk1VDp2Vu5N77gkO5JUr/ISzKm9uZr2wwr2kRDpTkyZJs0xZma1YNW3qbxpNiCJUA3KMl+beu7fEuYniJbLddskIdkAKiHKsUl4EcWjfXlou114r/50+9SUlYlKobYIdEHvyEUeIIPz5Z7HNjx8vnhoA0KWLfODHH2+Xg969ZRpD56A5IDV8bGmpXTaSNKWE1dz/+c/CMZmp53fLB7+80Vs++SBJzR2wK+QcVbpGcw/CKdwvvrgwOw8z5cILpamY5PyXhY4aQakCXOlxbN54Q/oUFMuWpQYcc/uYdbtraakEQLv33szCOjspRpu7l1kGkLy57z73iJJhbe7ZImnhHufYDDDCPQhVINWLzGRy7kKmXr3gULu1jTvu8N7n7Ftwaupetvp27cRfu6ZG+kCU50dSFLPN3Y0RI6RPwRlGQD+vGDT3MJ5YAwdKH4PbhNtZoAhLSo7x0zoMxY2bQAnLMce4xwlX87FmyxsirM29kPD7doi830O+hXsUm3uYNJaVScTOHHSmAkZzD8YI99rFH3/IHKyZTqVIJCOZv//eXYPLVqC6YiyHcb+hQjLLuKWhwFtRRrgHYYR77aJhQwkqlRT64DLAdofMtuZeTGT67RSDWaYAKezUFQJ+Pf0GgxMj3NOJqyCpMQXFYJYpQAo7dYVAgb9AQ4ExdKgs/eYazYRitLnH/YbyLdyN5l7LMWYZQxSOPVaCbXXpkp3rF2M5jNv6VcK9EGzuUX30CwAj3IMwZhlDVJIItuVFgWuLrsRVkPTJOvJBUOyYAn8XhZ26QsIId0MhUOACxZXaYJYpQm+Zwk5dIaAKmBHuhkKgGMth3DSrOPJqusRcEzRIqcCFu3GFDEsxflSG2keBCxRX4ppldthBZm3KVud0EHp63TT3fPUFhMQI9yCKySvBUPspRm+ZTBSjnj2TS0dUgswycSZ/ySFFqAbkGPURGc3dUAjUJc093wSZZYxwL3KMcDcUEsVYDouxQgKCzTJh5zbOE0Wa6znECHdDIVGMgrJY3YmNWaaOUGwF01A7KcZyWFvNMkZzL3KM5m4oJFQ5rCsdqvkkKLaM0dyLHOPnbjBkRjFVRDpBJjAj3GsJRrgbDJlRbN9QkHCvDWYZIjqEiL4jonlE9G+X/ZsR0QRr/6dE1DHphOaNYtU6DLUT1bGXrclAskGxfkNBlVGxa+5EVArgbgCDAHQFcCwRdXUcNhLAb8y8A4D/AvhP0gnNG40ayXLduvymw2AAgGbNZPn77/lNRxyM5p5TwmjufQHMY+b5zLwRwDMADncccziAx6z15wEcQFRsb9IDNTHyypX5TYfBAABbbCHLVavym466QJBwL3C31DCp2xbAIu1/hbXN9RhmrgawGkAL54WI6HQimkFEM5YtWxYvxbmmRw9Z9uqV33QYDACwzTayPPDA/KYjCmq+2sGD85uOqDRtKkuvEM5Kf1UyosAIYzRy08CdRrQwx4CZHwDwAAD07t27OAxxPXoAP/0EdOiQ75QYDECTJsCiRcDWW+c7JeFp2rT40gwAXbsCn39ut97d+PFH21RWYIQR7hUA2mn/2wJY7HFMBRHVA9AMQO2xY3TsmO8UGAw2bdvmOwXRKcY0EwVr5dttl5u0xCCMWWY6gB2JqBMR1QcwHMBExzETAZxkrQ8F8C5zsXaRGwwGQ/ETqLkzczURnQXgDQClAB5h5jlEdDWAGcw8EcDDAJ4gonkQjX14NhNtMBgMBn8oXwo2Ea0B8F1Cl2sJYHlC12oG6RCuzdcC6kaeJX09k2fRMXkWnaA824mZmwRehZnz8oNo/YV4rQdq+7XqSp5lIW0mz0ye5T3PwuZpYTtq5odJdeBaSVPIz1mo+WbyLDomzyKQT7PMDGbuXWjXqiuYPIuOybPomDyLTlCehc3TfGruDxToteoKJs+iY/IsOibPohOUZ6HyNG+au8FgMBiyh7G5GwwGQy2kaIQ7EfUkorR4NQZviKiww9YVMLUm8F0OsCLHmjyLCBFlVf4WvHAnoh5E9DaATxEuXEKdh4j6EdEzAG4mol3ynZ5igIj2JKI7iOhkAGBjrwyEiPYmoscAXEZEzU2eBUNEfYnoHABg5pps3qtghbs1Ach9AB4EcA+A9wEcZu0zGoIHRDQMwL0AXgHQAMAF1naTZx4Q0VAAd0FCbRxIRNeaStEfItoO8l1OAdABwDVEdFh+U1XYENF5AP4HqQwHWdtKs3W/ghXuAFoDmAlgH2Z+EcCbAFoQERkNwZcdAUxi5ichE6eAiMpMnvnSDcCLzPwEgAsB7AFgGBFtkd9kFTS9AMxl5kcB/B+A2QAGE1E737PqNvMADAbwTwAXAwAzb8qW4lVQwp2IjiaiC4moLzOXM/ODzFxp7d4cQDtm5mzWdsWGlWcXENGe1qbvAPyNiC4C8DGANgDuJqI+eUtkgeGSZysBbEZEzZh5KYBfALQH0C9viSwwLFNfZ23TdABtiagdM/8G4CMAqwAcmZcEFiAuefYqgC+t5VplnoHE7EqcghDuRFRKRFcAGA2gBsDDRPQ3a59K40sAhhBRI2belKekFgyOPAOAB4loCIAXAZwLYF8AJzLzIQCWATiKiLbJT2oLA488GwjgMwBbA3iIiJ6FfGxrAWxjnVdnTVpEtAURvQrgLQBHE5E18wYqAXwI4Gjr/3cAvoG0rhvkPqWFg0ueNVa7mHmTpbDeAmAkEbVkmeAocQpCuFvCeicA/8fMtwK4EsBZRLSz1umwDMC7ALrkKZkFhUeenQ+gMzO/A/n4VGC2lwHsBqBOTwTrkmdjICaFNZBm8vMAXmfmYyEd+IOs8+qySasxJCLs2db6vtb2ZQA+AbCr1dLeBOBnAHtrre26imueOTpQp0Ly72xAOlqTTkTehDsRnUhE+2l2zV8AbElE9Swb+zeQWk+lcS2AHWDN8FQXtamAPHsBwBwAwy0N/UdIbH0A6AER9nWOgDx7HsAPAI5h5pXMPIGZH7GO2wnSWqxzaHnWlJl/hoyIfBZShvoS0baWMP8EwCwA/7U0+m4AFhJRo7wlPk8E5NkeRNTGOo6APxWNawGMJqLVAHomLdNyKtxJaE1EUyCTexwPsQdvDglxuSvEtg4AdwL4G6S5DGZeCWAFgP2t/3VCm4qYZ3dBbJ6bIB3QfYjoEwDDAFzCzGty/gB5IGKe3QHgCCJqbZ17ABHNgVSIH+Y+9fnBI8/utcwGlcz8B4C3AWwJ+xtcysy3Q1o5jwAYAeA/1rG1nph5xkRUQkQ7ABgP6avYh5nvS1ymJRn2MiBMZam17AzgSWu9HsSd6mEAW0CaMvsCaGTtnwDgHO0aTXOV3kL4xcyz5wCMstY3B7Brvp+jCPJsAoBzrfXtARyZ7+cokDy7E+JFpB97PkTjbAagiTpfrdeVXwZ5psrcVgAGZDONWR8URDKn6tUASoloMoCmEM0SbM/ytBTArZCabDjEDXICgGqIVgDr+N+znd5CIMM82whxIQUzrwXwVc4fIA8kUM4+sY79EWLSqvWEyLNzACwmov2Y+T3rtAchguotAB2IqAczL4b0W9R6EsqzXsxcAeDXbKY1q2YZItoPImi2hPh4XgOgCsAA1YHA0slwFYCbmfkxiDnhRCKaBakJ64RwUpg8i47Js+iEzDOGCLIx2qmHARgF4AtIq3BxDpOdVxLMs4qcpNdqImTn4kR/AdCRZXAIiOgeyEe0HsDZzNzL6jDdCmIvPp+ZF1kdgo2YeX7WElegmDyLjsmz6ETMszsAXMTM5UR0OIDfmPn9fKU9XxRbnmW7Q3UmgGfJHnT0EYD2LKPaSonobEujagugipkXAX921NS5D87C5Fl0TJ5FJ0qebWLmcgBg5pfromC3KKo8y6pwZ+Y/mHkD24OODoL4xwLA3wHsTESvAHgawOfZTEuxYPIsOibPohMnz5J21Ss2ii3PchJl0arpGOLWONHavAbAJQB2AfATi2+owcLkWXRMnkUnSp5xNm24RUSx5Fmu/NxrAJRBfIx3s2q3ywHUMPOH5oNzxeRZdEyeRcfkWXSKIs9yNs0eEfUDMM36jWPmh3Ny4yLG5Nn/t3cHIVFFURjH/18hERlCUItoYUXSotACC4SgTa1atCgCwwiiInBTuGgRuAqCwAikopXQJqggsEVC4MJFQWRqtXYZGURmRYJ5WrwrDcEI4ziT7/n9YOC9mXfn3LkwhzuXN/dUzmNWOY9Z5fIwZvVM7tuALqAvImbrEjTnPGaV85hVzmNWuTyMmQtkm5kV0IrYFdLMzJaXk7uZWQE5uZuZFZCTu5lZATm5m5kVkJO7mVkBOblbrkj6LWlM0gdJ45Ku6G8pxnJtmiV1LiHW3hRrTNIXSZPp+IWkrZIeL/2TmNWW73O3XJH0PSIa0/EWUqmyiOhdpM1hoCcijlURdwB4FlndVbMVzzN3y62ImAIuAN2pnmWzpBFJo+nRkS69ARxKs+7LktZKuinptaQJSRcrjZ1ivU/HZyU9lTSYZvfd6RfFW0mvJG1K1+2U9FzSm9TP3cs1Fmb/cnK3XEv7sS8USJgCjkTEfuAUWcEEgKvASES0RcQt4BwwHRHtQDtwXtL2KruyB+gEDgDXgZ8RsQ94CZxJ19wnFXUAesjquprVRF22/DWrsYU9sxuAfkltZHUtW8pcf5RsN78T6bwJ2AVMVtGH4YiYAWYkTQOD6fl3KVYj0AE8Ktnie10V8cwW5eRuuSZpB1kinwJ6gU9AK9ls/le5ZmQz6KFl7Erp5lHzJefzZN+zNcDXiGhbxphmZXlZxnJL0mbgHtCfiiI0AR9TqbMuYKEc2gywsaTpEHBJUkN6nxZJG2rZ14j4BkxKOpliSlJrLWPa6uaZu+XNekljZEswc8ADoC+9dgd4khLoMPAjPT8BzEkaBwaA20AzMJrKoH0Gjteh76eBu5Kupf4/BMbrENdWId8KaWZWQF6WMTMrIC/LmJH9G5VsiafUbEQc/B/9MauWl2XMzArIyzJmZgXk5G5mVkBO7mZmBeTkbmZWQE7uZmYF9Acc8PMjGRpMFQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "r2 = data.Global_reactive_power.resample('D').agg(['mean', 'std'])\n", "r2.plot(subplots = True, title='Global_reactive_power resampled over day', color='red')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I show sum of 'global_active_power' resampled over day." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAFtCAYAAABIqx5JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXfcVMX1/98fQEDFDhZAFJXEHguKLbEriQWTmK8lJpYYY6IxGpOfJYk9ibGkWWMUu2KPqFhQRKJiQcXeEIliCSgW7EHO748zK5d1d5+9++zyLM+e9+t1X7v3njszZ2bO3Jk77crMCIIgCIKOpktHKxAEQRAEEBVSEARB0CREhRQEQRA0BVEhBUEQBE1BVEhBEARBUxAVUhAEQdAUtGyFJOkiSSdVea9JWqXGcKZI2qYWtzWGd6ukvedVeMG8JY/dZtzcJ2ndRunUDEgaK2n/jtajmZB0nKTLKsgfkrTGvNSpLTpthSRpd0kPSvpQ0rT0/2eS1NG61YtSBmdm3zSziztKp6B+SNpH0r3t9GMnYKaZPVYntYImRNIWkqbmdHYacEIj9KmVTlkhSToc+BtwKrAssAxwILAp0L0DVQvqiJyG2bCkbo3yex5yIHDpvA60k6Rd1TTaFhvESGBLSct1tCJfYGad6gAWAz4EvtvGfRcBJ2XOfwxMAmbgGdU3IzPgEGAy8BZe0XVJspWBMcDbSXY5sHjG7RRgmzZ02RAYD7wLvAGcCXTPyNcARifd/gscDQwFPgP+B3wAPJ7uHQvsD/RI/q2Z8acP8DGwdDrfEZiY7rsfWLuK9J0CHAU8A7wDXAj0bCsdgeOBM9L/BVIenZLOFwQ+AZZI5xslfd4FHge2yPg/Fvg9cF+Kyyo16Fg23sntEcATwKdAtxL+G/Az4EVgJnBisoPxwPvA1UX515ZtHZj8egc4CxCwWkqTz1P+vpux27OAW1LYDwIrl8mr7imN+ldja8C5wGlFftwI/DL97wtcB0wHXgYOydx3HHAtcFlKg/0rhZXcbAc8D7wHnA3cA+yfke8HPJvS5XZghYxsW+C55PbMYrdFcegB/BV4PR1/BXok2bPAjpl7u+HleL062uKvkz19CFyAN5BvTfl3J8nu0/07A0+n8MYCqxX59avk13vAVUBPYOEU/uxkKx+kvDoOt8VLUlhPA4OL9BsN7N3o53K1R4crUPcI+YN6FiUeJEX3XUSqkICtCkaYjPcMYFzmXgPuBpYEBgAvFIwfWCUVjh74A38c8NciI2qrQlo/GX43YMVUSA5NskXwwnx4Mr5FgCFJdhxwWZFfYzO6DQd+n5EdBNyW/q8HTAOGAF2BvZOuPdrQdQrwFLB8So/7qknHJHsy/d8EeAl4MCMrVKj98Mr9W/gb/LbpvE8mfq/glXQ3YIGcOlaMd/o/MbldsEwaGF6xLJr0+BS4C1gJbxA9QyrkldIk49fNwOK4bU0HhibZPsC9Jex2Bv6w74Y3gEaU0XMN4MMctvYN4FVA6XwJ/EHXN+XFI8AxeEW3Et5A2z5ji/8Ddkn3LthGWL3xius7Sf6L5L5gu7vglfhqSf5b4P4it7vijZvD8DJfrkI6AXgAWBovo/cDJybZMcDlmXt3AJ6rsy0+gFdC/XDbexRYN9nDGODYdO9X8Epr2xSv/5fSoHvGr4dSfiyZ0vPAJNsCmFoU9nF4o+ZbuK3/EXig6J6/A3/uiGd1ybzqaAXqHiHYC3iz6FqhhfMx8I1MwS48pC4gtdbTea9UOFZM50Z6SKTznwF3lQl/F+CxIoOsWCGV8ONQ4Ib0f4+sfyUMrlKFtA0wOSO7D/hh+n9OoVBm5M8Dm7eh25RCIUjn3wJeaisdmfMWtBRwJP6WNzXdczzw9+TmCODSojBvZ84DfixwQjt0rBjv5Ha/Nvw3YNPM+SPAEZnz00mNkipta7OM/GrgyPR/H0pXSOcXxe25MnpuSlFZaMPWhD9gC2Xkx8CY9H8I8EqR26OACzO2OC5HWD8ExmdkwivDgu3eCvwoI+8CfASskNw+UOR2KuUrpJeAb2XOtwempP+r4G8PC6Xzy4Fj6myL38+cXweckzn/OfCv9P93wNVFcX6N9FaW/NorIz8FODf934LSFdKdmfPVgY+L7vk9MLxSHOblMb/1eVbD20DvbB+2mW1iZosnWak49wX+k7n/g3Rvv8w9r2b+/ye5QdLSkkZIek3S+3iXRe88Ckv6iqSbJb2Z/PhDxo/l8QJVC2OABSUNkbQCsA5wQ5KtABwu6d3CkcLqW4W/JdOCCuloZh8DE4DN8Zb4PXhDYdN07Z6MXt8r0mszINvPnQ0/r47VxLsa//+b+f9xifNe6X81tvVm5v9HGbflqPb+d/A36i+oZGvmT6gReCMIYE/8AQ2ebn2L0u1ovOVfYK50a8Ou+2bvT2FnB+VXAP6WCWsGXvH0K+O2Up7NlQdk7MHMJuFvGjtJWgjvMrsio0M9bLFWW5md/K+nrfQsGt9bBG+sNwWdsUIaj3ehDMvh5nXc+ACQtDDekn8tc8/ymf8Dkhvw12DDxyEWxd/Q8s7kOwfvDx+U/Dg648er+PhEKaySp8mgr8YfMHsCN5vZzIy/vzezxTPHQmZ2ZRX6lkuLttLxHrwLa13g4XS+Pd79NC6j16VFei1sZidXG+82dKwm3tX4Xy3V2FY52qvHix6ksg+0SrYGcCWwa2rADMFb9ODp9nJRui1iZt+qoG+lsN4A+hduTLNf+2fcvgr8pCi8Bc3s/uR2+SK32fwuZq48YG57KMR5D/yZ8UyqpAo61MMWq6XYVgrxaqStrIaPjTUFna5CMrN38S6gsyXtKqmXpC6S1sEH/0pxBbCvpHUk9cBbcg+a2ZTMPb+WtISk5fH+7qvS9UVIg86p4P+6BrUXwfvEP5C0KvDTjOxmYFlJh0rqIWkRSUOS7L/Aim3M7rkC2A34PnNafgD/BA5Mb0+StLCkHSQtUtKXuTlIUn9JS+IPmUJatJWO9+DdLc+Y2WfMmYDxsplNT/dchrdWt5fUVVLPNKU1+7CqhnI6tifetVCNbZXjv0B/STXNDDWz/+GD5ptnLleyNcynh08HzgduT+UJfOzifUlHSFow5c2akjaooEKlsG4B1pK0S2qxH4TPiC1wLnCU0joZSYtJ+l7G7RqSvpPcHlLktpgrgd9K6iOpNz5ulF0uMQKfYPFT5i4j9bLFarka2EHS1pIWwMeNP8V7Etriv8BSkharNrBkj+vjExuagk5XIQGY2SnAL/FBwWl4Zv0D7xP+Uuaa2V14/+11eOtrZWD3ottuxMcKJuIF4oJ0/Xh8wPq9dP36GlT+Ff4GMxN/YBYenqQ3mm2BnfDX7xeBLZP4mvT7tqRHS3lsZg/iA6V98X75wvUJ+BjBmXjXziR8zKIargDuwAe1JwMnJT/bSsf78bGkwtvQM/i4UuEcM3sVb6kejT8YX8Ur+by2Wk7H9sQ7N1XaVjnG4DOj3pT0Vo0q/AP4Qea8rK1luBIff/zi4Wxmn+M2uA4+w+4tvNKq9ACsZNdvAd/Dx0Hexsc3JuAPYMzsBuBPwIjU3fcU8M0itycnt4Pw8dFynJT8fgJ4Ep9U8MXiYjN7A+9Z2aRIx3rZYlWY2fN4D8sZePruBOyUGm9tuX0Oz7fJqXuxmq73nYGxZvZ6m3fOIwqzaYKgKiRNwQeP7+xoXcoxP+g4L5Evrv25NfHi2PSWPxWfAHB3R+vTCkh6EJ848lRH61KgpRavBUErYmabdbQOpZC0Pb6O6mP8zUP4FOlgHmBmQ9q+a97S0C47SctLulvSs5KelvSLEvdI0t8lTZL0hKT1MrK9Jb2Yjr0bqWujke8x90GJ4+iO1i2LpAFl9PxA0oCO1i/oVGyMzyAtdE/tkmZjBi1KQ7vs5FtSLGdmj6ZB40dwo3smc8+38Ln438Jn9fzNzIakwegJwGB8BskjwPpm9k7DFA6CIAg6jIa+IZnZG2b2aPo/E5/v36/otmHAJeY8ACyeKrLtgdFmNiNVQqPxXRiCIAiCTsg8m2UnaUV8/cmDRaJ+zL24bGq6Vu56sb8HSJqQjgPqqXMQBEEw75gnkxok9cKnvR5qZu8Xi0s4sQrX575gdh5wHkDv3r1t8ODB/2inukEQBC3FI4888paZ9eloPRpeIaUFXtfhGxiWWqMzlblXWffHVyxPxfdnyl4fWymsFVdckQkTJrRH3SAIgpZD0n/avqvxNHqWnfAFpM+a2Z/L3DYS+GGabbcR8F5aqHY7sJ18d4Ql8JXUtzdS3yAIgqDjaPQb0qb4KvEnJU1M147G95LCzM4FRuEz7Cbhm//tm2QzJJ2I73kGvqvujAbrGwRBEHQQDa2QzOxe2thoNO3Ue1AZ2XD8mz5BEARBJ6dT7mUXBEEQzH9EhRQEQRA0BVEhBUEQBE1BVEhBEARBUxAVUhAEQdAUdMrPT6x45C1znU85eYcO0iQIgiColnhDCoIgCJqCqJCCIAiCpiAqpCAIgqApiAopCIIgaAqiQgqCIAiagqiQgiAIgqYgKqQgCIKgKYgKKQiCIGgKokIKgiAImoKokIIgCIKmICqkIAiCoCmICikIgiBoChq6uaqk4cCOwDQzW7OE/NfA9zO6rAb0MbMZkqYAM4HPgVlmNriRugZBEAQdS6PfkC4ChpYTmtmpZraOma0DHAXcY2YzMrdsmeRRGQVBEHRyGlohmdk4YEabNzp7AFc2UJ0gCIKgiWmKMSRJC+FvUtdlLhtwh6RHJB1Qwe0BkiZImjB9+vRGqxoEQRA0iKaokICdgPuKuus2NbP1gG8CB0n6RimHZnaemQ02s8F9+vSZF7oGQRAEDaBZKqTdKequM7PX0+804AZgww7QKwiCIJhHdHiFJGkxYHPgxsy1hSUtUvgPbAc81TEaBkEQBPOCRk/7vhLYAugtaSpwLLAAgJmdm277NnCHmX2YcboMcIOkgo5XmNltjdQ1CIIg6FgaWiGZ2R5V3HMRPj08e20y8LXGaBUEQRA0Ix3eZRcEQRAEEBVSEARB0CREhRQEQRA0BVEhBUEQBE1BVEhBEARBUxAVUhAEQdAURIUUBEEQNAVRIQVBEARNQUMXxgadhOMWy/x/r+P0CIKgUxNvSEEQBEFTEBVSEARB0BREhRQEQRA0BVEhBUEQBE1BVEhBEARBUxAVUhAEQdAURIUUBEEQNAVRIQVBEARNQestjM0u8oRY6BkEQdAkNPQNSdJwSdMkPVVGvoWk9yRNTMcxGdlQSc9LmiTpyEbqGQRBEHQ8je6yuwgY2sY9/zazddJxAoCkrsBZwDeB1YE9JK3eUE2DIAiCDqWhFZKZjQNm1OB0Q2CSmU02s8+AEcCwuioXBEEQNBXNMKlhY0mPS7pV0hrpWj/g1cw9U9O1IAiCoJPS0ZMaHgVWMLMPJH0L+BcwCFCJe62UB5IOAA4AGDBgQKP0DIIgCBpMh74hmdn7ZvZB+j8KWEBSb/yNaPnMrf2B18v4cZ6ZDTazwX369Gm4zkEQBEFj6NAKSdKykpT+b5j0eRt4GBgkaaCk7sDuwMiO0zQIgiBoNA3tspN0JbAF0FvSVOBYYAEAMzsX2BX4qaRZwMfA7mZmwCxJBwO3A12B4Wb2dCN1DYIgCDqWhlZIZrZHG/IzgTPLyEYBoxqhV1A/1rp4rS/+P7n3kx2oSRAE8ztVddlJ6irpzkYrEwRBELQuVVVIZvY58JGkxdq8OQiCIAhqIE+X3SfAk5JGAx8WLprZIXXXKgiCIGg58lRIt6QjCIIgCOpO1RWSmV0saUFggJk930CdgqBleXbV1b74v9pzz3agJkEw76m6QpK0E3Aa0B0YKGkd4AQz27lRys1rsjPGIGaNBcH8zFkHjpnr/KBzt+ogTYJqybMw9jh809N3AcxsIjCwAToFQRAELUieMaRZZvZe2lihQMn95YKg5cl+CDI+AhkEVZGnQnpK0p5AV0mDgEOA+xujVhAEQeM4fbcd5zo//KqbO0iTIEueCunnwG+AT4ErgduAkxqhVBAEQTVkJ4FATASZ38lTIS1rZr/BK6UgCIIgqCt5KqSLJPXDd+Ieh396PKahBUEQBHUhzzqkb6RPQWyA7+B9i6ReZrZko5QLgiAIWoc865A2A76ejsWBm4F/N0ivIAiCoMXI02V3DzAB+CMwysw+a4xKzUkMngZBEDSWPBXSUsCmwDeAQyTNBsab2e8aolkQBEHQUuQZQ3pX0mRgeaA/sAnp669BEARB0F7yjCG9BDwP3AucC+zbat12nZkVj5yzkfuUk3foQE2CIGhV8nTZDTKz2Xk8lzQc2BGYZmZrlpB/HzginX4A/NTMHk+yKcBM4HN826LBecIOgiAI5i/yVEh9JZ2BjyMZ/qb0CzObWsHNRcCZwCVl5C8Dm5vZO5K+CZwHDMnItzSzt3LoGARNT3ZX+dhRvm1iF/7WIc9u3xcCI4G+QD/gpnStLGY2DphRQX6/mb2TTh/Ax6aCIAiCFiRPhdTHzC40s1npuAjoU0ddfgTcmjk34A5Jj0g6oI7hBEEQBE1Ini67tyTthW+sCrAH8HY9lJC0JV4hbZa5vKmZvS5paWC0pOfSG1ex2wOAAwAGDBhQD3WCeUD242nx4bTqiDQLOjt53pD2A/4PeDMdu6Zr7ULS2sD5wDAz+6KCM7PX0+804Ab844BfwszOM7PBZja4T596vrAFQRAE85I865BeAer6uXJJA4DrgR+Y2QuZ6wsDXcxsZvq/HXBCPcMOgs5E9vs+8W2fYH4lzzqklYC/ARvh4zvjgcPMbHIFN1fiG7H2ljQVOJa0mNbMzgWOwXeAODt9ibYwvXsZ4IZ0rRtwhZndljdyQRAEwfxDnjGkK4CzgG+n893x8aQh5RyY2R6VPDSz/YH9S1yfDHwth25BEATBfE6eMSSZ2aWZWXaX4W9KQRAEQdBu8rwh3S3pSGAEXhHthn8TaUkAMyu73igIgiBoDpr5ywV5KqTd0u9Piq7vh1dQK9VFo6DTkDX8ZjL6IAiakzyz7AZWkkva1sxGt1+lIAiCoBXJ84bUFn8CokIKgiDoYObX/f/yTGpoC9XRryAIgqDFqOcbUsy4C4KgNo5brOj8vY7RI+hQ6lkhBUFLMb981HDqkf/+4n//k7/egZoEQWXqWSFNqaNfQRAEHUK2AoeoxOclebYOWgg4HBhgZj+WNAj4qpndDGBm32mQjkGLEfuyBUFrkvcDfZ8CG6fzqcBJddcoCIIgaEnydNmtbGa7SdoDwMw+Vtr9NJg/mF/GPIIgaE3yVEifSVqQNJtO0sr4G1MQBEHLc9eYlec633qrlzpIk/mXPBXSccBtwPKSLgc2BfZpgE5BEARBC5Jn66A7JD2Cfw9JwC/M7K2GaRYEQRC0FHlm2Y3Ev3800sw+bJxKQRAEQSuSZ5bd6cDXgWckXSNpV0k9G6RXEARB0GLk6bK7B7hHUldgK+DHwHBg0QbpFgRBELQQuXZqSLPsdsK/jbQecHEjlAqCIAhajzxjSFcBQ/CZdmcBY81sdhtuhgM7AtPMbM0ScgF/A74FfATsY2aPJtnewG/TrSeZWVR+QezLFnQoxx13XMXzoH3keUO6ENjTzD7P4eYi4EzgkjLybwKD0jEEOAcYkj6LfiwwGF/39IikkWb2To6wgyAIgvmINiskSVuZ2RhgIWBY8eYMZnZ9ObdmNk7SihW8HwZcYmYGPCBpcUnLAVsAo81sRtJhNDAUn+UXBEGdyLbwo7UfdDTVvCFtDozBx46KMaBshVQF/YBXM+dT07Vy17+EpAOAAwAGDBjQDlWCIAiCjqTNCsnMjk1/TzCzl7MySQPbGX6pvfCswvUvXzQ7DzgPYPDgwfGRwBamEa392P+vfmTTEiI9gy+TZwzpOnxmXZZrgfXbEf5UYPnMeX/g9XR9i6LrY9sRToeR/ZQCxOcUgiAIylHNGNKqwBrAYpKy3zxaFGjvwtiRwMGSRuCTGt4zszck3Q78QdIS6b7tgKPaGVZLsOzdE7/4/+aW63SgJkEQFMiWS6hT2eyEn32v5g3pq/jU7cWZexxpJr44tiySrsTfdHpLmorPnFsAwMzOBUbhU74n4dO+902yGZJOBB5OXp1QmOAQBEEQdE6qGUO6EbhR0sZmNj6P52a2RxtyAw4qIxuO7wQRBEEQtAB59rI7UNLihRNJS6SFr0EQBEHQbvJUSGub2buFk7RIdd36qxQEQRC0InkqpC6ZSQak3RRy7YUXBEEQBOXIU6GcDtwv6dp0/j3g9/VXKQiCIGhF8nx+4pL0xdgt8YWr3zGzZxqm2XzEWQeOmev8oHO36iBNgiAI5l9ydbmZ2dOSppPWH0kaYGavNESzIAiCoKWoegxJ0s6SXgReBu4BpgC3NkivIAiCoMXIM6nhRGAj4AUzGwhsDdzXEK2CIAiCliNPhfQ/M3sbn23XxczuBmJvmiAIgqAu5BlDeldSL2AccLmkacCsxqgVBEFHcteYlec633qrlzpIk6CVyPOGNAzfb+4w/DPmL1H6G0lBEARBkJs8074/TH9nAxcXyyWNN7ON66VYEARB0FrkeUNqi/Z+iiIIgiBoYeq59U98rTUnU4/891zn/U/+egdpEgRB0PHU8w0pCIIgCGqmnhWS6uhXEARB0GLUs8vuB3X0KwjqSnYac0xhDoLmpM0KSdJMSo8PCf/o66L4n6fqrFsQBEHQQlTzCfNF2hOApKHA34CuwPlmdnKR/C/4DuIACwFLm9niSfY58GSSvWJmO7dHlyAIgqB5yd1lJ2lpMlO8K+32LakrcBawLTAVeFjSyOxnK8zssMz9P2fur9B+bGaxPVEQBEELUHWFJGln/CN9fYFpwArAs8AaFZxtCEwys8nJjxH4jg/lvqO0B3BstTq1KrGtSxAEnZFG7/bdD3g1cz41XfsSklYABgLZr931lDRB0gOSdinj7oB0z4Tp06dXGZUgCIKg2Wj0bt+lpoKXW0C7O3CtmX2euTbAzAYDewJ/lbRysSMzO8/MBpvZ4D59+lQRjSAIgqAZqWW3739T/W7fU4HlM+f9gdfL3Ls7cFD2gpm9nn4nSxqLjy9F/1QQBEEnJE+FNAz4BDgU+D6wGHBCG24eBgZJGgi8hlc6exbfJOmrwBLA+My1JYCPzOxTSb2BTYFTcugbBEHQ9Kx45C1znU85eYcO0qTjybXbt6Rl8YkKM4DbUxdeJTezJB0M3I5P+x5uZk9LOgGYYGYj0617ACPMLNudtxrwD0mz8a7Fk7Oz84IgCILORZ5ZdvsDx+CTDgScIekEMxteyZ2ZjQJGFV07puj8uBLu7gfWqla/IAiCYP4mT5fdr4F1C29FkpYC7gcqVkhBEARBUA15ZtlNBWZmzmcy95TuIAiCIKiZavay+2X6+xrwoKQb8anbw4CHGqhbEARB0EJU02VX2MvuJeaecn1j/dUJChx33HEVz4OgGYkZY/Wl1dKzms1Vj8+eS1rEL9sHDdMqCIIgaDmqHkOStKakx4CngKclPSKp0j52QRAEQVA1eSY1nAf80sxWMLMVgMOBfzZGrSAIgqDVyFMhLZz2rwPAzMYCC9ddoyAIgqAlybMOabKk3wGXpvO9gJfrr1IQBEHQiuSpkPYDjgeux3dqGAfs2wilgiBoXpa9e+Jc529uGd/QDOpDnr3s3gEOaaAuQRAEQQtTzcLYmyj/DSPMbOe6ahQEQRC0JNW8IZ1W4lqhgir1Ab4gCIIgyE01FdLiQH8zOwtA0kNAH7xSOqKBugVBEAQtRDXTvv8fMDJz3h0YDGwBHNgAnYIgCIIWpJo3pO5mlt3V+970CYq3JcU6pCAIgqAuVPOGtET2xMwOzpz2qa86QRAEQatSTYX0oKQfF1+U9BPi8xNBEARBnaimQjoM2FfS3ZJOT8dYYB/g0LYcSxoq6XlJkyQdWUK+j6TpkiamY/+MbG9JL6Zj7+qjFQRBEMxvVPP5iWnAJpK2Agq7e99iZmPaciupK3AWsC3+xdmHJY00s2eKbr2qqCsQSUsCx+ITKAx4JLl9p61wgyAIgvmPPDs1jAHarISK2BCYZGaTASSNwL80W1whlWJ7YLSZzUhuRwNDgStz6hAEQRDMB+TZ7bsW+gHZGXpT07VivivpCUnXSlo+j1tJB0iaIGnC9OnT66V3EARBMI9pdIVUaieH4m2IbgJWNLO1gTuBi3O4xczOM7PBZja4T5+Y9BcEQTC/0ugKaSqwfOa8P/B69gYze9vMPk2n/wTWr9ZtEARB0HlodIX0MDBI0kBJ3YHdmXvXByQtlzndGXg2/b8d2E7SEpKWALZL14IgCIJOSJ7vIeXGzGZJOhivSLoCw83saUknABPMbCRwiKSdgVnADHw6OWY2Q9KJeKUGcEJhgkMQBEHQ+WhohQRgZqOAUUXXjsn8Pwo4qozb4cDwhioYBEEQNAWN7rILgiAIgqqICikIgiBoCqJCCoIgCJqCqJCCIAiCpiAqpCAIgqApiAopCIIgaAqiQgqCIAiagqiQgiAIgqYgKqQgCIKgKYgKKQiCIGgKokIKgiAImoKokIIgCIKmICqkIAiCoCmICikIgiBoCqJCCoIgCJqCqJCCIAiCpiAqpCAIgqApiAopCIIgaAoaXiFJGirpeUmTJB1ZQv5LSc9IekLSXZJWyMg+lzQxHSMbrWsQBEHQcXRrpOeSugJnAdsCU4GHJY00s2cytz0GDDazjyT9FDgF2C3JPjazdRqpYxAse/fEL/6/uWWYWxB0FI1+Q9oQmGRmk83sM2AEMCx7g5ndbWYfpdMHgP4N1ikIgiBoQhpdIfUDXs2cT03XyvEj4NbMeU9JEyQ9IGmXRigYBEEQNAcN7bIDVOKalbxR2gsYDGyeuTzAzF6XtBIwRtKTZvZSkbsDgAMABgwYUB+tgyAIgnlOo9+QpgLLZ877A68X3yRpG+A3wM5m9mnhupm9nn4nA2OBdYvdmtl5ZjbYzAb36dOnvtoHQRAE84xGV0gPA4MkDZTUHdgdmGu2nKR1gX/gldG0zPUlJPVI/3sDmwLZyRBBEARBJ6KhXXZmNkvSwcDtQFdguJk9LekEYIKZjQROBXoB10gCeMXMdgZWA/4haTZecZ5cNDsvCIIg6EQ0egwJMxsFjCq6dkxU54OtAAAgAElEQVTm/zZl3N0PrNVY7YIgCIJmIXZqCIIgCJqCqJCCIAiCpiAqpCAIgqApiAopCIIgaAqiQgqCIAiagqiQgiAIgqYgKqQgCIKgKYgKKQiCIGgKokIKgiAImoKokIIgCIKmICqkIAiCoCmICikIgiBoCqJCCoIgCJqCqJCCIAiCpiAqpCAIgqApiAopCIIgaAqiQgqCIAiagqiQgiAIgqYgKqQgCIKgKWh4hSRpqKTnJU2SdGQJeQ9JVyX5g5JWzMiOStefl7R9o3UNgiAIOo6GVkiSugJnAd8EVgf2kLR60W0/At4xs1WAvwB/Sm5XB3YH1gCGAmcn/4IgCIJOSKPfkDYEJpnZZDP7DBgBDCu6Zxhwcfp/LbC1JKXrI8zsUzN7GZiU/AuCIAg6ITKzxnku7QoMNbP90/kPgCFmdnDmnqfSPVPT+UvAEOA44AEzuyxdvwC41cyuLQrjAOCAdPpV4PmMuDfwVhn1QtZ6smbRI2QhazbZCmbWp8x98w4za9gBfA84P3P+A+CMonueBvpnzl8ClsK7+vbKXL8A+G7O8CeELGTNpkfIQtbsso46Gt1lNxVYPnPeH3i93D2SugGLATOqdBsEQRB0EhpdIT0MDJI0UFJ3fJLCyKJ7RgJ7p/+7AmPMq++RwO5pFt5AYBDwUIP1DYIgCDqIbo303MxmSToYuB3oCgw3s6clnYC/Lo7Eu+IulTQJfzPaPbl9WtLVwDPALOAgM/s8pwrnhSxkTahHyELW7LIOoaGTGoIgCIKgWmKnhiAIgqApiAqpzkgqm6ZtyFSjrFY/57UuNdlaI+LQjvDmF1mtNthp7bNBttmSaVmFnzXXK9FlVwOSupjZ7HkcpgCsE2ZYo9KzEWlWq5+V3HWGvO0McShFlPV5S1RIOZDUzcxmlbg+DPga8HV8oHAcMN3MZrch2w5YCV8IfKWZ3ZH86wJsCiwLrAaMNbNxGdlONfpZq7ttavSzbNzbSM9a4/D1Cmm2DrBkkj9jZo9WGV6lfKiULpXc1epn3fOhk9vnLsDaeeOd3EZZr2NZr5qOXgg1vxzA/wFn4lPZfwJsBCwCLAi8ljJrP+BO4BJg2zZkCwEvAwcBv8C3RroeWDPJngV+Dxyd7rsVWKEdfrZHl1r8LCtrIz3bE4dyabYQ8BgwHPgjMB64EOjbjnxoj7ta/axrPlSRnvOzfa5fS7yjrNe/rOd6znb0g35+OFKCT0uG+R3gbOBcYF987dRNpLfNdP9PgYnANcBNRX4VZDcDNxbJjgWmAzcC1xXJTgP+A/y5QniV/Bxeoy4javSzUtxPq5CeB6T4K2d4oyuk2bXAlYBSoesHnI634k6pEF6lfDivRneXAdcVuavGz0bkQ2e2z/fwN+F62maU9fzpeXK552qpo8Mf9vPDkYzz5qJr300Z8Q/gamAvYLGMfEDK/FFlZKOAG4CNivxdI12/GFiqSLY18M8Ubl4/rwD+VYO7q4GravCzUtzH4gugS6XnBXjrKm94o1OBKpVm1/LlLau6APvgLeFy4VXKhwuBS2twd3nKw7x+NiIfOrN9bgRMAQ7MGe+xlLfNKOv5434DMKj4mVruqHk2RIvxJPCZpGMlrQBgZtfhrYABwP3ADsCuklaUtLiZvZLcPlVGNhuYCRwvaZic7mb2NLA40Ae4LY2LkMK8C99AdmINfi5Toy5LAR/U4GeluH8MLFomPfviLbK84c3Cx4hKpVk/YENJj0gakq7PxiuitYG3a8iHlWvMvxWApWvwsxH50Jnt8wHgHfwhWS/bjLKeP+4LABtTJTGpoUokrQQcjr9KPwh8BHyGt5ouA+4BfpOuf4rvpDsYb12snJF9hBvhBvg3orbAxzUmAY/gD+SheL/tbvhr+3h8K6U10rXVcvj5NP4Q3D6nu8fx/QOHAqvm8LNS3KfjexUWukOy6fkO3s1yId5Km1RleO+nOKyPVy7ZNLsk6b5Xku0L/Bx4LuXb2sCh+LZU1ebDtcnP7+MPjGrdXZnu/34mH6vxsxH50Jnt8w28AblqSss9q4x3JduMst6+sr6uVVvRVPsq1YoH8BVgq2Sci6XM+hO+E/lb+ADgW/hGsL9IbjYDXgDuTYZVLHsCeBTvO74f2CPJ9kiyF/BX4CuAzfFxj/8H/BcfmB+d089Cobo1p7sX8YI9KqefleJ+GD5m8+cS6flGuv+tnOGNx7eX+leJNHsGeDW5+0O6v3fS4S28wN2VMx9exSu0O3K6ewmYDNyW089G5ENnts8XgAn4vpfTcsS7km1GWc9vY3vgExzWy/PMjTekCkh6AjeK3ngL4XR8gPNnwC744OPj+D595+GGPBLY0MyGJj++mpHdAaxlZt+U1AdvcRwFfILPtPkasHP6HYT3Xb+KZ/x3zGz7nH7eD2xdgy6PARvX4GeluP8If/splZ6/zJy/CvSsMrx7gFXKpNn7+NTVPfHCviLeMnwaMGAnM9suZz5MBbY3s6E53b2NF9KdcvrZiHzozPa5DPC+mW2RM96VbDPKeg1l3cweoQaiQiqDpN2A/TKGsTLegloLn3mzKnCI+ZdwC25+jH+ufTrw8xKyYcBTZnZk5vqCeDfSRvgHCU9J13sCA/Gd0Lvi005LhVfJz68C/6vB3deAV8zsqJx+Vor79/C1fqXS82KgVw3h7QaMNrPCZ++zaTYQuNvMzk2yPnjXwjC8pdu1THiV8qEXMLMGd8sAz9bgZyPyoTPb52l4I2STOtpmlPX8cV83Xc+7GXZ02ZU78D7REem3a+Z64RMa1wAXAYuk64XK/U68G6iUbCzeQr8QfwAX/FwW73r6D14QFsrI1sffBG6qwc+xeBdRXnf/xl/x8/pZKe73AmPKpOcovIslb3j34q3KUmk2IckOBXpkZDvh070n1JAP9+ItyrzuHsC7fPL62Yh86Mz2+RXgzaRLvWwzynr+uN8GbFXLczdm2ZXnefz1+Rd4t1Bh9fYI4HN84H028B9JRwEDJW2Nz8TZp4ysL96y6ArcL+kwSV3xWVdL4g/L3sAVkvZOeryOG8cBNfi5HN4dkdfd0sC3avCzUtyXxgdyS6Xnp8CpNYS3dIU0WwTvw/4qcIqkHZLsbnxW0w415EOt7pbAu2fy+tmIfOjM9tkT76p9L2e8K9lmlPX8cV8Jr+RyE112FZC/Sv8W+Db+tvQQ/nA5Ce93nS5pHeBE5sw6ecDMzk7uK8m+gQ+0z8JbdRPM7DRJPfCH149xo3gJmGhmJ9bqZzvd1epnVvYJPjA6vIr0zB1eiTSbDDxmZifK+7a3xbc0WSPJJprZMe3Mh2rdZXWpyc865kNnt883gEeSno2wzVZKy3aV9YIsN7W8VnX2A+iSfhdOv6vhs23+BpwD/BBv0ffPuFkm8/9LMuZU/meQWQSHdzMskP6fB/TMyAYDS7bTz1rd5fKzjbhXk561xqFSmh2Lt/wWxXdo2AJYuZ35UKu7Wv2sWz60gn3WEO8o6w2wsVqPDn/4N/MBnMCcB9hy+MKxxQoGlH67JVnvMrJeBWNP17ZPv10LxpKR7Zn5vxz+EM3rZ63uemX1yeFn2bin32x42fTsxdz959WGpyI/v0izdF4ogAsC+2auV4pfpXyo1V2tftY9H9qQze/22a+WNGnDNqOstzM9az06/KHfTAc+m6Y/8JV0PjD9HoWvc3kJXzC2P2k7DOAIfND69RKyw/GBwWl4a30rUksE38DwNnxw8whgxYweR+AD3a/l9PMIfEPIvLocjg9u/jenn2XjnuQ/xWfrFKfnr/EFhv/JGd5B+IDvKyXSbL8keww4hNTyLYrfGznz4fAUvzdzujsIH/CdktPPuudDG7L52j6Tf/9K/t1QbbzbsM0o67WV9Z2B77f3GRxjSAlJRwPfwFczj8e3EBnJnNXK++Irqt/GB8o/xR86VwHbAQvjr/sF2Rh8wdu38QH2zfHBxSfwRWZ34QWiG74yfEF8081bU3i7At3x9TPV+HkzcB+wI97CWaVKd6PwmT27J3ebVulnpbhfhw+UDk2ycZn0nIyv5zgYH9PpXmV4d+M7L/wE75rZLZNmo/HC8lfgQ3yw1fCC83AK7+dJh42rzIfbk7u98cHyDat0dwc+QH44vl/ezlX62Yh86Mz2+RI+CWElfI3X1/BKqj22GWW9hrJuZhMlDQI+MrPXaAdRIQGSlsINYyA+3rAWsB6+Zcbj+EPl18DbZjZN0pr42oXN8AHA75nZ+8mvgmxLfLuRbS0lsqTN8M0eVwbeNbNvZnTYEfgd3nJeANg9p5/LJF12y+luedywts/pZ6W4D8HXIqxYIj0n499cOQD4NKVnNeENTWm2fYk0+xyYZma7ZGR74RXSvfjg9Ddz5sMMvEIZmtPdR8DHZvatnH42Ih86s33+Cl/Ps46ZvZkj3pVsM8p6fhtbD9jbzGZQB6JCAiQtiQ8yHmpmU9O1/viOu9/GW0rdgQvMbGzG3XB8mubbZWTL4zN4rjCzZzKyy/E3sevx7d7fSte74OsBCtPx8/h5Gd7q/rgGd4viraS8fpaL+2V4C2vXMun5Ad6dlSe8C/GHxuUl0uwyoAdwlpmNybhZEl/r0QPvLsmbDwviU//zuLsIb0WOyulnI/Khs9vnc3i+/rGOthllPX/cbzOzq6kDUSElJP0Bf4U928yuylz/G/7w7IZPzXwVeMjMHpBUeJVdrIzsFrwl9h5uIJPM7DlJd+Mt99WYs7/UDDN7Q9K/8S1L+tbg5yX4oGNed9fj25fk9bNS3D/FH8yl0nN6cpM3vIeSnqXS7Am85TsCOB9fef+xpPH4ppjr1ZAPl+HdinndjcY3bs3rZyPyobPb5zR8TLFetjmFKOu5bczMzqMOtHyFJKmrpS0uJP0f/no6G3+d/hzf7PBy/CG3Pt5nvQtplhi+Q/O0jKwwZrBAuu8tfLfplXCjXBxvse+AG8VvcYPshb8BLIt/sbJaP9fGjWRRfEPDat2tiS/Q64X3G1frZ6W4b47PgnvHzHYpSs9X8Yro9/hWQWdVGd6OeIsVfAuUbJoppdcSeFfFYvjmmAvig8Qr463h7XPkw4L4zK1l8MWE1bpbAJ+F1Afva6/Wz0bkQ2e2z68n+TL47hf7VRnvSrYZZb2dZZ060dIVknz1/hb4QPc5+EOsJ/4QOx3vWvkfPlD+GG6sT+ObI/4dnya5Q5HscbwV8hm+huEmfNHYB/gA+6P4g3lXfCDxUNxIx+MFYRb+cK3Wz+eT7uAPwmrdPYkP5H6CG2K1fpaL+xP4jJ3v4oXxzKL0PA1vyX6KF9Rqw3sA3+bnbXwwNptmN+Ozfv6DjwXcjFd4Q/BZV7fhD4JdcuTDuHT+EXO+EFqNu9FJNg2vOKv1s9750Jnt8w+4PZyMNzY2xt+a22ubUdZL+1kpPT9Jafmqmc2kXlgHTK9uhgN/LX8zZcK++JdK/4LP3toNN6ABeItjAXyg8zG8dX9zxp+s7Boyn/LFW/Z/xqdYXgHckJH1SGG+DBxfo59n1Ojughr9rBT3wiBtqfT8CV4ICulZbXg3VUizi4Fr0vVe+APqfHy6629rzIc/1+ju3Br9bEQ+dGb7fAd4os62GWU9f3r+pmHP5UY+9Jv5wFtX2QTvBvwA/1ja3/BpmXsAi2buWR2f1ntbGdld+BqGwcy98GxIMvoLyXziN8l2TEZzfQ1+XoM/tPO6uwHvE87rZ6W430fm089F6Xk2/mnuvOHdgxfuUml2A/CXoutd8dl7lcKrlA+X4GM8ed2NIG29n9PPRuRDZ7bPbfG37B/njHcl24yynj/utwCrNOK53Mqbqz4FzJb0W0n9zGyWmV2KTyddG19Lsj2wo6T+khbBX2E/xD9oVUo2E39l/g3+Ko6k7ni3Qk989ssNktbO6HEL3if7bA1+Lop3NeR1tzDeXZDXz5JxN5+tMwNYvEx6rp70yRve+3gXx1xpZmY342M1W0gaK2n1dP1zvAJYI+maNx8G1Jh/fZPbvH7WNR+qkM3X9mlmo3E727PaeFdhm1HW85f1z4BNaADdGuHp/ICZzZR0LL6I8v8kPQg8b2ZTJL2Jj1lcg7e4N0nnvfB9nnbDW2vFskH4TK+9gL+mGV734w+s5ZLsMGCspH/hraiv4gO0x9fgZ3981+C87vrhrbW8fpaMu6ReeEHbJ/lZnJ5v4H3cE3KGt1KFNFsSWAdfWX+NpHHM+YbNMvhapx/kzIel8W6dvPnXO+mS18+65kMVsvnaPiUVJo/8FZ/MUA/bjLKev6x/Be8VqDstPakBQNL6+IMLfLbWbPz19vv4Is7Z+KBkYZPOh4B38VljWdli+DTKV81samppHIS3lmbjg7EPmtl7khbDdxHuxZxPdj+X08/PC7IadXkmp5+V4r4oPg10fIX0HGZmk2uIwzMl0uxtvBtmpJl9LmkgvhfZcnir7t/AuBrz4eEa3Y2p0c+650MZWWexz9eZ8zmIetlmlPUa0pNG0Ih+wGY+8KmKhYp4Q7xLpSfeot4K39ZlDXwK6Epl/KgkOxlYIXOe3VPtH8y9O+6CdfCzVne1+jmXLEd61hpeyTRL4V4F9MnIlqxDPtTqrlY/65IPrWKfDbLNlkzL9thRo46WfkOSf253LD5teCe8r7Un/lnsGeme7km2Gr7X1R0Z2QL4q+xa+OyTx/AvTs6Uf+RqVXy9wRN4y245M3st4+eC+FTT0VX6WXC3HD6dtFp3BVk/fKbP41X6WSnuMjOTtBVwj/mbSiE9p6TwPktJXW14hTRbP/kzNZNmhTVHS+LdLbMkrWZmz2biVyq8SvlQcNcTH6+q1l1BtnC6Xq2fjciHTmuf+BKBQrlcBbiwDrYZZb0OZZ0G0TIVkvxje3un08WAy8zs9SQ7B+9TXQRfO7AqPm//n/iMrTXxV9yH8QwryM7CjWIpfKPEHnhGjpR0Jv5gHYD3T7+GZ+ZDKbwN8XUAD+Xw8xy8r/jTnO7OxncqWDSnn5Xi3gPvJuuDD4Jm0/NsvECsjM/W6V5leGekOKxSIs3+hs8MWgWfeXcv/pGwV1J4m+HjC6Ny5MPZyc8Fc+bfmcld35x+NiIfOq194ouI+zKni2l2lfGuZJtR1nPaWKqMNsPfli6hgbTSpIY/4y3sB/BB6NslXYtnxrb44sl18d1y18UXNw5MsrXwwtA7I1sZLzCr410DaybZNpIG4AvJ1sIN4htJ9l1JvZOf6yc/F63Sz77J3TrJ3RJVuuufZGsl2WpV+lkp7n3wWUTL4v3Q2fQcnsLbKcXx2SrDG5TSbPWUZltm0qxf8m/dlF674LN/Vpd0Uwpv/RS/lavMh6WTu3WSu69U6W65JFsnyTat0s9G5ENnts+dgR3NbFn5QPoySdYe24yyXkNZl3QaPhPxYRrNvOwf7KgDN9KnmfNFRqWMuQyf/XI5bqSFD031wFu51+Hz9HdizttkQXYjPnj+9YxsCXwrkPHpWCsj64cvLHsIuLoGP8fi6xfyuvs3/umGvH5WivtN+CDwkikts+l5Kb5+YYtMelYT3qiUNqXS7KmUnv0zskF4q+4R/LMOefPhEXx3hbzuJuJvZ3n9bEQ+dGb73A3/ftXPM2W2vbYZZb02G9u0kAcNf1Z3dGUxrw58psveRdeWxbfNOBnfXuNU5h4k/xX+oCwnuwu4E/8g3OIZ2fH4moNL8B2Es19uPB1/5a7FzytqdHd9jX5WivuDFdLzjBrDG1chzW5I+bQB0CMjOxNf3FhLPgyv0d0VNfrZiHzozPZ5LV4p1dM2o6znj/tf59VzupXGkLbGt5Z5ADjczF6X1Ac3oi2B4/A9oDbGWxm346vvT8dbOlnZDXiL63R8Kufm+GvuBDzT70myxfBdd9/Bu67uxfvGT8Vb09X6eTtuaKfjr83Vurs+uT0dnypdrZ+V4j4C7ye/Fd9bLpueC+LrHbbCC2i14RX8PB3v1vgizczsBkmP4Vu9rIV3Mz+MD04/ik+jPRmfQFBtPtyW3J2arlXlLqPLqXjLs1o/G5EPndk+n8O718bibzRLVBnvSrYZZb32sn66+ULihtPpKyT5GpX38Tn13YEj8bUIL6fzDXADvhlvIXTBp2wuis+i+gc+a6wgOyddXxLf7PFpfMZOb3w1dC98QPs3eAavgo8l7I0vkuyKt5qq9fOYdH2BdF+17n6HF5KF8bfDav2sFPcj8Jlsk5If2fR8Ce9/3hx/zb+kyvDOSv4smXTOptkeKQ6Gd4GMwbsVNsC7JZZLaX18jnz4YbqnB77BZLXu9sIfjN3xxbjV+tmIfOjM9vl9/IuuC+Mz1oZXGe9KthllvbayPgN42cxOYh7RqSskSYfhq+SXxA1mOl7jd0vnZ+KzSl7Bp2x+hM8suR0fiFwcf/AVZDfhBl1ofeyCZ+aj+NjBfXgB6IlvKDoTb0WNx3fV3QJ/aG1cpZ934C2ajdK1PLo8iA9ULprDz0pxvwwfaB6aZKXS8zy88piVIw6FvbR6FaXZg8n9SeneX+OL9I7B346exXdv7smcz1G3lQ8PJHc74lvq75TD3ZPA/imu++fws9750Jnt8zl8Y9w18N0V1qN+thllPUdZN7OXJPU0s0+Yh3TaCknS4rhhrIY/7FZnztTMO3Fj+q6Z/S/dvz7+vfv1ccPd2eZ8J6kg2xj4zMyGZsLZDt/GZDlgppntmJHtgT9IX8ANYpecfvbCH/B53S0JzLK5P6NdjZ+V4r4WbtirlkjPCXhByLqrJrwtgPeK9Cyk2fv4p5+znyU/GG8N3oyv8ygVv0r58ArQvQZ301J65vWzEfnQme3zEHx218qFB2EdbDPKen4bWxUfg/uAeUxnrpB646+oP7E5C7xWxMc3dsDXBXTBvxo5PuPuCrwV8t8Ssivx6af3AZeY2Yvpeld8Ns2CeKvsxkyYvfA3hy74wrg8fo7AX7Vn5nR3VdLl0Zx+Vor7dXhB3LFEeu6Ifx/lpZzhXYXPgLy0RJpdlG77u5mNy7jph7819cS7Z/Lkwz/xrptncrq7IMXhppx+NiIfOrt9vpDy9bg62WaU9dps7Hozu5Z5TKetkADS/PnB+KDcTZnr5+IPz654pkwCxpvZ45JuwWexdM/K8P7sm/EBykXxgcOH8L3TXsZfqZ/H+44fwAe53zGzafLP/I7AF7JV5af5vm+3JXmvGnS5L4VXlZ+V4p6R9cC7QL5IT0nCK/638ZZh3jhMwVt5X6QZPmA7Gt+pYQD+bZYr8IL+KT4b7zp8ELmqfMC7cO7EuzGWq8HdY/h03rx+NiIfOrN9jsbfjl/OmSZfsk2Isl7KzyrT8xYzO5t5TKeukAAk7YNvpfEO/qGqeyXdjD/wrsf7XlfGFzh+jr/+bi9p+QqyNfB1Ekvgq74Xwveq2kLSxsDP8AH+93GjXd7MNmmHn7W6q9XPSrJK6XlnjeFVSrPt8W66t/DCvwKwvplt2I58qNVdrX42Ih86rX3iXWz1ts0o6znjTgfQaSsk6Yv9lxbDB0c3wKeCTgc+NbOdM/f2xV9rV8F3zX2rjOxlM3s3I/sa3mJfBphsZq9mZNsw5wuUz5nZC2X8fMXM3i7y8xN83cSLlrY8qVKXgrtiXar1s1iXL4VXZXpW0qVSHLJp9qKZPZuR7YG/Sc3Evxo6sQ75UCldtsFbj91K6FKtn7XmQ3G6tKR9Nsg2WzIta0lPOoBOWyEVI//A12eSVgZeM7NPiiqtgUUPuW5mNiv9l2USSlIXM5tdIgwBC5jZZ8WyYn+UmcGS011ZXdrhZ++igtnV2thAUb4Z4//w2VCF9KykSze85WXF/lebnrXmQyl3gDVKl1rzoZys1eyzHrYZZb2sn7nTc17SEhWSpIXx8Y3pxYVf/so6PMm7AVub2cwk64HPbvlSIsn3LTsUb40sCVxrZvcm2SJ410Op8JYDjk3uVgLOMrPbq3DXw8w+LRO/Wv3shy+I+wyfmfR7M7shyboCs8vEvZIuy+LrdGbi03fPMLMxxe6K/Ze0JL6eZxY+VjSu8NCQL7j9pIZ8qORuAZsz66pYl1r9rDUfWtI+U7wXAf5bR9tsybSsws+a0nNe02k+YS5pUUmDU6YUcx3ehzxU0qJFsuPwFeGb4oPlW0k6T9J6+Hfqx0laJxOO0t8z8fn7L6fj75KGpwfyNRXC+zNuTJfhawHOl3SbfJPGSu7+JenfZXSp1c9T8DU9P8e33/mdpBtTy3JhYP0y6VlJl1Pxro3h+BqIWyVdnQrElZLukjTQzD5PLdbCBr/n4xtFLocPwp4k6QRJSyX9a8mHSu6uqqBLrX7Wmg8taZ/4ljvXlvGvVttsybRsT1kv2H+JtJz32Dzao6jRB3Nmm+yHt8wXSNdXxWdIHY0Pbp6Bz7zrhQ9C3guske59Hs+sP+P9z28Ap+EzUM4k7fGE988+AiyWCX9ZPNNH4puBlgpvqWx4Gbd/wqdtPlfG3dr4tOJSutTq56L4/lXbF7k7ATfch8uk59opfqV06YtPPOiaznum+y7BZ/S8hK9cfy+5K7yh98fHhQo69MbXlZwCnIuvPM+bDzen/CzlbnC6VkqXWv2sNR9WxWdStZp9/hOfjn1mCf9qtc0o67WV9aEd/fz+QqeOVqAukfAZIg/in+c9D/g7/sndldPxnUyGnozv03Q0PiPlBXzF8vnAkxk/d8Mfoj3wVvtl6d5Dk3wi/sGwrB698SnKf6gQ3tPAdSXicDK+5qaUu2+kgvadMrqMB67M6ecSyc9RwNJF7g7Bd0UolZ7rkjauLNYFUPp/TpJ/IxWOrvguxX9O15fHW8fT8VlKXUiVXEaHbvguzWPx7oUvhddGPlwJ/KWMnpvjD7RtinVJ999fiEO1frYjH9bFH7DfKZNHndI+cVv6J/DTMnrUYptR1vOX9d2Aozv6Gf6FPh2tQF0i4YsrN0r/FwUOxhdbnoS3EiYC+2Tu3wD/dMELeGvkcPw7ImeQWkL4flrjYc6W6/iD7HZ8MdkLeKvkbmBI5p4DgYxAW7YAACAASURBVCuK9MuG93Ty4zFgs8w9ewO3VnD3eAVdnm2Hn+fge8TtDPRK9/wIeLxCej5elJ5ZXSbhLf6H8Y0x90n3/BJvjXbLuNsupWFh3cl9+ILYtTL3HEbmDSZnPoyo4O7pCrpMqtHPWvNhYgVZy9hnCf9qsc0o6/nS8/+Aezv6Gf6Fzh2tQMMi5uMRF+IPl2fStcI3ULriq7g/AfbNuPkj3g/71+Rul3R9Abz13wVvwXwCbJNkv8IXqY1Mmf8GcFCJ8HbBx1Z+kK4dgi/8vA5fbf1qCXddkjF+wpyWX0GXrJ975fCzG16oPwOOSNd+iL8VXIbvSvAosF1Req6Bd3E9S3qAZnQpfHPm40y6bIC3OIVv7TKZ1DWAT6fukmRrAh8CW+PdKr/D34ouBv4f/jno7+XMh1NT3HctoedaRXoWdCn4+RE+2F2tn7XmQ1d89+lPgZ+2mH2OT/GYjH9osb22GWW9jmW9I4/5elKDpG6S9pd0iKTvpGtdk/gH+KvrivhDFPzhA/B7fIDzFXxwtH+6/hv8NXlb3BiGAJjZ/8xz8w/p+AAvSJjZaXiB6IUPlv4H7zrIhvcHvKvoZfxzxpjZ3/Huom7AwArujsNb7RuU0OVXuCEOyeHnifiOyg8DK0laALjUzDbBx2v+i7eiepVIz/7AV/G+6mJdzsIrlmHyKakPm88U+iO+k3C/TNw/M5+++ge822UB/CNg08zsRLwQfRXfxPRzfG1JnnzYDl+suH4Jd2fihX+TErqcgj8Qhub0s5Z8+APwC9wmBhXJOrN9Xp507w88Yj5DrB62GWU9X1k/C+8y/YmZ3UGTMF9P+5b0R3zz1OdxIzkM79tdCG/9DMMXyG2PG+Rb+AydrfGWck/8Vb8PPkDaH7jazNZNmXcdblhv462M3fEHWVe8YE3BV4W/g4+rrJv0uqsovK/jDzLDtxl5Ff8chgFbmtk6bbgr7FlVShfDB9ur8XMhvNW3Af6gH4u3smbihfJ93MiL03NhfP+uYcCeKdysLnsnPRcjDRKb2SGSBiV3G+JvP6fi3QfvA2/im1Fujvdxn4xXdO8Br+F934W4V5sP7wI/rCL/lsQrn1K6dMXfzvL6mScfStlEK9in4WVxJfO1QfWwzSjrtZX1o83sNZqNjn5Fq/XA5+BPZM6Mrvvw/v1z0/VT8dfdzfEH3BC87/gRfOPAgj898S1vVsFbUzfgrfNt8EKwLT7wOgk4L7kpyLZLsueBM5PsG0XhPQacX0Y2sYLsKeDiovAKujxXIbxKfj6ArwsiXXsOr9BXxV/hXy6Tnk/jM5KUdMjq8jze6iqkZ198JtBy+EyhS/GHwLZ4d9h38VlBU0lfoszIdsUriqmZ+OXJh5dKyAruJuObSGbDK+jySonwqvGz1nyoZBOd2T4vwMcyti7hX622GWU9f1k/m9QN3mxHYd3F/MgWwAVm9rmkIfgr+/54q+FgYIKZWZq/v4+ZPQggaU3cCAurlD+R9CK+WOx8fF3Ei7jR7mVmo4HRkpbB+3DBx0b2svSqWyTrUhTeGvhDuj2yQnildKnVz9nAjyxtiSNpFr5AsVR6zgLuT+nZvUiXlfCHQSE9X5f0SgrnGuZsvLoMsIeZ3QhcJ98ZubBaPiu7NnXFPFlF3CvlQ7G7gXjrtji869L6o+LwqvGzEfneme3zQUm/xicR3FTBvzy2GWW9bVlxek7Ed0G/hmajo2vE9hzMGbzbAB+DAM+YA4CLiu7tij84b2bOtOVCi2tPvCV/O5mBzyJ3o0iDlEWyLm3Ivggvh0xtuKslvHJ+dkm/IwtxL0pPlUvP9Dsqk56F/Pgl/ubxhZ8l3N0GfL+MnpVk5eJeVpbRs5y7WsJreL53Mvss2MZc7tppm1HWay/rc8ma5ehwBWpSOjMlslKCF9+Hz0y5u4S7RfFuonGl/Mend95dg+yQBsgaEd6vy6RLW+l5YBl3K+DdDmPK5NN+1cjqmA8l9WxgeO3O985sn/PINlsiLWuQlUzPZjk6XIF2R6BMgjOnRbQmPu++R/r9WpFsGHNaWhtlZIPwmTRLAfviM72KZUuUkLUVXi2yUuF1K+NunQqyrJ+Dgf3S/02ANatMz0pxXyX5JeB4vO+6IFse7z5ZDp8xNLiErG8JWaXwapUVwls2E163KtJ6Xud7Z7PPYcB6DbTNVkrLdpf1Zjw6XIHcCs+ZGahMZgzGW7rdihMcH8QsuTVGku1A2nqkSHYXc9ajdC1kbkY2rCAr4edhQN8y4Z1GWlxX0D+rJ/6Q7FJCl60qhDeUtJ6mjOxLb5T4Dgq7tJGeXcukZyVdtkv/e5aIw2bp/8Il0vPrBVkJP/fGN+EsDu8ufDZe/xJ5dCe+/mShMu42qxBeufjdlfzsVi4fKtjZ0Gx+t5h97tgA24yynjM9S6VLsx3z4zqkHvJt2M3SlvH4LJsZ6Xw8viIbSZvhmbeZpFMl7ZWmeCLp63hrYjvgj5J2LQQgaSN819w/Sfqu+eaDn2f8XBg4VL5tffbTBeviU1L3xKdakpGtltztD+wBYHO2vN8shXcgvr/UTzPu1k9x2ErSkcBvJW2ZZGsld3vis9MulfSDJFsVn955lyWrzPg5GJ+a/a8y6XlKSs/Pi9JzS/xBsLqkY0nrLJJsqxTehpKOB75SJOsB/FzSNmb2YSY9t8Yrjd8mPT7MuNs0pdnPkvvZGdl6yd1v8C1/snm0Zbr/h/g6qK0z7jZLcVhH0iHAd5Q2sZS0YXK3Q1pScKykHZJsXbywj0npNFv+GYtq7KyLmd1mZrPkVOtufrfPnfAJBNtQP9uMsl57WW965psKSdIg+eeI/4xn1NLp+gb4hoR/lbRdMt7ZaVbNvfg8fsOn+e6Ez/DBzP6NL+ScgS9+2zGFsTY+G+scUveSpDEpY8Hn//8Xn6FjkpaWtFp66E7B+6eHA29JWlXSTpL+lNy+hk+fXlHSTfKt5El6foB/fvhOYD1JG0j6Ed46/B++u8B/cEM/VdJfUlif4oXyZnwtxb7ynZQ/xdfbvCDp29m0NLMJwO9Tev6lRHquCvxC0iaZ9OyCT7c1vMtrFeA4SZsnb8elMHvgldEvJfWV9P/bO/N4q8qqj38XCISKhIoDqKAIGoOCKAa8MqSCVvpq5ZAoqS9lOJT6seI10waHtzRMcUQly1RMyIEwQStASTQRQU0GcUjNxHKAkhRxvX/81ubsezz3ei/c4dxzn9/nsz/33PPbz977rL2eaT1rradzyHMm8F/A102Zkj8V5daGPGfq9tbBzLqZsjq/BKxCyVnfArqZ2QFmNh7p7qtEEkkzu9wK2Z+z9/5CvN9jcu8oyxCxLVpPGIkaqbPiepuh9a+/hnxPCjmtAzqa2Ytmdkgd9WxjyzV3/TwHBWDei1ys60M3U12ve10/OeRX/l7VTT1Fq+2BPKG+hyKPr6ZgEx2BfO5PQQGOs4BuwR2GopTbx/9fQsq1OUrb8jDQNrilqOJcieIlelJYXxiHFOjZeI5ncs81FWUan4JcSW+jkGpkPqpUP0QKnKU12RxlDMg8h/Ykt9AYzzIV7V8yF0W0Z1zvuNclaF+UB4Ctc3x7lAFgdsjlZOTSfC+wd+68ORQiufPyPDTufwZKK3ITYZJAZpQFFLIrjwOui89Hhzwzu/Ui5No7OZ5zq5DF51A+semoE5sOLMo9103xm28PuU0FennBnPGLkMtCCimM+qAceKPj/wHA3Nw1F8fvvw65ui7IccNCJ36CEnbOyXEdQt4T4r0+St31bATSnVPrWK656+cVKGanPnVzBKmub4w8uxG568r9aBYzJDM7BOjg7j9y91tRIzbG5KO/Br20X7r7DkiRnjazK9Bo3ZGJqS0aWexALEyi+JjdzGwc2s74cKQ8bYDBaJRztrvfiBqlHVFwWUcz+16MXNzdD0VK0y6ueaTJ3LTA3c9y9/OR0jwWP+n9+P88Mzs3yrQzsxviuVe7+7EosnwOsK0pfgM0EuqKXFcPQ8p/cSYrd1+LGudXUHzGFHfvhzqIu83sZyZTyl7AgyXk+S5K9XMjyji8BpgVz7lt8D3CHDIDGGxmeyDzxStAFzM7E234dVg85wg0E3ka2ep/ivafGYAag93NbIKZfRc1KMNR8F6WW+5rZnYwquRfQUGNf0cmG1Clng/8KkaabwNtzOxCM7sMbbx2OMpb9h7Q2cyOj7Jr4739DsW0rDaziSHLNe7+FzS63xF41N2vL6Fnbahez9agUfgfWph+Xo869Bvj+/rQzVTX617X26G6NJBmgGbRIaHAzGkmtHHtQLoGLUwvRA1XbwB3PxN5mHRFaWs8zlnn2vL3D8jc9AFa0F6KlH5slM8y4+7j7rcDq0w26FOQIo5Go+x2yDZ+aZRbEeVaIQ+ZXyOFzrAQzRJw9w/c/V6U+r1/PO9YZC5agWIPcPe30LYIfwE+ZWYvEtmvo6GcGVxXM1tiZsdFuXfiWTparFe4+wWoY2iPGti30IZkxfKci0aKvd39xZDneOSVNhHo5O5LXXm2XkcVrycyQ2zn7i+jkePhcd+H0EhzAEqA2cVk8z4SjVC/hWYufePzT3PlZsXv7xay7xDcmyGjLeP/9e5+A3J+GBxy/E685/fQpmXEu16IIvGHmgIEfwDc4O5/RJ3kTGQavMfMDo1yyyiYFDN55vVsGqFnrtx4eT3bGS1oLy1RrtL181Y0eKkv3Ux1ve51/V/AVlGvyx8bM61qioMi7xhkXpmEGp55wDY5rh3ywFmNGsb8NHcwUphlaNTRuajcQWjk9UWUamQvNJV+BrljDqNgwuqYK3dglDsIKepnULqaRUiRVyK30+Ipd5ZteNf4vx2qlLehrcBfQo13F5Q8sQOyNXdEM4P94lpHIhPb48D5ce/94twNXkpx7mpgUJE8x6N8ct9EpoH2edmjivROyK9djhuNKtUS5Oa9eVG5bMOxzKttGJpZLUad3D7Z9YAdiso9g0Z2W6PO5q+okTkzft9Qct58cd7Pg8u2qd4GdRgXxjWeR2lZ+oV8ukXZrXL3+yQy3cyK+52G8ocNinNbFcnzLWBAxsXfT8e7WIa8zFqMfmb3JvSTTdfNVNc3ra7v09Ttd22Psk6uambm8YBmG7bwxd3dzO5Fi+Tt0Qj4WZRWfR5aBN8FvdQ70cL4n5BZ5xa02PkeGsGtQqafucH1R6apqWjE8ggagR2DXm4PtJbwepSZH/frjxKI/hqZk+5z98fNbD7yDtsGLWJmz/IQWg9pjRr730e5mWgB9jeoUf0Q2YTfRDEXj6CKORh43t2/USSzqWhh9CZ3nxPftXIt/hpK4jgYrZnk5Xk3qoBbIHPHDGSXXha/rxfqQKYhe/wjqOJNRQ3Bf+K3P4zMF0vN7Feoge8S5eZTqMhDkWltYHw/DwUrPmdmt8T32exjXsj872i2tRlK/zMr9yzL4znbxG+8P7gH0Azuuvht7ZBOPIbWmV4ws1PQ2tmb7p4tAH8CNVJXxzu4xQvpYzJ5noJGxu+7+7czDpmO7uCjetYS9HME8jr7AM2YzyGwCbqZ6nod63p8HgYMdvcf00xQ7l4X55qZo2nrapDATR5YPdGo4VVkR90fKd92yDzUB41eRhZx/eJ4HTWKWTLCzkjRDkQKcUBw2dpHd3f/VDzDwcEdhmzNA+L/91GjPgg43pTnbesS5TY8ZwnuODTyaeXu3YMbFdc8In7XOajB28XMxrhs7ZjZYDRjmYq85Lq6+62ZgiIX6Q+Bq3MdfaswofXKyXMGagB6I/v3QGRS2wxlHv4v1BDPjnNGxTN/IStnZrPR7Oc41Kl9KbidUSX9srsfEg348cHtGeUGohHmq8BRaATcB3VAW7l776JyG56zBNcLzXLWu/tOwZ0Q776PmT2KzIQ/R55Uo9x9tivvWfYcU4BDY3z0QDSgQ6PcFKCtmR2c43YPHeuLGqVMzypdP8fHPX+F1m/uIrAJupnq+kbUdZPn4Twze5jmhKaeolV3oFFB5pJ5F7lcY2gUMxcpVOZV0wktSi9D3jYjcudn3PIauFLltkYmrJquuYGjEMi3sffrhNJ+1HS/V9Foa3vkhXQbGu0NQ/sI3Y9MDxn3y+AGo9HYzSXk2Q+N4vrn5Lk9GqmuRLOJfrnfl3HPZ1zuWvlyjxZxO6BGfOXHlCvFXYrcuOta7jJkJqmu3N+Rp9U+qPJfjzyl+se7uAd1iHlu7xz36RJcV9SwjarDe68E/bwVbX0wnPrTzVTX61jX4xonESbw5nSUrcnO5C3VGzUaByF34Q9QuvV5ZnYTmsL/Fpjt7v+IchejEdBmyFxTH9xFaJRTn9fcFO4Vd7/G5Om2G1qj2DfK9HT3biW4rKHsVY08b0ej+TuRO/W/4n4/Rc4Db4Wsi7kOaJRZzE1EZojqytV0zfrmPu5Z/uzuU81sG2SLHxLX2gFV8J02ghuNzC+NoRPlpJ+XoTXDW6g/3Ux1vW51vTOwu8esqzmhbDskADPr4O5rqnsZKFahN/LCeRl5Sc1H8UpbVSB3D1oX+Y7nIq/NbHNUmeei0eVvi7ieyN4+zt3vrEaee6BGpAPaFuI1ZMdehAYFu1cw922XJ1Qms51DLlPQ5nwzNoIbh0a65apL9c29gmY388npZz3pZqrrVWVWG3lW4ZoLyrJDyi/MFX1fReBoyjoU2eoHo6ntn9z9AlNUcsVyJWRzGvAFdz+wBHc6cGQxV0Kes9FaT3/kiLAzCtQ72xTbUbFcCZl9Fzjc3fffWK6c9KUp9bOedDPV9drJs1quWaC+bH+NdSAX0N9TiLrejYI77pZocbPSuSwbwl5A//i8M2pkq+VKyNJKyLMzclhog+zqbVsAl8+03DXk0gPFP9Wai88Z166G91fJXCbnUrrZpjruY3Szyr2CK/kcFchVkVlwdZZnczma/AFqfLiqjes3kRvuzsBOuXOeQhvCfSJfpoVwiz+G27cGeQ5AjXEVBUYxGHsHV5zuv9K5p5BzQ1sipqMO3IDc/8VclffQEjgUl1ZdmY9wVG1cs5iubhTigCzulcXi5HW9ormczGriSsq6uR1l5fZtZr2B5R5Zkb2QXfcuFEy2J8rs7HH+ocgT5TKgp5md6oVMvS2Be60G7gmUFeETLhfm1jl5TkOeZ28AV7qi27Nyz6OMCetRJoWWxL2IOvj1JeRSE7cCGGZmRyPPwudQSpsRwQ01sy9mnLtXCjcWpXb6opntVFTmuRqutzCTewZ3XxcfpwGPm9m7KN5oJVprGRzvbowp/utZM1vpWl+paM7MhiAP0+q4ha4kqs0eZZM6yMxGI7fRdqCAuPh+KBqVnoamseeYWWszM+TK64kryd2BKvLl+c49GtCtg3sZ+IaZ7WtKw78ZMgXMS1yduB4oMHgN2vztYjM7Mc7dvYK5CSjmaHUdrzcpZHiJmR1hZn0BorPaHuV0W4SCPkeZtgJpjUytf0FOKYkrcONDfmXTnm8symmG9B3gx+7+b9PWBLsie//+wNPufq2ZPY9Md8vd/R4zOwYguJUopUyL54B/mtkZqLMagjqriSjwsC1ye54cCrwUpSZ5m9h6wd0nA5jZ8sTVinvD3a8PbjBwHnID3w14tUK5/0YZKibF93Nqeb3/oI7sWgod2Qdm9hs0Q1iQ082OKP5tKPK6ey73DjoljqEoJddDAF7CEazZoTHsgjUdyHbaAUXKZ4FvWUqQn6Dp/mG5849H5oAxSLH3StxHuFOB38X3o1CuuWzXy92RN92lIfOZ8X1fFAfxTOLqxM1GI9ej0Gj1c2jWcADq7B+uUO4YNPs5tY7XW0nVLT4GoxQ6V6MMGrNRkHGn3Dl7oeweixP3EW4+cHRTt+P1dZSN27eZXYNMiItRwssJZtYVRcG/AlzhhV0Xj0KBh99z99dMuzkmrsC9Dtzu7k/H98cD30d7qtyGkosegmZMb7v7hXHe+cg08Fri6sTth2z8+6A1le+7+5/MbBJac2pVodwDaMbTqQ5lfoGcSi5COdwOQbuqXo86pTEoC8HmaFB1V8j5h3G9LRP3EW6du/+ICkA5dUjtkZL2QpH/pyK7/QTgHXc/K3fudmgvkyEoWnlt4sDMtkAbow1DlX5drrM6ASVBvdPdfx3fbYP2V3kJRcafDgx3JRxNXO25USiTwDqU7v8fyNR8IxogbFFB3IdxDEBmuG+hLOw1Xs/dXzSz7ijbwhSgO4XO6gfuPj86sgdROp3hKDC2B5ptnRzftUncRzl3X0kloLGnZPkD9fh7AJ+L/3dFHdGfURqbR9EI7GFkkto2zrsP5R9bihQ4cQV59gJOLyHrWaiiZ/vEjEXODUeg0f0K1Mg+mLg6c/ehUX6H3DtagnS4orj4PCW+f6EO19sK6e2dqPMegEye3VFOt1ORV123OL8jMi9PRh3cyJwuJ06Dy9PIhRtUwtHUHVLWuD6B7PRHAzuhzLrLUfqVvZG9+m60rnQE8FjuGokrpODPy3NDZ4Xs9I9FmX1z5W5E9v1S10xc7bljg7ulxDuqJO53xLbxdbxeXjefpGoHdwSacT2GBp6foRBcm3GXAucmTlwlH03ZGW1oJHMKfA8afR2GRvH5Rfs28XKWh+Imriq3AliU+z7fWVUnz4lxzfmJqxfu0grnbkGODKM24nrVdWQXoHXiYWgTxZ8hT9r+8XcqMlMlLriQ4YnEZpCVdDTZGpKZDUI7lJ7p7kviuzbx3UHI1vw+iqd5yWOtxLQP/RYoniFxBW4qChweWyTPi9Eaxwxkzy8udyVaKC11zcQlrph7GJnqLqpDmTuQab6Ubo5GiUCfMrNPIieH/ZBLfX/UAPdIXBWuL9oFticVhiZ1ajCzbyN7crECX43WPEai9CHTgb+hOIW5yAvn84mrws1BppBVSZ6JayDuNZTk9FE0+6kP3bwWuMfd7ydgZl3QZo8XAaPdfUHiauYqBU0WGBseYVej6ejFwHQzGxn0l9Fo66so2eBJaBF0G2At2iDrW4njJBTnsSNwO1LUJM/E1Td3BRo4boscY8bU8nq11c3OZjbP3d+N705EayhrUbqcJYkDd/9bdErzK7EzAhp/DQkt0F2OYhB+hDrFIWhE9RawAHmXTEW7eY5F09dn0a6RgxInLuR5Pmow7kryTFwDcOehwN+DkUv3HbW5Xh1083oUNPsGyhXYP+73ZbSulDg4O9d+9gA6Nna73Wj9QyN3RpnAhwMDiyrE19EiZ1tgszh/ENpaeybwy/jOEreBm5zkmbgG5lagYPVMh6yW16urbu6LTHv3Z9fMtRuJg0uIjOiVfDR2Mr5Po+2i57r7Qnc/FvnTfxXtKZO9gPUA7v4YSifyDtDezIZ4vKXEcQLQB+X5S/JMXENxxyJHms/Gd95Auvk4Mlf9M7tmnJM4cduh3J4VjcbukH4DWJHAMwXuhDL8TgcmmVnr4F9EW/u+gGzPVyVuA9cR6JjkmbgG5BaimczPG0k3+9RwzZbMDUSeihWNRveyM7OT0QLndORXvwvKDjwJRR4vA66jkLhyDwB3H2la0Eucot27o8DCaUmeiWsArj9K6rkFck4YV8vrJd2sX26DPN39s1Q6vBHsgigl0IFA9/i/C3AvSrvyMnIHXQV8JVdmNAqoW4S2MU6cb7ApTwDOorCDZJJn4uqNQ55xT6AOYwHwjaSbTVbXx6F1uB2z7yv5aIzOaEe0ncQcFIuQF/gMZMYbjlxJlwF9grsZODc+fzZxG7gkz8Q1KLcJ10u6WY9cSzwaYw3pEuB+dx+BslSfa2Z9TFtLbAl807XweSuauh4e3B7AS2Zm7n5f4jg85DkJ7Xs0MskzcQ3AHY8CW+eY2SiUvy7pZhPUdTPb1cxGmZnRQtCgHVIIvBty8SQvcHd/FaUJGpAT+M1A3+DeRZtReeLEhTyHA0tdSPJMXH1zuwBnAP+LMm97ba6XdLN+ufh8ee4dtAg0aIcUAj8DBcFluJmCwMcD27u7m3JbrQBam9mFwHp3vwo25L1q8VzIawVwTZJn4hpQz44F2rn7DUk3m5Tb3N1voCXBG9gmSHjyxec2aF+UqSiNyOwS509EaddHJK5mLskzcY3FJd0sD67SjwbPZech4fi8DlhnZn+jsMdHMSYDa919TuJq5pI8E9eIXNLN8uAqGk2S7dvM9gROcPfvVsO3cvcPE1c7LskzcY3BJd0sD66S0ZT7IbVIgTcUkjwTyhVJNxNqiybdDykhISEhISFDY+eyS0hISEhIKInUISUkJCQklAVSh5SQkJCQUBZIHVJCi4eZrTezJ83sGTNbbGZnm1mNdcPMupvZcRtxr35xryfN7E0zeyE+P2hmXcxs2sb/koSE5o3k1JDQ4mFm/3L3LePzdsBtwHx3v6CGMiOAc9z985tw35uB37p76oQSEkgzpISEKnD3VcDXgNNN6G5mD5nZE3EMiVP/DzggZjdnmVlrM7vUzP5sZkvM7JS63jvu9XR8PtHM7jazGTGLOj1mbovMbIGZbR3n9TCz+81sYTznnvUli4SExkbqkBISiuDuz6O6sR3au+dgd98HOAa4Mk6bADzk7v3d/XLgf4B33H0/YD/gq2a26yY+Sl/gOGAQ2ujuXXcfADwCjI1zJgNnuPtA4Byq5pJLSGhWaPDUQQkJzRRZVuo2wFVm1h9YD/Sq5vxRwF5m9qX4vyPQE21JvbH4o7uvAdaY2TtoTyGAp+JeWwJDgDutsENBu024X0JCkyJ1SAkJRTCz3VDnswq4AHgd2BvNmv5TXTE0U5lVj4/yXu7zh7n/P0R1txXwtrv3r8d7JiQ0GZLJLiEhBzPrDFwHXBWJgTsCr0XqmxPQVgsAa4AOuaKzgPGxhQBm1svMtmjIZ3X31cALZnZU3NPMbO+GvGdCQkMizZASEqC9mT2JzHMfoA0lJwZ3DTA9Gv0/Av+O75cAH5jZYrTvzxVAd+AJk/3sDeCIRnj2McC1ZnZePP9UYHEj3Dchod6R3L4TEhISEsoCyWSXkJCQkFAW+XzSPAAAAFZJREFUSCa7hIQGgpn1Q+a/PN5z9/2b4nkSEsodyWSXkJCQkFAWSCa7hISEhISyQOqQEhISEhLKAqlDSkhISEgoC6QOKSEhISGhLJA6pISEhISEssD/A7C1loQAl1wyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Sum of 'Global_active_power' resampled over month\n", "data['Global_active_power'].resample('M').mean().plot(kind='bar')\n", "plt.xticks(rotation=60)\n", "plt.ylabel('Global_active_power')\n", "plt.title('Global_active_power per month (averaged over month)')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below I show mean of 'global_active_power' resampled over day." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAFtCAYAAAA3egy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXe4HVXVh98faZSEECD0hCSA9B7pXaog2E1EDc2IgogVbIAgilLUT1FAjfSi1Aihd6QGCdIEKVFCkUDoIHV9f6x9ZHK8ZebemXPnnqz3eeY5Z/bMrFl7z5rZM3uvvbbMjCAIgiBoFfP1tQJBEATBvEVUPEEQBEFLiYonCIIgaClR8QRBEAQtJSqeIAiCoKVExRMEQRC0lLaveCSdLOmHOfc1SSv28DwzJW3bk2N7eL5LJU1q1fmC/omkIZLul7RUX+tSJa2+/9oVSUtKekDSkCrP0+8rHkkTJN0m6VVJz6T/X5KkvtatLCQdJun0bJqZ7WRmp/SVTkG5SNpK0qwKRE8GbjCzpyuQHdSIMmzIzP4NXIvbTWX064pH0teBXwBHA0sBSwL7ApsCg/tQtaBE5FRmq5IGViW7VefvQsYXgNN6K78okga0+px9SZvZ0Bm43VSHmfXLBRgOvAp8rJv9TgZ+mFn/PPAwMAeYCiyT2WbAAcCjwLN4hTZf2rYCcA3wXNp2BrBI5tiZwLbd6LIBcAvwAvAU8CtgcGb76sCVSbd/A98BdgTeBN4CXgHuTvteB+wDDEny1sjIGQm8DiyR1ncBZqT9bgbWylG+M4FvA/cDzwN/AObvrhyBHwC/TP8HpWv007S+APAfYERa3yjp8wJwN7BVRv51wJHAX1JeVuyBjp3mOx17EPA34A1gYAfytwP+DryYrtX1wD5p22HA6Zl9xyT7GZjW9wQeAF7G7ekLmX23Amal8z8N/Cnl8d10jV8BlsFfDA8GHsHt7o/Aok3n2xv4F/5V06z/6CR3YCZtZ+Au4CXgceCwzLbLgP2bZNwNfDT9X4X37PNB4JNN99lvgGnpmm/b1bnSMZ8D/pny9n0y91BXeU/bP5s59rt0cf/hz4pTgdnpmO8l+b26d2hTGwIGAq8By1f2/K5KcNUL/kB+u6OL3bTfyaSKB9gGrzTWS0b3SzI3bLoI1wKL4jftQxkjWTEZ0ZBknDcAP28ywu4qnvXxh+3AdNEfAA5M24bhldHXgfnT+oYdGWhKuy6j2xTgyMy2/YDL0v/1gGeADYEBwKSk65BudJ0J3AuMSuXxlzzlmLbdk/5vkgz+tsy2RsW5bLoRPphuju3S+shM/v6FV8YDgUEFdewy3+n/jHTsAh3IXhx/YH4cr0C/ittb3ofGzvjLioAt8Rt5vcxD423gJ6n8Fkhps5p0OBC4FVgu7XcicFbT+U4FFuokDzsD9zWlbQWsmcp8LfwF58Np2+eAv2T2XQ1/4A5J53gcfxgOTOX7LLB65j57EW9tmA+34a7OtRr+cNwMb504Bn+52jZH3hvHbpG2HZfKs7OK51TgIvyeGoPf13v39t6hjW0Ir0x3rez5XZXgqhfgM8DTTWmNt+fXgS0yN0TjYfR70tt3Wh+ajH1MWjdgx8z2LwFXd3L+DwN3ZdZndmb4XeThQOCC9H9iVl7TfnMZaEq7LmPA2wKPZrb9Bfhc+v8b4IimYx8EtuxGt5nAvpn1DwKPdFeOvPdVsxj+pvUd/M1sKP419H/pmIOA05rOeTkwKZO/w3uhY5f5Tsfu1YXszwG3ZtaV8pHrodGBvAuBr6T/W+Ffsdmvs63434fGA8AHMutLp3IemDnfuC7ysHs2D53s83PgZ+n/MPxrZfm0fiQwJf3/FHBj07EnAodm7rNTC5zrENIDMK0vmMqkUfF0lfdDgLMz2xbKHtt0zgH418hqmbQvANf19t5pZxvKlkMVS3/u43kOWDzbtmlmm5jZImlbR3lbBv/Ubuz/Stp32cw+j2f+/zMdg6QlJJ0t6QlJLwGn4280uZH0PkkXS3o6yfhRRsYo/OugJ1wDLCBpQ0nLA+sAF6RtywNfl/RCY0nnWiaH3A7Lgi7K0cxeB6bjb2hb4E0LN+Nvwlum9YZen2jSazP8xujo/EV1zJPvruQvk91ufjfm0QcASTtJulXSnHTuDzK3vcw2s/90I2Z54IKM/g8A7+B9mXny8DxemWT12lDStZJmS3oR7xNdHMDMXgYuASak3SfgTcoNXTZsKs/d8b7VDnXp6lz8b/m+httQnrw3H/tq07FZFse/qP6ZSfsn793zvb132tWGhuEv8ZXQnyueW/A3md0KHPMkfiEAkLQQ/mb+RGafUZn/o9MxAD/G3w7WMrOF8S+uop5zv8Hbe1dKMr6TkfE4/lndEdaVUDN7F2+7nQh8Grg4PUQaco80s0Uyy4JmdlYOfTsri+7K8Xq8WW1d4I60vgPex3VDRq/TmvRayMyOypvvbnTMk++u5D+VlZ28JLPnehV/S2+wVGbfIcB5ePPRkullaBpz20vzuTvS5XFgp6Y8zG9mT3RzXIO/AeOaOp7PxPvkRpnZcOCEJr3OAiZK2hj/er02o8v1TboMNbMvdqFLV+d6Cm/+AUDSArgN5cl787VZsOnYLM/ib/jLZ9JGk2y1hHun7Wwo2cuKeP9eJfTbisfMXsCbbn4t6eOShkqaT9I6+Kd3R5wJ7ClpnXRhf4T3P8zM7PNNSSMkjQK+ApyT0ofh7covSFoW+GYP1B6Gt/m+ImkVIHvTXgwsJenANPZimKQN07Z/A2O68ew6E28O2T39b/BbYN/0RidJC0naWdKwDqXMzX6SlpO0KF5JNsqiu3K8Hm9muN/M3uQ9R4jHzGx22ud04EOSdpA0QNL8yR30vw+jnHSmY2/yDf7mv7qkj6Yb8QDmfrufAWwhabSk4biTQ4PBeHv6bOBtSTsB23dzvn8DiyVZDU4Ajkxv4kgaKSn3i5aZzQL+gVf4DYYBc8zsP5I2wB+2WabhD+nDgXPSgxncPt8n6bOSBqXl/ZJW7UKFrs51Ln79N5E0GL+Xsw/VrvJ+LrCLpM3SsYfTybPMzN7BK5Yj0z21PPA13P4aVHHvQP+1oQ2AmWb2z2726zlVteG1asGN5Xa84202cBvugz44bT+Zub3a9sWbtObgN9NymW3Ge15tzwHHAgPSttWBO/HKZwbuBDArc+xMuncu2AL/4nkFuBG/YW7KbF8DuBpvInkaODilLwbclNL/mtKuI7UVZ45veJkNbkrfEf/yaHjT/QkY1o2uM3nPY+wF4BRgwZzl2OjzOTStC++k/U3TOTbEK6k56dpdAozuLH890LHTfOe8XjviHdH/45GUth+fZD+Me/n9t30e76T+d9p+GnA27/U1bkVTW3xKn5Ls7gXe80j6Gt6v8HIq7x+lfcfQRX9ARuZ+2XLHO7r/meRdnPLV3H/4+yT7/U3pK6drNDvpeQ2wTkf3WZ5zAXvgDiQNr7YngM3Ttk7znrZPyhzbnVfbCLyimY1/ARxC8lbtzb3TrjaUdDqgq3z1dlE6URDMhaSZ+A1yVV/r0hmt1lHSdfiD83etOF8ZpC/Su/AO5qf6Wp/OkDQUf1iuZGaP9bU+VVF3G5K0BF45rmvd9x/1mD4d9BQEQbWY2Ru4+3HtkPQh/AtfeF/GPfhXRNBHmNkzQFfNp6VQaR+PpFHJq+UBSfdJ+koH+0jS/0l6WNLfJK2X2TZJ0j/SMqlKXctCHkPtlQ6W7/S1bllSu3JHer4iaXRf6xfME+yGO4M8CawETLBogpknqLSpTdLSwNJm9tfUIXcnPoDs/sw+HwS+jLsKbgj8wsw2TJ3F04HxeDvkncD6ZvZ8ZQoHQRAElVPpF4+ZPWVmf03/X8Z9yJdt2m03fOCZmdmtwCKpwtoBuNLM5qTK5kq8oy4IgiDox7TMnVrSGHxcx21Nm5Zl7gFMs1JaZ+nNcidLmp6WSiOqBkEQBL2nJc4FyWPlPDwu2UvNmzs4xLpInzvB7CTgJIDFF1/cxo8ff2Iv1Q2CIJinuPPOO581s5GtOl/lFY+kQXilc4aZnd/BLrOYezTvcnhn4yzcVz2bfl1X5xozZgzTp0/vjbpBEATzHJKqGyzaAVV7tQkfjPaAmR3XyW5Tgc8l77aNgBfTeIPLge3lUQRG4KN2L69S3yAIgqB6qv7i2RSfN+MeSTNS2nfwWEmY2Ql4iI4P4iN3X8PDrmNmcyQdgY8aBo9UPKdifYMgCIKKqbTiMbOb6CaQZvLb36+TbVPwEBBBEARBm9Bvg4QGQRAE/ZOoeIIgCIKWEhVPEARB0FKi4gmCIAhaSlQ8QRAEQUtp+2kRxhx8Sa79Zh61c8WaBEEQBBBfPEEQBEGLiYonCIIgaClR8QRBEAQtJSqeIAiCoKVExRMEQRC0lKh4giAIgpYSFU8QBEHQUqLiCYIgCFpKVDxBEARBS4mKJwiCIGgpUfEEQRAELSUqniAIgqClVBokVNIUYBfgGTNbo4Pt3wR2z+iyKjDSzOZImgm8DLwDvG1m46vUNQiCIGgNVX/xnAzs2NlGMzvazNYxs3WAbwPXm9mczC5bp+1R6QRBELQJlVY8ZnYDMKfbHZ2JwFkVqhMEQRDUgFr08UhaEP8yOi+TbMAVku6UNLmLYydLmi5p+uzZs6tWNQiCIOgltah4gA8Bf2lqZtvUzNYDdgL2k7RFRwea2UlmNt7Mxo8cObIVugZBEAS9oC4VzwSamtnM7Mn0+wxwAbBBH+gVBEEQlEyfVzyShgNbAhdl0haSNKzxH9geuLdvNAyCIAjKpGp36rOArYDFJc0CDgUGAZjZCWm3jwBXmNmrmUOXBC6Q1NDxTDO7rEpdgyAIgtZQacVjZhNz7HMy7nadTXsUWLsarYIgCIK+pM+b2oIgCIJ5i6h4giAIgpYSFU8QBEHQUqLiCYIgCFpKVDxBEARBS4mKJwiCIGgpUfEEQRAELSUqniAIgqClRMUTBEEQtJSoeIIgCIKWEhVPEARB0FKi4gmCIAhaSlQ8QRAEQUuJiicIgiBoKVHxBEEQBC0lKp4gCIKgpUTFEwRBELSUqHiCIAiCllJpxSNpiqRnJN3byfatJL0oaUZaDsls21HSg5IelnRwlXoGQRAEraPqL56TgR272edGM1snLYcDSBoAHA/sBKwGTJS0WqWaBkEQBC2h0orHzG4A5vTg0A2Ah83sUTN7Ezgb2K1U5YIgCII+oQ59PBtLulvSpZJWT2nLAo9n9pmV0oIgCIJ+zsA+Pv9fgeXN7BVJHwQuBFYC1MG+1pEASZOByQCjR4+uSs8gCIKgJPr0i8fMXjKzV9L/acAgSYvjXzijMrsuBzzZiYyTzGy8mY0fOXJk5ToHQRAEvaNPKx5JS0lS+r9B0uc54A5gJUljJQ0GJgBT+07TIAiCoCwqbWqTdBawFbC4pFnAocAgADM7Afg48EVJbwOvAxPMzIC3Je0PXA4MAKaY2X1V6hoEQRC0hkorHjOb2M32XwG/6mTbNGBaFXoFQRAEfUeupjZJAyRdVbUyQRAEQfuTq+Ixs3eA1yQNr1ifIAiCoM0p0tT2H+AeSVcCrzYSzeyA0rUKgiAI2pYiFc8laZm3OSznR99hL1arRxAEQT8ld8VjZqdIWgAYbWYPVqhTEARB0MbkHscj6UPADOCytL6OpBhbEwRBEBSiyADSw/DgnS8AmNkMYGwFOgVBEARtTJGK520za+646DB+WhAEQRB0RhHngnslfRoYIGkl4ADg5mrUCoIgCNqVIl88XwZWB94AzgJeBA6sQqkgCIKgfSnyxbOUmX0X+G5VygRBEATtT5GK52RJy+KRo2/Ap6y+pxq1giAIgnalyDieLdIUBe/HI05fImmomS1alXJB33L8vtfk2m+/E7apWJMgCNqJ3BWPpM2AzdOyCHAxcGNFegVBEARtSpGmtuuB6cCPgWlm9mY1KgVBEATtTJGKZzFgU2AL4ABJ7wK3mNn3K9EsCIIgaEuK9PG8IOlRYBSwHLAJaTbRIAiCOrLmKWvm2u+eSeEn1UqK9PE8AjwI3AScAOwZzW1BEY791C659vv6ORdXrEn/Y6lrZ3S7z9Nbr9MCTYKg9xRpalvJzN4tIlzSFGAX4BkzW6OD7bsDB6XVV4AvmtndadtM4GXgHTxcz/gi5w6CIAjqSZHIBctIukDSM5L+Lek8Sct1c8zJwI5dbH8M2NLM1gKOAE5q2r61ma0TlU4QBEH7UOSL5w/AmcAn0vpnUtp2nR1gZjdIGtPF9myst1vxvqMg6Pdcfc0Kufb7wDaPVKxJENSPIhXPSDP7Q2b9ZEllxmrbG7g0s27AFZIMONHMmr+GgiBoR2KW37anSMXzrKTP4AFCASYCz5WhhKSt8Ypns0zypmb2pKQlgCsl/d3Mbujg2MnAZIDRo0eXoU4QBEFQIUX6ePYCPgk8nZaPp7ReIWkt4HfAbmb234rMzJ5Mv88AF+CT0P0PZnaSmY03s/EjR47srTpBEARBxRQZx/MvYNcyTy5pNHA+8FkzeyiTvhAwn5m9nP5vDxxe5rmDIAiCvqHIOJ5xwC+AjfD+l1uAr5rZo10ccxYeUHRxSbOAQ0mDTs3sBOAQPCLCryXBe27TSwIXpLSBwJlmdlnRzAVBEAT1o0gfz5nA8cBH0voEvL9nw84OMLOJXQk0s32AfTpIfxRYu4BuQRAEQT+hSB+PzOw0M3s7LafjXz5BEARBkJsiXzzXSjoYOBuvcD6Fz8mzKICZzalAvyAIgqDNKFLxfCr9fqEpfS+8IhpXikZBEARBW1PEq21sV9slbWdmV/ZepSAIgqAn5AnEW4cgvEX6eLrjJyXKCoIgCNqUMiselSgrCIIgaFPKrHjCwy0IgiDoljIrniAIgiDoljIrnpklygqCIAjalNwVj6QFJX1f0m/T+kqS/utCYWYfrULBIAiCoL0o8sXzB+ANYOO0Pgv4YekaBUEQBG1NkYpnBTP7KfAWgJm9TniyBUEQBAUpUvG8KWkBkveapBXwL6AgCIIgyE2RkDmHAZcBoySdAWwK7FGBTkEQBEEbUyRkzhWS7sTn4xHwFTN7tjLNgiAIgrakyERwU/H5d6aa2avVqRQEQRC0M0X6eI4FNgful/QnSR+XNH9FegVBEARtSpGmtuuB6yUNALYBPg9MARauSLcg6JJZB9/Y7T7LHbV5CzQJgqAIRZwLSF5tH8Ln5lkPOKUKpYIgCIL2pUgfzznAhrhn2/HAdWb2bjfHTAF2AZ4xszU62C7gF8AHgdeAPczsr2nbJOB7adcfmllUckEQ9CkPrLJqrv1W/fsDFWvSvynyxfMH4NNm9k6BY04GfgWc2sn2nYCV0rIh8BtgwzSd9qHAeHzc0J2SpprZ8wXOHQRBENSQbiseSduY2TXAgsBu/pHyHmZ2fmfHmtkNksZ0IX434FQzM+BWSYtIWhrYCrjSzOYkHa4EdsS96oIgCIJ+TJ4vni2Ba/C+nWYM6LTiycGywOOZ9VkprbP0/0HSZGAywOjRo3uhShDMG4w5+JJc+808aueKNQnmVbqteMzs0PT3cDN7LLtN0thenr+jWG/WRfr/JpqdBJwEMH78+JiMLgiCoOYUGcdzXgdp5/by/LOAUZn15YAnu0gPgiAI+jl5+nhWAVYHhkvKzrmzMNDbAaRTgf0lnY07F7xoZk9Juhz4kaQRab/tgW/38lxBEARBDcjTx7My7hK9CHP387yMDyLtFEln4Y4Ci0uahXuqDQIwsxOAabgr9cO4O/WeadscSUcAdyRRhzccDYIgCIL+TZ4+nouAiyRtbGa3FBFuZhO72W7Afp1sm4JHRgiCIAjaiCJ9PPtKWqSxImlEGiAaBEEQBLkpUvGsZWYvNFbSYM51y1cpCIIgaGeKVDzzZTr7SdEFCsV6C4IgCIIiFcexwM2SGi7UnwCOLF+lIAiCoJ0pMi3CqWkG0q3xAZ4fNbP7K9NsHmHNU9bMtd89k+6pWJMgCILWUKipzMzukzSbNH5H0mgz+1clmgVBEARtSe4+Hkm7SvoH8BhwPTATuLQivYIgCII2pYhzwRHARsBDZjYW+ADwl0q0CoIgCNqWIhXPW2b2HO7dNp+ZXQusU5FeQRAEQZtSpI/nBUlDgRuAMyQ9A7xdjVpBEARBu1Lki2c3PJ7aV/Hprx+h4zl6giAIgqBTirhTv5r+vguc0rxd0i1mtnFZigVBEATtSZEvnu7o7RQJQRAEwTxAmRVPzP4ZBEEQdEuZFU8QBEEQdEuZFY9KlBUEQRC0KWVGl/5sibKCHvDAKqvm2m/Vvz9QsSZBEASd023FI+llOu6/ET6J6ML4n3tL1i0IgqCtOX7fa3Ltt98J21SsSWvJM/X1sN6cQNKOwC+AAcDvzOyopu0/wyNeAywILGFmi6Rt7wCNsMz/MrNde6NLEARB0PcUbmqTtAQZ1+muolNLGgAcD2wHzALukDQ1O52CmX01s/+XmXtW09fNLMLyBEEQtBFVR6feAHjYzB41szeBs/EICJ0xETgrr05BEARB/6PIF08jOvVVZraupK3xiqIrlgUez6zPAjbsaEdJywNjgWyj5/ySpuMx4Y4ysws7OG4yMBlg9OjRObMSBEFZjDn4klz7zTxq54o1CfoLVUen7sjFurOBphOAc83snUzaaDMbD3wa+LmkFf5HmNlJZjbezMaPHDkyRzaCIAiCvqQn0alvJH906lnAqMz6csCTnew7Adgvm2BmT6bfRyVdh/f/PFJA5yAIgqBmFI1O/TpwIPmjU98BrCRprKTBeOUytXknSSsDI4BbMmkjJA1J/xcHNgXubz42CIIg6F8Uik4taSncYWAOcHlqeuvqmLcl7Q9cjrtTTzGz+yQdDkw3s0YlNBE428yyzXCrAidKehevII/KesMFQRAE/ZPcFY+kfYBD8M5/Ab+UdLiZTenqODObBkxrSjukaf2wDo67GVgzr35BEARB/6BIH883gXUbXzmSFgNuBrqseIIgCIIgS5E+nlnAy5n1l5nbVToIgiAIuiVPrLavpb9PALdJugh3id4NuL1C3YKgZRx22GGl7hcEQefkaWprxGp7hLldmS8qX50gCIKg3ckTJPQH2XVJwzzZXqlMqyAIgqBtKRKrbQ1JdwH3AvdJulPS6tWpFgRBELQjRZwLTgK+ZmbLm9nywNeB31ajVhAEQdCuFKl4Fkrx2QAws+uAhUrXKAiCIGhriozjeVTS94HT0vpn8CkSgiAIgiA3Rb549gJGAucDF6T/e1ahVBAEQdC+FInV9jxwQIW6BEEQBPMAeQaQ/pnO59DBzHYtVaMgCIKgrcnzxXNMB2mNiqijid6CIAiCoFPyVDyLAMuZ2fEAkm7H+3cMOKhC3YIgCII2JI9zwbeYe/K2wcB4YCtg3wp0CoIgCNqYPF88g80sG4X6pjQ1wnOSYhxPEARBUIg8Xzwjsitmtn9mdWS56gRBEATtTp6K5zZJn29OlPQFYlqEIAiCoCB5Kp6vAntKulbSsWm5DtgDOLC7gyXtKOlBSQ9LOriD7XtImi1pRlr2yWybJOkfaZmUP1tBEARBXckzLcIzwCaStgEa0agvMbNrujtW0gDgeGA7fAbTOyRNNbP7m3Y9p6kJD0mLAofijgwG3JmOfb678wZBEAT1pUjkgmuAbiubJjYAHjazRwEknY3PXNpc8XTEDsCVZjYnHXslsCNwVkEdgiAIghpRJFZbT1gWyHrEzUppzXxM0t8knStpVJFjJU2WNF3S9NmzZ5eldxAEQVARVVc8HUU2aA6/82dgjJmtBVwFnFLgWMzsJDMbb2bjR44MJ7sgCIK6U3XFMwsYlVlfDngyu4OZPWdmb6TV3wLr5z02CIIg6H9UXfHcAawkaaykwcAE5o6CgKSlM6u7Ag+k/5cD20saIWkEsH1KC4IgCPoxRSaCK4yZvS1pf7zCGABMMbP7JB0OTDezqcABknYF3gbm4G7amNkcSUfglRfA4Q1HgyAIgqD/UmnFA2Bm04BpTWmHZP5/G/h2J8dOAaZUqmAQBEHQUqpuaguCIAiCuYiKJwiCIGgpUfEEQRAELSUqniAIgqClRMUTBEEQtJSoeIIgCIKWEhVPEARB0FKi4gmCIAhaSlQ8QRAEQUuJiicIgiBoKVHxBEEQBC0lKp4gCIKgpUTFEwRBELSUqHiCIAiClhIVTxAEQdBSouIJgiAIWkpUPEEQBEFLiYonCIIgaCmVVzySdpT0oKSHJR3cwfavSbpf0t8kXS1p+cy2dyTNSMvUqnUNgiAIqmdglcIlDQCOB7YDZgF3SJpqZvdndrsLGG9mr0n6IvBT4FNp2+tmtk6VOgZBEAStpeovng2Ah83sUTN7Ezgb2C27g5lda2avpdVbgeUq1ikIgiDoQ6queJYFHs+sz0ppnbE3cGlmfX5J0yXdKunDVSgYBEEQtJZKm9oAdZBmHe4ofQYYD2yZSR5tZk9KGgdcI+keM3uk6bjJwGSA0aNHl6N1EARBUBlVf/HMAkZl1pcDnmzeSdK2wHeBXc3sjUa6mT2Zfh8FrgPWbT7WzE4ys/FmNn7kyJHlah8EQRCUTtUVzx3ASpLGShoMTADm8k6TtC5wIl7pPJNJHyFpSPq/OLApkHVKCIIgCPohlTa1mdnbkvYHLgcGAFPM7D5JhwPTzWwqcDQwFPiTJIB/mdmuwKrAiZLexSvIo5q84YIgCIJ+SNV9PJjZNGBaU9ohmf/bdnLczcCa1WoXBEEQtJqIXBAEQRC0lKh4giAIgpYSFU8QBEHQUqLiCYIgCFpKVDxBEARBS4mKJwiCIGgpUfEEQRAELSUqniAIgqClRMUTBEEQtJSoeIIgCIKWEhVPEARB0FKi4gmCIAhaSlQ8QRAEQUuJiicIgiBoKVHxBEEQBC0lKp4gCIKgpUTFEwRBELSUqHiCIAiClhIVTxAEQdBSKq94JO0o6UFJD0s6uIPtQySdk7bfJmlMZtu3U/qDknaoWtcgCIKgeiqteCQNAI4HdgJWAyZKWq1pt72B581sReBnwE/SsasBE4DVgR2BXyd5QRAEQT+m6i+eDYCHzexRM3sTOBvYrWmf3YBT0v9zgQ9IUko/28zeMLPHgIeTvCAIgqAfIzOrTrj0cWBHM9snrX8W2NDM9s/dGNBiAAAgAElEQVTsc2/aZ1ZafwTYEDgMuNXMTk/pvwcuNbNzm84xGZicVlcGHsyh2uLAs73IWn+SV2fdypZXZ93qLq/OupUtr866lS0vr6zlzWxkSefsloEVy1cHac01XWf75DkWMzsJOKmQUtJ0Mxtf5Jj+Kq/OupUtr8661V1enXUrW16ddStbXtm6lUXVTW2zgFGZ9eWAJzvbR9JAYDgwJ+exQRAEQT+j6ornDmAlSWMlDcadBaY27TMVmJT+fxy4xrz9byowIXm9jQVWAm6vWN8gCIKgYiptajOztyXtD1wODACmmNl9kg4HppvZVOD3wGmSHsa/dCakY++T9EfgfuBtYD8ze6ck1Qo1zfVzeXXWrWx5ddat7vLqrFvZ8uqsW9nyytatFCp1LgiCIAiCZiJyQRAEQdBSouKpMWk80zwjr0zqntcy5Ukq9T6ueV5ra3NQ77zWqeyiqa1kJM1nZu/2tR79jSrKrXGjWUlGXnd5QXHifu05vSm7qHhKQtJAM3u7BDnbA+PwQbRnmdkVKb1HF7kfyCul3JKszYGlgFWB68zshl7qVlt5knYD1gY2xzuQbwBm9/hBUGM7KVu3dGyZdlfbvNa17KKprQQkfRL4uaQ7JH1B0kaShvVAzoLAibgH4Aw8Pt35ktboodHVXV4p5ZbR7SRgHdwL8hRJl0pavhd5raU8SQsAvwbuAs4CvgAcDXygqF4Z3WppJ2XrlmSWbXe1zGuty87MYunFAiwAPANsBHwUfyCcAOwJDEv7KKeszwEXNaUdCswGvtUD3Worr8xyS/seAJzXlHYM8E9gj3aSB+wM/Lkp7Yv4w+WoNrOTsnUr2+7qnNfall2hE8fS4cXYCLi4Ke1jwJ+AXxaUtTRwKrBRU/rqeCDVxdtFXpnllo5dGf+iWKwp/QN4hPRB7SIPWAT4I/AZYHgmfTRwAbBSG9lJ2bqVbXd1zmttyy6a2nrPPcCbkg6VtDyAmZ2Hv4GuKGnjArKexqM9/EDSbnIGm9l9eMigrQvqVmd5ZZYbeIil/wCXpb4UksyrgTWBbdtFnpm9gA+83hn4uKQxkhYxs38Bg4CiZVdnOylbt7Ltrs55rW3ZhXNBCUgaB3wdbza5DXjIzJ6SdD5wmXkg066OXwoYAozE2+23An6MTwVxI7AssCuwtuW4YHWXl5Hbq3JLMkbgbdiY2bOSJgDHAbcAvwVWwed8WitnXmsrTz5J4nA8fNQ0YAXgu8BrePPJcPytdN3+bidV2VySXYbd1TavdS87iIqnx0h6H/7WsC7wO/yzdk9gKLAo7rixIjA+h+FdgT88nsebZH5pZmdJmgiMwd+U77TkBZVDt9rKK7Pckrw/AosBM/E26BNxD69v4g/mp/DpNS7LmdfaypN0C/B3PHL7tsDRZvYLSZvhAXUXAGaY2V9z6lZnOylbt7Ltrs55rXXZAdHH09MF+BtwLN5W+jT+IBkGjMXfOj8GrJhDzpfxeYbA31C2AC7F2+pH90CvussrpdySrG8Bl+BfFOsBn8L7Po4F5gcGF9SttvLwr6LLMusrA9fjDgXr1+C6liavbN0qsLva5rXuZddYoo+nB0j6FPCUmX3dzCYBm+IX4E68Y/dWMzvPzB7OIe4R/OGBmc02fwv5KN4Us1cP1KutvJLLDXyajOvN7B3zt/yLcK+dt4A9zWe9LUKd5T0AzJRHecfMHjSzLXHHhL1VfFr42tpJ2bpVYHe1zWvZ8iooO6cnNeC8vuBeIWen3wGZ9AnAecCIArJGJ6P4AzA0k74UcBX++VpEt9rKK7Pc0nFrAg8BPwUWzKSvD1wNvK9d5OGebGcCJ9PkugpcBmzTRnZStm5l212d81rrsmss8cXTMx7EHyhfwds2G6N5z8bbOzfv4ti5MPdE2hZvjrlZ0lfT2+sSeLv9o0UUq7m80sot6XYPsB0+ve+ZkialTU/ibdLPtIs8c0+2fYB3gX9K+jYwVtIH8JHpfyuoW23tpGzdKN/uapvXupddg3Au6CGS5ge+B3wEfyO4HX8rPRLY2Mxm55AxwDJzDEnaAvgRPrL9KbwD8JgCOtVaXpLR63JLcv4btkPSENxL5/P4DfYI3sl+RAG9aiuvg+uwDnAE3oH8H+A2M/t1Ad1qaydV2FySU5bd1TavdS+7uejJZ9K8vADzpd+F0u+qeDv7L4DfAJ8rIKtR8f+SzMBC4H0UHKBYd3lllluTbicB82fSxwOL9iKvtZSXjj0aWC6zvmQP5dTZTsrWrSq7q2Nea112c8nu6YHz+gIcDqyQWV+wwLFDG0aS1ndIvwN6qEut5ZVVbml/Na1/upf61FYe7ra6ICk6Aal9HhiYfhdqFzup0uaSnN7aXW3zWvey62iJpracSFoFeAUv9IckjTWzxxpNKpJGm7evdifn67g//Ca4e+KNwN1m9lzaPhF4x8z+mFOvussrpdySrP1wN+KtgDOAc8xsZmb75/EIzRf2d3mSDsIjEKwKnI83z11vZv9I23fFnQzOyKlbbe2kbN3SMWXaXW3zWvey6/QcUfF0j6Tv4P7wi+AeI68DU83s1rR9G2B5M/tDN3KWAO7GIxQvBXwCWAbvGD7VzOZIWgN41cwey6FX3eWVUm5p3yVxF86d8BH6++EDJs8zs9PSPuOBl8zsof4sT9LiwH34ANMl8YpsZeCNJG+GpJWA18zsiRy61dZOytYtySzT7mqb17qXXZeU8SnWzgs+6vxp/CGyJO4x8i28rXO3tM8oYIkcst6PD+bKfhZvBpyOj/Eo2nRSW3llllva94P8b4DCXfCwHWcACxTMa23l4V5qFwMLZ9LWAH4A/JmCfUQ1t5OydSvb7uqc11qXXZfn6q2Adl/wkBDnMnen7nLAJOBCYFQBWcJDpvwQWK1p2+nAlgV1q628MsstHTsID4y5N5mourhL5ynA6m0m7xfAacBWTelTgE+2kZ2UrVvZdlfnvNa67LpaYhxPN5jZHNyP/Qz5KF7MbJaZnYIHyvt4AVmGB3VcGJgoaZfUngoeuG9cQd1qK6/MckvHvoV7iO0ETJa0uqSlzSe0Goc3N7STvK/gTSY7SzpA0kZp0/J4M0gRWXW2k7J1K9vu6pzXWpddV0QfTxdk/eLlM+9thg/gu8zMLpN0FXC+dTOGQh4Gfyz+aXwS8Cw+l8o43HNpGPCWme2YU6+6yyul3NLx4/GxL+8DpgIv4mMKlkn/lwAWMbOtcupWW3mStsU7ijfDv3iewaMcjAO2xN9wnzezD+fUrbZ2UrZuSWaZdlfbvNa97HKdLyqejpG0M96puzHus/4EHthxHLAH/lB5zswmdCNnID769wTcNXYfvJ3+iCRjUfwhNdPMuh3J3g/klVJuGd1mAFfgHeufw/s+DsTboEcDg4GHLeM91h/lJVmPAQelYz+Kh7Q/A//y+Q/u4fa4mb2cU7da2knZuiWZZdtdLfNa97LLTVltdu20AAPxTrbt8fDfvwd+hkcXHpH2GU2OQVnAZ8lMU4w/iI4D/g1M7oFutZVXZrmlffcHLsisD0kyHwM+1IO81lYePqnbxZn1QXgU4LuA77aZnZStW9l2V+e81rrscp+3TGHtsuA1f/YhMDBd8HOBnxSUNRrvJB7P3N4nG+Jvs4u1i7wyyy0dvwb+Zje8KX0XfL73oiPFaysP9yg6D5jI3N5sq+FTKxQKO19zOylbt7Ltrs55rXXZ5V3CuaBj7gXelfQ9Scua2dvmYzG+AWyQ6ejtEknCA0Lej3cCbp3SB5vZbXjwyNzTz9ZdHiWVW0a3f+I3wgWS1mpsM7OL8WanD7SDPEkyH/B3NrADsIuk5SQNM7P7gTfxAYJFdKulnVRgc1C+3dUyr3UvuyJEH08nSFoXb9+ciY/FeNDMnpN0FnCdmZ1YUN5eeNv/LcDNeDvsZ/BpiovO81JbeWWXW5J5EN73cSEe7n1l4GvAOj3Ma23lpfb2ycDjwHN4OJQdaTM7qUBWFXZXy7xWoFvpZdftOaPi6RxJ6+OfnQAjcC+P8XjMrDdyHD+fmb0raTkzmyVpGD6ifX7gHTyq8BUF9Km1vIzcXpVbk27DzexFScPx8QpDcS+em83sggI61VJeeovFzEzSqniF8y7uujoAd5W93cxu6YFutbOTqmwuyS7T7mqX17qXXSGqasPrjwvurtqojDfA21Pnx0fwboMPpCo0EDDJOgoPM9FYn6+XetZKXlXlluSdyNwD2gpFFOhP8vBR4uN6o0+d7aRsWRXbXa3y2p/KLs8SXzydIA/oeJ2loIwFjhuEt8c3PnfvxqPEvpza8k3S6sD9lqPw6y6vA/k9Krd07ABgFXxq6Nfw9uylzeyJxpcBHi7muf4uTz6F9YfwuVLmB640H8BH5jpsQ5o6O4e82tpJ1TaXztEbu6ttXutedj0lKh5APtHRpLQ6HDjdzJ5M2xqftxOBP1ma3KsLWb/GRw0Pw11hhwBXmNnUtH0X3PPklJy61VZemeWWjvlV0m1lfGzME/iD9/a0fXfcU+zknHmtrTxJv8Hb5WcDz+POCFOB36aHyWb418+pOXWrs52UrVvZdlfnvNa67HrKwKoE9zOOw6O73op7hlwu6VzgiHQh1sDnQOmu0lkO2MnMxsoHeq2Hj0TfVtKC5tPFXoe3n3ZL3eVRUrkl3ZYHdk66LYh7d60LfCy92d2GD87Mm9faypO0NLCdmTWmEl42ydoNGCnpGDzS9R05dautnVRgc1Cu3dU2r3Uvu15hFbXh9ZcFGImHoF/U3mv7XAcPsjcFH0U+KF2M7mQNx6PCbp5JGwF8EjeQtRrnyKlbbeWVWW7p+NHAlcCambRl8UGUt5MmoiqQ19rKw50Gfk9mkCn+JrshPpZn0zayk7J1K9vu6pzXWpddb5Z5fhyP+XzhF+Dt7ZgzA/djfwNY3zwAZLft7Gb2IjANOFQe2HERM3vefBKm6/EAkli66v1ZXpnllo7/F3A58E1JH5G0kJk9YWZH45NbbVIwr7WVZ95ncyXwI0lHSxppZm+YfzXdgs+r0i52UrZuZdtdnfNa67LrDfN8xZO4FjhM0lmSlgEws6eBv5JcDLu7uJIWSPudCByLt98fI2lfSQsDu+J9Armou7xEr8sti5kdg48j2AT4iqSPpE3b0IOboY7yJI1Mbeln4y7TbwLnSPq+fHK3z+DNbLmos51UZHNQkt3VOa91L7veMk87F0gaC7wEvIDHPDoYL/wLgMuAo4FjzOz0buTsizeTbIqHULkP91ZaHO/IM+BeMzsop151l1dKuSVZewKr40EKf403W62IR3veClgI+JuZfTmnbrWVJ+nL6ZjV8JAkM4F78BfAg4A5wGNm9sOcutXWTsrWLcks0+5qm9e6l10ZzLMVj6Sv4oHxFsUfJrOBPwGvAocAs/AQ9L/oRs6iwAN4zKNlgA/jD6O/4p4hL0ha2MxeyqlX3eWVUm4Z3e4BPpbkfQF4GTgTuNTMTD697/OpCaDfypM0Ao8qvAbelr45PrfOa7hn0SOS5jez/3SnV0a3WtpJ2bolmWXbXS3zWveyKw2ruBOpjgs+kda/04UYjYck+S4+GLDRsTsgp6wNgUua0rbH426dDQwuqFtt5ZVZbmnfnclE2k1pE/Gb7LcUD9pZW3nACri79IBM2vrAkbhDwdA2spOydSvb7uqc11qXXVlLS09WlwX/ZP0TmbnrgTHAXukhsGQBWQNxj5AjgJUy6QPSOTYvqFtt5ZVZbunYBfDYZns2yRyKf1Ws2i7ycA+iE/DIwhs3bTsT+Hgb2UnZupVtd3XOa63LrqxlnnQuMLNn8cjC50tqeHjMNLMp+Gfop/LIkSRzf/dj8AFeEyTtIGmcuefSMHywYS7qLq+scsvo9jre17E98FlJK0tawsxewZujxreLPPM7/lt4e/3HUifx2mnzcHym0iK61dJOytYNKrG7Wua17mVXJvNsHw+ApD1wD6Xn8SaVmyRdjIcvKdTeKQ9b8Sncz34ZfHbABSznFMr9SV6Z5ZbkbQx8CR8I9xL+EB5lZrmnAugv8iSNArbDm942xb3h3jazHXqoW53tpGzd9qBcu6tzXmtddr1lnqx40puFySMKr4fPXT4BfwN4w8x27YXstfFpipcC/mEpHEUBneYaNVwXeU0ySym3hrzM+rb4ALZBwN/N7KGcchqhPprzWgt5nZxjGdxRYUXck+2FnspK8vrcTqqwuSa5pd+vPdWvP9yvTXIrKbueMk9WPM3IJ1J6U9IKwBOWw7Oog4fmfGZWJHRFs7z/ejRJEt5xXXiejqrkdXKOQuWWuQkGWCbwZW/LrvkclJjXKuRZL266OttdK2wuyS58vzZ0Kqvs+uP9mmT3qOxK1yMqnmJIGmIlzk8hj9t1KP5WMw443swuT9sGAO8WeVCVLa9MJA2y5HZchi5yV+YD8bwuCpxrZjf1VH6Z8iQthLvBzi6jvOtsd3W2uaRDaWU3L92vVTJPOBdIWljSePnESb3lQkk3SlonI18d/ebkONzoTsfdbX8n6TJJo83snR4YXWnySi438BH6V0sa29BFHvywp/wKdxd9LC3/J2mKpKV6WHZlyjsPOB/YUT7S/L9Imi/9FrGTOttdqTZcgd2VWXa1vV+hkrKrBusDV7pWL8ClwF9wF8LVyYy/IPmwk2MyJWAtfI7yY4CH8QfVyMz2RQrqtRge7G/1pvSfJH3X62N5pZRb2m888BBwPPBiKjtltg8vqNtS+GC44U1pP8Vv4tF9JQ+fs+cu4Dt4TLZfpvwP7aGd1Nbuyra5CuyutLKr+/1adtlVubT9F09qy1wUHyuxET76fLeUDu6iiOVr6x0A/MDMvoGPPF8E+IukA9P2n8s7oHNhPmHYOXh8rmz6QcCF+GCy3JQpr+RyA292+omZ7YeP3h8LPCPpS2n79yRtkFc/8/hSlwFfbkr7Ke65U8jjrGR5bwEHm9mP8I7cV/GQJAfIIxicLemjBeTV1u7KtuEK7K60sqvz/QqVlF119HXNV/WChwLfKP1fGNgfH8T3Q/wtdAawRwF5Q5j7TX1LPGrxv4F7eqDfsun4u4DNMumT8LAsfSKv7HLLyBmYWd8ejwLwEj6DYtG8rpaOvxbYMJO+L3BmX8trkv1+PNbbQ8CMHhxfW7srWVYVdlda2dX1fq2q7Kpa+lyBPsm0P2C+jk+0dWeO/edLxro5781lMajJmF8Dts15/gF4DKZPAmNT2gF4zKTzgB8A9wM79IW8ssotHSNgTWDlTNpgMp/7wCvAB3LKmw/YAtgik/YN4B94G/nn0/8dWy0vXYeP4NMarJfSBjbt8xo+CVxe3Wppd62yuV7YXWll11/v156WXSuWtvVqS53We+ADr2aZ2fn6XzfeV4GPmNkV3cg6Cp+aeBxwsZl9u2n7FsBHzezAjo7vQN5Pkrx3km5fTunCB429DrxiZle3Wl6Z5Zb2/TE+2npbPPrt4U3bPwR82Mz2zpnXxrVYAX8j/GZKH4I3k70KPGVmF7ZaXtN1eMzMviafKfK1tH0t4BNm9v2CutXO7iqw4bLtrrSyq/P9mo4rtexaQTtXPD/GL+6DeGytrwKL23vzi48GJpjZT7uRsxLwRzNbV9Ig/I3kMeA5/A3lDPwNxsxDrHSn14p4lNl10/rVwON4uPLngKOtgG99BfJKKbe070rAH/GBa4sB/4c3Nb2Ev31dnzy+zMxeziuv6VrMxPtg/m5mZ+XNZ9nyOrkO/wKexefc+TnuVGGWLzJ2be2ubJtLMkq3uzLKru73a5JRWtm1irZ0LpA0Dp+d72PmHXXrAKcCh8gnQFoBv9jH5BC3Bz79LPin+1bAxfjI34/jUyG/lufmT3wUfxg33rpWAX6Dt/OujodRKUJp8kouN/DOzfPM327WxZsX7sHjnP1Q0ipm9lKeSiexBx1fi6eBSZJyx06rQF5H1+EE4BrckWItM3szT6XTjW51sLtSbbgCu9uD8squtvdrklF22bWGvmznq2rBXQm/nP5vCPwdfyNYBXen/ERBeQ03xJ2BXTPph+HeS0X1a8jbikx7P963cGxfyaug3BbP6PYZYLfMtmOBSb3Ia9nXotfyKryutbO7kmWVanf96LrWsuxasfS5ApVlLHXq4t5Em2bSJwMn55ShTtIbhjMN+GwBnTr0n8/Iu7jIw7hseWWVWzfyG7pdBuxe4Liyr0Vp8iq4rrW1uypszkq0u5pf11qXXSuX3owaryWSx2OyFGjPzO5I6Y24TLvgbb7dYunqZeWm9Hfk09MuYGan5dXNMv7zHcg7AFjIzE7pC3lllls3Or8jaS98QqszChxX9rUoTV4F17W2dld2Xsu2u5pf11qXXStpuz6eZsPLpL8r6ZvAsDwXV5mwJslDxCStJGlT+SDAN3A3xcJk5K0haVe5B9VMPE5YXhn/DfUhj2jbK3lllVvz8fJ4U0gaJZ/PZil8kNu38urWJLvX16JJv4G9kdd0Hcq4rrW1u7JtDkq3u0rKro73K5Rbdi3HavDZVdbCe1564r3Pz/HAXun/JsAaOWX9z7TGwNXANul/kal2NwGW6SD9KnKON+kqv72VV2a5dXGOq0kD5PA3u7zHrYLfQKVciy7Oc1VZ8npzXetud2XZXBV2V1bZ1f1+raLsWr20W1PbEElvmn9mNua0+DEeHwwzu7k7AXJ3xy8Db0m61czOTekb4ZFir0my3ulCTFbe+sAv8M/ebPqqSc5leeRkjhsL7I0Puhwi6QYzu1bSmi6umLxEr8st6TYGdyIYhHuz/S2lb4NPdnZTkvdqTnnr46P9d5b0ijXuNGk9enYtlsM96+bDXabvMbMZ8lA9heSlvO6Dj4q/GzjHzN6StHmSVfS61tbuKrI5KM/uSiu7fnK/Qkll11e0xTgeud/+1/EZIp8GTjCzZyS9H/iqmX26gKxpwG2A4YPPjgQWwD/THzZvjx1Q4AFwLnC1mf1G0irASsBmeKffA2mfIvKuwd/iHsHHx2wD3AgcDrxqPtdGLnlllluSdykwHR+M+SYeJPMtYDl8EqtXCub1AuAqMzs+PehH4XHe7jCz6WmfIvKuw4MyvpV0XBq4AndvfdnMXipQdlfgdvI2Pjr8TDO7KG1bwMxeV9OkXt3Iq63dlWlzSV7Zdlda2dX5fk3ySi27vqJd+nh+CTyBR2VdkvS2Yt7Zthd4W353QiR9BFjQzH5gPsJ+I9ztdx+8T2JckpvXSObHBxD+IyX9Hje8N4CzJH2yoLyVfXc70szOBk4G/oaHVd/L0sRReeVRUrml/T6JN6F9Pxn/2sCJ+ENgV5KtFcjrMDxqwJUp6ff4dVgRODR9WRSRt7bvboeZ2ZF42b2KVz5bmNlLeeXJoy008voD4E/AZyUtmHYZIp9wK2+lU1u7q8DmoFy7K63s+sH9CiWWXV/S7yseSTvifQBHmHtJnQfsLmnJtMvC6Q00z0NgAB5QD0n7AI+bTw37K2AgsHER3cxHIF8DfETSpsCtZvZVMzsEf+NZvYg8/KZYMHUcgnfSL4sHApwoqUj06TLLDXzE9I+S7APxJo4PJd22BLbOqxuA+aDSu4HJkrbDg4hOwiuy6ykYuRcfGT5EUiMS8Ot4M9ml+GC71QrIGoRHFUbSYNwNdin8jZak47gC8upsd6XZHFRid6WVXZ3vV6ik7PqMfl/x4E0d58oZlNpzX8Y/j8HffnI9VMzsXDO7Kq2eB3wupT+Ev6ms19mxXXA5MAJvzlk1kz4SD56ZG/Mw6gcCq0qaiYfG+JWZ3Q9cgs89kpfSyi3pNiXTXn0m/pWDmd2Il8G6BXRrcCqwPN523QjpPgevNNYuIsjM/omP3t5U0gw8EONvzexaPAR9kbyeD0xJ/9/MPLBWlPRhPCDq3wvIq63dlWxzUL7dlV12db1foeSy61OsBh4OvV1o8mbBQ7V8A3/4XZ7j+CF4qIpN8TbdkU3bh+N9F+vn1GcI/qa1Gf45PB/+yf4oHnb/i3jomHULyNsEj7T7PmAZvI9iWEa/vwPvb2W5NWQkndbGgxQu2LR9KHBngbIblK7Buml9UTxE/L/wtvKJwAMF5b0Pv8mXwB8e7weWT9sXBu7LKy8jt9E/Ol/6XR+vfP4KrF3gutbS7qqyuRLtrrSy6y/3a1llV4el9m2BnSG9NwALeFtyP/aUdjVwNv4gnJBD3B/wT/YVgJvxCcpuwZt0DO8kn2Fmd+ZULyvvdrwTcJqZjZM0EfdwmWRmd/VA3k3AHHzOmH+m7XvgEXjv6E5QyeUG/uY/CH/wXg/cJPcs+rs8QOP3gbsKlN0UvIlkvKQbgBvwjuO1kk6LAJMLyhuEu5pegV+P682/gMBv2pvzyJP0Bfxr61xLEadTuvB+geWB283s7py61dnuSrM5qMTuyiy72t6vUEnZ9Tn91qtN0ndxA/uVpY5h+QAywx9c1wNPmNknupGzIvBnM1s1rW+H9x8sAlxkZjdKWgaYYzmixnYgb3tgAzxu2Z/M7C8F89mZvBHAhUm/Afibd56ox6WUWzpuVdxterUk4zP4W+MLwG/M7DFJ6+KRnvNEUG6W91n8zfFF4PhMZZGLTuRtmuT9Ouk3AB8H8UY3sjbFm2Gm4OHsp5nZlU37jAGeyVZKXcirrd2VbXNJRpl2V1rZ1f1+TTJKK7va0NefXD1Z8M/i5/GorhfQQcwv/IIskEPWsviF2yqTNgKfve8+YLWCunUl736a5lcvQb81U1qHMaqqKre075q4a+iambQl8emi7wdGFcxrZ/KOxpsmxpYkr6HfuAJldwBwHN5n8A3cY+9wUrMaPj4oV7nV3e7KtLmK7K60sqvz/VpF2dVl6XMFeqS0D8g6Nj1Edsc7s08lzSKJzxo5soC8z+Kfx5/G57FopP+INBK4oH61lFd2uaVjDgCOwr90hmbSjwM+1IO8dibv2L6Uh7f7L5L+LwbsiFc8x6VyfLxd7KQCWVXYXS3z2h/Krg5Lf25qG2ZmL6d+hHG4P7oWfDIAAA8rSURBVPt43PtkRTMbU0DWgriRrIZ7iTyOezr9BTjIcs5m2R/klVVujXZnSaPwztdh+JzuT+Ht2XcB3zKzqe0gLyszsz4KL7spwOfM7M95ZaXj62wnZetW2v1atn51vg5JXqllVwf6XcWj9yKvNqcviHu33IB/jl5cUO5AvP1/Dfzzdkm80/nQHupZK3lVlVuSMRifYGsd3INnFD7D6NeKyuoP8ppkfxef76XouKLG8bWyk7JlVWx3tcpr2fKqLLs+p68/ucpcgP3wcBdFjxucfscBG6T/Q+lk/oz+Lq+35UamfTqj20h83MMg3AV6cDvIa5LVmDdlJWDZ9H8Fkmt2D8p9SMl2Upq8snUr0+4A9Va/MmVVIa/ssqvb0m8HkOq9cPtrSVonJU/F21e7O3ZXeXiMRtylN9Omi/AYSJjZK9bB20Z/lNcku8fllo6bDxiUcels6HYdPsbgLTObk0nvt/I6kNUIbXI+PiYIM3sEH2OURzdl1+09T7qe2klp8srWrQP5g9Jvj+3OzCzdD2ZmbySde5LX0mRVIS/JzE7d0auyqyP9ZhyPPKTJQ2b2dmprbzwETifFKDKzx3PI2QZvbz1R0pcaciTtBEy3FHyygF51l7crcIWZ/UdzByM8De+4zFVuSdb7ga/g7sT/hw8Mbeh2u6Vo1AV0q628bmRNt8yYDkuvoN3IWxXYXj4f0W148Mp7JW1Fz65rafLK1i3JnKs/zN5zHS50vyZZ6wB7SBoKPCDpEfN+ko2L6lemrCrkJZnzmc+pM8DM3ulN2dWVftHHI2kHkmeSZULqy8dW7G1mexWQdQkeW2sTPKTGcfhbyaLAa+ZRhTtsW+1v8lIldhXu+vulxoMgPTw/aWZ75tEpI286cBIwGu8n+SX+8jISjyJdNK+1lVeBbjNwl9hF8RHtb+NfTjcCT5vZq30lrwLdVgW2x+PXNVdkk3pgdw/inl2D8IGZq+Bjsabhkcr/UyCvpcmqSN46+ADToXiEjkfM7EJJmwCfL1p2daW/fPEcBPwk3QCrAmPxB8BzuDthpx1xWSR9CW9n/Y2kR/A4Sg+Zh7N/rrFfASOptTw8fPp+eCX2DUmNSux2vOkpV7ml/bbGB+SdlNYfwkN/vAA8iY8ef71AXmsrrwLdtgKeMrMT0/p1wPfw0D3/MY9cXMROSpNXtm6Js/CK7CVgMj7avlGR7Z/Ok9fuxuAP38a1GIGPz9oUfxG9Ma9+ZcqqQl7iHOauyLaXBxOdhntn5i67OlPrPh45w/BQExel5BPx0BCrAx/CYyF1e3FTm+nCwDfT/lfgPvHHSto9nWtAEd1qLu+/lRjerLY1sEtqg37OUiSBAgb8eJJ7tKQ/4PPrfBgPvLka8NG8uvUDeVXoNkjSJ9I1XBQfFHg28J30AOsreaXqlq3IzOzHwBH4A/T9eGyyV6GQ3T0NDJR0oqQRZva8md2AB9ncRWmqgj6QVbq8bEVmZsfj9+3ZeAW+maUoDP290oGaVzzpIfkyHh/rZ5K+iLskfg6fJfA14IN5ZeFfTfcqzVdhZqcD38YfyktZgXkx6iyv7EosyXgYH/E/AP/6uiWl34sHUiwyDUCt5VWg2yP4Q2RzfFT7V/CQPTem9aKRtkuTV7ZulFyRpYftJ/BnwE/k8+9g3l93NbByX8iqQh7lV4z1xWrgWtfdgs8meBze93FqJv3bwM9yHD8U/zLaoYNtCwG/Ax4if8iOWstLxzX67wZm0j6RZC1dQM5QvN1620zaYviX5zdwz5rc4WzqLK9C3bZJNrwuPq5jTNo+BriXnO7YZcorW7cm2ZNwh4yb8MCsm6T0XwK75ZQxX9P6Kngk5t/iUcAPB2YBK7RSVhXymmQNB36O9y9+JJN+OPD9ovLqutTWuUDuJbIsPjL3Evnc5TsBe+ITLF2FX+wdzOyxbmRNw0esr4tHij0ZuMzMns3sM95yeqDUWV4qt2Xwh+PlTdsWwr8Ut8BjjOUJ3NnQbT387f9U/AVgC/xLbBHgGjM7pfuc1ltehbqtj/cNnYZHJX45fQ0chY8NyjWQtUx5Feg2FJ/ifBn8C3EVfIrxV8xsZvrSuRjY2XIEe5V0QNLv2sZ9IGk43re7Gu7wcbPliBhdpqyK5M3VZyOfcntLPDpBI8L1XsCW5l+o/Z++rvm6qPmn4VPP/hWf/viTuGEvi889sQ855j3B3Rpvz6x/CndXPhUY3QO96i4vW25X4RGjF2/aZ3wvdfsd3vRXVl77XF4LdJuQ5J1Wkp30WF7ZujXZ3Yz0fyLvzT8zAA/0elxOWR/GnWCOxqc32IYCA4irklWFvCTzALw1IhvXbTg+zfuuuINQrrmA+stSyz4eSRvjF2FvM1sPN+jd8c/NAWY21cx+Z/nmPXkHeEXSWgBmdg7/3975h9xZlnH8821kLd8xCxo4a5uKEjTzbb+KRdgvLaQkohAcyiqyBKMStVrBCM2MSNuaK5SiiGLLFqOVOQgWiSRW9s7yj1Dc+iPNCemc/RB1V39c92HHw95357zv/TznevZeH3h4n/O853yf677u+zn3ee7nvq/LK/kJYI+kM0Y0L6zecfx2Bx4q5hZJy3rvs+HXFkxn2zPA3ZJeN6xtHdBr2rYdRe+fwC/662MMelVtG2h3k/iPpkuB7ZKWma9Fuc6GD1G0HLge2IPnmbkEuEpl8aSkjfLFvW1rVdeTZ6z9Fp464UpJ75J0ipkdNrNHynfdbTZ8LqBOEHKoTdI6/Fb/s1YW/clX794MvAefnTX0AipJ1+Pj2DuBv1sZYpK0Bc+rsnemz3dFbwa/3YSvq7jYzP5RybatwK8qlnXsei3bdpcdSxXeul5lrZna3YV4LLuhojuUz07gUSaeknQaHgl8LT6dfSWwyszOaVurIb3P4FOn78ev0QngAJ6scErSRvy5dudnsr2Ecd9yTbfhvyo242PFC/uOb+E4D+Fn0Dm1bLfii+I24OP1y/EKftuIdkXXq+K3jpS1ml5k26KX9QTtbivwvhG1Fh3n2FJ8DdBh4K3j0GpIbwJ4ddk/DR/2/CaeuXcnPpV/pLrowhZyAWl5CH4bcCP+q2mXpMfwHOiXAD8dQmMT/rBvOZ6A6Tr8dvaj+Jjz6fgviaEyDEbXK5pz9lsTtkXWi2xb9LL26c7U7j6Af4EOo9Ozb1n5/OetZHM1s8fkWUXvNbP72tRqQq9f2syeKjpPAzvkKd8/hN9NvXdEvW4w7p5voPffxLFfYTfgkRXW488qvg/8GvjKEDqTePbAC/BZOzvw8esryv9fCZxC31TjjutV8VtHylpNL7Jt0cvacLtbhcclexK4pu89ZwOL29RqQm/Ad7vwaeavGvj/TfiQ51B6XdvGbsA0lTvXi+xTwA8Hjq3DQ3bc0NOAodPPhtWr/YUSuawN+C6sbR0oaxvtbg0e2ulr+HOVE+rU1mpIr3pH1rVt7AacoHJne5EtwWfWrB84vgL/JbZ0RNvC6jXwhRK2rA34LqxtHShrm+3uexXLOpJWQ3pVO7IubpGmU/8cj/ayvnfAzO7HV4ufwbH8J3YiITM7hFfiLknbyoI4zOwg/gtj1NAYkfWq+a0B20LrRbattl5t22i33a0exb6aWk3ocXzf/RGPSr0Ef5Z0cjPunm+g1/8YviJ4GyXbYzk+BbxziM+fCbybY2E/luIJkx4Fvo4/5Bx63DS6Xi2/daGsNfUi2xa9rJHbXeR6aMJ3Xd7Gvo5HHgrnLDwq68EyO+S7+Jz4O/Hb2UVmNmMwUEmn4w3hKB48dKeV0CaS1uDjqg/jaQYeH8Ku6HpV/NaRslbTi2xb9LKWz4Vsd5HroU+zmu86zzh7PXz65u/w29i78CRRvf+twcPiXMAQQS3x+Gabyv7FwN+AN87BtrB6Nf0WvawN+C6sbR0oa9h2F7kemvBd17fxnrxS5eJjyvuA1/cd+zbwxbJ/Jr4qeNgHndH1al6w0ctaTS+ybdHLGrndRa6HJnx3MmzjO3H9xrISmOh7vRr4cdnfjaeNHcW+kHoNXRQhy9qEXmTbIpc1ersLXg/Vfdf1bazPeCStBA6a2bPl9Wp8LvsGSbvx+Fh3DKklK4UpcaIW4jktHgHWmdlFI9oWVq+m32rbFl0vsm219RqwLWy7i1wPRaOq77rOuEPmPDRQuQ8DCyTdiK/kHboiejpl/3ng+RLaohe6fCSC61XzWwO2hdaLbFttvdq2EbjdRa6HQlXfdZ2xdjwNVO4gtwP/NbPfVtAKo9eC32ZtW0f1IttWW2/WWh1sd2HqoSXfdYaxT6ceRJ5973Iz+1IlvZdk9ztZ9Wr7rWiGLGsTepFtq61XWSt0uwteD9V91xXCdTxQv7HMF9JvyTjIdjd75qvvQnY8SZIkyclLpFhtSZIkyTwgO54kSZKkVbLjSZIkSVolO55k3iPpRUlTkh6StF/SNZJmvDYkrZB02SzOdV4515Skf0k6UPZ/I2mppJ/NviRJ0g1yckEy75H0rJlNlP0lwE+Ae81s8wyfeQdwrZm9fw7n/QHwSzPLziaZV+QdT5L0YZ7060rgajkrJN0j6YGy9ZJ33Qy8vdytfE7SAknfkPQHSQ9K+uSo5y7n+mvZ3yhpt6Q95a7o6nIn9mdJ90l6TXnf2ZLulvSnYucbavkiSZoiO54kGcDMHsWvjSXAIeBCM1sFXApsLW/7AnCPmU2a2a3Ax4HDZrYWWAt8Qp5/ZS6sBC7DU0p/FfiPmb0Z+D1wRXnP7cCnzWw1cC2wfY7nTJLGGXestiSJisrflwPbJE0CLwLnTvP+i4A3Sfpweb0YOAc4MAcb9pnZEeCIpMPAnnL8L+VcE8B64E6pZy6vmMP5kqQVsuNJkgEknYV3MoeAzcATwPn4XdD/pvsYfuext6Ipz/XtH+17fRS/dl8GPG1mkxXPmSSNk0NtSdKHpNfi6Yi3lcCOi4HHS1iTy4EF5a1HgEV9H90LXFUiDyPpXEmnNmmrmT0DHJD0kXJOSTq/yXMmSQ3yjidJYKGkKXxY7QXgR8At5X/bgV3ly30f8O9y/EHgBUn78eySW4AVwAPyca8ngQ+2YPsG4DuSvlzs3wHsb+G8STJrcjp1kiRJ0io51JYkSZK0Sg61JUlDSDoPH7br5zkze8s47EmSKORQW5IkSdIqOdSWJEmStEp2PEmSJEmrZMeTJEmStEp2PEmSJEmrZMeTJEmStMr/AQXhDHoljcHOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data['Global_active_power'].resample('Q').mean().plot(kind='bar')\n", "plt.xticks(rotation=60)\n", "plt.ylabel('Global_active_power')\n", "plt.title('Global_active_power per quarter (averaged over quarter)')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is very important to note from above two plots that resampling over larger time inteval, will diminish the periodicity of system as we expect. This is important for machine learning feature engineering." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "mean of 'Voltage' resampled over month" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFtCAYAAABBQL4zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXe4VNX1v98FKKAIiiJKURQxiiWo2FGxa+xRY+wlRpOvxhLjL8YUNYmJiSUmsSTW2BB7jb0gsQv2XhAVRcWOXXD9/lh7vIdxZpgz3Lnncvm8zzPPzJx1djlrr33WPrsdc3eEEEKItqZT0RkQQggxZyIHJIQQohDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOqB1hZnuZ2d1F50PUh5l1NbOnzWyRovPSWpjZ0WZ2YdH56AiY2ZVmtlnR+WjPyAG1ImZ2s5n9vsLxbczsTTPrkjM+N7OlWi+HcyZmNtLMJjUh6v2Ase7+ZhPiFgViZhPNbKNZjOY44NjWyE9HRQ6odfkPsLuZWdnx3YGL3H1a22epWPI63faYfo049gcumNX4xYwUaTOtZC9mZp3c/UGgp5kNb4WsdUjkgFqXq4HewDqlA2a2ALAlcH7638vMzjezKWb2ipn9xsy+VQ5mNjb9fMzMPjazncxsATO7PoV9P/0ekAmzhJmNNbOpZnabmZ2a7U4xszXM7F4z+8DMHjOzkdUuJLUAf5W6mN43s3PNrFtGvqWZPZriutfMViwL+0szexz4pFKlNrONzexZM/vQzE4xs7vMbN8kO7os34PS02CX9H9vM3smXecEM9s/c+5IM5uU0n8TuBi4EeiX9PixmfUzs05mdoSZvWRm75rZpWbWuyy9H5nZq8AdFfK/GDAYeCBz7HtJX1PN7HUz+0U6/q2u1ezTrZn9x8xOM7MbU/7uMbNFzOzkpPtnzWylMv0ebmaPm9knZna2mfVN4Utlv0A95Z5s5q4U7lZgoWo2kc7/sZm9aGbvmdm1ZtYvHf+XmZ1Qdu41Zvbz9LufmV2RbPdlMzsoc97RZna5mV1oZh8Be1VId8GU3kdm9qCZ/aGk03L7SMfGZOxpsJndkcr5HTO7yMzmL9Nn1l4vBhYDrkvl8f/q0OMYMzvWzO4BPgWWTKIxwBa1dDpH4+76tOIHOBM4K/N/f+DRzP/zgWuA+YBBwPPAj5JsL+DuzLkOLJX5vyCwPTBPCn8ZcHVGfh9wAjA3MAL4CLgwyfoD7wLfIxoeG6f/fapcx0TgSWAg4VTvAf6YZCsDbwOrA52BPdP5XTNhH01hu1eIe6GUtx2AuYBDgWnAvkl+dCnf6f+gpIsu6f8WxM3fgPWICr9yko1Mcf0F6Ap0T8cmleXhEOB+YEA679/AxWXpnQ/MW+UatgCeKjs2GVgn/V4gk6cZyrW8bIkn53eAVYBuhMN7Gdgj6fePwJ1lZXM/0DeV69vAw8BK6VruAI6qp9wJmzkphVsXmJrVfVmeN0j5XDmd/0+iC5IU9jXAMtf/GdAvpTse+B1hm0sCE4BNM+X9FbBtOreSvkcDl6byWB54vaTTcvtIx8bQYk9LpevuCvQBxgInl+lzBntNxzbKnDMzPY4BXgWWA7oAc6XjPweuLPq+1F4/hWego32IG/+HGUO+Bzg0/e4MfAEMzZy/PzAm/d6LGg6oQlrDgPfT78WIG+88GfmFtDigXwIXlIW/GdizStwTgZ9k/n8PeCn9Ph34Q9n5zwHrZcLuUyPfewD3Z/4bMIk6HVCF+K4GDk6/RwJfAt0y8pF82wE9A2yY+b8ocRPskklvyRrXsGv2GtKxV1N59iw7PkO5lpct4YDOzMh+BjyT+b8C8EFZ2eya+X8FcHpZ+KtnVu4Zm5k3IxtFdQd0NvDXzP8eSWeDUhm+CqybZD8G7ki/VwdeLYvrV8C5mfIeW0PXnVM6y2SO/Yk6HVCF+LYFHinT5z5l50xkRgdUs/6k9H5fIa1v9KDPtz/qgmtl3P1uYAqwjZktCaxKVGqIlv/cwCuZIK8QrauZYmbzmNm/LbruPiJacvObWWeipfmeu3+aCfJa5vfiwI6p++ADM/uAcJaL1kgyG/6VlEYprsPK4hqYkZeHLadfVu5RU2udPwNmtrmZ3Z+6gT4gnGO262iKu38+k2gWB67K5P8ZYDrxVFHPNbxPPIVm2T7l5ZXUrbVmPdeTeCvz+7MK/3s0eH6tcu9HNGA+yYTN2mY5/bJyd/+YeAron8pwNLBzEu8CXJTJQ7+yPBxJ/bruQzQMyu2xLsxsYTMbnbpFPyIaZuVdjTOzv3rqT6U45gM+qDevcxqFDhB3YM4nWvnfAW5x99LN4R2iJbc48HQ6thjRnVAPh6U4V3f3N81sGPAI0fqcDPQ2s3kyTmhgJuxrRAvuxzmuIxt+MeCNTFzHunutGT61tlmfnI3bzKwsrU+IbsYSi2TO7Uq0+PcArnH3r8zsakIH1dKulJfXiFbvPeUCMxtUxzU8DixpZl08TS5x94eIhsdcwIFEl9HA8uuxtp22XbXczWxxYAEzmzfjhBaj+nW/QdhuKfy8RLdwyX4vBm4xs+OIp57tMnl42d2H1MhnLV1PIZ7UBgLPZvJZopT3eYiuXcjYDPDnFP+K7v6umW0LnDKT9Mv/11N/Kl3DssBjNcLM0egJqDmcD2xEPH6fVzro7tOJm9KxZjZfugH8nGiRVeItWgYzIVpTnwEfWAyYH5WJ+xVgHHC0mc2dWt9bZcJeCGxlZpuaWWcz62YxYD+A6hxgZgNSWkcCl6TjZwI/MbPVLZjXzLYws/Ingmr8F1jOzL6fBo4PYsYbxqPAuma2mJn1IrprSsxN9OVPAaaZ2ebAJjNJ7y1gwRRXiX8R5bA4gJn1MbNt6sw/7j4JeAFYLYWf28x2NbNe7v4VcSOcnk5/LF3vMIuJHEfXm04rULXcMzZzTMr/CGa0mXJGAXun6+hKdIM94O4TAdz9EaJczgJudvdSy/9B4KM00N895WN5M1u1ngtI9eZKwrbnMbOhRBdiST6FcIK7pbj3IcYIS8wHfEzUm/7A4XUkW173Gqk/EGOUN9aR3hyJHFATSBXyXmLA9Noy8c+IFtsE4G6iUp9TJaqjgfPSI/8PgJOJQfV3iEHom8rO3xVYk+gW+SPhML5IeXoN2IZwJFOIFt3h1LaBUcAtKa8TUpy4+zjCuZ5CdEW9SIWZS9Vw93eAHYl1Eu8CQ4ixspL81pT3x4nB6+szsqmEw7o0pb0L39ZxeXrPEq3zCUmX/YC/p3C3mNlUQp+r13sNiX8TU+xL7A5MTN08PwF2S+k/D/weuI1wWm222LiOct+FuO73iAbN+TXiuh34LfEEOpm4yf+w7LSLicbXqEy46YRjG0ZMrniHcFK9qJ8DiW7FN4kxs3PL5D9O1/UuMRHg3ozsGGLixIdE4+fKOtL7M/CbZC+/aKT+JAf7icd0bFGB0owV0QExs0uAZ939qJme/O2wE4lB3NtaPWOV0xtDDH6f1RbptQbpKeARYjLD5KLzMydhZnsR9jmi6LxUw8yuAM529xuKzkt7RWNAHYjU4nqPaGVuQrTYjis0Ux0Yd/8CGFp0PkT7xN23LzoP7R05oI7FIkT3woLEtOafpn55IYRod6gLTgghRCFoEoIQQohCkAMSQghRCLP1GNBCCy3kgwYNKjobQggxWzF+/Ph33L1P0fmYrR3QoEGDGDduXNHZEEKI2Qozq3sro2bStC44MxtoZndabJv/lJkdnI4fnfZkejR9vpcJ8yuLrd6fM7NNm5U3IYQQxdPMJ6BpwGHu/nDaomW8xftGAP7m7uXvDhlKrKpejtj08DYzWzqtohZCCNHBaNoTkLtPdveH0++pxG7DtXZ93gYY7e5fuPvLxPYuqzUrf0IIIYqlTWbBpd2FV6Ll7ZEHWrzN8RxreXNjf2bcznwSFRyWme1nZuPMbNyUKVOamGshhBDNpOkOyMx6EJsXHuLuHxEvMxtMbEw4GTixdGqF4N9aJevuZ7j7cHcf3qdP4ZM4hBBCNEhTHVB6L8oVwEXufiWAu7/l7tPd/WtiW/9SN9skZnwnzABa3j8jhBCig9HMWXBGvML3GXc/KXM8+wbB7YAn0+9rgR+aWVczW4LYol/bmAshRAelmbPg1ibej/KEmT2ajh0J7Jze5OnEe9f3B3D3p8zsUuJNodOAAzQDTgghOi5Nc0DufjeVx3WqvhsjveK51mueheg4WFn10MbAM0c661DM1jshCNHuafSGWSucbsKVqVdn0le7oWM4IBlX69IMfdaKU+XXerS1w2uGo2xrB9uebLPRvMymdahjOKBazGEFWjeNXl9b66y142xPN9q2pj3lsz3lpVFml3tLO76XdXwH1AyacfNuRl7aseHNMh3BIQgxhyMH1F6YUx2JEGKORS+kE0IIUQh6Ampt9LQihBB1oScgIYQQhSAHJIQQohDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOSAghRCHIAQkhhCgEOSAhhBCFIAckhBCiEOSAhBBCFIIckBBCiEKQAxJCCFEIckBCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUghyQEEKIQpADEkIIUQhyQEIIIQpBDkgIIUQhyAEJIYQoBDkgIYQQhSAHJIQQohCa5oDMbKCZ3Wlmz5jZU2Z2cDre28xuNbMX0vcC6biZ2T/M7EUze9zMVm5W3oQQQhRPM5+ApgGHufuywBrAAWY2FDgCuN3dhwC3p/8AmwND0mc/4PQm5k0IIUTBNM0Buftkd384/Z4KPAP0B7YBzkunnQdsm35vA5zvwf3A/Ga2aLPyJ4QQoljaZAzIzAYBKwEPAH3dfTKEkwIWTqf1B17LBJuUjpXHtZ+ZjTOzcVOmTGlmtoUQQjSRpjsgM+sBXAEc4u4f1Tq1wjH/1gH3M9x9uLsP79OnT2tlUwghRBvTVAdkZnMRzucid78yHX6r1LWWvt9OxycBAzPBBwBvNDN/QgghiqOZs+AMOBt4xt1PyoiuBfZMv/cErskc3yPNhlsD+LDUVSeEEKLj0aWJca8N7A48YWaPpmNHAscBl5rZj4BXgR2T7Abge8CLwKfA3k3MmxBCiIJpmgNy97upPK4DsGGF8x04oFn5EUII0b7QTghCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUghyQEEKIQpADEkIIUQhyQEIIIQpBDkgIIUQhyAEJIYQoBDkgIYQQhSAHJIQQohDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOSAghRCHIAQkhhCgEOSAhhBCFIAckhBCiEOSAhBBCFIIckBBCiEKQAxJCCFEIckBCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUghyQEEKIQpADEkIIUQhyQEIIIQqhaQ7IzM4xs7fN7MnMsaPN7HUzezR9vpeR/crMXjSz58xs02blSwghRPugmU9A/wE2q3D8b+4+LH1uADCzocAPgeVSmNPMrHMT8yaEEKJgmuaA3H0s8F6dp28DjHb3L9z9ZeBFYLVm5U0IIUTxFDEGdKCZPZ666BZIx/oDr2XOmZSOCSGE6KC0tQM6HRgMDAMmAyem41bhXK8UgZntZ2bjzGzclClTmpNLIYQQTadNHZC7v+Xu0939a+BMWrrZJgEDM6cOAN6oEscZ7j7c3Yf36dOnuRkWQgjRNGbqgMxsHjP7rZmdmf4PMbMtG0nMzBbN/N0OKM2Quxb4oZl1NbMlgCHAg42kIYQQYvagSx3nnAuMB9ZM/ycBlwHX1wpkZhcDI4GFzGwScBQw0syGEd1rE4H9Adz9KTO7FHgamAYc4O7T816MEEKI2Yd6HNBgd9/JzHYGcPfPzKzSmM0MuPvOFQ6fXeP8Y4Fj68iPEEKIDkA9Y0Bfmll30qQAMxsMfNHUXAkhhOjw1PMEdBRwEzDQzC4C1gb2amamhBBCdHxm6oDc/VYzexhYg5gufbC7v9P0nAkhhOjQzNQBmdnK6efk9L2YmfUCXnH3aU3LmRBCiA5NPV1wpwErA48TT0DLp98LmtlP3P2WJuZPCCFEB6WeSQgTgZXS4s9VgJWI9TsbAX9tYt6EEEJ0YOpxQMu4+1OlP+7+NOGQJjQvW0IIITo69XTBPWdmpwOj0/+dgOfNrCvwVdNyJoQQokNTzxPQXsTrEQ4BDgUmpGNfAes3K2NCCCE6NvVMw/6M2LX6xArij1s9R0IIIeYI6pmGPQT4MzAU6FY67u5LNjFfQgghOjj1dMGdS7zHZxrR5XY+cEEzMyWEEKLjU48D6u7utwPm7q+4+9HABs3NlhBCiI5OPbPgPjezTsALZnYg8DqwcHOzJYQQoqNTzxPQIcA8wEHAKsBuwB7NzJQQQoiOTz0OaJC7f+zuk9x9b3ffHlis2RkTQgjRsanHAf2qzmNCCCFE3VQdAzKzzYHvAf3N7B8ZUU9iRpwQQgjRMLUmIbwBjAe2Tt8lphI7IgghhBANU9UBuftjwGNmdqHe+yOEEKK1qdUF9wTg6fe35O6+YvOyJYQQoqNTqwtuyzbLhRBCiDmOWl1wr5R+m1lfYNX090F3f7vZGRNCCNGxmek0bDP7AfAgsCPwA+ABM9uh2RkTQgjRsalnK55fA6uWnnrMrA9wG3B5MzMmhBCiY1PPQtROZV1u79YZTgghhKhKPU9AN5nZzcDF6f9OwA3Ny5IQQog5gVrTsE8BRrn74Wb2fWAEYMAZ7n5VW2VQCCFEx6TWE9ALwIlmtihwCXC+uz/aNtkSQgjR0ak6luPuf3f3NYH1gPeAc83sGTP7nZkt3WY5FEII0SGZ6WSC9BbUv7j7SsAuwHbAM03PmRBCiA5NPeuA5jKzrczsIuBG4Hlg+6bnTAghRIem1iSEjYGdgS2Ihaijgf3c/ZM2ypsQQogOTK1JCEcCo4BfuPt7bZQfIYQQcwi1JiGs7+5nNup8zOwcM3vbzJ7MHOttZrea2Qvpe4F03MzsH2b2opk9bmYrN5KmEEKI2Ydm7mjwH2CzsmNHALe7+xDg9vQfYHNgSPrsB5zexHwJIYRoBzTNAbn7WGL6dpZtgPPS7/OAbTPHz/fgfmD+tP5ICCFEB6Wt93Tr6+6TAdL3wul4f+C1zHmT0rFvYWb7mdk4Mxs3ZcqUpmZWCCFE82gvm4p++5Wr6W2s3zrofoa7D3f34X369GlytoQQQjSLtnZAb5W61tJ3aZftScDAzHkDgDfaOG9CCCHakLZ2QNcCe6bfewLXZI7vkWbDrQF8WOqqE0II0TGp53UMDWFmFwMjgYXMbBJwFHAccKmZ/Qh4lXjLKsTrHb4HvAh8CuzdrHwJIYRoHzTNAbn7zlVEG1Y414EDmpUXIYQQ7Y/2MglBCCHEHIYckBBCiEKQAxJCCFEIckBCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUghyQEEKIQpADEkIIUQhyQEIIIQpBDkgIIUQhyAEJIYQoBDkgIYQQhSAHJIQQohDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOSAghRCHIAQkhhCgEOSAhhBCFIAckhBCiEOSAhBBCFIIckBBCiEKQAxJCCFEIckBCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUQpciEjWzicBUYDowzd2Hm1lv4BJgEDAR+IG7v19E/oQQQjSfIp+A1nf3Ye4+PP0/Arjd3YcAt6f/QgghOijtqQtuG+C89Ps8YNsC8yKEEKLJFOWAHLjFzMab2X7pWF93nwyQvhcuKG9CCCHagELGgIC13f0NM1sYuNXMnq03YHJY+wEstthizcqfEEKIJlPIE5C7v5G+3wauAlYD3jKzRQHS99tVwp7h7sPdfXifPn3aKstCCCFamTZ3QGY2r5nNV/oNbAI8CVwL7JlO2xO4pq3zJoQQou0ooguuL3CVmZXSH+XuN5nZQ8ClZvYj4FVgxwLyJoQQoo1ocwfk7hOA71Y4/i6wYVvnRwghRDG0p2nYQggh5iDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOSAghRCHIAQkhhCgEOSAhhBCFIAckhBCiEOSAhBBCFIIckBBCiEKQAxJCCFEIckBCCCEKQQ5ICCFEIcgBCSGEKAQ5ICGEEIUgBySEEKIQ5ICEEEIUghyQEEKIQpADEkIIUQhyQEIIIQpBDkgIIUQhyAEJIYQoBDkgIYQQhSAHJIQQohDkgIQQQhSCHJAQQohCkAMSQghRCHJAQgghCkEOSAghRCHIAQkhhCgEOSAhhBCFIAckhBCiEOSAhBBCFEK7c0BmtpmZPWdmL5rZEUXnRwghRHNoVw7IzDoDpwKbA0OBnc1saLG5EkII0QzalQMCVgNedPcJ7v4lMBrYpuA8CSGEaAJdis5AGf2B1zL/JwGrZ08ws/2A/dLfj83suYx4IczeqRL37C5bCHgHs8phJJNMsvpk7aM+Fy1bvMo5bYu7t5sPsCNwVub/7sA/c4Qf11Fl7SUfkkkmWceTFfVpb11wk4CBmf8DgDcKyosQQogm0t4c0EPAEDNbwszmBn4IXFtwnoQQQjSBdjUG5O7TzOxA4GagM3COuz+VI4ozOrCsveRDMskk63iyQrDUNyiEEEK0Ke2tC04IIcQcghzQLGJmVXU4E1nFOaJ1yBqNs63z0pBtNeMaZiG9di+bBfuTbeZE+swvmxnqgqsDM+vk7l+3cZoG4B2wgJqlz2borNE4a4Wb3ct2ds9/LVTX2xY5oBqYWRd3n1bh+DbAd4F1iIG9scAUd/96JrJNgCWJxbUXu/stKb5OwNrAIsCywBh3H5uRbdVgnI2G26jBOKte+0z02eg1rFNDZ8OA3kn+tLs/XGd6tcqhll5qhWs0zmqybYEV85aBbLMh25Q+G9Bn3RS9EKm9foAfAKcQU8P3B9YA5gO6A6+nwtkHuA04H9h4JrJ5gJeBA4CDgReBK4Hlk+wZ4FjgyHTejcRq5UbjnJW8NBJnVdlM9Dkr11BNZ/MAjwDnAH8G7gPOBfrNQjnMSrhG46wkW6WRMqhDl7JN1fVW0Weu+2zRN/r2+EkKfjsZ4veB04B/AXsDOwDXkZ4e0/k/BR4FLgOuK4urJLseuKZMdhQwBbgGuKJMdgLwCnBSjfRqxXlOg3kZ3WCcta79hBr63C9dv+VM79YaOrscuBiwVMn6AycSrbS/1kivVjmc0WC4C4ErysLVE2e1cviQeKLLWwayzfy2qbqeX5/HVbuvVvoUfrNvj59kjNeXHds+Kf7fwKXAbkCvjHyxVNg3VJHdAFwFrFEW73Lp+HnAgmWyDYEzU7p54xwFXN1AuEuBSxqIs9a1jwHuqKLPs4nWU970bk0VqJLOLqdsCydiws1eREu3Wnq1yuFc4IIGwl2UyjBvnNXKYQ1gIvCTnGUg28xvm6rr+a/9KmBI+T212qfh2QsdnCeAL83sKDNbHMDdryC8/GLAvcAWwA5mNsjM5nf3V1PYJ6vIvgamAseY2TYWzO2x0HZ+oA9wUxrXIKV5O/AdomWRN86+DeZlQeDjBuKsde2fAT2r6LMf0eLKm940Yoynks76A6uZ2XgzWz0d/5pwPCsC7zZQDoMbLL/FgYUbiLNaOdwPvE9U/jxlINvMb5uq6/mvfS5gTepEkxCqYGZLAocRj8YPAJ8CXxKtoguBu4Bfp+NfEDvwDidaD4Mzsk8Jo1uVeMfRSGJc4kVgPHED3ozod92JeAy/j9iCaLl0bNkccT5F3PQ2zRnuMWLvvc2AZXLEWevapwC9aOneyOrzfaI76VyiFfZinel9lK5hFcKZZHV2fsr7bkm2N/Az4NlUbisChwBDcpTD5SnOXYkbRL3hLk7n75opx3rirFYOk4mG0TIpzC51loFsM79tqq7Pmj5X8nodS72PSnPCB1ga2CAZY69UOH8hXpL3DjFg9w6xaerBKcwI4Hng7mRI5bLHgYeJvt97gZ2TbOcke554pB0FrEeMW/w/4C1iIP3WnHGWKtGNOcO9QNzgbsgZZ61rP5QYczmpgj4np/PfyZnefcDTRPdAuc6eJl7ncSPwp3T+QikP7xAV7Pac5fAa4cBuyRnuJWACcFPOOKuVw/PAOOBBYsyi3jKQbea3TdX1/PrcmZiQsHKee66egDKY2eOEESxEtABOJAYk/w/YlhgsfIzYp+4MwnCvBVZz981SHN/JyG4BVnD3zc2sD9Gi+BXwOTET5rvA1ul7CNH3/BpR0N93901zxnkvsGEDeXkEWLOBOGtd+4+Ip5tK+vx55v9rQLc607sLWKqKzj4ippLuQlTuQUTL7ynAga3cfZOc5TAJ2NTdN8sZ7l2iUm6VM85q5dAX+MjdR+YsA9lmfttUXW9An+4+ngaQA0qY2U7APhlDGEy0kFYgZsYsAxzk8abWUpgfE68PnwL8rIJsG+BJdz8ic7w70S20BnC/u/81He8GLAHsSRj9fFXSqxXnd4CvGgj3XeBVd/9VzjhrXfuOxNq6Svo8D+jRQHo7Abe6+18q6GwJ4E53/1eS9SG6CrYhWrKdq6RXqxx6AFMbCNcXeKaBOKuVwwmEc10rZxnINvPbpup6/mtfKR2fTl7yPC515A/Rpzk6fXfOHC+9EuIy4D/AfOl4yXnfRnTrVJKNIVrg5xI33FKcixBdSa8Qhj9PRrYK0dK/roE4xxBdPnnD/Y94ZM8bZ61rvxu4o4o+byC6kvKmdzfRaqyks3FJdgjQNSPbiph+Pa6BcribaDHmDXc/0YWTN85q5bA08CZhE3nKQLaZ3zZV1/Nf+03ABo3cdzULroXniMfhg4luntLq6NHAdGKg/GvgFTP7FbCEmW1IzJTZq4qsH9Fy6Azca2aHmllnYlZUb+LmuBAwysz2TPl4gzCG/RqIc1GieyFvuIWB7zUQZ61rX5gYeK2kzy+A4xtIb+EaOpuP6IP+DvBXM9siye4kZh1t0UA5NBpuAaK7JW+c1cqhG9HF+GHOMpBt5rdN1fX8174k4dRyoy64DBaPxr8BtiOehh4kbiZ/JPpNp5jZMOAPtMwKud/dT0vha8nWJQbGpxEmIfrMAAAgAElEQVSt2XHufoKZdSVuVj8mjOAl4FF3/0Ojcc5iuEbjzMo+JwYyz6lDn7nTq6CzCcAj7v4Hi77pjYktQpZLskfd/XezWA71hsvmpaE4K8gmA+NTeo3an2wzv21Kn3XqsyTLTSOPTR3tA3RK3/Om72WJ2TB/B04H9iBa7AMyYfpmfn9LRotz/yeZRWdEd8pc6fcZQLeMbDjQexbjbDRcrjhncu316LPRa6ils6OIll1PYgeEkcDgWSyHRsM1GmdFWd4ykG3Okm1KnzntrNFP4Tf/9vQBfk/LDWtRYqFWr5LBpO8uSbZQFVmPknGnY5um784l48jIdsn8XpS4aeaNs9FwPbL5yRFn1WtP39n0svrswYz93/WmZ2VxfqOz9L9U4boDe2eO17q+WuXQaLhG46wm699IGcxEJttUXW+KPhv9FH7TL/JDzHYZACyd/i+Rvn9FrDN5iVigtS9pewngl8Qg8xsVZIcRA3lvE63xDUgtDWLDv5uIwchfAoMy+fglMTD9es44f0lsoJg3L4cRg5Fv5Yyz6rUn+U+J2TTl+jycWND3Ss70DiAGaF+toLN9kuwR4CBSy7bs+ibnLIfD0vW9mTPcAcQA7cSccVYshxTH1UknV9VbBjORyTYr26bqemP63BrYdVbvwXPsGJCZHQmsS6wWvo/YkuNaWlYD702sWH6XGNj+grjJXAJsAsxLPL6XZHcQC8y2IwbE1yMGAx8nFnXdTlSALsTK6+7EJpU3pvR2AOYm1q/UE+f1wD3AlkQLZqk6w91AzLz5YQq3dp1x1rr2K4iBzc2SbGxGnxOI9RQHEmMyc9eZ3p3Ezgb7E11QO2V0ditROU4GPiEGR52oKA+l9H6W8rBmneVwcwq3JzHov1qd4W4hBrQPI/ab27rOOKuVw0vE4PiSxFqi7xJOaWZlINvMb5uq6w3o090fNbMhwKfu/jqzwBzpgMxsQcIQliDGC1YAVia2oHiMuIkcDrzr7m+b2fLE2oERxIDdju7+UYqrJFuf2L5jY09KNbMRxKaRg4EP3H3zTB62BH5LtIznAn6YM86+KS875Qw3kDCkTXPGWevaVyfWAgyqoM8JxDtH9gO+SPqsJ73Nks42raCz6cDb7r5tRrYb4YDuJgaTN89ZDu8RDmSznOE+BT5z9+/ljLNaOfyCWDcyzN3fzFEGss38tqm6nl+fKwN7uvt7tAJzqgPqTQwKHuLuk9KxAcSOtNsRLaG5gbPdfUwm3DnEtMl3q8gGEjNsRrn70xnZRcST1pXE9ufvpOOdiPn4penweeK8kGhVf9ZAuJ5EKyhvnNWu/UKiBbVDFX1+THRP5UnvXOImcVEFnV0IdAVOdfc7MmF6E2stuhLdH3nLoTsxFT9PuP8QrcQbcsZZqxyeTfn/c077k23mt03V9fzXfpO7X0orMEc6IAAz+xPxSHqau1+SOf534mbZhZgq+RrwoLvfb2alR9NeVWT/JVpaHxIG8aK7P2tmdxIt82Vp2Z/pPXefbGb/I7YA6ddAnOcTg4R5w11JbAeSN85a1/4FcSOupM8pKUze9B5M+ayks8eJlu1o4CxiZftnZnYfsYnkyg2Uw4VEN2HecLcSG53mjbNWObxNjH3lKQPZZn7bnIjqet5rv8Tdz6AVmOMckJl19rRlhJn9gHjc/Jp4PJ5ObA54EXFTW4Xoi9+WNIuL2MH47Yys1Oc/VzrvHWI35iUJI5yfaJFvQRjBbwgD7EG08Bch3shYb5wrEkbRk9gAsN5wyxML4noQ/b71xlnr2tcjZqm97+7blunzNcLxHEtsvXNqneltSbRIIbYUyerMkr4WILoeehGbSXYnBnUHE63dTXOUQ3dixllfYvFeveHmImYJ9SH6yuuNs1o5rJPkfYldFPapswxkm/ltU3V9FvVJKzFHOSCL1fEjiYHp04mbVjfipnUi0VXyFTGw/QhhnE8Rmwn+g5i2uEWZ7DGilfElsYbgOmKR1sfEgPjDxI14B2Lg7xDCKO8jDH8acTOtN87nUt4hbnz1hnuCGHj9nDC8euOsdu2PEzNqticq3yll+jyBaMF/QVTMetO7n9g2511i8DSrs+uJWTmvEH351xMObnVitthNRMXfNkc5jE3/P6XlDZj1hLs1yd4mHGW9cVYqhz+l6z6OcKJrEk9/9difbDO/baqu59fn50mXr7n7VFoLL2D6cxEf4jH7zaT0vYk3cf6NmF21E2EwixEtirmIgclHiNb79Zl4srLLyLyalmi5n0RMeRwFXJWRdU1pvgwc02Cc/2ww3NkNxlnr2kuDqpX0uT9h9CV91pvedTV0dh5wWTreg7hRn0VMP/1Ng+VwUoPh/tVgnNXK4X3g8QbKQLaZ3zZV1/Pr89dNuy8386bfnj5EqzKr4C7A7sTLwf5OTJPcGeiZOWcoMc32piqy24k1BMOZcaHX6snIzyXzytok2zIZyZUNxHkZcZPOG+4qok83b5y1rv0eMq8yLtPnacSrpvOmdxdRmSvp7Crgb2XHOxOz62qlV6sczifGaPKGG03aij5nnNXKYWPiafHHOctAtpnfNlXX81/7f4GlmnFfnpM2I30S+NrMfmNm/d19mrtfQEx7XZFYy7EpsKWZDTCz+YhH0k+IFzhVkk0lHoF/TTxaY2ZzE90n3YjZKVeZ2YqZfPyX6FN9poE4exJdB3nDzUs8/ueNs+K1e8ymeQ+Yv4o+h6b85E3vI6LLYgadufv1xFjLSDMbY2ZD0/HpxA1/uZTXvOWwWIPl1y+FzRtnxXJw91uTPneptwzqkMk2VddbS59fAmvRBLo0I9L2iLtPNbOjiEWLPzCzB4Dn3H2imb1JjDlcRrSo10r/exD7JO1EtFLLZUOImVi7ASenGVj3EjeoRZPsUGCMmV1NtJK+Qww0H9NAnAOIXXXzhutPtMbyxlnx2s2sB1Gx9kpxlutzMtFHPS5nekvW0FlvYBixcv0yMxtLyztc+hJrjXbPWQ4LE900ectvoZSXvHFWLAczK01qOJmYfFCv/ck289um6np+fS5NPPW3OnPUJAQAM1uFuFFBzKb6mnhc3ZVYNPk1MYhY2tTyQeADYlZXVtaLmNb4mrtPSi2JA4jW0NfEoPID7v6hmfUidtntQcsrqJ/NGef0kqzBvDydM85a196TmJZ5Xw19buPuExq4hqcr6OxdolvlWnefbmZLEHt5LUq02v4HjG2wHB5qMNwdDcZZrRzeoOU1AHWXQRWZbLO2baquN6BPmkEz+vXa04eYOlhytKsRXSTdiBbzBsQ2KcsRUzKXrBJHLdlxwOKZ/9k9yf7NjLvHdm+FOBsN12icM8hy6LPR9CrqLKV7CdAnI+vdCuXQaLhG46womwX7k23mt03pM+e1N+szRz0BWbw+dgwxjXcroq+0G/Ga5/fSOXMn2bLEXlG3ZGRzEY+mKxCzQx4h3qg41eKlTssQ8/0fJ1q0i7r765k4uxNTP2+tM85SuEWJ6Z31hivJ+hMzcR6rM85a127u7ma2AXCXx5NISZ8TU3pfJlXXm15JZ6ukeCZldFZa89Ob6D6ZZmbLuvszmeurlF6tciiF60aMN9UbriSbNx2vN86K5UBMTS/Z31LAuXWWgWwzv22qrreCPmkSHdYBWbxcbs/0txdwobu/kWSnE32i8xFz95ch5s2fScyoWp54ZH2IKKCS7FTCCBYkNhbsShTctWZ2CnEjXYzoX36dKLwHU3qrEfPwH8wR5+lEX+8XOcOdRuwE0DNnnLWuvSvR7dWHGLTM6vM0ogIMJmbTzF1nev9M17BUBZ39nZi5sxQxM+5u4qVYr6b0RhDjJjfkKIfTUpzdc5bfKSlcv5xxViwHYnFqP1q6Rr6uswxkm/ltU3U9pz6T8xlBPA2dTxPpyJMQTiJa0PcTg8Y3m9nlhPI3JhYrrkTsJrsSsZhwiSRbgbgpLJSRDSZuHEOJR/3lk2wjM1uMWLi1AmEA6ybZ9ma2UIpzlRRnzzrj7JfCDUvhFqgz3IAkWyHJlq0zzlrX3oeY5bMI0Y+c1ec5Kb2t0jU+U2d6Q5LOhiadrZ/RWf8U30pJX9sSs3OGmtl1Kb1V0vUNrrMcFk7hhqVwS9cZbtEkG5Zka9cZZ7Vy2BrY0t0XsRjg7ZtkMysD2WZ+21Rdb0CfZnYCMVPwIZpNW/b3tdWHMMqnaHnjoKWCuJCYnXIRYZSlFyt1JVqxVxDz5Lei5emwJLuGGOxeJyNbgNha4770WSEj608s5HoQuLSBOMcQ6wfyhvsf8SqDvHHWuvbriEHb3kmXWX1eQKwfGJnRZz3p3ZB0U0lnTyZ9DsjIhhCttvHEaw7ylsN4YveCvOEeJZ6+8sZZrRx2It5T9LOMbdZTBrLN/Lapup5fn1cAa5dss+n36qKdRROd0B+JbcOzxxYhtqE4jtiu4nhmHNT+BXFjrCa7HbiNeAHa/BnZMcSc//OJHXazbyY8kXiEbiTOUQ2Gu7LBOGtd+wM19PnPBtMbW0NnV6VyWhXompGdQiwmbKQczmkw3KgG46xWDpcTTihvGcg289um6nr+az+5re7THXkMaENiq5b7gcPc/Q0z60MYzfrA0cQeSmsSrYibidXtJxItmazsKqJFdSIxtXI94rF1HFHIdyVZL2JX2veJrqi7iT7/44nWcr1x3kwY1onEY3C94a5MYU8kpi7XG2etax9N9HPfSOzNltVnd2K9wQZEhaw3vVKcJxLdFN/ozN2vMrNHiK1TViC6iR8iBpMfJqa1HkcM+NdbDjelcMenY3WFy+TleKJlWW+c1crhWaJbaAzRMl+gzjKQbea3TdX1xvV5osfC3abT4RyQxRqRj4g57XMDRxBrAV5O/1clDPZ6ogXQiZhC2ZOY5fRvYlZXSXZ6Ot6b2DTyKWJGzULEauMexAD0r4kCXYoYC9iTWJTYmWgV1Rvn79LxudJ59Yb7LVEp5iWe/uqNs9a1/5KYafZiiiOrz5eI/uP1iMf28+tM79QUT++U56zOdk7X4ESXxh1EN8GqRDfDoknXx+Qohz3SOV2JDRnrDbcb4SDmJha/1htntXLYlXgz57zEzKlz6iwD2WZ+21Rdb0yf7wEvu/sfaSM6lAMys0OJVei9CQOZQnj0Lun/KcSsj1eJKZSfEjM/biYGDucnbnQl2XWEAZdaF9sShfcw0fd/D2Hw3YgNOKcSraT7iF1nRxI3qTXrjPMWosWyRjqWJy8PEAOLPXPEWevaLyQGzDdLskr6PINwFtNyXENpL6oeZTp7IIX/Yzr3cGJR3O+Ip59niN2Nu9HyeuWZlcP9KdyWxBbzW+UI9wSwb7rWfXPEWakcniU2TF2OWKVfeiPnzMpAttm4baqu59Cnu79kZt3c/XPakA7jgMxsfsIQliVubkNpmSp5G2E827v7V+n8VYj3ta9CGOrW3vKeoJJsTeBLd98sk84mxHYpiwJT3X3LjGxn4sb5PGEA2+aMswdxQ88brjcwzWd8LXQ9cda69hUIQ16mgj7HEYafDVdPeiOBD8vyWdLZR8SrjLOv2T6QaO1dT6yzqHR9tcrhVWDuBsK9nfSZN85q5XAQMctocKmC11kGss38tqm6nl+fyxBjaB/TxnQkB7QQ8ci5v7csqBpEjE9sQczL70S8FfG+TLhRRCvjrQqyi4lpsvcA57v7C+l4Z2K2S3ei1XVNJs0exJNBJ2IhWp44RxOPzlNzhrsk5eXhnHHWuvYriIq3ZQV9bkm8H+SlnOldQsxQvKCCzv6TTvuHu4/NhOlPPBV1I7pb8pTDmURXzNM5w52druG6nHHWKofnU/6PzlEGss38tqm6nl+fo4Ar3f1y2pgO44AA0vz14cQg2nWZ4/8ibpadiUJ4EbjP3R8zs/8Ss0zmzsqIfvrriQHFnsRA34PE3mMvE4/IzxF9v/cTg9Lvu/vbFq+tHU0sHKsrTo99025K8h4N5OWelF5dcda69oysK9Gl8Y0+zcwIR/8u0fLLew0TiVbcNzojBlhvJXZCWIx4N8koomJ/QcyWu4IY9K2rHIgumduIbolFGwj3CDG9Nm+c1crhVuIp7+WcZSDbrNM2QXV9FvT5X3c/jTamQzkgADPbi9ia4n3ixUx3m9n1xA3uSqLvdDCxoHA68Ti7qZkNrCFbjli/sQCxqnoeYq+nkWa2JvB/xID8R4SRDnT3tWYhzkbDNRpnLVktfd7WYHq1dLYp0e32DlHZFwdWcffVZqEcGg3XaJwVZUTXUCNlINvMb5uq6zmvnQLoMA7I7Jv9i3oRg7yrElMzpwBfuPvWmXP7EY+pSxG7yr5TRfayu3+QkX2XaJH3BSa4+2sZ2Ua0vGHxWXd/vkqcr7r7u2Vxfk6sW3jB0xYidealFK48L/XGWZ6Xb6VXpz5r5aXWNWR19oK7P5OR7Uw8KU0l3hb6aCuUQy29bES0DrtUyEu9cdZVDjPRiWyzdW1T+qxTnxRAh3FA5Vi86OtLMxsMvO7un5c5qSXKbmpd3H1a+m2eUYyZdXL3ryukYcBc7v5luaw8HsvMMMkZrmpeZiHOhcoqYmefyYaDFpsXfkXM4irps1ZeuhAtKy+Pv159NloOlcIB3qy81FsO5XFUksk2G7NN1fWqcebWZ1vSIR2Qmc1LjE9MKa/wFo+g5yR5F2BDd5+aZF2J2SffUorFvl+HEK2N3sDl7n53ks1HdLFUSm9R4KgUbkngVHe/uY5wXd39iyrX12ic/YkFaF8SM4eOdferkqwz8HWVa6+Vl0WIdTJTiWnG/3T3O8rDlcdvZr2J9TTTiLGesaWbhMUC188bKIda4ebylllR5XlpNM6K5ZDsbz7grQplINtsXduUPltRn23NbPtKbjPraWbDUyGUcwXRB7yZmfUskx1NrERfmxjc3sDMzjCzlYn3rI81s2GZdCz9PIWYP/9y+vzDzM5JN+DLaqR3EmE8FxJz8c8ys5ssNjWsFe5qM/tflbw0GudfiTU1PyO2s/mtmV2TWo7zAqtU0WetvBxPdFWcQ6xBuNHMLk0V4GIzu93MlnD36alFWtoA9yxiY8VFiUHTP5rZ781swZT/RsqhVrhLauSl0TgrlgOxVcvlVcpAttm6til95tRnyf4r6LLt8Tba86e1P7TMBtmHaHnPlY4vQ8xgOpIYjPwnMTOuBzFoeDewXDr3OaJwTiL6jycDJxAzRE4h7ZFE9K+OB3pl0l+EKORric0zK6W3YDa9TNi/ENMon60SbkVimm+lvDQaZ09i/6dNy8L9njDUh6roc8V0fZXy0o+YKNA5/e+WzjufmHHzErEy/MMUrvTEPYAY1ynlYSFiXcdfgX8RK7vzlsP1qTwrhRuejlXKS6NxViuHM4lpwKdUKINliFlOss3WsU3V9cb0uVnR9+9v8lR0BhrKdMzgeIB43ewZwD+IV8gOTp/vZwrwOGKfoyOJGSPPEyuCzwKeyMS5E3HT7Eq0yi9M5x6S5I8SLw7L5mMhYsrwn2qk9xRwRYVrOI5Y81Ip3LqpYn2/Sl7uAy7OGecCKc4bgIXLwh1E7DpQSZ8rkTZ6LM8LYOn36Um+bqoMnYldfE9KxwcSTwVTiFlEnUhOLZOHLsQuxmOI7oJvpTeTcrgY+FuVfK5H3MA2Ks9LOv/e0jXUG2e1ckg6OxP4aYUyWIm4mX6/SvnINvPZpup6fn3uBBxZ9D38m/wUnYGGMh2LGddIv3sCBxKLG/9ItAIeBfbKnL8qsZX/80Rr4zDiPRr/JLV0iH267oOWLciJG9fNxOKt54lWx53A6plzfgKMKstfNr2nUhyPACMy5+wJ3Fgj3GM18vLMLMR5OrHH2tZAj3TOj4DHaujzsTJ9ZvPyItGqf4jYYHOvdM7PidZml0y4TZIOS+th7iEWoK6QOedQMk8oOcthdI1wT9XIy4sNxllXOZSVwaM1yke2md82Vdfz6fMHwN1F38O/yXPRGWi1C4nxhHOJm8nT6VjpHSCdiVXSnwN7Z8L8mehHPTmF2zYdn4to3XciWiifAxsl2S+IRWHXpsKeDBxQIb1tibGR3dOxg4iFllcQq5lfqxCuUzK+z2lp2ZXyko1ztxxxdiEq8ZfAL9OxPYhW/4XEqv+HgU3K9Lkc0WX1DOmmmclL6Z0rn2X0sirRojRiq5QJpEd9YnpzpyRbHvgE2JDoJvkt8dRzHvFO+jeAHXOWw/Hp2neokM8VyvJZykspzk+Jwel646xVDvcR9jSBeIFe1h62S2F+KtucZdtUXW9FfRb5ma0mIZhZFzPb18wOMrPvp2Odk3h34lF0EHHThLjZABxLDEi+SgxmDkjHf0089m5MFP7qAO7+lUfp/Sl9PiZuKLj7CUQF6EEMbr5CdAVk0/sT0fXzMvF6Xtz9H0T3TxdgiRrhjiZa5atWyMsvCMNbPUecfyB2Yn4IWNLiHfIXuPtaxHjLW0QrqUcFfQ4AvkP0NZfn5VTCkWxjMUX0IY+ZPH8mdtrtn7n2Lz2mk/6J6EaZi3jp1dvu/gei0nyH2PRzOrG2I085bEIsDlylQrhTiMq+VoW8/JW4AWyWM85K5XBRuq4BwHiPmUrZcj2YsIchZeUj22zMNlXX8+nzVKJreH93v4V2wmw1DdvM/kxsNvocYRSHEn2z8xCtm22IBWmbEgb4DjGDZkOiJdyNeHTvQwxoDgAudfeVUmFdQRjSu0Qr4ofEjaszcYOZSKy6fp8YF1kp5ev2svTWIW5cTmzb8RrxeggH1nf3YTMJV9rzqVJenBgcryfOeYhW3arEjX0M0YqaSlTCjwijLtfnvMT+V9sAu6R0s3nZM+WzF2lQ190PMrMhKdxqxNPN8UR3wEfAm8TmjesRfdTHEY7tQ+B1ou+6dO31lsMHwB51lF9vwtlUyktn4ukrb5zZcnDC5pb0WIMyM3uQbTZum6rrjenzSHd/nfZG0Y9g9X6IOfCP0jLj6h6if/5f6fjxxOPresQNbXWi73c8sdFeKZ5uxBYySxGtpauI1vdGhNFvTAwgvwickcKUZJsk2XPAKUm2bll6jwBnVZE9WkP2JHBeWXqlvDxbI71acd5PrMshHXuWcODLEI/kL1fR51PEjCFLecjm5TmiVVXSZz9ips6ixEyeC4hKvzHRvbU9MWtnEulNixnZDoRjmJS5vjzl8FIFWSncBGLTxWx6pby8WiG9euKsVg5nE33uG1Yog1r2INvMb5uq6/n1eRqpW7u9fUrrIGYHRgJnu/t0M1udeATfl2gVHAiMc3dP8+f3cvcHAMxsecLoSquAPzezF4jFWWcR6zVeIIx0N3e/FbjVzPoSfbAQYxu7eXp0LZN1KktvOeKmPCuyUnqV8tJonF8DP/K0xYyZTSMWSlbS5zTg3qTPucvysiRR+Uv6fMPMXk3pXEbLRqV9gZ3d/RrgCoudg0ur0bOyy1PXyhN1XHutcigPtwTRei1P74q0/qc8vXrirFYOD5jZ4cTg9nU5yke2GeSxTdX1/Pp8lNgl/DLaG0V7wDwfWgbbViXGECAKYj/gP2XndiZulNfTMo241KLahWip30xmoLIs3A2kQcUyWaeZyL5JL4fMZhKukfSqxdkpfV9buvYyfVo1fabvGzL6LJXHz4kni2/irBDuJmDXKvmsJat27VVlmXxWC9dIetXKoaSDGXSdt3xkm3XZpup64/qcQdZePoVnoK5MZqYo1lJw+XnEzJE7K4TrSXT7jK0UPzHd8s4GZAc1QdaM9A6vopeZ6fMnVcItTnQj3FGlnPapR9aK5VAxn01M7yBiym5D5SPbbBXblD5z6LO9fArPQO4MV1EwLS2e5Yl5713T93fLZNvQ0pJaIyMbQsx0WRDYm5iJVS5boIJsZuk1IquUXpcq4YbVkGXjHA7sk36vBSxfpz5rXftSKS4DjiH6nkuygUR3yKLEjJ7hFWT9KshqpdeorJTeIpn0utSh6zzlvlIr2INsM59tSp859NkeP4VnYKYZbJmpZxnlDydasl3KFUwMOlbcaiLJtiBt5VEmu52W9SCdS4WZkW1TklWI81CgX5X0TiAtZivlP5tP4qbYqUJeNqiR3mak9SxVZN96YiR2KNh2JvrsXEWftfKySfrdrcI1jEi/562gz3VKsgpx7kls5lme3u3EbLkBFcroNmL9xzxVwo2okV6167s9xdmlWjlUKfPNsmUt22wV21Rdz6nPSnppb5/ZYR1QV4ttyd3TFurELJj30v/7iBXPmNkIorBGmNnxZrZbmnKJma1DtBY2Af5sZjuUEjCzNYhdZf9iZtt7bNY3PRPnvMAhFtu4Z7fyX4mYIroLMfWRjGzZFG5fYGcAb9kCfkRK7yfE/kw/zYRbJV3DBmZ2BPAbM1s/yVZI4XYhZo9dYGa7J9kyxHTL2z1ZYSbO4cRU6aur6POvSZ/Ty/S5PlHxh5rZUaR1Dkm2QUpvNTM7Bli6TNYV+JmZbeTun2T0uSHhJH6T8vFJJtzaSWf/l8J/nZGtnML9mthCJ1tG66fz9yDWIW2YCTciXcMwMzsI+L6lTR/NbLUUbos0xf8oM9siyVYiKvcdSU9fW7zWgWQ7SwIbVrCxTu5+k7tPs6BTJh+yzfy2qbreuD7bPe3WAZnZEIvX655EFMzC6fiqxAZ+J5vZJslYv06zXu4m5tE7Me12K2JmEu7+P2Lh5HvEYrMtUxorErOlTid1F5nZHakgIebfv0XMoHEzW9jMlk032YlE//I5wDtmtoyZbWVmf0lhXyemMw8ys+sstlYn5fNj4nW6twErm9mqZvYjovX3FbF6/xXCsI83s7+ltL4gKuH1xFqGvS12YP6CWO/yvJltl9Wlu48Djk36/FsFfS4DHGxma2X02YmY/upEF9ZSwNFmtl6KdmxKsyvhfH5uZv3MrE/S53+BEcBPLHYSXjaF+yzp87+RvM1nZotb7Hr8CvA2sZnp+8DiZraOmf2UsNXXSZsumtnfrGV35FK5v5zKd6dMGZV2YFiIGA9Yn7gpHZri60KMX72a9Lt30gIQDp0AABdFSURBVNNXQC8zm2hmm2XtjOjSuSSV4dbMaGMVw8g2G7ZN1fX8+twn6a/dz3JutwtRk6LvIdZzrEWsLj/HzEYSixjPJcYdHgP2c/dXzGwr4HfAuu7+WWr5/JBoGW9K7Au1gcfLq54lFiZOJAr+OKLPeAzR17of0Q30CvHa3eVSvkYTCzAnEy30eYBz3P02M7uHMLSpKc1P3X2omc1DtGLGu/u5qQVzuruXWjvPElOUXyftaOvuqyTZUGLc4i1i1f4IYCd3fy/Ju6e8bkHcYM8gugleBn7r7o+l88YA/yPWB2T1uTlR8U8l+qAfSeHeMLNtgSOI7rKvzGxfYLi7/8TMfkAMfq7nMV32EaLSTE7X8bdUPrcRDm4tYn3QFGLBZmlh39mEc3uDmCK7NPA7d3/eYqHdJGKh3Uiii2KYxZTTw4lNGm9OrdOT3X29FOdjqdzeIPr5B7r7Gkm2bsr3hHTOju4+MsnmI5zt1sSNbzBxw/nGztLxI4g9td5Lei/Z2GqpnP9D2KFsc9ZscySq643oc3HgXXf/mPaOt4N+wPIP0bd5T+b/BkRfaV9i9fB+xPvPIfZ2mkq0PnYgjKL0aNuNaB2PSLJriJvhvsCtKfzSRIt7D+LxeVQmzQ8Io5xE7Fn2N9LOtMTg4QVEi/xUYiDxxEyezyBNFyVa2VsTixyPJG7E9xJbY/wdeDCdtwBR0V4BDk/HRhBTSIcC41KYf5Xpqxdxozwlc+wYwjBPJlqH7xHOolyf6xFG3J3Y2uRkYo3MkUlPdySdzZXOf4wY0N+HWBw4kNiKZHyKex1ioHgbYoud0o7Yu6dyejx9H0F0p43KhBuTruMEYmFeaWFdb+KJqbTrdmfgx4Qz+xGxNcm9xMr3E4CH0nmlRY0v0bKn1qrEWp31iW1cri3lMaO776Rr+EfmWMnOricc2PnEpIusja2SymoZ2War2Kbqen59diXqynpF38fr+bTXLrhpxAJFs3iT5R2E4Y1w9/HEKuChAO5+CDEDpD+xDYync77yeIXtHUQLexoxAP0s8Ti7Rwpf2jl2ZXe/GHjbog95f2I8YVNiAVdXYtXy8SncCylcJ8KYLiVWHpcYT7RScPdp7n4tsRX6sJTfPQhjfYGY+4+7v0/cVJ8GljWziaTdod39acKwngb6m9njZrZLCvdhykuv1HWGux9FPDV0J1aAv0+8gKtcn3cRLbGh7j4x6fOnxE34JGABd3/WY5+qt4hKP4ToVljY4/30o4hKV+r+uIl49cC5QL/UCtyO2Er/cGJF+/Lp94mZcDen61886X6+JHsv6ahH+j/d3c8kJiusmfT4y1TOXxAv6SKV9XhipfvaFgvyjgHOdPc7iZeS/Zfo6rsmPQ3i7s/R0kVY0mfJzj4nKvoQd3+gzMYGEoPPz5aFkW02Zpuq6/n1+THQM9Xr9k/RHrDah7LZK8T7QP5J3GjGAgtmZF2JR/ePiBth74xsTcJAniNaW33Kwm1EtIS3J1pRKwJ3EdvRrE1UgH7p/F6ZcBumcBsRhrkB0a3zCGG4LxFPAdm8dKdlN94l0v+uRCUcRbza+hXiZt2P6AKaj+gr7kV0Uaya4tqO2Nl2HNEVMYFo3Zd2gc7OwvkIWK1Mnz8luiIOJmbNdM/qnqg4Hyb9dc3INiUq0ePEE8A8ZeFWJCpOadbZusQTR+nJaeVSfMAiZeGeIlq0vQnn8ipxUzkkXd/aZGbbpfPOTbLSa5cXJPrw/5jimEA8Ta2Q9LN4Ctszk978REv55pTeAcT+W6ulczuV6fN9wsGW1qaskcrhOWBLZJuzapuq67Omz5WLvn/X+2lXY0BmZp4yZPbNK2lxdzeza4lH1O5EC/cZ4tF2LPFYvRhRiJcRA9n3EmNIFxCDk18Qmwy+TcymuSvJhhED1KOJFsl9RAtrJ6IwBxMvv3srhbknpTeM2HDzUmJzyxvcfVzqG/6auBHelsnL/4hNLzsTN/fbU7j/EgOmVxI30a+JbqH3iG6g+4iKuCYwwd0PKtPZaGIg82x3H5OOdfIYrDWia2tNol86q8+riQo3L9GtdB2xn9Rz6fqWJhzG5UTXxn1ERRtNVPzP07XfDdzv7s+a2YXEDb1fCncPLRV3baKbY5V0fCyxOPBFM7sgHe+fwo1NOn+TeJrqQnTJ3JzJy/Mpn3Ola7wpyW4lntD+la6tK2ETDwJ3ufvLZrY/sX/We+5eGrDtRtyUTk1lcIG3bMfSiejy+yxd9zB3PzIdd2JCQrmNyTYbt03V9Zz6TL/XBdZ0978wm9DeZkkcaWZOPIZ+BKFgixlSQ4hWwevEIO/qhLEtTLRGlyNaJ+uXyVZIn7eIm2Bp874+hGFtSBjAOkm2PrFZ4CB3XzblYeMk24qYPbNS+v8lcRNfDdjNYp+03hXCfZPPCrJdiJZNJ3cflGSbpDi3Tdf1C+Imt5iZ7eruF6Xz1iSeSEYTs9j6u/tFJYMkxli+Bk7NOPZOqUts6Yw+ryMq/FDgFsIZLE/Yxw+TbNkkG0pMbx1HvMVxBDFN+xbi6WYXwontkGQDiUq5s7tvlm7auyXZMincKkQL8nVgR6KFuxzhcHp6DO5mw32TzwqypYmnmOnuPiDJdk9lv5yZPUB0+51LzHTaxN1v8dg3rJSPc4DNU3voVuKGcGI6Pp1wdqQb6VLJvpYnbkAlG5NtNmabqusN6NNiZuBYM7ub2YmiH8FKH6KSl6ZIXkVmry6ilXIXYUClAckFiI0JnyPefzEyc35J9nwNWaVwvYkuqVpxfiOjZRZho+ktQAxo10rvdaI11Zd418coojW3LjEAfxPRlVCSnZ9kaxKtrf9U0OcKRCttWEaffYmW6EvE08IKmesrySaUZJm4suEeKJMtQty4X5pJuEqy44mB1bzhTiC6PaqFe5PYvXplorL/m1ifMSyVxTWEA8zKjiPGw35OTJ4oHS+NRzxJ5iVfdZS5bLO6baqu59RnimNvUpf27PRpN11wFvPihxI3iY2IqYbTiO3Hx1pM1+1OdBfd4u7vpHB/Ilo4XYjul9aQHUu0YlozzlmRTXL30ywW2i1JjDMMT2GGuPviFWSlm+PSVfR5MdFiv4x44+nHKb0TicH+95Ouy2XzEa3IctlJRLdCtXC14mxt2czy8pC7jzazBYm+9LVSXIsQFXpABdlAYqxnWIUwmxJdKW1hD3OCbaqu59NnH2ApT09VsxPtxgFBrMNw96nVlE+88W8oMUvmNWIW0z3EtMmeHVB2DTGu8UvPrGy2WGuwNNFS3NXdry+TDSH6y/d198uq6PM7ROtqPmJdwmSiH/oRohGwVAeW/T+PmUolnQ1MejmHeBnddTOTlR3fl2jFtlc7mt1sU3U9vz5nkM0utAsHlB1IKzs+g4KJR9C1if72NYlH1Xvd/SiLVb8dVlZBNwcQ75LfsILsQGC7clkFfd5CjNUMIyYODCTW8/zc4j1AHVZWQWe/BrZ299XrlWWPtydb6SC2qbpenz6rymYLWqsvr1kfYkrm7cDc6f+StEyP7UEMRnZ0WWmX2xWJGVgQN9N+tWQVdGkV9NmHmGAwF9EvPvccIMvuRNw/6WUwsf5oBln6PRhYosrxxWmZVl6p7Dq6bK4atllVNhPbnCG9JKuYlw4om0FnSZZbn7PLp/AMlBlh9mZ6MDEtdiAwIHPOE8RgcLdsmDlE9thMZMNr6HMl4uY7g8ESayC+m2Tl2993dNkTxGSEuUlrKspkq5aOZb6fIL16IXs8I5uhDOYg2eN5ZMx4My29ymJxWtbhWKkMKth6h5ZldFZLVlHXs9un0GnYFnsfPe9p52Bv2X32KmLx1jLEzseezt+cmClyAjDEzP7PW3aynRNkk2vIHiZ2HejmMaW4c0aflxMzw6YQ28uMz4SbQOxIMJ3YqWBOkk0kHPr0Mr0cROz7dWApjLt7CvMCsK7FXngPJL0+abFv2QvEjgvbl2TuPqfIXqwh+//tnXvQXeMVxn+PCHVr6j60Q4jbjCDuFUNkStR1/FGEoKmidW0Z06aqaBFtzVAStzBtqlONEpeq65gRJG2UkAR1SeMySkZUS90bsvrH85585/vyJSPJOd+5rWdmT/a3n73PfrPOOnvtd73rMqMi9woiYkHZvRV4QtKHON9nLl4r2aN8d6PkvK3nJM0Nr4+0NSdpKI4AXRI3I1x0tOXRsFI8kvbHyWKrghPQyvE98RvpqXhaerakfpKEQ2sjuV65m/EP9/JqY14emusU7jXgDEm7yGXpV8ZT+0eS68adjsOue7tmEE5GfQ/XKRsraXQ5d4vkeuXGFTleIukwSYMBinHaENcAfAonWY6QW2P0w67Tv+MgkuS6uJOL/Br2/K4VGjkD+iHwi4j4QC7Vvxn21+8OPBMR10h6CbviXoyIOyUdCVC4ubhES8dzwNuSTsfGaSg2TpfhRL9VcBjyhKKwz+NSH+9QWhFExAQASS8mxxfwj3xSRLzdyzVvRcR15Zo9gHOxq25z4PXkFuM+xrlT1+BqAycBn0q6Dc8Aplfp5gCcf7Ynjor7R9X3s3Zy7IlLXD0KToSm1VFvH1/PDfs+18KZ6JVEs0qJjV/i6fshVecfg6f3o7Aib5/cYtwpwL3l+Ahcq63S1XELHO12aZH53eX4YJyH8Gxy3bgDcH7U/b1c8wB+Kz0cG6mDcLXtvbBhn5rcYtxcYEqV3u6BS9JchStUPIATe9euOmd7XD1jVnKLcdOAI/r6uV2vrWFh2JKuxi7AWbhA5BhJX8YZ6P8EroiuroKH42S/n0TEPLlbYXJd3Ju4dPwz5fgxwAXA+Thjej/c4mIh8E5EXFTOOw9P9ecl142biHM0Hunlml2xf34n3Ajtgoj4i6RxeC1ppeS6cb/FQSAX4xpoX8etEK7DRmgUzvJfHb9E3V5k/bPyeWsmtxi3ICIupA3QSAO0GlbKrXBm/SnYJz8GeDcizqw6dwNgPHYvbRkRHyUHktbAPUb2xj/yBVXG6VhcNPSWiPhjObYuMBZX4f0UL7IPCxfo7HTul7jxXeC6XAdgl1HPa0bgLP0FuPT9v7Db+Ab8MrBGcrwfEa9IGoirGfwa95qqGKefRsS0YrgexOVphuFE1EF4NnV8OdY/ucW5iJhLO6Avp1vYom8NHFT+3gwbnsex2+Mx7DOeil1M65Xz7sH1u57HCptclzy3Ak7rRdb34x92pU/KcTgY4TD8Bj8HP1gfTI51cJTWs8Db5d8lXXMPfoNfq+r7mY31N7ku7otYb2/BBntH7MYciGuinYKj3jYt5w/A7uIJ2KANr9Ll5PwyeSpVKQDtsPW1Aao8TJ/EPvgjgK/gyrMv4pImO+Dy6HfgdaHDKF0Ey2ck11WSvlqei4wT9rNXOi/uUnXdDdg/39tndjL3J+Cpz3nNyML9rpfvJzlz1bo5kyrjVK5biCM3p+LeOpWk4Qp3Ke4mmlwfPp8bsfWl8Vn0UKxS2Dvx9PwQ/JZevcjev3wZLxZFTa47N4feH5o3LkWel5XPnJZcN+4mHD687zJcc2lyS+Vm9vitV4zT+Xidd2/cNPBXONJ1SPl3EnY7JVe4IsPRlAaI7bT12RqQpN1wWfvvR8Tscqx/ObYv9hX/D+ezvBplrUPSFdi3/Fpy3bhJOFH3uB7yHIvXKe7C/vie112JFzZ7+8xO5qbisOCxTTzGVuFuxq723nRzf1w482lJX8JBCbviMPch+IE7KLlu3GDc5XRL2gx9GoQg6QfYH9xTYa/CaxbDcTmOycAb+IHwMI6SOTi5btwU7NqYn/JcYW4eLn75GH6Lb8YxthI3hSXr5jXAnRFxHwWSNsbNDS8G9o+I6cktnWsX9FkiaonYugpPL8cCkyUNL/RR+G3qRFyc71t40XJd3AZ5H1xOJTnnWWwE/AErZspz+bkr8AvRejhgY1QTjrGVuM+rm+tLeiQiPizHRuM1kI9w+ZnZyUFEvFGM0LR2ND5A/deA8ILa5TgH4EJs9IbiN6b/ANNx9Mck3K3yODwdfQ53RdwtOXNFnufhB+ftKc8V4s7FSaX74VDim5twjC3DLYNuXoeTVN/CdfiGlO/hKLwulBycVfX8HAQMqPdzulFbvY1PRcDDgJ17KPN38aLkKsDK5fzdcKvou4EbyzElt4ibkPKsGTcHJ0FXZKUmHGMrccuqm7tgV919lc+sem4kB5dQKoa381bvYnZfxe2PH46IGRExEsezn4j7qlQE/hlARPwNl+d4F1hN0tAo30pyHAtsi+vkpTxXnBuJAzwOLMeiCcfYStyy6uYT2P30duUzyznJmdsA18Zsa9TbAN0GqIeAKwq7Nq6AOxkYJ6lf4V/BZVBexr7j8ckt4gYAA1KeNeFm4Dfy3zTxGFuJW17d3HYpn9nJ3M44krCtUfcoOEnH4wXJyTiufRNcPXcczux9AbiWrmKPWwNExHB5AS45Z5MPxIl8t6Y8V4gbgos9roEXzU9owjG2Epe6WSd5RsSBtDuiDn49XGLna8DA8vfGONv8VZw3ML9s36y6Zn+cwPYUbsubXCzyCY8BzqSrQ2LKczk4HKH1JH4QTgfOaLYxthiXull7eZ6A19E2qhxv560exmcjXEV4Cs4FqBbwXdgtNwyHvL4AbFu4icA5Zf/A5BZxKc8acc0yjjbiUjdryHXiVo81oEuA+yJiH1zF+RxJ28qtFtYEvhdeqPw9nooeWritgVclKSLuSY5DizzH4b4/w1OeK8QdgxMmp0gaAdzbhGNsGS51s/bylLSZpBGSRIegpgaoCHhTHHJJtYAj4nVcdmfHKgFPBAYX7kPcfCmSM1fkOQx4PoyU5/Jzm+BW2z/CFZijCcfYMlzqZm25sn85XbrZEaipASoCPh0nnVUwkS4BnwxsGBEh14aaA/STdBHwWUSMh0V1ozqeK/KaA1yd8qyJPEcCq0bE9c06xlbhSN2sB7d6RFxPJyFq7NOjRNaV/f64L8gkXJbjgV7OvwyXId8nuaVzKc/ac80yjlbnUjfrw7X7VvNacFEkWvYXAAskvUFXj4uemAB8FBFTkls6l/KsC9cs42hpLnWzblxbo0+qYUvaBjg2In68BH6liFiY3OfjUp41l2dTjKMduNTN2nPtjL7sB9SRAq4XUp6JZkXqZuLzok/7ASUSiUQiUUG9a8ElEolEItEr0gAlEolEoiFIA5RIJBKJhiANUKLjIOkzSTMlPStplqSzJC31tyBpoKSjl+Ne25V7zZT0b0kvl/0HJW0s6dbl/58kEq2NDEJIdBwkvR8Ra5b9DYCbgGkRcf5SrtkHODsiDl6B+04E/hwRaXQSCXIGlOhwRMR84CTgNBkDJT0q6cmyDS2n/hzYq8xezpTUT9Klkh6XNFvSd5b13uVez5T90ZLukHRXmSWdVmZmT0maLmmdct4gSfdJmlHGuU2tZJFI9DXSACU6HhHxEv4tbIB71+wXETsBRwJXltPGAI9GxJCIuBz4NvBuROwK7AqcKGmzFRzKYOBoYDfc2O3DiNgR+CtwXDlnAnB6ROwMnE33WmyJREuh5qV4EokWRaVqc39gvKQhwGfAVks4fwSwvaRvlL8HAFviFsvLi4ci4j3gPUnv4p46AE+Xe60JDAVuUVfF/lVX4H6JREORBijR8ZC0OTY284HzgTeBHfCs6OMlXYZnIvfXcCifVO0vrPp7If6trgS8ExFDanjPRKJhSBdcoqMhaX3gWmB8KaQ7AJhXSskci1sPALwHrFV16f3AyaWkPpK2krRGPccaEf8FXpZ0eLmnJO1Qz3smEvVEzoASnYjVJM3E7rZPcQPFywp3NTC5POQfAj4ox2cDn0qahfveXAEMBJ6U/WFvAYf1wdhHAddIOreMfxIwqw/um0jUHBmGnUgkEomGIF1wiUQikWgI0gWXSNQIkrbD7rxqfBIRuzdiPIlEsyNdcIlEIpFoCNIFl0gkEomGIA1QIpFIJBqCNECJRCKRaAjSACUSiUSiIUgDlEgkEomG4P9fOitySJjMVgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data['Voltage'].resample('M').mean().plot(kind='bar', color='red')\n", "plt.xticks(rotation=60)\n", "plt.ylabel('Voltage')\n", "plt.title('Voltage per quarter (summed over quarter)')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAFtCAYAAAA3egy4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXe4VNX1v99FRxEsYAMRu4IaC7ZoFDsmthgTezfEJGo0fvNLMYklJjGxdyW2qFHsisZesCA2bBERu4INu9hQcP3+WHu8h3Fm7py5d+YWPu/zzHPvOevsctZe5+y29j7m7gghhBCNoktbZ0AIIcTchSoeIYQQDUUVjxBCiIaiikcIIURDUcUjhBCioajiEUII0VBU8VTAzMaZ2f5tnY+WYmaTzGxEW+dD5MPMxpvZ6m2dj9bCzPY2s/vbOh+dATM70cwOaOt81Eqnr3jMbAMze8DMPjKz99PDvFZb56tazMzNbNmWxOHuw9x9XCtl6VuYWQ8zu8rMXkn5HVGvtNobZjYk3XO3Vo53G2CGuz/emvGKtqeVGrTHAYebWY/WyFOj6dQVj5n1BW4ETgMWBAYCRwEz2zJfjaK1X4bNcD+wO/BWoxK0oM1suDX0WyGOA4CLWxq/mJMGPxPFabeKvZpZV3d/E3gW2LblOWsD3L3T/oDhwIcV5EcCl2SOhwAOdEvH44C/Aw8DHwHXAws2k2Yhjn2AqcAHxEtkLeAp4EPg9KIw+wKT07W3Akum8/emuD4FPgF2Sue3Bp5IcT0ArJqJ6xXgtymtmUC3dG6zzD1fAVwEzAAmAcMz4dcAHk+yK4HLgWNy6HwaMKKZayrqFVg33deHwJPZ+FLYvwLjgc+BZUvEvzrwWLqHy4ExhXsA9gbuL7reC/EAP0j3/3EqvyNLlO1+wGupfF5L5z5Jv/UqlWkmvV8CzwMvl8h/j3RvgzLn1gYeTfl6GzgxnR8BTCsKX1zeVwKXJH38D1ge+D0wPd3jFkX6PSbp/xPgBmAh4D8p7UeAIZnrVwRuB94HpgA/ycgWAsamcA8DfynWfVG+tyXs8cOUj5XS+d8BVxVdewpwavq/H3Ae8Cbwesp/10x5jwdOSnn8li0DvYELU1k9A/wmq9OsfaTjC2mypwWIxu07KfyNReU2jjnt9T/AbOCLpN/Tq9DjhcBZwE3Eu6BQtocDF7TmO7NRvzbPQF1vDvoC7wH/BrYCFiiSH0nzFc/rwMrAvMDV2evLpFmI42ygF7BFMrLrgIWJXtd0YKN0/fbAC8BKRCXxR+CBCka/Rgq/DtAV2It40fRM8leISmkJoHfmXPZF9AXw/RT+78CDSdYDeBX4FdAd2AH4kvpUPCX1mvTzXspfF2DzdDwgE/Y1YFjSV/eiuAv3cGi6hx2Br6i+4hkBrJLSXpV4yW9fVLYXpXz3LraZHGV6O9EL711CP8OAT4vOTQD2SP/3AdbN5Le5iucLYMuUl4uAl4mXVnfgp2Qqv6TfF4BliBf6M8BzwGaZ8Beka+clKq59kmwN4F1gWJKPIRo586ayfr1Y95l0lydeqpunfP2/lI8ewJLAZ0DfdG1XopIp6OA64JyUzsJEJfezTHnPAg5KeSyl72OB+1J5LAE8TfUVz0LAj4B5gPmISv66In3OYa/p3P6Za5rT44VEA219wi57pfM7AI+15Tu21l+bZ6DuNxgP/4XEC3EW0QJbJMmOpPmK59iMfCjxIu5aIb1CHAMz594j9VbS8dXAIen/m4H9MrIu6SFbMh0XG/1ZwF+K0pxCU0X2CrBvkfwV5nwR3VF0T5+n/zckXg6Wkd9PfSqeknolemsXF11/K7BXJuzRFeLeEHij6B4eoMqKp0R8JwMnFZXt0uVsJkeZblLhHtYH3io6dy8xTNy/6PwImq94bs/ItiFa2oUewXwpP/Nn9Ht45voTgJuLwj+R/t8JuK8o7XOAI1JZfgWsmJH9rVj3GdmfgCuKdPZ6wZaSHe6Z/t8ceDH9vwjRs++dCbsLcHemvF9rxh5fAkZmjkdRZcVTIq7VgA+KbP3oomvGMWfFU1aPmfQuKpHW5sBL1T6b7enXqed4ANx9srvv7e6DiFbX4sTLpFqmZv5/lWix9K8i3NuZ/z8vcdwn/b8kcIqZfWhmHxJdbSNa/qVYEjiscH0KswRxX6XyXIrsPMxnQK809r048Lonq64yrlopp9clgR8X3d8GwGJV5qnUPbxababMbB0zu9vM3jGzj4hh0uLybk4n1ZRppTg+ICqELPsRvYJnzewRM9u6uXvJUGx777r77MwxNNljqesr2e46RWW1G7AoMIBovReXczkWz8rd/esUtqCzS4kKBWDXdFzIQ3fgzUweziF6PgWaK6/Fc+RzDsxsHjM7x8xeNbOPiQbC/GbWNUf6lfRYKY75iGHJDkebTbS1Be7+rJldCPwsnfqU6CIXWPRbgeKlXmAw0Yp7txWzNRX4q7v/J+f1f61wjVeQVeJNYKCZWebFvQTwYo3xVaKcXqcSPZ6fVghb6f5K3cNgmu5hjjI3s+IyvxQ4HdjK3b8ws5P5dsXjZf4vUE2ZVrqH5yNrNtDdXwdw9+eBXdLk9A7AVWa2UIn76Uq89BvBVOAed9+8WJDyMYso52fT6cEV4nqDGOIshLcU9vV06krgBDMbBPwQWC+Th5lET3BWmbibex7eTGlNKpPPz/j2e2Ja+v8wYAVgHXd/y8xWI+YIrUL6xcdl9VghDMRozpMVwrRbOnWPx8xWNLPDkrFiZksQraYH0yVPABua2WAz60dMuBazu5kNNbN5gKOJSc7ZJa6rlbOB35vZsJTHfmb244z8bWDpzPG/gANSy9zMbF4z+4GZFbeQa2ECMfF5oJl1M7PtiEntZjGznmbWKx32MLNe6eVRjnJ6vQTYxsy2NLOuKZ4RhTKs8h5mAQene9ih6B6eBIaZ2Wopv0cWhZ8PeD9VOmsTretKvAN8zZxl1FyZVsTdvwLuADYqnDOz3c1sQOoJFFq5s4n5l17JBroT80k9q02rhdwILG9me5hZ9/Rby8xWSmV5DXBk6hUMJeYjy3EF8AMz2zTdx2FEhfIAgLu/QwxRXUDMSU1O598EbiMqpb5m1sXMljGzjUolUiHt35vZAsnODiqSPwHsmuxxJJlyIezlc+BDM1uQGGZsjuJnuqwem4lnI2JYt8PRqSsewotnHeAhM/uUqHCeJowad7+d8Hp6CphIGEAxFxNjrG8RzgIHt2YG3f1a4B/AmNRVf5pwhChwJPDv1AX/ibs/SkwIn04MybxAjGO3Rl6+JFrT+xEvt90JnVTjfj6FeAAHEnMynxNDCOUoqVd3nwpsB/yBeKlPJbyMqrLVzD3sTehnJ+IFWJA/R1R0dxA9i+IFjb8AjjazGcCfiZdSpfQ+I3ktpTJat4oyrYZzgD0yxyOBSWb2CeHRtbO7f+HuH6U8n0v0Dj6lqTVeV9x9BuE8szPRY3mLuO9CxXcgMSz3FlHWF1SIawphb6cRPd9tgG1SeRa4lHByuLQo+J6EE8IzRJlfxZxDs81xFDG89jJRiRW7sf8q5acwBHZdRnYy4WTyLvF+uaWK9E4BdjSzD8zs1Cr0+C3MbDFibvS6cte0Z2zOoXAh5sTMHgLOdveyL40a4hxHOHWc21pxNpPehcRk8R8bkV5rYbHK/yDXItKGYrEA+pI0L9wuMbMTCAeLM9s6L7UwV83xiOZJQxRTiBbcboRLcTWtONHKuPsGbZ0H0T5x98PaOg8tobMPtdUFM9vNzD4p8ZvUfOh2zwrEPMhHxJDkju7+ppn9ocw9d8gxZiFE26GhNiGEEA1FPR4hhBANRRWPEEKIhtIhnQv69+/vQ4YMaetsCCFEh2LixInvunujFhiXpUNWPEOGDOHRRx9t62wIIUSHwsyq3g6onmioTQghRENRxSOEEKKhqOIRQgjRUFTxCCGEaCiqeIQQQjQUVTxCCCEaiioeIYQQDUUVjxBCiIbSIReQtkcuHTbsm/93ndQZNqkWQoj6oB6PEEKIhqKKRwghREPRUJsQDSY7LAsamhVzH6p4xDdonkoI0Qg01CaEEKKhqOIRQgjRUFTxCCGEaCh1rXjM7Hwzm25mT1e4ZoSZPWFmk8zsnnrmRwghRNtT7x7PhcDIckIzmx84E9jW3YcBP65zfoQQQrQxda143P1e4P0Kl+wKXOPur6Xrp9czP0IIIdqetp7jWR5YwMzGmdlEM9uzjfMjhBCizrT1Op5uwJrApkBvYIKZPejuzxVfaGajgFEAgwcPbmgmhRBCtB5tXfFMA95190+BT83sXuA7wLcqHncfDYwGGD58uDc0l6LdoFX/QnR82nqo7Xrge2bWzczmAdYBJrdxnoQQQtSRuvZ4zOwyYATQ38ymAUcA3QHc/Wx3n2xmtwBPAV8D57p7WddrIYQQHZ+6VjzuvksV1xwHHFfPfAghhGg/tPVQmxBCiLkMVTxCCCEaiioeIYQQDUUVjxBCiIbS1ut4hBCi06CPKVaHejxCCCEaiioeIYQQDUUVjxBCiIaiikcIIURDUcUjhBCioajiEUII0VBU8QghhGgoqniEEEI0FC0gFaKDoI/gic6CejxCCCEaiioeIYQQDaWuFY+ZnW9m082s4ldFzWwtM5ttZjvWMz9CCCHannrP8VwInA5cVO4CM+sK/AO4tc55EQ1GcxJCiFLUtcfj7vcC7zdz2UHA1cD0euZFCCFE+6BNvdrMbCDwQ2ATYK1mrh0FjAIYPHhw/TMnhGgo+qTA3ENbOxecDPzW3Wc3d6G7j3b34e4+fMCAAQ3ImhBCiHrQ1ut4hgNjzAygP/B9M5vl7te1bbZal87QkusM9yCEaB+0acXj7ksV/jezC4EbO1ulI4QQYk7qWvGY2WXACKC/mU0DjgC6A7j72fVMWwghRPukrhWPu++S49q965iVqtGQkhBC1Je2di4QQggxl9HWzgVCdFi0QFaI2lCPRwghRENRxSOEEKKhqOIRQgjRUFTxCCGEaCiqeIQQQjQUebUJIdo9Wl/XuVDFI4To0KhS6nhoqE0IIURDUcUjhBCioXTaoTZ1v8XchHZREB0J9XiEEEI0lA7d41GvRgghOh4duuIRQghRmvbcMK/3h+DOB7YGprv7yiXkuwG/TYefAD939yfrmSchRNvRnl+GonHUu8dzIXA6cFEZ+cvARu7+gZltBYwG1qlznjoFeoCFaB49J+2Ten+B9F4zG1JB/kDm8EFgUD3zI0Qp5BEmRGNpT15t+wE3lxOa2Sgze9TMHn3nnXcamC0hhBCtSYt6PGZ2s7tv1dJMmNnGRMWzQblr3H00MRTH8OHDvaVpCiHqg3qQojmarXjMbI1yImC1lmbAzFYFzgW2cvf3Whqf6PjoxSVE56aaHs8jwD1ERVPM/C1J3MwGA9cAe7j7cy2JKw9z84Tj3HzvQoj2QTUVz2TgZ+7+fLHAzKZWCmhmlwEjgP5mNg04AugO4O5nA38GFgLONDOAWe4+PM8NCNGZUG9PzA1UU/EcSXknhIMqBXT3XZqR7w/sX0UehBBCdBKa9Wpz96vcfUoZ2XWF/81sr9bMmBBCiM5Ja7pT/6oV4xJCCNFJac2Kp5TzgRBCCDEHrVnxaG2NEEKIZlGPRwghRENpzYpnfCvGJYQQopNS9ZY5ZvbrEqc/Aia6+xPufmDrZUsIIURnJU+PZzhwADAw/UYRi0P/ZWb/r/WzJoQQojOSZ5PQhYA13P0TADM7ArgK2BCYCPyz9bMnOitaoS/E3Eueimcw8GXm+CtgSXf/3Mxmtm62hBCifdKe9jtsT3nJQ56K51LgQTO7Ph1vA1xmZvMCz7R6ztohHbWQhRCiPVF1xePufzGzm4H1CdfpA9z90STerR6ZE0II0fnI+yG4x4E3CuHMbLC7v9bquRKiBjRvJETHII879UHEZw3eBmYTvR4HVq1P1oQQQnRG8vR4fgWsoK+ECiGEaAl51vFMJRaMCiGEEDWTp8fzEjDOzP4LfOM+7e4nlgtgZucDWwPT3X3lEnIDTgG+D3wG7O3uj+XIkxBCiA5GnorntfTrkX7VcCFwOnBRGflWwHLptw5wVvorRIdGjg5ClCePO/VReSN393vNbEiFS7YDLnJ3J9YIzW9mi7n7m3nTEkII0TFotuIxs5Pd/RAzu4ES39xx921bkP5AYu6owLR07lsVj5mNIvaHY/DgwS1IUgghRFtSTY/n4vT3+DqkX+obPiU/KOfuo4HRAMOHD9dH50RD0JCZaGs6444pzVY87j7RzLoCP3X33Vs5/WnAEpnjQcQCVSGEEJ2UquZ43H22mQ0wsx7u/mXzIapmLHCgmY0hnAo+0vyOEK2Lem2ivZHHq+0VYLyZjQU+LZxsxp36MuKbPf3NbBqx80H3FO5s4CbClfoFwp16n3zZ7/jUoxvd6K55ZxwKEELUjzwVzxvp1wWYr5oA7r5LM3IHfpkjD0IIITo4ud2pzWxed/+0ueuFEEKIUlS9ZY6ZrWdmzwCT0/F3zOzMuuVMCCFEpyTPXm0nA1sC7wG4+5PEZ6+FEEKIqslT8eDuU4tOzW7FvAghhJgLyONcMNXMvgu4mfUADiYNuwkhhBDVkqfHcwDhgTaQWPi5GvCLemRKCCFE5yVPj2cFd98te8LM1gfGt26WhBBCdGby9HhOq/KcEEIIUZZqdqdeD/guMMDMfp0R9QW61itjQgjRVmg3jvpSzVBbD6BPuja7Y8HHwI71yJQQQojOSzW7U98D3GNmF7r7q9q5QAghREvIM8ezuHYuEEII0VK0c4EQQoiGop0LhBBCNBTtXCCEmCuR51rb0dKdC5r9lo6ZjTSzKWb2gpn9roR8sJndbWaPm9lTZvb9HHkSQgjRwcjzPZ53gd2avTCDmXUFzgA2JyqrR8xsrLs/k7nsj8AV7n6WmQ0lvko6JE86QgghOg5VVzxmthRwEFEpfBPO3betEGxt4AV3fynFMQbYDshWPE4sRgXoR3zlVKChAFF/sjYGsjPRGPLM8VwHnAfcAHxdZZiBQNYhYRqwTtE1RwK3mdlBwLzAZqUiMrNRwCiAwYMHV51pIYQQ7Ys8Fc8X7n5qzvitxDkvOt4FuNDdT0jb81xsZiu7+xyVm7uPBkYDDB8+vDgOIYQQHYQ8Fc8pZnYEcBsws3DS3R+rEGYasETmeBDfHkrbDxiZ4ppgZr2A/sD0HHkTQjQQDdGJlpCn4lkF2APYhKahNk/H5XgEWC7ND70O7AzsWnTNa8CmwIVmthLQC3gnR76EEEJ0IPJUPD8Elnb3L6sN4O6zzOxA4FZiJ+vz3X2SmR0NPOruY4HDgH+Z2aFERba3u2soTQghOil5Kp4ngfnJOQTm7jcRLtLZc3/O/P8MsH6eOIUQQnRc8lQ8iwDPmtkjzDnHU8mdWgghhJiDPBXPEXXLhRBCiLmGPDsX3FNJbmYT3H29lmdJCCFEZybX7tTN0KsV4xJCCNFJac2KR55oQgghmqU1Kx4hhBCiWVqz4im1PY4QQggxB3m82jCzRYkdpx14xN3fyoj3aM2MCSGE6JxU3eMxs/2Bh4EdgB2BB81s34Lc3Z9u/ewJIYTobOTp8fwGWN3d3wMws4WAB4Dz65ExIYQQnZM8czzTgBmZ4xnM+a0dIYQQolma7fGY2a/Tv68DD5nZ9cQcz3bE0JsQQghRNdUMtc2X/r6YfgWub/3sCCGE6Ow0W/G4+1GNyIgQQoi5g6qdC8zsbkrsTuDulT4EJ4QQQsxBHq+2/8v83wv4ETCruUBmNhI4hfgQ3LnufmyJa34CHElUbE+6e/FXSoUQQnQS8uxOPbHo1Hgza27H6q7AGcDmhFfcI2Y2Nn38rXDNcsDvgfXd/QMzW7jq3AshhOhw5BlqWzBz2AUYDizaTLC1gRfc/aUUxxjCG+6ZzDU/Bc5w9w8A3D3XF06FEEJ0LPIMtU2kaY5nFvAKsF8zYQYy51qfacA6RdcsD2Bm44nhuCPd/ZYc+RJCCNGBqGYdz1rAVHdfKh3vRczvvMKcPZeSwUucK3ZQ6AYsB4wABgH3mdnK7v5hUT5GAaMABg8e3Fy2hRBCtFOq2bngHOBLADPbEPg78G/gI2B0M2GnAUtkjgcBb5S45np3/8rdXwamEBXRHLj7aHcf7u7DBwwYUEW2hRBCtEeqqXi6uvv76f+dgNHufrW7/wlYtpmwjwDLmdlSZtYD2BkYW3TNdcDGAGbWnxh6e6naGxBCCNGxqKriMbPCkNymwF0ZWcWhOnefBRwI3ApMBq5w90lmdrSZbZsuuxV4z8yeAe4GflPYiFQIIUTnoxrngsuAe8zsXeBz4D4AM1uWGG6riLvfBNxUdO7Pmf8d+HX6CSGE6ORUs2XOX83sTmAx4LZUUUD0lg6qZ+aEEEJ0Pqpyp3b3B0uce671syOEEKKzk+d7PEIIIUSLUcUjhBCioajiEUII0VBU8QghhGgoqniEEEI0FFU8QgghGooqHiGEEA1FFY8QQoiGoopHCCFEQ1HFI4QQoqHk+QKpEEKIOnDpsGHf/L/rpEltmJPGoB6PEEKIhqKKRwghRENRxSOEEKKh1L3iMbORZjbFzF4ws99VuG5HM3MzG17vPAkhhGg76lrxmFlX4AxgK2AosIuZDS1x3XzAwcBD9cyPEEKItqfeXm1rAy+4+0sAZjYG2A54pui6vwD/BP6vzvkRQlRJ1tMK5g5vK9EY6j3UNhCYmjmels59g5mtDizh7jdWisjMRpnZo2b26DvvvNP6ORVCCNEQ6t3jsRLn/BuhWRfgJGDv5iJy99HAaIDhw4d7M5cLIUS7Ym5bq1OJevd4pgFLZI4HAW9kjucDVgbGmdkrwLrAWDkYCCFE56XeFc8jwHJmtpSZ9QB2BsYWhO7+kbv3d/ch7j4EeBDY1t0frXO+hBBCtBF1rXjcfRZwIHArMBm4wt0nmdnRZrZtPdMWQgjRPqn7Xm3ufhNwU9G5P5e5dkS98yOEEKJt0c4FQgghGooqHiGEEA1FFY8QQoiGoopHCCFEQ1HFI4QQoqGo4hFCCNFQVPEIIYRoKKp4hBBCNBRVPEIIIRqKKh4hhBANRRWPEEKIhqKKRwghRENRxSOEEKKhqOIRQgjRUFTxCCGEaCh1r3jMbKSZTTGzF8zsdyXkvzazZ8zsKTO708yWrHeehBBCtB11rXjMrCtwBrAVMBTYxcyGFl32ODDc3VcFrgL+Wc88CSGEaFvq3eNZG3jB3V9y9y+BMcB22Qvc/W53/ywdPggMqnOehBBCtCH1rngGAlMzx9PSuXLsB9xc1xwJIYRoU7rVOX4rcc5LXmi2OzAc2KiMfBQwCmDw4MGtlT8hhBANpt49nmnAEpnjQcAbxReZ2WbA4cC27j6zVETuPtrdh7v78AEDBtQls0IIIepPvSueR4DlzGwpM+sB7AyMzV5gZqsD5xCVzvQ650cIIUQbU9eKx91nAQcCtwKTgSvcfZKZHW1m26bLjgP6AFea2RNmNrZMdEIIIToB9Z7jwd1vAm4qOvfnzP+b1TsPQggh2g/auUAIIURDUcUjhBCioajiEUII0VBU8QghhGgoqniEEEI0FFU8QgghGooqHiGEEA1FFY8QQoiGUvcFpEK0By4dNmyO410nTWqjnAgh1OMRQgjRUFTxCCGEaCiqeIQQQjQUVTxCCCEaiioeIYQQDUUVjxBCiIaiikcIIURDqXvFY2YjzWyKmb1gZr8rIe9pZpcn+UNmNqTeeRJCCNF21LXiMbOuwBnAVsBQYBczG1p02X7AB+6+LHAS8I965kkIIUTbUu8ez9rAC+7+krt/CYwBtiu6Zjvg3+n/q4BNzczqnC8hhBBthLl7/SI32xEY6e77p+M9gHXc/cDMNU+na6al4xfTNe8WxTUKGJUOVwCmZMT9gTmur6OskWlJJplkc4+sEWkt6e4DylzbONy9bj/gx8C5meM9gNOKrpkEDMocvwgslDOdRxsla2Rakkkm2dwja3Q+2vJX76G2acASmeNBwBvlrjGzbkA/4P0650sIIUQbUe+K5xFgOTNbysx6ADsDY4uuGQvslf7fEbjLU1UthBCi81HXzyK4+ywzOxC4FegKnO/uk8zsaKILOBY4D7jYzF4gejo715DU6AbKGpmWZJJJNvfIGp2PNqOuzgVCCCFEMdq5QAghRENRxVMjZlZWd83Iyq5RakZWa5yNzktNNlWPe2hBeg2TNboMZJv5kT7zy5pDQ20VMLMu7v51g9M0gM7oYFEvfdZDZ7XGWSlcRy/bjp7/SuhZbyyqeEpgZt3cfVaJ89sB3wG+R0za3Qu84+5fNyPbAlgaWAe4zN1vS/F1AdYHFgVWAsa5+70Z2TY1xllruM1qjLPsvTejz1rv4XsVdLYasGCSP+Puj1WZXqVyqKSXSuHKybYElmpUGcg2a7JN6bMGfVZNWy8kam8/4CfA6YQr+M+AdYH5gN7A66lQ9gXuAC4CNm9GNg/wMvBL4FfAC8A1wMpJNhn4K/CHdN3NwJItiLMleaklzrKyZvTZknsop7N5gMeB84G/AxOAC4DFW1AOLQlXSrZCI8ugCl3KNvWst4o+c71n2/pF355+SbHTkwHuAJwJnA3sQ6wxuoHUS0zX/xx4ArgSuKEoroLsRuD6ItkRwDvA9cDVRbLjgVeBEyukVynO82vMy5ga46x078dX0OeodP+WM73bK+jsKuAywNLDNRA4gWiV/bNCepXKYXSN4S4Bri4Kdzyxfclj6dgaUAayzfy2qWc9vz6PLfdeLfVr85d9e/olI7yx6NyPksLPAa4Adgf6ZeSDUyHfVEZ2E3AtsG5RvMPS+X9TtEUQsCnwr5Ru3jgvBa6rIdwVwOU1xFnp3scRC4JL6fM8orWUN73b04NTSmdX8e0tmboAexMt23LpVSqHC4CLawj3n1SGxbIfA88C6zeoDGSb+W1Tz3r+e78WWK74nVruV7NXQiflf8CXZnaEmS0J4O5XE7X6YOAB4AfAjmY2xMzmd/fXUtiny8i+BmYAR5nZdhb0cPdJwPzAAOCWNG9BSvNOYkjmiRriXKTGvCwEfFJDnJXu/XOgbxl9Lk60sPKmN4uYwymls4HA2mY20czWSee/JiqcVYH3aiiHZWosvyWBhYtlROXYDTi1QWVHDlvhAAAgAElEQVQg28xvm3rW8997d2A9qkTOBUWY2dLAYUQX+CHgM+BLohV0CXAPcHg6P5PY/XU40VpYJiP7jDC2tYhvEY0g5h1eACYSL96RxLjqTkR3ewKxhdCwdG6lHHFOIl52W+YM9ySxh95IYMUccVa693eIPfcKwxhZfX4AfET0JC5P6VST3sfpHtYkKpGszi5Ked89yfYBDiJ6Fuekc4cAy+Uoh6tSnLsRL4Zqw12Wrt8tU44nAo8RLc3vAFuk/NSzDGSb+W1Tz3rL9Lm6V1uhVNs16sw/YHlgk2SE/VKh/IP4iN27xETcu8SGpr9KYTYAngPuTwZULHuKeNlcT7SedkmyXZLsOaLreimwETEv8f+At4kJ8ttzxll4eG7OGe55oqd3U844K937ocScyokl9Plmuv7dnOlNAJ4hhgGKdfYMMDWF+1u6vn/Kw7vEg3VnznKYSlRct+UM9yLwEnBLkew5wo4eT/mtdxnINvPbpp71/PrchXA0WCPPO1c9HsDMniIKvz9R459ATDT+AtiemAR8kthvbjRhsGOBtd19ZIpjhYzsNmAVd9/KzAYQLYjfA18Qni3fAbZNf5cjxpanEgW8g7tvmTPOB4BNa8jL48B6NcRZ6d73I3ozpfT568zxVKBXlendAyxbRmcfEy6huxIP9RCipTcJcGAbd98iZzlMA7Z095E5w71HPIzbFMkWIoYIt0n3U+8ykG3mt0096zXo090nUgNzfcVjZjsB+2YMYBmiRbQK4emyInCwxxdUC2F+SnzO+x3goBKy7YCn3f13mfO9ieGfdYEH3f2f6XwvYk3HXoSxz1cmvUpxrgB8VUO47wCvufvvc8ZZ6d5/TKyJK6XPfwN9akhvJ+B2d/9HCZ0tBdzt7mcn2QBiSGA7ouXatUx6lcqhDzCjhnCLAJNLyI4C+hYe3gaUgWwzv23qWc9/76un87PJS57uUWf8EWOWY9LfrpnzhU84XAlcCMyXzhcq6zuI4ZtSsnFEi/sC4kVbiHNRYsjoVcLg58nI1iRa9jfUEOc4Ymgnb7j7iK553jgr3fv9wF1l9HkT8HAN6d1PtBJL6ezRJDsE6JmRbUO4UT9aQzncT7QQ84Z7kBiqKZb9gJjXurpBZSDbzG+betbz3/stwCa1vHfl1Raf0H6OWEi1LFBYzTwGmE1MgH8NvGpmvweWMrNNCc+XvcvIFidaCl2BB8zsUDPrSng5LUi8FPsDl5rZXikfbxBGMKqGOBcjhhHyhlsY+H4NcVa694WJCdVS+pwJHFdDegtX0Nl8xBjzCsA/zewHSXY34UX0gxrKodZwCxDDKsWyx4jx/C8bVAayzfy2qWc9/70vTVRmuZnrh9rgmy7wH4EfEr2fh4mXyDHEuOg7ZrYa8BeavDwedPczU/hKsg2JCe9ZwFvEd4iON7OexEvqp0Thvwg84e5/qTXOFoarNc6s7AtigvL8KvSZO70SOnsJeNzd/2Ix9rw5sZXHsCR7wt3/3MJyqDZcNi9l42xAGcg2W26b0meV+izIclNLN6mz/IAu6e+86e9KhHfLKcBZwJ5EC31QJswimf+/JaOpMj+NzGIxwnOue/p/NNArIxsOLNjCOGsNlyvOZu69Gn3Weg+VdHYE0ZLrS+xYMAJYpoXlUGu4krJGlYFss0W2KX3mtLNaf23+8m8PP+Boml5UixFeSP0KhpL+dkuy/mVkfQpGnc5tmf52LRhFRrZr5v/FiJdl3jhrDdcnm58ccZa99/Q3m15Wn32Yc3y72vSsKM5vdJaOCw9ab2CfzPlK91epHGoNV1LWTHytXgbNyGSbetbros9af23+0m+LH+G9MghYPh0vlf7+nlgn8iKxsGp/0jYQwG+JyeM3SsgOIybophOt701ILQtiI75biEnG3wJDMvn4LTGJ/XrOOH9LbGyYNy+HEZOMb+eMs+y9J/nPCe+YYn3+hliI92rO9H5JTLy+VkJn+ybZ48DBpJZs0f29mbMcDkv391bOcL8kJl5fycpSfJcQ3kCX1bsMmpHJNkvbpp712vS5LbBbS9/Bc90cj5n9AdiQWN07gdg6YyxNq3f3IVYYv0dMWM8kXi6XEyvO5yW66QXZXcTCsB8SE90bEZN8TxGLse4kDL8bsVK6N+HddHNKb0egB7H+pJo4bwTGA1sTLZZlqwx3E+FJs3MKt36VcVa696uJCcuRSXZvRp8vEeshDiTmXHpUmd7dxE4EPyO24dgpo7PbiYfiZOBTYtLTiQfkkZTeQSkP61VZDremcHsR64rWrjLcbcRE9WHEfnDbJtntxBzCasTD/r0Ub73KQLaZ3zb1rNegT3d/wsyWAz5z99dpAXNVxWNmCxEGsBQxH7AKsAaxVcSTxMvjN8B77j7dzFYmfP83ICbifuzuH6e4CrKNCW+lzT0p08w2AA4gtpb40N23yuRha+BPROu6O7BzzjgXSXnZKWe4JQgD2jJnnJXufR3Cl39ICX2+RHzzYxQwM+mzmvRGJp1tWUJns4Hp7r59RrY7UfHcT0wSb5WzHN4nKo6ROcN9Bnzu7t8vkh1LzOks4+6fN6AMZJv5bVPPen59rgHs5e7v0wrMbRXPgsRk3yHuPi2dG0TsEPtDouXTAzjP3cdlwp1PuD++V0a2BOExc6m7P5OR/YfoWV1DbEP+bjrfhfCnL7iz54nzEqIF/XkN4foSrZ68cZa790uIFtOOZfT5CTEMlSe9C4iXw39K6OwSoCdwhrvflQmzILFWoicxzJG3HHoTLvV5wl1ItApvKiGbTPTcTm1AGcg2a7NNPev57/0Wd7+CVmCuqngAzOxvRNfzTHe/PHP+FOIl2Y1weZwKPOzuD5pZoQvar4zsv0TL6iPCEF5w92fN7G6iJb4STfsnve/ub5rZfcRWHYvXEOdFxORf3nDXENt25I2z0r3PJF7ApfT5TgqTN72HUz5L6ewpoiU7BjiXWIn+uZlNIDZ3XKOGcriEGA7MG+52YgPSYtkEYiufhxtUBrLN/Lb5CnrWc9uZu4+mFZhrKh4z6+ppawcz+wnRrfya6AbPJjbt+w/xMluTWBy1Pckri9hteHpGVhjT756ue5fYHXlpwvjmJ1rghVXrfyQMrw/Rol+U+AJitXGuShhDX2JjvmrDrUwM/fQhxnWrjbPSvW9EeJ194O7bF+lzKlHh/JXYIueMKtPbmmiBQmz9kdWZJX0tQAwx9CM2eexNTNYuQ7Rut8xRDr2JzygsQiy6qzZcd8LrZwAxFl6QrUq0agcTw3fb1rkMZJv5bVPPegv1SSsxV1Q8FqvZRxATzmcRL6texMvqBGKY5StiwvpxwignEUMmpxLuhz8okj1JtCq+JNYA3EAsrvqEmOh+jHgB70hM6B1CGOMEwuBnES/RauOckvIO8cKrNtz/iAnVLwiDqzbOcvf+FDFp/iPioTu9SJ/HE95oM4kHstr0HiS2t3mPmBTN6uxGwsvmVWKs/kaiYluH+ADVLcQDv32Ocrg3HX9G0xcnqwl3e5JNJyrIGwkHg0lEC3ReYiHrdXUsA9lmbbapZz2/Pr9Iupzq7jNoLbyNXJob9SO6028lZe9DfPnyJMJbaifCUAYTLYjuxITj40Rr/cZMPFnZlWQ+AUu01E8kXBcvBa7NyHqmNF8mNousJc7Tagx3Xo1xVrr3wmRpKX3+jDD2gj6rTe+GCjr7N3BlOt+H6N2cS7iR/rHGcjixxnBnl5FNJ4YkGlUGss38tqlnPb8+D6/be7meL/328CN6OVnFdgP2ID70dQrh7rgLsXtw4ZqhhLvsLWVkdxIt2uHMuUBrnWTcF5D5NGySbZ2M45oa4rySeDnnDXctMWabN85K9z6ezCeDi/R5JvGZ6Lzp3UM8xKV0di1wUtH5roS3XKX0KpXDRcS8Tt5wY0hbwhfJ9iFalOs0qAxkm/ltU896/nv/L7BsPd7Lc8MmoU8DX5vZH81soLvPcveLgf8jxj0nEnMDW5vZIDObj+h6fkp8OKmUbAbR1T2c6EJjZj2IyeRehLfJtWa2aiYf/yXGTCfXEGdfYoggb7h5iW5+3jhL3ruHd8z7wPxl9Dk05Sdveh8TQxNz6MzdbyTmUkaY2TgzG5rOzyYqj2Epr3nLYXCN5bd4CvuNzMyMqPy6ES3MupZBFTLZpp711tLnl8B3qQPd6hFpe8LdZ5jZEcRiw5+Y2UPAFHd/xczeIuYUriRa0N9Nx32IfYx2Isbri2XLEZ5VuwMnJy+mB4gX02JJdigwzsyuI1pFKxAT2UfVEOcgYpfbvOEGEq2vvHGWvHcz60M8UHunOIv1+SYxBv1ozvSWrqCzBYnFmL8HrjSze2n6hsoixFqhPXKWw8LEcEze8uuf8lJKNpNwsa5rGVQhk22Wtk096/n1uTzRy2915grnAgAzW5N4QUF4R31NdEt3IxY7fk1MDhY2m3wY+JDw0srK+hHuiVPdfVpqOfySaP18TUySP+TuH5lZP2LX2z40fer52Zxxzi7IaszLMznjrHTvfYm5jAkV9Lmdu79Uwz08U0Jn7xHDJ2PdfbaZLUXstbUY0Uq7D7i3xnJ4pMZwd5WRTXH3cxtVBmVkss3KtqlnvQZ9Ug/qMX7XHn6EC2ChYl2bGCLpRbSQNyG2SBlGuFYuXSaOSrJjgSUzx9k9w85hzt1ce7dCnLWGqzXOOWQ59FlreiV1ltK9HBiQkS3YCuVQa7hy+ax7Gcg2W2yb0mfOe6/Xb67o8Vh8pnUc4Y67DTEW2ov4nPL76ZoeSbYSsZfTbRlZd6ILugrh7fE48QXDGRYfU1qR8Nd/inD7XczdX8/E2Ztw4by9yjgL4RYj3DSrDVeQDSQ8a56sMs5K927u7ma2CXCPR8+joM9XUnpfJlVXm15BZ2umeKZldFZYs7Mg0YuYZWYrufvkzP2VSq9SORTC9SLmk6oNV5DNm86/ke5neiYffYmeVz3LQLaZ3zb1rLeCPqkTna7isfio217psB9wibu/kWRnEWOe8xG+9ysSfu//IjykVia6po8QBVOQnUEU/kLEhn89iQIba2anEy/QwcT48etEoT2c0lub8KN/OEecZxFjuTNzhjuTWLnfN2ecle69JzG8NYCYjMzq80zC8JchvGN6VJneaekeli2hs1MIT5xlCU+3+4mPUb2W0tuAcPm8KUc5nJni7J2z/E5P4RbPyoh5hIEpj1NpeoDrVQayzfy2qWc9pz5TpbMB0fu5iDrSGZ0LTiRazA8Sk8G3mtlVhNI3JxYZrk7s7ro6sQhwqSRbhRjn7J+RLUOsbB9KdOlXTrLNzGwwseBqFaLgN0yyH5lZ/xTnminOvlXGuXgKt1oKt0CV4QYl2SpJtlKVcVa69wGE186ixDhxVp/np/S2Sfc4ucr0lks6G5p0tnFGZwNTfKsnfW1PeNsMNbMbUnprpvtbpspyWDiFWy2FW77KcIsl2WpJtn6S7Q1s7+6LW+wRtyoxmVyvMpBt5rdNPes16NPMjic8/x6h3jRyXK/eP8IYJ9H0hT9LBXAJ4W3yH8IYCx806km0aK8m/Ny3oakXWJBdTwylfC8jW4DYAmNC+q2SkQ0kFmA9DFxRQ5zjCP//vOHuIzamzBtnpXu/gZiMXTDpMqvPiwn//xEZfVaT3k1JN6V09nTS56CMbDmilTaR+IRB3nKYSOw2kDfcE0Rvq1j2J+ADYndfkk7qWQayzfy2qWe9Njtbv2DTdX9Xt3VlUYfK5xhi++7suUWJ7SKOJbaVOI45J6v/j3ghlpPdCdxBfHhs/ozsKMJn/yJix9vslwBPILrKtcR5aY3hrqkxzkr3/lAFfZ5WY3r3VtDZtamc1gJ6ZmSnE4sAaymH82sMd2kZ2e1EJdmoMpBt5rdNPev57/3kRr2nO+Mcz6bElioPAoe5+xtmNoAwlo2BI4k9jtYjWg23EqvRTyBaLlnZtUQL6gTCRXIjonv6KFG49yRZP2KX2A+IIaf7iTmP44gWd7Vx3koY1AlEd7facNeksCcQLsjVxlnp3scQ49g3E3unZfXZm1gvsAnxIFabXiHOE4jhiG905u7XmtnjxBYnqxDDwI8Qk8SPEe6pxxLOAdWWwy0p3HHpXFXhMnk5jmhJFmQvuvvlSXYb8RG6epaBbDO/bepZr12fJ3gsuK07nabisVjj8THhk94D+B3hy/9yOl6LMNQbiRq/C+EK2ZfwWjqH8NIqyM5K5xcE/kYM4c0iCvlwwl+/d/r/YWKieXnCsWFhwhf+jBxx/jmd756uqzbcn4iHYV6it1dtnJXu/beEx9YLKY6sPl8kxoc3IrrnF1WZ3hkpngVTnrM62yXdgxNDF3cRwwFrEcMJiyVdH5WjHPZM1/QkNkqsNtzuRGXTg1i0WpDtmfKzEPGCOabOZSDbzG+betZr0+f7wMvufgwNolNUPGZ2KLESfUHCMN4havBu6fh0wovjNcIV8jPCk+NWYkJwfuIFV5DdQBhuoTWxPVFojxHDLOMJQ+9FbIw5g2gVTSD27BpBvPDWqzLO24gWyrrpXJ68PERMGPbNEWele7+E2Hp9ZJKV0udoopKYleMeCntF9SnS2UMp/DHp2t8QnmJ/Jno7k4ndhnvR9Bnj5srhwRRua2Kr921yhPsf8Z35bunvjKSv01J5DiV6er3rWAayzdptU896Dn26+4tm1svdv6CBdPiKx8zmJwxgJeKlNpQml8c7CKP5kbt/la5fk/ge+pqEgW7rTd/pKcjWA75095GZdLYA9iVa3zPcfeuMbBfihfkcUfDb54yzD/EizxtuQWCWz/n55WrirHTvqxAGvGIJfT5KGHw2XDXpjQA+KspnQWcfE58Mzn7O+kCidXcjsU6i1P1VKofXgB41hJue9FksO4KowJbJ2FE9y0C2md829azn1+eKxBzZJzSYzlDx9Ce6lj/zpoVQQ4hW6Q8Iv/ouxFcIJ2TCXUq0Kt4uIbuM2GtpPHCRuz+fznclvFd6E62s6zNp9iF6Al2IBWR54hxDdJFn5Ax3OU0t7zxxVrr3q4kHbusS+tya+D7HiznTu5zwOLy4hM4uTJed6u73ZsIMJHpBvYhhlTzl8C9iyOWZnOHOS/dwQ5GsH00tyxMbUAayzfy2qWe9Nju7xt2vosF0+IoHIPmfDycmx27InD+beEl2JZT/AjDB3Z80s/8SXiM9sjJiRfKNxDh+X2IC72Fib7CXia7wFGJs90FiAvsDd59u8XnYMcQ8QFVxeuxrdkuS96khL+NTelXFWeneM7KexNDFN/o0MyMq+PeIll7ee3iFaLV9ozNi4vR2YueCwcS3QS4lHuiZhPfb1cRkblXlQAy93EFUEovVEO5xwk22uGwnEB+bG9+gMpBtVmmboGe9Bfr8r7ufSYPpFBUPgJntTWwh8QHxQaT7zexG4sV2DTE2ugyxEHA20W3d0syWqCAbRuzcugCxCnoeYi+mEWa2HvALYqL9Y8I4l3D377YgzlrD1RpnJVklfd5RY3qVdLYlMbz2LvGQLwms6e5rt6Acag1XUgb8tMFlINvMb5t61nPeO21Ah694zL7ZX6gfsYXEWoSL5TvATHffNnPt4kR3dFlil9d3y8hedvcPM7LvEC3wRYCX3H1qRrYZTV80fNbdnysT52vu/l5RnF8Q6w6e97TVR5V5KYQrzku1cRbn5VvpVanPSnmpdA9ZnT3v7pMzsl2IntEM4Cl3f6IVyqGSXjYjWoPdSuSlZJytVAbFOpFttq5tSp9V6pM2oMNXPMWYWQ93/9LMlgFed/cviiqnpYpeZt3cfVb63zyjEDPr4u5fl0jDgO7u/mWxrDgey3iM5AxXNi8tiLN/0QPY1ZvZCNBiU8GviG+dFPRZKS/diJaUF8dfrT5rLYdS4QCvNS/1KINyMtlmbbapZ71snLn12Ug6VcVjZvMS8w/vFD/oFl3N85O8G7Cpu89Isp6EN8m3lGGx19chROtiQeAqd78/yeYjJvxKpbcY4Q31BfHSPsPdb60iXE93n1nm/mqNcyCxcOxLwhPor+5+bZJ1Bb4uc++V8rIosc5lBrHl/GnufldxuOL4LfY325Nwxe5CfE/niSTrDXxRQzlUCtfdm7ycivNSMs5kD7NK6aUFZSDbbF3blD5bUZ+NpsN9+trM+prZ8KT8Yq4mxnhHmlnfItmRxD5G6xOT1puY2WgzW4P4jvm9ZrZaJh1L/55O+L+/nH6nmtn56cV7ZYX0TiSM5hLCl/5cM7vFYrPBSuGuM7P7yuSl1jj/SayJOYjYduZPZnZ9ainOC6xZRp+V8nIcMSRxPrGG4GYzuyIZ/mVmdqeZLeXus1MLtLAh7bnEhoeLEZOhx5jZ0Wa2UMp/LeVQKdzlFfJSMk5iW5FxwHdasQxkm61rm9JnTn0W7L+ELhuPN2hvntb60eTdsS/R0u6ezq9IeCT9gZhkPI3wdOtDTAbeDwxL104hCuVEYnz4TeB4wuPjdNIeRsT46USgXyb9RYnCHUvs11UqvYWy6WXC/oNwh3y2TLhVCRfgUnmpNc6+xIt0y6JwRxMG+kgZfa6a7q9UXhYnHAC6puNe6bqLCA+aF4mV3B+lcIWe9SBi3qaQh/7Euox/AmcTK7HzlsONqTxLhRuezpXKS7k4LyB2vzinFctgRcJrSbbZOrapZ702fY5s6/f3N3lq6wzkymx4ZDxEfNZ1NHAq8anWZdJvh0zBHUvsQ/QHwgPkOWIF77nA/zJx7kS8LHsSrfBL0rWHJPkTwAVF+ehPuP7+rUJ6k4CrS9zDscSalVLhNkwP1A5l8jIBuCxnnAukOG8CFi4KdzCxS0Apfa5O2oCxOC+Apf/PSvIN00PQldhV98R0fgliY8V3CK+gLqTKLJOHbsSuwuOIYYFvpddMOVwGnFQmnxsRL67NivOSrn+gcA+ZODemaQ+w1iqD1YmX6A5lyke2mc829azn1+dOwB/a+h3+TX7aOgO5MhuLENdN//cFDiQWJR5D1PpPAHtnrl+L2FL/OaJ1cRjxHYvTSC0b4PupkC0TbqNkuG+nsI+lwl0nc80BwKVF+cumNynF8TiwQeaavYCbK4R7skJeJrcgzrOIPdC2Bfqka/YDnqygzyeL9JnNywtEK/4RYgv6vdM1vyZal90y4bZIOvyYGMIYTywcXSVzzaFkeiQ5y2FMhXCTKuTlhTJxHpgt21YqgycqyGSb+W1Tz3o+ff4EuL8t399z5LmtM9DiG4j5gguIl8gz6VzhGxxdiVXNXwD7ZML8nRgnPTmF2z6d70605rsQLZIvgM2S7P+IxVxjUyG/CfyyRHrbE3Mfe6RzBxMLJK8mVh9PLRGuSzK6L2hqyRXyko1z9xxxdiMe3i+B36ZzexKt/EuIVfqPAVsU6XMYMTQ1mfSyzOSl8M2TzzN6WYtoQRqxpclLpC494abcJclWBj4FNiWGQ/5E9HL+TXzz/Q3gxznL4bh07zuWyOcqRfks5KUQ52fEpHM2zvHEcMaLxH5gLS2DrsROyTOBn8s2W2ybetZbUZ9t+esQzgVm1s3M9jezg81sh3SuaxLvQXQ5hxAvS4iXDMBfiYnG14hJykHp/OFE93ZzotDXAXD3rzxK7W/p9wnxBUzc/XjC8PsQk5avEl3+bHp/I4Z4XiY+g4u7n0oM83QDlqoQ7kiiFb5Wibz8H2Fw6+SI8y/AbkSPZGmLb7Rf7O7fJeZT3iZaRX1K6HMQ8VXNZ0vk5QyiAtnOwtXzEQ/PnL8T8yIDM/f+pYdb6N+I4ZLuxMemprv7X4iHZQViM87ZxNqMPOWwBbGob80S4U4nHvLvlsjLP4kHf2QmzuuInX93Bx5391taoQz+BvyKsIflimSyzdpsU896Pn2eQWwh9TN3v412QodwpzazvxObgE4hjOFQYux1HqI1sx0xJr8lYXjvEh4xmxIt315EF30AMVE5CLjC3VdPhXQ1YUDvEa2GnYkXVldiGOkVYpX0B8S8x+opX3cWpfc94iXoxPYaU4mJagc2dvfVmglX2JOpVF6cmEivJs55iFbcWsQLfRzRappBPHwfE8ZcrM95if2ptgN2Telm87JXymc/0mStux9sZsulcGsTvZnjiG7/x8BbxKaKGxFj0McSFdpHxDfr/5C592rL4UNgzyrKb0GikimVl65Eb+sVorW5jbsPaSa+PGVQyh5km7Xbpp712vT5B3d/nfZGW3e5mvsRPuxP0ORBNZ4Y0z87nT+OeHFsRLzI1iHGdicSG+AV4ulFbPWyLNE6upZobW9GGPvmwM+J7vjoFKYg2yLJpgCnJ9mGRek9DpxbRvZEBdnTwL+L0ivk5dkK6VWK80FiXQ3p3LNExb0i0fV+uYw+JxEeQJbykM3LFKIVVdDn4oTnzWKEZ87FxMO+OTGM9SNi2Goa6cuGGdmORIUwLXN/ecrhxRKyQriXiM0Qs+kV8vJaifS2IJwJXiDmDlqrDCrZg2wzv23qWc+vzzNJw9ft7VdYz9CeGQGc5+6zzWwdoqu9P9EKOBB41N09+b/v7e4PAZjZyoSxFVbtfmFmzxOLqs4FriLGcZclxlNvB243s0WIMVaIuYvdPXVRi2RditIbRryMWyIrpFcqL7XG+TWwn6etYMxsFvB2GX3OAh5I+uxRlJeliYe+oM83zOy1lM6VNG0gugiwi7tfD1xtsZNvYfV4VnZVGkL5XxX3XqkcisMtRbRWi9O7Oq3fKU7vNuA2MzuKeBn8rw5lUCyTbQZ5bFPPen59PkHs2n0l7Y22rvmq+dE0ibYWMUcAUQCjgAuLru1KvCBvpMkduNCC2pVomd9KZgKyKNxNpMnCIlmXZmTfpJdDZs2EqyW9cnF2SX/HFu69SJ9WTp/p700ZfRbK49dET+KbOEuEuwXYrUw+K8nK3XtZWSaf5cKVTK9UuEaVuWyzKtvUs167PueQtZdfm2egYuYyroaVFFt8HeEJcneJcH2J4Z17S8VPuE3eXYPs4DrI6pHeb8ropTl9HlAm3JLEcMFdZcpp36nPI/oAABpwSURBVGpkrVgOJfNZbXqNLnPZZqvYpvSZQ5/t5dfmGag6o2UUS1MLZ2XCb71n+vudItl2NLWc1s3IliM8VxYC9iE8q4plC5SQNZdeLbJS6XUrE261CrJsnMOBfdP/3wVWrlKfle592RSXAUcRY8sF2RLEsMdihIfO8BKyxUvIKqVXq6yQ3qKZ9LqVCbdWG5W5bDO/bUqfOfTZHn9tnoGyGWvyuLOM0ocTLdduxYolJhNLbgmRZD8gbblRJLuTpvUcXQuFmJFtV5CViPNQYPEy6R1PWoRWyH82n8TLsEuJvGxSIb2RpPUoZWTf6iESOwps34w+u5bRZ6W8bJH+71XiHjZI/89bQp/fK8hKxLkXMF+J9O4kvN8GlSijO4j1G/OUCbdBhfQ2SfoozuMmycZKlkEFGxuZLWvZZqvYpp71nPospZf29mvP63h6WmwP7p62Mie8Wt5PxxOIFcqY2QZEIW1gZseZ2e7JdRIz+x7ROtgC+LuZ7VhIwMzWJXZ5/YeZ/chjE73ZmTjnBQ6x2E49u6X+6oSr566ECyMZ2Uop3P7ALgDetBX7Bim9A4j9k36eCbdmuodNzOx3wB/NbOMkWyWF25XwBrvYzPZIshUJt8k7PVlfJs7hhMvzdWX0+c+kz9lF+tyYeOCHmtkRpHUKSbZJSm/tNCG/fJGsJ3CQmW3m7p9m9LkpUTn8MeXj00y49ZPOfpHCf52RrZHCHU5sdZMto43T9XsS64g2zYTbIN3DamZ2MLCDpc0YzeyHRK9tc6LHNjKdX514oO9KOvra4tMK1dhYF4+1P7MsqDacbFPPemvrs93T7ioeM1vO4jO2JxIFsnA6vxaxsd7JZrZFMtKvkxfL/YQfvBPus9sQ22Pg7vcRCx7fJxaJbZ3SWJXwfjqLNCxkZnelAoTwn3+b8IhxM1vYzFZKL9dXiPHj84F3zWxFM9vGzP6Rwr5OuCUPMbMbLLY4J+XzE+KztXcAa5jZWma2H9Ha+4pYbf8qYdDHmdlJKa2ZxMN3I7EWYR+LT97OJNarPJdeqN/g7o8Cf036PKmEPlcEfmVm383oswvhxurEUNWywJFmtlGK9t6UZk+i0vm1mS1uZgOSPv8LbAAcYLGz70op3OdJn/+N5G0+M1vSYhfiV4HpxCajHwBLmtn3zOznhI2+TtoM0cxOsqbdigvl/nIq350yZVTYMaE/Md6/MfEyOpT4nMOlKd3Xky7PTvrvZ2avmNnInDZWazjZZmnb1LOeX5/7Jv21f2/ltu5yFf8Iz6M/EStxz6BpzHIE4bP+M2Ih4K3Akkm2DbFqt3c63pEwonmILUvuB3ok2bPEROWpxFYSy9E0/r8/YSiTUz4mZfI1hljvcT7honkpTVtsjCcenqMJQy1s5zEPsYK+4KmzIpkJv5SXMcT3M+4BJmZkQ1Nafye+y3E7sGBG3ptYFX9b0su+hCvwWOA7mevG0bSyOavPrVL6BxHbaZxHGkoghj8epGk34P2Bs9P/P0n6LIwrPw7cQOxMcATxkj+JGO44jHhw7k1/H8/k67x0z5clvY0BlvemYYh/J71MpGnrnmHEHm9bpuPVgXsycT6Z7v9swoX0wYxsw2QTZxbKJ52fL+n6d6lMHyK/jY0g7OYXOcPJNkvb5gj0rNeizyVJe7O191+76vGY2UhgPnf/i7v/h3hZ7Wbh4z6DKJyL3H1RwmCeNrNTiNa3E0NDPYiWwqKkCUJifcnSZrY/8RncbQkj6Q6sR7Rafu3u5xIvoMWIRVj9zOxPqSXi7r4VYRw9U5w/tBgmetDdD3X3PxPG8XC6pS/T8R/N7A8pTE8z+1fK98fuvjOx0noc0N/MfpPCLkhsP3Mx8bC9QmypAZGZz4mX8DRifcP57r4KURFcZ2Ynm9k2RMvxjhL6/IzY4uZcYofcGcCtKZ/9k3yZNIxxA7Cema1ADDtMAxY3s0OID0ttk/I5guhZPE2MpZ9AbEWzOvHQL2tmvzOzw4kXx0ZERVDYO22UmW1OPMx7EYv/3iKGWiAe3vHAJanl+CHQ3cyOMbPjiQ98bUvsyzUTGGBmu6ewn6dyuxIYaGYXJj3OcPdniEWGiwEPufs5JWysO+VtbAbRor5LttkqtqlnPb8+exLP0pp0ANpVxUMsYLzKgu4eX7ScQUwQTyReUEMB3P0QwqNjILFdi6drvvL4VOxdxDDRLGJi+VnCuPdM4Qs7ua7h7pcB0y3GiH9GGNyWxEuqJ7Gw8LgU7vkUrgvhkXIFYbgFJhKtftx9lruPJbYkXy3ld09i7uF5wncfd/+A2K7/GWAlM3uFtFtzein+N8kGmtlTZrZrCvdRyks/S3MK7n4EUQH0Jl6mHxAfvirW5z1Ey2+ou7+S9PlzwgvsRGABd3/WYx+pt4kHbDli+GBhj++/X0p41hSGOW4hKpkLiIppRaIVeirhmXQ24ZXzG6LlVwh3a7r/JZPu50uy95OO+qTj2e7+L8IJYb2kx9+mcp5JfByLVNYTiZXp61sspDsK+Je730084CtafCBrqxRmCk3DgAVdZm3sKpKNeez7lrWxJYhJ5WdLhJNt5rdNPev59fkJ0Dc91+2fWrpJ9fxR5I1CfI/jNOIFcy+wUEbWk/B4+Zh4AWa7p+sRhjGFaEUMKAq3GdGS+hGxxcaqRBd4EuHmuCFNQ0/9MuE2TeE2IwxyE2KblscJg32RcOcs7ioXdsddKh33JB6+S4k5h1eJl/TixCaA8xFjwf2Iln7B3feHxNDYo8CfU9prpWu/8QpK134MrF2kz58T+6X9iujS987qnnhgPkr665mRbUk8PE8R7tPzFIUrfNiq4EW2IdFTepKozNYoxAcsWhRuEtFSW5CoVF4jXiaHpPtbn4z3XLrugiQrfN54IaJyOCbF8RLhPLBK0s+SKWzflN5GxHDLrSmtXxJ7Y62drutSpMsPgNULsvR33VQOU4CtkW221Db1rLdMn2u09fu72l+72CTUzMxTRsy++fQr7u5mNpaYrO5NtGgnE9t930tMRg8mCu9KYoL6AWI45mJi0nEmsfnfdGLI5p4kW40YUhpDtEAmEC2qnYhCXIYY7387hRmf0luN2AjzCmIY6CZ3f9TMxhPeWAsRk4mFvNxHzFd0JV7qd6Zw/yUmQq8hXp5fE2O27xNrFiYQD+B6wEvufnCRzsYQE5Tnufu4dK6LxySsEZsRrkd4xmT1eR3xoM1LDFPcQIwbT0n3tzxRUVxFjJdPIB6wMcQD/0W69/uJYYdnzewSouJYPIUbz/9v79yjrKqvO/7ZIIgKUrRofBBQHhJBBUEI0PBYKqiJLpJG4wtrUk2qglaXy1iTxrSJmIQWGxEfJDFUG8UiUasxQOwK4qM+AgKaRkF8rASJr0bFaCLC7h/f35l7ZrgzMnDnzp1z93ets+bc8z2P3+yzz++xf3vvX+mDHYdMYiPS8eUoqO95M7s1Hc9GFMuTzH+PRk+7oLQ3S3JlWZvK2SX9j4sT9ws0Irsx/W+ZWe2J9P4mI3PbYFQxnWtm3VBFNDfJ/1YvpUzJZPkV1Mv9wN0vyzhk7rmDbXUsdHPHdTO+9VbKM+2PB8a4+3fpIKgV74crzMzRcPMdkGBNHk8DUS9gA7JzjkZKtg8y6wxBvZFJTbjD0vYqqvyypHq9kUIdjV78pxKXzU30c/dPpDIcm7gTkS14ePr9Aaq8RwFnmvKY7VXmuoZyluFORz2ZTu7eL3GT0z2npv/rUlS5fdzMznDZwjGzMWgEsgB5pR3g7j/JFBG5Hm8F5uYa9E7J9DUoJ8970Yd+KLJPj0CmsF1Qpty/QpXu0nTO5FTmz2XXmdlSNJo5HTVen09cH/Qxnubux6XK+szEDU7XjUA9xg3AyahHOwQ1NHu6+6FNrmsoZxluEBq5bHH3AxM3Lb37Y5NMf5TkcjeAK6dXVoabgeNTH+gXqZIch0yCNwNdzezYHDcg6ddQVPFkOha6uWO6Gd/6DsjT5Om33MwepiOhvYdcqJXPXB3vIpdLC/VKHkSKk3mx9EIJA59D3i0Tc+dn3NoWuHLX7YVMTy3ds4GjFPC2o8/rhdJdtPS8Daj3tC/y+rkN9d7Go3VsFiOTQcbdkrgxqHc1v4w8D0O9smE5ee6Lep7r0ejgsNz/l3EvZFzuXvnrHm/CfQxV2Os/4rpy3CzkHt3a67K168txD6DJ3hPRB34T8koalt7DPajRy3NH5LhPluEOQJXX5Fa889DN5nUzvvVWyjPd44sk03VH2trd1GbyTjoUVSrHIDfcD1Ea8OVm9iM09L4PWOrub6TrZqIezS7IzFIJ7irUa6nkPXeG+527X2/yLDsYzSOMTNcMdPe+ZbisUhzUjDxvRz30hchN+d30vH9Fk/h/SLJuyvVAvcam3GxkPmjuupbuWWmubFnS6OdaNJJ6FNnJx6b7fAx9xAea2d6t5KYgk0k19KEedDO+9dbJszcwwNMoqiOh3RseADPr4e6bmhM68vU/FHm9/BaZSh5B8T57FpC7B81bfNVzkchmtjv6aB9EvcX7mnADkT38HHdf2Iw8D0G9qR5ouYKNyM78FGr8BxSYu8zleYSZ9UkyuRktKndvTpbby52Deq21qkcdTTfjW2+9PBtxHQXt2vDkJ8iaHG8kWDTUHIfs6WPQkPRRd7/SFKVbWK6MbC5Aa7UfXYabDny2KVdGnkvRXMww5BDQBwW0XWKKjSgs10QuXwNOcvfRZWS5XVwt6UpBdDO+9e2TZ7Nch0ClbHaV3pBr5X9TikI+mJKra3c0yVh0LssOcDgwLO33QZVps1wZWVoZefZGjgNdkN27a8G5bun4QGTuMeTN1JfGGYNb5NJ+xu3awrsrOpdltSinm81yH6GbjZ6XuLJlKSDXSGaJa7U8O8rW7gVIQsxXohchF9c+wIG5c55GC491y19TJ9zqj+BGtiDP4ahCbqSoKIbhiMQ1TUNfFO7IMsefTse7kuIhWsENz/1uyjV6B3XErWkNR+NKNIuL6kspjsbS87JYlryuF5rLyawlrqysO9rWLu7UZnYosNZTJl8vZYO9CwVdDUaZiD2dfzzy/PgXYKCZne+lzLL1wG1sgVuJsgR0c7kHd87J807k6fU6cK0r2ju77gWUQWALmngvEnch6rxcVOaal1AjvqWMTFri1gHjzewU5MX3PErjMjFx48zsrzPO3euFe74FbkUm+wzuvjnt3gn8yszeQ/E669FcyJj0Xs8wxVD9xszWu+Y/Cs2Z2Vjk0dkct8KVDLTDo+opc8xsCgry2hUUOJaOj0M9zQvQ8PNSM+tsZoZcZD24stwd6IO9Jt+Ip8pyr8T9FrjQzEaa0sPvgobwywvKzUBpfyr5rP4oeHYTWmBsppmdnc4dEFxZbk6S49VmNtXMhgKkRmlflLPsKRQcOdnMrkbBl59AWTBWBdeIOy/Jr+r1dqXRHiOerwLfdfc/mlLmH4Ts8aOBZ9z9BjN7AfVW17r7PWb2BYDErUepVOqeA940sxmoURqLGqXZKECvK3InnpcU9VmUkuMt9N7fcfd5AGa2tkBcN/SRLnD3Nyv4rNfd/abEjQG+jtyrDwY2BLcN9yeUhPMGlB3gy8CHZvZT1ON/LKebPVH82Djk5fZ87j30Co5xKBXVQwBexiGrw6Ea9rxsUINcXH9MKUAsS4XxPTRMPzF3/ploGH8GUuDDg9uGOx/4eTo+GeVSy1ZRHIC812Ylmf8sHR+K4gh+XVDueBSntKSCz1qKeqEno0bt08B/oEj4Z5E7bHCNufXAspzejkGpY+aijBJLUUBur9w5h6M4q9XBbcM9ApxSrfq6rbequ1Ob2fXIxLcaJW683MwOQJHhvwO+76VV/E5GQXr/6O4bTasDBlfiXgVud/dn0vEzgW+iNT1uQ6lijkMjoLfc/dvpvG+gIf3GgnLzUazE8go+6yhkfz8SLeHwTXd/1MzmoDmhTsE14v4dOX5chXKUHYdW6bwJNT5noKj83VHn6a4k639O9+se3DbcZnf/FgVAezQ8uyFlHIQi4c9HtvXLgbfd/eLcufugtTTGoujd94MDM9sDrXo4Hn3cm3ON0jSUzHOhu/9nOrY3Wt/jZRQpPh2Y4O4vFoj7HvAGmg+bikY+71TwWZNRVP1mlIL+DWQe/iHqBOwRHO+6+0tm1g9lH7gZ6EepUfond38kNVgPoDQyE1AAaX80evpSOtYluG05d19PEVCNYRVqwQ8BPp1+H4QanCeRWeRxZBN+GJmS/jKddz9K7PgsUtTgSvIcBEwvI+sl6IPO1ik5CzkZTEU99nWoQn2gYNwKZCp7M/2t9LPuRz32Hrn3swbpb3Albk+ktwtRQz0cmSv7oZxl5yMvtr7p/J7ILDwPNWSTcrocnDqRF5Bz5S/CVq2GJ6tEVyJb+inAgShp41qUeuQIlKb8bjTvMxV4IneP4Eqp4fPybGiUkB39iXTNyNx1P0T293L3LAL3XzReVrstnnVq4m4t836CE5fXzVXkGqV03VbkifkwWtsmC/bNuFnAFcGJK/JWjUanoTLMKeo9aBh+IuqV5yfPu6SXsDYpaHCNuXWUr2RvaUGes9M9Hykodxty5z2mCs+aFVyL3Kom33rWKF2J5nHHo8X6/g15rg5Lfxcg81JwiUsyPJu08GCRtjaf4zGzUWjFy7939zXpWJd07BhkC/4AxaO87Gkuw7RO+R4oHiC4ErcABdie1USeM9E8xL3I3t70umvRhGW5exaBexi56c6s4TIWnbsDmdTL6eYUlNDyaTP7C+RscBRyVx+GKtr+wTXihqJVRQdSMFTFucDMLkP23qaKOhfNSUxCaTMWAa+gCuRB5PXymeAaccuQCeO1kGcDtxEll3wc9b5rsYz1wC2jed28AbjH3ReTYGb7o0UFrwKmuPtjwbXMFQVtHkCaPLDmomHkTGCRmU1K9Gmo93QuSpr3RTQZuTdapngiSokSnOIk9gNuRwoZ8pRn325ofus55KJba2WsB257dbO3mS139/fSsbPRHMf7KE3MmuDA3V9Jjc8jRWx0gLab40ETZdcgH/5voUZuLOoh/QF4DHlzLEDrkp+Fhp2/QasQjgpOXJLnN1BFe1fIk9+jCPn/RbFKo1EPu9bKWHiuFbp5EwoufR3lwxuW3t9paN4nOLgkV3/2B3q25TxLe25t1ehkgp0AjGiixH+HJhu7Aruk80ehJZl/BtySjllwDdy8kOc23DoUhJz9z1aDZawHrrW6ORKZ5BZn98zVG8HB1aQM3kXe2irZ3CeBJ939QXdf4e6nIn/0c9G6JpmgtwC4+xMojcbbwG5mNtbT2wiOacAQlMcu5FniTkUOGCekY16DZawHrrW6+StkZnozu2c6Jzhx+6DclYVGWzU8PwWsiWAzRe2FMtIuAuaYWefEv4TSnLyIbMPXBdfA9QR6hjwbcStQT/rHNVzGeuB2VDeHtHDPeuZGIM/AQqPNvNrM7EtoonER8kv/OMpmOwdF4j4H3EgpCeMhAO4+yTSxFpyiv/uhALw7Q57ciMy4j6LRTmcUfFxrZawHLnSzjeTp7idQdHgF7XYoFc7RQL/0e38UVf4y8vt/LW1/k7tmCgo8ewotfxucN9h8LwcuprQiYV3LE3lOrUQV2WPAhbVWxjrhQjcrL89z0DzZftnxIm+VbHT2Q9mAlyFf/rxg70XmtwnI5fU5YEji5gNXpP0TgmvgQp5NuFopR3Chm5Xk6nGr5BzP1cBid5+IsipfYWZDTEsedAcuck1A/gQNOU9K3CHAy2Zm7n5/cJyU5DkHrbszKeTJUpSPri+wzMwmAz+vwTIWngvdrLw8zewgM5tsZkadoCINTxJsX+Q6SV6w7r4BpccZnhPsfGBo4t5Dix55cOKSPCcAz7oQ8tS8wQzgH1BmY6/BMhaeC92sLJf2r6Gk03WBijQ8SbAzULBYhvmUBHsesK+7uyl30zqgs5l9G9ji7tdBQ16nuueSvNYB14c8G8nlVGBXd/9BrZax6Byhm23B7e7uP6Ce4BWy2ZE85NJ+F7QuxwKUPmNpmfNno3TgE4NrmQt5Ns/VSjnqlQvdbBuu6FvFcrV5kmTa3wxsNrNXKK0x0RTzgPfdfVlwLXMhzxa5WilHXXKhm23GFRptmp3azAYD09z9a83wndx9a3Dbx4U8m5VLTZSjnrnQzcpzRUY11uOpS8G2FUKegVpF6GZge1GV9XgCgUAgEMjQVrnaAoFAIBAoi2h4AoFAIFBVRMMTCAQCgaoiGp5A3cDMtpjZKjP7tZmtNrNLzKzFb8DM+pnZ6TvwrMPSs1aZ2f+Z2Ytp/wEz29/M7tzx/yQQ6NgI54JA3cDM3nX37ml/H+A2tK79lS1cMxG41N0/sxPPnQ/c5+7R2AQCxIgnUKdw99eALwPTTehnZg+Z2cq0jU2nfgf4VBqtXGxmnc1slpk9aWZrzOwrrX12etYzaf9sM7vbzO5No6LpaST2lJk9ZmZ7pfP6m9liM1uRyjm4UrIIBKqNaHgCdQt3fwF9A/ugtWOOdfcjgS8A16bTLgcecvdh7n4N8LfA2+5+FHAUcK6ZHbSTRRkKnA6MQguqvefuw4H/Ac5K58wDZrj7COBSGudKCwQ6FCqWMicQ6KDIsih3Aa4zs2HAFmBQM+dPBg43s8+n3z2BgWgp4x3FL919E7DJzN5Ga9oAPJ2e1R0YCyy0Uub8XXfieYFAuyIankDdwswORo3Ma8CVwKvAEWgU9KfmLkMjjyUVLMqfc/tbc7+3om+0E/CWuw+r4DMDgXZDmNoCdQkz643Wu78uJbjtCWxMKV+moSUAADYBPXKXLgHOS6ntMbNBZrZHW5bV3d8BXjSzk9MzzcyOaMtnBgJtiRjxBOoJu5nZKmRW+xAtXDg7cdcDi1Ll/kvgj+n4GuBDM1uN1p35PtAPWGmye70OTK1C2c8AbjCzr6fyLwBWV+G5gUDFEe7UgUAgEKgqwtQWCAQCgaoiTG2BwE7CzA5DZrs8/uzuo9ujPIFArSNMbYFAIBCoKsLUFggEAoGqIhqeQCAQCFQV0fAEAoFAoKqIhicQCAQCVUU0PIFAIBCoKv4fyc60q5CFOSkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "data['Sub_metering_1'].resample('M').mean().plot(kind='bar', color='brown')\n", "plt.xticks(rotation=60)\n", "plt.ylabel('Sub_metering_1')\n", "plt.title('Sub_metering_1 per quarter (summed over quarter)')\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is seen from the above plots that the mean of 'Volage' over month is pretty much constant compared to other features. This is important again in feature selection." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison of the mean of different features resampled over day" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 3.05347475e+00, 8.81868687e-02, 2.36243763e+02, ...,\n", " 0.00000000e+00, 1.37878788e+00, 1.24393939e+01],\n", " [ 2.35448611e+00, 1.56948611e-01, 2.40087028e+02, ...,\n", " 1.41180556e+00, 2.90763889e+00, 9.26458333e+00],\n", " [ 1.53043472e+00, 1.12355556e-01, 2.41231694e+02, ...,\n", " 7.38194444e-01, 1.82013889e+00, 9.73472222e+00],\n", " ..., \n", " [ 1.24739444e+00, 9.19861111e-02, 2.40030965e+02, ...,\n", " 7.61111111e-01, 1.97777778e+00, 8.48888889e+00],\n", " [ 9.93863889e-01, 8.06444444e-02, 2.41536257e+02, ...,\n", " 7.47222222e-01, 2.95833333e-01, 3.52222222e+00],\n", " [ 1.17822961e+00, 9.56658749e-02, 2.40291029e+02, ...,\n", " 8.55106888e-01, 3.04829770e-01, 7.90894695e+00]])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Below I compare the mean of different featuresresampled over day. \n", "# specify columns to plot\n", "cols = [0, 1, 2, 3, 5, 6]\n", "i = 1\n", "values = data.resample('D').mean().values\n", "values" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAJCCAYAAACBLyXFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd4FNXXx7+zu8mmVxIgQAi9G5p0pCMCyk9QUWxYsaBYeQFRsKHSbIhdsVAtiErvNZRQAqGFBNJDetts3533j9k7OzM7s7sJhCR4P8/DQ7I7OzvZvXPvPed8zzkMy7KgUCgUCoVCoVAoFEr9R1XXF0ChUCgUCoVCoVAoFO+gBhyFQqFQKBQKhUKhNBCoAUehUCgUCoVCoVAoDQRqwFEoFAqFQqFQKBRKA4EacBQKhUKhUCgUCoXSQKAGHIVCoVAoFAqFQqE0EKgBR6FQKBQKhUKhUCgNBGrAUSgUCoVCoVAoFEoDgRpwFAqFQqFQKBQKhdJA0NT1BQBAo0aN2Li4uLq+DAqFQqFQKBQKhUKpE44fP17EsmyUp+PqhQEXFxeHxMTEur4MCoVCoVAoFAqFQqkTGIbJ8OY4KqGkUCgUCoVCoVAolAYCNeC8ZOTSvXjyp2N1fRkUCoVCoVAoFArlPww14LwktUCHHecL6voyKBQKhUKhUCgUEVOnTsXcuXO9OpZhGKSmptbofeLi4rBjx44avbYm3HHHHfjpp59u2Ps1FKgBR6FQKBQKhUKh1HPWrFmDvn37IjAwENHR0ejbty+WL18OlmXr+tKuC/Pnz8dDDz0kemzz5s149NFH6+iK6i/UgKNQKBQKhUKhUOoxS5YswYwZM/D666/j6tWryM/Px1dffYWDBw/CbDbX9eVRrgPVMcRrxYBjGMaPYZijDMMkMQxzlmGYt2vjfSgUCoVCoVAolJuZ8vJyvPXWW1i+fDnuueceBAcHg2EY9OjRAytXroRWq3V5zbfffou2bdsiIiICd911F3Jzc0XPb9q0Ca1bt0ajRo3w+uuvw263AwDS0tIwfPhwREZGolGjRnjwwQdRVlZWres9evQo+vfvj7CwMDRt2hTTp08XGZlnz57FqFGjEBERgcaNG2PBggXYsmULFixYgLVr1yIoKAjx8fEAgKFDh+K7776DyWRCWFgYkpOT+fMUFhbC398fBQVcitO///6L7t27IywsDAMGDMDp06c9XmtcXBw++OADdO7cGeHh4XjsscdgNBo9fo7z5s3DCy+8AACwWCwIDAzEzJkzAQAGgwF+fn4oLS0FABw+fBgDBgxAWFgY4uPjsWfPHv78Q4cOxRtvvIGBAwciICAAAFy/TBlqKwJnAjCcZdl4AN0BjGEYpl8tvVetUKY3I61QV9eXQaFQKBQKhUL5D5OQkACTyYQJEyZ4dfyuXbswe/ZsrFu3Dnl5eWjZsiXuv/9+0THr169HYmIiTpw4gQ0bNuCHH34AwEWBZs+ejdzcXJw/fx5ZWVmYP39+ta5XrVbj448/RlFRERISErBz504sX74cAFBZWYmRI0dizJgxyM3NRWpqKkaMGIExY8Zgzpw5mDx5MnQ6HZKSkkTn1Gq1mDhxIlavXs0/tm7dOgwZMgTR0dE4ceIEHn/8cXz99dcoLi7GtGnTcNddd8FkMnm83pUrV2Lr1q1IS0tDSkoK3nvvPY+f45AhQ3hD7NixY2jSpAn27t0LgPu+OnTogPDwcOTk5GDcuHGYO3cuSkpKsHjxYkyaNAmFhYX8+//yyy/45ptvUFlZCQBehVNrxYBjOYj14+P416AEut8fuIKRS/feNLpiCoVCoVAoFErDo6ioCI0aNYJG42zfTCI6/v7+2Ldvn+j4lStX4vHHH0fPnj2h1WrxwQcfICEhAenp6fwx//d//4eIiAjExsbipZde4g2jtm3bYtSoUdBqtYiKisIrr7zCGybe0qtXL/Tr1w8ajQZxcXGYNm0af45///0XTZo0wauvvgo/Pz8EBwejb9++Xp13ypQpIgNu1apVmDJlCgAuUjZt2jT07dsXarUajz76KLRaLQ4fPuzxvNOnT0eLFi0QERGBN954g38Pd59j//79cenSJRQXF2Pfvn144oknkJOTA51Oh71792LIkCEAgF9//RVjx47F2LFjoVKpMGrUKPTu3RubNm3i33/q1Kno0qUL+X69MjxqLQeOYRg1wzCnABQA2M6y7JHaeq/aQKtRgWUBi40acBQKhUKhUCiUuiEyMhJFRUWwWq38Y4cOHUJZWRkiIyN5+SMhNzcXLVu25H8PCgpCZGQkcnJy+MdatGjB/9yyZUteGlhQUID7778fzZo1Q0hICB566CEUFRVV63pTUlIwfvx4NGnSBCEhIZgzZw5/jqysLLRp06Za5yMMHz4cBoMBR44cQUZGBk6dOoW7774bAJCRkYElS5YgLCyM/5eVleUiHZVD6bNw9zn6+/ujd+/e2Lt3L/bt24chQ4ZgwIABOHjwoMiAy8jIwG+//Sa6rgMHDiAvL0/2/b2l1gw4lmVtLMt2B9AcQB+GYboKn2cY5mmGYRIZhkkUhhHrC1qNGgBgstrq+EooFAqFQqFQKP9V+vfvD61Wiw0bNnh1fExMDDIyMvjfq6qqUFxcjGbNmvGPZWVl8T9nZmYiJiYGADB79mwwDIPTp0+joqICv/76a7XVaM8++yw6duyIS5cuoaKiAgsWLODP0aJFC6Slpcm+jmEYt+dVqVS47777sHr1aqxatQrjx49HcHAwf9433ngDZWVl/D+9Xo8HHnjA4/UqfRaePschQ4Zg165dOHnyJG699VYMGTIEW7duxdGjR3Hbbbfx1/Xwww+LrquqqgqzZs3y+u+W/Syq/YpqwrJsGYA9AMZIHv+GZdneLMv2joqKqu3LqDZaH+6jMVntHo6kUCgUCoVCoVBqh7CwMMybNw/PPfccfv/9d+h0Otjtdpw6dQpVVVUux0+ZMgU//vgjTp06BZPJhDlz5qBv376Ii4vjj1m0aBFKS0uRlZWFTz/9FJMnTwbA5agFBQUhLCwMOTk5WLRoUbWvt7KyEiEhIQgKCsKFCxfw5Zdf8s+NHz8eV69exSeffAKTyYTKykocOcKJ9Bo3boz09HSXiKL0b1u7di1WrlzJyycB4KmnnsJXX32FI0eOgGVZVFVVYePGjSSvzC1ffPEFsrOzUVJSggULFvCfhafPcciQIfj555/RuXNn+Pr68gVXWrVqBWLbPPTQQ/jnn3+wdetW2Gw2GI1G7NmzB9nZ2dX+XIXUVhXKKIZhwhw/+wMYCeBCbbxXbaHVcB+NmRpwFAqFQqFQKJQ6ZObMmVi6dCkWLlyI6OhoNG7cGNOmTcNHH32EAQMGiI4dMWIE3n33XUyaNAlNmzZFWloa1qxZIzpmwoQJ6NWrF7p3745x48bhiSeeAMBVVzxx4gRCQ0Mxbtw4TJw4sdrXunjxYqxatQrBwcF46qmneIMIAIKDg7F9+3b8888/aNKkCdq1a4fdu3cDAO69914AnGS0Z8+esucmffByc3Nxxx138I/37t0b3377LaZPn47w8HC0bdsWK1as8Op6p0yZgtGjR6N169Zo3bo13xDd0+c4YMAAGAwGPtrWuXNn+Pn58b8DXARuw4YNWLBgAaKiotCiRQssWrTIrZHqDUxtFOlgGOYWAD8BUIMzEtexLPuO0vG9e/dmExMTr/t1XAt/nczBS2tPYfdrQ9GqUSDiZm0EAKR/OO66vk9euQElVWZ0iQm9ruelUCgUCoVCoVAoysTFxeG7777DyJEj6/pSAAAMwxxnWba3p+M0ng6oCSzLngbQozbOfaMgEbjazoG7beFuWGzsdTcMKRQKhUKhUCgUys1HrefANVT4HDiLOMTZ+a0tSC3wrKf1FlrlkkKhUCgUCoXSkLjjjjsQFBTk8m/BggV1fWkiMjMzZa8zKCgImZmZdX15NaZWInA3A75qUoXSLqq+ozfbsC4xG3PGdrqu72cw2+Dvq3Z5vKTKDKvdjuhgv+v6fhQKhUKhUCgUSk3YvHlzXV+CV8TGxkKn0yk+L+yN15CgETgFnFUobbDZxVEytar65T49UaKXb7ze893t6PP+zuv+fhQKhUKhUCgUCqXhQQ04BfgcOIsdVokBp6kFA660St6Ao1AoFAqFQqFQKBQCNeAUcDbytsMuqdSpqkHDPSWC/TgVawk14CgUCoVCoVAoFIoHqAGngLAKZW1G4EL9fQAApQ4Jpc3OIqtEf93OT6FQKBQKhUKhUG4eqAGnAMmBM1vtsEkqRaquowHn78NF+iqNVgDAh5vPY/DC3SioMF6395DjcqGONimnUCgUCoVCoVAaGNSAU0AoobSxrhG42X+e5pt7XwtEjUkKpey8UAAAqDBaqn2uNUczMfvPMx6PK9dbMHzJXsxZ7/lYCoVCoVAoFAqFUn+gBpwCQgmlXBXK1UezvD7XudwKfLrjkuxzDDgLjsg0SVRMoxJ/NTY767Gp+Kw/z2D1Uc89Lch59lws9HgshUKh3Czsv1To1RxJoVAoFEp9hhpwCgirULprI2C3e27EPfaz/fh4RwqsNmXJInmOGHDSqN/UH4+iw9wt3l28DGarHct2XYLRYoPDZoTZg0FIoVAoNxMPf38Us/88I+rtWduUGyxu85qvlteuXJ5CoVAoNx/UgFNAo1ZBxTgklG4MuCKdCScyS706p1nGgCMSShKBsziOsUiO3X+pyOtrl+OnQ+lYvC0FKw6l83+P3PVQKN5w6/s7sGTbxbq+DAqlRuTdQKNpyreHMXjhblmj8fDlYvT7YCf+Scq9YddDoVAolIYPNeDcoNWoZSWUwqjb4z8dw8Tlh1BlsvKPlestsm0B3BUNsdqIAceKfr9e5JYbAHD5e+TcJlrEhFIDyg0WFFaa8Pmu1Lq+FAqlWpC2LRevVt6w9zybWwEAyC41uDyXnFMOAF47ASkUCoVCAagB5xatjwomq2sj7/n/nON/Ts7hFmdSRRIAblu0Gz3f3e5yPjkDjjhlbXaxhFIagbtWyvRcUZSwAF/eIL2BKiJKPSStUMdvIKvDhTxuzPv50OmDUn/YdvaqxzzhZmH+AICcMldjqrYgRuPpbOV7jeRCl+nNSMoquyHXRaFQKJSGC92BuUGrUcFkcW3kLYfO5KwaWW7gfrbY7KINBYl4/ZKQjg2ncgA4c90sElmj1GisDnJSHdJnzt9HDaudRt4owIglezH+8wPVfl1KgQ4AEBsRcL0viUKpEUcuF+PpX45j4Rb3st4AX666MJmjbwRhAVyvz4JKV9kmmaqJlP6Bb49gwhcHb2iOHoVCoVAaHrViwDEM04JhmN0Mw5xnGOYswzAzauN9ahsiofRGzlhusLo8llao4yWRANcawGqz480NZzFjzSkAzvYBUpnmtUTgLDLXW+qIwFntrhFFyn8bofzXG8oc8mB/X01tXA6FUm3I/CYtFjJvQzLWHXNWDCb5yxU30IAzmJVVFSzEc/F5R3Rbbg6nUCgUCoVQWxE4K4BXWZbtBKAfgOcZhulcS+9Va2g1KphtrkVM5BD2bfNVcx9repFeVHly3GcH8MRPiaLX2STFSwhKRqM3nlm5jUK5IwJntbHXPb+O0rBJya9ePlClw+C7Ho3gjRYblYxRrhvSme2nhAzM/OM0/zsxjK41Ardg03nMWHPSq2ONFpvoveVgJL8baYVgCoVCobihVgw4lmXzWJY94fi5EsB5AM1q471qE60PJ6GUlvSXQ+jR9XW0IDBabC6VHvemiHuvKUXglGSO3hiTcgYakW/a7KxX56Dc/BDZVqabEudyVDqcFQazfOSu3GDBL4czvMozmrP+DCZ8cZCWUqfcEMi8eq0G3Df7LmPDKc+VI1mWhd6s7PCQSigJxOijUOob609m45Efjl73887bkMynllAoFM/Ueg4cwzBxAHoAOCJ5/GmGYRIZhkksLKyfDaU5CaWdLzDiDmERE42aW43f+fccRizZ6/Z1ZEMhlTVabKxstM0b+aNcewByKguVUP7nKddboDNZ+TFR3UhahWOsV5nlN5krDqbjzb+SsfqIa8Nki82O139LQnpRFQBnYYcbmZPkCavNjsJKU11fBqUWsF6nCJy36M02kOmWKCOOXC7G4IW7UGWy8hFDRmLBmSw0T5lSP3l5bRL2pVyfPRvLspiw7AC2JOfhp4QMPrWEQqF4plYNOIZhggD8AeAllmUrhM+xLPsNy7K9WZbtHRUVVZuXUWO0GpWjjYDnY4USSo2K+1hLqswiw04Ocm5pk2+rjZWV3HgTPXOXa0EjcJT4d7ahz/s7+N/lDX4Wvx7OwLazV12eI2O6sNKEr/amuYwnUtBHJ5Nbl5RVht+OZ+P135MAcG0tAOWIc13w9j/ncOv7O/jICeXmgYz1G2XACed/Mi8v2HQeWSUGpORXOiNwkte5i8CV6y2iVjaUmxujxYbUghvX9sJbrlVCn5xTjrXHspCUXY4XVnsnR7ba7Egr1F3T+1IoNwu1ZsAxDOMDznhbybLsn7X1PrWJr4a0EXCdqIhMkiDcEPiopcuxMjaFCBxXbMT1fb2JnrnLcbPY2Hq1WabUDXpB9EzO23/0Sgnm/pWMOeuTRY+vOpKJc7lOX8yHmy9g5/l80TFkYd93qRB55WIZJQk0lBssyCrR89Hq+uRU2JzMGa2enC+UhseNjsBVmYUGHKk0zP0/+evD+GjLBe5JFwml/BxdWmVG/Dvb8MmOlOt/sZR6yeu/n8bIpftETuL6gEFBgeEt4z8/gFl/ngEgbml0x6f7UaZ37aMLAAu3XsSIJXtdihVRbm5KqswYvnhPvXRk1CW1VYWSAfA9gPMsyy6tjfe4EfBtBGTW0jFdmoh+NwomM5U0ocENxCCz2liRV9VstXsVgRuxZA8e+u6I6HF3Ekqb3S4y8OrTxply7RTpTCgVNJHPKtG7RHelyI2XfIeEsEhnQnJOOXQmK9IKdZiz/gyKdGJ5oXQIkXzLy4VVuP3jfaLnSEW+lHwdBi/cDbUjWn2tm4HrwcItF9DjnW18VLC61Tkp9Qu5uY3cCzX5bpftuoQtya4RaXcInSPkPiOROOF9x0gsuJT8Srz37zmXSNvVCi5XdItMZJxyc3IotQiAMyp7tdyI/Irq5QwfzyjF13vTrut1VdVQoVBhtIjWKEDsmD6fV4FdFwpkX3vQ8VmQvraU/wZ7LhbgclEVlu++vmO4oVNbdcAHAngYwBmGYYioeQ7Lsptq6f1qBb6NgIwFF6gVf3TCxbg6LQDsgiImwnNY7azsxlv6WFphFdIKq0RyBnkJJXlOLKHUm60I9vPx+nop9Zve73HSyPQPxyG/wojBC3fjmSFtMOuOjoqvkZPC6AUb3PGfH0B881AkKTQi1koaegvPVyGJYlVKvMgkWG2oB0Ublu/hFofm4dy9TSNwDQcyR7Ms8NaGZEy+tQXaRAW5HMf326yB/GvxNi7qlf7hOK9fI1oXrG7aCUjynV/9jZMYT+zZHJ1jQvjHySbez0ft9TVQGjbEH0y2If0+2AnAu3GYWqBDucGCSV8eAgBMG9Lmul2XvoZOt4Ef7OIrGSvxyrokDGrbCNEhfqLHifOZtAORUq634FxeBfq3iazRtVHqJxpHZXc5ZzOBZVnsv1SEQW0bQaUwPm42aqsK5QGWZRmWZW9hWba741+DMt4AkgMn38jb30ctmkRMVrHx5S3kWK7pt/Mch9KKkZxboXi8FGHDcDkJpTMCx4rOUR8iH5TaIbuUky8eSOUSzp9YcQy/Hs5wOc5ktSE5p1w0FqSLs5LxBrjm75jcbI6lCzcZqnqz7ZqaF69LzEJGcVW1XqP0fj6OxUIuh49SPyFzXqnejJ8TMvDQd0fEDjHHz1aZ6Bfh/Y3nMP/vswrnr5nsXM6xJmc8Km1MpGsPcYhoNbVef4xSz5COG6X566+TOXzUbuTSvbzxBgBbz169Zvkh2fe42zucyCzFT4fSZZ/zZLwRPpaRCRNHjdyeDACm/ZqIB749TPOXbzJ8SK68m/Sg7efy8cgPR/HDwSs36rLqHLoKuEHr48iBcwyaX5/oi0ZBWv45Ya7bnydy+MpM3kbgWJYVtREQTtD/JOXiUZlSvUqSR+GmWakoBcBtRIRVNWvqRaPUf0glRT8N563feaEAc/9KdjnuarkJ4z8/gNl/OvtlSSNiQlXw9GFtseieW/jfpRsLtwacJKpFNsbPrTyB+75OcPfnKGKy2jDz99O4/5vDXr+m45ubMfXHY7LPEQkljcA1HKTyxFK9BdvOOnMzScVUMpdbbCyyS/VYdyyLV0F8u/8KVhxKl82zKKmSz8nxeF0iA06+5yfA5eT1fm+74t8lPA5wRuBaz96ImY6CQNeLK0VVaP/GZlosop5hkvQGLNLJj8mX1p7ClO+OyD437ZfjGLxw9zUVwSHzo95sxZWiKryy7pTLtU1cfgjzJM6QI5eLcTZX2REo5cJV1/uQOJ+VHB7n87jXKOWQUhomxKnqbm9N0j6uFFXPkduQoQacG7QaNUwWG280RQb58htZrUbFDyoC6Y3ibaPs7efynTlwEgmlEsLomXAw7zxf4PL4jnP5/GAmj1kkEbia6tgp9Q/p5EYKiPj7qt1GELJLOY/smRzn4irNEQoP8OV/ntizGbq3CON/lxps0sVciM7FgHOOxWPppS7HG8w2j5sNkg8hzc1zh9Fid+nJSCA5rFK5J6X+QsaR0CH12m9Ow4aMZ4vAefXSmlOY+cdp/CKJSmeVuvYvLFQYW55yiM025/Xwc7DM+pCcUy67IZfeh+WO4g4kAmdngXWJ2fzz53Ir8PyqE2j3Rs0FLxtP58Jss+M3wXkpdQk3H0nn2cvXYGBLi/iYrDZUGi1YuOWCx/OSfY/eYsPb/5zFnydykJBW7PE9J39zGOM+O+D1NaYXVcFosYkKmvAOGAUnodC4XH00E7su5MseR2lYkKiv2WaH1WbHUz8nuow5tWPdVorO3oxQA84NWo2KGzB2p+6abCa1GrWLAUfwtsrj078c53/em1KIR76X95oJEUbPhBGCOevPON/f0UPuyZ8TMXzJHsc1cdf95Z40TF/lLNlLJZR1w/m8CpRf50TsUknlrjxBc2x3ckDScDvIzwflBgv+PZ3rEpkVRhIiAn0RHezMTcgtM4j6pslJxMr0Zjz9cyLSJTJHd/eK2WrHgA934vfj7jeSxIAj7TvksNtZvLL2FI5eKXF7LsDZcqOuJZQ6k9Ul2Z8iDzGOlOYzIqmy2lj4OXI2EzM4h0FqgU4kR5OLvBYrRDssNjt2nMvHcyuPyz5P7gVftUpgwLmOeaUc0Ie/P4o3BVFzsvHWalxz4PZfKsTYz/Zj4+k8WSPRW0h+Ny3iU7+QOnivxflqFDjZLhfq0GHuFoxcuhfL96Th39N5bl9LKgcbzDb4OvZAwqIiwmqZ11IkTW+2YeLyQ+j+jjMyLVcASIhKIO+c/ecZPL4iscbvT6k/CFONDqYVY/u5fHy8XSyx1Xghs7zZoAacG7QaNSw2FheucrloAb5qfiBxETjXRMkVB6/UePFMK/Qc+hWeWylCYLHZeZ0538BbYcLzRkKpN1txPMM1OkKpOXd8uh+Tv6mZZFAJ4SJqtdn5iFSp3n0/QpIrl5RVhvi3t2H6qpM4nyfOvxQaMyF+Pgjxdxbx+WDzBdzqoa/cyiOZ2HYuH+tP5ojyd9yt74U6E0r1FlwqqMTXe9MUjS9iuBosNv5elTvXnydz8MSKY257bAHOe4ZEC/9OysWmM+43NbXB0EW70eNdV1ndf43LhTqcyHQ///AGnMJ3azDbwbKc+iBIUoBKb7aJ8nKkUWJAObprttnx5M+J2HTmqmzkmURNArVqtxLKKpPymBRGCMk9brOzLue5LFk/3G2e15/MxlsbkmWj28QxSQ24+oW03YvZ6vzutp29irGf7vfaYBJKDInyIr/C5HjO/fxIHGV6s42/l0heXaXRInJ2eDqXO0xWO85J1iHy9ykVIXJG4Khj+mbCKlAvkEqk3ZqHio4hxvt/qbI6NeDcQKrrfeEoXRqs9eEHkq+MhBIA5v9zrlavSTg4KwzyC6zZZkeBoMwwy8o3BQe8m+hmrDmFSV8eui4RI5PVsyTuZods9C5crcSUbw9f0yInRJin0/aNzTiUykkMSqss1c7nkuuT1aFxMF4Y3hYqFQNGplUGWcSlG40PN18QfefNw/3xzcO9ALgu8EaLDR9vT0GF0cJH9dIKq/DB5gt4WCFCLTRcx3yyHxOXH8SYT/Zh6o/OHFJipGrUjMhDLBdlI/cEee7F1Sfx3MoTsu9dmyjluPyXKNObMXzJXkxcfsjtcWR+U4rAGSw2/pgAX43kOSvKqpxjYnNyHv46mSM6RmjACaN1Fqudl9WXVonvmSOXi3lpe6BWI8jTc53/pNFzJch9bLTaPFZurXDT627hlov4OSED285xErMvdqfieAbnICGGW11HoCkcZHyZbXbR2BM6yl5dl4RzeRVe9zcUOhukG165772gwoj4t7fhXG4FfB2O69d+S8KmZM6xlVGiR1JWGbrN34bfj2fxrzNabHhrQzLWJWa5nLM68Dn8Hgw4dR0YcFkleny649I1FeGiuIeMdavNzu9DyQ7EZudacJGagu6KCH6zL02xuE5DhBpwbpC2CgjUiiNwvgoSytpEODiVInBWG8t70wCg1WzlfAiDxfMifSydW9iVZAsXr1Z6bYR0mLsFM//gimXY7Sx2ns8Hy7KYseYkus7b6tU5GjpCb/uhtGKczi5HZrH+mpNvpb1xSM+ogkqj4rkDfeXLkcttKEd0isarozvwv294fqDoeeLJlY6Tr/amYes5Z9+qID8faB1FGKTRjiXbLuLTnZfw96lcFDkMONITiBQQkiJt+noiswwXrlZiz0VnjhvJ8/PVqETG7MPfH3G5j4iBJ22B4InjGSU4fNlzLgiFq5S3/qRTGptaoHOJYB1MLRLJp2x2FocvF2Pm70kumyWrhwic3mzl5boBkjGvN9tQZnCOof2XivDS2lP871klet4BAIijFxYbiwDHWCYOFLudxfGMUkz+5jD+TsoFAARpNbDY7IreYW/3fkT6ZjDbRL1HuXOIT9Lj3e34co983yQSOSE9fZrUAAAgAElEQVT9xBZtvYhJX3KKALKBv1HNzv8LFOlMeOCbw8gsrnkFSLNVXKlaaMT4OlQNBZXe9Yd7ZW0S/3qp5Ix8/6ezyzBy6V5UGC3Yei4f5QYLfjmcwZd0B5z3gs5o5ef/Dady+ef1Zht+TsjAzN9P41rIKjE4rtUpodxzscAlj1mYA3ejeObX4/h4RwoyFap7phXq+P1Rmd5M01aqwYWrFXjouyN8VNdsY/nxSfYZbeZswv3fHub3xu4icAs2XXAprtOQoQacG0L8xAacRq3iB4lSBK42eHFEO/5nUQ6cgofUYrN73ejzj+M5SPdgOJCIipwBV26w4PZP9nk1QZPJl+Q0/XI4A0/8lIi/k3Kx4VTuf8bjKzVatBoVblu0G8MW7wHAbcSWbLuIS/mV+C0xC3GzNnqsgjfww114WbDpFGKxsXh+lXwESeqkIMhFf4Ik90PXZmIJQ1J2GZJzymWlZFcE8q4QPw38HBsO6RgmDYpVDOMiW2sR4S97raUeIsM2O4sZa7jPxketEkUmTmaW4ecEcRELYuBVdzxO+jLBYyXMM9nlSM7xvhLbzcpLa0/h5bVckZFyvQUjl+7FG+vFFVKlktkXVp/A/d8cxrrEbBdDzVPlX6MgAicnoVQaQzY7i8ELd4vGSKXJeazZakeA43wlVWaMWLIHvd7bLirdDnD3mcVm93qDrQTZ/BmtdhRUiu8PuW3LR1suyJ6HrGNVZqtLgSMy/okBd/hyscumk0YbPPP5zku8Q+fI5RIkXC7GrD9rbsiYrDbR9yBnwF0V5D27cyady6vAjvNc9NUiyUPWGa1YdywLj684htQCHY6nl/LOgrxyAx/l6t/a2WvtWHoJX+FYKKHMKr22lgWE2xbtxtpjmXwfR5PVjqk/HnOp1E1kdDWtGlsTSMRaajikFlSiSGfCiCV78c6/nDKr+zvbMe6z/QC4e2hdYtZ1U+DcaIwWW607ee5adhAHUov4NVOYHiQc/0evlDgdEo7xbLNztSBOZ5e5XOfNUqmSGnBuCPF3bXBNbtJgPw18NMrNAq9nn54RHaMxwNGYUugtUyrXbrbZ+QjcDIHxJ8eB1CKM+niv22PIhlxOtkA2w0SXLKVKUIhBmudBbiI5Y+HApSK0nbOJj5zcTAg3gIBryP9cXgU+35WKGWtO4aeEdADcZ+Vu05RTZqhRM2wlI0XOixUs2fiqVQzv8QSAr/dexvjPD8iOkyrBxiPYT8NH4KQQT+uyXZeQWiCuhqYkA5ZG4KQIC6xklxrww8F00fNGi83lvQBAZ7SINkxCGajRYqtRFbg7lx3A+M+9r8T2X4BEvw6mFqHCaMFGhSIKm844o7hSSbBFMl4f7tdS9LvBYuMNlQDJODaYbXy0V8i+lEK8LlOiXyhd11usfPSsuMqEtMIqWWMwUKuBxcoit+zaDDij494yWWwu46g6sjGTY67Qm1ylmGROqDBYkF2qx/3fHBYVyeo6byseWyHfggMAinUmflO6dHsKvtid6vV13Uws2Z7CO3RI4Y9EL3LJK40W3P7xPuy/JI4uma12nBfk+Fpsduy6kM8VE5Ex4Dw5ky448sv0knV527l8zPzjNL8um212fmztuViIK0VVmNijGb5+pBeaOBptFwsMJuF4ypBEHKX9lT+Z3B19W0UA4NaFU2+NUrze//vjDL+2KEooHXpT4fV8siMF7zoMKJZlsXxPqux8X1NI1WKhg/t8XgVGLt3HS++FTrvLjn3P/ktFmPn7aXy4mXOy7LlYgHu+PMSvvbllBq8d8XXB2M/2I/7tbbVy7vSiKrz77zn+eyYGmMVm5w1m6Rggv9vs3LzTYe5mrD2WhbuWHcSnOy6JjiXO8oYONeDcEOLnasAJn3NX9S4y0FfxueoSFazlDTHhZl9pEiMRuGCtBsM6Rns8v6eiK+Qt5d6PbKRsCsbF8CV7+EIMOomsgUx4vjLFYHZfLIDVzuKrvfISoIaM1JCVeuDWHuPyBc7lVSA5h1tkJ315CK1mb8JJmWIO7nIKpQumlOps+lo1CnJ5TM5RUaa3YFLP5vi/MR1lzxOk1Xh0cOSWG/HdAXFDTrniEoByiXeAWwiOXOE80fGO1gf/JOWKjjmZyUmFpFQarSgRGIfCaOELq09i+JK9spGf6+10uJmTslmW5Q0iFcPgqZ8S8fyqE0jKKnNrmEvzu6Rlxds3Fo9VvdnGz51S2bDebOXlxkIe+eEo/jzhzIUjigxhI+SHvz/KR4pJlFeOIK0aFpsduWWuLQqqA4mEyDlrlIqOfLbzEkqqzFi67SJvxBJ5sN7sasBVCiTEZON0LtdpOOhMVpE8WUqv93bgMUePxc92XsKirRe9+ttuJqTONiLpU1qzhWQU63ExvxIPf89Fl8gUvmx3KqZ868wDTs4px+MrEvHmhmR+PhVWHvYEMSQ8Ndae9stxFOrE5/VRqxDi54OE2cMxuF0jxddK1T3NwsUqitFdGqNT0xAAXKuasADv9k1EVg+IP2sSHSRGEQB8suMSvnesJXnlRizcchHP/spVjU0r1GHFwSvXlpfv+IKEaymRXBMVQYuIAJeXkbWDOLJfXZeExIxSfi4a8OEu9F2ws+bXVctIiyZdC+dyK0QtH15cc5L/zgCnQW61sfw+wCRZe8l+0ma347Odl2C1s3xUOPUm7WlJDTg3hPrLy8sALjrnLgdOLnpXUyKDfHkPnjcG3MrDmVhxKB1RwVrFHKeaICeNI/lCNgUjUJiLJ92A8yW2BZt5MhmTfKeCCu97ezUUdJIInDDfLKtE7yLpEzJjzSkXg09qGAPOxPeYMHnZoTc0DeW8qwPaROLT+7tjkMxC7SNjiJmsdoQH+Cgu7MF+Pnwj4uqgVFa/UCZ6Qhi6eA+/sX52SGtZGaZSw2KdyYoSQXRYaFAQ77ic/GXQR7sVr0fKicxSfnM37ZdEfLf/MgBg3TFn0n+bOZvwc0K61+esK35LzMI+hd56SvxzOg+Lt3EbfIYBjjg2PBO+OIif3NwH0vxEaRRbuhG8Wm7kDS2pbNhgtnEOLz/l+R4A+rTiVBAX850Nht2NPSF+PmqHMsLzBlumPhAA4Lv9l3HUkY8slQQdvVKiaMAt3Z6Cmb+fxme7UrHtXD5yygx8lE1vtoqizMk55djqaICuMzkNOIYB4mZt5CMZBGn+6HZHUZSE/3guqFQdUx1HmdKx0g1zmeO7+f14NlLyuTnsajUMuLxyI35JSOd7C7pjl6DPLABefcQwjNu5/Ot9l0W/x4Ry82/HJsF4YlArBPg6nXnhAd7vmYQGnDD3W+3BY3nR0Ry8VG9GYnoJxnyyD/P/OYeTWWWyx18u1GHuX2dgtdlhttplHXbkHUVqDYkBb7HaFRU05HWhjr8/WyGX7mbm3q8O4fEViVh/MhulVWaXe4BIYourTM4cOMlnykfgWC7oATjXhZxSvdteuA0VasC5wZ0RFuLn4yKh7OOQAgBwuxmorrxSq1Hz0T5hDpxZoWEyKb1rttkVc5ykeNO02F0ErtJk9dhIWSrXI+cT5hISLwoxFlVKu5kGyuKtF1160wiTn8/mus+PyizR4+PtKaLJSCone/d/XfHyyPYAgEiFwh/eQMZzj9gwTOjeTPYYJVVnucGiGMH2JgInR06ZAT3e3S6KgADeV2v099WgZUSgy+NKPb6kETjhRoHcjyR6If3eyMKSVqjDx9tTwLKsi5c3t8yAicsP4a0NXFL11rP5eG/jeQDgC/0QPMnQEtNL8IMkYnmjef3303hEkpPiiRdXn+QLEVQnub9CMl9J83NDJXP357tS+SbCwhy4kZ0aI7fciD0XC9E01A/vTOiC6GD5e6ZvqwiEB/jwm8DqQPrAeVMN1kdG2WG22vmxAbgWLLrv6wS3Bi+Z339LzMLAD3fxj685lsVH/AG4RPizHZJmMs6FXvE9FwvQbf423plhs7N46mfadwtwHctKY9tmZ0V5kbP/PIMn3MhThcg5j+QiyUKEztLjGaV4c8NZt+OGIDVIheojb+byrS/dhpljOqBXy3AAwB1dm+LN8Z251zsMwJo6vYUKDHf7ha1nr+JJx/gs0plxz1cJvPros52X8PXeNMTN2ojdAuPwuZUn8OvhTKQVVmHgR7vwvy8OupyXVGT+/sAVfi6TKgTKDBZR8SPAuR/SOwrJhTn+/qxScZTebmfrtQrDm6iyJ4ih9fLaJPR4d7uLxJU4bo0WO9+3Vqmoz76UQhfHWnapwWX/ue3sVTR0qAHnBrcSSn+NSxGT12/vgMm9WwAQT5QAMKlnc/7ncC9lAkLUMk0KPUkfi3VmBPp6Z8B5k9Qpl3MnnKikCcVSlAw4qyi3yC7639um6HVBdSdWg9mGZTIbcZL3BQDn8io9yh6/3ncZ3+x3ejalkc2H+7XkvZnSQjxChBHkHrFhLs/PGNEOIX4a3NOrheI5yN/vL/HCXimqEvWKE6JRMdeUIyotBFFYacL9t7bAQ/1i3b4uwFeNRkGu955ccZ4AX7VLxK9MMNbJd2Q0c68lxgGBRIgmLDuIT3deQrlB3MpBb7bykb/MYr3HohD5FSb8nJCOqT8exaw/TqPP+ztQLNi43PNVAp8oX5+x2Vm+XL2U4moUHpAaQkKHhr+PGv5ulAekCmVkoC9aNeKkTZkleoQF+OKR/nF4ZVR7/ljheOnZMgwtIgKQUew6V0rneykMw32Hn+685HKvSJGLIlxrVT0SEdgtI31cLqhUSQzDOWM5+TNxLslFvj/byeWVnMgow8WrlfjjRLboeeGYvt6tY0xWm1dOx7pCLzCufjmcgfWCthTCNWPh1gvo8/5OnMkuR0mVGauPZookjVklesU1Rq5SsNzYFNI4pGYOPem9KbwmuQgcUW8QOjQJxnND22LcLU0BAMMFqR0kj84bR5zwvN0dknjhZt1dMaNpvxxX/Cz3phTiA4fsUugsI393enEVCitNOJvr2meU3K27LhTweyBphLxMb3a5h0kqBYk2BTv2m1kletH9MnLpXrR7Q7mSeF1D7sPUAh3m/322Wvf68YwSHLlcjJaRrhJT0XvIqAvMVruoZZF0HSfnfHJQK5isdpc97tO/HG/wxZioAecG4cTU2+E5Ivj7qF0MOD+Nmo/KSRfp9+/uimlDWgNwreYnRSOzgMtKKD2EhDvHhCBQq7xZEL6NN3pmoafl4tVKnMgsFXnChZPbjDUnMVNQAMBuZ10kPmSyFVawJJE35//1x4BLzikXyehe/S0Jgz7axXtXT2SWYrEg3yOv3CCqhqUknxJGlD7beQnNwv1lx4AQoVRGbiNDxhiJNjQJ8cMXU3qKjgkN8MHu14bit2f6Y8VjffDvC4Pw7SO9+edbRwXh9Pzb0aqRa9SKQBbEgW05eRlxYMRGBogiHcM6RGHabdz4L64y10hCSRBu3m12FiVVJk4u7CHa7O+j5iOSnqTFLSMDUW6wYPdFpzdWOH7JJlupcExeuQEGs413Whgs4lL1nd/ayi8oMWF+Xo3ztzacxZ6LhVhzLAsFlSYcUCgcVF8oqTIjbtZGkafzyz2pfLn6a0E65oXOrMYhWvhplL9fMgZUKkYk8Z7Uk4sykyInjUO0SJw7Cmuf7ofB7RqhW7MwhPr7yFa4i/DglBNen/Telo7FYR2jAACD2jolyFXXWHrc2+IphToTQv19EBfJ3fPEgJNrqXEik5Od2VlWthKxMOIgF3k0WmwuhTq85eHvj6Lb/NopoFAdDlwqkm0yL4y4vflXsmhtFDoytzvkqncuO4Ce7zpbZhAGL9yt6NiQ9h0EgHQPbQqig/3cPj+xRzM8NjAOVz4Yi7Nv347jc0fKHiecC/18xPugH6feiu8e7S19CQCgS0wo0j8cJ2rCPLITZ8y520z3iA3D94/2xp/PDeAfI/l0ekllTq1G5VEO7Y7EjFLeIUT+TmFhJakUTxr0M1psLsZ1md7iIgsk5yZjheyvSvVmUVrE5aIq2FlO5bFo64V6197jN0dV8edWHseKQ+lId+NEeO/fc6LqqJO+TMDkbw4jJV+Hu+JjqvW+Zpudb6sCuEYCf39mAHa+OgQDHHuTnRIZMAD0qcc5ht5QKwYcwzA/MAxTwDBMsuej6zexEQF4ZkgbrH66n+hxhmFccuDUKoY36vq1jsT0YW3557QaFZqHcx6BIK0Gh2ePwPrnBiBIq+FlBQQi/3lnQhfsfm0oAOeiLzTg3G36nr6tNb55uJeoZ4uUYR2cXrCFWy7gUJrrhlA4qZL3M1psuP2TfZi4/JDLwrz5TB7iZm3EhlO5WJfo9MgarTa8+ZdzOCzaekH2+olHhTx3PcLzQop1Jtz3dUK1qzuxLIvxnx8QVfZafzIHeeVGrEvMAsuymLj8EJbtTuUn+P4f7EKv95yLstJCLO0fE+rv46KhByAypMIEchO5zZFWsIFN/3AcDs8ZgVvjxOPsuaFt0KpRIG6Ni0Covw+6NgvFqM6NZa/RE3f3aI6PJnXDW3d2xj/TB+HdCV1FY+/Hx/rwBXVaRwW6jcD99fxAPgoiF9kQ/r0VBgvsLBfVJtHmLjEhsuf191XzuZX+HiLT/o5NibCn0XMrT/DVxNQCCaXwHiF5f1cKq7Bgk1PyllVicKlOmOaQiRzPLBX1M/LWKygXgb/e90tNKdOb+Q2pUKJ3Ksu9RFhp4/XSSHE13QqDFauPZvIGgNDzPrRDtMumEgDuio/Bfb2bY4RjHKoZho/m/vZMf0y+lYvgkr5upOF339aR+OWJvvDVcIUb5O7jMEn+DinMQHhlVHuM7MTdW9KCT40l0YrF98Zj44uDsGxKD/48Bi8jcM8MaYNF99zi8niOl8VTCis5ZwiRsyn1thIipyoAgMnfOA31x1YcRV65+Bre/ucsHv7+KC7liyWplwt12OpB3iRtMVEbGC022bxvIQ99f0S2yby70vDxb2/DhlNcRE7lSW6hgI+a8Vh9Vw45ebDQALmnV3PMu7MLGIZBoFbDR4WkCCMiUmfJsI7R1VIZRYf44fMHeuDLh3rJPn//rS2w/MGeGNGpMZqGOnOYSeRO+B2ZrHaMvyUGUwfEef3+wtQXwtLtKfgtMYs3uoTOMmmhGAbi73Dwwt2iuX5wu0Yo01tEzj6z1c4b8uR/Up1ab7bxzaqF/HQoHV/sTsPyPd5Xdd129iriZm30mN7iDcQhKV2fPtx8AcfSS/hIKIksGsw2vPPPOX6c2u0svjtwhd9DSWXwSm2ClDBb7aL7rMJgQaMgLT6c2A2P9G+JqGAt2kQFoYVj3y03T9VFL+frSW1d/QoAY2rp3DeUfTOHYdYdHWV7vvlIqieqVM4BYbOzeO12Z9NjhmHQNoqrjDZ1QByahPqhR2w4kt++nd/03dI8FC8Mb8snYHZuGsJv2tWyOXDKm7XhHaM95j99PqUHNr04GK2jApFbbsTzK117hQmjfCarDefzKtDxzS38Y0RCSeRryxUaxxZWmkQbny92p8kuwkIjUfr+14PVRzNx9EoJfjqUXq3XEW/yBZn8l3l/nxXlhgg9rMK5Tqk3jXSTFKz1EfV06tUyHGffvh2bZwzmHxPmC0gnQsBp8As3+cLFeMm98XhsYCvZ6wGArs3kjSApbaO5Ma3VqDD51lgEajXo1jxUNhrWr3UkNr04GA/1bQmNWoU/nu3PP/faaKdsrXuLMDw5uBWahPiJNqNzx3UCIDbgyGcd7KfhF9s742P4aKNQGhrgq0ZMmJ/jHO69mAMF0Q9hxGTZLm4RINOBwWwTeVa7xITCV63CsytP4JfDztyS+75OwDHJeCfe8qwSA6b9cpx/XJrfpIScXKgmrSSuB9JFXVi10M9XjbRCHQ6mFnk0JForRHtfGtkeZ9++HfteHwa1ikGl0YLZf57hK/UJP4sH+sTKRng/e6AHFt4Tz0dP1SoG70zoigf7xqJHC8E4cagW5KSOIf4axTy2we0a4eWR7fHJ5O6YfYe4AmtMmD8mdOc8zFYbK2rJMaVPLIL9NFj5ZF8ce2MkAnw16BITirAAX8x0rCHlBu8MuFl3dMS9vZUlz54oqDQhOljLF5s4pVDcgdAyMkBRlnY622msn8gsQ/8PdmHWH6ehN1ux8kgG3w9UOmZHf7wP0345jqd/TsSgj3aJNugsy/LN0YHardDaZd5W9Hl/J//+LMvikx0pSHEYnHLN5I0WG4wWm2JhJMKMNacw968zHpUWSoQH+NYoKhshUx07ad5o/uc4yf2nJA0Wyva1AmcJGePC+69D42CP13VnfAy/1/lx6q1Y9VRf/rnZYzuJDDcCb8BZhHsUO7Q+Krw8sj1/LVJ2vDIESW+Nxv6Zw/D8sDZY/VQ//PR4H9Exy/ek4XVBRFm4dh/PKMUXu1N5w0QagSusNGHVkUz+9+Edo2G22UVtZ3Qmq9NwM1odkmDu92KdCSsFryeQVIsjl133TSzLYvXRTBeZ5me7OJmzN44Yd+y6kI/O87ag67yteHWda2uVe79K4I1Wkjf+w8Er+OHgFfzqWAeF9znLsnjouyOic0QEyu9XSUX3AIFSwc9H5TDgnN99id4MrUaF+/vE4p0JXfnHSeBEDq2Mo68hUfM4sxtYlt3HMExcbZy7runYJJhPsJRGtwJ9nXlxcpur/m0ikf7hOJfHicHWNNQPr47uICuN0sjkwLkz4KRJ/HIE+GrQOSYEXz3UC6M/3ic70EmOD3k/6cJUYbSgcYgWXWNC3V7TvzK9neSMM2K4KUXgkrK4fIv7bq3ZJoVMklIZ6w8HrqBny3BeVy9FaiRJF29hBKXCYBVVwaswcgU9ir30ggX5aUSGX8vIABeDiBGsGmuOZkEKSQwXDlFhVGJM1yaK7396/mivPVNjujbBmZxyKHXU+Ov5gaKWGp0F0bFeLTnP5/RhbTF9eDss3pbCR2ACfDU4PGcE7I4m3LfGheOBPrF4b+N5kfElNOAe6heLAF81nhzUCmoVg5VP9kWFwYJnHY4Jfx81X85ZGv3t3TJc1KNp2pA2sNlZLN+ThkCthpetkNwWksT/9M+Jok1PVLAWt3dt4tKqAHDmDBGkxVgIl2XyUf94tr+L9NAscXYAnEHpzb1/PWBZFgM/3IXnh7fFPb2cOb5Giw0Zgr9t4+k8xd5uUqTRqUk9m/P5WIFaDQK1Gvj7qEX5iABgsNjRqWkIVj/VF2EBvi5J7MLcH7IR6Nc6Eu0bB+P9u7uJjiW9pAJkZLZKhRYsNjt+eaKv6LFTb41CerGezx8jUTqr3Y64sABU5uswfVhbPDGoFZ4c3Fr2vE0dDgdh+wEV42ztEuirvmZ5pZCkrDLc06s5YiMD0KlpCM7nueb8CGndKBAZxXqE+GlkZZZS1hzLQm65UVStlKyVp7PLUGGw8iqTbY6Klh3mbkHSW6M5yffFAry4+iT/2iqz1W2u+rVgs7MoN1jQbf42pLx3B8oNFnyy4xLWHM3C4TkjXHK2Hv3xKA6mFmNkp2jskJFrSfn1cGaN2w15yrlUQm5uEH5+xCjyhE4mAtciwh+f3t8DgNP5ERWsxa9P9nU9gRukrY+k/Uf5aw0lEThxYTdftQoqFYOPJt2CJqF++PtULioMFlSZbRjbrQnvdAwN8MHrt3Nzi9K6DwBPDW6Fb/dzDlpfjQovreWqGocF+ODBvi1dKuAS/HxUmDGiPTo7ouhJAodGpdEikqEW6cz83mT3xULZXFUiTTyTU46CSiNC/HywOTkPE+KbYX9qEWb/eQYX8irwtsB4qU5VUnecz6sEywKjOjfG+lM5eFUQnJCSV2aAyWrj1Sqh/j7480Q2fhMosh754SjO51WgZWQA3yswIlA8Nne9OgTlBgsWb7uIg6nFImdHy4hAmG12nBH01yvVW1yCKgBE+dCtGgWKcuHcSe0bArViwN3MbHpxMC9vI8banfExmNSzGVpEBKBf60gs252K7i04udrie+OxJdm9HITIusgNTDYOQs8+yYGziXLglBduqaTHHe0bB2NYhyjZJGJSIQngJkrpxrfSyC2gxON2MV++QhvpBeRpU0DOTxrNSg24CY4qUHf3bCYbFfVEJb/hd34+djvLF4CQGtgHLhUhKbsMoyXSQmlBFmHVpAqjRaSTTy3QIb55GGb9eUb0mq0v3YbbP9nnco3CKWjlk335/mVCSAndVrO55OYuMSGYOaYjvyEY2CYSTwxqxeedAWKjz12+WHU2RM8OaYOOTYJFclwh7hZGQPx5H31jhEtvRZWKwbaXb0OTUD8E+Kod0RfXCFygVoPm4QF4UdC4fmDbRjhwyekM8fdV83IKKbERAVh6X3fctohrARCk1WB0lyZYvidNlHNApGzkMitNVtEiotWoMGdsR1kDTpqILWeoAfKVSOXaQZDot1AeU50IHMuyyCjWu3jdvcVssyO33Ig31ifzzXgBLoE/vagKvhoVWJZVLLYUGxHg4hku01twaNZwJGaU4sXVJ/FAnxYuSgI/HxWuSHJ29SYrwgN8eMeJ0FlxZv5o0biKDNJi60u3Ia6R/FggRmS0TMEHpXtD7m8MC/BFd4Ejh2ye7SzQLMwfKfk63NoqQnRfSiFOtWxBZTqtRs1/z6/f3gHLdqe5SKQaBfl6LArx2uj22JdSxLcmADiJ/thuXKGJnrFhHg24bs1CsftiIdpGB/E5cZ6QtpqY9GUC9r4+FHctc63wR8ivNCI0wMelrYzOsf5UGC34NykPD/Rp4fbzrAlkDSKfJ/nshf0eWZbFwVQut0dovI3r1hQbzyg7L7wp3DN1QBx+SkgXOfWEBtw7E7qgSYgfooK1uFsi52QYIPGNkSjVmzHrjzPo1TIcQVoN7u7RTKQQeGdCFxy9UuK1pPPWOOf9TtZ+YQVIf1819r4+FE1D/WtsbBKk13RL81Cczi5HG4eiSRihNdvsvDzfz0eN2Xd0wuw7OuFMdjnuXHYA7aLlo4HCfO2wAB9eBeHno8Ib4zojp8yATk1CkHC5GIfSuO+ZHCOtMDqpZ4eLSdAAACAASURBVHP8cSIbP07tg/5tInnH7ZcCddKZnHLRPXu5UKeo0CHklRtxV3wM/k7K5ftTfrj5AioMVkQ6ii0Jc3pZlnWO2Wt08nAF8dSYOiAO28/lu211MOvPMzjlcLQDwJuOKstC9jvW5TljO/HqkxhBlHXxvfFo7fh+g7XcvCkcR7GRATiXW4HXfnNGA5Oyylz6fxL+en4gGgX54p+kPHy05QJ6xIbhZGaZ7BzfkKgzA45hmKcBPA0AsbHuq8fVJ1QqBirHFps0oA7112CoYwM7qF0jJM0bzS/W9/RqLvJOyyE14F4b3QFXCk+INu5E9mMRGHAWq7J8ROhpaxHhj6wSA7QalWLeXJCfj2wCtEGSICzdIBbpTAjx95HNOZHjf91j3G4KDqYWoVfLcGcETkFC+VtiNsbHN0WInw+KdCYs3Z6CN8d1lq0+tyU5D8/8egJJb43mvV5+gslAToJIeG7lcVQYrS65A9IE8jxRURGryMDLLTO4RLQmdI9Bhybyi4nwW23fOFi0uPzx7ABM+vKQSwndkZ0aY0j7KP53jVrFl2mW0iaqZht2OVQqBiM61SxvTopSgn17gQQnSKvhI3Ccx97CPy6HMNLqq1bJVqEEuMVB2hYk3pFo3ycugt/kEqeKWmGTyLIsmob6Y/mDPfGcjCSZYZRbLxDOZLsacAE+GmhUjMjbSwxLoYGpN1ths7PIKK5C66gg2OwsTmeXwc7CJdf27X/OYcWhdByZMwKNvfS8CxE6V0YudToirpYbkVmiR/Nwf7fFkcbf0pSXXLeNDsKgto0w/pamiAnzx11h/hjSPko2YqDVqHG5SKwEqDLbRFFvoYRLLo9H6d4DgH6tIvHqqPZ4qF9Ll+eUInDPDGmjeD6C8G/5cNItWLLtosjwlSNIq0F4gA+yBMaC1kfFz8OD20dh6sBWSMoqE8mBNs0YjLSCKjzw7WGXcxKed0S+O8zdzM8lIztF88VTiNPAz0flUgKdMLRjND7blYrRXZqIDLi20UEupcDdMfbT/W6fJ/OpVNlC5vNX1yVh+7l8dG8RJoryXy+sNju/ESeRAKEcuEJB4vrK6PYI9tNgzbEsRAdrUeBl30Ah8+/qgnO5Ffwc1KFxMC/bC9Jq8Ej/OACuqpDNMwajVaNA+DmKN/3+LFcAJPnt2wFAZMA90j+OP48cwjGw7/VhfGSYPAe4lvBvGXn91hkhfz03EKV6M5+jSq6LZVmYrHZZg7Fb81Csf24AujYLdXkOEFd+bREegDI9Nwdvf3kIAGD5g1x+3tUKI2/AOUvbi/dE3VuEYtE9t/CGZ2SQFpGBviJjffoqLopM9mSk8bi/j9qtE27cLU2RcLkYVwqr+CIu8/4+K9tzVRg4qE4fQjmKq0yIDNKKggsRgb5QMfLVQ9ccy/JYTRvg1lZCrKAS5eguzj0FqWYtdMJFBWtl5fhKzgLiSCb3bvcWYRjcLspj5er6Tp0JQFmW/YZl2d4sy/aOiory/IJ6CIkASTdz1ZUwkWgZMSR6xIbj0OwRovOQwSuM7LjLDxPmbwxux32+ZFMz787OuPLBWNHx3MbYdRESTiaXi3RYc0yszc4rNyLET8NL9qR0k0yYnsrFLt2eArud5SVQFonBSTT8c9afwbeOJqFLt6dg1ZFMbHJ4Ok9mlmL9SWe4/rOdXN7SleIq/m8UboTdearbOYwHoQT0nX/OobhKeSH+bv9lJKQ5Ky1NX3USexzVDHu1DEfC7OFYdE+86DUfTXLKuITrsNQw6dUyHCqGi77+KliAvdVyn54/GhtfHOz5wHpKsB83Ts/mluOuZQf53lhKxS+EjzMMA4Zh8NkDXO7nhucH8hM4wzAuEV2GYXB6/mj8/IQzPyKnzICsEr1iw1izIxIjl2sCeJc0TSJ6wlLb/r6upfGJjFC4eTRabHj333MYvmQvzudVYOqPR3H38kOY9KVroYUVjjxQT55fJZTk0hO+OIjNyVdFciw5GdSzQ9vw8siZt3fA/Lu6oLdgQVeaR7UalcjTfPRKCfRmq6jibk2i8wSVisELI9ohXOY7lLumN8d3xpS+njcCYf7O8zUO8cPCe+K9qsbaLNxfFIHrLCiQQub5+BZh6NjE+Xh0sB/6tRYbh9JrJ5Gqv54fiAf7xmLpffH49pHe/MaT5IvGRrjO2T1jw/DyyPboGRuOA/83DE8Nbi26J8h1fa9QjVCKJxkocdSYJZFOYtgdd8ifDRbvcgWrS74gh5uoYYTfidJ6EOCr5osq3dLcvRqB8Nro9nigTyz6torASof8cNmUHpg5pgNS3rsDG18cxG9UhTJfhmFwaNZwnJk/GukfjkOnpiFux9e/LwzCzleHeLye5Ldvx/G5o/jfYyMDRPcXWfuvd8vW35/pj28edi1solIxiAzS8p/BR1suIKfM4Cgopawu6REb7tW8QJy1E3s04yX3BGI0AZxkj2VZ6ExWPDW4FR50zAEBvhqXqOEn93fnfxY6EV8Y3hZqFYOzuRVoGurnUkRMWqF2eMdohyPAKKp0SSJawu8gWaDkuNbc6JIqMyICffnPtspshcVqx53xMfjr+YF4bmgbtIsWR788pae2iQoUzbGNg/34PMggQZEx4oDTqBksm9IDjw9s5bKOtnY4pb1N/VAzDF4Z1d5jVdb6TsPO4KtjyIbqWiUbpLfJfW6Sz+VkldINlJ+PCsum9MD/useIrumt8Z3x1vjOuLsHVybbZLW7XHOInwY6k9OTz7IsvtyTJtIL/3o4k0+kJcUl8sqNCPbzUdQSS3uBSSdEOT7aeoEvFiI1UoWRsBzHAkqSmMkkteJQOuauT+Y9kkR2qjNa+eRr4WcnzE1LLdBhwrIDyC7Vw2qz8waAMMfth4NXcCzdNZGYLCg7LxTweVeExdtSAAA/Pd5HJCuJbx6Ke3o1Fy20LMtivKNfjlxk01ejQkaxXtTY11stt1Du2hAJ9vNBhdHKR4bJ+AzSym/2W8qMt7viY9A5JgTxLcL46J5a5WygLLw1pJ9Xmd6CwQt3uxhwZANPHCxKBtyjHqqjNQ/358f+w4IIkK9G5SJHLdOb8Vtilqgv3qojWbxh9nNCOr+wSxEabdL2Ht4i50ASfi5Rgnv1r+kDMUMgbwW47/Lp29og/cNxGN1FOSdTitRZdN/XCagy2XiPfG0SLiNN99SSgkDmkuouFxGBWpTpzQjSahAXGYAPJzoL+7jrKccwDC6+N4YvIrHg7m6ifqSETk1D8P7d3TCxZ3PRukA+z8YhfugTF4EPJjqdTAvviccMR2XQ5uEBUKsYUT4XifLLbaY7Nw2ptuebRJml0Y7jGaWY/HUCP54Xb03B6qOZLqXe04uqqjXOpb2s8soMvOQtv4JTfAgllMOX7JU9j7+PmndGtlOQdwnp1TIc04e3wwcTu2HttP58MaXoED88N7QtfDUqaNQqfqMqjQjHhPkrVo6U0rVZKC9DdEeQI/dUCWJc36IQ3aopveMi3M4Lwrnm/Y3neOfstbQQAJxzt1y0XegE+eNENr7YnQqT1Y7YyEC8Mqo9Hunfku91J0RYX4Ck14zt1gTPD2vL56PLrRnCv9FXo4KPWsVHcvMrjGgdFYinBWkSVjuL3RcLUG6w4FK+ztnu5hr7SBbpzGgU5Ovch5psMNns/Lo0c0xHbH9lCHa+OgSbvHAQfzK5O/56fqDoMZWKwdpp/bDqqb4iA5h8nyqGwfhbYvDWnZ1dqlh3dCgqlAqhEFiHvul6OxvqitpqI7AaQAKADgzDZDMM80RtvE9d08whMZEmzFeXAF8N0haMxXNDlWU4fj5q+KpVoiiZyWpH+8ZBeO9/XZHy3h04+/YYjL8lBp84EomFr318UCt+QyXXlDVIq4HRYuclKqkFOny05QIf6pc7HuCMoxB/jaKEcvow8abNGwPux4Ppor9RiM5kxcQezRDfIgyFjgWVGGpz/0pGTpkBZXouYZl46S2Oyp3FVSY+ykkMuDK9GTvO5/PnX3kkA0nZ5Rj00W4M/GiXohfpi91pLhtqOWNBijSitmH6ICy+N15kUDIMsPS+7jg+d6Ssc8BXrXLpM9OQjbLqEOirhsFidTEelPodatQqHJw1XFTxUgjZqDFgEKBVIzLQF0vujZc9Vol5d3bmo03Ew0ui6lJJR6tGgVj9lLgliZCesdzirmKA3pK2D1882BPPD3POETvOF+D1309jxppT/GNHrnCR3wFtIrFaUtxmp2Ocl+nNooIqOpO1RtX8zALZHSFOEGGPDNTio0nd0KdVBNpEBeHlUe3xf2M6upynusi1oNCbrS6G1Hv/64q/pw90OfZaaC2z4Q1ws7kVolIxmDuuE/59YVC13jPU3wcVBgvMVjvGdG2KRsHyUlE5tBo1ejqks51jQrDkvnj0iA0TGddKkAquTw1ujXXP9Me9glSAEJlNMjnnumn98d7d3fDBxG7o2yoCnZqGiKKxvz/b36X0uhLkXpmx5hT0ZitvLBDe23geRwTVXRMuF2P2n2cw8KNd/GNWmx3jPz+AHwSVgj1hlLQPyK8wiZQan+28hEv5Oo+pA4FaDe7t3QJdm4Xg0f5x2PTiYL6arpSNLw7C78/Iz1NSyLwiVbjUBcM7RqN3y3DMukP+77oR2O1OZ563BqwSgxxyRDlDUNoegThmOzQORmSQFu9M6OqxsfntDnngQ31bgmEYPkLr76MWVZGc2LMZHujjdHSQ1kHRwX4OA86EJiF+fFEWAMgs1uOxH48h/u1t2HYun3eqEMf/9nP5mLDsAI5cLva64bbZakd+hZGLwPk6I3Bmqx1aScSrTVQQOseEYOl98fhKoS0EwDmNyPe0ecZgfn2ODvbDgDZiOSjJOxY6b6Trardm3FxFemgq0cD7drtQW1UoH6iN89Y3iDHibY8ddyhJsoQESaJkZpsd/r4a2VwNOUjoXq6rPckV0hmtCA/09fg3CT1yIX4+InkXqUj2yeTuaC6QHMRFBihWlBJiFlWVsiMlvxLtGwej0mhBdqkBIzv5oGmIH1ILdbDbWWQLrnX72at8vkhaoQ6ZJXo+D6dIZ+aNbbPNjp3n8/HC6pOiqOa2s05jLr/ChLhIeelBucGC1lGBojLb0SFaXJLkfUzpG4tuzULRPNzfbS8WYRGE+Xd1ga9GpdgGwlejRlGl2IBz11ftZsLfV41Ko9XFEx/oJvrSLMyfd7ZIIZ7Rdo2D4KNW4fibo2SPW3B3N/x5IpuvVCl02vj5qPFAn1jY7CwedEQWGgVqMaZLE0wdGCfqHRjq7+MSlRbSoUkwkMSV8w7288HQDlF89DfEzwdPDmqNL3bLt+oAOFlXbEQAJt/ags/ViG8eiqTscjzxUyLm3dkZPxy8wkfSAWDPxUJM/fEY/nh2gEuenDvIffq/Hs34wg1PDW4tKtYz+dZYvr8awMkmP9pywev3kEPegLO5RAm8nRerQ0yoq+QmSMF5IIdStUl3hPprUGaw8AUa/H3UuCs+BkU6k1e5x/Pu7IwJ3Z1l2tc/551RGx3sJyoypFGrEKzVoFm4P6JlciaJAdepKZe3Szafm17kDFZScMnfR43nhrVB66hAvP3POdE5vn2kN2x2O575lVMwCNuZdH5rq1fXDXBzN8uyYBgGOWUG6ExWXPWy9yfLsi65m5uS81wcBEeulGBwu0aiKHfHJsGiVjM+ahVaRATg3xe4qESTUG7DvTelEC+OaId7v0pA66hAZJcY0CIiwGs1D3G49Iz1TpZ5PejeIky2rUTrqCA+v66uqDRZ+Hn2WiNwE7o3Q0Sgr6zk9fYuTfDW+M580TOCUvEMgp+PGt1bhGFkp2jc06s5urcI49MzyNpktNpQaeS+/58f74PbHDntt3dtgonLD/HRv+gQLQorTSisNGFiz2aIF1yntIgcKbhH+pXOWX8GhZUmTP7mMF6/vQOeF/QqVuLb/ZdRUmXG6M5N+H0eiYgr5ZxNlIn0CxGugdKemVLI9ylc80m+c7BWg30zhyHU3wedmgaL6gDIQXZZ17vQUV1Bq1BeAyQ3QNqgtLYg+T8Ei4wHxB0TujfDqawyl6a43Lm5yUFn4gw4pb4hHZsE4874GNFmiWHEEr5GwVq+pHTzcH8suucWdIkJrVFyuclqx+iP92HVk315ySDn/fXDlrNX0XrOJtHx8wUbgrRCnWgxvVpu4HuUpBXq+MqYQqSGa7KgwmB881CseKwPejgaFEu9cYIWfXh2aBscvlyMOWM7KRbYEDKqc2N8uTcVP07t47ZvCcBtYIWyOeC/FIHToKDC5JKUXdOGuCM7N8bap/vJNnMVMqVvLDo0CeZzyYSNWv191PDzUePlUc5edioVg69k8jf8fdXo1CQEc8Z2xLAO0Vi87SK2ns3H94/2RvvGwXzvrIf6csbHD4/eKipqI5eXJcVmZ3FXfAxSC3T4fFcqBrRtxJewlm6YAfAR6J3n/5+9846Posz/+OfZkk0vJKElQGjqoYgg0gUr6lnQEyueXc92erYT1J9yet6pWLDe2RALYsGGBwiC9N47gVBCeiXJJtm+z++PmWd2ZnZmS7KbTcjzfr14kZ2dnX12nnnKt1eEJcAx63ic0SApbfplJ+P5KwfhH7/s0y2CvHbqBa0qoKr3rOtZYSOJ1sIfbdfNtARfVjyL2SDFcYZKvNmIUf0yI9KWddMu0HXbzBYVTur32T0b1jsd247XgRCCHmkJuGNsX7/nkcUAzb1nFH7dU9Yqa0ql1YFuqfGSZabB7sai3WXomZ6gmdmX8f6Kw35rg14ZjLzMJIUAl5eZhAPlVgzJTcMMHUt+nMkglZw48q8/tmjueuiCARicX4Urh2jXOosG398/xi9RSnuhRmYd1bIOh8KCh8dJIRYsb4Aao4HgznF9cajSKnk4/GlojiKBkh5yl8GBssRcLFmQkIzF3w2U5QFgLp1j+mfhHbEe6Rk903Bq9xR8dc9IfLr2GH7b51NAP3LhQEw4NRvX/mcdbE6hNqFc8fj91uKgAhylFJ+uPYbzT83GRYO6gVIKo4FI81GwDKMDuyb7KbXvGJsXcrkKwLc3lcfxsZi3ZpdHWhPP08mErfw9wv8nh/jGBbhWwczilw9um0k02WJSFNB0erwBYyDUxJuN+LcsfkIOmzDqml3o1UUwxct55MKB2F5Uhw9uORsJYmFehtloUGyqspItOFLVBLdX0ICqC8vOf2isZsronPQEXctfQVUj9onZK2ubnQrtWI+0eMx/aBwuemOlIiPfkaomRe2QXcX10gDWypD26R3nYOZvB9EnM0kqFisPrn/kIiGxAUsz3CUpDm/fNBQ/bivG8vwquDxeZCVbUN3owJ1j+4blLpadYsHqv18Q0rlmI1EIEIB2rNzJSGKcEU1OXwzcS9ecoVi8W8LIEDe3Q3LTpE2onGD3ftyALKm2o9dLYTAQ3DtecIV856ZhaHS4pfiHnukJ+OGBMVJhaa3N3dx7RuHDVYc1awUBQkwKIQSPTzwVd47tq3Ax04Jlj9MrUK2HJMCZDEhNEGIT480GXHaGkF1SL6udnjU0VJgFLis5DrePyZPcmNoiBg4Alj42HoAv82Yg628kkMfdtEbwjQSBBKpTuqWgW6rFrz4q46t7RulmQZ5+5SCFF8Lo/pkY3T/wuMxINONEswu5qiQvjEMVjeiWGo9jTICT1YRklsXFe8txrLoJf5FlEX3n90N+12IM6ZWOnTIrlNoV9Y6xeZqKGz1aqng6d2C2rpARLQQvofa59ZVngW6p0H96z9DdUf/9pzPx3ZZiuL0UV+kUDA8VFtdvMRkwcVB37ClpUISanNYjFemJZjwp1l4b3T8TI/p2waajtThTzJQ8pn8WuqbESwLcr387V0pqlGg2otnpwf4ypXXuSHUT6m2ugEn37C4vqhsdGNFXGIuEECTGGaU462BJYX756zic9n+/Ko49evEpYVnAWNzxVUNypGMDRFf2cF3/WQxcO32Mw4YLcK3AZDRg3wuXtFkxQLUFzun2tljbpIa5On6z5TjOyDkDhbXNyE6xSBqb28fk4VFFkHoy5j80FnXNLgzPy1C4PTLB1uPVXqy1XBOevORUDOudIaW97peVhJH9ukharnqZwDKwawquGZqDRbvLMKRXOu4a1xcp8WbkZiQoBLjDVY1ISzCjb1YSctITFAXSWR2p168bgsfFWiLnn9oV55/aFQt3l0kCnBzmi52XmYQdzXVITzTjqiE9kZMeLwhwXorv7huNxXvLddPVRwItrVdnscAlWoywOT2SNu7S07vruppGGpPRgJk3DJVqxTGC3fsv7x6J8no7Zi49KMVXMOJMBnQx+Z4Vo4FIcXB6jO6fia2FtVieX4V4swFJcSbUNDnxlwn98MHKI4rSCRlJcYoi1lqwuAtrgHIaWjhlApywaRI20d3T4rH5mYvCulY4sCQmCXFGhea7LSxwADBAVUsqMcrfK99g6WX7bQ/cMTYPN47QT8QVL1qq5WQlx+GcvC64fWxf3c99dOtw9EiLxxXvrFEcX/HE+XC4Pbjug/Wan5u3tQi7Suqk2nHyFP42pwevLcnHJ2Jc3L3j+0mbSnU6fDm9uyTinD4Z+Fj8XFayBe9PGQYvpbjizLazhnGUyNf91rpQhgrLZN23hXU0Gb27JOKRCwfimqE56N0lEbeO7qOY19ISzNjx3ETFZ9684Sx8sb5QEYcvLw8kz66YECeUJjhU2QgDUWaHfPK7nfjwVv1Msey+yuegpDjfPjSYBS7ebMT//joOhTXNeHLeTjQ7PUgMcw47J68LvrhrBEbLFK3MaqmVMCYQPgvcySHBcQGulbSV1hcQMu3JLVROnZonLYFNQl9uOI4Jp3TF8ZpmDMlNk2JbtOqryQUxA/FZqv520SnIL7fi4kH6GaRWPHEekuNNWJlfBbfXixvO6Y0imdvm7DtGYNkBnztAYW0zUuJNGN0vE38e1QcGA8Gnd4xQXDMvKwl7S3015goqG9EvOwkZiWYMzk1TCHBWhxtGA9F0pfnj4B5Y9Mi5+HZLkSKhCtPs9c0SYt+YC+Vp3VPRJzMRUy89DX2zkkKqCdUatPq8s8TAJcaZFBY4recymsjrHzFCEZ67p8Xj5Wu1rd8tgS2oJoMBy588D80OD7qnxaNbSrxfTaChvTPw5CWnaroMW0wGKTlDuBY4lkjGYjJgbP9M7C9rUKQ1jxashmOi2QSz0bcQx2pRDsVFujUoBLgYW+ACYTIakBJm+7Y8qx1zKkedWp2RmmACIYKCrrCmGWueOh9fbyrCu8sF97KfdghKODYe5PVH1x+ploQ3QPA8yUiKg8PtCVgzKz3BjKcuOw3/21WG8gY7slMsuu3jxIZoj0cGq3XYWo8CQojC/T4Ud8yc9ARMvUzp4SO3aqXL5oyEOCMOVViRX25Fry6JeO/mYbj9082obnRgyb4KyStECy0BTq6wcnuCW8DOyEnDGTmCq+fagmpdC70eBgPxszYbDQRbnr0obGH9qiE98Z8Vh3Hd8MAxeh2F9rsacPxIjTcptOTNLndYLpSBkAuiJ5qdOF7bjN5dkqRA9GACgvz9vllJ+PVv43VTqQOCsJWVbMG1Z+dKSQ6Yj3d2isWv1syhCiusdjeG9ErXnWxyVRNpWb0dawtq0CUpTlE7idE9NV6yFqo3nn/okeq3ELDJggm7LNNgksWElU+eH9TlJ1JouVF1FgtcgtkIu8srK8jetr/bbDTgq3tG+rWprWFjxWQkSI03o7v4HN85rq8ivoKhFeN3+5g8xTNe2xyeK6pkgTMaMfWy0/DTg2P9rFPRgNU8TIgz4uw+wu/qk5mIMQPaZvypibbQmi3TppuMJ4fmuCV8dOtwzLrdZy1gG9aZN5yF924ehtyMRNw1ri/+OFipONQqpXG4UpmkpFBUHjJPD3UNPUZJnQ1mo0GqBxYpDxhO5Ii2SzPjq3tG4tu/jA5bIIkmf7/0VJyTl6HYI2UnW7D52AlsLTyBPw7ugTNy0rB+2gV4YqIgNFYHqGlbJ64JcgFOHgZZGkYCvwFdk4OW0QmHrGQLLGGu/726JGLPPy4JqXxGR4DPPh2IZJkLJaUUFQ1CkHakuHd8P3y46ggOllthc3nQJzMRfx7VB89dMSioz3IksvqkJZjx4tVnSAWMK2VZw1gShuwA7nLsXsQZDfj8rhFSViqby6NI48vqqHRPi0eSxYRHLzoFF/7BPwBWndWOCXCnijVHeqS1TvPWUrRdKNvPIhJNmJtcTZMT8WZDi2NIWkNXVdxLLITnLHEc3BNiVkPm/nv98Fw8fOFAcfEzYHl+pVSguN7WchdKk9G/Tl20YIt2gtmIAV2TFZkSY0G0vTCG9U7Hhad1xbIDlWKig84Js3Tdf15/RRxaemKc5EqVkRSH96ecjcHTFwe0KBdUNiI13oRzT8nGgl1lKKxpwlm90lEnjoFbRvXBzSP74OG523HtsFyc2l3IHMmSPozpn4mthSciuv5yWs9r1w1pszWha0p8uysE/cB5A/DAecrEJB/eOhyrD1WhyeHBZLEUiNlokGqgltfbdX+HpgulzALXVnM+RxsuwHUgspMtqLe50Cy6kDndXknzHgmmXXYavlhfiFWHhOQIA7smw2AgIbupDe2djssHh+eTrEZevDhB3Bid3ScDW8X07YF+740jeuFwVSMen3gq0hPMuOyM7li0pxwpFrMi2DzZYkKl1SFtxB/RyMoJ+AtwTLM3cVA3LHh4XKt931uKVuBwuJqojgp7JmoanW3qviwnO1n5DMZCeB7TPxOLHjlXKmAajFO7p2DW7cMxpn+WQuDsmZaAwhql9SFUnB7B1SxSbtyhwu53W7hrhkIoJWBaAyEEH906HL/sKsUlYRQ8P1kJJTlUeqJZU4CLMxrg9Hixp7Qef+iRitevG4KFu8twrFoYAyy7XnpCHMYNzMIp3ZKlZBAs8RAghAlMOisHeTFaAzgCj198Ciqsdqw5VI1jNc2SgMLxkZVswTVDrjvV3AAAIABJREFU/e8LU0CX19txZq4QC61eU+s0BLhPbjsHM5cewgPn9Q+pri8nenABrgPRXyzY+P3WYgwVEx1E0gpECEHXVAsOVggZGk8Ps0hoqPWFQuWucX0xJDcNFVa7JMAFEpoS40x46ZrB0uv/3HI2thbWIi8zSSGEsg2n2pKiRl73Jy8zUdLsCcU3Y1dAVcuF0tJZLHBinyzdXxFSMeJokJogWG3fXCpkPwyU9CBaEEKC1s9Rc8Fp/rE6eVlJWH9EqBdXb3NJtbNCQW6Ba0uYsqKzPPOAEAcy6ayc4CdyADCLs8+96+cHx2JNQTVS4k147ue92FvagPsm9Ee82YjuqfEorBFcKk+ILmPMPZ4Jb2qMBqIooMyJDX+9UFC+1ttcqG1qXTbizka3NGH93FvagP1lVry59CD+99dxOEPc91FKJaVeWqJPgOuWGo9//2mw/wU5bQ4X4DoQbMH4v5/3SpvXHhG0wAE+TUvfrKSA6WXbgjiTQahhJXOXCff3shgZOay4pVYxWjnM0nX54B54b8qwsL43mmiVWugsMXDM6uL2UkXq6LaEEIJHLhqI3pkJePSbnZI7Y0ekb5ZPg+r2Us2C2Ho4ZXXg2hIWbxsLwVkOq33HaX+wZ+OaoTkY1icDQ3qlY0ivdCzPr5TOGS7WPOyTmYgdRXV49qfd+HLDcQA+AY7TMUhLMMd8v9LRyEoS3OjfWuYrm3H7p5vRNysRRbU2VDc64KEUiXFGpLRRYhhOePBe6UD0yfRttiil6JedJFnlIsXUS0/DntJ6KQ6tPTBYZgmMRMAwq6EWzILDMty5PO0r7uSKM3vA6fEiLcGM7WJNss6ShVJe5PzSGLuTXTM0V9M1pSMxRFXSo87mClmAc8TIAjeyXyaG5Ka12l27tax88nw0ObkA1x4ZMyATu0vqccWZPXDhH3yW5/NOyca/rhmMKqsD408RMtsN6JqMDUdqUd5gx7kDs9AtNT5m8c0cTlshZPI+B2V1dpiMBM1OD1bmV6HO5sSofl2QkRSHigY7bjynd0xizTnBIZSGVwgvGgwfPpxu2bIl1s3oEFjtLiRbTBFJGtKR2Hb8BOwuD8b0zwp+sg6/7atAarwJN4jJTb6/fwzO7qNfc2vZ/grc9dkWXHBaV8y6/ZwWf2+0cLg9qLI64PbQThWLUW8TxkC0Y486C3XNTqwtqMGDX23DLw+NQ2qCCS4PDeoi9v6KArz6az4OvHhpp7EAczoGlFIUn7AhNyMh6Fp5osmJgxVWnNU7vdPEEnM4nPYLIWQrpVS/QJ8It8B1MFgtss5GsOLGoaCu13NGTuAYInav09upa4bFZFRYpDoL3FUmsqQnxiFDdBm78l2hWLLZSLDlmYsVsQ9qYuVCyeEEgxAScoKFjKQ4jOwXmxIUHA6H01K4AMfpdNw1ri/2lTYE1baek5eBf159Bq46q2cbtYzDiQ2ndk9BTnoCSupsSIwzotnpwYTXliMnPQGECAXDczMSkJVsQZLFCKvdjZUHq2AyEO5ew+FwOBxOG8NdKDkcDocDADhS1Yi+WUn4364yrDtcg/J6GwyEwObyoLCmGZVWOygVYi77ZSdjaO90vDDpjFg3m8PhcDick4KYu1ASQi4F8BYAI4CPKaUvR+u7OBwOh9N6+mULcW9XDumJK4f4W57DKTPA4XA4HA4nOkQleIEQYgTwHoDLAAwCcBMhZFA0vovD4XA4bQMX3jgcDofDiT3Rij4fAaCAUnqEUuoE8DWASVH6Lg6Hw+FwOBwOh8PpFETLhTIHQJHsdTGAkfITCCH3ArhXfNlICMmPUltaQxaA6lg3ghMU3k/tH95HHQPeTx0D3k/tH95HHQPeTx2DztRPfUI5KVoCnJafjSJbCqX0QwAfRun7IwIhZEsogYSc2ML7qf3D+6hjwPupY8D7qf3D+6hjwPupY8D7yZ9ouVAWA+gle50LoDRK38XhcDgcDofD4XA4nYJoCXCbAQwkhPQlhMQBuBHA/Ch9F4fD4XA4HA6Hw+F0CqLiQkkpdRNCHgKwGEIZgVmU0r3R+K4o065dPDkSvJ/aP7yPOga8nzoGvJ/aP7yPOga8nzoGvJ9UtItC3hwOh8PhcDgcDofDCU60XCg5HA6Hw+FwOBwOhxNhuACnAyHkUkJIPiGkgBAyNdbt6awQQnoRQpYTQvYTQvYSQh4Rj3chhPxGCDkk/p8hHieEkLfFfttFCBkW21/QuSCEGAkh2wkh/xNf9yWEbBT76RsxJhaEEIv4ukB8Py+W7e4sEELSCSHzCCEHxDE1mo+l9gch5FFxvttDCJlLCInnYyn2EEJmEUIqCSF7ZMfCHj+EkNvE8w8RQm6LxW85WdHpoxninLeLEPIjISRd9t40sY/yCSGXyI7zPWAU0eon2XtPEEIoISRLfM3HkgZcgNOAEGIE8B6AywAMAnATIWRQbFvVaXEDeJxS+gcAowA8KPbFVADLKKUDASwTXwNCnw0U/90L4D9t3+ROzSMA9stevwLgTbGfTgC4Szx+F4ATlNIBAN4Uz+NEn7cA/EopPQ3AEAh9xcdSO4IQkgPgYQDDKaVnQIgjvxF8LLUHZgO4VHUsrPFDCOkC4HkItXFHAHieCX2ciDAb/n30G4AzKKVnAjgIYBoAiHuJGwGcLn7mfVEJyfeA0Wc2/PsJhJBeAC4GcFx2mI8lDbgAp80IAAWU0iOUUieArwFMinGbOiWU0jJK6TbxbyuEDWcOhP74TDztMwBXi39PAvA5FdgAIJ0Q0qONm90pIYTkArgcwMfiawLgAgDzxFPU/cT6bx6AC8XzOVGCEJIKYDyATwCAUuqklNaBj6X2iAlAAiHEBCARQBn4WIo5lNJVAGpVh8MdP5cA+I1SWkspPQFBuPDbyHJahlYfUUqXUErd4ssNEEpbAUIffU0pdVBKjwIogLD/43vAKKMzlgBBCfV3KGtH87GkARfgtMkBUCR7XSwe48QQ0TVoKICNALpRSssAQcgD0FU8jfdd7JgJYeL1iq8zAdTJFk55X0j9JL5fL57PiR79AFQB+FR0c/2YEJIEPpbaFZTSEgCvQdBAl0EYG1vBx1J7Jdzxw8dVbLkTwCLxb95H7QhCyFUASiilO1Vv8X7SgAtw2mhpL3m6zhhCCEkG8D2Av1FKGwKdqnGM912UIYRcAaCSUrpVfljjVBrCe5zoYAIwDMB/KKVDATTB5+6lBe+jGCC6AE0C0BdATwBJEFyI1PCx1L7R6xfeXzGCEPIMhLCMOeyQxmm8j2IAISQRwDMAntN6W+NYp++nsAW4YIGdhJD7CCG7CSE7CCFrOqjfcDGAXrLXuQBKY9SWTg8hxAxBeJtDKf1BPFzB3LnE/yvF47zvYsNYAFcRQo5BcDe5AIJFLl10AwOUfSH1k/h+GrTdKTiRoxhAMaV0o/h6HgSBjo+l9sVFAI5SSqsopS4APwAYAz6W2ivhjh8+rmKAmODiCgBTqK9+Fu+j9kN/CEqrneI+IhfANkJId/B+0iQsAS7EwM6vKKWDKaVnAXgVwBsRaWnbshnAQDHrVxyEINf5MW5Tp0SM5fgEwH5KqfxZmg+AZRy6DcDPsuO3ilmLRgGoZ+4tnOhBKZ1GKc2llOZBGC+/U0qnAFgOYLJ4mrqfWP9NFs/vNJqzWEApLQdQRAg5VTx0IYB94GOpvXEcwChCSKI4/7F+4mOpfRLu+FkMYCIhJEO0tk4Uj3GiBCHkUgBPAbiKUtose2s+gBuJkMm1L4QkGZvA94BtDqV0N6W0K6U0T9xHFAMYJq5bfCxpYAp+igIpsBMACCEssHMfO0Hl3paEDmjOpJS6CSEPQXgQjABmUUr3xrhZnZWxAP4MYDchZId47GkALwP4lhByF4QNz3XiewsB/BFCMHIzgDvatrkcFU8B+JoQ8k8A2yEm0BD//4IQUgDBWnBjjNrX2fgrgDnipuQIhPFhAB9L7QZK6UZCyDwA2yC4e20H8CGABeBjKaYQQuYCOA9AFiGkGEIGvLDWIkppLSHkRQhCAgC8QCnlFtMIodNH0wBYAPwm5vfZQCm9j1K6lxDyLYQ9rBvAg5RSj3gdvgeMIlr9RCn9ROd0PpY0IOEo6gghkwFcSim9W3z9ZwAjKaUPqc57EMBjAOIAXEApPRToullZWTQvLy/MpnM4HA6Hw+FwOBzOycHWrVurKaXZwc4L1wIXUsAgpfQ9AO8RQm4G8Cx87gW+CxFyL4R6Dujduze2bNkSZlM4HA6Hw+FwOBwO5+SAEFIYynnhJjEJN2Dwa/hqoiiglH5IKR1OKR2enR1U0ORwOBwOh8PhcDicTk+4AlzQwE5CyEDZy8sBBHSf5HA4HA6Hw2nPUEpx7+dbsOZQdaybwuFwOOEJcGKRUBbYuR/At2IQ6AtiAT4AeIgQsldMOPEYNNwnORwOh8PhcDoKNpcHS/ZV4M7Zm4OfzOG0kttvvx3PPvtsSOcSQlBQUNCi78nLy8PSpUtb9Nm2YM6cOZg4cWKsm9EuCbsOHKV0IaX0FEppf0rpS+Kx5yil88W/H6GUnk4pPYtSej7P3MPhcDgcDqejUVTbjLypC7CzqA5eMdrf6fHGtlGck4avv/4aI0eORFJSErp27YqRI0fi/fffR2etAnLs2DEQQuB2u6VjU6ZMwZIlS2LYqvZL2AIch8PhcDgczsnOwt1C2cP5O0vh8XTOTTUnOrz++ut45JFH8OSTT6K8vBwVFRX473//i7Vr18LpdMa6eQGRC1icyBLOveUCHIfD4XA4HI6KmiZhI52ZHAe3l1veOJGhvr4ezz33HN5//31MnjwZKSkpIIRg6NChmDNnDiwWi99nPvroIwwYMABdunTBVVddhdJSZf7AhQsXol+/fsjKysKTTz4Jr/i8Hj58GBdccAEyMzORlZWFKVOmoK6uLqz2Tp8+HZMnT8Ytt9yC1NRUzJ49G16vFy+//DL69++PzMxMXH/99ait9ZVgu+6669C9e3ekpaVh/Pjx2LvX54xns9nw+OOPo0+fPkhLS8O4ceNgs9kwfvx4AEB6ejqSk5Oxfv16zJ49G+PGjQMA3HfffXjiiScUbZs0aRLeeOMNAEBpaSmuvfZaZGdno2/fvnj77bdD/m033HADUlJSMGzYMOzcuVN6f//+/TjvvPOQnp6O008/HfPnC2k/jh49ivT0dOk+33333ejatav0uVtuuQUzZ84EIPT3XXfdhR49eiAnJwfPPvssPB4PAGD27NkYO3YsHn30UXTp0gXTp08PrVPABTgOh8NRUG9zYW0BT1TA4XR2qhsdAIDMpDh4vNwCx4kM69evh8PhwKRJk0I6//fff8e0adPw7bffoqysDH369MGNN96oOOfHH3/Eli1bsG3bNvz888+YNWsWACH5zrRp01BaWor9+/ejqKgoLCGB8fPPP2Py5Mmoq6vDlClT8Pbbb+Onn37CypUrUVpaioyMDDz44IPS+ZdddhkOHTqEyspKDBs2DFOmTJHee+KJJ7B161asW7cOtbW1ePXVV2EwGLBq1SoAQF1dHRobGzF69GhFG26++WZ88803kovpiRMnsGTJEtx4443wer248sorMWTIEJSUlGDZsmWYOXMmFi9eHNJvu+6661BbW4ubb74ZV199NVwuF1wuF6688kpMnDgRlZWVeOeddzBlyhTk5+ejb9++SE1Nxfbt2wEAq1evRnJyMvbv3w8AWLVqFSZMmAAAuO2222AymVBQUIDt27djyZIl+Pjjj6Xv37hxI/r164fKyko888wzIfcJF+A4HA5Hxr2fb8GUjzeiwe6KdVM4HE4MqWkULHAmgwEuLsBxIkR1dTWysrJgMvlKMY8ZMwbp6elISEiQBBnGnDlzcOedd2LYsGGwWCz497//jfXr1+PYsWPSOU899RS6dOmC3r17429/+xvmzp0LABgwYAAuvvhiWCwWZGdn47HHHsPKlSvDbvPo0aNx9dVXw2AwICEhAR988AFeeukl5ObmwmKxYPr06Zg3b57kAnjnnXciJSVFem/nzp2or6+H1+vFrFmz8NZbbyEnJwdGoxFjxozRtDqqOffcc0EIwerVqwEA8+bNw+jRo9GzZ09s3rwZVVVVeO655xAXF4d+/frhnnvuwddffx30umeffTYmT54Ms9mMxx57DHa7HRs2bMCGDRvQ2NiIqVOnIi4uDhdccAGuuOIK6d5OmDABK1euRHl5OQBg8uTJWLlyJY4ePYqGhgYMGTIEFRUVWLRoEWbOnCnFOj766KOKdvXs2RN//etfYTKZkJCQEHKfhFvIm8PhcE5qDlZYAQAuN3eZ4nA6Ala7C4v2lOO6s3NBCInYdWuaBAucx0t5DBwnYmRmZqK6uhput1sS4tatWwcAyM3NldzyGKWlpRg2bJj0Ojk5GZmZmSgpKUFeXh4AoFcvX4nmPn36SC6WlZWVePjhh7F69WpYrVZ4vV5kZGSE3Wb59QGgsLAQ11xzDQwGnx3IaDSioqIC3bt3xzPPPIPvvvsOVVVV0jnV1dVwOByw2+3o379/2G0ghODGG2/E3LlzMX78eHz11Ve45ZZbpPaUlpYiPT1dOt/j8eDcc88N67cZDAbk5uZK969Xr16K39inTx+UlJQAEAS4+fPnIzc3F+PHj8d5552HL774AvHx8Tj33HNhMBhQWFgIl8uFHj16SNfwer2K71Tf21DhFjgOh8ORwTaAfLvG4XQM7v9yG/4+bxeO1TRH9Lp2l7CRdnspj4HjRIzRo0fDYrHg559/Dun8nj17orCwUHrd1NSEmpoa5OTkSMeKioqkv48fP46ePXsCAKZNmwZCCHbt2oWGhgZ8+eWXLcpyqVaM9OrVC4sWLUJdXZ30z263IycnB1999RV+/vlnLF26FPX19ZKlkFKKrKwsxMfH4/Dhw0G/Q4ubbroJ8+bNQ2FhITZu3Ihrr71Wak/fvn0V7bFarVi4cGHQa8rvndfrRXFxMXr27ImePXuiqKhIIVAfP35cuu8TJkzA6tWrsWLFCkyYMAHjxo3D2rVrsXLlSsl9slevXrBYLKiurpba1dDQoIgJbKnSiQtwHA6HI4NNpZ00kzOH0+FYI8asRitOzeP18hg4TsRIT0/H888/jwceeADz5s1DY2MjvF4vduzYgaamJr/zb775Znz66afYsWMHHA4Hnn76aYwcOVKyvgHAjBkzcOLECRQVFeGtt97CDTfcAACwWq1ITk5Geno6SkpKMGPGjIj8hvvuuw/PPPOMJFhWVVVJAqnVaoXFYkFmZiaam5vx9NNPS58zGAy488478dhjj6G0tBQej0eKCczOzobBYMCRI0d0v3fo0KHIzs7G3XffjUsuuUSyuI0YMQKpqal45ZVXYLPZ4PF4sGfPHmzeHLxu49atW/HDDz/A7XZj5syZsFgsGDVqlFTi4dVXX4XL5cKKFSvwyy+/SPGHAwcOREJCAr788kuMHz8eqamp6NatG77//ntJgOvRowcmTpyIxx9/HA0NDfB6vTh8+HCL3FjVcAGOw+FwZDBlWGetxcPhdFRcEa7RxuYAwQLnmw+8XJjjtJK///3veOONN/Dqq6+ia9eu6NatG/7yl7/glVdewZgxYxTnXnjhhXjxxRdx7bXXokePHjh8+LBfbNekSZNw9tln46yzzsLll1+Ou+66CwDw/PPPY9u2bUhLS8Pll1+OP/3pTxFp/yOPPIKrrroKEydOREpKCkaNGoWNGzcCAG699Vb06dMHOTk5GDRoEEaNGqX47GuvvYbBgwfjnHPOQZcuXfDUU0/B6/UiMTERzzzzDMaOHYv09HRs2LBB87tvuukmLF26FDfffLN0zGg04pdffsGOHTvQt29fZGVl4e6770Z9fX3Q3zJp0iR88803yMjIwBdffIEffvgBZrMZcXFxmD9/PhYtWoSsrCw88MAD+Pzzz3HaaadJn50wYQIyMzPRu3dv6TWlFEOHDpXO+fzzz+F0OjFo0CBkZGRg8uTJKCsrC/1m60DawyZl+PDhdMuWLbFuBofD4WD4P5eiutGB9dMuQI+00AOKORxObMibugAA8MtD4zA4Ny1i173w9RU4XNWEZy//A0b1y8QV76wBABx48VLEm40R+x4OhxMbpk+fjoKCAnz55ZexbooEIWQrpXR4sPO4BY7D4XBkMAucmyct4HA6FM4IW+AYagtctL6Hw+FwQoULcBwOhyODxcB524F3AofDCZ2Iu1CK/3u8FB5ZIgMnz1DLOcm47LLLkJyc7PfvX//6V6yb1mpO1t/GywhwOByODMkCx+NcOJwORaQFOIbbQxUWeQcX4DgnGYsWLYp1E6LGyfrbuAWOw+FwZBDRBhfrrHP7Sht4IhUOJwjyhCKRdntm1/Z4vUoXSi7AcTicGMMFOA6Hw5HBLHCxFODWH67BH99ejS82FAY/mcPpxLjkro0RtsAxoU0dA+dweyL6PRwOhxMuXIDjcDgcGSwGLpYCXGGNUAtob0lDzNrA4XQE5Fa3SLtQsmvzGDgOh9Pe4AIch8PhyCCkfbhQcjic4MgFuEi7UCoscB7uQsnhcNoPXIDjcDoxhTVNPM5Kh1gmMeE9wuGERnRdKIXrCRa48JKYlNTZ0ORwR7Q9HE5noKCyEU//uJsrUYPABTgOp5Oyq7gOE2aswGfrjsW6Ke2K9hADx2Bt4XA42rTEhXLNoWqsLagOep7Hwyxw4ScxGfvy77juv+tDag+H0xI+WnUE328tjnUzIs6Dc7bhq43HcajSGuumtGt4GQEOp5Oyv0yIr9pTyuOs5LQHAY7XoONwQkMutLlCdG285ZONAIBjL18e+Nq6FjgPKKUoqbMhNyNR9/P7yvjcyokeLy3cDwC4emgOAMBoOLk0fl7uqRwQboFrId9uLkK9zRXrZnA4LcZqF9x7ki1cjyOnPZQRsDl5ljsOJxTklrFIuz2zOcDlUWeh9OKbzUUY98pybD9+IqLfyeGEy1XvrsHwf/4GAJi76TgmzFiueV6V1SElyGrPGAyxX4M7AlyAawF7Surx9+93Yer3u2LdlJOW2iYn5mzkKdSjSaMYn5EazwU4OZIFLoZWMLuLC3AcTii4PZGPgVt5sAq7i+vhkmWhlH+Pw+3FntJ6AMCOorqIfCenY1BSZ5O8V9oLe0sbcKJZMChM+2E3CmuaNdeQca/8jgkzVrRx68KHGRLtvFxHQLgA1wKaRe14ldUR45acvDz27Q488+MeHKzgPtDRglngUuLNMW5J+8JXRiB2/hs2cfF1RTirHodzsiEfIy5368eLx0tx26xNuPLdNdIxdR04p9uLLolxAARloxovtxyctLy+JB+PfL091s3A5P+s0zzO3Cg/X3/M771Qku+EygcrD0ftPhhELWoz90QJSNgCHCHkUkJIPiGkgBAyVeP9xwgh+wghuwghywghfSLT1PYDy9pn4BkGNPl5R0lIAeKBqGgQhONI1/VpLdN+2I07Z28+KdJIN4oCXHycMcYtaV/4ygjErg1s4eKWOA4nMG6ZosUdAaXLrmJ/i5rH61W4czndXknxpSXAuXjwTouglOJ4TXOsmxGQJocbDbbYZRetbnSg0mrHlkJ/112Xx4sEs7Ce/2vhAVQ3ahsZIpEd9d+LDuDnHaWtvo4WzAJnc/IsroEIS4AjhBgBvAfgMgCDANxECBmkOm07gOGU0jMBzAPwaiQa2p6Q5nEuv2nyyNc7MOXjja26BhOS21MuB0op5m46jt8PVKKiwR7r5rQa5kLJywgoaQ8WOCa42WQC3Ju/HcQ2Hm/D4SiQW+Ai4UK57bggwMUZfdsjt0YMHPuuE83+ApxW7M6f3l+L819b0er2RZPiE80xVU7O3VSE8TOWt+t5zu2hUXHt21taj3/8sjeo0m74P5dixEvLNN+ra3Yh3uxTyB6t1o53q2zn3mOEW+BCIlwL3AgABZTSI5RSJ4CvAUySn0ApXU4pZSqUDQByW9/M9oXPAqf9/u2fbsIkmfsFp+U42pEPdIPdpw1yebz4YOVhvLe8IIYtah0NdsFnngcKqxDHdUsSIny3pQhv/HZQ9/0H52zDy4sOBL0OS2LS7PQJ2W8tO4Q/vb8OeVMXoL6ZJ1DicABlDFwkXCgPsPgm2fouZKGUxdq5vdIYbXT4r1Fars/bjtdJG+rKBjs2Ha1tdVsjSU2jA+NeWR7S/BQtthQK9+RwZWPM2hAMl5dGxTPix20l+HTtMXy46ojuOcGUrfU2JxLifNv6H7aVaJ7X3sN/2N6aC3CBCVeAywFQJHtdLB7T4y4Ai7TeIITcSwjZQgjZUlVVFWYzYovPAKctwa3Ir8LO4vq2a9BJCEuj3p4GsHzSc3ko/r3oAGYszo9hi1qHw+VLkc3x4bPAhX9fnpy3C28vO6S50OaXW7Fgdxn+u/Jw0Ouw594m9pHdpdSKH+sAmcQ4HRevl3YIy/ymo7UKF8ZwXe61zj9QLsRdyy1R6hg4m8sjbeIdGpv5YHPHNe+vw/UftK8acYerhDklltYvtqdqz0+e2+OF3eWN+PhIEEMZanTcHoHgMWwnml2SCyUgZKTUut49n29pYSv9icY8wcKTeDbmwIQrwGlJLJq9Rwi5BcBwADO03qeUfkgpHU4pHZ6dnR1mM2ILEy4MPAVM1GBzQnsawEoBruPHOFD4MqxxfPhi4Fp+X4pqbX5lRopqQ4/tYK6TLAagSRULYBbduw5VWDvERpvTsbjojZUY8/LvsW5GQPLLrbj+g/W4f8426VgoMXDyca1lSSmr93eP93ipVNS7f3YSth8/IbnR2TU21XKroNb4LKmz+bUl1pSKbcrJSIhxS9qO+77Yind/PxTWZ1jh+EgmBAF87r/OAImr9FyEu6fGAwBONDkVLpSAMkaza4oFAFBvc0Vs3YhGoi2exCQ0whVBigH0kr3OBeAXxUgIuQjAMwCuopS2b1ttC2BzLk9iEj2YkGxrR0kcqhpPMgFOfI5jmS6/PdIaCxxj/IzlGPKPJbiNhlaVAAAgAElEQVR11ib8slOYIsN5Zpj23+H2osrqkBLOMFweL7Ycq8XFb67CFxt4uQ1OeNz7+RYMfn6x7vtHqps0BZn2Qn65FZfMXOV33BmCC6Xcsqa2bAOCRU1dG9Pt9UoWuD8O7oHNx2pRWmeXzlejjpfTG/vN7ShJA1Mw5aTHToCTtlRttCT9urccry3Rd3nXgikJHBrPTmtg7r+B1gl1fCKztvVMFwQ4q90Nt4fCbCR47bohAHyhEoBSALRGIJEJEJ09GksC1J72f+2RcAW4zQAGEkL6EkLiANwIYL78BELIUAAfQBDeKiPTzPYF064RLsD5ESmtDrtKe8rCV3LCJv0d6YKxsYD9Ap7yWolUB64F9yVJldFz1cEq/HWukGo5nAQL7NzSOhvOeWkpXvjfPsX7dpdHSkKjF+fA4eixZF9FxDZwseCnHdrPfChjTB5XrbW+2N0edEu1KI4JMXAURgPBJad3h5cCvx+oFK8nfOfmY7X4fmsxAJ+VBhAy/tXpxKzqeZhUWu1tXkKnwioIpEa94P42wCe/td81ia39kU5kwgQ39v+NH67HrbM2Kc6RW/3izQbcN6E/ACBbtKxZ7S7YXR5cekYPDOiaDACKjJl2l0eywlVHKA5OS4HR+muKApyOgmPx3vJ2H8fXFoQlwFFK3QAeArAYwH4A31JK9xJCXiCEXCWeNgNAMoDvCCE7CCHzdS7XYWEm42DT3Mni2vTbvgqc++rvIWWnipRbQXt0odx8zBd0fnJY4ISbfDIIo5GExWG05L4YAmx+wnE1YWONfYZtFhl2t1dSIO1TFZXdXVyP+7/cqnDj4nBCpSModIplyjRGl6Q4lJzwuSm/t7wAt8iyIU96dw3+s+KwYo1SC3AeL4XLQ6UNse88L5qdHhgNBKf3TEVWsu99toG97r/r8fh3OwEoXTnrbS7NTJWAvovYiJeWYeKb/hbGaMI2zeHMG8vzKzHwmYUKK0974ecdJVjXynJGWrA5OdLKZbUAt+FILVYdVOaHkO/BLCYjLGZhC58h1iRsdLhhd3kQbzIgNV6wIjNXfq+Xwu7yoleXRABAdaP2Mxku0bCSMeFY69o2pwd/+WIrbv90k997nY2wo7gopQsppadQSvtTSl8Sjz1HKZ0v/n0RpbQbpfQs8d9Vga/Y8WADLJiiKtI+0rEiv7wBRbW2kGqHRMqtgEoulOFfz+7yRCVL35ZjtTi1WwoA5Wa8I2x4tGA/oaO2P1owC5y3BQqYQG7VLXGh1OO2WZski7D63Dtmb8KiPeXt2gWO035Rx262R05o1F47vWcqDlY0SmvHjMX5WFNQjb2l9dhbWo+dxfV45dcDijVK7ULJNuVyAQ0AdpfUY9bao7AYDSCEoH92ku8zWjFwsjn1RLNTYYGTK3ZDifHZU1KPp3/cHfV52ulRKo1C4ZVFB+DyhFe7bW1BNZbsLQ+7feHyyNc7cHOAckY/bCtu0XWZgBtpwYXdd7UbsLzfnSoLnFFcbxLijLCYDLDa3bC5PEiIMyI1QahTyIRrth/NFWMc9WrEhUs0BDg2RtnvbXa68de521HRYJe+L5yY8pMVnoajBTDtWrAYuEhYjzYeqcHKg7HN0skGTCjFScNN++90e/Hmbwf9hEO2AAabHFwer5+r2/1fbsWQF5ZE3ALa6HCjW5rgay7XUkajJkxbwH4Dj4HTxh1mcDalVPf5p5QqBLhgz2YormCrD/nmBZfHK42hSGlWo8lbSw/hraXhJQ8IxIkmJ4b8Y0m7rh/VUYjUxi6aaFm0Tu+ZhkaH2886d/nba3D5276yPvIxql5f9AQ4xotXnwEAyMtM8vsMg1KqmDtqm1yK75SPbZtLGLPL8yuxp0TIXN2oWgtv/3QTvtp4HDUaQmskYZvlcIqhM2HfbAx9Kznl442494utmu+xLVVbLEmPfbuzRZ+TXCgjHQOnssAxmGsroHx2LSajtCeLMxqQEm9Cg90Nu8uLeLMRqWKh+Qaxj9hz2itDsMAFynYZDpG+D8I1xT2nOI5+3VOOX3aW4pVFB6QxG84zd7LC70ALYMGmwULgmiOgmbjhww24bVZsTcVMSxjKhjZcq+P8naV4a9khvLVMuZmTChkHCfI+6x9L8OdPlFq25fnCxvZgReRqyXi8FF7qi3GST7IdNVMSE3y5C6US5poYrgXukpmrdBezJqdHoT11eSgqrXZp06YmFHdl+TN412dbcLoqKUUoY/HSmavw6q9tX/dp2YEKrDoUOcVUhdWOepsLR6p4eYXWEm1BIRJoWeD6ZQlCVaXVjn2lDX7vMwK5ULLNYWZSnHTMbBTmgxvP6YWrhwpVk3pnJmpej11DLgTVNjkU41l+Pls77vh0M654RxAyy+qUAqjeNORwe3D3Z1siFisnCXAyF8Fg7pRMgItUvdbWlhFYsKsME2Ysj2p2TzbvtsSFcmvhCQyevlgzfktPgCuq9T0PShdKg9RXJiNBSrwZVrsLNpcH8WYj4kwGJJiNUh+xZztDfLYjZTmLRpiLVKJD/L1MWHN4vNKe0GRUbsBL6mw45dlFOFCuP/ZPNrgA1wKY1kOexGTh7jK/zVgw4QMQsmnF0sLm9niDmqLZYAplUgx3UmPuAXKtr9vjxYlm5aSjR5PTg3WHaxSTyEAxeHfj0Zqw2hIINqkmxpnE17KaQB1UgGO/ibtQKmGjmgm2hyqsOFwVXBkQSGHgcHkUz4zd7cFV76yVNm1qQhPgfNdjsRJy97dgLpvVjQ4cKLfi/RXB69JFGqvdHdE4UneU4lI6Ix3hHtZqWOCYy9gvO8vwx7dX635WLkD5W+CE9zJlFrh+WcJ6kp7oE+pG9u0i/S3Ezfmu2ehwK5RitU0upQDn8gYsVKy35qkVSjuL6rF0fwWe/mG35vmA4H655lBocWC+NPbC/6f936+4LUicEWt/pMJFWmuBm/rDLhTWNPuVXVHTmjWvNXPNwQorrHa35noiF+CcCiHf91uULpRGScA2ixa4GtH7Il6MjUtNMElJTFh708VxEqlwl0h7IFFKJeOHy6MU4JxuL2xO4ZhJVcfrt73lcLq9+Grj8Yi2pz3DBbgwKKptRlFtM1ziIJLL/w/M2ea3GQvFMnPJzFW6FjYtLaMeZfU25E1dgF/3lEnHvt9aHFATCQD/XLAf5766PKDbDPsdoWy4wp7IxZvocHnhFRfCSqtDEhbZYA2GvLBxeqIwQUUyixdb1JIsLbPA1dtcGPz84qgEVbcUtsnguS6UqLNQXvzmKlz4+spWXVOdStzu8qC8QXCN0VIAON1emIIE2Vo1EgdsPupLtON0e9HocOumKt9wRFBwdJFZG9oKq90VkpAaKuxZPlnijimlMUsMoShg3Q4nB5vTo7B0v3nDEPRIi5fi0thzHejzjNomJyb/Z52kfGWb3C5JZumcRy8eiKuG9MT1w3OlY8PzuuCxi0/BOXkZAFRWNYdH4a1yotmpcJt0uD1SpketsSn/bXJXazZ/FFQ2Im/qAuTL1rdDFVbNemZXvLMGt3yiHwcmxyGzwLHvXVsQmhI0kDCws6gOt87aFNJ4lwS4FtrgWFhLMG8hLaEj1JALZl1tiesgm7PnbDyOZfsrFO+x+m9OD1WElMi/x6GywLnEec9sNCDZYkJZvWCtY2UwkuJMkjDL9inJ8SYYDSRic6U9wgpsoUi68Dd7ZthS6HR7pTFjNvIs8FyAC4NzX12Oc19dLm0WtGLg3KqNvddLccFrKzB3U/haAblQEowDZcJkPndTkXTs8e92SppIr5fih23Ffgsys/5Z7foaK7bgheJqF64rhdw/+4E52zDwmUXSJMSO6yGfcOUCaJND+Mwh0SKyIr8ShWHcSy2Y0J4gulDqacj02FfaAKvDjTeXhldzJlz+s+IwPl17NKRz2SLnCSPmoT3z8eoj2B6BGKjWlBHQQy3ALZdllay0+icbcXi8SIk3+R2Xc0IjUc/mQmWm1DOeX4wRLy3T/DwbH3kyd7DWcNOHG/CPX/aGdG6DzR1ZAa4Vbk2x5FCFFXlTFygy3AJCBsUzpy9pdapsl8crFWjWQmvTKt/YacViHihvQHkLEuSsOVSND1e13tqrjn+bNCQH66ddiK4pQnxyRUPgtsnXl2X7K7Gl8AReEd2I2fqVEOcbe93TEvD2TUPRLztZcZ2HLxyIK4f0BKB87gQLnNyF0ql41ufvLJWs58EscPI5iM3XP24Xkm/8ts8nANz00Qa8tsQ/ljwc5DFwTWFuygOt+49+uwOrDlbp7mdWHazyi8dq6dQr3+gHQq0021NSj77TFoakYGV91xK3UbbP+mVnKe76bIvyuizzsKh4Y8i/RyHAmQ3oIlqFs1MsSIk3SfGfaaKVLdFilH4rq2OblWyBxWSImNurnsW4qLYZR6vD33fJradszWS/2+n2StY5dbkL5hHXmUL6uQDXAtiiJmWrk7tLyBYXm9ODJqcbR6qbMC2Am4MeTBAJBfYw6206520txmPf7sRn64Wiv/N3lqK2ySmdH0jZb3OFYYELUyvFXL5qmpz4VcxMVSIWSLWYDAFdKOWTmUKAEyeAw1WNcHm8uP3Tzbjq3bVhtUsN6/NEs7CwyxfeUFwomb92NH3zAeCVXw/gH7/sC34ifJrEWCYxaXS4Fck4WsM/F+zHNe+vi8i1AH+FRWssInaXR7EZfup733xQ0aDcvFBK4XR7kRJvRiC0EjlUyDbWbBOjToqw/EAl7v5ss7ShilTvrz9Sg0/XHgt6HrsXkbSWSRa4DibArRE3jP8Ti70z/rdL8KRorQD3fz/twZiXf/d7Bhha05Ha3U/NpTNXY9S/tZUCgbjlk43410JfvOXy/ErkTV0gbfJeW5yPuz/bHPQ6TEhhigdWuiMl3gQD0VZsyJF7ZhytFpQY3VMF4Y9ZO+JNvq1RIAVHvMkofs733DU53AoLULPTrRj7r/6aL/1tc3r8rGzya8ndpNn6W9sk/L4M0dOEwrdX0BNcQll35KVLwk1wEWgsM6FFa5lxe7y4ddYmTFFli2yp5Zcp1YMJJ+rMoUyRvTKEtUitLJqzsRB5UxdoKnIX7y3HtB92Sa8DKcpZ/woCtEyAc2krVAyE4I6xeXj9uiGYPCwXyRazNA9KApzZZ4GrEteZrilMgIvM/KvngXTuq8tx/msrwr+ebN/rVN1rp8crWfx4EhMuwAXkQHmD5qaNTc5sspALGXJtd7PK1SOQ37XWBOv0hC/A6WWQYu5adc1OVFkdeHjudvzliy2SX30g65otjCQm4fpDs/TKO4rqpGNHxUQE/bKTUWm147XF+ZobEPnEJt/osMWs3uaSfM1bmxqbJa5hLpTyPg9FW8n6PszEhlHF0w5cKB/7Zgf+/MmmFmn0owUbQurxeixMbeKef1yCt28aCkC0wLm1O19tMWBjMTUhsAVOqziwXBjUy2R5x+zNWLq/Erslt7G2fQDYnBpOYfNguCWteMeyJhukhDnRuf5S0U1LT8mkpZRTuvvp38/iE8HTeHu9FAt3lynGEhNYPlkteAqc/9oKrD9cg3eXF2Dp/sqgrmxsw/h/VwzCsZcvl44bDETauAZCXjfxsLjWJIkuZ2yjyDwtAGXsmxpWh0t+n5qcbsV63qxKYCSnyeFRfPZEs1MhwMn7gglzLLSCCY9ybC4PNh2t9Qsf0HK3ll9L/l1uj1eRyVZv3yL/jWqB6UB5g2QpbBSFFq24NPbbD5Sz9obmAqkHE+aDzQPq8cBeMwVtIJjbIps33/29AIBgaVXzly+2KryiAikB2XVdKhdKhQVO9mw0Oz0wGQ249uxcGAxE4bGhZYFjnh7ZKRZYTMaIxcAFEkpbQpNGzJ/CAif+HnUSE0Z7LgIfabgAF4BLZ66WCoEWVPomRLbosQdFL2C22elWTMaBJhUtS5NDxxdeC7UFTn2+PBiUtelQZaM0OQeyrklZKEMpI9BCC5ycgxVWpMSbkJ1iwZ6SBry7vEDTgikXFuULDpv8XB6KXUXaWf7ChS1ubGGXT7B6i6McZvb3eL0oqLTivyvbPnGEGrYhiGUSE7aZaq07R6Dx4XB7cNEbK/2Kouqhp9QIlp0vzmTAmP6Z+P3xCfjqnpFItpiQJcaXCUlMtMdGpcrKwhatFItyMxqs7iSgTDkdTDBjGRtba7XKm7oA0+eH5joJ+Bb8SLpQuqS4lI5lgWMbTj0reKQ2I3rX0VIcOhRrlv79PNEUfN77enMRHpizDV9v9m1i2XOZKBOSPl59RPq7NIgyh623iXH+m+1AwhZjf5l/bDRz5d9aKLhgx5v9hSMtLBoWuIW7y/HXudsBCFbBZof+2K+3uRRrZm2TUyFcuBUCnGiBEy3vTKlZXu+rjWV3eXD9B+sx8c1V+Ps8X5p8ZpU8XtOM95YXgFKKZfsrMPTF37D+sBDn5nOhpHjoq22yz+oVIde2EgHC3unRb4TvZ21rVnkUuVXJOgCfV1MoJYu00EoOo7U2qOcJtobLn0k91BY49hsCbdFYGwJa4GRCSqPsXtl1LHBqIV1TgIszSgrmSqsDqfEmxJuFAuCtXXPZnrPREdlYXfZcpSWY/S1wbq/0PKmTmATLCn8ywgU4HdjCtqtYEADYZAT4Nr5MS6SemBg2l0cxUQSKldJ6Tz5Yg8WfscnDI9PiyHHJ0s2yBdDm9EgbB7V1wOOleO7nPThc1ShzoQy+mQjmZpY3dQFe/J/Pxa9OQ4BbsLsMPdMSkGD2PZ4r8oWYIUopvtp4HJUNdsW9Zdpgj5fC5vIgRdSoyie51sQHsMUzKc7fhVLPPUkOW5Q9XuCmjzbi5UUHWtWeSNAeygj4rICta0OgZ7Oi3oGCysaQ3ZiZAKfO+iYf55RSRZs9XsHtcUTfLuiXnYwx/bMAKDX0epu4ZtlzQClFQaVgNVbHwHUT3bwCUdngkBayUOt5OaQNSPh9wO7B7HXHQv4M2yzLN2/HqptataHwSJnhOpoFTvhffe9JhHcjehYNrePydUe9wZY/86F4W7B5We6SZxU3fMzqBSiVGAfLAyefYuNQa7PNElgForbJCUKUSRDqbC7UN7ukjKzxJiM+veMczLl7ZMBrMYUe2ycAQrgCWxNS481odunHe9bbXIr7KHjtaLtQMgVqnShQsbW2pE4eM+77nm+3+ApVs89c/f5azFicj3qbS6qZuElMfORzofSiTCZE67mk2kJUTjPUim6nx6trhfe01AInjhulBcv/O9QKc/Yb40yBt8ResZyQ/BpqK5EW7D21slcrSY28pqfwWZlFVvYdamFQW4Az+SxwDQ5kpwjZVVvrQilf/5iFtai2GW8syfeby577eQ8ufH1FyNdmHlTpiWY43V6U1Nl8FjiPV/o96iRfbC7jMXAcv82W3EWPvcceYD0fYLULZaB4Li0XF/kACzbYpHgmHYsaex1nNEiTg8PtlSYjtbvmgfIGfL6+EI9+syMsF0rmlpWpkdmOte2TNb4kG3qujUkWIxJkWlCWdrygshFP/7gbj367Q7q3GYlmLN1XiepGhyQIZ4kTVaksYF3LxSFUXCoLnFzgDsWFgN1Dr5dKPtyRdj0IF6mMQAxnvEhlDwxkQWaKulDr3kiCrUeZHly+qL66OB/9n14oaWPZtdWbSqahd7iFzYpWYhJ5uzYcqcWk94R4zVSVOxhbfLsHEOQaHW4psL1S5popeQ2o+rpbqgV2lwcVDXYMe/E33Pu5MrA+GKFYn/0/I1rgxDbV21w477UV+L+f9oR9LQab/xxuDxrsrqjHmkYKyYVS9fiyfgo0NGsaHZi3tVj/BBm6ApyGpUOvZhmgfFZDif3VGpes/+VjpbrRIWXOq7P55umaRoef5Zx5MzB3djl6BbgBYFS/Lhghpv9PtpgUVrZ6mwvzd/niEC1mA84/tSvGDsjS/3EAzsnLQL/sJF3lUGqCGc0OfRfKwpomfCO3Tjo9sMn2DC6FMC30IVvHtNaPOh1rGXO3Zp91uL2SBbPZpRyPatdsPau2vP/1lC/5MmFcraR2ur26HjuuFo5fNp4aFVkcNRLFONUCnFNqUyDklkG2/3C4fXOPHux3qvvMrtHXLo9X1X7huODRJfz990tPxff3j1ZcSx4znSqzwLH7Xmm1S4l+LCZjq9ZcuWLBKrb14a+34+3fC1BQ2ai4v5+vL5RclYPx4/ZiFIplrdIT41B8woaxL/+OlWJt30AulB3NfT4ScAFOB7VmSG5ZYgKIWxLg9FwoPSEveFpCoEKA05lE3R6v+E9pTVEv2HJXDLl5nrnPOVUWODZREEKk3xeKCyWLZdOafhs1Fpx62YKTJFvQj9U0K+IQAGGx23xM0BoervRp7K8f3gtOjxd7SurxuZikhQV4s4QoQOvc9CQBzmwEIcq4N/ZsrDtcrbsJlVwoKZW0fC3Z/IZKKG6RLbV+OdyeiJVo8LSBAMcWm1AtnlSm1JCPS7kGeZY4BzQ63Jg+f6/0OsGsFuCEvraLdeC0Npjy7zhe61vo1MJeXmYS4owGLH18Ak7vmarbfmaFeFuMzQCEYHrAt9gyTu2eCofbi0MVjTjR7MKSfcrU1oHweCnOeuG3kM9vEEsHsE2MxytocdlmJdR6VVpI8UHNLpw5fQn+tXC/5nmVVnuLMqO1BpvTgzOeX4ylGveWKZH1lCiBnus7P9uCJ77bGVL8qHw9U2Q21HKhVAhwyjmzOcjGWA3rF/n6ydYBtQVOyjgn29SO/Ncy3DprkyLejrVBy4WSKTnUdE+Nx9f3jsbofpnSsQSVADdvazGS4ox46PwB6KpzHTWJcSZMPjtX9/3UeBOanR44dPpxS+EJvPGbLzPx7pJ67Cr2xYMrvXC8oJTKBDj/9aNYJ+OoXCgGhL5jv5/tS9geg4UjXHFmD+G4zrq5SVayRE8QWyQra6ROyiYotZTHPJJ3U8vWA2a4ls/18j2Y10txwwfr8YsqaRATWoM90/J9ld3lweGqRqmPQgmRUQtwVpn7IRsrWjFwtU1ODHpuMd4RS0X8ZXx/nN2ni+JaybLxxBJ8JMhcKCsaHOiexgS40F0oj1U3KfaulVa7Ys5pVLnENzk9um63gSips+HRb3ZKe6h0mQJzk5il1+by7anZdtRqd+HDVYelust6uxmb0xOxzJvtBS7A6eByKzUjWgKWx0vR7HRLPuRqmh3KGLiAFjjxvfxyKx77dgcOlDcokiaosyYxRvxrGS57a7Uvg5FUS0R5Pqsx4nB7FYuw5EKpOp8tDhaTQRLmQrHAsSQKWhOwVcNXWm6Bkwegv3LtmX5xCAfKrdLiVm9zSZPKH3oIm9lj1U34coMgwLGUz6U67iXhwgTcOJMBZoNBMaGxSfnmjzbiiw2FUp97vVRa5Njk4vFSaVMfzTpPzUEWIkqprA5ceALcm78dwsQ3V+FICMWtgxGp9O+BEmKoUxGr8XgpXl+SLwX0szGhdmeSzwFso3DWC79h9rpj0iZM/czKLXAutxdmI8E4lVZf/h21sriiVFUWyjvG5uF/D49DssUk1W7LSU/w+z1add0e+kqIyaltVC6sp3RNht3lUWzw6oNk8WM0hJkY6MzpS3DH7E2K515etLY1boNMucQ2Dt9v07ZMjXhpWYsyowVi0e4y3KpTyxMAjlY3odHhxmtL8v3eIzpJTNjxQK7BO0VlWXmQtPnCdbStOppJTHSyUBZUNmK6rEyE3pp01btr8IU4D7s0rDq+rIRKF2S5mxQgzJ9sjjpe4xPg2IZUy4VSy/MD8CUEOrtPhtQGeRmggspG7CyqwwPnD8ATl5wa1rN45Zk9dd9LTTCjySm4UCZbTBjRtwuykuOQFGf0S4MOAP9edACL9pRLr90eX/Si20PRYHNLz4qWBY6lkVezrqAGH8jiru0ur8ybxJfhD/C5XqszczL2ltbjs3XH8OQ8X3ZF+dwq71d5ezQtcKpnSFJAt9ICpxDgZPN2VaMDG4/W4juV5Zq5+AZzC5a3y+H24B6ZxwIbK7fN2oSbP9qg+JxdEuCUc+aIl5ZJJWXkhdRZ+5MtJthdvlIgzU4P4s0GzWdHy7sjKc4Ep+i+X2m1S274FrMhpHwFlFJc+c4afCSLUR3x0jKMn7Fces0UcEwhUNvk0BTggglPX20sVLzO0HCHbna6pb0Uu18vLdiPfy08gN/2C/dR/bu+2ngce0rq8YfnfsXFb6wK2IaOBhfgdJBvCPXc/NxeL67/YD1eFzdv398/Gn8Z3096/+M1RxULe6CCz2ySueHD9fhhWwkunbla4WqoZ4GrbXLiUGWjbOLzmeHlsAmkptEptRfwabzUrgNsAJoMxJedKgQLnCS8aMy/6lgxr5ei3uZCqjjxJMsmoIsHdZMmhK4pFhgNBJuO1koWPpvLI6VBz81IQLLFhKPVTeiTmYic9ASpPk+V1RcTFAkLnNloEOIIFUlMlL+LLYDvLi/A9R+sx6ajtYpEMMwC12CLnAvlnz/ZiBdk5QOag1ib5AsRE+DeW16AvKkLgrqRsMQjLNV5a4icBU5/wQ/2e1YdrMI7vxfgeTERB7OG2JwezVjH8nq7rjJAbRXwxcAJiQzMRgO+vHskBvXwWdDk3yFf+NSCWHaKBad0S5H+BrTdyDICJHJQJ2JJiRdST1fLXMRvUm0+9KhtgZZ1bUGNYhPzyZqj0sbO0IrViCmXJOteG6Z7vX/ONqw6WKU7v7D506IVXyM2Uy/+MBRLRCgWOLuYnRBQjjU2/qbP3ysVFpa/L9/Q3jZrExbu9gkXWkoXh9uDXcX1khadzZvymCrW/3pjno1XuaBfJLPA2QIkMdETu5gyRG65Zs/d0N7p0rFz8pRWjVDo1SVRse6rv9dqd+NYdRPiTAbMvWcUNj19Efa+cCn+NDQn6LUVLpQeL8oafAKRlgBXoiPAfbe1GP9e5Cvh4HB7pDXAJtarVc+hzFqj9hy6/dPN0lzJ+O/Kw/hms1DrVm7ln7e1GN1ShbnqcGWTlBSOtcE/xjJ0ZbEWTK6RexnJ59dAzY8AACAASURBVFf1WHnyklMB+ObFYEKNfDzaXV5FO9k4X3mwCutUSn27WygXYbW78adhyn5nNYLZtZ1uL3YW1yNOLM7tcCszlaoVewwmwMXJ0uszJceRqia4PFTqC4vJGFIW4GanB1aHO2AGZkmAE7+rutGpmSE5UEmUI1WNeG+5MrGbVkIiu8uX4IWNDVbQnl1fLYQ//eNuXPHOGgDA8drgmXM7ElyA00Ge1ENP01zX7MKeEl9K4uzkeNx9bj+cd2q2wh2QEcgCxyYZrQcfCL7BVcflqSdANshmrT0qJUkAfJMt+zxLu88sAV5FkG3wSZW1U8uqw0zt0iTrFLSJPdIEKwJzqWETEZt8MhLjkJeZiM/XF+JAuVU6zrKJxZuNyMtKxLGaZjQ7PRjQNVlx/3voaBLDgS00cUYDzEaDYlFQa9VqRCvHTztKAAgLFet7m9MjuTdE0gK3+lA1ZskKeAdLrKJIwEF9AhxrYyDYBupAeUPA80IhUvW7XAHGR7CFij3jrB+ZnqLZ6VFojX/cVgK7y4Nr3tevKRhvVk6pLNW3wyXEwLG+lwte8mdJHqeprnMjt1Bni66Y8qD7SWcJSgst7az6+haTAdOvHCS19+VffZu7fWUNISXm0Yu3cXu8qGl0YF9pg1RsWL4RlSsuZizOl543Q6sscEIfMmVbW9Y2ZBsmvRhbae7QEOBYTI2uC6WOJUIu8JWLcb5OtxczFh9Q9Z1wT19bki8pk96QWQLZnD573TGpsLB8rTkii10pUbnnaQlw6g0yu778s2zNYfdlxuQzFZ9h3y+/n0W1vt/42hJBAamZcELnGWIxQZkyF+YGcT26aURv6djgnDTNzweDrV1/HtVHEgqE7xWOL8+vQpxRsJywzKMFIXgwOFXW0t2yZCla+4lQSjsAwlrI7r+6Th2DWWvUG2Ity6fbS/HU97sFpaxqD2M2GpAYZ8Q3W4qkuoeA0M/6FriWrdUGjcyIckG3TPV8st/I2hGOBc7u8iAz2SdkBFrD7C6vIPB5KQZ0TcbX946S3vPFvvmu/du+CiRZjIg3Cx5Q8nVIHRvNYM9glqxNbE698l1BgGFWVYspNAscU1QzK3+gfR3zNqlu1LbAjXtlOR6eux2LdvsrftXutckWk+7vrG1iXl4Uawuqsf14nfS9ALBgV5n0DIZSu7gjwwU4HeS+2VoWuJR4k6x2iUCSxYjsFAtm3zECORn+rk2BY+ACb5genrvdTwsiX0D3iMlD2ASjnpC14s/kOD1e/LqnDBe+vhJL9pZLmzO5hizYpMoKEAO+gd7ocEuuaWzhNokbHjbIeqQLk0qXxDj8eVQfzL1HmNyYO5rZRHBad5/m9MxcYZHdL1qC4s0GdE9NQEWDHc1Oj5AARbbIdEtjk3QELHAmArORSMlaCPHXhNY0OUAplTY/dpcvc5LdJbPARTGJSbAi8PKJTZ34xhGk/iD7XfL4wpYSqgXu/37ag1/36Fv8AsbABbm2r4aiMvukTeVCWd5gx92fbfHbBMhRa5SZBe6F/+3D6kPV0mZfngKZfUe9zYUfZK5/asWAPMaBWeDki/B9E/r7nQf4YuKcbq+0+C19bAJuH9tXGmNMucEsCT9uKw6albJWJ438lsITOPufS/HHt1fjns+3oKDSKtVK0vpdTQGUIaHCtNeSANcCF6xj1U1+QkooMIVTTaO2AMdiJzUFODZf6jRX79mVbyTLRbf1H7YV473lh/HOskN+5zNF48ylB/HZep+rEotDlON0e5GTngCjgeCfC/YrhAY5dpcHX6w/hpcW+Cz/7P4xayObc+Vxh2yj5XB70atLAoarrF5sDMk3gey6G49qhysw7hybh6vP6illIWakyrw7PrltOL67z5cAYsIp2Vj62Hh8f/8Yv7jrUGFCjdFA8OD5A6TjcqWEuv+vHaYfO8eQ9//stUq3RS30XCjV2F0+65fN5dEU4JgFTq34ZF4AWuwr86+dq/ZkYDjc/mUE9LJoh4rPhVK5f1tXUI2PVh3ByoOV0vE/Du6OXNU+LZiS16WwwHkUcZQBY+CcHmluS4k3K5RxctdJOUkWk5hsxKPYg6ZquEoCQHqCILhdeZbPpZf1IbvPXVPDi4GzyrxOAP/MxmYjwYlmJyil0rpZ0+jUzVw6f2cp7p+zTZFgC/DfY+dmJGh7LMCn2HF5vLqu8sxdPdaJ4qINF+B0kCf10NpoDxd96eXIXZ40U9fKJrGCykZc9tZq6XWgYp+AULNtpSobl9wd6iOxKKpXR4MVLCbK6fZib6mwyO8vs0rXln+H3qTa5HCjptEhueiYDETSgJ//2goMfVFIdMCESJb+lQ1aZk0gBHjx6jNwhqgFZQM4xWJWLBqJcSYkmI2SAP3/7J13eBTF/8ffcy3JpXdIJ7RQAxh6EaSINFFUFBVQVOxiwwIq9l6/lp+KDewFBRVFUECkSW/SAwQCpPdydX5/7M7c7t7eJcFgAszreXi429u77N3uzM6nvT8BJiPiwwIkA87mRJDZpEqvaenjRtQQ2ORqNhpUi+9W0cE4Wlyt8hYXVthV56ra7uQ3sFqHS5FCKX3/A/kVSH/oZy9xhccW7vRZX6lEb6HdoAic5qbpzzPndlOeOnf8FBa7WthCtK4auPnrjuDmTzf7fN1/DZz/xQC76R/Mr8Tvu/M86rIOp9fCQ+lBZrDz2TkxDMM6xqtf00TRzCYi/+/Zzpw3l//fGp56nBJl5WnAADCsQ7yqLoctNIMDTOiTLi2AO7QMw/e39sPs0R35fotu7497h7cDIN18H/hOUstjnmPtTfLOoW2RGBGERxbuwhOKdh96+CpUZ/MIY9ybq/G6wqjQzqcsonukqBpd5vx2SvWQ2nrOUzHgBr+0Av2f+6PB72Op3776BLJ5T3stAN5OgwP5Fbx+THrdf5oh4KnfYYaw3r2HLTy1i2uHy636vSmlsLskJ9O1fVIBSG1d9ESRah1uPLJwF95fdYgb0Cdkpw7znmsXULGhAfhtV54U9XG6YTEavJpvs+NnBrHZSHh6VF1RgwirBa9d2R0/3jEAC27th55pkarjAYChHeJVqZLxYYFoExfK6+NOBeY00TpilXOk1oC7pk8qDj07yu/nKg31jXKPOkD/WgK8o6S+UBpPNTprD0KUNXDq8WjURDmV7Rjyymu9SgNqHC4vpxIgXcPKv7vtaCk3QE9VxMSTQqlUDN6DSXPX4+nFu1VNtV++vBtvC8RYl13kJXCi5KZ5m/jjilonDhVWeZxpTrfPuavW6eLzXligSbVWdDgpKKVeTkirRYrAnSir5c5qwHcErkV4IP68fwgeuDCDbxvZqYUqVdcjYmJERa0TR4urkVNUjZd/26ubis3mrhNltaCUejkvOyaEo6TagRNltfw3L6y0oVSeC5+7tAt66aQl93rmd/ysKMHQGnCJEUGq60oJE9mxu9xYe7AIYzMTVCUJgMdp1tA67TMNYcD5oK4aOKNOwYZygXWkyDuV4VhJDTfi7v1mm2pQltU4cKLM/+SrnWS1ggSAZ8LX9nWrK0VNu8g9IteXKWtjnC4Kt5tizYFCXPvBesz4cgtKquzo9NgSnPfUMkx8T6qdsVqMcLmlSUmZ98wGODPgmNHjq3cPG6iD2sWq1MU6tAxFarSVn5cAswHxYYEoqXagtMaB4ACjKoWyRZjkZbPJeehrDhQ2uOcV+30sRgNfBF3cLQHTz09HfoUND3zn8YwWVtnwyEKPGmW13cVTEZxuytNb2fEv2JwLN4XqxuF2U3yy9ki96pH0Fmx1KS4qz3dpjYOfb+nzXPhzX4FKDY1R43CBUkkxtKDC1miqTv68l/VR1PRnpGm9plrYuDpeVotpn2zki+mdueX1Uiy8f0R73D6kDRbc0t8r7dFg0C52pNcnKOogqu0ulFbbsS9PSqm6pk8K/pw5BAkKgZK5U7JUn9MtWarbeWBkBj6d1hv7nroIANA9JRLhivHUNSkC4XItgdKwYg4OrehKcIAJv84YiEu7J+Kj1YfRbvYvGPnan7jhkw04qqkf8JVC+aTG8NMawdoom9Ywz3jkV5WhUVhpQ9qDP/tVqdSmjNeVQulv/Nc1D2thi1MW3VTidlM8/bOkiKm9NgDPfYYdz5j//YVHftjJn/u6rpX3AuacY+OER5Rdbp5KphW5YrC+mYzSagdsDhcCTAY8NrYjOiWEYWduGU7oCKUoxxIz0FmqFYuAaY11i9GArUdL8eKSvbA53bCYjF4RBfbd1mZLzqt28aE4UVaDn7efQJH8G/tSm2SkxQSjR0okPpjaE4B+3dD7k7PwgiZ981Rh9Trst79JjmRfP6AV30fv/BNCMLh9rGrbpT0S8fF10nHbXW7da1WZJncq1DpcPMuootbJ5182XfVIieSGgnbO1KYZhgd5jqW02uE1vqvtLlXKIIO1VmFc/NZqntnSmCIm2RoJe4vJgC9v6oMgi9Er4nqspAZ3fLEFn6/PQW5pDVbuK1DNe/8o1mwbj5TgRFkt0mOC5e/j8l0C41BG4EyqNY/N5UZZjQOUgjvjAKmmy2w0YPuxMlV9mK8aOABIibaq7jkGA8GAth7RLOYsDzAbUFRlx8AXlmPUG6vwvz8OoM+zv2OL3Bvwld/2YvgrK/k8XONw4ffd+Vi0VW3c9pSdHlM+/BsbZKVIFoELthhxZa8UPDgqA3rc9vlmrmmgVUlNjAyq00lhd7pRUGFDcmQQZo3uoNrH03dPRODOSRx+DLhAs4EbIanR1np/5qvL9vEFubZZ6XO/7MH5L67w+35tI8winQUD8zxrIxLKSbhNXAhmay54h8vN5dMJAfbLi0llepPL7cZfBwoxae56rNpfiB+2Hsctn22CFrY41M7BrFiX3ciYCElKlP5veHXvFNw4sBWu65+Gwe1jYTQQzBnbETOGteOpD4kRQYiyWnhxbrXdJUXolDVwigjcLztPYtLc9fh0fY7u3/SFUsSERS/Gd0vkntyl/+ShV6soWC1GHC2uxtHiGtw4sBU/JmWEjkUuWL0C7wWluFHXp0kuQ88rrb1WtCgjFNuOluLSt9d4/rbDjckf/o1xb3pqvexON658by2Wyw3V28RJKp/55fVrFl0X/gy4+vwWeimUR4ur8ezi3aq0DzaWv/g7Bzd8shFVNqfX31b+No8uVBfr69EyIhD3Xdi+ziawgOfmOy4zAV/c2AcjOsZjz8kKHtmbP60Xnry4c52f0ykhHAefGYW+raNhMhr8/m0mx7zruLQ4evbSLvw1pZT7Y2OlyF1ooBkPjeoAi8kAu9ONPScrsGx3Pi56fRWPshdV2rB4x0lYTAY8Nb7u41WijCT44oQiPXd9tvQ3P1l72Of+Dk2kqi7/jL+IrXbBVxf+Uih3Hi/jRk2AWad2SDao2OGzLAFmVGmv6z/25OG1ZftUx1+tcA4BHiNi5nfb+ecxQ1D7vZ1uddRg1YFC/PZPHk6W14IQgh4pkdh0pAS7NVHVAJMBNQ4XN6RYLzPmsGPHolzMfzg1i6umllTZYXNKhqJJs1Czu1xwuSk+Wn0YAJDRIgwHC6pw2+eb8bkcQVl5/2DUB6vZiNaxwbptN4Z3jMcVWcn1+py6GN4xHncPa4cHR0r31QdHZmDPkyPRMy0K98gRcF+lqR9N7YmNs4fx55P7pvF2I++uPKibjuYrClNfPvjrEH6XVftYE3PAU8c0qG0sTw/06gWoWBNMH5SOlCiPo6m0xuG1aB7dtaWqVoxhc/iWdT9VA47hLwMlNiQAfeR2Enr1fIAkfNH/uT8kRcm50prtQ4WonBIWNbQ53Kr7vNLxWONw8d8lNNDMf2dA6v3HjJIpfdOw4r7BAKSWKNoUT8BTV1lfOivqOtl9QmkEVtqcfI10ydtr4HS58cYfB7A/vxLfb8nl+90wb6Oqzh4AuskCQPvzK/mcW1hpQ2m1nTs1tOnMSsa/tRobDhfz+zJbC8aFBqiyVPQ+J7/CBqebItJq8erXeEw2uk+n0ndzQBhwPlB6OLVh2LToYBjl8C7rF5OZHKHa5/4L22OIxrMGSH3Sah2uejcVNhsJZo2SbgpaT7ZeZJArRnoZcJ7nfdOjcX3/Vur3OdUGa76OYpDDRXljTuY1XJdd7LUfmxTfWeGpe6l1SOpkgCcqkV1QhWCLEW3l9MikSLUhFxcWiFmjOyLQbERCRBAOPjMKU/u3gtlo4De4py/pDJPRwBtUsr+vTNnw5PK7uNHkT1VJD48BR/DR1J64ICMOWWmRKk9wv9bRiAkJ4GkabOKstjlVEzub8A8XMgNO2q68ZzUk3VPPwGE1AL5SOrQLQ2X6l95N9VhJNdZlF3M5+iR5oj2V5ugFFVKNoPLY/KXN1VXPB+jXCt04byPe/TMbS3Z5+m8xD+lDC3Zg2e483P75Zl2PsZaHR2VgtNwXSYs2DUfLXXJaIgBktJSudUII+rb29KRiv2vXxAhVJP/NSd1x6+DWup/rT6xECVs8vbZMipKwZsYAkNHCk5p8nWJOiA0NwOI7B2DFfYOxauYQjO7aEpU2J654dy1qHS7c/vkWbD1aij7p0T6bJ88Y1lZ3uy8vtRK2ADtRVsMdHpFWMyilutdnQ1UnbU4psvHs4t1Yn61OU/anFqwHW4xt16kVU9ZAMaff77vzuFgUm6e1qZLsmtdGzK7/eCNeW7ZfNV8zJxtzALHrYsHmXGjRRuYdLvU4/EheoLFzNLxjPGocLsyT0zpHd2mJ/13VHaGBZtQ63FwER4ogUO4sySmuxmXvrFGlZXVPjsQbV3UHIAny2J2eemClt93udPO00GkDWiFZYSDsOVGOQLNBV4FSD5PRgN/vHYyLuuiP3cbCaCC4a1hbHv02GAiPbrN0OV9ZEYQQ1RhKi7ZyJ6fe/RWAV/29ksykuoVYth4t5Z9RUm3Hi0skESO2LumcGAazkcBAPHNzea0DXeYswXpF/7creiarzkVZtd1rPn3likzd1iaVNqfPspG6Uih96QmwMeAvA4UZK4BvA07J0eIa/H2omKeUJ0cFYWSnFvz1kZ2lxzan2oCrUd3f3AoDTn3tFlfbcVx2WCVGBvGgQOvYYLx0eabK4Qb4j8Dp0UZuqaRkct9UtFeUpcyf1pun7L+naBmgnUO+uqkPvlXUj6bHeH/2npMVWLAll183vu5TbH28al8BymocCDAZuAZReJCZz5cMppWghUUz507OwtzJWZiYlczr809nr93mgDDgfKD0VOoZcOziCg00Y9XMIfjsht6qfW4b0gYfXdcLD16UoWoeCqBBjWQdLoobB6UjOtji5VVix6VcKNVyz63nxp9TVK1a5IcEmmAwEEw/3yN9bHd50hlYGoNyogOkSf/nHScQFWzBKMUNUdv01Cor7DG1MAB4XO4fZCCedM6DBZVIjw1Bn/RovDWpBx68SD/Ursd9F7bHh1OzMLh9HABgYNsYvpiwWoyqRXCLcI/SFI8y1vsvSSiV5NrEheLDqT0RGmhWGYrt40NVz9vGhcJsJKh2SBE4bb3R4aIqKfedN1P3XHP1NfABfeOnyuZElc2JjEd+VTWKZfirEdKL6GkXtcmysd3Qhp25pTXo+fQy/N/KbJWn1l8Eri6BH0A/osLqT5Qpcdq0v+V7C7y8itpjMRDgxoHpePWKbrp/uy7hg7uHt8MbV3WDgXj3jNqkiEaFBphU6Y8AMKZrAmaOrP+40KNjyzBVzS6rbQGg6+FltIkLRVpMMJKjrKpmxYNeWM7T2x4Z3cFnOpt2/mAEmY1eGQBaSqvt+Gj1IfR99g/eXDw8yIzZP+xE+9m/eqXV+lJrXPpPHjbnlGDe2sP4XBF1tzvdWLIrD+/+mY2Xf1OPD3a95ZXXeqWN6sGcIX/syfcaV8qxya7RaZ9sxNCXV8rb9EV82DFoI4sMpRHL9mV/y1/0URsdcbkpauxun6+zDIM/9xXAajHizUndMTYzAYFmA2wOF6ptnrq7GodLFe3eeKRENW+EBZnRIjwQLcMDpebWTjefE5XqrXanmzsQe6ZFqowbm9ON6OD6NdluLrDjryvtkxFhtfis/6kPWmdyXVAqzYNK2rcIBSGSEcquq4P5lV7XR2iAOttFG4GzGA0IMBlVESdGYaXNpwHnK3X4r/2FSHvwZ3R49FfdsaltJ6IkNdqKu4a2xeuyEwHQb0WhxxXvruWPr+6dyo2w0V1a8nWLzenSzfYApLGpFDFRUlJl547lhIggEEKw/uGhWHBLf5iMBvRupa4h09aM1oXBQDCiYzyu6uWJNseFBWLJ3YOw+4mR+PbmvmgTF8LVYF/4dS+CLUaeBqykd3q06vpKi7FiUDvvQIXyOFvFBKvquRnTz2+NLonh2JRTgrJqB8KDzHztERZkRqeEcHRsGcYzmbSNyxmsbc6wjvEY1jEeMaEWlFTb4XbT0yoU1xwQBpwPlBPLu39mq16bfn469yqEBZqQHGXVLdIFJGW4L27qo1I3/ud4w+XXgwNMXr292MU5TZFn73BRlNc6cEhR0zToxeWqhQQ71gcuzOCpG9V2J76UUxxZHrS2J86ibcex9Wgp4kIDVA2E50/rja2PDufP2aSo3IdFpVqGB/EGsMdKapAie5tGd23pVY/jj5iQAFyQ4RGMMBkNuKZ3Kv8NlPgqxvbH0eJqHC6swrGSamw4XMw/U1vHoDUUlYZEm7gQWC0mVNY6UVJt92q6XG13Yfxbq3n92a7jZbzFQ0OOVc/Yq7Q5+c3kDR1VOn+Kokpjn6UgaKMmbOGvZ8B9+NchtHroZ93aDaY+9cvOEyrvmL9auvpI2mvP+YH8Cj4+lIXXZTUOr+ijXrRZSViQGYQQqYm7vLBSSoXXFYEDpJtP9rOjkaxJF5450vM5CTpNuU+VuZOz8MtdAwFI1+gdQz1OHmXaJCEED4/KwPMTunh9hpIh7eOwcfYw9EiJQH6FDZFWM366YwDaxofyugolL12eiSAfv8vYzJaqtB49HvlhJx6X+xqultNLax1ufCYbYVpRJj2PfV55LW6ctxGXvr0Gjy7chYe/38FfszndvMZTe05qHS6U1zrQ+5nfef+gwkob3v8zW/eaZveKSpsTZTUOnCyrxS2fbkJFrUM1Nu1O73omdtzeBpx+BI5RJgtFmI2EG1Fs0epv7tA6Yhwut2q8s/mHpdMGWTw1aq1igvl8F2g2YsGWXFUfz5Jqh08lTsDjiQ+yGFEtqyAyA07Z86m0xsHT1WJDA9GvtdoBqqfw3JwZkhGLJ8d3xtwpPev9Hr16OT3axIVg1cwhOPzcaB5NPy81El/p1JzVhxsGtILFZOD3qmq7C++vOoQlu07yGiclIYEm3DakDUIDTQgNMKGk2qFKWzP5MUQLK+2qnnFKfKkKz1t7mD/el+cdhWQOD3ZfYmmgo7u0xDfT++Lu4e1U92Fl6nnnxDAM0KTi6eFyU546GBNigdlogMVogM3pVhlwCxX1YuU1Tp7lEqXpb+Z0U+zLq4DFaOCN6OPDArkzLz02BN/f2o87xOLCGu7AeG9yFp691LveM8hi5CqwgWYjRnSMR2xoAL6/rT/uHtZO97OU16bVYsL/XdMDf94/BOseGsqNxHGZCfhQrj8lhKjS7O+8QFJpbR8fiqTIIOSX27DtWBnSYoL5+iksyIzOieFYfNdAPDyqAz65vhcmKdp9KIkMVhu00cEBcMk9hs92EZOGJdMCIISMBPA6ACOAuZTS5zSvDwLwGoCuAK6klH7bGAf6X+NrAnl8XCd0T4nk9Vxab4ovzAaDKsJltRgRGmhCXj1riKwWo6oeDZAW1xaTwct47DrnN6/3K1PymMCHwSClbpiNBO//eYgfn8NFEWg2YFC7WCzSUWSaObK9qm4tUW6krf18vcETHxaA3NIauNwUJ8pqMKxDXJ3fvb4wj482tTQ6RPJo2pxubiQqDWqHy43jpTVIjQ7m2wa+sByAlG72tyJlxN+NtUV4IE/t+Hp6X1hMUv+bE2U1cFNpgZ6tib5uO1aGbXLq1ar9hRj2ykocfm60V4pIWY3Dp+dNL92yyub0W8DrT/RD+XknSmsR1sLsVWTMDTgdKfkXluwBpVKqZFyYOgrDAhQ2h1vlHfOnLleflDbtAn7YK3/yx8q0llKdSb2uQmfl7/7tzf2wN68CV2Ql48UlklSxVaeZdn2Z2DMFqw8UYdG240jwkSJyKmjVMHumReKCjDie7qPkpkH6KZpaYkIC8MGUnjhSXI2uieE8FTom1LMgSY8JxqB2sbjsvCQs+ydP93PaxElR98fHdfJqCMw4rjC6WVRLKSBQbXOq5hy9iHLvZ373+V3sTjefJ2odLtX1U213ce8+Sw2c+e12/LEnH31bR3sZn9psjY/XHMYvO0/ivNRIPk8aiPQ39Qwodjx6OFTH5blOPQJQFl7vyq7jaruz3iJNUgROfUzTBrRSpdO2CA9Eea2ULcGIDrbgAKTFZ2KkFeUnylFSZfeSGdfDajFKyocuTwrloHYx+HSddE9doYgGxYUGIDnKij1PjsTn63OwM7cMdw7VT81trgSYjFzR0x/PXNKF94esq552XGYC9pwsx293n8+3DcmIw56TFeiZFoWEiCCYDKTBtWR3DG2L2WM6em2fPl9d6x5hNaNtXAiCzEZ0S47AjjkXYvxbq1FabUewxQizkcDhoqr75QuXdcWn647wVOMD+ZX4Y08+9PCVmq9MSdZrmcDE25gA2mc39kbHlmH1cg7fM7wdLsiIx87cMuzILcNDC3YgPkxyFLP1HiBFUif0SEKVzYnRckaFwSBlOikzA55X9NY8UlSFCKsFwQrhlB9u64/P1x/B1xuP4UB+JSKDzSqHsJLuKZHcGaQsF2ls3rnmPLip57zNGtUBP+84gdJqO8Yr1CyfuLgTr5u0WkxIiZbm4mkDWqGw0o6nL+msWhsrhYouz0rGPSMkx2V0iAW/7JScRg+PyuDBDWWaKCEE57eLBaUUF3dLUBnGgCcCx2AlA2sOFvFeL/USMgAAIABJREFUwUrcbuolLnam0qAIHCHECOAtABcB6AjgKkKIdrTnAJgK4PPGOMCmwtcNVVtnoM1n9oXSE7UuuwidE8J9Ru30CAkw4XhpjWqCKK9xIizQ96DXwuoMtBEHs9HglYLWPTkS7eK985sfuigDF2TEq1KvtN+DReAqbE6vVBDWODOvvBa1DjdahDeeN7WDLCXLFsJf3tQHV/VKRpDZiECTlAqit64Z88ZfOP/FFbqea+XCcHSXln7rjmJDAviCix2DzenGMrlYvL4L9IvfWo1tCgXIP/cVIOuppboyv4CPFEq72oCzyxLHy+Ubpr8USmXEiy3ItBG4hIggGIh+BI7dYI7opLiw2gSb06WKwH285jBeXboPVTYn5izaxXsHKt/jD+X1q/TSaimttnsZ+HVJzitvJpnJEVz4gOXeBzUgcqwHi7y1bMQInBarxYQPp/b816INkcEWdEuOUN0AlWlIb1/TA3PGdZK3e36Xedf34o9ToiRHiVZ9ry6U6abaqGxD+0atyy7i10GV3cmzAgDJgFOK89Q63Nx7/ts/edh2VK3Oane6Va1R2HVRXGXni66oYAvsTrdqTCrTp2sdLt1UZ+X3UqoWM8XLKKtFEYFz8OP31YdJ7/O188eQ9mqnGju/rWI8Dq5XJnrSiVlEo6DChpJqB0ZonAdarBaTLB7k4ql1M0dm4KpeKV73U5Z2GGg24voBrfDKxG5IUxzH2cSk3im4uJu0SI4PC8ST4zuralQZU/ul4Y2ruquMNwC4d3g7rLhvMJ9P2Lz0+pXduJBKXfgTnFBycWYCvrm5n2rtkR4TjFX7C/HlhqNIirQiKzUSr1/puU6uyErGZzf0xhVZSUiPCfZpvAHeDbcZ2YWVGNYhDkFmI7YeLcV1H/2tui9qM0tCA0z1zuxh13nnxHBc1SsFr03shm9v7sfXOjEhFnw0tScu65EEo4HgpkGt+bVf63Dj5x0nVE4mRrfkCPy04wQ+XH1I1Ui+W3IExsgG4MGCKt7HzRds7tCWrDQmRgNRGd03DkrHD7f1x4r7h2CGIiI3uW+aKquD0SYuFO9PzvIKbCivE+V6kaVDW0wGjO+eyNfd4TpCLYQQrt2Q0SKUp5ZGaAw4lrJ82+eb8f0W7z5xQ15eofPNz0wamkLZC8ABSmk2pdQO4EsAFyt3oJQeppRuB3DqTbeaAWwhrjVOOiVI3teWsuGhVdDyhXLhv+dkBS7unlBnLnO/1pKXGpAK1XcdL1elc5bXOhqkSHTL4NYY1iEeV2lC0XrevtljOqC1TvFrNO/ZJg2mgQqJWpYOo1y4ab1FrB7t+o83APBdJ3MqDOsYj69u6sNTKfukR+PZS7uCEIIAs0HV+yanuBrfbTqGLTkl2CunYugZSGYjQa+0KKy8fzBeu1K/Boot3kxGA9699jxM6JGEBPn6UHoSWykKfpkwjR7bjpZi1veeNgRbckrhcFF8svawblRDvwZObSBV2ZyY+e12XPfxBhwurPLb+LpMsfhjx6+tHQsNNCE8yOzDgJOuEb1WGpXcgHN79Qt6/ff9eHXpPny85jAWbvUUT/uLwBVW2uQeOt7KkUMz4ryEhPLLbSitR1pFy/BAXvfla5w+INemaT2ADeWS7om4uncKru+f9q8+pzmgFKNQ1sYMaheLxXcORN/0aAxqJ80ZqdHBOPjMKHxyfS9c3Vs/PcYXFbVOnu4H+E8J1uOhBTt4BPjPfQU4qPisA5qem5U2J5gf6o3f9+Pit1arPsvudHNDo6zGwee/4io7H5thQWbYFbL+gOQUYZG/PScr9FOdFeOUqQYCHtGhCKsZ1Q6pPQozSGvsLhwqrER90LYRAIAuGhEMphY8NMNj2OnVUT64QGqlMlxjwL02sRu2zxnBn1stRql5tNwHDpCcJM9e2oU7U2aObI8nL+7UoLT6s41r+6R63YOv7ZPKHSRaTEaDyrj99Ibe+OLGPri4W6JuPRMALwEibWRi9ugOukakXgRDKRQTHmTGt7f04zXqjNBAM164LBPpsf6NcFYfV2N3cWeey01xuLAareNCkBJlxfdbcrF8b4HKYad1vDfk+mmvaVA+vnsikqOsvAdtTEgAhmTE6X53VsayWaOwu+ye89EmLoQfl/ZexqJFxVV2n+2UGGxsaLNazjSUKfysHUbnhDDEhXpKUHwJtbDfKCnSio+v64UFt/bzEshRPm8bF+pVe6q3LjlTaagBlwjgqOL5MXnbWQcbcMtlSdfoYAs2zh7GFdxuHdwas0d3wMSe9fNoK70aFpMBE3okoaMsbaytjWLcO6IdpvRLAyDV9ADgMu6AlK5T3xROQMqdnjsly6vmQ3lsj47piNcmdkOnhHAEB5gwvluCSnxDKQf86NiOmD/NI96ibC7M0A4epjTJFLDiG3ky6p0erTvBBpiMqLW7UO2QFm1LduXh3m+24RKFfD6T+1YumnJLaxAWZEJqdLDP9MmVM4fgpzsGAJBSHV6+IpMfw30jPF6rtrL0fkiACTcOSsdVvZLrVZDMFOveWXEQN8zb6PW6ngG3aNtxLFSkvy7bncfTYY8UV6v68wFS77Gp8rWmTJe844stGPjCHyitdqicEFLaRDCW/ZPvFSFj10iOIgJ3pKgKXR5bwgVybE43NzAjFTcutnBWXkO+InAnymqQ9dQyPLN4Nzbq1Gf0SI3k+f2AVMR+vKxGV71VS2xoAL8R+LqxXtUrBYefG12niEldtG8Riqcv6YI2cd4LpTOFJTMGYXy3BJWSLPNoMwdHx4QwfHFTH1XEzmiQ0mPYPDGsQxzeuKo75k/rxWsllEySDb3P1+dgxKsrkSPfjE9FdpwtDN0UKqPs+y25+HjNYf68yuZUpW5psSkMuEXbjvOU6MJKO09PDA8yw6Zo5gtIbWDqihwqHS1sHgA8PUAjrRa43BQ2pxvHZbGearsLB+vZCmHh1lzc9eVW1TbtnPTSZZmYmJWMrgrDTjkXtJbnNVYOkBJlxc7HL0QXOdU0PMisWpAFs7rgKgciNPUrbIE7oE0Mru2bVq/vcDajNa5bNSD6mJkcwZVuA81GTO6bivSYYPzfNefhBtng0AprablhYDoW3zkQYzQKvIU6tY7DOsShtWyY1ZWZpFzzKBtNK3nq538w9s2/0P3JpQCArUdLYHe50To2hNfOA4o2PG6qqqnrkRLhV6RJS6SOUiYgfa/XJnbD8xN89wxkzr4qu4vfz6YPSkebuBBc2ycVPeSaOW2KcYIiA6kuA46pU2r7Jp4pLLytP24d3FoVMGD3Aq2j31ebjNToYLx9dQ+8fHkmgixG9EiJ9NqH/aZzxnbEkrsHYUKPJK995suqumc6DTXg9O5ip9SwgxByEyFkIyFkY0FBQd1v+I+xKxo3/37v+fh1xiCVt8pkNOCGgek+jS8trDj10u6JeOfqHgg0GzG4neSdurZvKq7Iki6yeEWBqlK5id3olRGrilpnnYP5BoXASaCOEhQA9Jcn+UirGdcPaKXKdX51YjfsmHOh1/fQg31+kCoCpzbgkjUTaus6PHGNRXiQGWU1Dp/yw4AnAqeMmh0trqnTSE6MCPIpynD7BZ40g7QYaQJmE9izl3bFlbIDIMFPJHJ/vtqbro2eaRshM37efoI/ZhLygNR08yZNTcOEHklcmEObLnm0uAalNQ7EhwZwKf1gixE3D0rHyfJafLXhqKrAnR1envx7bjxcjPNfXIEKmxOfyROnMp1MmUbLomNVNiecLjfazfoFc1fp999hC8b3Vx3ClxuOer0eabXgcoV6YnKkFbmltfUqbJ47JYunIDWmuMjZSvsWoXjtyu6qmzNTFvS1MFLCfuOyGgfGZSZgYNtYXiehhC321h0qgpsCf8vXXV2y43oom9f7Y9X+AhT4qe2yu9z83vDtpmN83BVV2VDjYClBkmx+pcKA+/tQid9IOKBW16y0OfmCm81RrIC/otbJ56+12UWY+e32en2333zUKSoZ1jEez1/W1StVv6Ocsh4TbFFJnSfJol7XD0gD4C3/HWQxIruwCnaXG6lR+vP/6azzOZOI0CxkG2LAaXni4s74/d7zMbJzCx4Zyy2twYxhbTG5byp2Pn6h7vsMBsIdJ4w8ncbuhBBc1Fm6P9Qldc++R69WUbhbkd4ZYDLgOjkTYd7aIzzKbnO6MOEdSQmydWywqgZ/9cFCbDpSjMd/3KUqkbhhYHq9ykuYAIcvCCEY3z3Rr7qncp1zYacWmD+tF8/QyEyOwFfTJel97X0+MtjCHSN1ZXJ8c3NffHdLv3qXzDQ3MpMjvBSVmaHfXTZw2fzuL3I6qktLL7VmJeFWMw48fRGmyumWSoVbxiM/7MScRbtwq04f4zOJhpryxwAoQ05JALxVLuoBpfQ9AO8BQFZW1r/r2ngaYDdWi8mgm0rYUD6Y0hM/bj+OWwe35gNwWMd4fH5Db2SlRcFiMmBI+zhkJkdg9BurUFLtUHmxvrm5Ly7/v7WqGoryGkedilx9W0djrqzo5WtQPHhRB/yw9ThGdPQWOJDU9wgviG7hx9BgA0UZANOGt6M1KRva/OXTRXSIBUVVdtViMjkqCEeLPYXQLAK3RVPj0lgeL/b7K9PMbh3SBkEWI8xGAxfF0LJbk1d/uLCK987TEysY3D4W+/MqeXNQAKrHemS0COP1ip/pNDkvrbYj3GrBaxO74bGxHWEyGviim/XHyX5mFAwGwiOC7Pec9P56/jnsaGtlyXGL0aBapDCl1Q2HSzCiUwvYXW6e4goAT/z4Dx68KIM3mfZHVLBFFQFOjAjCVxuPekUcAOnGuuiOAch6ahnCg8yICw3kkb9/myJ5rsLG9nQf6VtKmCNMK15wTZ8UFFTYcGWvFOw8Vsa91CwNZtORElx2XpJPtUZ/1Fdi+pE6mrnbnW5dJc4tOaXYkiPNJcEWE/blVeLrjR5Hw8Pf71A57PRQGqaVNhdahAfiSFE1CuXfif3dnbllXtG8bskR2KqZyxqTedN64ZWl+9A7PRpRwRZ8ueEoth0tRbw85i7pnoQh7eO85nhlin1qtDobhBGj0/j5XOSxcZ0wtX8aXlm6Dyv2Fvzr+j+29shK80QuZvhQG1SSrOnRqhf5ADzR27psDBZBo5SqylT+uG8wWoYFomdaFG79zOOY/EJxT2odG6JaV2zJKeXGnZL61oql+LgGG0Kk1QIDkaL5saEBGNhWnbpvNhrw+Q29df/W0Ix4bD9WVmcWQVxo4Fnn2BjeMR4fTMnidbcvXNYVTyoUK08VkybjTY+P1xz+Vw6R5kBDV6YbALQlhLQCkAvgSgCTGv2omgFscfhv+rEoSYm24rYh3ilB/RSytSyHfOXMIVh3sEjlZeqZFoXz28WqQvCFlTa/ETEAKoNLzxPB9tn1+IV+la9WP3iBpCroZwJ5aFQH3PXlFlUalTJ/fuPsYfVq4ns6iLRakFNcrYrAnd8uFp+uy4HJQBASaMLhwioUVNjw4Hdq77WvcH59eX5CF1TUOrkBd56iJ1d4kBkzhrXDXEXzzLrIVhhwev3TbhiQji5J4ch8XK1GeucFbfDGH57m6haj5O1csutknWmAxVV2RFrNMCuapmuN88/WH0FIoImn/azcV4BJ769TCYwwo8jppjhYUImEiEDVzZ4prf6844RukfuHqw9hWIc49GsTU2ckzWQgKm9lmzjfjhi7y40oqwUTs5K5t7lYru+LCv535/9cJTxI8oTWp+F4gg8D7qnxnsjOkPZxvLcfg9WcnEoK5b+BKZnNXZUtSen7qUUOMBm4M+MnRVQcQJ0qxEqjrLLWgZayAZcr940anBGHN/44gOvkmuLWscE8ffJ/V3Xnarp6TOiRhO82e4r8DQSq/p51ERMSgGcu8ZyfT6f1wrGSGtXiSc9Bp0yhTYnSXzzXt7b8bCc8yIyuSRF446ruWLG3oNEWnIFmIx4Z07HehrIy0+ivB4b4LH1gBlxdIqht5XTxCzu1UKXLhweZYTAQr+twjtxS5P4L2yPCakGHltL7h3eMx1JFFHlS7xTkltRg5b4Cv87mxsZgIDAZDap6WC39fLQoGNQuBq8u29eg3q9nC4QQDO2gbgfV2GOfKQobDcRLsKwxlZ+bggb9UpRSJ4DbASwBsBvA15TSXYSQJwgh4wCAENKTEHIMwOUA3iWE+HdfNlMcLjcMpGluJGGBZozo1MIrVB4bGsBrl1g9hbYI+dLuiTAbCW4+vzUSwgNV9W7+wtLBASa/EvnxYYF19m66sFML7HnyIu5h7d8mWtV8MSYkQFVfseyeQX4/rzGJCraguNKukuIeJad7DOsQj27JEdicU4Kl/+ShpNqBRbf35y0O/m0h/cSeKbhhYDpiQgLw3S198dLlmV77sEXu5L6pdTZ8VYqtMINo9ugO/CZrMhLd2rpLNLng4VYzHhrVASvuH1LndzhWUuOVox+tufk/snAX7v5qm0otcM3BItU+yvlz+7EyvxFkXzc0Vueg7DfESI224ureKbiyZzL6a26Y1/RJVaUgb58zAi/IdQ2l1Q4YDATPX9aVp8p0lgWLmHCRoOGYjIZ6pfyw89K2jjpAbQH8vvwKlFbbvfoINlQURQ/tGFJGzoe/uhIHCyrx1M+7Aaivay02pxuHCuuXrgmAp9MD6nTpKpsLKVFWdGgZxo205EiryiHUr7V0zQ/rEO/lYNHywmVdsUnuAxofFoDsZ0fjzUk96n2cWkIDzVwJ2B/MaGsfH+pVgrBkxiB8fF39+6WdK4QFmjFOpxnyv2HagFZc9bIulHXlSZFWn2sF1lLFXYcFlxxlxd+zhmKa3HeOUZcyNxPIuSAjHmsfugDvXXseJvf1tGh48uLOeG/yefjpjgEqR/J/AXOm60Xj/dEtOQLPXNIFj+q0bxD8e/ryOdG7ZVV9G7k3VxpsnVBKF1NK21FKW1NKn5a3PUopXSQ/3kApTaKUBlNKoyml+pJJzZwZw9r5zAlvKpIig5BXXosyRcNUrQH30uWZ2PvkRXjwogysfvACVS56XQXLjQWLjKRGB/P2Cew4lYui/1K0ITrYggqbUyVP3Ds9Gt/d0g+vTMxEVmok9uVV4uHvdyDIbESXxHDuGfLVk+ZUOC81SjfaxcRxhnaIx893DuDb06KtqgiG2Ui4WAEgLeoAKcLIDD+29+c39sb08z3pa1rvrd499qOpnsWT0tjJr7AhPEibClX/yU9Pnjq/wqYq4q4vrA2GXgRu5f1D8PQlXfDchK78d2YL2SCLkTe3BqRFUadEacF5y2DvXmhT+6VhxX2D63RcCP49gWYjvr25L9699jy/+wUrxs7YzARQKvVsXLIrj2cYmI0ET1/SBYtu748Ns4ap3q+cL1OirLqtUhhah8WX0/ugfxupXvhgQRVeUPR5OlFW43d+tdXTux5oNuD2IZ662c/W5+CLv3PgclNU2pwICVAv5C0mA+ZOzuLPmTFHKfVqb6H9rkYDQXRIAN6+ugcW3jYA/xUTeybjjau644OpWV6CU+1bhHopFwqaB+e3i1Wpj+rBBUXq0YcwLjSQO3fmTs7CqplqR+JnN/TGqxMzMWOYZzwoDf6W4UEghGD6+dLcPS4zAUYDQYDJ2CRzNsvwCPCR6eQLQqQaw8YWdBNIjMtMwIGnL+I1iQDQSRYQ1BOAO5M4s83P04jRQJqddT6wbSxeW7Yfd365hXutWArEvOt7objKrrohaj3f7XTkgE8HBQrjkuWhzxwpCRLU1aD0dBEl/057TlYgPSYYl3RPhNFA+IJHGSnsmBAGQggm9EjC4aIq3nvkdNIpIRwHnr6IR3xfv7Ib5q09gi9v6oOSajt6Pf07zEaCFuGBqggck+UPDjByA45J+/drHYOMFmF4d6UnPfPpSzrzFgVMoUzJEIVUeExIgMrg9VcLeFHnFvhl50m0ignGocIqJIQH8mbMYYEmbJg9DKPf+AsH8it5k1dAUrCrqz5PS4GcjlbfGqY/7j2fp+6ylC5WNN0pIRzL7xuMNJ3aBIOBnLU9p5ojSsVQXygzIoZ3jMdHqw/zuuARHVtg0bbj/Bx3TZLO8ePjOiE6xIKOLcOQHhuC8loHlv2Th0HtYlFQYcP/rTzIm8OuvH8wNhwuwX3fbEPr2BBea5ceE4zOCeGYNqAVVh+QosrK1K3ckhoMaBOD3330tvrypr5YdaAAL/y6V5XmCMjZAVV2xIUGYP3D3mIKDy3YgYcW7AAAhAQY0Sfd8zsFmAyqDAHmrIgOscBgIHh8XCf8tP04NhwuwQdTemL9oWK0iglWLVwakjbZGBgNpNGjSYLTzyeKXo6+YBG0uqK/Wobp9A5kGRSUUgSYjDAZiCoCz0iMCMJPdwzQbXfwX/LspV3w7OI96N3K+74qaFpMRgPSY0Ow76mL8P6qbAxsG4Nxb65GZpJvYZozgeZloQj80k1O7VL2KIqRF+2D2vluinvv8HYIt5rrVIZqLJgh0SkhDNEhAVzcgnFeaiSG6oSzTyetoj0L8W9u7uslptJNoTD1xlXdAUjG5kMX+e7X1tgoF6cXd0vk6S1xoYHYMGsYLEYDbpy/EQu3HsfMkRmwOVxc8j84wIQ7LmiDtQeL0EORUsWEcJja5dW9UzGmSwKW7c7DmEz9hRurjUmICOSy/4Cn95Qer07shqn9SnGgoBKzvt+Jdi1C0SI8EEM7xGPagFYIMBl59LV3q2j8daAQgBTlWrm3YSq0/iJwekRYLapanPUPD1Wl6pzphcznGkvvHoTDRdWq1MGp/dJw2XlJWLTtOFI1dVWsFQsjLNCMS+V04piQALx+ZXekx4QgMTIIqdHBSI60oqTKjsuzkjDrh51Iigzi88DAtrF4fkIXxIUG8rozQEqTHtctAeuzixATEoCDBZW45+tteH5CF7SND0WXpHB0SQpHt+QItIkLwcMLdmLZbskA7NgyDH8dKER8mCci8dMdAzD7h51eIiQhgSZ0TgxHTIgFJoOBp3UmRgQhNjQAA9rE4OFRGZjYM4V/92v6pOJwURWSo6xeLWQEgsZkYNsYzBnbEZdl1a+9Un0ghOhmSChpDlkSSZFWvHX1qacgC04/FpOBa1E0B6P/3yIMuDMIo4HghQld8c7Kg7ymoj5tDO4Y2rbOfRqTq3uloG1cCPqkS54obZrMd7f0+0+PB5CiTUPaxyIlyuplvAFSet39F7ZHRgvvuozmADOKx3Ztib8PFeP7zcfw0m/7eD2J1WJC16QIr7Rfs9GALY8MVwmxhFvNmHCed28UxouXdcV1/dOwan8hluzyRBn05PQ3zh4Gk4Eg0GxE7/Ro3sepotaJBbf2V+3LDLjzUiPx14FCzBrVQRU9aBsXgrGZCXhl6T4AUkH657L62JU9k/Ho2I644t21PLJXVuNApNWMbskRWL63AJ0T666/ARq/96Dgv6VtfCgX8WE8NlaqH5k5sj3vydQQ7lKkaRkMBDfKyplvaWrCzEYDJvZMUfUm/Hp6X1UKNCBJZo/LTPCqoWY1anOnZOHh73fg8/U5XGxhsKLpfOfEcLxyRSZeXLIXj4zpiKcX78bP20/AQAjMRgM2zBoGlyykAoCnnxkMBDcNUi92jQbSKErKAkFdEEK4fLtA0JxpDkb/v0UYcGcYV/RMxhU9k1FR60B+ha1ZLkYNBsKNt+YCIQQfXec/BURPJbS5cXXvVDy9eDeWy1Er1izbX/F3ffpwKTEYCDonhqNNXAhq7E7cMrgNdh0v4ylpSrQ1mMzQ1GuW/fQlnfHgdzswvnsiZgxry6MND43KwP3fbMd3t/ZDSIAJ89YeQWGlDU+P74wnxnVCtyeWomV4EKwWE9JjQrhIyrGSGqTFBOOj63phfXYR2sWf2d40QcOZObI9QgNM/Fq6dfB/M4aVqVwtfajd1SWAdecFbXG8tAYPj+qAq3uneI2v9NgQvHONVBPYOSEcP28/wdONCSG8vhjwdpIJBAKB4OxGGHBnKKGB5jobTAvOPgwGgrToYJXSIyDVwDU2gWYjb6Zcn/okwFuZUknL8CDdOoquSRFYcrdHkfSP+86Hw+nmi9RFt/fnjoo2cSFYtO04qu1OZBdW8n47vZuZw0Dw3/BfGWz+OFW58hbhgfhYdirVVTN0RVYSft+dh+v6ieiGQCAQCIQBJxCccbSODcGekxWqbcHNRHCnRVggZgxrizFdT12kQFurma5I/2JKX5uOlCCv3CZSwwRNjr/2K41FdEgAvm2C1HOBQCAQNE+ax6pPIBDUm/HdE/HzDnVD4BA/CpH/JYQQzBjW7rR9fl850nbtB38DAG/oKhD81yy753wUVvpvxC0QCAQCwemgeaz6BAJBvRnWIQ7vXN0D5bUO/LrzJJ4c3/k/iQI0ByKDLbiqVzK++PsoYkMDeAqlQPBf0yYuhEeEBQKBQCD4LyG0Hg0XTzdZWVl048aNTX0YAoHgDKHS5oTN4dJVFBUIBAKBQCA4EyGEbKKUZtW1n4jACQSCM46QAJNf5U2BQCAQCASCs5VzI+9KIBAIBAKBQCAQCM4CmkUKJSGkAMCRpj4OHWIAFDb1QQjqRJyn5o84R2cG4jydGYjz1PwR5+jMQJynM4Nz6TylUkrrLPBvFgZcc4UQsrE+eaiCpkWcp+aPOEdnBuI8nRmI89T8EefozECcpzMDcZ68ESmUAoFAIBAIBAKBQHCGIAw4gUAgEAgEAoFAIDhDEAacf95r6gMQ1Atxnpo/4hydGYjzdGYgzlPzR5yjMwNxns4MxHnSIGrgBAKBQCAQCAQCgeAMQUTgBAKBQCAQCAQCgeAMQRhwAoFAIBAIBAKBQHCGIAw4HxBCRhJC9hJCDhBCHmzq4zlXIYQkE0KWE0J2E0J2EULukrdHEUKWEkL2y/9HytsJIeQN+bxtJ4T0aNpvcG5BCDESQrYQQn6Sn7cihKyXz9NXhBCLvD1Afn5Afj2tKY/7XIEQEkEI+ZYQskceU33FWGp+EELulue7nYSQLwghgWIsNT2EkA8JIfm2qGlvAAAgAElEQVSEkJ2KbQ0eP4SQKfL++wkhU5riu5yt+DhHL8pz3nZCyPeEkAjFaw/J52gvIeRCxXaxBjyN6J0nxWv3EUIoISRGfi7Gkg7CgNOBEGIE8BaAiwB0BHAVIaRj0x7VOYsTwL2U0g4A+gC4TT4XDwL4nVLaFsDv8nNAOmdt5X83AXjnvz/kc5q7AOxWPH8ewKvyeSoBME3ePg1ACaW0DYBX5f0Ep5/XAfxKKc0AkAnpXImx1IwghCQCuBNAFqW0MwAjgCshxlJz4GMAIzXbGjR+CCFRAB4D0BtALwCPMaNP0Ch8DO9ztBRAZ0ppVwD7ADwEAPJa4koAneT3vC07IcUa8PTzMbzPEwghyQCGA8hRbBZjSQdhwOnTC8ABSmk2pdQO4EsAFzfxMZ2TUEpPUEo3y48rIC04EyGdj0/k3T4BMF5+fDGAeVRiHYAIQkjL//iwz0kIIUkARgOYKz8nAC4A8K28i/Y8sfP3LYCh8v6C0wQhJAzAIAAfAACl1E4pLYUYS80RE4AgQogJgBXACYix1ORQSv8EUKzZ3NDxcyGApZTSYkppCSTjwmshKzg19M4RpfQ3SqlTfroOQJL8+GIAX1JKbZTSQwAOQFr/iTXgacbHWAIkJ9RMAEqFRTGWdBAGnD6JAI4qnh+TtwmaEDk1qDuA9QDiKaUnAMnIAxAn7ybOXdPxGqSJ1y0/jwZQqrhxKs8FP0/y62Xy/oLTRzqAAgAfyWmucwkhwRBjqVlBKc0F8BIkD/QJSGNjE8RYaq40dPyIcdW0XA/gF/mxOEfNCELIOAC5lNJtmpfEedJBGHD66HkvRb+FJoQQEgLgOwAzKKXl/nbV2SbO3WmGEDIGQD6ldJNys86utB6vCU4PJgA9ALxDKe0OoAqedC89xDlqAuQUoIsBtAKQACAYUgqRFjGWmje+zos4X00EIWQWpLKMz9gmnd3EOWoCCCFWALMAPKr3ss62c/48CQNOn2MAkhXPkwAcb6JjOechhJghGW+fUUoXyJvzWDqX/H++vF2cu6ahP4BxhJDDkNJNLoAUkYuQ08AA9bng50l+PRz66RSCxuMYgGOU0vXy828hGXRiLDUvhgE4RCktoJQ6ACwA0A9iLDVXGjp+xLhqAmSBizEArqaeBsjiHDUfWkNyWm2T1xFJADYTQlpAnCddhAGnzwYAbWXVLwukItdFTXxM5yRyLccHAHZTSl9RvLQIAFMcmgJgoWL7ZFm1qA+AMpbeIjh9UEofopQmUUrTII2XPyilVwNYDuAyeTfteWLn7zJ5/3PGc9YUUEpPAjhKCGkvbxoK4B+IsdTcyAHQhxBilec/dp7EWGqeNHT8LAEwghASKUdbR8jbBKcJQshIAA8AGEcprVa8tAjAlURScm0FSSTjb4g14H8OpXQHpTSOUpomryOOAegh37fEWNLBVPcu5x6UUich5HZIF4IRwIeU0l1NfFjnKv0BXAtgByFkq7ztYQDPAfiaEDIN0oLncvm1xQBGQSpGrgZw3X97uAINDwD4khDyFIAtkAU05P/nE0IOQIoWXNlEx3eucQeAz+RFSTak8WGAGEvNBkrpekLItwA2Q0r32gLgPQA/Q4ylJoUQ8gWAwQBiCCHHICngNeheRCktJoQ8CclIAIAnKKUiYtpI+DhHDwEIALBU1vdZRym9mVK6ixDyNSQHiRPAbZRSl/w5Yg14GtE7T5TSD3zsLsaSDqQ5OOpiYmJoWlpaUx+GQCAQCAQCgUAgEDQJmzZtKqSUxta1X7OIwKWlpWHjxo1NfRgCgUAgEAgEAoFA0CQQQo7UZz9RAycQCAQCgUAg8Mnag0VYuDW3qQ9DIBDICANOIBAIBAKBQODFgs3H8MOWXFz1/jrc9eXWut8gEJwFfPzxxxgwYEBTH4ZfhAEnEAgEAoFAIPDinq+3YcZXHsPtSFEVnC53Ex6RQFA/LrzwQjz6qHdbuYULF6JFixZwOp31/ixCCA4cONCYh/evEQacQCAQCAQCgaBOzn9xBV5YsrepD0MgqJOpU6di/vz50Io1zp8/H1dffTVMpmYhA3LKCANOIBAIBAKBQKCi1uHS3b54h2gHKWg+UEq9jDQAGD9+PIqLi7Fq1Sq+raSkBD/99BMmT56MsrIyTJ48GbGxsUhNTcVTTz0Ft9s7ujxo0CAAQGZmJkJCQvDVV1+hpKQEY8aMQWxsLCIjIzFmzBgcO3aMv+fQoUMYNGgQQkNDMWzYMNx222245ppr+Ovr1q1Dv379EBERgczMTKxYsaLB31sYcAKBQCAQCAQCFbmlNQAAo4GotjeD7lMCAX7Ykos9J8sx9JWVmPjuOq/Xg4KCcMUVV2DevHl829dff42MjAxkZmbijjvuQFlZGbKzs7Fy5UrMmzcPH330kdfn/PnnnwCAbdu2obKyEhMnToTb7cZ1112HI0eOICcnB0FBQbj99tv5eyZNmoRevXqhqKgIc+bMwfz58/lrubm5GD16NGbPno3i4mK89NJLmDBhAgoKChr0/YUBJxAIBAJBI/DdpmPYnFPS1IchEDQKo16XIheZSeGq7S63fwuOUoonfvwHu0+Un7ZjE5zb/LEnDzO+2oqZ325HdkEV/j6s3797ypQp+Oabb1BTIzkj5s2bhylTpsDlcuGrr77Cs88+i9DQUKSlpeHee+9VGVr+iI6OxoQJE2C1WhEaGopZs2Zh5cqVAICcnBxs2LABTzzxBCwWCwYMGIBx48bx93766acYNWoURo0aBYPBgOHDhyMrKwuLFy9u0G8gDDiBQCAQCP4llFLc+802XPr2mqY+FIGgUbA5pXSya/umqrY7dERM7E437PL+BZU2fLj6EK77aMPpP0jBOcmWnFIAwPZjZXxbfnmt134DBgxAbGwsFi5ciOzsbGzYsAGTJk1CYWEh7HY7UlM913Zqaipyc+vXKqO6uhrTp09HamoqwsLCMGjQIJSWlsLlcuH48eOIioqC1Wrl+ycnJ/PHR44cwTfffIOIiAj+76+//sKJEw1LTa7TgCOEJBNClhNCdhNCdhFC7tK8fh8hhBJCYuTngwkhZYSQrfI/bwkYgUAgEAjOIkqrHfzxruNlWLD5mFDrE5yxUEphMRkwfVA6LumehO9v7YdeaVEAgLIah1fN0eAXl6Pn08sAADaHuO4Fp5f8cpvXtgP5lbr7Tp48GfPmzcP8+fMxYsQIxMfHIyYmBmazGUeOeHpm5+TkIDExsV5//+WXX8bevXuxfv16lJeX8zRLSilatmyJ4uJiVFdX8/2PHj3KHycnJ+Paa69FaWkp/1dVVYUHH3ywXn+bUZ8InBPAvZTSDgD6ALiNENIRkIw7AMMB5Gjes4pS2k3+90SDjkggEAgEgjOMoyWem/XkD/7GPV9vw/pD+mk9AkFzp8bhgt3pRoTVAgDonhKJ+Tf0wq2DW8Pppjw6xzheVouyGgdqHS5U2iR5dm3tnEDQWORVeEfbiqrsuvtOnjwZy5Ytw/vvv48pU6YAAIxGI6644grMmjULFRUVOHLkCF555RWV0IiS+Ph4ZGdn8+cVFRUICgpCREQEiouL8fjjj/PXUlNTkZWVhTlz5sBut2Pt2rX48ccf+evXXHMNfvzxRyxZsgQulwu1tbVYsWKFSgSlPtRpwFFKT1BKN8uPKwDsBsBM1FcBzAQgSloFAoFAcM5ytLiGP2YLiWMKo04gOJMokSPKkVYz3xZgMqJleCAAoKJWv4dW18d/46+ZjMKAE5we8sptMGuur5JqfQMuLS0N/fr1Q1VVlaoW7X//+x+Cg4ORnp6OAQMGYNKkSbj++ut1P2POnDmYMmUKIiIi8PXXX2PGjBmoqalBTEwM+vTpg5EjR6r2/+yzz7B27VpER0dj9uzZmDhxIgICAgBIEbiFCxfimWeeQWxsLJKTk/Hiiy/qKmD6o0FNEAghaQC6A1hPCBkHIJdSuo0Qr0HalxCyDcBxAPdRSnc16KgEAoFAIGjG/N/Kg9iRW4a3JvVAea0D76/K9trneKm3l1iLzenC3FWHMKlXCiKDLafjUAWCBnP755sBgEfgGCGB0rKx0uZEbGiA1/vsTjfWHiwCICJwgtNHfnktWsUEY1+eJ22yqFLfgAOgK9MfGRmJTz/9VHf/qVOnYurUqfz5zTffjJtvvtnvZ06fPp0/bt26tap9wcSJE5GRkcGf9+7dm4uenCr1FjEhhIQA+A7ADEhplbMA6NW3bQaQSinNBPA/AD/4+LybCCEbCSEbGyqdKRAIBAJBU0EpxXO/7MHP209gz8lyzF97BFuPluKWwa1V+324+hBsTv1eWoy3lh/Ei0v2ovuTS7E/r+J0HrZAUC9qHS4uEqGMwAFASID0vFIRgftqg7qKhvWJMwkDTnAaoJSipNqOpEiPSEhogAnFPlIom4INGzbg4MGDcLvd+PXXX7Fw4UKMHz++Uf9GvQw4QogZkvH2GaV0AYDWAFoB2EYIOQwgCcBmQkgLSmk5pbQSACiliwGYmcCJEkrpe5TSLEppVmxsbCN9HYFAIBAITi/fbfYolf19qBg5RdUIMBnwwMgMhAd5FrwVtU78sTvf72dtO1rKH7+ydF/jH6xA0ED2KRwJwQHqRK0Q+XmFzSPa88B3O1T77JXfbzScutD5PV9vxdCXV5zy+wVnL7UON9wUiA8L5NtiQwOalQF38uRJDB48GCEhIbjzzjvxzjvvoHv37o36N+pMoSRSfuQHAHZTSl8BAErpDgBxin0OA8iilBYSQloAyKOUUkJIL0hGYlGjHrVAIBAIBE3Ab7tO4r5vtvHnhRU2HC+rQUaLUABAq5hgbD1aip5pkdhwuITXEtmdbuRX1Kq8xmP+two7cz29siwm0dlH0PTsOSkZYNMGtEKnhDDVa6EshVKnBm5Qu1gkhAfiyw2S4t6/icAtkJ0klFLolOkIzmGYSE6cIoU3KtiCoipvZcqmYuzYsRg7duxp/Rv1uVv0B3AtgAsUrQFG+dn/MgA75Rq4NwBcSbV6swKBQCAQNHNq7C4cLqzizyttTtwm1wYxCiptOF5ag4SIIADAlH5SX6FHx3QC4Cmsn/tXNgY8vxxLdp1Elc2JeWsPc+OtW3IEIq1mHC0WoieCpqdUvmbvHt7Oy3hiETi2iFYyLjMBfdKj+fPGsLvyK5rPolzQPKi2ywZcmMeAiw8L1G0tcDZTHxXKvyilhFLaVdEaYLFmnzRKaaH8+E1KaSdKaSaltA+l9Kzqavr1hqN4a/mBpj4MgUAgEDQyv+06iQWbPVLOM7/bjsEvreALhnlrD8Ph8vgjU6OtKKiw43hpLTfgLumehG2PjkCXpHBYLUae1rM+W2opsHJfAZ7/dQ8eXejR9moTF4KLurTEgfxKr/5aAsHpoqTKjpvnb1I1QJ67Khtb5bReq9no9R4mYvLX/kLc8MlG1Do8NZ6VtQ70ahXFn9c6XPhqQw52HCvTVWS1O90oqLAhv6LWZ63ogfxKPPLDTuxQNGz2xfI9+bjhkw111p3qUVhpQ25pTd07Cpoc5jyIVog+tQgPRHZhFV5ftr+pDus/R+RrNIBKmxMzv9uOF5fshdPlBqUUN83biBV7/dc4MBwuN3Ydr3sSEghON3anG28tP4Aae8NvdALB2UKVzYml/+Rh8Y4T2J9XgZvmb8I9X2/Dx6sPweWmWL5HmtuZoIN2QZsSZcXBgkrUOFxcXh0AwmXhh0irhUfgDhdJkbz8chuyC6pUnxMSYEKXxHCU1zpxuEhE4QSnzvrsImQ9tQz5On2ytLy94gB+3XUS324+hrJqB6rtTjz1824s3nESVosRBp0USBaBW7AlF8t256l6HV7SPQkJEUFYdHt/tI0LQY3DhQe+24Gxb/6FAc8vx85c9fpn6kd/o+fTy9Dr6d/xkKaOjvHR6kOYv+4Ixr75F974XX9xTinF3FXZuO7jDVi2Ox/dn1iqMizrw+M//oPp8zc26D2C/5b9eRVYvicf1fK6RVmfyebfV5edO3XEwoBrAJ0fW8If7zpejmq7C7/9k4cNh+vXrPXNPw5g9Bt/4Z/j5XXvLBCcRj5ZcxgvLtmLT9cdqXPfarsTJc2oOPh08cuOE7ppQYKzl682HMWN8zbi1s82475vtiEmRErJmfPjP/h641FEBkuGGFukahe0MSEBOCSnWCbKETglUcEWlFTZcbKsFjlyeuSy3XnYnFOi2i/IYkS35AgAwJCXVmDka3/yNDaBoCHc9+02FFbasDWntM59D+RLEuw/bMlF5hO/4ZM1nvuBVryEEWg28jo4QDIYAeC5S7twx0XXpAj0ahWFKpvaiGLXfVGlDT2fXoY1Bz3yCAu25HKjy+Fygw21ZQoRIF8iP/vzK/HUz7v582q7CwcLKnX31WPNwUL8uO24iIA3c95ZcRC3fb4Z5TVSXbHV4rkOte0uzgWEAXeKHCqs4p5Vm6N+zfey5Rv9zn8Zhcsrr22wd0kgUMJUwoIs3ikySspqHLjkrTXo/uRSOF1urMsuQlm1R33sZFktpn70d7NSfzoVDhVW4ZbPNuN+hTiF4OyFUopHF+7Eom3HAQDpMcHYfaIClTYHBraVRJN/2n6c9xXaIBtwrEExIcDrV3ZDm7gQ/pktdQy4yGALiqsd+OLvHBAAXZPCAYB7kBluStFW8Vl7TlbgnZUHG20x6XC54XJTHCmqQv/n/sCag4UApN9BLFjPLnJLpDTAIs2cvCWnxMtBxfZhvbQ2HfE4o4P93BtaKNT/mAM7NFDdbiDIbPS6L/x9qBiFlTb8svMkCnRq247I0ecRr/4Jt85l6aumjhmRAPD21T0AAE/+9E+9r+1J768HIKkb6h3XqVBW7RA1rY3MyfJaVNtdmPX9TgBSNPjq3il44uJOKkGTcwVhwJ0ilTYnSuWFbG098q3Lqh08ffJIUVUde/tn9BurRB2eoN4s/ScPhZWem9LekxX4dpNU5xOoU+PAcLrcGPu/v7ix9+m6I7jyvXV44LvtfJ9Xlu7Fir0FvO9Pc6bW4cLfh4rxym974XZTnCyr5b8Lc4jsPiGi4+cClTYn5sm929rEheDeEe1hd7lR63DjvNRITOqdgjUHi7ihtTmnBA6XGxW1TpiNBNnPjMLF3RIxoI2nQ05CRKDX30mKDEJ2fiWW781Ht+QIKNeTVouRtxxwuylMRvXt+N2V2bjk7TWY9vEGv9G4Ea+uxD1fbVVtO1lWyxe1cxbtQttZv2DOol34Y08+cktrcMMnG1FabceN8zah1UOL4dZbLZ/FnM1GK2uefUJRz1Vjd+GSt9fglk834Z/j5SiS571ShTMOAI8mA+roxv+zd9bxVdX/H399bq+7gxVjjIYxukFCBBQQBRvB/NmBipjYYmCLgii2fkWlu0M6xoCxERsLVnd98/P748Q958aKjW3weT4ePNg999x7z72n3vl62xMqKRfO5h1GaVYOcB4c/PdILqZ+sctlP9uF4iqYLVbZdkjRqZzfr9L46/bYzqFiAGZ3ZjGO16PaKVcv73s730RO1w2fbMegdzY1yXsxOPL5Xs08/n93jRLzb+yCO/rFYHBiEOKDPJwOl79aYQ5cPbG/4FcazNDzadz6ZOD+7+eDYt+Dff9DQ6g2WlBYYXSoJWcwnJGrr8aspfvEzNKAtzZi4qfbxeedZXKLK42oNlpwz3f7ZDezl/9JA2DL3gHAxVLuQmp/824qTBZrk2T3LFaKfm9uwM1f7sLHGzOQVVSJvm9uQMrr6wHYmqIrWU/gNYHUcA3z0SHA01Z+E+ChQaCHRnS2BrUPhMFsxbzlx1FWY4KXTi0q83WO8IFOzd1GAz0cDYf+8QEoN5hxJFuPfvEBuG9InPjc57f1wkPDuMHfFhe3kEMXSrEhvUAMuNhTY7LgVH4F/jyYg0qDGTml1SisMGDqlzsx7avdqDSYsWTnWQDA97vPYUcGl3mrMlrQ/dV1WH8iHwBqFW8wW6yImbMC3/Hv05rRV5nwzO+HcancgCU7smSO776zxcjT1yDtYhl6vrYO69LyW3BLG86ezKI6ywK/32UT2bmo567N+moTOs5bDYDLgN25eC/uXvIfury8xsFZOSOxTTxdlFACgIfEucvVO78HuHp9VmGlSyfpQkkVBr5tc3pu6hGB72emio+1arnJujOjEKuP5aK0yoSEYE98flsvWSZQ2LbasHcm/ziQjUXbMut8XUF5jSzzZ4/wHYU+c6PZelUFSiil+Gxzhiw43NzYq0zaH2P94wNhdnUxvQphDlwd6KtM+GN/tkPpQaXBbCuhNNd9wEj73i5HFre0mvvMM5fhBDKuHfbypV+l1SZQSpFTWo0aScDBmQPX87V1mPz5TjFI8OOsPrLnsworsYkX7rnIRy/LnMwEagreWpWOnq+tQ2Uje9P01SZM+nQH1p/IF+dxAXBomC+v4Z67VM5JwpdWGV0azYyWx2i2NvpGbTRbZZHxUG+dbPi2v4cW/hJ1s26RXG/aT3vP47+sYpnRoFQQHHhxFDY8OcSp4EPvGJsiX1KoN8Z3Dcd396TCU6tC90hfdAjlZmwl283akm4PABzO1jvcg/ZmFaPXa+vEx/3f2ogBb21EyuvrcaGYOy878X3bYzuHAgA2pBdgSGKQw3ZuPX0JCzecxsb0fPyxPxsWiaFZzN/nXvr7uMPrWhsrj+Xi133Z6D1/PV7+Jw1vrz4JgAvgTPliF0Z/uBWbTxWgpMqEWUv3IWbOCqxLy0d5jQnf7TzrkI1pLRRXGjHtq90Y8f4WvL/2pNN1KKV4UaJsuvlkAS6WViNdUlVgtFhRWGHAkWy9WA7sitpmEkb5c+XC0uPU2+6YtS+pfHREe9w3OA4apULMoEhxUytxtrBS9lyPaF8Mam87Xu0zcNMX7cH9PxyAvtoEX8nnf3cP5/StPZ6Hk3nlstdUGc1i7x/gGLz4ae8FvL7iRJ1Z2kd+OohpX+1GphOn+ld+Dh5gc+QS567Ck3WU6OeX1WDRtsw2kSE+eKEU76w+iTmSipzGkHaxTFa664zskiqcyC1Dud010F0rPx7USgXMltb/2zUVzIGrgzsW78WTvx3GEbsoTYXBIkZx6yNZa5WckPlOLl71paSS+8wLJVWsD45RJ0J0MdhLi8IKx0yWvQqliTeK03LLYDRbcVf/GPSPt5WJLbi5GwDg7sX/4Z3V6aJjpW8mwQXBUdx2urBRr1+flo9DF0odSsz22gkPlVXbbgzP/nEEz//vKJ767TDS8zjjx2i2wliPQM3VxvJDOaIBpK8y4YEf5JLjLUF6XhkS567CGyvTsXTXWSzccNqlOp0z7I30MF83mSEa4KmBv6ctm9aNFxcBOLEE+6ivu0aF+CBPOEPalxHhxxm9QxKDcOyV0fBxV2NIYhDWPDYYk3tGyF5nn8345/BFzFzyn2zZj3vOyTLGQkWIM/rzpZ6UAsM6ODpwb61Mx/vrTuGeJfvw5G+HsfxQjvicfZkd9z4U//fTQTz122FkFFTUmomQUmOyNOvxYx/o+WnveXyw7pSYhdRXm7D/rFxA5uttmZi/4gRe+vs4lu46h+MX9Y3axoul1c1meK9LyxP/FgZc2/OLxGmYe31HGExWzFt+TJbtohSw30RpP5uU2pzZx0YmYs1jg9E3zhag8LcTkZAew7/d3w+Pj0pEhJ8bjC5KJPvG+WPlMdv3HNkxBNP7cDMVl93LBREt/Mab7II3ufoa+LrbzuHB7QOhVBD8tj8boz/cKlv3yV8PY+SCLaL9JPQM2pNVWAmzxQqD2eIQLKKUYh9/HP0s+d0FnpE4NW+vTkcZHyD830Hn+07goWUH8PqKE01WxtkcnC+qwoXiKpj4+6G0QubdNekNbqcY9/E2TP58V63rDHx7E8Z+tE227O3JXaC1c+jVKgIjy8AxBA7z81DsoziyEkonhl1plRED396I/ee4k1wa0SwoN+BYjt6hDDKrsLJOtT+hJIRSmyx1XVQbLdek8Xm1cDRb3+j5NEKTekmVSTaHx1ungkpBUG0XBJCKeFQYzAjkS8uW3dsHz49LwqTuEaI62GebzyCfL2mozXh0RdrFMixYe1Jm9BjNVvHGuv9csVhuvK+eSq/2CPOMBEN3dKcQh3UqDWYxAwdw53xhOfe7CSIW4z7ehoFvb2zUNrRVLFaKR38+JBpAq4/nYtWxPLyzxnkG4Eqx9jhX+vbtjizMW34c7687hQXrTtU7oGXvkIT5yDNwod46mTHaOUKeHbM0oAxKOgTZmUolAHQI9RLXu6t/DADg/andHNY7kq2XfbawzS+OT65zO/pJhiunxPjj8xk98cyYDph7fUdE+7s7RLalhqb0nmS1UhzJLsXs7/fjn8MX8fv+bIxcsAXTvtpdp/Py4l/HkPTiaqS+saHO7a2LgrIaLNxwGr3nr0fMnBWY9uUulNeYRMP3sxk98dEt3QEAH204jdf+TRNfuyG9ACM7BouP88tqRKPzTEEFrv94O1Lf2IAVR3JdfqfSKqNo1FNK8cWWM+j/1kaM+mBrs8wSE4JvozuFQK10zPRarBRz/rRVFXSL8sWo5BCcyC2vs1onOsBd9lg4rmobZ+GhVaFDqJeYZSPEMQPnKXHghJLLMB/Hc8Bdo8Rrkzpj9uB4mYDIlF6RYj/fgIRA3Dc4DpfKDdhy6hI6v7RGJhCSVVgp+3xCiMwxle5HQVFWKEe96MJRHf7+Fjz2yyF0mLsady/5D/llNZjwyXZcLK3GRX0NzPy5KA0u6qtNePZ3eUZqY3oBsiT7oLbzRDh+m1oUzGC24LudZ8V5ls6oMVnw9dZMGM1WvLnyBCZ9usPpek/9dhgP/3QQG/kRK8K3oZTi001n8OCyAzBZrNh0sqBBVRITPtmOg3bqvICjZsSOOcOx/dlhmNY72mFdjVLh4NxfzTAHrhakJ9GpfLkDVyGRVrc3HEoqjdh1pgjZJdViZNhqZ6SOX7gd4xfKe5GGvbcZPV5b5/IApJTivh/2i4/r20t3+zd70KwDpYAAACAASURBVHv+ejbzq41ywyfbMeCtxjkPQpnvheIqbD1lu9H4e2jgplaixmRFaZVRVKP769BF2esD+EzEgIRAzB4cD4WC4Ju7ejt8jisHbl1avsvZh+M+3oaPN2bIjMcJn2xH0our8f7ak7Ko3KLtWdh2+lKt3/XQhVL0eHUt3lxlk5POLJSXtyy4uTu2PTNMtiyvrEYsAX1yVCLKaszi+Tpj0R5kXqpARkGF09LnRdsyxTLVqw1ppUB5jUm8fjgrGbqSOCu/AiBGxAX+O1vstNqhqFK+H8N8dHCXCC6E+uhkJZTBXjpcl2xz/IXysYYS5Fl3c/1LNyTjzBvj0CcuAE+MSgTAlZ69M6Urqk0WWWS+sNKIuCAPzBwYK85AuqFbOLQqBaL93dElglO8fHtyF8QHecBdo4S7RomkUC+M7RKGB4cm4N5BcbiTdxq7Rfpg2b19cH2XMFlWokSSXX/810OY8MkOp/1jufoaVBnNLoWAvpeMLKGUExGqMpqx4UR+g8+hDzecxvvrTokG/56sYgx7bwuW7jqHhGBPjOsShuu7hKFXOz/xNZF+bhiexDlud/WPFZefK6oSz/+1ku/10I8HcJQPshrMFuirTTCYLcgoKMew9zZj/MLtsFgp1qXl461V6QA4Wf4Bb22sVybuxz3n0feNDagymus0dEsqjXDXKBHh646CcgPMFqvM7pBmy8J8dOgc7oNIPzfk6qtxvrh2O8Feva8PP4h7gESgxxVCls3XTS06WwLeEgdOWE8q9DNvfDJWPjIIaa+Owe1926FffADiAj0AABO7hzsE2wQHbdbSfTCYraKCrICvmzwDuOTu3kjlS5i/lvS0Ced2RkEFakwW5JTarhHudsIr/x7hHPttpwvx894LOJKtx5TPd4qB+dRYf5zILRP3xZrjefhlny0jJ8RvpPeu2pwzIaD62C+HsGhbJg6eL8F/Z4tRY7Jg/MJt2F3PTLc9fx+6iJf+Po7keWtcjrH6aMNpzF95Av8cvogvt3LD3CmleOq3w9h6yrb9WUWVOHyhFF9u5X5TIaYk/V7fbM/C3Yv/w42f7RTvG9/vPodbvtols0Ol58mRbD1e+ScNG9PzZRnwE7k223vmwFhE+Loh0k8edBBQKxWw0voF2fR8W0lbhjlwtSCtk5YKN+jUClQazCh1koFbfSwXPV5bh3/5iJ67RglKaZ3Ok9RBLHFRjlZhMMvq1k/n1z2zxGql2HeuBPpqEzadLEBePZp62zoWK23SKEylwdwqTvTGlPUIfV+5+hrZgEtPnQo6jRJZhRXo/uo6fLU1U3YcC9kCb7s+BgCyXgMBZ2VWAHezvf7j7bJlJotcqlka4U/nM90LNzqqrN7+zV5sOOFceMBipZj06Q6UVJnw5ZZMcZl9KYqHViVTUAO48/zMpQqolUSMRkv7jaSzh/q9acsezPnjCF5fcQI3f7nLIcBTFxeKq1rFMVUb0gh3l5fXiiI2B86XipUJ9hw4X9LsAkv5Lq5h0ooESimmfrELoxZscVivyK6UOMzHTZYp06mV4jHiwxumX92Rgi9v74UPp3XH/Bu7NGh7517fESOSgp32yNlDCBEN4Vt6R+H+IfF4YGg8OoR4AQCO5uhF0YCiCgMCeGM0yp87bjuEeOLgPK4n7+fZfbHu8cGY1jsahBC0C/BAr3Z+DmqXgnPaPsQLAxICEeajw0V9Nd5alY4Zi3bLBjUvtwvwSDmWo8cL/zuGsR9tE1UOBez798xWir5vbkDyvDWY+d0+3Pyl6xKqSoMZq47mYuxH28TzLLe0Gu2DPZH15jj8dn8/ABB/FyHbqFIq8MNMrvTuubFJ2P7scHw2oycW3ZGCAQkBDp/jrJRQKPW7//v96PbKWsz54yhGLtiKkioT0vPKkZ5X5vTc33ySM3if/PUwPtucgfVp+TDxTpfVSvHmqhN4/n9HkVdWg+R5a/Dwjwddfn+A62H2dVMj2FuLKqMFt3y1G0kvrsaET7Zj+te7Rfn9UG8dtj0zDG4aJSL83GClqHPu7CMj2mNyz0jR2Qnz0WHHnOH44raetb4OALz4cmL7nk1A3gMnzJQLl2Tgukf7OvR+CmWQIzqGyM5JAJjcMxIAxGqiv/ljMT6Ic/qsdtfT9iFeeGp0BwDAGyvT8cnG09h66hJU/Pn16M+H0OXlNTiRW4ZJ3cPxzZ0pOPryaKx9fLDT72q2cp97UV+DR37i9tcg3skVAkV+ksy9j5sa703hMunvrbXdQ0prqVYRHMFzRVV4fcUJ3PjZTkz9YhfOXKrAsZwyzFvOyeevS8tHzJwVYuC0qMJQq223QTJLb83xPIfnj2br8fnmM9zfkuv3qfwK/L4/G3d8u1fcPvsxC4cvlKKwwiAKmgEQM9pHc/T4bf8FFFca8eJfx7A7sxjL9tgCOdLWBYDrdbtnyT488autEkj4bXfOGV5ntYGKz07b238n88px73f7xEqbnNJqdHtlbZsQZqoN5sDVglTx6SA/FPPAi6PQPcqXc+CqHFUoP93EnQSb+fRypdECo8UKs5UizEeHZ8ckOXxOtdGCCZ/Y0tUXiquwaFumg2KRNMsR6KnFB+tPYdbSfbV+B2k5x4PLDqDvm/LylQvFVXjuzyPYnVkEg9mC73efa5UpaEqpeBOsiweXcTfbyyVXX42YOSvQ6aU1LTa2QWrkp76xAQVlNTCarXj1n7RaZ8zsyCiExUpdyo+rlQro1Aps4g2N99aeFIdj+rqrMbkXd7O0bxLmnnccmKmvNqGsxoTh720Wo3Wu9tUDPxxA7/nrxcdCmWd9eklnfud4vJstVpwukBtRnGjBTlworsbknpHwcVPjzZs4w1ttZ8De9/1+/HkgB146NUJ4I+60JHgjRGEBzhGmlKK8xiTrfbjug60oKK+fg300W49B72zCsj3n67V+S/HHAUcRF6WCwE2txK/7HPs+AOCmz3bKKgvqIqe0usEOn30Gzt9DA41SgQuSEmHBYSirMeNYjl7Wc2MfAbd36IX3XPPYYOx6bri4bHSnUEzqESEeI/Xl3kFxTrPWdRHsrcOcsUkyh/KRnw4i5fX1uO6DLdidWYwAXvlSMKB93TVw16igVirgoVWhPe/4AcCn03vg7cldHT4nyt8dT4xKxC29owAA4b5uqDFZ8cWWM9iRUYTFO87Wua0KAvy+P1ssvfzPLhs69Qu5g1ZbuSulFJ9vPiNmeid9ugMPLDuAE7lluPnLXZi55D9sOnkJkX6c49053AeEcL9B+mtj8NqkzuJ7uWmUyHxjHGYP5tQ/dWolRiZzzsHqxwbhd975AxyFZADOyF+8I0u8Ttr3MB08X4p95xzLvu5dug+fbsrAHwey8c7qk7h36T60f2EVkl5cjddXnBCDTAKrj+fh000ZmP71bixYd0q87uurTTiSXYrSKiN83TVitkz4zCPZeuw8U4QZi7g5Zr/e10900IUshatSyJEdg5H5xjgkhnjh/Zu7ISmMO1ZCfHSI8HWrdYyAgOCkORM8kfbACdk4aZ9atL9jFkU4jjVOykRDfXQyAR4hqD6uSxgAOFVDTI31x18PDcCQxCC8t/YU7vh2rxgkBACThcJotsLfQ4sRHUOgVBDx/JZm4QHHoKJGpRD7YwXnSdqq8uiI9rI5kXOv7wgAqHAhHnM6v1xUELVHqP5QKrjfWRCyOctf1/q9tRF939yA35xcl/89chGrj+dh5sBYdAzzFrOHUjak2wKjSyROzepjcmfPlapnyuvr8fFGWx+yoBnh667GvOXH0VMitiTNItqXGwulwtLAa66+BmolcdmrKUXDH/v2fXD3fb8P60/kY9XRPLy35iRO8cfAP0da//ij2mAOXC1kl1Q5lAX4uKnhqVWhwmCBvtpmeB66UIrVx/LE6IXQc3MkuxT5eu7kmz04DmN4NTAp/9n198z54yheX3ECm08VyAx4wYGblhIlRp3WnyjA7KX7cCxHj4yCchRVGMT3S57HRejsmfvXUQx5l1NhW34oBz/tvYBF2zLxwbrTePGvY3U2odaYLM0ioGK2WHEsR+/U8F9zPB/3Lt2HhbWIFeSX1aD3/PVYczwfVUaL2DjcWKQlWV9vy7qs92os9rL2X2zJxMqjufh2RxYeXHbA6QV7y6lLmLFoD6Z9uQvniqpwW99o/PFAP9k6j45oDze7GXDC7/XKhE54ZHgCvritF4Y6Uayzz8CFeGtRaTRj66lLyCysxNy/uCihfaQuPa8M+84Wi9LlAiWVRizalokOc1fX9lM4xWC2YPA7mzDmQ3mD8/Svd4tBl2h/dxyaNwq3ptpq5uff2Fm82Av4udscOKEEQzjPpPSevwHjPt7msDx1/gbsPFOIecuPYdh7m8XlezKLZFkJwfA44KTev7VwOr8cv+5zdODiAj0wvGMw1qXlO2QQnZWBHc3WY8kO7tz5fX+2g7M24K2NDXL4KKXIL6vBtJQobH92GA7Puw5bnxmGCD83ZBfbjIF8idz0+IXbZfujuNIIrUqBLU8PxWsTO4lGY2KIp5iFALjetPoYsVcCe2NSGLwsjD8QMuUKV5OOAcQFeSLcRR/eIyPaI4X/7s7m2bli7eOD8ddDAxAb6CErP9x/rhj6KhPmr0jDT3vPO5RVSpVwB7UPhJdWhUvlBgx/bzNu/Xo33l6djuHvb8Gm9AKcLqjAXf1jsPiu3iitMmEDHxwV5j25aZToFxeAewbEOp1rqVAQh2wOwKmCpkj295PXJeKBofFipkfglX/S7F+K5DDO2Zv71zFsPnkJPaJtQjc75gzHyI7BeNdFr+i3O5zfSz7acBo7zxTh4w2nxSzJ7KX7MOGTHSgoN8DXXY1gr9r3TZhk30X62fb1yI4heHViJ/Hx5J6RGNkxRJYV/r/h7fHapM64OSWq1s+Q4scflwSOv69U7EdwKqX7IcDDMRA4oiOXDXZ1nDoz4mf0aYcZfaLx1HUdnL6me5Qv5ox1DJxL8few3dN83NRYcndvbHpyqMM9Qoq3Ti2WLgtBJaPFdr82Wqzi8wDQlVeznfjpDllPpsCa43kuB5XvPsM5PSdyy3AyrxyVRmHsDfe/4Dg+/fsRh8D/myvToSDArEFxSA7zxplLFcgoKMefkgDdsRy9zNkUkFbt/L4/GzvPuBYTE8qqJ3UPF5eNtbN3e0b7iqWZl8oNDraAQHGlEVYrRYXBjEXbMuHvoalXBYMQnLVXohQqkZ754wg+2ZQhnoNtfeQAc+BqIVdfg2AvrSxtq1QQ+LlrkKuvFqMFBrMVkz7dgfsl/WkCpVUmLN7JHSweGpVDvXmNyYJdmUVQK4lYCiKUQ9yzZB+elKSSf+Qj9pN6REB6eK5Ny8f4hdsxcsFWPP7rYUz9YhfWpXFOTEmVyaGu+4fd58XPyCqsEj9z1THOcSuuNKKgvEZU4JNSXGlE0our6yz5aCiUUty5eC/GL9yOpbu4FPuJ3DJM+Xwnlh/KEX/bNEk99O7MImxMz8eF4ipYrBRrj+fJnIZTeQ0ra7NH2vOkrzbhQ/5ill1Shcd+PnhF5p/YR+uW7TknGgZHc/R4+vcjorPx+eYz+PvwRXGAqxClNVsoukTYDIxjr4zG0A7Bsjpxk4Xir4NcSYq3Tg2VUoExnUOdGj7SZvH3pnZD7xh/lFSa8AFfalhWY4LVSrFwo9zZfuCHA5jyhWOpVFGlEa+vsPWtSW/SnSO8sempoa5+HqTnlovzjqRIy750aoXD95jRpx3WPSEvlfFxUyPE23Z+BnpqRIPijn7txNKbwgqDKNM+vmuY7D1O5JZj6a5zyCqsxLfbufN+8Y6zOJFbhoUbMzB/RZqYFS2rNmPb6UvNehNpiOAGwPURvvpPGqZ+uQtKBcH+uSPxyfQe4vOhPjr0ifVHQblBHOArYP8YAL7ZnomX/0nDrjNFeOq3w7j9mz3ic1IHsNwu2LLzTCFi5qyQZZk/3nAasc+tRGGFEbFBHoj0c4ePOxdQi/Rzk4n01FZufLaoEuG+bmgX4IHb+8WIy9c+PgS/3t/P5etaEmnWWGoUCiMOYgO5bIbKSeaiocQ5UdR8zokBvPSeVCSGeKF7lC868/12AqcLKvDgj/vx9bYsPPfnUWhUCln2pMZkgZtaiVmDYtGPn5X3457zyCysxO5M27l7N6+8eVvfdhiWFCxmMQDIshU/zuqLR0e2b9T3fePGLpjQLRydwn3w7JgkvDwhGW/d1MVp8AbgMik/zeorE7cJ9tKKBnCErxuecVJpAwBJobaM6IYnh8ieM5qteGdKV8QGeuD9taeQealCDPIczdHDz12DYMn1SSeZieatU+HU62PtjhM30SGIC/LAyI62nrL3b+6GW1LlIhBBXlrc3rcdAuvRqykwtnMopvaKxAND4x2eE4RLutgdGwLO7i0z+kRjy9NDRWfHnhD+2BeCj1qVAiHeWsy/sQtiAp3vL0D+uzvDz86ZHNohGD7uakzr7dqZ9XNXi9sjlPkJjtSEbuG4NTUagZ5aTO8Tjb8eGiBzaL/h7w1WK8WfB7JRWGFARkEFwn3csP6JIbLMPwCx3wwARn+4Vbz/lFSaHKpsZn73HyZ8sh2UUlQZudmQj49MRKiPDsHeWhRWGDBywVY88eth0dlLzytHcpi30/P8i9t6oVc7Pzz122G88L9jiAv0wLFXRosO+DuTu+I1SXBg9mDbsfDoiETZe92cEsVdv59bid7z18vaE6RUGMy4qK/GQ8sOwGylUCnq56oIx780CWC1Uof7izBPztzA+2Nro85fhRASRQjZRAg5QQg5Tgh51O75pwghlBASyD8mhJCPCSEZhJAjhJC6C6lbKfllNQj10WGKXUTuuk6hKK0yiWU5UsNFWhYwPCkYQV5aHOAzAe5apVgLLnC2qBLni6oQ5ecuGq7S9O+fB3N4dZ8MseTKx00tRgDtEZplpQ2+z4/r6HTdxTuyxDKp0wUVolN3rqgK4z/ejjEfbsPOjEJZ6ebhbO67uIqcNJa8shrsyOCiTP8cvojlh3LwwA/7se9cCR792SYBL2T+akxcH8A9S/Zh0Dub0O2VteIMHKGnQ1oG1xjsxRo+XM/V0G9KL8Bfhy7icTtp+ubA/sJjMFsdyg6E0se3V6fjkZ8OwmR3UfLz0ECjUuC2vtH4dHpP8UYiqJMJEedP+DJRb7fasw7SrPSUXpHw0qmQU1qNM5cq0SHEC6VVJmzLKMRPe+XZQVdGtX10Xqpe9vmMXogN9MCWp4dy26ZTyUotj9fR35EQ7CmKNNjjZhfYSAj2hLtGhZtTuN+jsMKIFF4E4fouYVj3BGdwKQjw7Jgk9I3zx3tTu+EFyfn1oeSG9Oq/acjT14iO/pKdZ/H1tizx5r3+RD5u/2av00yXwI6MQpdlsNJM+HN/HkHMnBXicxeKqzDmw62If36lS1EJKReKqxAzZwUmfboD3+7IQmmViR9wrcX4ruF46jruRhzh6yYKQwx6ZxNe4nsyAMjKFAXnTChXuvXr3QCASoMFlFJkl1TJeoztZcW/5g0WoRQnT18ju9lLxSkAIMRbh3PFVWI/Zb6TctbPNnPH96ELpega6dyobAt8d08qvr0rBRO6heNGfvzA7MHxeGVCJ9zUI6KOV9eNs5EIMwdyoh83St5/sMQhe25sR3w/MxW/3d8P/eMDsPnkJfF6DgB3D4jB65LSRoPZCouVQqlQIITPKm08aevTCffRYf/ckZjQLRxzr+8oOkfOyl0vl+l9ovHxrbYghZdOjVtSo7HikUF4ZHgCAE7VcVpKFDw0StzWtx183NX4eXY/8Tfw0Kiw/KEB2Dd3JACIYhz2CCIqAHcu/fXQAAxPCoaXTgU/dzWGJgahX3wAThdUYPj7W8SMIqWAj7taJoTTUWIDjEwOcShj1KgUYmbWz10jVhcIIiVNgYdWhXendsMkJ8edQsGVqf40u69s+bZnhjk4rwJCr6YrovisYr/4AOjUCoT7ujl1BJ2977guoVApCK6XBN20/G/mLBsIcKJC658YjB7RvvBxU2NKr0g8MoILFMwaFAcvrQq+7mqx2kNw4ObdkAwfNzUUCoI3buyC7lG+DqNBzBYrVhzNxRO/HsaUz3ci41IF4oI8kBDsKVPrnDUoFq546McD6P7qOtmyTScv4Ui2Hv+dLcF933OB73j+/Any1MoCH5mFlTCYLcjT1yDCzw33DYnHO5O7ijYBIcCYzqH4YWYffHFbLyy8tQd+vb8fPLUqbH56KPbNHYmbe0eJgU5PrQod+VJcjUqBUB+drPpnUo8IMXMe5KXF1F6ReHZMknjPle6TYzl6bM8oRGygBz6Y1t3lbyBFUGiVlrKWG8yw99OEKpiGBjhbG/WpDzEDeJJSeoAQ4gVgPyFkHaU0jRASBWAUAGkzx1gA7fl/fQB8zv/f5sjT1yAxxMvBoB3EzxhxtvNTYvyQU1oNi5VyPQjBntjJp789nJTjjPlwG9w1SnSL9HWIAgFctHV7RqGsHMPXXY05Y5OQllvmoN5FKefgbZbcDG/qGSGWtUmxLw0J8NDAS6eS1UBPX7QHwzoEYfHd3GBMUzONI5CecIculMqcNinHLupRXGnEejsVNGmT/DtTumLtq+tQdZmqm1IDc/6NnbFg7Sn8dSgHsfwNpj7CFUUVBjz840G8O7WrS+Wk2hAUGm9NjUaPaF88w0sUcxkHzpFbtD0TM/h5OQAn1y3QJcIHjwznbjivT3IuvjAqOVjW7+RMuMSeT6b3QFwgd1OQHtfPjOmAmd/twyv/yIf+6qtMqDRa4K5RivvlzZu64PV/0xx6bAa3D0JGQQV6RPuK4gztAji1vW+2Z2HCwh1YwzeaH7+oh5taiWqTBbMHcyUij/1yCB1CvHAyvxx39mvntKwKgKyEdGL3cDHT/vbkrvh1Xzam9orEdZ1CsfeFEWLp0h8P9EPXSF+olQox6nz3gBjMX8llEO3l2Nccz0OanQNl30dQWi130MpqTFAQgoKyGsxYtAceGiWOvzpGto7VSpHy+np0DPPC13ekiM7yyAVbcN/gOLy9+qToOG4/XSgz9gDOYVtxNBf3DY4DIQRbnSh8SstQhGRZuwAPdAr3wSPDE/Dxxgx8t+sc7hsSj3BfN9n3qjZZoFQQB6Vco8WKqV/scugbWnk0DxG+bqLqqfBegjDB0Pc2yda3j+oHeWlRWmVCj9fW4exb18vKKQXeWX0SU3pFIr/MIGau2iKxgR5IDPHC8CRbRkWjUrgMVDQUpYLAW6dCjcmK58YlYW9WMVRKBY69Mho6lQIJwZ4O2alQH53oXHWO8BHveQLJYd6I8nfH9V3DsOJILmpMFpitVqgURCz7kwrj/P1/AxHgqZU5VgBwXXIo7hsSB6PZ6jTr05To1ErMHhKPgnIDnrguETq1ErMG28o0PbUqsZzcQ6sS/wGcwyBcl6RE+LkhwtcNOaXV0KmV6B7li2/v6o3CCoPocEnHTUhFy/zc1bIesvbBnqLjIPT4ucLfgxPj2fL00DrLMJuSpFDHQHOUk963+nJjjwi4aZToHO6DN1aegLqWYeP2LLy1J6yUQq1UIC7wJBZuzEDHMG8culAq9pbZo1IqkBDshf89OEC2/OFhCaLDPLVXJBZtz0KFwSwKgTnrCbSfH3m2qFJUKRf6FO/o187hdTP6tMMPu887HEt1cevXu0Ubtb3gwNlVgI1csAU39YyA2UoRzp+/N/eOwtSUSLQLcBcDNm4apUP7j5dODSGvGe7rhhfGdUTvWH8Qwh1nQtmsYCc8PCwBOrUSW58ehrRcPUJ93GTHenKYN17+Jw2xgR5IzyvH/T8cAAC8OL4jUusZdBB+d2kGTgiACuedlMu1EVuaOh04SmkugFz+73JCyAkAEQDSAHwA4BkAyyUvmQhgKeVCsLsJIb6EkDD+fdoU+WUGDGof5BDh0ak5OeZyJ82oMQEe8NSqoK82wVOrhL+7zYETShk/md4Du84UiRm1KqMFId5aeGiUUCkIzFaKzhHeSAjyxKpjeUjPlTsKPm5q6NRKTOkVKTpw01KiRPnauwfE4MP13IXhtUmdZX0cn07vCQoqlkA+ODQeE7qHI+1iGZLDvfHdznM4WyQXV9h0kivzUikVLptsLxfBgRuSGIQtpxyNySdHJSK/vAY/7D6PsR9tlfW4CEaBgHCDrY8ohiuOZJfKyvCmp0ZjXVo+lh+6KEYw88sMmLV0H+bf2Fm8Ke7JLMLHG0/j0RGJSM8rg4IQ7MoswoJ1p7DgZlsU6Wi2Hl9uPYMPpnV3ENWQIpRQTu4ZgZQYf/SM9sXIBVvx6sRO+PdwLv48mINPN51xqTR2fdcwh0yTwDuTuyKntNpBlMF+no8zxne11blLs8odQr3QJcIHR3P08HFTY/bgOLy75iR+4JWnBrUPxJrj+RjdKUQsMVm255yo2jZrUCxSYwPw7Y4ssWRRQLgBShVh03LL0DXSB0tnpor9CqM7heLg+RJMX7RHNoTZHul58ciI9pKZRgTpr40R94vU4OnVzvFGolIq8OZNXfCcZA7Tz7P7YtZ3+8RS5toQRJCMZiu2nb6Ee5fuQ69oW4ap0mjB4QulSArzEgeX7s4qQoXBjP/OlshUPjMKKvC03Rwiobzn2+1Z2JCej/7xgWJA6OMNp7H5qaEOA1EBbiiqwB39YlBYYRANjMdHJaLaZMHX27KwZOdZ6NRKWRfMurR8MQgzZ2wSzBYrgry0ePaPozLnbdagWHy9LQtfbDmDxTuycN/gOPSNCxBLoXNKq3Hf9/vEnqlwHx3+fHCAg1MuzUyUVBqx30V/4SHe4G0X0HgjsqXoG+eP3ZnFtV4vmoodc4bDygcD7x7AZQCE8++hYQm1vnZUcgj2nS0WK08AoC+vDHlzShRWHMmFwWyBlXLOYs9oP6iVRHZvcZUR0agUeG6s84qS5sBTq8JbEuEX++CWUC1gX1kDcDL2Qg9RcpgPUmP9MCo5FDd0C4feTrVXWrboqgfR100js0UGDs+f9AAAIABJREFUJARiWIdgDE4Mcvr5AHDPgFisOZ4nlk/Wlt1qC6iUCvHe8+mMnk4671yjVBAIV6nHRyZi5sBYbDtdiP/76aDLcllXSB20uCBPUMrdq0UHzsk56mmXgXv4x4M4XVCBT6f3xJGcUmw5eUkUZAGAVY8OglqpQEygBw69NAqn8yuw8mguPuPVIu2JC/LAPw8PxFur0vH97nOwWCliAz3w1HUdxAy2vQMH2AbDS7N+hBAx01hfZkmCCNLjzM9Dg/1zR4p9vG4apdP7aCJf5mpvbztb1xVCqaX0WiL0v9lnQAHIelfbIg3q0CaExADoAWAPIWQCgBxK6WG7HzwCgLR2KptfJnPgCCGzAcwGgOhox4F8LQ2lXAOlYMxufHKIzGhIDPHC/nMlDjeeSD830YHz0KjEiDJgMxjHdw1HsJdOpkIX4qMDIQR+HhpcKjfguuRQaFQK/HXoomx+Dvc+3HaktPND5whv3NgjEt2jfEUHrrvEaHW3M3Q6hHrJ5GafHt0BhBAxUvbUdYmoMJjxzOgOIARYxBtoeWU1iPRzbzaFSuHCN71PNC6WVovljy+OT8aQxEAkBHvBZLFi9bE80Xm7o187PHldByw/lCM6cH1i/W1KRJeRLZSqggLcRaVjmDc2n7wkiy6vS8uHt06N92/uhgPnS/DLvgvYkVGEHRlcr9e4LlzUyr5E7NFfDiLzUiUeHJrgVP1MQFCbEpyLhGAvnJ7P9ToEemrxJ6+KJqik2dPVRf8BwEXaAOC8nUpZfTJwUjwkSpWBnlqM6BiMozl6eOlUiOVLiQSHYUAC58BVGjinZlRyCEYlh+Cxnw/ir0MX4aVTi5kxewEhaSnv4h1ZcNcokZ5bjltTo2UOiJtGif4JgTj1+linkVAB6fvbf2dXWTtX3JoaLTpwn83oib5xAegU4Y3tGVzTd+8YPwdlPgGjxQqD2YLHfj6EVbzql32GauKnOzCxezg+uoXLSJwttO2zugYH7z9fgq+2nsEbK7lZVdLStiqjBUt2npVFxe8eEAOTxYppKbbrso+7Gq9MtJXAEULw3NiO2HTyEr7iyx0HtbfNjXqT/ywAuLNfjBhE6B8fiCPZenSP9gUBF7n9dsdZWKwUBrMVH2/MwMcbM8RzeM3xPDHLAHAqi87K6AIlhsmerGLsO1uC1Bh/7LUTiJrNlxQ1VEmyNfDDzD5XrGfDq4HXACm9Y/zx54MD8P3uc3hr5Qn0iQsQf2+hPEo4/1UKAp1aiYEJgdh08hKm9IpEt0ifepXFtQaE7+PhJEjWJy4AP8927Kn01qlrvcbaBGkgK/0Ssm/xQR44c6kSwV469It3HIcg5dGR7RvdG9jauZxAhkJB4OuuwQ3dwjEqOaTB13spwv2q2mQRbQ5nDpz99qbnlWNyz0iM6xKK67uGOQQmpFUTWpUSnSN80CncG6uO5eGeATF4cflxxAV5iFUO9w+Jh4dWhdcmdRZtxjdu7CI7RgJ50SOhQkVKc5QnCwTUo6+yfTDnwPWI9sWfD/RHx3mrkRDs6XREhSvUTsYICGO5HhuZiJVHc7ng95Fc5Oqr8fTo2sVtWjv1duAIIZ4A/gDwGLiyyhcAXOdsVSfLHO46lNKvAHwFACkpKa2uEFVwKIRGYfvG7k+n9xQlsF/621Yu5qVTiwath1Yli3hIJdlTY/3x7/8NFBXYhD4A4YbQJcIHl/gSKKmk6sPDEsSbW1yQJ/79v0EAgCqjGcOTgvHEqERZKabg7IV4a5FfZkBCsKdMQdL+RhngqcVCSdnKqOQQLNl5FmM/2oZD866TnRhcD0PT3GiFvj+NSoFFd6ZgyLubAXCp/wT+xFYrFZjQLQLf7sjCjT0i8CpvUM7o0w5Jod6yNLtGqZDNNWssP97bB935KM3d/WNQZTDju11yh/qPA9kYlhTkVNhl7XGu1PPg+VKsOpqLge0D8cWWM+JF93xxpUsHrspoxmG+B0h6ERNuBH5O5PwFXr4hGdd3DXcacbNHULITcJWxc4U0+qtTK3F3/1gs5Uvr7IfBju8ajnnLj+OegTGy5cJx6K5RwsKXzdnf8KQ3GGn5b3cXUbTanDd7nEXnGsr3M1NhsljF0rbEEC9RkKF/fCD+O1uCQE+tg/iN0WzF+2tPic6bK5Yfuig6cDmlrkdICExLicLfhy/i4PlSmRNkz8HzpbKsa5iPTtaI7gqFguDp0R3EPottp20KZXllNUgK9cIrEzrJjqcof3eHEqpf7+uLBetOyRxL4XogbPdd/WOwZOdZcbyFPV6SY/Dp3w+jwmDGPQNjRAfusxk9MX/FCdHZlYpBtBVUSgWcJEpbLbf3bYfb+8pLwgRDuZIvNVbyBtcn03vih93ncFvfdi6zSa0RQX2xodfM2hAEPL68PQUPLtsvBoiF8S2fzeiF7JKqJu1lu5a5HOdN+vpqfmSUWknqpZgIAK9O7NSgYAUhRBT1mtQjAmqlAkkvcurNUnvgsxk98eWWM+jZTn5vTAj2wsJbe6BvXAB6z1+PAA+NOMbHmQrllSTIS4u1jw9GtL87dGoltj87rF7VQFKEklqjkxLKxBBPjOnM3T9v6+tYqtoWqdeVkhCiBue8LaOU/kkI6QIgFoCQfYsEcIAQkgou4yaV7okE4Hr6ZytFKGtyVloE2Gr+e7Xzw7TeUfj3SC42nyzAoPaBeH8td0J6aJUyA9q+B06q3CVkKh4cmoDn/3cU3aJ8cdBJGdAtqc5Vkdw1KnzLzxqSqrsJN5a1j9mahsVZK/UwcAVRlvIaM4oqDbJsY6XR3OBsjSuEyJVWqUC7AA/Mv7EzXvjfMXE2jcBNPTkHrn2I7WKjVBCHGmmNSiGbz9dQkkK9EOajQ3+JAxLsrcMrEzujqJITt3hZ4kS4UuWURswfWHYACcGest669ScKkBTqjZhAD+SUVmPAWxux9J5UtA/xFHsRJ3QLdzmryhnBXlrcNcB147M9HloV9r4wAi/87ximujCQa8O+tt/HXY39c0eKN6a3J3fBsj3nMbZzGPw9NDj71vUO7yHcwtw1KrFef6qdnPW9A2PRPcoXP+89j7/4Ia4eGiVGdgzG5XK5N3EAGNRePnJhSq9ILN11DpO6hyMlhiuJ7BcfgH8Oyy+HBrNFNgS1NvRVJvz033l8u/2sbLlWpcD0PtGY0C0cd367F/cMjMVjIxNx/9B4mYS+M9LzymROsCsJb2f0cFKi2j2Kk4oe0iEIfeJqzxAAXInM8+M6Ogx8l/LSDcmYMzZJDHDZI3UKy2vMCPTUol+c7dwd1yUMozuFIv75lQAgzk9jXFmEgKjQsyyUSXtoVbhvSPP2tLUVgry04jXy9Pxx6PjialSbLPDjM3AdQr3QoQ5VRcaVQzimhQxcbaMHOLVTbxRWGFBjsl5WsMI+Sy6tvBrXJUxWjinlhm5cCeo7U7qif3wADGYr/Nw1TXIPvFwSJXMrG6MZIPz2Qv92RkEFHv/lMNzUSlmJ6NVCnUcP4aywbwCcoJQuAABK6VEAwZJ1zgJIoZQWEkL+BvAwIeRncOIl+rbY/yb0T7kyGKQI/WhTeONXOBE8tPKxAc6GIgsIDsn0PtGYmhIJtVIhO5gF6lPaIo3oCGWbPpLmZ8Hwnz2o9sZnQC5ZXVFjlmXgKg1N78AJTuX01GhM6RXp4EB3jvDB13ekyOY1OUOrUshmsjSUapPFZfTnk+mcsKqbRgkrBV7/N002r+2mnhFYezwfId5aUenx4WEJ+GRThsx5A7jZKr/vz8a//zcQ03mlvt/3Z2NPVpFYKupKRdRdo8Qd/dohLtBD5kw2JpsU7KXD13ekNPh1gC0wES45VqTH4LTe0ZjWu35l0hoVpyzmzMlTKRXoGxeAvnEBCPN1w+ebzyCeV45sjXSN9MWe50cgwEMDlVKBvc+PgL+HBrf1ica0r3aL6xnNVsRIega2Pj0Mg/k5jdueGYYvtpwRy63XpOXhrVVceWJKOz+x1HLP8yPECP2Rl0eL7xVbi7S2QEmVCaf5cprBiUEYlRxSxytsBHvrZOWh70zpilN55Th0oRTaBpQ4RdTiNHYK9wYhpFYDIyHYE3ufH4GvtmZi0fYsBHpqZKW9gLxktqkqBxgNQ6eyy8DVUx68tSJc5mgz1hCplAQwyYdgM1oPQgmlQXDgarEZ7UV5moIHh8ajpMpYr2obKQ2Z99dWkI4RWLrrrNhbf/eAmCbNkrcW6mP5DABwO4CjhBBBGvB5SulKF+uvBDAOQAaAKgB3X/ZWtgBC+V19HDh7OoVzykalVSZ5CWUtBojUgBEOwih/dyy7l+t7uPPbvQAcsx11YT8DDuAcy2OvjHZat2+PSqnA4yMT8cH6Uyh34sA1FfYOHCHEZfazPgam9jIzcFVGi8Oga3sEp6SdvzumL7LNt3pmdBIW3Nwdxy/qxazCU6M7YOXRXGQWVqJLhA/GdA7FB+tOiRm6GYv2oIwXLCkor5GJtLiqTSeE4NWJnVFaZZQ5cFc60iR8h/grWIIhZJGdHd+tCWmvVbAg4y3JSunUChjNVnj6cOd1hK8boiUCG1H+7nhtYme8OD4Zg97ZJKqQAlw/oeDA+dZSTrv4rt5YvPMsOoZ6Qa1UiOMiAj216BjmhW2nC5GeV464IA8svSe1wd/x+5l9xDIebs6PAWm5ZZjSq/4GgrREeP0Tg3Hogh6pMf6wUCoLItVGsLdOLHWn1DY8WMpPs/qiwMmIAcaVQctnK4SAl71QUVvjSmy9m5oTTGuqYCmjaREcg+p6OHDNgauZg9ciQg9cflkN5vFjpQa1D8TTo50PeW/r1EeFcjvquE5RSmMkf1MAD132lrUwYgauEWnl2/q2w7I959E3LgD+7hoMTwrGsA5BTg2KH2f1wdnCKpd10PY9RA2NHLuKOjTEEewbx2W7KgxmWQllhaHpJFilPXBNgUZ1eT1w1UZLvSM2/RMCkTF/LI5dLMOh8yWiw2Xf6xMd4I7MwkoEeWnx0LAEbEovEA1wqUDH7sxiaJQKdIrwxqx6ZEntm3xHNEFJYUMQhqTeV4++KZc00BIS5LvrO+CzteLrpoHBbBUDGH8/zMlVvzOlKwx8r6pCQaBTKPHIiPbiiIiHhyXgwWHxuKFbOKqMtQdShiUFY5hk/tQXW87AbKX466H+yNXXYNvpQmSXVDdakcs+MxboqcWPs/q6WNs5hBB8fGsP/LDrHGIDbX2vDSWGH2hdZXL+m9Ql+sBoXhwzcG3bgWvHZ7jDXChHNgWL7+6NX/670KAB24wrh1TExGC2uAw8M5ofIfmRI5nNPLZzWJsRRWoorbP2qBVQY2p8Bq5jmLesBEzoTXNG//hA9K+H3fvSDcnYLhEJqAthTl1TZCiEss3yGlPzZ+CaSCJbq1I2WoWSUopqk6VBv51KqUD3KF9ZHbp9xDQ+yBObT14SHa72IZ7Yd64EHcO8cSK3DPcNiUPmpUqsS8vH5F4RePOmrqgPhBB8PqMnQnx0OJlXfsVLI2ICPZyWPDYEQQyA1rMWSfgNVcrLuzB/dEt3cdZYS+DrroaRd+A8tTbVWmf7sL0kw/kUH1FsTON5pJ8bzhZVwd9DI5uf2JieA4FnxySJA1wby4Ru4ZjQLbzuFWtBkK/21HLHx9RekW16aPfVhr2ISVvPwM1IjUY7f3eZAmtT0yncB69OZMdwa8VexORKZ+AYNgQH7v113PiO+wbH4VYXuhFXA8yBc8HllFA2B3cPiBXn8dSHSD83nCuqEiOel4PQU1VWY4ZZ4sBVN+EQRPsSystFq1Y0eg6c0WKFxUrrLKFsKCnt/PDN9izk6rno0IvjkzEgIRBJoV6497t9uLV3NLJLqhHmo8OjDZzBMpZvWO4pmR/Wlnh8VHtcqjA4DAt1hRBQu9wM3MTuEZf1+svFTaOE0WKF0WKp89ivrU+sIfxwbx/sOlMEd41K1lMbexmz0Zp7qHJ9CffR4ZkxHTCuM3c+vDu1WwtvEUOKUOIkDCVu6xk4hYJgcGJQ3SsyrloEB66mHiImjObFfr7nLanRV232DWAOnEtsIiZtMx3+w8w+WHUsVzZSoLEIDlxFjRlGSQllU8j0i+9ladoM3OWMERAcU7cmEMf45+GBopHSi1ciHNqBK2dz16jEoaSbnx4GgMtmDWzGaG5rJdLPvUH9Vz5u3HHd0tLHl4vQq2k0W0Xj1hVNNacn0s8dU1O4G51U8Ca2gcNsWyOEEDw4tPZB04yWQ7gWChUul5tBZzBaGqHVosZkhaEFeuAYNnRqJd6d0hVP873iDRV2aWswB84F9nPg2hpR/u71muVUH4R+OXsRk8ZmuJzRLBm4RoqYCNHhpig/7SIp3wr20uHwvOuaZObYtU6/+AB8dXsv0Rluq2hUSuirTfVqflcrFUgO8xaHwzcFnpIghVQJk8FoDgghUCuJOIu0ratQMhg6ld0YAebAtShJoba5uvUR6mvLMEvSBXXNgbuWUCkVcNcoUV5jkpVQ1lyGyqM9Te3AaZQKlFU3rkevyth0Dpw9PkwKusm4rlPTOTJXmptTIrEnixOrMZqtXO9EPbLPKx8d1KTbIR04W5+RAwzG5aJSKFDDX+/beg8cg6FSKqBRKjgHzmJtsFI4o2npGOaF2/u2Q7co36u6fBJgDpxLbCqULJoCcFm4CoNZjKCaLLR5MnBNKGLS2O0TSihbw2BLxtXJO1O43qyHfjwAg9kCo5lC08LBotpGETAYTYVKQUSF1bbeA8dgAJydWG20oKLGjBCv5lMkZdSNSqnAa5M6t/RmXBGYd+ICw2WoUF6NeOlUYgmlEGFqyh44o8UCBXE+u6kxaPn5Wo2hOTNwDIYUrTQDx641jGsAlZKwDBzjqkIIcBdXGuHvyQJhjCsDy8C5oK2LmDQ1Xjo1ympMUCsJPLQqlFSZxD6GpsBkoU1qwF6OiEl5DTeTjZVCMJobjYp34MwWaFtIvezDad3rPfOQwbhcVEoFy8AxriqCvXXI09egpMqIgCYQjmMw6gOzUF0gjhFgJZQAuAxchcEMb50aOrUSaiVp2gxcE8vvcmMEGrd9ZbwDZz8gm8FoarT8wHmj2Qr3JlA9bQyTerTsKAXGtYVKYbt3XO4YEAajNRDqrcX+c6WwUsCfOXCMKwS7erqgtc2Ba2mEEkqjxQq1UsH1mDWhiAknv9t0WQA3tRJVxsaJmOirmAPHuDJoVNy8Qu68YtkIxtWPSqZCyY55Rtsn1FuHwgoDAObAMa4czDtxgcFkASFNJ6rR1vHSqkUVSrWSQFePQdn6ahOKK431en+D2dKkzrKPm5qfy2IBpbRB/XB6Xr3SmzlwjGbGXaNCjcmKGhPrgWNcG6gVCtGBY3PgGFcDIZIZncyBY1wpmMXggtv6tcM/Dw+86mVI64unToWKGjNMFipm4OzHCBzL0YsOW2mVEd1eWYu7F++t1/uXVZubdD6aD6+op682Ydme80icuwoF5TXi85RSVy+FvtoED40Saua8M5oZ4ZgvqTS2uAolg3El4DJw3L2DZeAYVwPdIn3Fv8N83FpwSxjXEnVazISQKABLAYQCsAL4ilL6ESHkNQAT+WUFAO6ilF4khAwFsBxAFv8Wf1JKX22OjW9Ogr10CGZysCJeOhUqjRbUmCxQKwm0KgX+OJCNPw5kY9EdKRjRMRjjF24HYFNkAoDD2XoAQKXBjMIKA9oFeGD617sxPCkY9w6KE99fX22EXxPKmAvljzkl1Zj71zEAwPwVJ9A10hcrjlyEh1aFxXf1dlC9zC6pwrc7spgCJeOKIAjlFFUaWbafcU2gVNiqN5gKJeNqYEBCIM68MQ7peWVICPZs6c1hXCPUJ+VhBvAkpfQAIcQLwH5CyDoA71JKXwQAQsgjAOYBuJ9/zTZK6fhm2WJGi+Cl4xyikiojwn3dkFlYKT730YbT6BrpIz4WnDeByZ/vxP5zJQCA9NfGYOeZIuw8U4QuET7oExcAACitMjXphc+Xd+DuWfKfuGz5oYtYfuii+HhtWj7GdQmD1UrFgcaLd5wFYBslwGA0J56SrDMroWRcC6iVBFa+AIJl4BhXC0oFQadwn7pXZDCaiDotBkppLqX0AP93OYATACIopWWS1TwAuK5JY7R5gry0AIAzlyodoqZKBcH54iqXrxWcNwD490iu+Pe0r3bjWA6XoSupMsHXvel6zoT3KuEFSaRE+7tDqSD4ftc5fLs9C11fWYsL/PYzx41xJZGOqmCCSYxrAen9g6lQMhgMRuNo0NWTEBIDoAeAPfzj+YSQCwBmgMvACfQjhBwmhKwihHRqom1ltCAD4gPEv+OD5Jmyc0WV+GD9KdmyVY8OwpyxSQ7v89Rvh2WPMwsrQSmFvtoI32YooXTGranRsFgpdmUW4dV/01BhMOPLrWcAAOl5XFziu3tSm2xbGAxXSPs+hSAJg3E1I3XaWAaOwWAwGke9HThCiCeAPwA8JmTfKKUvUEqjACwD8DC/6gEA7Sil3QAsBPCXi/ebTQjZRwjZd+nSpcv5DowrQICnFt2iuEbdoR2CxeWvTuyEkioTdmQUydbvGOaNGX2iUZcGzCM/HcRt3+yByULFssemwNfNuTM4smMIbukdhbnXd5Qt33CiAOU1JhzPKcPswXEYkhjUZNvCYLhCKE0GgN4x/i24JQzGlUGqPMl64BgMBqNx1MuBI4SowTlvyyilfzpZ5UcAkwGAUlpGKa3g/14JQE0ICbR/AaX0K0ppCqU0JSiIGcttge9npuLdKV3RPz4A9w6MxfCkYCSHeYvPb3xyCJ4YlYiv70gBwBmnR166Dj2jffHwsARxvYz5Y7Hu8cHiY8H5c9c2nQqlh9a5CMmiO1Pg56HBvYPisOTu3uLyXH0Nury8FkaLFX3jmCHNuDJISyilfaQMxtWKVDiKZeAYDAajcdRHhZIA+AbACUrpAsny9pTS0/zDCQDS+eWhAPIppZQQkgrOSSwCo83jrVNjakoUAGDu+GQAnLqku0aJUckhiAvyxCMj2ste46VT488HB8BipVh9PA8PDYuHSqlA+xAvPDI8Ae5aFSZ0C8eLfx1Df0mZ5uWiUiqgVBBYrLbWzMV39ZatMyAhEJN7RuLO/u2w60wR3lyVDgBIjW267WAwakMqYqJTM+VTxtWPWtoDx+bAMRgMRqOoT8pjAIDbARwlhBzilz0PYCYhpAO4MQLnYFOgnALgAUKIGUA1gFtobUO3GG0aD60KB14cVafxqVQQrH9iiGzZE9d1EP/+xs65agq0KoUoSvLdPakOZZFqpQLv39wNANAlwgc7zxQhNdZflhVhMJoTDw13rI3tHNrCW8JgXBmkWTeWgWMwGIzGUaelSindDsDZVXali/U/AfDJZW4Xow3R2jMHz45JqrOnjRDChEsYVxylgmDvCyOadAYig9GaUUtKKJkKJYPBYDQOlmpgXLUIeV83NTMSGK2XYC9dS28Cg3HFkJZNsgwcg8FgNA5m2TKuWig/mrC1ZwgZDAbjWkHqtHlo2LWZwWAwGgNz4BhXLYJ+iRszEhgMBqNVoObLJrUqhUyRksFgMBj1h109GVcvvAPHMnAMBoPROhBKKD2YWBSDwWA0GubAMa5ahBJKN+bAMRgMRqtAEDFxZ5URDAaD0WiYA8e4aqGshJLBYDBaFUIPHBvXwmAwGI2HOXCMqxYrZRk4BoPBaE0IJZQsA8dgMBiNhzlwjKsWYXo864FjMBiM1oEgYsJ64BgMBqPxMAeOcdXCSigZDAajdaFRcWaHmilQMhgMRqNhV1DGVY9OxQ5zBoPBaA3EBHoAAHL1NS28JQwGg9F2YZYt46qHZeAYDAajdZAc5g0AOF9U2cJbwmAwGG0X5sAxrloSQzwBADoVc+AYDAajNRDLZ+BGJYe08JYwGAxG24V1ETOuWn6c1Rcn88qh4GWrGQwGg9GyKBUE++eOhJdO3dKbwmAwGG0W5sAxrloCPbUITNC29GYwGAwGQ0KAJ7suMxgMxuXASigZDAaDwWAwGAwGo41AqKC13pIbQcglAOdaejucEAigsKU3glEnbD+1ftg+ahuw/dQ2YPup9cP2UduA7ae2wbW0n9pRSoPqWqlVOHCtFULIPkppSktvB6N22H5q/bB91DZg+6ltwPZT64fto7YB209tA7afHGEllAwGg8FgMBgMBoPRRmAOHIPBYDAYDAaDwWC0EZgDVztftfQGMOoF20+tH7aP2gZsP7UN2H5q/bB91DZg+6ltwPaTHawHjsFgMBgMBoPBYDDaCCwDx2AwGAwGg8FgMBhtBObAMRgMBoPBYDAYDEYbgTlwLiCEjCGEnCSEZBBC5rT09lyrEEKiCCGbCCEnCCHHCSGP8sv9CSHrCCGn+f/9+OWEEPIxv9+OEEJ6tuw3uLYghCgJIQcJIf/yj2MJIXv4/fQLIUTDL9fyjzP452NacruvFQghvoSQ3wkh6fw51Y+dS60PQsjj/PXuGCHkJ0KIjp1LLQ8h5FtCSAEh5JhkWYPPH0LInfz6pwkhd7bEd7lacbGP3uWveUcIIf8jhPhKnnuO30cnCSGjJcuZDdiMONtPkueeIoRQQkgg/5idS05gDpwTCCFKAJ8CGAsgGcCthJDklt2qaxYzgCcppR0B9AXwEL8v5gDYQCltD2AD/xjg9ll7/t9sAJ9f+U2+pnkUwAnJ47cBfMDvpxIAM/nlMwGUUEoTAHzAr8dofj4CsJpSmgSgG7h9xc6lVgQhJALAIwBSKKWdASgB3AJ2LrUGlgAYY7esQecPIcQfwEsA+gBIBfCS4PQxmoQlcNxH6wB0ppR2BXAKwHMAwNsStwDoxL/mMz4IyWzA5mcJHPcTCCFRAEYBOC9ZzM4lJzAHzjmpADIopZmUUiOAnwFMbOFtuiahlOZSSg/wf5eDMzgjwO2P7/jVvgMwif97IoCllGM3AF9CSNgV3uxrEkJIJIDrASziHxMAwwH8zq9iv5+E/fc7gBH8+oxmghDiDWAwgG8AgFJqpJSWgp1n67ueAAAgAElEQVRLrREVADdCiAqAO4BcsHOpxaGUbgVQbLe4oefPaADrKKXFlNIScM6FgyHLaBzO9hGldC2l1Mw/3A0gkv97IoCfKaUGSmkWgAxw9h+zAZsZF+cSwAWhngEgVVhk55ITmAPnnAgAFySPs/lljBaELw3qAWAPgBBKaS7AOXkAgvnV2L5rOT4Ed+G18o8DAJRKbpzSfSHuJ/55Pb8+o/mIA3AJwGK+zHURIcQD7FxqVVBKcwC8By4CnQvu3NgPdi61Vhp6/rDzqmW5B8Aq/m+2j1oRhJAJAHIopYftnmL7yQnMgXOOs+glm7fQghBCPAH8AeAxSmlZbas6Wcb2XTNDCBkPoIBSul+62MmqtB7PMZoHFYCeAD6nlPYAUAlbuZcz2D5qAfgSoIkAYgGEA/AAV0JkDzuXWjeu9gvbXy0EIeQFcG0Zy4RFTlZj+6gFIIS4A3gBwDxnTztZds3vJ+bAOScbQJTkcSSAiy20Ldc8hBA1OOdtGaX0T35xvlDOxf9fwC9n+65lGABgAiHkLLhyk+HgMnK+fBkYIN8X4n7in/eB83IKRtORDSCbUrqHf/w7OIeOnUuti5EAsiillyilJgB/AugPdi61Vhp6/rDzqgXgBS7GA5hBbQOQ2T5qPcSDC1od5u2ISAAHCCGhYPvJKcyBc85/ANrzql8acE2uf7fwNl2T8L0c3wA4QSldIHnqbwCC4tCdAJZLlt/Bqxb1BaAXylsYzQel9DlKaSSlNAbc+bKRUjoDwP+zd97hUZRdG79na3oPkNASilINvYMCiiC+NlBRUVREROyKAgoiCnY/eVXkFQsCUUARUelNeguh9xDSG+nZbLbP98fMMzszO7PZkAQCPL/r8jJsZndnszPPc8p9ztkGYDR/mPx7It/faP74GyZydjVgWTYPQCbDMDfzDw0FcAr0XmpoZADowzBMAL/+ke+J3ksNk5rePxsADGMYJpzPtg7jH6PUEwzDDAfwFoB7WJY1i371F4AxDNfJNR5ck4wDoDbgFYdl2eMsyzZiWTaOtyOyAHTj9y16Lymgq/6QGw+WZR0Mw7wA7kLQAviRZdmTV/m0blT6A3gcwHGGYY7wj00H8BGAFQzDjAdn8DzI/24tgLvAFSObATx1ZU+XIuMtAMsYhvkAwGHwDTT4/y9hGCYFXLZgzFU6vxuNFwEk8kZJKrj7QwN6LzUYWJbdzzDM7wCSwcm9DgP4DsAa0HvpqsIwzK8AbgMQxTBMFrgOeDXai1iWLWYY5n1wTgIAzGZZlmZM6wiV72gaACOATXx/n30syz7HsuxJhmFWgAuQOABMZlnWyb8OtQHrEaXviWXZH1QOp/eSAkxDCNRFRUWxcXFxV/s0KBQKhUKhUCgUCuWqcOjQoUKWZaOrO65BZODi4uKQlJR0tU+DQqFQKBQKhUKhUK4KDMOk+3IcrYHzkRPZZUi9ZLrap0GhUCgUCoVCoVBuYBpEBu5a4O6vdgEA0j4aeZXPhEKhUCgUCoVCodyo0AwchUKhUCgUCoVC8Yknn3wS77zzjk/HMgyDlJSUy3qfuLg4bN682esxc+fOxTPPPHNZr19fJCYmYtiwYfX6HtSBo1AoFAqFQqFQKALLli1D7969ERgYiEaNGqF3796YP38+GkLzQzHTp0/H999/79Oxs2bNwtixY+v5jIDHHnsMGzduFP5dGydWDerAUSgUCoVCoVAoFADA559/jpdffhlTpkxBXl4e8vPzsWDBAuzevRs2m+1qnx4F1IFT5WhmKZbs86kRDIVCoVAoFAqFcs1TVlaGmTNnYv78+Rg9ejSCg4PBMAy6du2KxMREGI1Gj+csXLgQbdq0QUREBO655x7k5ORIfr927Vq0atUKUVFRmDJlClwuFwDgwoULGDJkCCIjIxEVFYXHHnsMpaWlNTpfcVYtLS0NDMPg559/RosWLRAVFYU5c+YAANavX4+5c+di+fLlCAoKQkJCgvB5x48fj5iYGDRt2hTvvPMOnE4nAGDRokUYMGAA3njjDYSHhyM+Ph7r1q0T3nvRokVo1aoVgoODER8fj8TERMnzAGDQoEEAgISEBAQFBWH58uXo1KkT/v77b+F17HY7oqKicOTIEfgKdeBU2HKmADP+PNHgUsUUCoVCoVAoFEp9sHfvXlitVtx7770+Hb9161ZMmzYNK1asQG5uLlq2bIkxY8ZIjlm1ahWSkpKQnJyM1atX48cffwQAsCyLadOmIScnB6dPn0ZmZiZmzZpV68+wa9cunD17Flu2bMHs2bNx+vRpDB8+HNOnT8fDDz8Mk8mEo0ePAgDGjRsHnU6HlJQUHD58GBs3bpRIMvfv34+bb74ZhYWFePPNNzF+/HiwLIvKykq89NJLWLduHSoqKrBnzx506dLF41x27NgBADh69ChMJhMefvhhPPHEE1i6dKlwzNq1axETE6P4fDWoA6eCUcf9aWxO11U+EwqFQqFQKBQKpf4pLCxEVFQUdDp3o/p+/fohLCwM/v7+gkNCSExMxNNPP41u3brBaDTiww8/xN69e5GWliYc89ZbbyEiIgItWrTAK6+8gl9//RUA0KZNG9xxxx0wGo2Ijo7Ga6+9hu3bt9f6M7z77rvw9/dHQkICEhISBGdNTn5+PtatW4cvv/xSqPV79dVXsWzZMuGYli1bYsKECdBqtRg3bhxyc3ORn58PANBoNDhx4gSqqqoQExODjh07+nR+Y8eOxdq1a1FeXg4AWLJkCR5//PEafUbqwKlAHDirgzpwFAqFQqFQKJTrn8jISBQWFsLhcAiP7dmzB6WlpYiMjBTkj4ScnBy0bNlS+HdQUBAiIyORnZ0tPNa8eXPh55YtWwoSy4KCAowZMwZNmzZFSEgIxo4di8LCwlp/hiZNmgg/BwQEwGRSnuOcnp4Ou92OmJgYhIWFISwsDBMnTkRBQYHqawGAyWRCYGAgli9fjgULFiAmJgYjR47EmTNnfDq/2NhY9O/fHytXrkRpaSnWrVuHxx57rEafkTpwKggOnJ06cBQKhUKhUCiU65++ffvCaDRi9erVPh0fGxuL9HR3z4jKykoUFRWhadOmwmOZmZnCzxkZGYiNjQUATJs2DQzD4NixYygvL8fSpUvrtXSJYRjJv5s3bw6j0YjCwkKUlpaitLQU5eXlOHnypE+vd+edd2LTpk3Izc1Fu3btMGHCBJ/PZdy4cVi6dCl+++039O3bV/L38gXqwKlgoBJKCoVCoVAoFMoNRFhYGN599108//zz+P3332EymeByuXDkyBFUVlZ6HP/oo4/ip59+wpEjR2C1WjF9+nT07t0bcXFxwjGffvopSkpKkJmZiXnz5uHhhx8GAFRUVCAoKAhhYWHIzs7Gp59+Wq+frXHjxkhLSxOyiDExMRg2bBhef/11lJeXw+Vy4cKFCz7JOPPz8/HXX3+hsrISRqMRQUFB0Gq1qu+bmpoqeey+++5DcnIy5s2bhyeeeKLGn4U6cCoYddyXYLU7r/KZUCgUCoVCoVAoV4Y333wTX3zxBT755BM0atQIjRs3xsSJE/Hxxx+jX79+kmOHDh2K999/H6NGjUJMTAwuXLggqSEDgHvvvRfdu3dHly5dMHLkSIwfPx4AV6uWnJyM0NBQjBw5Eg888EC9fq4HH3wQACcT7datGwBg8eLFsNls6NChA8LDwzF69Gjk5uZW+1oulwuff/45YmNjERERge3bt2P+/PmKx86aNQvjxo1DWFgYVqxYAQDw9/fHqFGjcPHixcv63ExD6LLYo0cPNikp6WqfhoR1x3MxKTEZ618ZiHZNQhA3dQ0AIO2jkXX6PofSi5FeZMYD3ZrV6etSKBQKhUKhUCiUhsns2bNx7tw5SUdKhmEOsSzbo7rn6qo74EbFcIVq4EZ9uxcAqANHoVAoFAqFQqHcABQXF+OHH37AkiVLLuv5VEKpgiChlHWhtNSTpLIhZEIpFAqFQqFQKJSGxIgRIxAUFOTx39y5c6/2qV0WCxcuRPPmzTFixAhh0HdNoRk4FYQmJg4XXC63c9Vuxnoseqonbru5UZ2+X4XVgRA/vcfjyRklsNid6Nc6qk7fj0KhUCgUCoVCaeisW7fuap9CnTJhwoQadaxUgmbgVHDPgXPC4ZJmx/ZeKKrz9ys22RQff2D+Hjy6cH+dvx+FQqFQKBQKhUK59qAOnApGvSgDJ5M3ajWM0lMuCx3/WsVmZQeOQqFQKBQKhUKhUAjUgVPBoCUZOJdHBk5Xhw5cqD8nmyyppA4chUKhUCgUCoVC8U6tHDiGYX5kGKaAYZgTosciGIbZxDDMef7/4bU/zSuPUU+amDjhlDlwmjp04IL9uDLEIt6BS71kwvRVxz3ek0KhUCgUCoVCoVBqm4FbBGC47LGpALawLNsWwBb+39ccJANnc7g8nKm6zMAJ4wr4bpfPLT2EX/Zn4HxBRZ29hxLHs8pQZaNDyikUCoVCoVAolGuJWjlwLMvuAFAse/heAD/zP/8M4L7avMfVgtTAWRUcOK1Ggw/+OYUuszf69FpL9qWj55zNiqMCGHDOoNPJOXA23pEjDmRNOJFdhvUnqp8eX2q24T9f78Ibvx2t8XtQKBTKtYrF7kSFxX61T4NCoVAolFpRHzVwjVmWzQUA/v9122//CmHUqTtwOg2D73ddRKnZN0Ngxp8ncKnCCrtTXRZJ6uzIMQwjzfJZ7E6UVfN+d3+1C88tTa72fGy8s7j/Yt1306RQKJSGyugFe9B5lm+BNwqFQqFQGipXrYkJwzDPMgyTxDBM0qVLl67WaagibmLiZNVr4GoygNvudHk8Rvw04sAR58ohO/ah/+1Fgo8ZPyVYlsX6E7kSZ1Q+pJxCoVCuZ05klwOAZLYnhUKhUCjXGvXhwOUzDBMDAPz/C5QOYln2O5Zle7As2yM6OroeTqN2MAwDg07DNTFxqtfAVdmdMNscPr2mzYvD5JBJKOXZumNZZT69hxorkjLx3NJkLDuYAYeTZPuoA0e5PFYfycbJnNpdkxTK1SK/wnLF3mvPhUL8sOui4u8uFlYibuoaHMsqvWLnQ6FQKJRrn/pw4P4CMI7/eRyA1fXwHlcEo1bDNTGRZdnE6saZq0+iw8wNsNjdDUEmJybjrnk7PV7Pm8PkllDyGThX3TpXZ/NMAIBKq0PIwnlzKCkUNRxOF15edgT3fL37ap8KhVIjSOwts7jqir3nowv34/1/TikG+rae4eKbfyRnX7HzoVAoFMq1T23HCPwKYC+AmxmGyWIYZjyAjwDcwTDMeQB38P++JjHqNXwNnNTRmbn6pPDz74eyAADlVe76tDXHc3EqtxwuFwurw+3YEcliQbkFxfzYAOIbOmUOnLd6ucuhhB8UHhFoFJxFqiK6sdlzoRDrjlff9EZOamElANBRF5QGQ1mVHbd9ug0nsr1nhZuE+AEAskrMV+K0ALidxiMZnlk2IsFn6q6xMYVCoVBuAGrbhfIRlmVjWJbVsyzbjGXZH1iWLWJZdijLsm35/8u7VF4zGHVafoxA9cearJ7R1YtFlRJHjNS39Zq7Bd3e3wQAQnbP7pT+X14DVxOU6vLInDl/vdbDIaXcmDy6cD8mJVbf9EbOqRyujqhZuH9dnxKFclnsvVCEtCIz/rvlvOTxUznlyCtzyyVD/PUAgBIfG1DVBc0jAgAA5wtMqseQbsRfbDqHuKlrrsh5USgUCuXa5ao1MbkW4GrgXD7JGSssbgdOr+U245QCk8QRKzXbPGSLJIshd6octchuKD23hHfgHC5XrV6bcv1RVlUzYzaXN4gjAw31cToUymUjX9nu+u9O9Plwi/Bvf4MWAFDGKxKuBO66ZvV9hGTgiANKs9sUCoVC8QZ14Lxg1GlgtTvhS8KqXDRbyKjjjASL3SnJwI36di/G/XhA8jziHMolk2qbvS9dL5WeSySUDicrNDGhUADgfH7NhsaTa11eGyrGVwP0YmEl5qw5RbsCUq4I5DqradCiNphtnIzeprAuq91C4ppqCoVCoVDkUAfOCwadBjanbxm48ip3Bk7HZ+AsdqfHc/emSmevkV/LDV41J8sXw9ju8DyGvJ7TxdIMHAWAuzYnu7RmDR1IvafZqmxk/rI/A62nr1WtR8ovtwiG9KSlh7Bw50VcuKQuL6NQ6gqbs24cuOSMEuw879v4myregVNal12kBk72OHXgKDcaRSarcK9QKJTqoQ6cF7gMnOcgbyXEGTidhvuz/nMsF59uOOv1ecTBkztVDpfy+/rifClGenlxkd3l2ZSFcmNCLqWazgMkcuFKlfEZ5/iM3j/HPBukZBab0XvuFny7/QJ/DnzNZwMKKpRV2bHnQuHVPg1KPUAk7aW1dOAemL8Hj/9woNrjLHansB4rKSPIVS9vYmKhHYIpDZQNJ/PwyrLDdfJaLMti+Jc78PfRHHT/YDNGfbunTl6XQrkRoA6cF0gGzicHrkrswHG78c7zhdW2hyavLW9aYneyihu+2rmIpZVKGUNxt0sqobyx6fTuBsmYC7VxEmmFlaiweBq6JFhhtnqfgVil8Lu8cq5+bsvpfACAlg92NKSan8mJyXh04f4rKrOjXBkcV1hCKQ7skfX8t6RMxE1dg0KTVViXGZkHRzNwFEKRyXpZ3YLri4lLDuHPIzm1fh2L3Yn8civO5FXgtRVHAACncsu9PqfS6sCGk3m1fm8K5XqAOnBeMOq03CBvBeNyYNsoyb/FG7VW43tPaHcTE88MnFJWQv5YSkEF0osqJVk3JamO8Dsn26CMZcqVx2R1SDZKJQfuYFoxbvvsXzwv61JptjkE47fC6kCHmRuEjJvwevy1+PPedCRnlEh+RwzWggorDqUXC8EOpazx1eJMHvd5vDmnlIaPUr0wcaKulANXKZIZk2t88d50AMCeC0XIK+PkyzWRUC7Zm4aC8is3iJxydZmwOAmTEpOFRmQNhdrOkR37/X6hwZBGFMDo8cFmFJqsis+Z+sdxTFxyqMZ125RrG4vdiSm/HcWlCuXr4kaFOnBeECSUCoYAaUdNEG/UNXGQhAHeLqljZXeyiqME5I/d/sUO3Prpv7DY3Y8rSyjJublgF70PdeauL/48nI31J9wRSpvDVW3jGyUJJWm9fjijVNiobQ4XOszcgMOyeVbn86X1a+KN/YH5UkmMycoZzlklVRj17V4h2NEQMg7HskqRuD9d6CJbqTAahNIwEV/jeWUW2J0uxVmaRH0grln2lUPpJUgvqqzRc8RzQInzSO6Pl349jJ95Z07uwR28WIwnfzrgYSRfLKzEjNUn8eKvdSNhozR8Moq5mYV2XllzLr+ixg5MSkEFVh+p22HxlxvgOp9fgeNZZUhKdwf3xIHpQpNVtb70Aj+KQ2zvUK5/1hzLxW+HsvDRujNX+1QaFLqrfQINGXcTE09DINgo/dOJjWBfmp4QxGMExJu1w8kqGiBqDpfYAPbWrprLwLl/b7Y5EOynVz2ecm3xynJOipL20UgUV9rQ7f1NmHl3Bzw9IF71OUqRVLI5m6wOdJ61ASNviVGVA/vppXEgb5FZ8bgNwN1IpSE4cPd8vRsA0DyCm28nP1dKw4UEpapsTvT5cAvG9GyOGXd38DiOrM1ix8pXSH1O2kcjfX6O+F4gyghv6zNh1t+nAADnCyrQMTZUeNzEX5P02rzxIHv/sP/bAcC367CgwgKLzYXbv+Cec2+XpnV2PpU2J8ICav68j9efEUbREOR2jUZlsj05Tk3l5HSxMFkcCA2gNs31BGkM6E2p43Sx+Gn3RYzt0xJ+eu2VOrWrCs3AeYFk4EjHvF+e6Y1wfmEIMEgduINpxcjhu/kpOV5quGvgWMlmv+5ELvbJOlYC6s0exAawUo0bCVDLxwjQrk/XLyRyuzI5CwDwzbYU7E7xbM5hcTgxZ80piRTSLLourA6Xh/MWHWwUftZrL9+BI5dila3hRFT1fF2eiWbgrhns/DVHGuv8cyxX4ii5Z7Gxkn+L+WrLeXz77wXF17/cMRcSB85JnEclZYVabbP03+SaJPPsWJb1abQM5dpHfs2qfe9lVXYhAPfR2jOYlHhI+N3ulELBTqktZi/ro9PFqu4D5RYH8quRAL+87IiK/cO9pkvls8/++yQSZm+8rAANpeFi1HF7ss3L97rqcDY+WHMaX29NuVKnddWhDpwX5Bm4EH+9EPnx02tgEBmuKQUm9PtoKwBPmaMaLOuWTTpcLKxO98W583yhokxGHKkSL+Bio0ApSkEWPKesu6WZOnDXLYW8XpxEoz7dcBaPfb/f47jUSyYs3HlRUu/m7boY3b0Z3rzzZuHf8oyCtyiZhwPHb8iTf0nGhMVJqs/zhsvFIm7qGnyx6ZzPz+n34RZM/iVZ8XfkHjfRLMc1AzHsiLTKZHVgpSjoQAJVDpET5XC6JLVkn286h4/Xn1E0Li+3Zk5pXVa6P+xOl2IwTX5sKT/Pk2S946etVb2OL5eCcgvu/WY3csvqxtCn1A1yx19t/EvCextxB59xKzHbkF/urht67Pv96PfRVp+ywGoQu8dsc+J8fgUmLknyUFBMWnoIN72zTvH5FrsTRT7U8y07kOHxGLHF1Donk+YqNDB9fUE6u3tLjlTx1yCZeXwjQB04Lxh1Wn6QN3fRcGlcRvgdqZWRY/cxWrtkX7qwIDm8RKzEiDNwYh349rNuzThZnEfM24lvtqVIHrM4XBLjnDpw1w/yTYsYYEadxmutI9ngdSJZiry+IUwkSXlmYDxuaRYm/Fu+mSpFPx1OF37ek+axuIozD5tO5Xs870R2WbW1FsS4nr/N98hbTpkFaxTGHABuB66CZuCuGch8N3Hn0/f/OSX8bOIfF6/NP+6+iF5zt2CPLCt9Ns+zvkitqUK156WQgVMynnNKq9B+5nqPx+WzFkvM3LXuL5IIrT3urnk9l1+ByYnJaD197WWdLwD8digLRzNLsWhP2mW/BqXukdsH6UVm1WOJc2exuyQN1ghKEtyUAhOe+ukAjmSWevxODJGzVdoceO/vU9hwMt8jW7ZRYS2f9sdxvL3qOMw2p+oAezHn8j1ng5L9Qs0BJWt3ld2JM3nlyCxW/xtRrh3I92p3coq4GX+ewFHZdarlZbc3Ul8H6sB5wajTwOpwN/3QaRghk2XUa6DXef75HE6Xzxm4matPCj/vOHcJr/L1S94Qv7a4xfuctaeFn+38OZzOLRfm0JGF77sdqXj9t6PCsVX26o1Uu9OFrBK6ENYlb/1+DFvPeG5ytUHuHOXwdQZaDeM1m0S+W71Wg0PpJTiYVuzh2Iudu4hAAxqJJJRn8iqQUuDebJUCEcuTMvHuXyfx3Y5UyePeIsFmmwP3z9+NxH2ekVgxJJprULgfCS4Xizd/P4pD6cVeX0vM1W5isvVMPn7Z7/2zUzjIulilUktJ5F4Op0vIXs1dyxXEbzyVL1EzKElnL6k4cC4Xi6wSMzaqtDYnwQ2thvEq37xwSbk5yt7UQsmQe3KPG/VaDwndrvOFGPZ/O7DmeG6tjBjSoKucjtFoUMgDZb7UDVsdTsXrTfzcggoL4qauwcQlSdh29hJ2nvM+oJ7sBWarU5Dyih1CNZXQrwcykLg/Q3I9eyO7tApn8sqxWeQMktdWC3aT2jmzzYnhX+7EwE+2+fRelIaN0OzP6cK+1CIs2Zfu0dCEXJcNaaZsfUMdOC8YdBo4XKzgKAUadYLBadRpPGp/AKDDuxtwudfPwbSSao8RX5zlKka5w8l6SBTUGqtUWqvfBGauPoEBH29TnAlWUzKLzTd8e3aWZbE8KRNPL0ry2dn3BbkDRySU5VV2xSiscJyJe97x7DKM+nYPHlywV+KQiY8BgPAAgyQj998t53H7F9uFzVppcy01u99fXD/nbbG9VGGF3ckit8yCt1cdl3TXFFPEG9dmmxMH05QdtEsmK1YkZeGpnw5WWx9BgjTE6R2/6CAmJ9atTM0Xnl6UhOmrjl/x921onM2rwH6FehgxZF1Wk05Z7Jx03MUCgbL6ZbPNIQlYKAU7xNe/GJvThdHf7sWzSw4p1skRCWSgQevRhVJ6fsrn/c22Cxj6+Xbh32Ipp1xOJDeMvTlxfx7OxlxR0E8MiWRfTqdOSn3AN3CQXTfif688lIWE9zZ67Cdq3RrFzuC+VG7NJEGEympUOSRQZrY7Ecg7cGI5p1iCrNgR20f7yGLnnLBnRNJ6RzUOHDHiqYTy+sIhWju38x1K28UES44hWTpv657LdX3VDFMHzgtGHbc4vb3qBAAgyKgTLg6jTiupgSPUdjZKdYgvTjWHyuZ0oUCke2dZ5Y6WgG8SSmI4K20GLheLd/48jpM5ZdW+DgAM/GQbnvzpIADus/x1NAcuF4vZf5/CsP/bXs2zrw/Ef/M2b68TWvbXljKRk9R51gbBmSk222rctU5t3krr6EDotRqPwcMABOmNPFI8+LN/hdodAIgKMmLhEz0AeG60JqsDM/48geJKmyBbO5tfjsT9GXhu6SEoUSwKVjy4YC/ipq7BXfN24pVl7hpSIqXRazWSv4XSPUS+H5KJ2XKmAGsa0CDdGwWWZXE4owR3frkDD3+3z+uxZH1TM1ir7E7BgQowSjuUmW1OlIoco7Iqu4czVqhyP9idLmE4falCxorsB0FGnfCzUtDC12wXOc5ic1ZrpHp7zTd+O4rvdqQKGen/bb+Aw/zMRpJ5poPsGxY2p0tyXYqdo1l/nURZld0jqKsWrBIHDJyy4G51ygMSuP5h10Wk8EGDzGIzWJbFhpN5kkCixe7C0cxSFFTUfI9TqnMj56pWZ02M+CtZGnIovQSP/7C/VnWFFO/YhQwcK9g5WpkNwpfJeXXges3dgsGf/Vsv53g1oA6cFwJlG32gQSdsvlwGzveB3bXBKJKGOSQOnPJCa3e6JAtmjw82q762LxJKspAqLVAFFVYs3ZeBp3inzBvk+QcuckbDT7sv4qVfD2PV4Wz8uPuioub9ekQu0couNWPd8Vz8dTTH4/V+Ys8AACAASURBVFiWZX2SypzJK5dE4CssDqTxNRKllXZVZ99fpd2ukvE2cVArbHn9NuHfPz3VU/L7NH5GlnxzvVhYifUiiVmwUSfI2OR/i/nbUrBkXzp+P5SJSxWcIbA7hcu+NAv3VzzXQoWC+FO55UJBOwBk8jJRP71WYti+uvyIhyFM7qua1sAdzihBkkoGkFBQbqFDmAG88Esynhd1xzueVebxPaw5nov7RXMEbQ4Xvt+ZiripazwcLCG7pWJEmW0OYe30zMA5JQGGOWtPo+cc6ZoproETG8U2h0vISBRXSoNmb686jjd4uTpRb6hFf6vLehCIRNTicKrKRQkLtl9Q7TjYIoLr/34ql6v3+3DdGeFvTa77ulBc3MikFFQIxmZ2aRV6fLAJyRnVq2zUsDlc0qY4op9JOUeRTOqr1uzjp90XhWtRHtwla7LF7sRaPnBVZLJi6Of/IqXAJNTAHc0sxYnscgCcwmLDyXxMXHIIn/FlGwBgtTtx7ze70WvOlpp/YBHkfneIZMh5ZRaP4Kfbgbty2ePXVhzBzvOFyCpRvtf2pxYJCpgT2WVeu4BeT9mhumDPhUJ0e38TcoUO7y7h+iRr/Rcbz2LV4SxhTIs3B67QZBXsousB6sB5IVQ2rFujYYRUrkFFQlkfvHL7TcLP4miZWqSMc+DcC7m3jk//HM2tttCXbALe5oWp3TTlFrvgTMrPlyx4SpHrcosdG07mXZcLmtzx1mk0mJSYjJf4rqNVNifipq7B6iPZ+HlPGtrNWF9tBHP4lzsxQ1RTKXk/q0M1gxFgUHbglJo2BMpmHw5oEyX59+6UIvx7tkDxOsksdm9awX46Ibstj5TuuVDEn5cORZXSc2gapuzAFavI2whOF4tXl3OGtF7LSKLUm08XYMm+NMnxxHA1WRw1uv7un78Hoxfs9XpMr7lb0Gtu7YyZ64F/juUKzTdKKm34z9e78MbvRyXHyGW8N72zDh+s4WR/lTIDrbrot8XuFNZu+XVstjkkEl/AvWayLIub3l6H+aLxAuL71+5khXuoyGRDVokZ284WIH7aWiSK6hc5B46VZIsvB+LkWuwuDyNVfq3+b0eqMLtOjpM/1mx1eMjuTLIAxp4LhZL3Kq60XfX60GuB27/Ygfvnc7Mlj2eVodBkwxsrjlbzLA4lBYTN4ZI47eJgBVED5YmCQ2uP56oG/1YkZWHHea55j3yEhcnqwJHMUry24gieT0zGofQSrDuRhwuXKvHDrouKyqOsErOgkDiW5VbjFKhkrmvKqyuOIKvE7JZQOl3o8+EW9PlQupYSB06tvKQ+IGF8pb0iv9yCh7/bJ6i47v5ql9Ct3Gxz4PnEQ0IN+tdbzyN+2tprZgTCyZwybK+mXvJyYVkWVTYnXvzlMIorbTiWzV1TNqdLWHuInfHfrSl4dflRWPn7welikVZYic2n8mFzuDDjzxP492yB5PXVGphda1AHzgsh/p7DIImfEuyn8+rAqWU2Loch7RrhgW7cAE7xYqsWbbY7WUFC+b/Hu3t97S1nCiQ1FkoQ50wpmkeMGaeKoTvok21C9E2ebSHnb1DIZP646yImLjkk6bB2vaD2dyAk8bKml5cdwSd8NDOzuKpenFm1WWdKktsgmeGr0zAQz1P9/VAWnvzpIGwOF1pFBaq+Z5CfTpJVFnMsi5NhvvPnCRy8KM1mqV3vckdPjtgYSisyY/nBTMnvy6sckkJ5co+brA5JFk4cpDBZHT7LhmvL9RjEEEOyvcnpJSiosAjZAW8fW37dyo3Q1++4SfJvTkLJHSMPWphtTkXH6qfdFzH0i+0e153UgXMJGb3iShsGfLxNUY0Q7Mdl4HJKa5d9tTjctX5DZOu2WcFYlw9MFs5bmJvnmckjBlJ5lQOZxWY8unC/YIACQLf3NwnDpJX4cvM57OUDMRMWJymOw7lRSC0kzWlY2b/VySuzoOeczfhwnbRG0SrLupqtTrzwSzJSCiqELLA4I/V8YrJq7SYAQTIrd/I2ncrHfd/sFvbecotdCBwcziiB1eFC95bh+O25vsJzjoqcNnHA2JfPS9Aw3KxdJVYfycGAj7cJzo1aqQpx4MSS561n8oVMIvda2XVWtgC4G6eI5dukMcxXW88DgJBBEnM+34S1x/Owh1eY/Lw3HQCQX8adO6dEyaqz86xrRv53F8b9eKBeXvu7HaloP3O9cC2RJlSSDJxKTajDxeLJnw7gmcVJ+O+W81iyL92jeVpdj165WlAHzgvyDJyYEH+9YhdKQkSgoc7OIzrYiId7NAcglVCqySNsDk5CGRFokDSMUMPb3C7568ohxozaoFtxZFveMIUYEWJHmBirZEP655inrPBaR94kQSwdszlceO9vd/tzkqEa9e0exE9bq9jiuTbae7VrSAl5QINhGCGTJqagwooBbaMkG7yYYD+dMJtOjvgyEksgAfW5bN4yzCWVNqQWcpmcdk24oudfZfOFdqYUSgrlxe9XInptsfRy0tJDGPnfXYr3xOoj2R6P1ZQzeeXCz/HT1irORLoeYFlWcOA0DIMnfjiA9/4+hZXJ2TiVW676PHkWW76GhcnW3yqbS2jkpCShVJr99t7fp5Aq6g5J1qRskVRqwfYLQgMHkh1UItCgg83pQk4tZquxLAuLzS2hlKOWFft4/RmkFVbiqZ8OCMYP+fuZrQ4PB44cU26xC9/N6dxySQMAtRlkAPDl5vN4ZCGX8d90Kh9/K0jDr3fka3JNarKI2uJ/26VG59rjuejPZ28ALtD3z7FcTPn9mFDOURPHhDQtqa4+utRsEzLeZ/IqkFVShZaRAegZF4E/J/fHTY2DVJ+bKmusEx4g3UPWvTwQj/dpyf/OgH4yVYccsj+IJc/iABepi/paNFLm6UVJwozT3LIqvLzsCF5ZzgUVluxNw7OLk2qXUeaDmOJylKOZnEO7lO+g3FRB/k/ek3S4JX+brFIuIzfjzxOCBPt6p6DcgvP57vEtcse1mLcj7Q4WJt6OtMruMbuQgXMJQVtyHVyvnSnrzYFjGCaNYZjjDMMcYRjm8ib0XmW8OnB+esXMkS/PrSlh/npBdy6+ENUM9083nEXi/gxEBRk8siZq+NqSWA6Rm1VYHapOHEEt8yR24EiUnLzW9ZZ8sDqcOJsvnTMlzhCdzi33kI6JeenXwx6SJ6XNh3SJjA31u+xzFUsWOzcNxbCOjT2OUasD1Wk0CPZTvvaCjHrVDJw3iittirJaed2HmN4fbsGjC7nh5S8MaaMYWFGKjgLcNS3OzIiL80mDGCVD+uVl7nEgFRY7dp5Xl5n8cyxHOP+4qWuEurDhX+6UHDdvy3nV1wDUB0FfSfp9uKXGw9gX703H239ynTa1GgZn+Blsb/x2VHEuIEFenyXPwEUESL/npPRioV7HQ0JpdSCvzFLtNdm3VSQAbtYaQSyT9ObU+PNdKGsT+X904X4c4K87eYOS/alFqh2Fv/33Aqb+cQzbzl7CxpN5qLI5hcxypawZSn65RWjYY3O4JFLqVtPXSoJLStT1aJRrFfl+WhMHTv49kl4Nm09LZWBkuz2cUSo4Y3k1qK8trLBi65n8amsdX11+FBdlmTQio+zSPAzNwwNUn/vlZum61Ux2bLsmwcIogrAA322mzzaeE34WyyVJBk5NqpzEd/ouqLDicEYJZqw+iY2n8nE8W1lNUWa2Y2U1WTCyAxaUW4XvXb5HVdmcHvYRsYdITTSxGdVq6RoqdaEQmbA4CXf83w4s2ZeOQpMV8h5ppL640GSFycpdr2oZOJvT5dFkLbukyuP460HZUt8ZuMEsy3ZhWbZHPb9PveA9A+cpoZw6oh0SmnMDjoP8POVmBNLAwVc0GkaYRC+ugVOTEZCoqdnmVK1xkuPLnDdvGTiWBd5f431zlzsaQsSEFWcV3TUegLul+/XC8C93SgYMA+4GG4DyEGExGcVmtHl7neQ4eQT11wl98MyAeADwKQOrRh/eYJ08uDX+fnEAQvw87we1b6eo0qp4PMDXwNXwHuBe04aJSw7hZI40M1NcaZPcX2LE12ywnx7tZa2HAfU6DZPVLnHaxLWaJNJLMiLyYdDEyR734wE8/gOX+ZAbdRcumfDCL4cl8jQ1yTDJPi4/mIEDF4vxW1KmZAOasDhJcRD0lSSnzOLV6SKIz/vdv04KjlVNjE95jYs4mKXVMB7Bgz+SswXnUt6cKqfMgmNZZWgS6qdaZwkAPePCEeqvx2kvmUE1DFoN7A7Wp86OSvuDy8Vir2iUgtxAffi7fV4Hb5P9Y+PJfMl18uuBDGw86f7Otp2ROgmkPppk6sXvcSi9BO1mrBMcWqeLxdOLrslYbZ0jz2qKawjF13+Zmav1Joz5bq+QvZQfK0cpcKeUSRajFa2Te1OL8PSiJCzmpXveOCCTs4ttHzU1hZi372qPqCAjOsSEAADGD4jHzjcH8yoO7rXCAy5PtXRJVB+uVdkHAGD236cEOW/qpUpJg6QLl0yotDrw5eZzkuzeqyuO4PXfOAf28R/2Szoby5mUmIz7vuFqHuUOe1mV3VOqbJNm4IL5/TJb5sAVmqySDtMNDfK5XC7W67gib2Tz0vIZf55Ajw82ezS0I3XuDhcr1NPbHC7Juk/2+t0pRZJkQXiAHnnlFo+1V6lp3LUGlVB6oboMnNyB69sqEu15mZY8mvvdE+5atDD/mi9UZGGS1MBVI38rNFl9zsBl+hD1Eaesd6cUYt3xXMkN+9PuNADcprPldD52iApcWZb12HBsfNegRfzzALehQIzdhtyad3dKIX7ZnyFsslklZonWXk6p2eYRyQQ4p4xwPLsM/nqtRwRKzo+7Lgo/yx24vq0jhWtXHkgQY9BpEML/vj2/sYq5k8+4dW4apvoaJKoYKctsZRabPYzoqCDuGJvDBT8F6aWvyB2hIpMND/Vsjif6tvT6vACDFlFBvjm0Bp0GJosDxZXS9vIEDZk3xJ/Lo9/vlzyfOIXJGZzk1Wx1SJ7/zbYUnOE7AFodzmqjgRVWB+75ehfeWnkcD/1vL6b8fgz/nnXfX+KfGwouF4tvtqVIuq7ZnS5VJ68mI1jk17y4ZtNPp/FqVAbwEsqIQAOeHdQKAHAgrRjhAQZsfHUQ3hreTvF5nZuFoUVEANIVmj6pBRAIeh2DvHILLhZWeh04DwAMPF9LnumtqSKIrKPrFQaOzxHNgyNy5Ed7twDgXptKzZ4ZjVHf7oHF7sI/R3NwNq8CfyRLMxXia7quuwIWVFiuWA2qN2wOl+IsT4vN/digT7YJQ+MBqWz9leWHMXHJIfyWlIlTOeXCTDbC2fwK1VmhJQpGfUY1DckaKQT0fCmhkGd8dSLlhS/BuAmDWuHg20MxtH0jAECPluFozndCVVNqqEH2RiLdFI9M8iaV+3H3RdXfvb3qBDq+uwFfbj6PqSvdszdJZi6z2Iyd5ws9ZP3c+bj/FkRBIJ/JquTAESkgOX+y/pWYbRK1U48PNiNh9kbVc7/akLX4q60puGXWRsW1glBpdUhqyTedysf6E7mCbaD6PIUMtremPgDw0tC2GNg2Cq/cfhOcLtZDzvvysiPVqsYaOvXpwLEANjIMc4hhmGfr8X3qDbGDdkcHqXzMT6/1cOD0WndnysYhUunaoLbRmHl3BwCcUa3WEp17HfeCMIx/X7Jgii/+6gyegW2jBWNFCbHNIY/6KGEVFek+9v1+TEpM9oiE/3U0B/HT1mL8z0l4QlTganW4sEzUPOJoZqlgVIhrXcjmZhWlw+uSzGIzOsxc71WmqMa93+zGCtFneG3FEUxfdVzYdO/+aheeT0wWFoUhn/2LsSLDPr9cOdOTJerQuGRfOmJC/RRMOCkRogVPSQJDonniep+PR3WWHBPip8Pm127F5tcGIfGZ3lg5qR+2vn6r8PthHZtg55uDMbxTE9XzINlTMlTzdn6Djgg0St573pgumHRbGwCcc3M5GTiCvLFIidmGqECDhzROjr9ei8hAzoCpLgseFxmAErMdyw+6JXLiAIRO5sDJyS6twjZR5yuzzSlx4D7dcFbI5GSXVgmjErwh7u4GKMuEGtKGlLg/HZ9uOItP1ruN1y83n8OzS5Tn+dUEeT2kONATFxXotYlU20ac4adhGIlz2aV5GAKNOjQO4a6RyEAD/n3jNgy6KRoA0CEmBKH+esW/e1g12QPS6GDV4exqG1x1bcEFTFpHuxsB1Xaula+1d/nlFoT46XBHe27fSedbbis5CwS9VoM7v9yBKb8fk72WqBOyQjONrBIzZq4+oeqgeOP2z7dj5H931fh5dU3nWRtw91ee5yFeF+ROVVJaibCPk7/vlN+P4a7/SmXTAKfYUPvblykYytWN4lFy4MT0bxOJri3CcGD6UMy4uwOm38UFM+QGtNj2kAdL2seE4OWhbT1em2EYDOvYBJtfG4QRnWOEx4nSQ03GKObFIW2En1tFBXmcW110cDxX4Fa3kHVGHJiVB9vke3WZ2e7xnZWa7RKpsjigTTJwJGsk3ysIa47lovfczTXuoHg591dNeJTPGP9xmAvgqM2QBYCO727AFFFd34TFSXhuaTIuXDLh/q5Na/S+NqdLEsyV28OvDG2LJeN7I55vqCaX8wJAr7nqI7auBerTgevPsmw3ACMATGYYZpD4lwzDPMswTBLDMEmXLjW86DFh7v2dsXpyf2HwsBiDznOQIHHg2seEYNmzfYTfaUUd+4KMOmyfMhh7pw1BqL8ePePCJa9Dsie/PNMb3/HvSwxGuw81cADwzsj2mDemi9doLxlPwDBc1z+lhUGSoubnGIkbaRDngTRZSdynLMcoMdskLWfv/Wa3olzQSuYc2b13m7pcVh3OhtnmxKrDNevu5HByA0nfXOk2UoiB8sjCfTiUXiw0bDHx0ebUwkrsEknr1Gq15Bt8sL9eMcIudjrENT5KnSTJdahhGBx4eyjOzxmBfq2lBeJjerZAoxA/tGkUjIhAA7q3DEeraGlBOomSqkHO88HuXAbsg/s64+ene+GzB28RslQAcG+XphjVrSl6xUfguVtbec3ALX+2Dybd1hqAcmZDPojbxXIGdCAvFx7QJkpRCudv0CIqmPu7yRtZyCGBj4Np7rlNL/xyGLv41tskI26xS2d73X0LZ5gs3Zcu6Ub44+6LHpsyCSKcyzdh7A9uR99XI0RpdIdSTd7VILPYLIy1EDs3Z/O8G5hqga3xvCSYUGGxw+ZwCX8Dh0haftvN0YoO+ucPJmDB2O7o3pJbb7UatwR45aS+mMEH2Mh376fXIi4qEN893h0bXx2E6GAjgv10Kg6cVK3RRBbAe6hHc+H6lDvZcZHSe2z+Y92wZHwvLBjrVm2YVerb5NzftalgdIsRj/HwRl6ZBU1C/RDiz/0NyGxHb3y+6Zzi4+IW79P+OI6cUncn3a1n8jHmu31YvDdd0sEQ4KLys/46CYvdqVpXeCXaxO+5UIh9qUXu7nZOFxLe24jfktxBPKvDJWRdxHib0Tf2h/34ZAMX1PAm+fOGXssojt+pjuhg7zXRz93aGque749GIX4YPyAeY3q1UDxOvOfI1/J1Lw/EqG7NVN+jTSOpjL1TbCgCDFpMufNm1edMufNmpH00Eq8Pu1moi2/C13fL5zI+0K2pUK/qC3K1S+qlSny24Sxe/PWw8D2K1USXZPu4RvYCCbM3SmTWCc1CUWK2SYIwVoe7HX5BuRUsywp/0yqbU1EyufFUHvLLrTWyXX5LykSbt9fVuuumw+lCUlox9lwolDT2ArhmON/tuCAEI8h1mVlsRu+5m4V9jtiSfxzmmnyJ/0Z2J+uR9KgOm8MlSSpUWh2ICjJi55uD8cfz/QT7gzSQEUvQCUpN2K4l6s2BY1k2h/9/AYBVAHrJfv8dy7I9WJbtER0dXV+nUWse7d1CqGuTI8/AaRlGyJ7ZnS4hsgRw0acoPvr1QLem0GoYxIT64+i7wzCoLff5O8aG4LlbWwsyL3GWQqtQAyfvwiMmoXmY1+wbwKWY0z4aiY6xnHzurZXHPI4Rb0RWuxMHLhYLOm+AM6ZjQv2EqLFaV0OldtZKNS+ChFJl9pzVoRyd8hWyaMqzNRUWu1eHWK3dPuGrre6uV3J5F3FG5Qs/Qf53CJFJSpqE+GHr67di79ShwmNix1ypi5heaHrjQqNgP+i1GkkXyZeGtMGrslbrlwMxPoP9dJh9byc0CfXDrTdFS4z2XnERADhDfsXEvmgZGQiNhsHhGXcIx3zzaDfh596tIvHikDaICjLgo1G3CI/PG9MFgDT7Qj57kGisx203R+PrR7sCgCSqF2DQIjaUW8yr+z5bioxqccaEzIwjhleVzSl5rfYxIWgREYDVMqnN4r3pHhIzJSkeoJwNf7C7p0FEstNih+BKNzK5cMkEi11aoO9ysRKjlswzfGjBXmw+7b1GrmWkZ8CgZWQAZtzdAalz78KZ94dDw3Df+03vrMMTP3KOL1knHu7RHOMHtFKUUI7q3gzDOzURvjstw2DWfzrik1G3oFuLcOFxUjdMauX89Frc1JgzOkP8lDNwJNDQKNiIh3o0Exx5QqemoXj/vk4AALvLJbl/iYEx+OZo/PhkD4QFGDCwbTTaNg7G/Me4+8JsV75e5Q7A/z3cBc8Oaq14rC/kl1vQOMQPbaKDodMw1WZ02jRS70AoZldKIfp9tBWjF+xFblkVnl6UJDRrIJ/B6WLhcLowYXESFu1JQ48PNqP/R1slqge704WP14vliPV3vT+6cD/GfLcPCe9x8rUSM9eVkzRykctCt50pwMIdqcguraq2E+3/tqfirnk7PYx/X4kINFxWVlZJqrbmpQHCz3GR0vEvQSo2hHjPUVJTiAMoI7woOABOjn5q9nA8M5CTM3/2YAK+fcy9H2x9/VY8f5vnNR1DHDiREW9zuGDUafDZQwmq77f46V74c3J/rH1pIJ7o2xK73hqCIe0aSY75eluKpHtqjsh+eX3FUfT7cIuQvVf6CsUy8SHtGsPqcEnm7ZZb7G6Hze5Epc0p2CbHs8skdZAEMoB674Uij/2rpNKGWz/dhhOyLOa3/PzK6ubIVsfqIzkYvWAvHl24HxMWJ3lkIcUSYZJtX7IvHfnlVvx1NAc2h0tSn1lQYcGkpVIlhrwMo2+rSLSKChRGEsn7OcgllKVVdhi0DJpHBKBbC3dSxFtdc22UQA2Bejl7hmECGYYJJj8DGAbghPdnXRvM+k8HITtADMa+rSLx/G2t0aZRkPCYUuZoRKcY7JgyGE/0jZM83oiX7MSG+WPqiHbChSq+R3Q1rIELq0EXzO+f6AkAiu2ALTapxljuiFVY7Ajx0wsG06kc5QL/B+YrD5SVI0go+RtT7hBOWposbKi+wrKs4JyRwmF5BqbzrI148RfPAuWyKjsyi80or5LPnZKelzgqVWGxSxa4C7z2+s/DvrWXly9UPeMj0Co6COGiBU783c9Y7b61iPNPui02EXWhDBY5rc8PbqMa/V31fD/semuwT+c6vCO3OauVcJ15fzh+maA82yc80ID7uzbFwid6YCRv8JLzDjDokPTOHbivSywALsNxOy/rIl2oAPf3GWTUYUyvFlgwtjvGD4hH1xbhOPvBcEGCDAABerd0WX5d3dIsVPLvmXd3wFB+UxdnV4jRRJqYPP7DfnSe5b4e/fVajO2jHLX+9YB0/lyayoykwxmeoyJeUpAkkU1cXG9RU6OuNrVJTheLoZ9vxzM/J0n+niabQ/hsGoYzfN/966TQQdEb8vvsmQHx2D6FuxY1GgZ+ei389VrheyfSU5PVgZ5x4fh49C2ICDT4tDH7G7SIDjbioZ7NJXUsZC3zVzBe1ep1bE4XDr1zO3ZPHYJPRifgmYGtkNA8DK/dcRNe4wMl5DpyOFk0442KVtGBWDC2Oz5/MAHzH+uOIe2kUn3yHCUJIuCWg9YVR7PK0D4mBKEBekkAUo0WfIaeyE6r41B6CUbMk0oFv/03BS4Xi4f+txdd398kPE6u7zdXHkM6nwlcezxXMEoBd8fGMrMdi/j5gXUNMRKJ407WTXmg5alFBzFn7Wk8+O0eoR7cG6dyy4URJzWlujpKNZTq+jvGute+WJmxq1HZI8RBNHEGbtsbt3mc35d84M1XRndvJpFYxob5e3QVBMQZOFFQ2+GCQatB0zB/pMwZITTzIoy8JQaDbopGl+Zh6BAbgtn3dkLTMH/838Pq5yjOJmoYYOf5QuSUWbCFb/jjbRRPiJ8O3Vpywe1jIueqzGyXSPILyi3C9Z5RbFac35daYEKnpiGotDmx4mAmzudX4P75u5FbVoVdKYVILzLja1EgmWVZYQ5fbXsJkGDLxFtbISm9xGtgh9RzEoWVUafB5F+SMeDjbcIxveZsQVqRWeI4yztEz3ukC7a+cZsQ4BKrcVpEBHhIKEsqbYr3hTiYR5y5m/mAXG1q8RsC9eV+Ngawi2GYowAOAFjDsuzVbZFWRzzZP14ocifOWlxUIN4c3g4Mw+B+fuA2MUg3vzYIX/KLg1bDoIVChJl0CiRyRNJWV2yM1bQGriZjDJqE+mFou0aKC5E0A+fyiD5fqrDyc714x7WaheKV2z0NUTGChFKlBm4rv2jKddbeNu7E/Rlo+/Y6XKqwChu+OKtCFgGlAv9nFydh4CfbUCgbFi3PAoplQBUWh0SXn1NqQVphJbbJGk0cnTlM8XzFH+XXCX3w4QPu2jUi5SVy1jbT16LC4kCbRkE48PZQbOFr2HrEReCrR7ri7bs6CM8Vb8bemjx0bRHu0e5ZjZeGtsVXj3T1iGCK30fnZeD9/z3cRagvPTzjDsEAIOi0Gnz2YAL+mNQPAQauuYvYeCA/Bxl1CPXXY3inJsJmb9RphVpAAPAzaBTn8QBc5Hn7FPd7RwQaMIFvcCEOWpAMF/lbyovmDToNnhnQCr3jI1Q/s/BaKjKrpPQSj8eUusmSa1Aspaqycw1R5DIXJT5efwYdZm7w6VglyPqzK6UQX25xy+jKbmgdKQAAIABJREFUzHZcLKpEeIDe63dP5vIBbqM4MsiA/dOH4hM+8zpY4bry02sl0WyAWyvFWXXx/b3p1UGSgESzcH9MHtwaP4zrqXheJKsToHCPyGchEmwOFyKDjMKe0CTUD6sn98dLQ9sKznco37zK4WKFuoz37umIYD89RnVvJqz7Yshx4uZH4uzG7Hs74bvHu3t8Zl+YMDAeraIDPR6/izee23qZ70XoxKs3WkZ4vo4apTJ52IaT+fhi0zkcSi9RnUlG9kJ5gILc/68sP4xZf59SlDPWBTaHS5DAE0MySyTvFGe+xdmayYPdmSOlgJndWb3DOUBhNppY/TNtRDssGd8LKycpz93cMWUwlj/bB4EGrbD+yY3lR3q1QFSQwWdJp7h5Gbke4yIDhOs1xE+PB7o1xcpJ/WotU5PvVaTkpDUv95dLKI388TqtBu/c3QGnZw8X9sX+rZXnzImbvcnX2s8fSkBYgB53dW6CXqJ1vZRfN+WqB5Jx/OKhBBybdaeQpf6vaBTMkz8dxIoktyJj46n8aufxVVgduCchFpGBBqRcMmH9iTwczijFi78cds/SFC23fyS7A8a1raEtrrQixE+H227i1uOiSqvqtbLlTAGeTzwkdKf9dMNZ1cZVT/d3O9gxomDz4qd7oREv9yVBM7FzFh8VCJvDhXu+dqvBskurVAMbKyf1xY4pg/E43+jMj/+O63Je89WgXhw4lmVTWZZN4P/ryLLsnPp4n6sNmQMntlFaRwch7aORwuLSplEw7qumOJNkTcr46PN793RE/zaR6BnnXiy0Cgajt6iK2NAghcskAzO6ezN89UhXyfHBfjrFBURsZGaWmD1aVeeVWfi28MqLtNhIA+B1ZgzAtcMG1GvgyPyZoZ//i+QMztDddrYA8dPWClrr4kppt8df+FlN2aVVQtRLPLqg0MscMZJRFLd6nv9vikeXKTEF5VZJJ6ZtZwtwUVZL8mjvFghVmXsj9glubhIs2VxIVsjmcMHqcAnXw39uiUWjYD+J4/6fhFgPo1DDcB3A6gqdVoP/JMSqRmprQnigQTHwMLp7M7SKDgLDMAgy6oT6l7wyi9DQRK2BibgLp0GrETYFOQadRmIUMQyD3vERaBbuj6f6xwmPk41Qreugi2Wh0TBClv5ySOYduBai+sMAg87DQCeGsDiYUGVzYsH2VHR9fxNyy6owftFBxE1dg8m/JEuey7KsSF6jfv17Q3xviocOH88uQ1phJZqFB3gNMonXxTbRQUh8pjc+ezABjUP88GCPZtj55mD0VzBejToNzsuaEJmsDsk1IDb62jYOlgQkGIbBlDvbIS5K2eno3DQUgQYtXlYINsnlzQRxvZoa4kzuR6Nuwbi+LdE73nuWq3GwH/z1WpkD5/5sEYEGDOvYBIdn3IH9b7sl1n883w9vDPMukZ5+V3tsff024boy8MGSLnzJAIlWe3MM7+jAGasjOktlcsRola//aogHLytBrnH5nlfBZ+NJrWptDVU1csuqUCjLwInndRVVKt9DD3ZvjmkjuICvkjy4OhgGWPpMb8laALj3wUCDFhNvbY2BbaPRtbl0XV/2bB8cnnEHWkQGoHerSGx67VaM6dkC2964Ddtev01y7IcPdEbSO3fAF/z1WiGrDLivR7EcVKNh8MVDXYR607pk2bN9sXvqECH4IA4825wu4W8jnK9Bi9bRQTj0zu14pFdzxdfUyrI7hN+f45zipLdvxzePdhPsOsAdOCM2Eql77ds6EnunDcEDfOZOXg8LuGdGEmfxux3c+invhxAs29duvakRooKMKKywCvXOSekleOdPToUj7mCbIuq6WNv7orDShqggoyArN1udCDLq8HiflpIgBSGtyKxYNiOnh+jziuvtE5q5y5aCjdy6qRN5p7Fhfh7JhNwyi6oD171lBFpEBgjKma7NwzB+QDw+GX2L4vHXCte2APQqQww+8YV1ORCjlbTqbdMoGInP9JEY3+Q9xNI9b8aReJPv25ozEsjF3blpKP6TECs5PshP56Grziw2S9L8P+1OExpukCxkbrkFwX561VS03LBWykDKOZVTLsydkX/GZhGcUVFucWAt33TlL77e6FA695zPN57FYyINOWlwUGGxC9Ir8euK5QpVNicW700TDIVbmnPykmRRVuST9WdxqULdgZv8S7KkA+cv+zOEhhabXxuEo+8Ow/v3dpI8578Sh9rtwcmjgRoNV2dpd7qwXFQb4quW+8z7IyTNda41Qvz0MFkdSCmoQJ8Pt+AbXjKiNi5DbHAzDAOthsHEQa2w8IkeWDq+tyCP4epXpX9DhmGw883BePc/HYXHskrMyCw2qzqsJKJOul3KuUd238lpGuYvDHp/YbC745qfXoNIWf1KcaUVS/elSwrUzxeYhBqhjSfzBZmPvEERGfwLVF8PqIbVqWwUPJ+YjD0XiiQd78IVghVP9Y/DZw8moFPTEHw4qjP6t4kSglkMw6g20DHqtULBPMAFSCqtDqFJCOBZn1wTwgIMODl7uKKEMFhhtuErt7dFp6ahHo/LEc+5ig424r17O1UrhdNoGLSMDJDIbaNFozDIHhEeaJDMXezWIhyTRdcP4Nl5lWSq/5zcH6/efhPOfjAco0W1lkSippS1fmt4O6yc1Bedm4Xi0Du3Y1zfOIkRTNYttZEMNY33kL1Rvh9UWBxIzigRruGLhZX1MjMru6QKxXygr6DCimNZpRIJ5TKZPJrgb9AKfwtfndmZd3NlGqO6NcO6lwcC4GqEh7RrhA2vDMLeaUOEMUUBonVPo2Hwx/P9sHvqEKTOvQt9WkVKZPexYf4w6DSIjwpEaIAebw1vJ2S6vbHwiR746Sl3tvr0+8MxrKPbYSfXVV0E8cT0io9QbEak1TBoGuYvZPa+2HgO5RY7LHYnnC5WMZMNAJFBRkUpphzSTGN092bowQfRdVoNGIaRSExJu/8Kix0vDW2Le7tya3tkoBExoe7jGIbBkvHuFhDipkXzxnQVGiPFRwWihSyTLf+b3twkGFHBBhSarMgts6BpmL/UllPpLF7b2ugikxURok7PlTYH7E6u3nDKne1wfs4IPNkvDl1bhOGuzt5rHgnP3dpaYqfGhPoJ2TaxVJ00VNJpGXz4QGfckxALo04rSS6QtV/uvMthedtKp2Ew4+4OHpLha42aDeCgSHDXqtVOd98sPAB33xIjFPF6e69KWU0awaDToGVEAP7v4S4ehayz7+2E2DB/2Bwu/LDrosdMF4AzTEjtFsMwKCi3YOAn25DQTNkwIVIJluVuMLW27CM7x+CQyPmRRxKVePInt/PjIclkOUlJRrFnhGd3ShEe6tEc+eUW5JRZUGa2IzRAL9QNFplswuwVcSS3UJSB+HH3RXy64SxSL1VidPdmguMs7kYIAPO2nIO/XrqINAnxExqSpF5Srm9qFRUkWZQ/5zMO4iygi+W05v/bnuoxTxDgjNOMYjPmi2pB/Hysibjc2omGQpBRhwqLXZjPRuSGavPuWkZ6Zlmm3dVe+PliUSVWJmcJjrEc+YZfbnFg4CfbJPWiDAOM6xuHRXvShAALGfOg1TAS2XNC8zCM7t5M4uCLadckWIjO9m7lzsAzDINFT/XC1JXHhM+85XQBNpyUSlOWiLrAyp02m4NrnmGxO7FS1FDlch04pQCSOJMfHWwEw3BrxB/P98fa47n4dMNZ4VijTovR3ZtJnAZfkN8TT/10EEFGXbVjJOoCJQmlkrxV8bk1nHdFiA42orDShkCDFpU2J+aN6Sq0nPeWHWMYzqB/fmky8sot+PCBzjhwsdijFvPmJsG4WcG5IH/PNtFB0DDAk/3iMX0VNyNreKcmwh4QyTuUUUEG5Jdb0TIyAGN6tsCxrOOKEs1BN0UjPjIAP/swQPqmxkE4l28SMnDyTMKY76TNHt747Sj0WgZbX79NEgA4kV2G5uEBqqoHOfJr+5LJKszIA4BxPx6QZIfVMoh+eq2gGOgYG4rTuRWKs0AJof56PC2r2wKAzs1C8eOTbieKBCjkNZni5g3V4atKQD5CSQ653+u6HnPFxL5ebSsSMLA5XZi75jReH8Z1sbzc+4xAmmmEKARrxIHCP5Kz0TMuAi6WG/kxrEMTxIb6KzZtETfSSGgehrQiM+bc3wl3dGiM4R2b4LdDWYgINHjYO8F+OuHaJ9m4qCAjDmeUwqjTIibUDz3jwoWGK2VmO+6fvxt6rQYHLhZz2TqTVSRBdmD/xWL0ax1ZI2krcTBJ7wCzzSnsJwB3Pc66hwt02hwuHLi4BTGh/qqjIVZO6ovuLaVlBjqtBn+9MACHM0okNhIJmjEMJ/V9pFcLfCiaXQkA3VqGY+f5QmEtulG4tq25q0wzfoNQm+/lK1oNg68f7SZIV5Qw6jTQaxmJsWVzuNAhJgT7pg3FuQ9GYNNrt6JT01CP1r+h/ly0jWiMixRqXoKMOtidrCBHyCzhItzyFs/i4wnBfnrJYkAyip+OvgUD20olUL4MUhbLE20Ol6TerdxiR4vIADQL90cuP9uI/E3+OpqDnecLhQUv5VIFtp7JFwp5C01WoY6BfM7/bb+AZxYnCa9PWtsu2pOGu7/aJWlPLmZfajFuu1naPVWtvspPr0HjECNC/HQeEbVR3ZthQNsoycJ9S7NQTBvRHmkfjVSMGBp0Go+mBmoS1uuNAKMWZpvTo4W+Wrc0rYbBnqlDsHJSP8XfEwNBq3FnrSfeqh5IcT/P/fPMuzsIzVGIgU+MgKf6xUmeF+av9+pokExOVJDBI9jRplEQFjzuluopDa09mlmKqCAjXhjcRmgaQoyHm95ZBwB4ZdkRSSOIzGIzJi095HUAqxLEyJ0nalIgNiBD/PX458UB+PCBzoiPCsTkwW2wd9qQGr2HEkrXeqXN4ZGFnTemCza+Osjj2NqgNOZAqdmJEjqtBuMHxKs29VEj1F+P8io77E4Wz93aGnFRyh1SlejWIlxwtNpEB+PDB25RDAopMbBNFJ4d1Aqz7+2Ija/eKpGfKdWOEHny78/1wyO9muP4rGFoGRmImFA/ieT4+yd6oH1MiOJ7Ng3zR7/W7swnkaZO+f0YKix2nzoQ250sBn7ibphgc7gw6ts9+MHLIGc58uY+pWa7RKlRYrbjn2O56KDyOQhBRh3G9m6Jp/vH4+n+8Vj70kBsfo27JsWfE+Aclj1Tfbs/iAN3iw+Z3/qGdOmWZ3zrAl8yZgAnsSU9BJSy5DWhJ1/n1iTU01aRjwuZ9gcX0GjbKBj+Bi3G9YtTzESKMz3TRrTHXZ2b4O7OXOaM1JrqNAxM/Ge4pVko5o3pghl3dxCCIGRviQoyIqPYjHP5FYgJ85dk/0/nluNwRqmgYCLSXnI9T05MxlM/HcSTPx5UHWskJymtGOfyTYgMMiKAl1CaLA44XKxiQNig02DbG7d5VfpEiBQqC8Z2x0d8nX98VKAgPSWQIEWVTZqwEEOkrWrrCoHs25fZ/LXBQTNwtYC03M0qVW4HXpcwDCNkyQg2J3cDiTsNeoNsNkptVUnUqsLi4JsEqM8NCg/QC1pogDMixBm4yCADyqrs0GoYRAcbodcyaNsoGG+PbO9TkbS4sNtsc6LnnM1YOakvTuWUo9BkQ4ifHk1C/fBHcjb6zN0iacP/xaZzwpy68/kmoU4O4KSSBbyzXVxpQ4eZ6z0iuv/IshYWu9SB2/XWYKGbktyIUUrf//3CALSKDoRWw3jvBMV/5K4twvDiEO+NXvRajUfNRXWDqa8XAg06mG1OSfcpAJLrUU5smL+qVIIEFFpEBMBPr8Xp2cMVDdzPH0zA6qM5wjwg8UgIfz2XSQoLMAhjC/z0WpyafSf8dFp8v8ttOIb669E8wh8MA0wf0R5z+EjiY71b4NabooW6mg6xoWAYBque7yeRC8pbLSsR4qfD2D4thaxAx9gQIas3fdVxj2Y93/57AdmlVWjbOFhS21IdJOhg0Gpg0Gpgc7owfkA8iiqtOJFdDpvDhY6xoZIudzGh/ogINHht7VwdSt8Py8JjbMq9XWo2GNYXlDJKSs1O1CCz5mpCqL8eZVV22HjJkr9ei5GdY5BRbPbJGfvsoQQk7ktHB77hyIG3b1ecIShHp9VguihbzTAMnu4fj05NQxRrVUkzLn+DVtivAHdnwnYzuD5mBp0GD/ZojqHtG6PnHOkg3X+n3AadhkHPOZtRaLJJahfF3V59wepwwqjTIrPEDKvDhUs+tlJfdzwXkxKlNaPv/nVSUQbcITYEp2Qzv0jQs0vzMGg1DEID9Jj5H/f33qZRMFZP7o+bmwRj5uoTaBLqj32pRejcNFRV/ieH7CU94qpvllTf9IyLQOrcu+pcQlkTLHYnhny+HYB6p1hfeaRXC9zUOFhR8jqycwzSi8z4QjT70KjTKK4LYvz0WkQGGnBPl1g0CfXD/MfcgbimYdw1XmV3wsV7GNNGtBdKX6KDjXhg/h7BgSMdX4sqbWgfE4yuzcPwwX2dMPvvU5Lg/NB2jfBgj2Z4bmkyqmxOlFvs2MHPMd2bWoTXfzuKRU9JpnspMm/LeQT76fB0/3hhrSNBdjVFT3VOtNh2Gl7NmAnyWlbRnk/WHz+9BjvfHAKDVgOWZfHMQM/stRiy6vkaGGjoUAeuFhAtc5bC3Kb6IMiok3Tgszmc1Wp+xfRrE4WVk/qiS3NPmQW5SUxWB6KDjR7Dpfu0isC+1GJseGUQmoT4CbVkALdRirXMUYFGpF6qhNPFcvUk7w2HXssIN83jfVpKpF6+cCyrTJi/wzBuJzSv3AK9lsFHD9yC1387KhkynlJgEjKDOg2DM3nlgtF5Kqfcw3mbOKgV/rcjVZDtAJDIP+fe3xmxoVwdgc3hQniAAWEBeqGZhNgo+ufFAUgrqkSnpiHC5/bW+fGeLrE4kVOG1++4uVon16DVeDSeuNYHUvqKv0ErkYQQvHU79MaITk2wYGx3QSakZkCN6t4MraIDBQdO3EmPdNqUSwGV5jBqNFymImXOXdBqGNzSLBRbzhQIhnJGkRlbzuQLtSldW4SjqyirxTAMXhzSBr/sz1DMpAOczLNJqB8OvD0U87ddQELzUGzku4CRhj5KmGo4HJlk4Aw6DYL9dCiqtCHQqMWEga3w8rIjkpovMUlv316j95FD7iOthkGzcH/BwQ3y4sTXFUr3WW0NxuoI9XfPnjPouFqcb0RzsqqjaZg/3hTVotWkQ7EcsSMih9TmybOC5Pv6eFRn7E/lMgMkuCeHZJZWvzAAx7PKfJJ8Bxk967cB4FyeCZ2bheIiL2fnZridRKfYUIzi79VjWaXIK7NIarre/N1zHirAZd16xUcgt6xKCHA2kn2GDrGh6NoiHL3iI1Q78wLurNUno9XnlXlj8pA2OHCxuMby49qwYmJf1Xli/8/eecdHUeZ//DPphUDoICKxnIogluOw4tmVs/3s/Sznqaeecs3DrmcveGdvqKhwCHKAhd47gVAChF4SSAIppJfNlnl+f+w8s8880ze72U3yvF8vXmR3Z2eenXnat8dSeAOAw4wXlFmmWDvmjB6pxvybJV9JSkzA45f8Co1ev5q46SEulsuM9c8ZJ4mhnjvsmsbOKXRf0U8R3G4ZPlCtuzZEUfTddfYgdE1PxuOTgqWQxv1+OC5V1rTkRAlNvgC2Ftdq9ihG9UZ5ZJlg1d4juP+8HDUxUWpSgjrn2u0///vAWbhjXK7mvf/96RxXc5BqgWMEOGpx8/hkdR55icsrYIRqgXN89fimc6jto0TvrFSM/FUvvHfbGfYHRwA+UyTrg+yUXw/qYSgghOoNBSdCPk33+7edgU3PX4aT+mWhW0YyjspOR96zl+KtG4fhAa5wbl/FIki1SXTTQaEFbXn+fHHIBaNrWpJaAwzQTm4NHr+aDKJXl1Qs+cdFuPHXR6sFySl7KhpQ1eTFcb0yMTynO5YwafxpHALrBjlm1MlYNeZiXD3MONHE0d3Tg0kFFNe27IxkrPjnxWpqf58s4+6zg2lqT+jTBVcPO8qxpictORH/um6ooxiN1KQEXSruzmOBC7pQ0sn83ON76jJ1uUGSJE1xZytOOzpb5zYLWAvmAPDJnWfiQaUkAY3Jo9c767ieGivHMT0zMPGBsy2t6n+7/CTcpfQzo+dOU3z3yUrDi9cOsU3oQd2E2fp6TmhhBDi6aUpNSsQ1w47CGzeciocvNHZFTUiQWrXho1an7PRk/IGJF2qLGDgAeOumYZrsZWbxl5GC3ew4dX+MBUOP7oZje2WajqVbf3MM3jWpt/XLn8/Hj4+ep74ekJ2u0cwfZ5Ax9J2bT8PtI44x3QzOKTiEOVsPqXN9bbMPX68sxN9+yAcAbDpYg2s/XIkHv1tv+H0j+mSlajIR9s5KxQ1nDsCoof3w+MUn4MkrTsKL1w7B707t72hTHy4XndQH/7zy5Kheg2fEsT1M18ZYU8qUdAhXoXJyv666uCwznho1WI2ZPuMY89AXJxylzPWn9O+KsUqfZl0BzzymO/504fF4U5lzsjNSMOWhczDs6G4aQfO3vwqtTYOZvVB6ciKavQG1Hi1ld3kDdhw2rttLqff4EZCJmtgFCM6zM7cEPZXs9p/nntBLl1nzpH7Wbo48VElCSwAAxp4QTqBJTDqKBCcscK0gmF3IXTxDa+iSmqSmTQeCLkzZEVrQj+sVXJRe+nkbpj1yLg5UNWH4oO5qwoT0lESdWbxXl2ARXEAbM3D6wGz8nF+Kft3M3aRO7hdM7X1870x4fAG8dN1Q7ClvwAdKVsG3bjoNxdVNmKFkmDxY1YSemSk40ujF6Et/hZ5dUoPWwG6h1PnH9spEAVNIfE95Awb1zEB2RjKGHNUNa/aFCglTt8vRl56oCnY0y9Q95+ZgV1m9zp2SblIH9czE7vIG9MhMQZfUJAzuH3S1OP+EXhh96Yn4y2UnRnVhNdqQt/eClE7JSA26UDYr/e39289wFFcZCRISJLx07RD89u0lmvft3J5Gndofo07tj0cvPMFxEgU7qMIlKSEBr15/CvZVNOIfV5yEk5+bg9+fPUhz7IUnmVsCUpJC1ly3yUxUC1xiguqC7Q3ISEiQdHG4kYQKMekpia48ECLFLcODcx611NA019GivQhwd589SFVgOeXb+0egV5dU1b3TiB0vX4nEBAm/ema25v3rzxiAm359NEa+tQhAUKBbvKNc3Vx+tDgY50lj91hX5PVFVbjxk9Xq64aWYAylPyBr1lienpkpeOGaIarrZ++sVLx7i7tC1YLIw8ZGtjYGzik01OP4Xq1L3tKnaxqmPnwOBvfviszUJE3dVyCo7OOzuY44tgd+eux8zXvs2tKLyVickZKExhY/9lY0IjMlEb87tT9+WB9MYvXEpE2YaxEnTO8rOwdlpCSiSsnD4yTb74QHzoIvQHDV+8tRdKTJdb3K0wdmY87okWrxbQCqa7WVlduIkAWuY0hwQoBrR2SlJauxLADg85OIbWCoGX9LSS3mFZShuLoZZx3bAxsOVEMm9lYGVoC479wcnDqgm6boJc+c0ReoGS8pNF0sEPSL/nZ1ofq68Egjqpu8ePziE9RMQ3zmND7teHF1M4qrm3HJyX0Mg1t7dUlRrWks3dKT8eEdZ6Jf122a+CW6SaWus9RF7OjuGVj2j4swoHs6EhOkqBeHNNJ6OS0j0N7JSE5Ek9evWuDcLgatxSiWzmkG0EgJb0BoQZUk4M6zQpvmHS9fqZsTuqQmYeIDZ+FOzpXliiF9sa6wWnXPc5IggoV1ofzjBcfhsf9udJRltrXQuSgjJRHnHt8L3TOSMahnJi44UW8dbQuibYFjXcLaexZZHifPzGztoZa+N28chjdm78A1p/XHKf27qgIchSZ0YEMdtpZoLQ9FRxox5KhuasbIXl1SNElLKCU1zeidlYpfD+qO9UXV7b4QcEck2i7NlN/kdMe6wmrT5GVuiFQsY9+uqSira9G4emekJGLV3iNITU7Aif2y8PbNp+G60wfgri9zsbOsHh5fwHSMGQlwrBKJr8VmRGpSIlKTgB8ePgcFpXWOi8VTJEnCyZzVLjFBwsoxF6OHiZu+GTeeeTSmri/GnWdFT8HYlnSs1aCD0zUtSePm1OTzOw56toMdVLXNPpTWNmNgjwzM+8sFeP7qU2w1LaxLVEKCZCm8UXj3wuz04GB8RnEpY5OZbDpYA5kAvQ2KYlLYifttxsXJLxPVTQEIWS/6dUtDdkYycnpmGBZ05F2yQha4kAsl5ZieGa4npnAxSnffWWLgqAWusSU2AlxyYgImc9m1IjUG3UC1zHyW17TkREP3xHSmFtVfLj0RUx46Bx/cfqYmcyMtzeAU1oXy6mFHofCNq9rEGqpa4JITcUzPDGx8/nLMePS8NrPE8pjVIIwUbCxhRxPg3DB39AWYb2AtOPf4XvjpsfORmpSIU47qisI3rtLcp70GJV12KbUWKQcU6xzNxPrMVYNx6eCQdp8qRaj1lcb7ZTrMQCpoO8wyEkeaL+/9Deb/5YI2W/edMOeJCzB3tHaM3HX2IJTVebCvohEPKa785/+ql7pHKrfIol7THBwP2cwcxCr63Cj9+mSl4SILbxC3DMhOd7329uuWhsV/v9C0xmh7Q8w+7YguTAycLBOU1bagT9fIbVqmP3Iurv94FdYXVYOQYGa+E/pk4YQ+zgqQAsHMR+GSkpSAwjeuUl/vU3y22SB1PmicZYSixfrwjjMwamjQTWDt/ir4ZVkTMJ+dHkw80icrDZIkYck/LjI8H6/Jo68vHtwXa/ZXGdZOaguMNnGdJQaO1tyqbvIiNSkhJsHzfTglQlvGoVBG/qoXXvm/oY6TGJzSvysuO6UvnrziJPyKcUXp1zVNTVhU67aMgJIQqK3d+qiyIhaCsxHRFuB+k9NdredU1xxezb6OAJ1vpz9yrm3pnuz0ZF2iJ5adh+sxfFB3fHnPb3Dav+ahSBkDNcqGNDsjBWNvOR3P/7gV/7pWH5v8+g2n4jfH9sBvkqHBAAAgAElEQVQwkzqpgtjw4jWntNma0DUt2bBWXCzpnpmiKd4OAPeffyxuH3EMqpu8Gg8SWmy8tLYZx/Q0FmiMLHBv3jgMb8/dieN7d8HDv3VWS1AQHYQA147o3SUVNU0+NHn9wUKKARlHWcSZueWMY7ojKzUJy3YHY8LcCigFL10RUQ3x/ecfi93lDbhscF813XqOQWFmyvCcHsh9+hI14HbKQ+dg9pZDOPXobhpNKW1jbxuNPW+BoxvHAdnp+OgO51ngIk2KgbWts1jgMpVN+5EGr+MCypGGVyK0tRUQCAqNd7mIN0pLTlST7bAM7JGh1ourCdOFsq37HlVWGGX5jAXRVp4kJSZg6T8uxDvzduKqYf2jeq32wBkOilVnZ2gFuD+OPBZfLN+Pv1x6Iv69YBfyiqpx33k56JaRjB6ZKSg6oiQ6UZJDZacno1t6smmCsu6ZKZoEOoLYcMdZx6Ckuhm1zT5sOliDe88Tz8SI9JREpKdo94o0UdbhWg88vgBW7a3EhSf20QjARgLcJYP74pLB1sXdBW1DfKyAAkccr6RxnbLuoOoz7bQGnFO6Z6bgQFUTkhIkNW2sUyKdBe743l0w5aFzkLvviPreIBNNEaUvZx0ZdWpwwyMz6XMTFNdNO+sl3Zj/Jqc7Hr/EujZbW5Ji5ELZSSxwtGjypoM1MRGcgGA/f//2MzD6+41wUE4rrmFj1pq8AbV2lhPYGLi2hLYvXqzObVFTKDM1CS9cMyTq1+ko0D4yqGcGjumRgad/NxjPXHUK/qckbwCCyRGA4BjYX9mIVXsq8c//BRPTZLuMrRHEhteuDyb8aPYGXCdh6uz0V/aO360pwhfL96GgtA5/vexEXDq4Lw5UNeJwrQfLlbpxrSk9IogeQoBrR1CB6sWft6lpVPtHWIDr3y3oUjV0QLeYuIYZwWpcw20Tq1WiE71RHSKWJEVQCpaLiE2CBCMO1epr8cTLs4o21ALHJvOJBdeedhR6d0nF23N3RFyJ0pbwCpHaZh/6ZDnrSy3+YBxiW2eCpMqKhA5SjFUQeahy59ELT1AzJQPAJYP7YMSxPdDil/FbJYFKTs8MzNhUijX7gkl+stKSLF31BfFH0MLUOdbASJGZmoSzj+uB3WUNqhLu3fm7NEXKAWDIUV3jRlkm0CIEuHYEu9lKlCSc3C9LU5MmErx2w6koqW7G8Bx7N5W2IiUpAW/dOExTPDwcju6ejmN7ZWKNYtHrb+N+ShO3sMlU4oFLBvdFWZ0HXdOTsU8J0I/n9OKRpC8jLFENeqw45/iemPbIefYHxjGXndIXT155EsrrWjB+VSFqldhQJ8TKAndK/67onpGM80/oZX9wFJk7+gJUWMRZCWLHazcMxbQNJWoxYwqtocXywMjj0DU9GcNzeuDyU/oiKUFCUgzKUwgEbc33D4bGQkAmyN13BFVNXgzqkYmstCQcrvPg9IHZbeJlIHCPREjsN6fDhw8neXl5sW5Gu6De40OX1CQxoFpBzpiZAIC1z1xiuVldtKMM94/Pw4Un9cb4+0a0VfMcQQhBsy+A0ppmJCYk4FiDQrcdlaIjjejVJRUpSQmO6tAI7Fm2qwK//2otjuqWhhP6ZuGYHul4+bqhlvPMBwt3Y+z8Xdj96ijxHAQCgUAgiACSJK0nhOiD1jmEBa6d0VZFKjsDdpYGWtz8gjhyn6RIkoSMlCRXGUI7CoMsEtkIwoNa90trPShVXHRTEhNx7vE94QvISE9JRJ+sNByVnYbsjBQ0tPhxsLoJkgQkxVEabYFAIBAIOgPCAifodOyraECzL4AhR9mngD7S0IIemSnC4ino8FTUt2Dq+mJcc1p//HVKvloAmScxQUJAyd7SIzMFG567rC2bKRAIBAJBh8WpBU4IcAKBQCDQsb+yEfUeH5ISEtDk9WNvRQMO1XrgDxAkJkg4bWA3nNSvKwZkR66UiUAgEAgEnRnhQikQCASCsOHjKmnpEoFAIBAIBLFFRJ4LBAKBQCAQCAQCQTshLlwoJUmqAFAU63YY0AtAZawbIbBFPKf4Rzyj9oF4Tu0D8ZziH/GM2gfiObUPOtNzGkQIsc2eFxcCXLwiSVKeEz9UQWwRzyn+Ec+ofSCeU/tAPKf4Rzyj9oF4Tu0D8Zz0CBdKgUAgEAgEAoFAIGgnCAFOIBAIBAKBQCAQCNoJQoCz5vNYN0DgCPGc4h/xjNoH4jm1D8Rzin/EM2ofiOfUPhDPiUPEwAkEAoFAIBAIBAJBO0FY4AQCgUAgEAgEAoGgnSAEOIFAIBAIBAKBQCBoJwgBzgRJkq6UJGmnJEl7JEkaE+v2dFYkSRooSdJiSZK2S5JUIEnSE8r7PSRJmi9J0m7l/+7K+5IkSe8rz22zJElnxvYXdC4kSUqUJGmjJEm/KK+PlSQpV3lOkyVJSlHeT1Ve71E+z4lluzsLkiRlS5I0VZKkHcqYOkeMpfhDkqS/KPPdVkmSJkmSlCbGUuyRJOkrSZLKJUnayrznevxIknSPcvxuSZLuicVv6aiYPKO3lTlvsyRJ0yVJymY+e0p5RjslSbqCeV/sAaOI0XNiPvu7JElEkqReymsxlgwQApwBkiQlAvgIwCgApwC4XZKkU2Lbqk6LH8DfCCGDAZwN4FHlWYwBsJAQ8isAC5XXQPCZ/Ur59yCAT9q+yZ2aJwBsZ16/CeDfynOqBvAH5f0/AKgmhJwA4N/KcYLo8x6AOYSQkwGchuCzEmMpjpAkaQCAxwEMJ4QMBZAI4DaIsRQPjAdwJfeeq/EjSVIPAC8AOAvACAAvUKFPEBHGQ/+M5gMYSggZBmAXgKcAQNlL3AZgiPKdjxUlpNgDRp/x0D8nSJI0EMBlAA4wb4uxZIAQ4IwZAWAPIWQfIcQL4HsA18W4TZ0SQsghQsgG5e96BDecAxB8Ht8oh30D4P+Uv68D8C0JsgZAtiRJ/du42Z0SSZKOBnAVgHHKawnAxQCmKofwz4k+v6kALlGOF0QJSZK6ArgAwJcAQAjxEkJqIMZSPJIEIF2SpCQAGQAOQYylmEMIWQaginvb7fi5AsB8QkgVIaQaQeFCt5EVhIfRMyKEzCOE+JWXawAcrfx9HYDvCSEthJD9APYguP8Te8AoYzKWgKAS6kkAbIZFMZYMEAKcMQMAHGReFyvvCWKI4hp0BoBcAH0JIYeAoJAHoI9ymHh2seM/CE68svK6J4AaZuFkn4X6nJTPa5XjBdHjOAAVAL5W3FzHSZKUCTGW4gpCSAmAdxDUQB9CcGyshxhL8Yrb8SPGVWy5H8Bs5W/xjOIISZKuBVBCCMnnPhLPyQAhwBljpL0U9RZiiCRJXQD8D8BoQkid1aEG74lnF2UkSboaQDkhZD37tsGhxMFnguiQBOBMAJ8QQs4A0IiQu5cR4hnFAMUF6DoAxwI4CkAmgi5EPGIsxTdmz0U8rxghSdIzCIZlTKRvGRwmnlEMkCQpA8AzAJ43+tjgvU7/nIQAZ0wxgIHM66MBlMaoLZ0eSZKSERTeJhJCpilvl1F3LuX/cuV98exiw3kArpUkqRBBd5OLEbTIZStuYID2WajPSfm8G4zdKQSRoxhAMSEkV3k9FUGBToyl+OJSAPsJIRWEEB+AaQDOhRhL8Yrb8SPGVQxQElxcDeBOEiqALJ5R/HA8gkqrfGUfcTSADZIk9YN4ToYIAc6YdQB+pWT9SkEwyPWnGLepU6LEcnwJYDsh5F3mo58A0IxD9wD4kXn/90rWorMB1FL3FkH0IIQ8RQg5mhCSg+B4WUQIuRPAYgA3KYfxz4k+v5uU4zuN5iwWEEIOAzgoSdJJyluXANgGMZbijQMAzpYkKUOZ/+hzEmMpPnE7fuYCuFySpO6KtfVy5T1BlJAk6UoA/wRwLSGkifnoJwC3ScFMrscimCRjLcQesM0hhGwhhPQhhOQo+4hiAGcq65YYSwYk2R/S+SCE+CVJegzBjpAI4CtCSEGMm9VZOQ/A3QC2SJK0SXnvaQBvAJgiSdIfENzw3Kx8NgvA7xAMRm4CcF/bNlfA8U8A30uS9AqAjVASaCj/fydJ0h4ErQW3xah9nY0/A5iobEr2ITg+EiDGUtxACMmVJGkqgA0IunttBPA5gJkQYymmSJI0CcCFAHpJklSMYAY8V2sRIaRKkqSXERQSAOBfhBBhMY0QJs/oKQCpAOYr+X3WEEIeJoQUSJI0BUEFiR/Ao4SQgHIesQeMIkbPiRDypcnhYiwZIMWDoq5Xr14kJycn1s0QCAQCgUAgEAgEgpiwfv36SkJIb7vj4sICl5OTg7y8vFg3QyAQCAQCgUAgEAhigiRJRU6OEzFw7ZyqRi9qm3yxboZAIBAIBAKBQCBoA+LCAicInzNfng8AKHzjqhi3RCAQCAQCgUAgEEQbYYETCAQCgUAgEAgEreLCCy/EuHHjYt2MVjNkyBAsWbIk1s2wRAhwAoFAIBAIBAKBAACwYsUKnHvuuejWrRt69OiB8847D+vWrbP/YhwgSRL27NnTqnMUFBTgwgsvjEyDDFizZg0uu+wy9OjRA71798bNN9+MQ4fcVekRApwgLqiob8HeioZYN0MgEAgEAoGg01JXV4err74af/7zn1FVVYWSkhK88MILSE1NjXXToo7f72+T61RXV+PBBx9EYWEhioqKkJWVhfvuc1epRwhwgrjgvDcX4ZKxS2PdDIFAIBAIBIJOy65duwAAt99+OxITE5Geno7LL78cw4YNw4svvoi77rpLPbawsBCSJGkEn71792LEiBHo1q0brrvuOlRVWZdmo+f4+uuvMXDgQHTv3h2ffvop1q1bh2HDhiE7OxuPPfaY5jtfffUVBg8ejO7du+OKK65AUVEwceMFF1wAADjttNPQpUsXTJ48GQDwyy+/4PTTT0d2djbOPfdcbN68WT1XTk4O3nzzTQwbNgyZmZnw+/3IycnBggULAAAvvvgibrnlFvz+979HVlYWhgwZosmcv2HDBpxxxhnIysrCzTffjFtvvRXPPvus5W8eNWoUbr75ZnTt2hUZGRl47LHHsHLlSsvv8AgBThAXeP1yrJsgEAgEAoFA0Kk58cQTkZiYiHvuuQezZ89GdXW1q+9/++23+Oqrr1BaWoqkpCQ8/vjjjr6Xm5uL3bt3Y/LkyRg9ejReffVVLFiwAAUFBZgyZQqWLg0q+WfMmIHXXnsN06ZNQ0VFBUaOHIkbb74VJz07G59P+QUAkJ+fj4aGBtx6663YsGED7r//fnz22Wc4cuQIHnroIVx77bVoaWlRrz1p0iTMnDkTNTU1SErS53f86aefcNttt6GmpgbXXnutKlB6vV5cf/31uPfee1FVVYXbb78d06dPd3W/AGDZsmUYMmSIq+8IAU4g6GQ8OnEDXvq5INbNEAgEAoFAEGd07doVK1asgCRJ+OMf/4jevXvj2muvRVlZmaPv33333Rg6dCgyMzPx8ssvY8qUKQgEArbfe+6555CWlobLL78cmZmZuP3229GnTx8MGDAAI0eOxMaNGwEAn332GZ566ikMHjwYSUlJePrpp7Flcz4ajxzGpNwDuvN+8cUXeOihh3DWWWepgmlqairWrFmjHvP4449j4MCBSE9PN2zb+eefj9/97ndITEzE3Xffjfz8fADBWDa/34/HH38cycnJuOGGGzBixAhH94myefNm/Otf/8Lbb7/t6ntCgBMIOhkztxzC1ysLY92MuEOWCfwBYQkWCAQCQedm8ODBGD9+PIqLi7F161aUlpZi9OjRjr47cOBA9e9BgwbB5/OhsrLS9nt9+/ZV/05PT9e9bmgI5kkoKirCE088gezsbGRnZ6NHjx4ghMBff8TwvEVFRRg7dqx6fHZ2Ng4ePIjS0lLDNhvRr18/9e+MjAx4PB74/X6UlpZiwIABkCTJ8blY9uzZg1GjRuG9997DyJEjHX8PEAJcu0aWSaybIBB0GB6ZuAEnPDM71s0QCAQCgSBuOPnkk3Hvvfdi69atyMzMRFNTk/rZ4cOHdccfPHhQ/fvAgQNITk5Gr169ItaegQMH4rPPPkNNTY3677NF25F29GDT45955hnN8U1NTbj99tvVY1gBzA39+/dHSUkJCAntx9nfb0VRUREuvfRSPPfcc7j77rtdX1sIcO0Yr7AWCAQRY06BfiEStB82HKjuMBbU/ZWNeHbGFgSEkk4gELQxO3bswNixY1FcXAwgKJBMmjQJZ599Nk4//XQsW7YMBw4cQG1tLV5//XXd9ydMmIBt27ahqakJzz//PG666SYkJiZGrH0PP/wwXn/9dRQUBENBamtrkbdolvp53759sW/fPvX1H//4R3z66afIzc0FIQSNjY2YOXMm6uvrW92Wc845B4mJifjwww/h9/vx448/Yu3atbbfKykpwcUXX4xHH30UDz/8cFjXFgJcO0YIcO6RZYLJ6w7AJ+6dQNBh2HigGjd8vAofLGpd7Z944U8T1mPCmgPYcbgu1k0RCASdjKysLOTm5uKss85CZmYmzj77bAwdOhRjx47FZZddhltvvRXDhg3Dr3/9a1x99dW67999992499570a9fP3g8Hrz//vutblOT169aua6//nr885//xG233YauXbti6NCh2LxmiXrsiy++iHvuuQfZ2dmYMmUKhg8fji+++AKPPfYYunfvjhNOOAHjx49vdZsAICUlBdOmTcOXX36J7OxsTJgwAVdffbVtyYVx48Zh3759eOmll9ClSxf1nxsk1uwXK4YPH07YlJwCZ1Q2tGD4K8E0p4VvXBXj1rSOnDEzAUT/d0zJO4gnp27GP644CY9edEJUrxWvtNW9bm+I+9J+mbn5EB797waMGtoPn9z161g3p9Vc+Z9l2HG4HrMeH4lTjuoa6+YIBAJBzNigKOjeuOFU3DbiGMNjvl65Hy/9vA33nDMIL103tI1bqOWss87Cww8/7LquG0WSpPWEkOF2xwkLXDtGpN53T02TFwBQ3eiNcUsEAkGkCCiKyISE8OIYBAKBQBCf7C0PJi9ZV2hfziDcWLbWsHTpUhw+fBh+vx/ffPMNNm/ejCuvvDLq1xUCXDtGCHACAbBqTyWe/3FrrJshiCE0oVNiDBZvgUAgEFgzceJEjasg/eek9hkVypx4DMbCq3Dnzp047bTT0K1bN4wdOxZTp05F//798dprrxn+5lGjRkXkuvpqdYJ2g4iBc48EscHraNwxLhcA8K8Yu00IYgdN9pEkLHACgUAQd9x555248847w/oundZjH/BlzIMPPogHH3xQ9/7TTz+Np59+OmrXFRa4doywwLU/9lU04Kf8UvsDBQKBY6gAJ1woBQKBoGNBHStkB9a1WLhQxgphgWvHCAuce0iMdThX/GcZfAGCa087KqbtEAg6EjQGLpoulFWNXqQlJyAjRSybAoFA0FZQz6k4yLkYVwgLXDtGWODaH76AmIGiRaQK28dDZl6BO9rCAnfmy/Pxu/eWR+38AoFAINAjxbkLZawQAlw7Rghw7nEbA5d/sAbTNxZHqTWCSOLEvcLZeSJyGkEb4jQGTpZJqwT9wiNNYX9XIBAIBO6hbpGRWuM7CkKAa8d0RAEu3qwf1320En+ZnB/rZggcECnBK5qLxNUfLMd1H66I2vk7K1SAS7QR4G76dBWOe3pWWzRJIBAIBBFAndbja3sYc4QA147xy+4FuLI6D/aU10ehNZEhzuS3qBFvgqobjjS0YNqG+LNKRs4CF71ns7WkDvnFtVE7f2eFPrMEmxi4DQdq2qI5EYOP2V1fVI1Jaw/EqDUCgUDQ9lDPKWGB0yKisdsx4eQwOeu1hQCAwjeuinBrIoNMCBLiMNV/QCa22n2350tKjL/f6YSHJ6zHusJqnHN8T/Tvlh7r5qhETIDreIbtDk/IAhed88dK4cJf9sZPVgEAbh9xTAxaIxBEj3/P34VTB3TDpaf0jXVTBHGGGgNnMQ13RtlOWOAixP7KRlQ3etv0moEO2GPjNf6o2ReI6Pn4Z/fNqkJ8sWxfRK8RLQ7VegAAPn98PaxAhDqP0PK1P+h4ilYSk5YYuauLvijoLLy3cDce+DbP8hhCCDwRXosF8U/Ig1LMhyxCgIsQF72zBBePXRLx85bXe1Ba02z4WaSy7sUT8bphaWrxR/R8hAAeXwCLdpQBAF74qQCvztoe0WtEi3gts9IeYuAE4bG+qAo+C5cDOcqFvGO1aeyAU7yAYWtJLZ74fmPElE8dna9XFuLk5+agvM4T66aoEELE84syNImJ1dIcr/uSaCIEuDCQZYLXZ2/HoVqtYFXd5Iv4tUa8uhDnvrHI8LOOOGnE6+a50RthC5xM8MKPBbh/fB62H6ozPObn/FIcrIpe1rucMTOxtST8eKxIasM8voDlBt0JkVJodMBh1a7ZVlqHGz9ZjTdn7zA9xk9dKKO0isfKAtcR53hBiEcmbsCPm0pRXC2ymzrhx/xSAECxiVLbDV+v3I91hVWtPs8nS/fi+Kdnod4T+f2fQIvVdBinW8eoIgS4MFh/oBqfLd2Hf/ywOabtaI2w882qQhyujR8tFiXe9is07q0xwhY4mRBsPxwU3My0+3+etBHXRDlj4bQNJa6/E25RzfJ68/528nNzcNX7rauxFbkYuLbthNWNXizfXdGm12xPHGlsAQB1vBghR7kOXKwscO052ZEgfmho8UdVGdhWqK50JsPCF5BR5tA699LP23Dzp6tb3aaJa4JJhWqioMAXBAnNg2I+ZImaACdJUqEkSVskSdokSZK1Y3McM/yV+Xhzjlbz2+ILamNlQjBl3UEMfm5OLJrWqg3rCz8V4N6v10awNe7x+mV8uWI//IzlJd4scGlJwSHSFGELXLMvoJ4z2SDzArWMxfOi4OZJrdxTiRGvLsTcgsOmx+wqa2hVeyIVE9rWffC+8etw95dr0RzhPtZRcKIwoM/ebZ1Hp8QuBs74fSHYCdxw2+erMfKtxbFuhiFfrtiPvRXO5v6Qgd24///zf5tx1msL0eJvu7mUZgM3Wsc7Mp8u3Ysnvt/YJtei8yCd9sYt34f9lY1tcu14Jto97iJCyOmEkOFRvk7UqGzw4pMlezXv0QGblJiAl34uiHiCC6fYeZxNyTto6SJXUd8S4Ra544vl+/DyL9s0abFJlPdJbt3+0pITAQBN3sha4Ea8uhB7yoOLFr85bGjx4+oP4r9WmBv3rs1K6vwNB6qj1ZyIuVC0tRV45+F65bqhC68rrMKqPZVt25A4xYlXJJ0LoxXkHrsYOOPf4wuY/05/QBaJHgQatpaYW69jiS8g4+VftuGGj1c5Ot7OAjdryyEAgN9ifESatrxWPPHG7B34cVNpm1yLKuhkJYnNKzO345d87bVFDJzAEXTAJkfJXccpdhaHJ6duthQEYl0IvK45aF1qaAltNuLOAqcKcNHbEPHawni3xNCJMt7icyLVnra2blChg+37N3+6GneMy23TdsQ7Vo+FWvGj5f7q8cXIAmfye6xqgN7y2WqcHCOvEIHADXTObohQiALdm7XlPoLG33bErODxAl2TCQCvMtfz97sz3v5oCnAEwDxJktZLkvQg/6EkSQ9KkpQnSVJeRUX7iv+gyRZiXcertZuVllYmjYgG0Z543bpYpSUHh0ikY+BYeAtcvAmxPPQOhlNIPppE6r619UJMh3Gc3c6Y09Dix1PTNqtjz8q6RjdR0dIpUCVLJHV2zd6AxlJWXN2kU0KY/R6/xQ9tb8XKBbHdfHp8ATwycX1MEqm4nbPVbIQmn6vzgM1cGkklXbSVR4KQoC+TkOEh3hTIsSCaAtx5hJAzAYwC8KgkSRewHxJCPieEDCeEDO/du3cUmxF5fErHibXPc2s3rLG2wFFY03e8abFSk4IWuGi6ybZw2n2rzVlr4Reur1buD9tVz24CfWP2DizZWR7WucMhUgJQm68LyvWM+n5nzk43fuV+TFp7EONW7Lc9lmplo6X8oBa4SM75g5+fo8YlldY04/w3F2PsvJ2aY8x+T2d12+qoxFJpt3B7OWZtOYzXYlDGxu1aZ+dCGTqv9WIQyc2/aoETAkXUCMXAEdWAwt/vznj3oyaBEEJKlf/LAUwHMCJa14oWZgPS54+PoNWOOGFEex1zGyOToDziaG6YvJwl1BdFwdqoy3y7uiisc9ktvhNzi7Bge1lY5w4HfhNECMGcrYdNyxP4AzJmbCzRaU7bWpNK+6TRpuP8N+0TD9Q0eZEzZiamri+OeNtiifrYuAB2I/wmbjWRglrgUsKY82WZ4MWfCrDPIFEDjUOm/6/klClmv8cfh94TlFlbDhn+VoE5bSXAWc1tsZAhZdWyYn3xeo8P2w/VqcpeOwua3TwQSSUp3YfFm/K5I8H2W9UCZ7DedzaiIoFIkpQpSVIW/RvA5QC2RuNa0cR040eTmMQ4Bi7eXe3Cwe43NbT4dfX3wsFpwCt1uYymsNzCWfdaWw/Nikj0GerGYifoyDJpUysvP6Ev2VmBhyesxweL9hgev3Z/FUZP3oRNxVqXs7YeV611oTyklAP5Ytm+CLUoPJbsLMeW4vDrCtph9VRoUo9oPTrVApfkfsncXd6A8asK8cjEDYaf54yZiU0Hjd0ezTYlvjhW3j0ycQMuHrs01s1oF1DlDT/l1zb5UBKBWmc88SZkUEHKrln3fb0Oo95bHspIa3Neu7k0kmussMBFH7omExJ6dgFOqd4R98N2RMuE1BfACkmS8gGsBTCTENLuoqrNBqSXJjEJYzGPJFZzUHvQRhi10G4OvOHjlTjndePC5k4It4ZZNBc+PgaOt8hFkogIcMr/dlpMfxsLcHyfr2n2AgCKjhinG6b3valFK0C39TpM2x1uH0tXEu00RjhTqlvu/XpdVOoWOom19LmMQ3E7P9J+nBiG0s7Jxm76RqUeI6dZMvvp/OZF0L7h+/gl7y7FeW+Ev86ZEU9Cxr9+3obhryxwdGxeUTB7sZrwyeZ32FrgmPHzc35pRPZL8XRvOxqqkpMQdd3mn3FnvIzZGXYAACAASURBVP1RkUAIIfsIIacp/4YQQl6NxnWijZnbnOpCGUcWOJ0bWDvtzHYTc2trhbmlLTIu8kKOVYrw1vDliv3I3VfV+hM5vCcyIXphVPnK4p3leHJqfuvbwsBfKknxfzUbx1QA5bOAtrUmj14tXNdN2t54z14aLurjs7g9PpculK4VOMoGO5wpnz6fhDDyXJuWERAZbzoEVKHIP87KBvMSP83eAJ7/cSvqPe5rhMaTkPHVSvvYVh7afjvlod1cyn7/z5M2Yumu1ifSa4t7u/NwPT5dutf+wA4GW0aA7pf4Z0zvf2cqJyDKCFhgtkjSTWlrY+DyCqtapflhOzC/0MfTRM3jC8jYXGzmMuTsHOHeN7cxcHQuiKoLJW+Bi5LV6uVftuH3X0WueLtTC9wtn63Gm3N2aD677+t1mJIX2ZgtfgwkK1liqXb7wJEmTFl3UP2cbsr5+00IwYEjTWFtkMKBNjvcuAzaN6NZ6iKW0OdkNXbpPXA6Lbi1dtJnY5TFNq+wCm/P3aF7n28btd55fAEs363dMJq1RiQx6Rw47Y8NLX5MzC3Ct6uL8NFi9xv5eHOhdAvt9nbrsf3apJ3za5tbP9e3heLv/z5aiTdm7+h0GS/VMgIkpODmn3F78DqLNEKAs8BskqBZA5NsBDhZJqbnmL+tDDd9uhoTcg8Yfs5j1DnZyZi/DH/dbaV12H6o7Yp51nl8prVdXp+1A9d+uFItZM1uiZxOgq2ty+RWSxNdAa7tYuCMmFNwGOV1HsPP8g/WIHffEcPPAhZWAFkmICQonK7dz1j9oqgd458Rb4G77fPVePJ/m5k0xMHjeCthQAYueHsxbv50dfQaa4BVH9tf2YgJa4yTzdCFLJqZUqPF/spGrCvUW4XnFhzGeqXou99BfFuojICzcWp0r/m0/kbHG80bN3262nIzrVrgFAHu2RlbcfeXnCLFpN1mXaKt5windMZNVCRwsr5MyTuIoS/Mxa6yegDhCQztfeNP228noLH3c/K6A/iasfZ9smQvdh6ud3S9Wz5bje9M5l2ra0YLOsd3Ngu8qqBDSOHK93/29gdkgge+ydPuPTogQoCzwGyR9Cgbbjtrzh++WYfjn54FQohuk07jcpxm6zKasCwtcNzr372/HKPeW+7oWuFQ2dCCuQWH1dfDXpyHoS/MNTw2X7G+VTd5dZ851RA2hRnvQ0/vdO1jfa+jRVvGwJnxxPebDN+/7qOVuPXzNZr3QlZJ8/PR58j/Np5Ibvj4U9E6jfR+VjYG+xsdv1QLy5dxoM96h8NFPlJY9bHrP16JZ2dsNdwkxLO13Y6L3lliKCg/9N16LFPcmpyMPTUTnMN7YXTOwc/PwdmvL7Q8v5X+wawv02vRsqFm3gdG5ze1wEX5mfsDMj5YuNt1/cv23BdjiZM+Pn9bMKNva8IIItFv/AE5qnVRraD3yYn7PuWf/9uCl37eBiBYz/XNOTtw79frNMdLJhrdtfur8NwMZ/n32rR4eCezwKuPm8C0jACb6KS6yYsF28vwpwnr27KZbY4Q4Cyws8DZabMW7wxuQJ77cStOenaO4fFOC0sbDVitBY5gb0WDeg03C+niHeXYU966zep9X6/DQ9+tt3U7u3jsEqxXApKNfrnTDX247mJu1y86KURzw6SLgQvDhfL5H7diBk2EEAZNYVhvrCxwtP/ZuYMGZOLomT81bbNGQWCEnbsZzRrrUfoObSNf0N7J2PEFZBxh4lQaWvxhKxWcXLemyade1833Ykn+wZqIpLv3M9pX02MC1ALn7Jxm94zeZ7M2mG30rK7t9WtdKI3mLvpd/vRm57Qae+p3W9Evft5cirHzd+Edri6dGf9ZsAu/fXtx1AXLjkpbjeFIWOCe+H4ThpgoZ6ONU0VNQCa456u1eOWXbZr3oylktaXeNZ4EOCfr9/qiKnzWitg9ttwEVQrzcw3bt+k02tEzUwoBzgKzZBJUg+90wE5YE3STZC0rxGTBNsMoExvbf7cfqsMlY5fiE2WQuJmo7xu/Dpe+u8zx8Ubsr2zUtYmHEIJ9FaGMgHQzxN4Dp81u9gWweu8RlJm4/pnhdkDThSKarie8dTYcC9y3q4swerKxFS3S0OdGJ9Cf80t1wqOpAMfdRr9MbJ95QCaYtPYgHvpOr00rZVJt89bbUMC7NoMgdUNRBbgwyjiM+d8W/PqVBaqAMvSFuRjxqt56s2hHGS7/91LdOZ+dsUV3rJNNnNEGOR43zQWltbjuo5V4d/6uVp+Ljj2rjULAwTGac7q8ZU4C5OkcCATruVHXUPrsaRITIwHO7BmazTu+AEFeYRXuGper6VtsOYLWxDtRJWWDxw+vX7a9r/9ZsBtFR5riVpkQ7zhZX2jXc+v+v5CpxRmJGLiZWw4Fz9UGz3pPeQNW7A7VRgwpVO0Vg0t3VWDciv2a96Mp+DjJlhsp4smF0kk3uPGT1Xh9tnmcsP01Qko8s4zDrLdU6O+wL9kuEAKcBeyAJIRgx+FgDJlqgXM5GZrFVzjhji9yde+xHZjWglq9Nxiv5HRTFynBhN4Lq/PxbTJah5ze0yZvALd/sQZXve/OLVR2sBFjoc2Jbh04PgulfnLeVVaPIc/P0QgsboikqyKf2OXPkzbqhEf6rO2E0YBFnCiFFjnmKa5uwrlMqm3+N9I2+DgLHC/A8W00i69cV1ilfuen/BLNNQAYxnw+OXULdpU1oLpR6y5MlTosjgS4dmKBK1eeWUGpu7jbOVsPaQQhwNlcRudqxy6ULu+ZkzZc+u5SdY6/c1yu6hrKlyAwstSaWdSsrMqbDtZgxZ5K1RV98c5y/N9HK9VjNhfX4sNFu23bbQSdH5u8Afz6lfmq+54d8ahMaA+4EaycLF2yTDB/WxnWF1XjD9/kha6jPJ+SmmbUGIQwuKEtypZc+u5S3PVlaO8jO1yPzT53I/i4XTPbUqaKJwtcWwiudHwQJgslfwtY99q2ULzHA0KAs4AdJFPXF+PK/yzH4p3lONIY3Jy47bjsxpDGzzlVpm0p0RfIZScpmrDBLMDTjJoIZF+qbGhRtcpWEyQfD2UkRLFfH/rCXDwzXWupUDdByma5ssHdIkRvmdtsddHcmLD3pbHFj79M1qfXn7imCI3eAObZuBECwUluwbYyzWY/Gpt8q3PSiVNngeOeedACZ902Wri9e0ay5n1esONlG70FLjhGaLp9tYwAJ7B5/HpFy6o9lbj509X4nCuWHcl+4WQTZ+QVEI8CHMVtyx6esAEXvbNE8x4bwG6GumC7HNdOCVkBrY8zUr7Q90JZKPXHmFrgTK7nk2Vd/z1wpElzzI2frMI783aFpbyhVvbaZh/qPX4cqGqy+YbS3jjuizzhKsOigdkYNnp2Tu7w5LyD+OO3ebqU83R9Pe+NRRph3w103Wbj4AghWF/UuqzaTnCcxCQC2VvdzqvRyvD5/doDeGeu1pU5npIYRUt+++vkTZiYG0wgo+YuQEjhqisjQEJrgGqlEy6UnRd2kth+KBgjtre8ASXVwYnf7RhiLXBmLpSNLX4s2lGmHON8kqJJUVpMAjzNMLNuuIFNQmB1Xd4CaXQoHXBNXr+SMllrqUhRMn+GGwOnanIcHs/6XkcLdjK2cwk9XNeCnDEzTTNDAsCsLYfxwLd5GL+qUH0vGgKo1Tn9ZgIchxMLHLUu985K1bzPxyPxz4i2wR8gmLGxBA0tQWWFnQWOd6kEgGJlzO+toJlTFTdSh5MAgf3m1snm10hpFM8CHA8hBAcdCgMUJyUC1Dg5py6UYVrg7JMn6M/t5VwojTBLkmLWTn+AqH3PLvtoOP2DtoO23WmNQX4sTcwtwg95B02ONqa22ec4uVe4rNxTiXPfWIRZijugEbd8thp/GL/O9PNIYra+hDu26ZxJ9yoUvyyjVonzLFQEfrelddKTEwEE3WspP+QV48ZPVmPWlsOo9/iQM2Ym5my1Vza6JUAcjkOLceMUt2tmtJQXY6ZtwYeL92jeiydLtxvB1c09mraxBM9M36r5Hiuc8WthKEEdcaT06wgIAc4CdnNGKwYEZKJu5twOWFazT79Z2eDFpLUH1Dokf/8hH/ePz8OBI0222mT2+tS/mG6Y7RI+UMrr3cWQGcG6PFlNkLwFjt5fdvzTv3crmbYSucq5tLZXfUt4lkO2nogTnGa9ag2sVYX/vTy5+4OC2xfL9yFnzEyMW661CG0prlXLRYxfVYinpm0G0Pr2t/gDqFMS1Dgpbk7vm50LpV+WbReAw8pmpFcXrQDH3yp9Yc/gtfdVNmL05E2q5cOji4Gzd6GsaQ5aemn/o9gXXSfKcfa/0+x+sr/LaHy11oVlT3k9csbMRCHnuhgJ+N78zapCjHxrMQpK9R4FZjjpuyELnLN+7lZbTvuS3ff8AVmXXZfOyVZD22zeNN/YhyxwtD+bCa/hbPaosEnb7rREBS/oPTN9K/4xdbOra1//0UpcPHapq++4hXq0sDGDPGv3V2HhjvKotWFPeQOjTDI+xujZuQmB06daD4WCpCUnKNcOT4Crb/GrGbapYquoqhFFimD4/sLw3HetsCrkzfb/SLhQuh03balIi0RyqEgRcCEUhxu7Z+hCyZ2KVbbTNVFY4Dox7ACmC9qRRm9o0jXoHK/P3q5LSkFhN4a0Y03fWIKnpm1RNYE0dbk3INtuzIzmC68/gIBM1LS5dpTXtd4Cx2I16fGWDVWrzU68yt+0TsvxvTM130lJCi4etSbZ4uxQY/UMnt3D363HV1zQs1ONHxCMyZq52Vyjawb7nJ0W8a5QXEfHryrUCOHXfLgCPyrxWcXVzZi09qByjdZNZHeNy8WwF+dx7Y6MBW7JzgrLY6jiI5mru8g/Qr45ap03rg3NXq2V2hvQ9kveUpy77whemxVUkPACtt0YZWMow43bYMeHXRbKcFyYpq4P9peZFtYIO8yUWfy7q5QYXSMrnKnW3IE2NTSXWLdTvZbL2+TUwueXic6t28u5UBpBn+GGAzV4cmrIhdrUhTJAVKHPriZmOO5WVElDv+u07qaR+7Fb9kVBkcBD77eVVTSa+AMyLn13qeoBYxYDSbP0asa4m+volFpQBaxjemSo13BDGmOBm5B7ACc9OweHGc8RekujsXlWs2wb9Gn2t0bChdKJkEQM9i70/Sl5B00zEz89fYvj8gRG2CsO2w43yrBwY/foo5UJCblQ8knLGBfKUF3QsC7XbhACnAVsZ6NFWFkXN6MNx2dL92FLca3hBsXIhZJC0++zAe/8xMpvHowGjjcgo85FXFuFkgo9JSkyXcFq0uM3AUaBpnwNrv7d0jXfSVEsIHWe8AKo2YmAJ6+oChs5jSxdV50sctd9uBKP/neD6zax/cyobtqcrYfxzWptMVF6zxITJF32w4NV+tiO1moH1xVW689p8aypVs5MmUHxBwgen7TR9hhA727MC0/6LJTG7aMKGNMYOE6AowWlgVCsKXU7crog+QLE1uprthCyz85IaLb73I5I7GEdJ00ixhtnQoipdladHxxkoXS6abTyniir8+iskU7Ls/gCMiobtEqxkAXO/EazfXlKXnHouqZWNQMLnMm53Y79Zm8Ab84JKix8Dt002e+2B+hamhijHRC/AadT6d9/yMefmfnQLxO8t3A3jn96Fjx+vceKHXqvhFBNWjqXuZ0zUhXL3cu/bMNPm4LKHzZGMoHJUtyaxG1GqApVgyazc7GpBc5kzTJSzLD3xReQ8eOmEt1x7HNk7/WafVV4cupm/MtEkf7f3AOmBcLrPD58t7pQdy2NJ0YbZkzJGTMTL/1cYPq5m/klbAGOCYfwmpQRoLdLlkPKLUKCruZ8YqyOghDgLGCzH1HlKTshmW241uw7gpFvLda9bzWZ0Zguql1gXWQo/16gdUkw2oR4/bLqjkn56xTz9PI0O15KhFYys8Vg08EatcQBJeTLrLcg7CwLunnwGxgqSIebAcsqpq3Fry9QqrpQWqya0zcW46WfC3BEuZduN0ysm6GRwDNtQ7HuPXrPEh3svgnjUtBavH5Zjf+ymovp/bLTFLrJvMg/Alpfi2IWA8dDN6Nmbp4ePtkO47SUpLPAGV9jxsYSzTh04ipqdi/4jYTV92KVncxpn6fH8daoALPo6r7jYMfqtoyAVXvPem0hLuQSqTiNgQvIBPWccolPYmKErqaRhadA8JyhGDi7TbLZGGTLA5z6wlz8Z0Gw5MPny/ahTPHMoN81igs1ghX0WrtpimZCDDqM2tICx9Za5ecc2senri/Gz/ml6vuyTDBB2eg3KEpeel9kmeDFnwpQXG0eU6q3wBF4OYUYXRNb/DJyxszEf5W484m5RVhjEGtNXSh3lzeo52KhfXZPeQNOfm6O7jluP1SHjQf0CkEnBFSFqkGyIOY9J3Op9rwGAhzz2z5dshdPfL9J56XArqvsuZt9wTmAxiK64dnpW/HcjwXIK9Leo6emhRK6tZUFjt6Xr1cWmh7jxtIa7j6EnQ/VRH0WcyZrgXt99g5c9M6SuEpaFCmEAGcCb0miG2XWQmI2SWw4YOxX7/HJ8PgCuO7DFXibyypENZe0c/oCROdbzPuUG12/yRvQTRrTNpgXeG7iihq3Fn4Ttrm4BnMLDuP/PlqpWZiA0CSktcAF/6cxcPyGlS644Wp6Q4Nc/5nXL+tSwTspHPqXyfmaCc5My7fVIJMovS6FtwaZ4VUEvQSbmDkgKDy/PcdZQV6KPyAbWlPrPT4mBs7CAudwonai2feZPAP+PsuKdnn57gqU13nUTSgPLeRN+yrvYsk+A16DmsQpOozuUWlNM0ZP3oRHJq5njrN3oXSSyMA4Bo4R8GJUH0gfUG4mjAX/5/ut30KAc+JC6bTAb6gd7uY7s0Qq+j5JdP1StcA5cKGk+A3mRiC06fYHQpsUO8vM67O3655HWZ0HJz47WxUO6lv8+I+iIKSxrmzb2XG6rbTOdDPECpN8NlG3RDOmiI41q8LskaSgtBaXvrtMFVyM5i4jNMpN5X/ad/OLazB+VSH+OiUf2w/VYegLc1Xhi8LfwwAJCf7qPK6cj8ZuvrcwKMg/M30rbvt8ja5N1IUSMJ7/eOGCfz3qveW4/uNV+h/rANqPjQQxHzOPG82lzd4Ayk2ShBnX1wydj7qI8uVgfIwSkb0m7VcyIfhxU4mrXAPUgs8rZiYzyYDaKgbOifu1Gwuu02ON+m2wPaH5lT+G3dsFmBg4WlqrqrF1ZTPikaRYNyBe4TeWdEC2GMSx8dR7jF0YW/wBLN1Vgfxi/UZeTcOvdM6Pl+zFaUd3s2yj0Vio9/hx+xf6SdcMasmKVApcfiN37Ycr0a9rmuGx1NrEDmq6kNUoMW5mm7rGlnAFuOD/RhtMX0DW+azT4wMywXsLdmPkib1w5jHdLa/hDciaRY5y9QcrDI9nlQJGLpRsS2mzjY4zw8li2ez1o+hII/ZXNuLvP+SjR2aK4WTLuq5aTcZm8z4hwMdLQhm1eGuxEX7VUitr3nt15nbNcTIBxs7bpUv1z/PqrO2459wcdZLn7yUbx/PVyv2az6gFLmiVI4aaUNpn1xdVIzMlOMX6ArJt0iPW7YNF6yIZeQtca4b+qr2VGNyvq86Sobq9IngfTuzbBVlpyaE6jNx5/LK5C6WZBVb7fbpga99/deY2DO7fFTecebTm/bCzUHKN4NeJaz5YocuW6g0Y/2YWfjMSivPQHpcgSQgQonhoKBY4G2XWtA0lGDPqZCzfVYnumcm4+OS+ahzUT/mluOvsQdprM+PBZ2Dl+51Se7Pwjat016LxpZHALxMk6afRiEDXbiMPBn9ANizb45QPF+3GO/N2ae4P3TxSpRI/Tk3jXw3GdsilnO5JAphXUIaGFj82F9fgjrOOUQcLvwEPyHoFQ7hJTIzOL0HSvdfsC7gK0fjblHx0S0/G89ecovtMdaG0U2QZfH79xyvV0AzdeW1c080ws/rRflXX7MMT32/C4P5dMfuJkbbnY5G4GSMrLUm17rc2pn3F7kqcfkw2uqRaiwBOBDg3c6nTeFz+ODrtev0yk8SEH0NKe0hoXSakY2eiFBY4E3gLT4JqgWNcKE06Lu9CQ/H4AqZBrY0tfnh8AbVz/pxfile4DSpPJIKE1ZpYrdDosIplo4nlzEHZht9rMfBllokySJX2+JjPZm05pPraUxcFIGjlo2UUrCiubsKXSpISvcZbhkz0giFrlv/3gl244eNVmsyPhnWfXAhXgLZP2cWMhY4zdiMIl11lDfjt20vw2qztqGzwYldZA/ZV6O8pG1/51pydWpdimfVPNw/Kf4uxBpoJcEt2luMzxeXWx21cAGDRjnLsLNMuxgGZOOoHAPDsjC3qxlqf5MT8GSQl8pYj/e+kSVE8PlldPPwysVWSmFmH2WvY1YFry+xkAZngji9y8fuv1urjEZU2NXsDuPGTVfjThGBsKD1Ot4ENmFvgnHRxMxfKL5bvx1+n6Osquh02ZjFwur7jC+hqprG1OZ26dpnVMWI9QdQkJn7rGDjK35QMx4B1xj72N6llBMJwoWwtdhlseUpqmvHofzc4cpUKufLqP3t73s6wLUQA8M68oAWLnZvpPaUeHjohyiLWkUK/Q/+nGXF9AaLOObxFkVdOsZtb9drU3czhoGD7JLtRVt/jFWIu+8SWkho1hILHKgulpt8arMFmwpvZ+Zy4KbLPkR1HCZzHVjjue3d9mYsHvgmVsWAVQ62pA3e41oO7vszF3w3mRR4n9yAaMXBGrr9AcE6g6zY/ZgizV2tPpXVagxDgTDBbiNhEHGZjyMxU6/HJGpM7y7SNJTj5uTmuNCuR6KTU8ieT8CcFVvtuNEDN9q3UmsleVyZEI+SyG9JHJoYShLB14K79cCV++/YS23Z+yWSY5G8d3SzwLpRqnBTz3FjB2mhidrvxYK26RpY1I819CxfHFSnsLJsbD1Rr2si6At/+xRqc+OzsYLtMbgHfZ82yiU7fWIJxyvMyipU0zCI6Yb3OxdGMKXnF2KDEGPBCs5UQzV/WaIFj5wjV5SegL1iut7TR/7Xvs/fyts/X6Nw62eN9bbhw0fu07VCd3pWQWXCBoJIFCP0Wfq7xy7Lt/GM13zmJUWM3qPS4s19biHHL9znKLgkYxWHaj3W1/xq4V/LtUa9HXSi5C6YmhYrR80lMrLC6L3wfZvu/T3WhjJxLtFPcWpPzCqswc/Mh3O+gdhu9HZsO1uAnzrV/Y5F5aQE30L7/xPcb8YZS5ofGWPNrxKLt5cgZM1N3Dva50e+E4uSpMCOrz1DnDs7NZWwfpPc3tDkOzVVWLn9GMbns+OF/G6sQcxL60ODxm44rM/c5vl1uPFSAUEKupbsq8PVKYyUvoFeSsH2UHas0yZXbvQCgnWMWbA+VseiVGRLgWhPrTL2ueAWoEZF3oXRogTNQPADWFjhVASq33kLZXhACnAl8oWi/6m5FNV3mm+dyk+LYHl9ALbQdLqxAEwm3R3ZCDTdjlEaAk/WuYmaTAL2XvADXyLTJbKJqCtOFkr0OC50U+CQmaq0wk029UZxV7r4qU197npSkBHculNxxkXJ9pdhlMH3x522a5ARsPa+1+6vUv60scCy0vhoPu4irrkPMOc2SD7ipSUPHolUMHA9tA12gAzLR9XejZxgcF/x7nABHgufSJ2PRfpF362TP42d+U7S1kOx9492gaTvMLA38xqagtE5X05DH6vfQ575q7xF8uMi4/hQ7Vmgw/OE6D16Zud12wVdj7HRZ6Oznc+pSH0wg4Wxc0PNO31iK5btDZTZot2/2BZgkJvpNNA+rOMwZMxNbS0MWDl0he40LpTL/GawNRtczS3YSTkIStwpFeg/NPGBY6BhbsL1clwXXao3efqjO1IuGh97XHzeVYnd5MKbbzAI3x6Ruq5GwFFJ8hqxRodh582cJaBM88EoP+t0jjV5dZmOWgEGbfOr4q8SMjdqYeyrUL9hWhsHPzzE9L6W+xVyAM8tAyLYFcO7JQqHnu+ertWoJJif9jx077OF+ddyEIcCZ2NLZdaE1Scnons/JmHSioHKjRHaafIV3p2ddKM2EeNaF0sgTJRxhOt4RApwJvCaRCjd0QkxLSnS9QQpa4FrXiczS1oZLE+OKGK72lN1L+wP6WBYzbRhtvlaLpRWizOJi2HZTnMRTUcw06U3egOa+0uPMNIcVBsL66MmbcMm7S7Fqb6VtweK0pATOhVL/e+dvK1P/phNTyIXS8vSuqW9xl91zzb4qw/ed1DQDQrGORu1QNyUGbndmAhzv4sjDxmI4iYHj4RUK/oA+W6zRoucP6F0o95Q3aPra1PXFOO7pWSjhrLpm95gSMHCxPPHZ2Xh4QjCJygPfrMN1HxrHX7YG9ndqrYChe8LfW7+6WdTei99/tVZXKoPHatPCXo+6sLEEk9qElCoBmWg8Jezmcnpt/jgrTb8kBZMe0LIAwQQSDjcwynHbD9Xh7i/Xqu/TLtRkYIGz+g18rUM2oZRZ0pXg96gFTj8mjOZbXvEZukb0BTg3VhfLe2VyHo8vgFHvLcdj/9WXPZm95RAm5mr7r9F5VAHOxBOH55KxS9W6gvQ7ob1IKBkT/e38NY2S7oQUYzLyD9Zgg5JYxWkNUnZzTJ8rfVbLd1dixiatRZO2d8kuZ0XRG1v8tnuGmia94o/tL05/C8UuBm4ilxyGoildYGCFdCtIWlHn8aF/t2A+gdZYmJwoOChOxmAkXSjL6zzwB2TdfMEqGcwscCEXSvskNx0FIcCZwG/Y6QJGF6i05ATX7msef6DVWgD2+5Fwn2MtWeFoiwDeAqf3P7abTPnfRAW47Ixk0wnEaKOwYnel4zabJQ0AtCUK1FgeE+G2wsTVpN7jxx1f5OKq9603zmnJiVoLnI0QzVtJo1EsNRKYTeq80qGG2wQWlNbimg9WYEtxrc7Vh52UzVKy22WVY4O26SN3EwOny7AmE2zlhHR20fYzGxz+t496bznenLtDfb1sV9DSivG7OwAAIABJREFUsp+LPfz7D9axChoLnBwqhUEF/wXbyw0TJ7UW2m8Jo9UHlAyJ3MaOfirL2vfdYGmBM3J3YsbGiNcW4vw3F4eOJwRHGoPKly6pSQ7cN43Pa/U9CaE6m7SNTn+3qQVbuXazN6Ar5G21qeNLbhjFVgHBvmtUokWtNcf8diPllWnoQRgbWbdCn9NSB8Fzmz8Hr0lb6bxglFr/TxM34Jnp2sLMRuuemQulE9SkNYyyEYCy4TW2wPEESKikjC9AcN1HKzG3oMzyux8s3I3Pl4VKAGmsghYWMcqD363HlHUHTT/nkQmwq6ze0KWU8v26g9ijWDXVdtnUU7XCLgulGZoYuIB+TPG1b3nG/G8zzntjkeY9syW9weNHVlpw/XKiCCKEGK5lVIngZHRFOgbOKktynceHEa8txMu/bNNZ0Og+xy8TdS7h9z70NTFRlPkCBGPn7cR7C3ajzuNzlRk0XhECnAm8gECza9HOnxqGBa7ZG2i1FkCr9W7VqQBof2f4LpShv40sEnaLCjtJEELUOKzs9GRXLpQ/5ZuXSwieO/S3mQsloI0DUzdMZgJcQwsSEyRkppinS/vXz9vw7Iwthp+lJSdqywjY9A+zYujxhpOsaoA+Bu6Bb/KwpaQ26CKmuCcaWT/M+pSdQJuRos+gprPAOXChVF8HZNzAJTwwcok1UmwAwC/5h3Tv8UKtHXymur0VoY2N1SZo5uZDyBkzE0cajF2+7dC6D4X+DpZMMLYIqO5bYUxehUeaLNKta89XXu/RxTaxEBKywGWlJdlq4Nnfp4lLsrTASRqlmFUMHI/Zxoleu8kXssDRuclSKOE+o9acdYXVqKwPWTNOenaOocVXTXbF/HajOdFsDXGiHMwrrMICA28DCh+frLuGi7XVqj1mwhXdODotPGBogaNZBMPo/7yVzcM8E/qel1OY8MgyUZ89P2bM+vLY+bvw2qwdagp9f4CEEqiYjHOWivoWPPm/ze4KkDs4lk9YpVFEuFRG29WBo+hjoJl5gdBjQgKEnfL6+3UHdR4XZj+93uNHVlqy7rpmfLZsHwY/P0eXk6Ghxfn6YrrOGsQTA8Avm0t15ZIWbmfHtPmDpeEb87aV6ctsMDeeKkH0pQbo/9q6t1Tp5AvI+GDRHvx7wS5c+PYSSzfh9oIQ4EzgF6f/KcWU6YBMS05wbcaubfa51gwBwCMXHq/+zceL8dx19jGuzs3684fjQhnU2DIWB1mv/bDTNmrqt8ghC1i39GQcqvVg9PcbdZtMIy1xdZMPBaW1WLXH3hKnc6E0scDRwc+n6p66vhhzth5GZb0XvbqkGJYNoHy1cj8mrDF2wUhL1g5BOy2yWZmDeOLb1YW4Y1yu4We8G2EdV3KDr2HoDciq9YCdlM36VJPNJo+1wNFNaYtf1sRNWbm90I01TfHMb7QJIYYuaH6D2DbA2IrhRjMYkAneYhLJ+AKyTjNtxrerCwEEtd2A+8B4M2WSj0mqoIvBUTrslLxiTN+oL1Bvh1Fm3mDcoPa96z5ciSe+32R6noAcSjaVmZpkOJc3tPjVY9jPAw4tcAFGW0y/19oCvLJqgfOr46Gi3oO35+6wnL/5eYVt982f2WdcrPP4kTNmpuZ5Vjf50OT1YzZT3NhUgHNggft06V68Niv0fNl7Na/gMIa+MBebDponGKFtK6lpxh02pXT0yT3M3e/YjKpuMFrrQzFwrXcppc+7vL5FjbOk1zQ7P1uugx/vdnuTM16ejxkbS+CXQ2VyQnF49vuaSC9V/JD1aSxw4cXAqa8DxjHE/DMwCmn5v49XYfTk4NxjtE4ZxZ7x66AR9S1+df1ysvecpuxZy7h4fDculKYxu8R4Pnzsvxs15ZI2HqjGH77JU1+b9RNCCD5aHCovxPdf9msNioK9ttmH895YpNZH1taB098ftn93lJpwQoAzoVnZKD/82+MNP09LTnQdgzZ9Ywk+ZDqpU9irmMWdUAb376p5/e9bT7M8N7vo25n7jbjva23Gr70VDbiT27y3+GRTlzdAO6hZF8puGSkAgBmbSvE3zo3MaDH1+AK46v0VGuFhW2kdnp2xRfesrNw82Rg8epyHW9z+/kM+Hp6wHhUNLeidleqqzg0LL/jZLaLVnMUq1i6U55/QS/fe8z8WmB7/y2atxclOqz634LAq0LAbDrONs935MhkBjgrDLf6AJm7KLONeRkpiqCYZk8SExS8Tw2f4+KSNhhtsowWy3KQAOcvU9cWQZYJFO8p1yUScLk7U9dnNJoxFe13tvOQ30Mx/vXK/mvlsS0kt/jLZPo01y7Cju2FCbpE+e6fBGOAVATwBmeCIElvUJdXYAnfXuFyc+fJ89XgKezk7DTudS1KSEoL3pZVuE6oFzhtQ/16wvRwfLd5raM1V28Epfth+52beb2A2f/d8tRbDXpyHPzHZgc2EHH5M5B+s0fXTxpYAqpjYJnaML1MSudBspjM3H8KLP4XmmYr6FrUQNRBMZmOFPu7VXICj7XCr4PT6ZV1fNUti4gR+U8t6zyzeWaE5r1k/k+WQEsFMILRi+e5KBGSi1oILJfmy/z129Qrd8sdv8/DgtyHhoHUxcPr+YJTRl46bvMIqeP2yLqnc/spG5FsoGR78Ng/HPjVL9/6hGma+sljSQy6U4c8jrmLgTO4jOx9a7YN5bxIzJeGWklpMWht0s5WgfZbnvL5QLaQOhCyI5fUtKKlpxrvzg2s3HWvmLpQRcFmLM4QAZwJdiB684DicOkBfUDs1KcFVBsB0CwuNHQOy09W/7SxwGZwrX98s4yLaofOFzmGmPZ2SdxA5Y2Yafs4vlCt2V2L7IW0NlyZvwLJgpJfVYjFZKLulJ6vvb+FieIw0UJsN4nzuG78WE9Yc0Lkp8Pdud1nIasEKAfQyZpnHKupb0KtL+AJcKve9ww6zV1JiGZg749HzbJOG8PALq1020Se+36Q+10O1Hjz0XR6avQHTBdpucWLHB90A8efiM5ECwM+PnY+eXfTFzfUulcRU+1tQalzbiMfIKsfz9x/y8WN+ieFm02wTzW8mqVKFjmu3cTmsuxa7oN/z1Vr1PrHte4krf+CWq4f1h9cv44yX51vWMXOCTIiahCMtOcFwcWeLOWvdKRkXSpt7RvtYZkoimrwBHKxusjzevt3B/5t9AVcbcH5cuN3gUvjEJfx4MGtDC1da47qPVuK2z1frvsue30qhsGhHOf679oDaD37z6gJ8vbLQ0W8AjNymzTMf02dMj7GKs2WtCN5AQHed1sTAOUmgY5WlEVCswCbHOB1HvgBBOrfPcGKdPBIFq8c81uWW6S+tjYFr8QV0Qh0QdD0+WNWEmz5djdlbD2mEvA1F1Viy0zpRC9teltLa0P7ELAslAMaF0vmcx+YGaPYGUFwdvJazEijWrtyAsxIuoWONr8nOZZIkaa57qNaDpbtCmXjNSh3RU7OZVs2u0VEQApwJTcpknZ6caCh8pbq0wKUmh3+rT+ybhRevOQWAfRKTjBStoJRmEZtFSeI2cjzvKtYJJ5p9o0m63uOzFOD8mt8UWuS6pYe+49ZdlW6i6alHvrVY40rAn4618NEJgn2+ZlrqyoYW9O6SihSH9cd4eAvcj5vM43aMcJs1sjVcdWp/vH7DqQCAnJ4ZOH1gNpLD/N0UO4sZz9yCMmw/XKdZfLqmhfpJQ4sfA7LT8fjFJxh+n+2HakyJTaxNZkoiTj26G5ITElBR34I95fW6c1B8smwaf+F0vnDqQplrEKvkDxB17uLh+3CCMu6plrQ1LpTs+NxxuD4UA8LcWysrvBN6KHWQapp8GkEhnIxsATlUbzIYs2d+Dh/nTvXof0MWJ7tNEO1LGSlJ2H6oTi2kHQ5s/2lmLHBsO+3a4eRYK+wy/ZpZr40y7e4q07r6enwBzrppbPUEgmuE1y+jrjm8+Y9XsrBrHz8f0L5M4+CtYOtitvhl3fxQ3woLnBO8fhnjlu8zjf/cW96oPsNwa4mxFjiKE4HJafmFcGH7i2sLnIE7qZHw4g2EBKCqRq9GgTpvW5lrJRWdE52WHVItcIq0Uu/xmd5XOmZenbVdtVy/MnMbJq09oHzX/nmY1q1kS7IYJHo7741FuPidJXjou/Xc+cwEQmfXBfRzWb+uaZo2BWSiEb5pU43OGU55k3hCCHAmeJhsk0ZCUFpyoisLnNXWxSZxHrqlJ2NQz0wA9i6UvEDgxPLXVbF02blQNLb48XN+Kd5bsBuLdxhrmioNEiI0tPiRmWreDnZgPTJxA2qbfUhOlDQWODuXAT6JyEnP0nozoXu0m4kNYgcuP4jVIFmD58taQwFFgMtKdbw5/etlJ2pepyaFb5lta7pnJuPXg7oDCE2iyS4tcDxGsYx2sGmzAWDh3y5U/25o8SM5UTK1iGYrbrks/GNu4BY2eq6kRAkr9lTi0neXqZ/xi2AgYF7ry6lW2Kmmel9lo05b65dl0zhA/l7TLktdz9xuKulcRAjwz6mbuXbohYuATPDQb49zdQ2WnpmhZ8cu4m5q/1FkQlTrWItfn3iJhSbUoSzZGdIG22nCaV+ymv+cws5HTd6APiOq1abHwwtw4W1c7OpEmrnJzd9WhsnrDmDlnkpT91Z+/Vm0owwT1hiXlqB9uazeE5YFlh+3aibPgF7o2qik2Q/HhZIXFBujLMD5AjJembndVNn67wW7sFrJommVEdAKv6y3wDnBrMSEW845rqehQlhrgWtdDJzHp1eQAMFnShXBwVIezu+hlbDg1K0xS/nddPye+uI8/PbtJbbfo+7iND76qG5paGjx2yoV2bXslV+24cWfCpBXWKVNYqL8LnbdKalpxr7KRn0SK2beWbSjDG/N2YFmb0AjhEqStXKBP2dfpbQCW0aAnd8aVKu3dVxce8TcLNLJuXn4QJx9XE9IkoR0A+tZSmJCRLJAAkEBzaweFv2culVpg2b1x/KWICcWkqy0JFQ1em0zN42ZtgXri6rV15/ceab696kDumFLSa1mIjr/hF5YsacSMtHGHvHwA6umyYtu6SlISgi13cgfnSU7IwWN3mbd++zX2E0MuxniBzEd8EYWTv49X4CgV5dUxxm2eAEwnIWwrUhJTNBM4EkJCchWhOo65V4mJrTSAufCH5/S6PVrxgErOzd4/OiTlWra73t10QtwPLwApgpwBr+1ngs+t7LAObU28pk5zfAFZJ1VzRcgphsl3s0pUdEcWWkorWDHzW5dSm/eRS34um9WGjJTEjWJj5zSgxHgmloCQJZyrTA2ojKTYtuu6LnHwNpF4eur8dCNCe8ZEQ5sG5q8AXRL189FZvB9L9xyNnYWOKP6nADw8ZJQGvrTBmarf3+0eA8eufB4SJKk659fLN8PAPjdqf3111GOLa9rQd+uxmEChBCsK6zGusIqPHqR1iJfybkpUwucUb/8wzd5KHzjqvAEOG58Uu+O1iazYUlNSjCtA2dFuMYHvyyHFRISKQGua3oS+nRNRUOFuVXZ7cbcyD3VaD70BYga5tDY4jcUCswwahPdT7BugVbPxaiMgBOXe6ro8wZknH9CL1x4Um+8MnM7Grx+dE1LNv0eew/GrdiP1KQETNtQjOmPnqe+v2bfEazbX4Ubzjzath10rj5Y1aR6I2RnJGNAdoZ6jCS5W4togib6CAnRelTQuc8oQVyzN2CZgC7eERY4Ewb2yMC5SoIGOlkd1ztT/TwpQTLUXlB3RN4CYOU3bzWAgKAAR8+nscARgtMGZuO+83LU9/jrOrEM0UmBr9XjC8jIGTNTnbBY4Q2AJnjdaIPDCidWLpR8HFdZXQuyM5I1v8VuYcrO0N/DoEtOqF2HTVwo+Y0D3XQZ7QuNfmfvrFTHi/vxfbpoXqeFGTvnFKP7YgZr8QRClllKcqKkvkefR3Ir3eLCcX9ratHGwLF93C8TJCcmmFrgWCuOU6gwyFob6QaMF0CtYuCcalmrDYrUGtHY4te5z1i5UPIbKH5KcruptBICzJ5rRkoiksPs8z3MLHBhuVAyMZAB480apdlEGw/YF2SmGdMiYYEjmjnLr2uz1X2IVgwcj5UiklLAxBa+PXenWkjabA4tr/eodmYqEFFLVnm9xzBmFQhumG/5bDXenrtT53FRyVmo6Ji1UrJQ66IEYOmuCuytaMDGA9UWwr3emketHpG0wLECbGvrzDohENC7UDrBznrrlMQESVUksmizULYuBs7MAtfCWOAaW/yukokYCbC0W2oyX1ucIzsjBQmSe6UVHTcNnmAmS7ofs1Ogsv00JSkBX/x+OOo8fk2pgI8W78X/s3fe8VHU+f9/fbZk03tooYQOghRFwM6dvYHe6Sl31vMs9zvb+T09xFOxYjlsZwEFxIoiiqARlN4JPZCEQHrvPdlsnc/vjymZmZ3ZksIm8nk+HjzIzs7MfnY/8ynv/u6WXI9sl9r347/dXiF3QpTFhF8zqxTfn4DgnhUHNK9XE2UxSb+r2F8cVVqXxfmhWeO7dqY+ZW+CCXB+ECZoT0Nl7m5GA9F0sROlefVm2Bu+zg01Gzrqrqhi4KJDTXjuhgnSMXVSDJM/ApxFcKGUTTAtNieyK1r0LvFAa7IL91OAU09GxfVWxIaZ/Wq7aHGM03CNa7A6dNPsyxd09YZX3HRpW+A875UUZfHbv39ofLjidVdiI/1Ba6HTPVcl7MljEAFekBGf75vPHSwdO920OVwKy4daORJi8iLARVoC/rwOF0otC5ynALXqoHbR2sXb8zSPy4kIMfpdGqK53eUR0O3iOEGr6NlW9TPqEb/XSRdKOecMjUWY2ajrAhNuMfldR0tO1gtXIUFmPZVv2jsdAycmb/FhgbN6scDZffxmbfZutMAJ85FowQxECAs01lQPXwJcgx/uv2qlYqPViYU/n9BVcMgtDKKQJ27aqprtut9N/ozIN2+tQvycHJtKMFSTMi8V3wtlLyj4RD2XLdqOmz7Yozuu7U5PF0qAX2+6M/mUfP8QSIbBzuLkOL9i6wFgYEwoLh/fDwAUGUa7goEQRMqU3uLYlM85nclCeZ8so6WeW7XTLRPgHJ6JhLzhbY8gf4a93TMmzIzwEBNabC7dxDHfHSr1iKkTYy9bhGLgYjIUX8+LXEHVP9qCftH8+lnb6tmX3kp8iIg1SmuEUJvzRyagttWuGHeB/KbyvVdHGQGqcKsX+1FLgRBoaZDeBhPg/EDUNsk18AYdC5woQAUiwEWHeV/cCemI6VEkMeGolApcRL1xNQRigXNykkvYFW/uwA3v7fJ2mQItf3q5AOctS6N6s1dcb0VsuFlzwwwo+0HUbGu5Ita3OXT9zuXCmXoQ/5Rezpvh/cjyCYiTiH8TgTpmrKcFoBgNwVb3XNUzmxSlFHbE/sh+8Wq8/sdJwrGuWeA6g9WudKFUbwjNRoNuUpkEP1wo1YhjTEuh0KIqippe2qi5uPmL6M+vJv3ZKz2ONducHhtOp5svwzFAw63M09KsroUVoAVOY5MUE2ZGu9Ot61oYbjZ2SuAKDzEhPMSExy4fDUDZ9s5moWyXlZHwHQOnkz3NzzIC6hjdQJHXpYoXnuFANsSBuiov/MPZeP3mSR7H39mco3F2B/64xqr7653NOViyI1/3/DuW7Zfia97ceApnL/gFxfV8Ns/qFpvuJlT+jMhjwrTGp+hC6U3QFQucq88Ra8SqWbw9T7I0yGm1ubrNhdJsJIo1qadjeiioZhITPYYlhEsK5u7KF2E0EMX8rlXIvjMxcBtlGSLtLk5zPnS4OFQ2iTFwgfWjN2Ghze7Cd4dKMeWFX73uJaLDzBgaH45NJ6pw5/KOckmiJbCiqR3/9206pr+yWeHWLo6RFpsTUaFmRAp7Pl9FveX7zf5RoYgX9hNauQ78EeA+3JaHLdlVOFzUgKhQE5LjwlDb6lCsY1r31iMx0iIpMcXni+O0s1Bq1drrTOms3gQT4PwgLMRTA28kvEZU/ZiIgoraEhbvxXXLH2FPnLDULpTqPaV642r0lSEFvNXQbCTYdKIKZy/4FbtyagNPZ6+hNZEn6PC2OcyvbVO8drg4xISFaCbIeO2PZ+OPMl9rMbZO63s2tDl1Fw35JkI9sebXtmF/Qb2mgP7fWzzr6iVG+ifAZTx/lYew0dnslf4SiAVO/Rz2U5WgEN0lQ81GSTEQHAtch/Vh55O/8xgDFi8WuMROWODE22t9V/XmUdxYdhYtwQvQttRaHW7PtO5uDu1Ot2ZckLi5bmp3gsrqLYoE6n6ltUkSXWz1sgOGW/Stc/5wnRAP1VUXSnUSE18xcOq3RcWQr99MTKrT1XFid3HSfCRuovxxV5S3IxCMhCCiG6yGckQLv3pzJWb184Z8cygfc5/sLkRagXbNN/l3rm+zI72kEdUtNtRpbBBtMhezQMmvadM8nlPdqll4fnN2VaeSN2kRYjRoKhV7CodgmfL3Mx0urtvjvI2EKPZXonDflTpwakEsp6pF06WXt8Dxz0+bPVALnHcB7rl1mWi0OlFUp/08AfwaPTwxAqUN7ThQ2BHScqSkESX1VhToPIutNhfcHF+iibfA8WPbpwVO9v36RVukJGBacXfysive+OuKg9icXY1+URYkRlrQancpEncFIhSL4Stujkp9zlFtF1Ot7xpoXGtvgwlwfiBqm+TWHIOBwM1RDzc7caFWa+uX3TVN9/6+YuDk95UPKDfnaX3oTAxcg9WBUJNRGoCf7C7wec3syYMUr2cOT/A4R/7bBOqeFRtu1kwaYTEZFd9R3GRoDcR6q0PXn1y+hxBN8E9ePVY6Vt7UrunKNiQ+TNpEisjT2Hsj0mLysJj2tAUrrgsxcOpFWit2yR831+7G6nDB7uKQGGnBkPhwTyu00eChQBHxpkjxhVZfqf3qxcV33jXjOvUZugKczvdRxx04OV4w0bI0VjS1o93hxnkvb8Ls93ZrWOC67kIpPkN6rnbhIaZOJR0RERU23eFCKU9i4m1+0so2J2n9fVngHC5YTMYuj3OHi5M8AjrzDHem3Eh4N8Ttyfn31eMwabBnTVV/ytMU1ukrRl7fcFLzeKFMMZhV0YI57+/GvSsOat5LSmIi/E7eXP7l6I1Lbzy9JgNvb/JuyfQXs8mAcD/b2h202V2g1P+6tnYX1+0CpsGgzDIsKqa6EgNXpqrP+FLqCbz4k2dJAJvTrYqB83/u8SbAtdpd0nfyJsDEhvMCnJpbFu/Fxa9v1S1j0Gp3SgqNqFCTlM0yEAFuQHQYQkwGRFlMHlYyA/FPESOnX1SolFRMXTtYCy1lt+glZHW4UCCsvXp14LRcKLUSm/QlmADnB2Lcj8Jti/AulOq9iDihqwWnofHheFinNpWeBW7eNePwzPV8/TetJCb+uFCq3Q3kvDt3KgCgrKFd4dO+WadEgPraL+6dAYDfdL5000SPc5RFWbUnJT0BIzk2TNr0JMeGSbFj8REhijTU54/kBUetBfe19dm6mme5MC5uxmYMT8Dyu3lB+5/fpGtqakOMBo+aEN4S1Hx0x7mK1+r+6mkLllbafP1zlX2hfpa0hLXbZw7rXMO6gKj5FMea1m+qZ4ELxLVZjZaVplXllrHqYCnCzEbccq7vjFxaxMk2588KYx/Qf8bkBWABwQLncGvGXBXWWqUaesfLmjyshQEnMdHYJInKKD0BLiLE2CmLmXS9KMB1gwulooyAl+/e7nR7lCpo1dD6a9Fq5+MR1c9ooNhdnKQQi+uEAKd+Tv3BXyHGX5IiLX4lOpDzgSzTcaCs2FMo/f3MDxkAeCvBWxtPKWJEQ80GrM+owMasKjy7LhMAFJtk8W+jgXjEMM8am9Tp9nUHZqMB4acxi5743Pubuc/u4hS5A7oDIyEK75yOeo78WDQQ/wQ4uWB5uNi3+x8AbD1Z0xFTZXPig225Pq7gaWp34ss07ZIYAO+eq85orEVMmBkXjPJUlouKkZNV2nkLWmwu6f7RoWYpBs6XZV6+Jozpzydgi4sI8RDgpg2L99l2Nf2iLVJtz30aNU3VaCW8FgW425ftl6yCxXVWHNXoT60kJn3dAsfKCPiB6AIgX6zFJCbqOClx4zh2QLRiUiCE6LoS6KXYf/DSkdLf4kZfXchbLShquRKuuOc8NFidigK0ADBVSOdc2hiY5kREdC0d1S9S4S45IikC+TVtChcfvY3OO7dNxdnJMfjXt+kKwfG8lHjk1rQIn2PEtw+cj7LGdkwYFI0GqwPbT9bghTkTcPO5g3HT1GTkVrci9XiFdP3FoxPRaHUiLMQo1T6Ro5WFMjzEiHOH9ZeOv7Yh2+M6s8mARNkGSm+Tc/n4/pg5Ih5XThigOK4Wgrp7k6SmK1ko/SlJkZIYgTdunoQnVHXAOouBKPtGniJbxOrgkxCIi7iWFVpPMNY73i+Kd+XQ0pKKQ0qr0H2ehsvKwNhQaR6YmByNjDLf2kURuTVe/b2np8Rjf6FyoZPf20D4jGC1rXbNmKuNJyo9FqxLxiRhxym+rtmu3Fo88W06hiWEw2Q0YEz/SESHmkEIP39ZTAZEh5oRHWqGwQCUa9TzEuN5C2q1XXnCQowYHBfeaVdT8XspLXCBW/RcbqpIKqDVtyLqOnD85/NlDPxJYmIxGbtsqba73NIcGx+AUkZE6zn1RXdbTiYmx0juZzefOxirD2nHjsm5dEwSBseF+dTuR4QY8elfp6OuzSEVD04rqEdCRAjaHC7YnByGxIehpsWOssZ2TB4cg0V/mox2B4fvj5Tik92F2HSCX3/iws1469bJWPhzNt6ZOxXhZiMo+PFFKR/zdqSkEeuPV+Dh349GTlWrRxiAFvERIX5ZGwNB7kIZSHkOdYkYfxEtNv4KcA4XB4OBIMxs7LbNssFAFHP+B1vz8MClI1AhKAdCTAa/LCtzpgzCyv0dCafiws1o8NMt2UA6CtEPT4zQne/k/HSswuv7/ijQzEYDzh+RgD/PGIr+UaG4btIADIoNQ3iICY1WB9JLm/D8ukyP53FDZqW0P4oJ74iBe+rnHQErAAAgAElEQVT741ixuxDNNicGxoQiNpwPXbG7ONS3ORQuxaOEDNrxESEe8W7jBkZ5rE0AsPGfl2BQbBh+OlaOULMRta0ObM2uxuzJgzBrXBJsDk669/WTBuLzvUWoa3NgRBK/r/jjh3v5vTZHce3ZA7Eho1KxRl8zcQCWbM9DutCeF+dMwHtbc5FWUO8xHrSsfHvy6nDZ+P4ex/sKPbZ7JIRcDeAdAEYASymlr/bUZ/U0HUlMOjZ/BgNBQ5vTQ/v7x3MGI7M8C7PGJuHxK8bgvJc3edxHTZTMBc9kIJrWqpgwMxIjQ/DxznwcK22CgQDVLXaMGRClOE8tDLo5KpVD+MdXHcf7RVkwSKhJNm5AFIbGhyOjrAn3XjQc2ZUtmDo0Dv/6Nl1xr1ljkzBnyiBJazJlSBweuGQE7rwgBQBwx8xhOFBYj1lj+2Hx9jzcfO5gcJRiZ04tbpySjEcuG429eXV4c+MpTBkSi2OljRg3IApxESFYdvd5cLo5XPL6Vrg5ivEDoxAbbsbl4/vhj+cMRlxEiKR5njMlGXOmJEvtmjwkFpMGxyA5LgwzhsfD5lT63f/fqnRcMiYRj359VPG7AMBnewvx7Fpe6youhJeP74dNJ6qxI6fWox9CjAb8+5pxGJEUidH9IqW4yNRHLsKJihbER5hRUGvFvRcNl665YfIgyZpnMBAUvnodWmxOv4J+u8r5IxLwNvxz11E/O2orlp7w0501jdSPvtriCgDHSpuQXdkilQRQ743NRgPGDojC1KGxuO7sgVIcyrqHLoQef54xFPddPAITnvsFABQbjtgw/nOuOKs/Kpps+M91Z8FkIHC4Oaw6WKIo7AwA108ahKhQMz78yzk4b3g80vLrJeXJP343EvdfMhJ3LkvDxOQYxIab0S8qFHvz6lDZbMN9lwzH6P6RqGu148oJA/DahmzJzWTp3dOwNbsaJfVWnDM0Dst2FWBIfDjuOH8YnG4OO07VYNmuAlwzcQBumz4UF4xKRIjRgCMljcgqb8KmE9VYub8YE5OjMSQuHKFmI/528XDkVrWgsd2JQbFhWJteHnD8yNzpQ6SN0Oj+/HzkzYVy2rC4TgtwJqMBCREheHPjKWzIqMTkIbEoExRQISaDX22Pspjw0Y58NNtc0nzrTZjYfrIG1aqYj/UZFbjr/BTUtTo0lQwiudWtGJkU0eV6iV+lFUvW9HiZe6y3z+4KBgPRdef1lxnD45FW0LGpGxATiqsnDMCGzEpMHBSN1Yc8r+kfbZGEvDCzEeEhRvy/WaMwf81x6ZwbJg9CQW0r3r51CurbnKhqtmH68Hgp7rPw1etQUm/FsdImnDOMz4qaV9OKsQOiYXO6caioASMSIzCqH/+snjUoGldPGABCCM5OjkGIyQCjgWDZ3ed5tI8QvkbsLdOG4JWbzgYAbPnXLAC8sLIluxrlje0YNyAKyXFhyKtpRWZZMyxmA/48YxiOlTQiOsyMwro2uDmKSIsJERYTCmvbYDIasL+gDjOGJyCvphVpBfU4XtrkIWhFWkyS5aRftAXDEngL4S3ThiisjiJawnKExQiHNfDnJruSV6pqxafL6RdlQXWLXYqTVQtvUaEmSRhceuc0/E2WAXL68HjsL9C3yJgMBNdNGogv9hUDAFKPV0jCiUVQ3onKpVCzATYnh7nTh+L2mUNxsLABl43vB4eLw/DECFw8OgnfHSrFgcJ6fH7vDESFmtBmd2NjVhVMRoI/TRuCkgYrIkJMGBwXBo5SwZpWjA+35eHtW6fgxqnJWLozHycqWnQT2viL0UAwul8k3BxFTnUrzh+RIBVeFwUoQoj07MmJDQ/BpWOS8Ms/L0Ftqx3FdVYkRVlwoLAeXx8oQYjRgAtHJeLSMUmwmAy4ddoQ1LXZARBEh5pQ0WRDRZMNbo5DiMmASItJoSgbK+w1H79iDL5MK5LcY8cPiMaE5Gjszq3FPRcOx9cHilFUa8XWJ2ZJMee3njdUuo98bwQA+a9cK8XUnz8iAR/vLMBjl4/GxOQY7J9/GSwmI8ItRpiNBjx5lQ0zF27GE1eNhYEQjEiKxMbHL0Wr3YXDRQ34wzmDccPkQfh0TxEmDY7Boo0n0e5wo6bFrmmBW7arQPJy64sQb9XhO31TQowATgG4AkApgAMA5lJKNR10p02bRg8ePKj1Vq+gsLYNL6WewLxrxmHRrydR3mTD3y8diXeFjFwpieGYOSIBt88YBoOBIK+mFSOTIuF0c7hl8V4kCALKD0fK8Ng3R5EYaUFtqx3/unIMsiqa8fR1Z+FkZTP25tXhxqnJaGp3YkB0KEYkKWuG7ThVgwU/ZsLmcKPdyRcg/OflY/Cn84bg831FqGqy4V9X8XFcJytbsPpQCeZfO15yv1qxuwD1bQ7cc+FwhJqNCAsxIqOsCYNiwzziKiil+O+vJ3GoqAGj+0Xh6evG+611c7k5bMyqwtUT+UWR46hHNkyO4xPAqK0nnBBXqJeBsiukzEuV/p48OAZrH7pIcWz/05dJiTve2ZSDtzad8riHfLLpDjiO4rUN2Tha0og7zh+GqUPj0NDmQFljOz7ekY/qFrtis3vhqATszu2ooSLGtsgXaQMBxg2IRlZFM7JeuApnPfuLdL18g6Tm4zunSamUIy0mPHvDWXhSZll77Y9nKyZikWOljZj93m6P4xePTsQ5Q+MwICYUWeW8697a9DKvmZ/mTh+C3OpWKUB73jXj8Or6Dkvo9ZMG4ufjFeAof//PBTfepTvz8eOxCrQ7XHjq2vH43Vg+dTWlFOszKjFzRIL0jL+3JQeFdVZMGhyDi0cnoaKpHTOHJ4AQ4N3NubhodCImJkfjUFEDcqtbcfHoJM24A5FmmxPLdhZg+nDejWTmiASP59rmdKO0wSptGv2lpN4KSoGhCeG+T/ZCTYsdh4sbMLZ/FIYlhOu6ZHIcRbONT/6TX9vGx7yAt/bbnW4021xCCmsXRiRFYlS/SIzpH4U9ubWwuzn8bmw/bD1ZjZOVLUhJCMeW7GpUNtthc7gxbmAUnp89Ac3tLrz+SzYI4Qsxt9pdGJEUgS/2FWPG8Hjcd/EIDI4PQ2KkBfVtDkRaTJKyCQD25NZi+e4CNLe7cKKyWXr/mevPQlp+HUb1i8TRkkbkVrciv6YNd12Qgi3Z1ahpseGy8f0xICYU//khAw4Xh8vH98fm7CpFsqMJg6KRWe6prX3gkhEICzHimwMlqGiyScJfvygLwkOMitiqlIRw6fU7t03BgOhQ3PrRPgC8Mm7CoGjs0chQ6A/vzp2KJ1enw+bkMGVIrEIRNGfKIKw9Wu5xDSHAlWf1x968Oo+NzNnJMciqaMbofpFod7oxc3gCXrhxAiwmIw4VNaCulZ+DyhrbEWY2ItRsxOC4MGw/VQOO8uVGpg2Lx9CEcKw7Wo6UhHDcPG2I5F2wNbsabQ4Xrp80CDanGy02F8JCjNiVU4NJg2NhIATRYSbUtjgQbjFid24tzh+ZgFCzUbJIVzfb0GB1or7NIbnNnwlQStFscyHKYkJuTSuGxvOKF6ebQ15NK4bEhSPCYkKT1YmYcDPya1qRWd6M6DAzIi1G5FW3Yc7UQVLa+X35fP+fPyIBu3JrUN5oQ2FdG/pFWVDZbEd9mx0RISbYXRymDo3FxaMTsTOnFp/sLlS0661bJ+Oln06grs0hKTzlPHDpCGSVN+Pvs0bigpGJmP3eLhwrbcKKe87D1/tLMO+acdidV4s5U5IRaTHh3c05cLg4/N+VY0Ap8GtWFdYeLcMvmZXgKC8wXjgqESMSI/GHc5IxMZl3GcyraQXHUaSXNmFjViWumzQILjeHj3bkY+rQODx2+Wg0tTsxpn9g864v3ByFzelWKD3TSxox5/3duP+SEZJwvu1UDRqtDkwcFAO7i0NKQjguHpOECYOikVfdihMVzZg+PAGlDVY0tjtx6Zgk9I8OhcvNwebiEBHCZ+11Clloo/zIl9DdUEp5V9heUvCaUuo1bEULcb9pELxJWmxOZJY3w2QgOHdYXMD362kIIYcopfqJM8TzekiAOx/AAkrpVcLrpwCAUrpQ6/zeLsB1Fw4Xh735dTg7OQZRoaagZPA7k7lr+X5sF9zFokNNGNUvUuHmmvH8VdKm49fMStz/uVJFvOnxSyUt2OmE46jkxgbwwsCpqhaMHxgNjlLYnBxiwsywu9wIMRrAUQjFPvmi1hllTRieGIEQkwFtdhfanW6pbl6o2aiYoButDlQ225AUaUF8RAi2narB2ckxeH9rLv528QgkyzbSclpsTrjc/ELT7nRjaLy+kABAElLbnW6cnRyDzPJmnDM0FpTy2n+xTRaTAScqWpAcFya5eLY73LC73DAbDbrux4y+R7PNiSiL6bQspm6OT4duNhK0OfjEBImRFoQI8ZNZ5c2obLYh1GxAm92NuHAzpqXEw2ggaLO7kF7SiJ25tYgIMeL8kQk4d1g8WmxOnKxsQb+oUMRFmJFb3YpJg2MlYb6u1S5Z0QiAqhYbKOUFuo1ZVbhwVCLya1pBAZyqasHvx/VDSX07cqpbcM7QOFgdbhgI73FQ2tCOjLImnD8yATYnn5W1vs2Bc4fFobbVgcTIENS1ORAXHiK5IKmVCpRSabwxGN6wu9wwGwwoqrfCzVGMTIpQjFOXmwMFnxm1pMGKybLnXrze7uL8StjWl9FSVjMYgRJsAe5mAFdTSv8mvL4DwAxK6UOyc+4HcD8ADB069NyiIv0ATwajuzhUVI/P9xYhs7wZYSFGvq5Lsw3ThsXjozvOlSbfRqsDf11xAHYXhwcvHQm7i5OKVzMYDAaDwWAwGN2NvwJcT6mvtVQQCkmRUvoRgI8A3gLXQ+1gMBScOywe5/qRMSk2PATf/z/9mCkGg8FgMBgMBiMY9JQPXymAIbLXgwF4OuYzGAwGg8FgMBgMBsNvekqAOwBgNCFkOCEkBMBtANb10GcxGAwGg8FgMBgMxhlBj8TAAQAh5FoAb4MvI7CcUvqyl3NrAPTGILhEAJ655Bm9DdZPvR/WR30D1k99A9ZPvR/WR30D1k99gzOpn4ZRSpN8ndRjAtxvAULIQX8CCRnBhfVT74f1Ud+A9VPfgPVT74f1Ud+A9VPfgPWTJyyPPYPBYDAYDAaDwWD0EZgAx2AwGAwGg8FgMBh9BCbAeeejYDeA4Resn3o/rI/6Bqyf+gasn3o/rI/6Bqyf+gasn1SwGDgGg8FgMBgMBoPB6CMwCxyDwWAwGAwGg8Fg9BGYAKcDIeRqQshJQkguIWResNtzpkIIGUII2UoIOUEIySSEPCocjyeEbCSE5Aj/xwnHCSHkXaHfjhFCzgnuNzizIIQYCSFHCCE/Ca+HE0LShH76RqgLCUKIRXidK7yfEsx2nykQQmIJIasJIdnCmDqfjaXeByHkn8J8l0EIWUkICWVjKfgQQpYTQqoJIRmyYwGPH0LIXcL5OYSQu4LxXX6r6PTRG8Kcd4wQsoYQEit77ymhj04SQq6SHWd7wB5Eq59k7/2LEEIJIYnCazaWNGACnAaEECOA9wFcA+AsAHMJIWcFt1VnLC4A/0cpHQ9gJoB/CH0xD8BmSuloAJuF1wDfZ6OFf/cD+PD0N/mM5lEAJ2SvXwPwltBPDQDuFY7fC6CBUjoKwFvCeYye5x0AGyil4wBMBt9XbCz1IgghyQAeATCNUjoRfC3V28DGUm9gBYCrVccCGj+EkHgAzwGYAWA6gOdEoY/RLayAZx9tBDCRUjoJwCkATwGAsJe4DcAE4ZoPBCUk2wP2PCvg2U8ghAwBcAWAYtlhNpY0YAKcNtMB5FJK8ymlDgBfA5gT5DadkVBKKyilh4W/W8BvOJPB98enwmmfArhR+HsOgM8ozz4AsYSQgae52WckhJDBAK4DsFR4TQD8HsBq4RR1P4n9txrAZcL5jB6CEBIN4BIAywCAUuqglDaCjaXeiAlAGCHEBCAcQAXYWAo6lNIdAOpVhwMdP1cB2EgpraeUNoAXLjw2sozOodVHlNJfKaUu4eU+AIOFv+cA+JpSaqeUFgDIBb//Y3vAHkZnLAG8EupJAPIEHWwsacAEOG2SAZTIXpcKxxhBRHANmgogDUB/SmkFwAt5APoJp7G+Cx5vg594OeF1AoBG2cIp7wupn4T3m4TzGT3HCAA1AD4R3FyXEkIiwMZSr4JSWgbgv+A10BXgx8YhsLHUWwl0/LBxFVz+CmC98Dfro14EIWQ2gDJKabrqLdZPGjABThst7SVL1xlECCGRAL4D8BiltNnbqRrHWN/1MISQ6wFUU0oPyQ9rnEr9eI/RM5gAnAPgQ0rpVABt6HD30oL1URAQXIDmABgOYBCACPAuRGrYWOrd6PUL668gQQh5GnxYxpfiIY3TWB8FAUJIOICnATyr9bbGsTO+n5gAp00pgCGy14MBlAepLWc8hBAzeOHtS0rp98LhKtGdS/i/WjjO+i44XAhgNiGkELy7ye/BW+RiBTcwQNkXUj8J78dA252C0X2UAiillKYJr1eDF+jYWOpdXA6ggFJaQyl1AvgewAVgY6m3Euj4YeMqCAgJLq4H8BfaUT+L9VHvYSR4pVW6sI8YDOAwIWQAWD9pwgQ4bQ4AGC1k/QoBH+S6LshtOiMRYjmWAThBKX1T9tY6AGLGobsArJUdv1PIWjQTQJPo3sLoOSilT1FKB1NKU8CPly2U0r8A2ArgZuE0dT+J/XezcP4ZozkLBpTSSgAlhJCxwqHLAGSBjaXeRjGAmYSQcGH+E/uJjaXeSaDj5xcAVxJC4gRr65XCMUYPQQi5GsC/AcymlFplb60DcBvhM7kOB58kYz/YHvC0Qyk9TintRylNEfYRpQDOEdYtNpY0MPk+5cyDUuoihDwE/kEwAlhOKc0McrPOVC4EcAeA44SQo8Kx+QBeBbCKEHIv+A3PLcJ7PwO4FnwwshXAPae3uQwV/wbwNSHkJQBHICTQEP7/nBCSC95acFuQ2nem8TCAL4VNST748WEAG0u9BkppGiFkNYDD4N29jgD4CEAq2FgKKoSQlQBmAUgkhJSCz4AX0FpEKa0nhLwIXkgAgBcopcxi2k3o9NFTACwANgr5ffZRSh+klGYSQlaBV5C4APyDUuoW7sP2gD2IVj9RSpfpnM7GkgakNyjqEhMTaUpKSrCbwWAwGAwGg8FgMBhB4dChQ7WU0iRf5/UKC1xKSgoOHjwY7GYwGAwGg8FgMBgMRlAghBT5cx6LgWMwGAwGg8FgMBiMPgIT4BgMBoPBYDAYQWPNkVKkzEtFdbMt2E1hMPoETIBjMBgMBoPBYASNz/fyXmNF9VYfZzJ6M7NmzcLSpUuD3YwuM2HCBGzbti3YzfAKE+AYDAaDwWAwGEHD5uQAABYT25b2Bnbt2oULLrgAMTExiI+Px4UXXogDBw74vrAXQAhBbm5ul+6RmZmJWbNmdU+DNMjKysK0adMQFxeHuLg4XH755cjKygroHmykMBgMBoPBYDCChs3lBgC4ueBnRj/TaW5uxvXXX4+HH34Y9fX1KCsrw3PPPQeLxRLspvU4LpfrtHzOoEGDsHr1atTX16O2thazZ8/GbbcFVgGmSwIcIWQ5IaSaEJIhO7aAEFJGCDkq/Lu2K5/BYDAYDAaDwfjtYhcscHYXF+SWME6dOgUAmDt3LoxGI8LCwnDllVdi0qRJWLBgAW6//Xbp3MLCQhBCFIJPXl4epk+fjpiYGMyZMwf19d5Ls4n3+OSTTzBkyBDExcVh8eLFOHDgACZNmoTY2Fg89NBDimuWL1+O8ePHIy4uDldddRWKingX3EsuuQQAMHnyZERGRuKbb74BAPz000+YMmUKYmNjccEFF+DYsWPSvVJSUvDaa69h0qRJiIiIgMvlQkpKCjZt2gQAWLBgAf70pz/hzjvvRFRUFCZMmKDInH/48GFMnToVUVFRuOWWW3DrrbfiP//5j9fvHBsbi5SUFBBCQCmF0WgM2GrYVQvcCgBXaxx/i1I6Rfj3cxc/g8FgMBgMBoPxG8UuWOAcTIALOmPGjIHRaMRdd92F9evXo6GhIaDrP/vsMyxfvhzl5eUwmUx45JFH/LouLS0NOTk5+Oabb/DYY4/h5ZdfxqZNm5CZmYlVq1Zh+/btAIAffvgBr7zyCr7//nvU1NTg4osvxty5cwEAO3bsAACkp6ejtbUVt956Kw4fPoy//vWvWLJkCerq6vDAAw9g9uzZsNvt0mevXLkSqampaGxshMnkWWFt3bp1uO2229DY2IjZs2dLAqXD4cBNN92Eu+++G/X19Zg7dy7WrFnj928VGxuL0NBQPPzww5g/f77f1wFdFOAopTsAnDFVzxkMBoPBYDAY3QelFPVtDgDMAtcbiI6Oxq5du0AIwX333YekpCTMnj0bVVVVfl1/xx13YOLEiYiIiMCLL76IVatWwe12+7zumWeeQWhoKK688kpERERg7ty56NevH5KTk3HxxRfjyJEjAIAlS5bgqaeewvjx42EymTB//nwcPXpUssKp+fjjj/HAAw9gxowZkmBqsViwb98+6ZxHHnkEQ4YMQVhYmOY9LrroIlx77bUwGo244447kJ6eDgDYt28fXC4XHnnkEZjNZvzhD3/A9OnT/fqdAKCxsRFNTU147733MHXqVL+vA3ouBu4hQsgxwcUyTusEQsj9hJCDhJCDNTU1PdQMBoPBYDAYDEZv5duDpRBD35gFrncwfvx4rFixAqWlpcjIyEB5eTkee+wxv64dMmSI9PewYcPgdDpRW1vr87r+/ftLf4eFhXm8bm1tBQAUFRXh0UcfRWxsLGJjYxEfHw9KKcrKyjTvW1RUhEWLFknnx8bGoqSkBOXl5Zpt1mLAgAHS3+Hh4bDZbHC5XCgvL0dycjIIIX7fS01ERAQefPBB3Hnnnaiurvb7up4Q4D4EMBLAFAAVABZpnUQp/YhSOo1SOi0pKakHmsFgMBgMBoPB6M1klDdJf4uulIzew7hx43D33XcjIyMDERERsFo7Sj1UVlZ6nF9SUiL9XVxcDLPZjMTExG5rz5AhQ7BkyRI0NjZK/9rb23HBBRfonv/0008rzrdarZLbJQCFABYIAwcORFlZGSjtSL4j//7+wnEcrFarrhCqRbcLcJTSKkqpm1LKAfgYgP+2RAaDwWAwGAzGGUP/6FDpb2aBCz7Z2dlYtGgRSktLAfACycqVKzFz5kxMmTIFO3bsQHFxMZqamrBw4UKP67/44gtkZWXBarXi2Wefxc033wyj0dht7XvwwQexcOFCZGZmAgCamprw7bffSu/3798f+fn50uv77rsPixcvRlpaGiilaGtrQ2pqKlpaWrrclvPPPx9GoxHvvfceXC4X1q5di/379/u8buPGjThy5Ajcbjeam5vx+OOPIy4uDuPHj/f7s7tdgCOEDJS9vAlAht65DAaDwWAwGIwzF6e7Q2hjMXDBJyoqCmlpaZgxYwYiIiIwc+ZMTJw4EYsWLcIVV1yBW2+9FZMmTcK5556L66+/3uP6O+64A3fffTcGDBgAm82Gd999t1vbd9NNN+Hf//43brvtNkRHR2PixIlYv3699P6CBQtw1113ITY2FqtWrcK0adPw8ccf46GHHkJcXBxGjRqFFStWdEtbQkJC8P3332PZsmWIjY3FF198geuvv95nyYXGxkbMnTsXMTExGDlyJHJzc7FhwwaEhoZ6vU4OkZv9AoUQshLALACJAKoAPCe8ngKAAigE8ACltMLbfaZNm0blKTkZDAaDwWAwGL993vglG+9vzQMAPH3teNx3yYggt4jB6DwzZszAgw8+iHvuuadT1xNCDlFKp/k6zzNXZgBQSudqHF7WlXsyGAwGg8FgMM4MnG4Ks5HA6aZoanfi9Q3ZmJYSh9+P6+/7YgYjyGzfvh1jx45FYmIivvzySxw7dgxXX61VYa176akslIxeTlp+HRauPxHsZjAYDAaDweijpJc0oqiuzed5DhcHl1vbPdLh4hBm5mOk0grq8MG2PDy68mi3tpMRXL788ktERkZ6/JswYUKwm9ZlTp48icmTJyMmJgaLFi3C6tWrMXDgQLzyyiua3/maa67pls/tkgtld8FcKE8/KfNSAQD5r1wLg6Fz2XcYDAaDwWCcuYh7icJXr/N53qh+kdj0+KUe781fcxy/ZlahxebEyKRIZFU0+3VPBuO3iL8ulMwCd4bT5nAFuwkMBoPBYDC6mQ0ZlVixuyDYzZDIrW7VPO50cQgxEoSYDLA5O8oItNldqGmxn67mMRh9CibAneE025gAx2AwGL2RtUfLsCvHdwFcBkOLB784hAU/ZgW7GT5xujmYTQZYTEZYHR0C3A3/24XzXt4UxJYxGL0XJsCd4bTYnMFuAoPBYDA0ePTro7h9WVqnrrW73OhMiERTuxOPf3MUzWxt6BUs21WAlHmpCsvUb4HC2jZsza5GdYsNDjeHEKMBFpMB7bLvmV/rO7aOwThTYQKcDqsOluC2j/b2+Ofk1bRib15dj3+OHi3MAnfGcry0KajPHoPBUJJb3YIv04oAoEsbdpvTjbH/2YA3fjkZ8LUf78jH90fK8Onuwk5/PqP7+HBbLoDf3lo967/bcM+KA5j+8mYcKGyA2WhAeIgRTe3dozi4Y1kaXvqp91sfGYzOwgQ4HSqbbNiXX6+bNUlNk9WJj3bkBazxvGzRdsz9eF9nmthp2mUuCswCd+Zyw3u7Tvuz15sprrNi+6maYDeDcQZz0/t78PSaDLg5inHPbOj0fVrt/Gb/mwMlAV/rFtYwltyqd0ER/IRzPUVNix1mkwE3Tk3utnvuzKnF0l3+xf9d885OXPXWjm77bD3KGtvRZGV7Lkb3wAQ4HULN/E9jc/knwM1fcxyv/JyNtIL6nmxWtyDX7P7WtHoMhj/8mF6Og4XKsfq7Rdtw1/L9QWoRgwG0CIJXaxfnZVGPSDohg3GcIMB15mJGj+Hmep8A151ZzEOMBOMGRGm+Jz6TlNIecSU9UdGMk+Ak3usAACAASURBVFUt3X5fNRe+ugW/W7Stxz+HcWbABDgdQoWaJHJrlTfq2xwAOj/Jns5yDk6uQyhlSUwYZyIPrzyCmxcrXaR74waJcWZhMfFLclfjzzqe5cCFMPFaI9sd9Cqcrt43Pznd/rWJ82NuNRsNulZfh+AJtXx3IcY9s6HPZKa0OT3jUMW9IoPRVdgUrYMowPmr7elY9DqntbT7aenrDlyySZe5UDIYDEbvQFx3uhoH5BQ2vJ2ywAnLA7PA9S4cfoZznE7UbdITrOTnOVycpsI6xGSASWf/ZHfy168SXIJrW70LcD2hEH93cw4Wb8/z+/z6NgfGPbMBH+/M13zf7nLjqe+Po7rF1l1N/M2xMasKh4oagt2MXgsT4HQQF1K7yz8BziVYtTorwLXZe9YS9tjXR/D4qqMAlJYGm7P3LQqMrvNVWjHe+CU72M1gMM5YKptsKG2wBnSNZIHrJgHO3+Vo84kqlNTzbeWEzS9hAlyvwtkLBTinTPF8qKge5728CT8dK/c8T9b2C1/bgmoNQc9sNMCo88yJ+zCr0yWd642eUIi/ufEUXl3v35rabHPinBc3AgBWHSzVPGdDRiVW7i/Gwp+171ne2I7q5jNbuLvvs4P444d7UNVsw6j5P+NYaWOwm9SrYAKcDmGSC6V/E4GWJ8H7W3Nx0we7/bq+zd6zKYJ/OFqO7w+XAVBOpv4maWH0LeavOY73t/qvLQwEjqPdlimsN8JcKRndwcyFm3HRa1v9OpfjKJZsz5Nikmt8WBh8Ibq2ET9dKO/99CCueptP4iAJcF1qAaO7EdftA4X1HvG7/vLZ3sIulSSwu9xosTmxIaMSf1qyV2FZyyxvBgCk5Xu2zSETqGpa7JjxymaPc0KMBl0F+GVvbgfQsR/TE2YLa9uwdGe+opZcMJD/Bg4dYdIti+vT4oJXt2C6xu90JrIzpxYujmLFnsJgN6VXYQp2A3orHUlM/HWh9JxYAknh3NoFC5zV4QKlQITFv+6Ub1BdbLPKCJAPt+fhjV9O4sDTlyMpyhLw9evSy/H7cf0Q6efzerpxujkYDcZgN4PRDWzIqMTguDBMTI4JdlO8sr+wHgtl2v3a1q7FyXTGhVLc9IrrQ2+0+JzJiP1xixC7W/jqdX5fSykFIQTvbs4BwFuIRC+jQJj70T4cLu6wgshDMMRHTStbpj/un2Yj0RXgWmwuRQITvWfz9mVpKG1ox46cWp+f5w8l9VZ8tb8YT1w5NqDr5EKZngDHXJX9R3wsTmOqiD4Bs8DpEHgMHP+/qPmUB+2qNfqUUuzKqVUM8jZH5wW4Kc9vxITnfvH7fHngMVukfztUt9jw2NdHetwdd08evzgeLwvcneF4aRMeWXkEz67NAMCPk9Md1O3L6tzucCO3uvU0tYbRkzz4xSFc/79dQW3Dr5mVmm5lAL82LNtVgBzV8+YrxscXkgDnx7lqC4C4XOltPEXcHMWK3QWSexulFBe9tkWKU2J0L44uJDERFbWSa6GXW734UxYmPvcLvt5f7PGeXHgDgEZ5SnwvgojWs6RW4Jm9WOAAvu3tPgQ4UQmxw49yMAcL63HBws1eEwY9vuooPtyWh6yKZp/3kyPf8lU227Bke57HPlDK9srKdfhEFHK1vGN2nKrBiQD757dClwQ4QshyQkg1ISRDdiyeELKREJIj/B/X9WaefsI0slC6OYqv0oo1Jw/RAiduDm9evEd6T50o5It9Rbh9WZpC6OrKpjvQ4Ga3F+GS0XdZvC0fPxwtx6qDHRuolfuLPTaDf/v0AOavOS69DjTge1RSJAD4JeRYHS58lVYsfUZjOy+sVTfzbfrvrydxzosbT6sQ52u8/P3LQ7j8ze2wdkGpwmCI3P/5ITz01RHN91YdLMGLP2XhmR8yFMe7mmVPcqH0Q7uvziQorm++xsn3h0ux4McsfCC4ars5itKGdjz53bHONPk3jz+ZGL3hr7K1ze7yiN0X13lRkHLqtMXl5rBsVwFa7S7M+/645jlyNmdXexzTWk4+3Obpzh8VqhTgQkzeBbjc6lbpe2SVN+Pi17cgs7xJcY5WEpQ1R7Rj0N7ZnIPyJhv25NZJx9S/sfh5ge7P1GvqwvXZHsYA0VWZyW++Eacxt8bDdefy/bjmnZ2nuUW9g65a4FYAuFp1bB6AzZTS0QA2C6/7HOo6cCv3F+P+zw5i/prj+GiHZ1YhtduJXFOljhc6VcVvfOV+2j0dAydHXkbgs71F2HrScxJm9D1iw80AgDqZ+9VT3x/HU6qFeNOJanyV1qFd9TcVdMfnhAAA8mvapGMnKpo1BcEXf8rC/DXHsVtYJMUMqOJCvSGzEsDpTa1s95G4Z58Qv1DbwrfphyNl+DFd24ISCJ/vLfR6n5J6Kyvy2k1sya5CVTcnALjw1S0KxUegaI0PvefenxjTlHmpeP7HTM33AnGhVG9axY2mLwucaA2pa+OFTeaOr8+R4gaMmP8z9uXz82C7w43yxnbNc6ubbUiZl+phRVL3kygQbjtZrbAiTXjuF1zz9k7Na6X/dfo20OQfcsFMfNTcHMWTq9ORI6ur9rWGVXZIfDiiZUKcLwuc3JL+47EKlNS3Y75qbdNKbvLPb9I17xcfwa9jFU0d/aAWskKEpEIN1o5x6o/CU+sM9Zh2SwIck+B8IfbL6Sy31RfokgBHKd0BQB2xOgfAp8LfnwK4sSufESwkF0pByHrq++OStklr0ZU0XBqb4eZ2pfZGa2EUNTzvb81FWn6dx/vdiUvVxns+OdCjn8c4PSRE8guSuKES8aW51Xrf5ebwa2alYsIsqmvD+uMVUsbVMmEDsv1UDa55Zye+VWXbSpmXipX7+YVbtGaJnyUutB1LV/dOzH//4hD+b5X2wi3fpKTMS0VGWZPmeeLv+Ng3R/HwSm0LSiA8szbT630ufn2rlEhCj9IGKyv94YM1R0rx1xUHpVih7qKssV2h+AiUNlVihdIGq5T5UY23Qt7P/5iJlHmpAIBPdhdqnuMIQIBTrwfiZsnXZl7cbHesfafHHT+rvLnL1qzTTVoBv03afKIKAHDX8v244NUt0vu3LN6DF37MAgAcKeGVv5/tLVLcQz1Pt9hcqG9z4O5PDuAfXx5WvJdf26Z4LfaR+LO5OA52lxuf7ilUeOFo9bnV4cKCdZk+rVDis1ZY14ZVB0sx9+M0APo1DWPCzDi24CpccVZ/AIDF7F2Ak3O8lJ+zj5c1KdLwm4z+C0OiAPeBTAhVf/8QE78PlMekqp/zvXl1uOF/uxRWTy1lhlqAE09h2V59I+6hmceYkp6IgetPKa0AAOH/flonEULuJ4QcJIQcrKnx7a98uhEFuA+350mBv94QtSla8TXqgau10ImD/41fTuLWj/bB7nLj831FXVqoTlQ0494VBzzcKVjmyd8mIYJQVKdKgNDPR6IRLQHu450FuP/zQ/g1q0o6dsWbO/D3Lw9LFrudObXYlVMr+Z/nVLd43EeNuLCZVQttdyvW1mdU4rvD2q4zagWKGNOnJhgFVyt9WI0uem0rbvpgj9dzzmSarE5J416sIxx1Bl/WKH9QrwMXvbZV0zIBAC12fSFdT2iTIwpl/mj31euRWFrGlwAnuquJ84Fo1enJ/ejBwnpc++5OLN9d0HMf0gOI5SHE52i/KovkgcIG6TuJm1S1O6BaOdxgdUhr+bFSbSWUiKebLMWH2/Lw3LpMfC+bJ9UWqEarA2c9+wtW7Cn0WQNNbLcYFye67pc1dFi4FtxwFkYkRQDo+E3E6+LDQ3TrwKlpd7oRZTGBo7xAL+Lv9QAQJ3iSyN2V1d9fbKM8nb9V5S31zNoMHC9rQlFdx3yjlTvBwwLnFktPebatrwkqBwrru917RP4biErLPvaz9DhBS2JCKf2IUjqNUjotKSkpWM3QRRTgCmrb8ObGU4r3tDabbnER80OA06otZ1cVt3xnUw6e+SEDqccrAm67yNNreKthRlnHBHfn8v3489K0Tt+T0XsRhSN1zFtiJC/A7c6tRXGd56ZWS6FQUMu7+VY32+BwcWh3uKXz5JvZ25elSS6J8qxmalcHUcsojg+TaIETjm89Wa1rCesOHC4OKfNSsWR7nsf4MxCiWV9GLQj3Fs70BCsbMip1LVdcFzQBlFLk6igh5C5U/qC1Dny0Pc/vunBqr41AOSAICP5sZ12csq3ieuVLaDUZ+DHsktzzur/8gJiyXkTcJGeW962kBaIrnnqu1VKmihtXtTXK6eIUm9oGq0MSstt9pM3ffqpGUcPM6eYkF2N5m9RCuzyT9pojZV4/Q1wH1GOlQGYNnJAcg5umJAPoELbEDNzxESE+FQ53nT9M+jtOsKDJfxNv9eFsTjeGP5WKJ75Nx5Or0zVjz9TfXxTg5Io1q0o4E/MlWB1utNldaHe4NZUfjVb1PlAQ4DS+c2fLPAQDl5vDLYv34vZl3buvlM8/ovdCoC6UX+8vRsq81N9ssr6eEOCqCCEDAUD4v08GWIWa9H8arTS5ogXO6aYek6mHBU5jcDvdVDGRiv7xXXnwwkI8M2n6k52J0TcRNwPqhUJcKP+yNA2XvOFZl0orBk6cJ5ttLtyyZC/GP7tBek/9fIulNuQCnHoBI+AXclFIE9skLl2v/JztkS0wu7JZkZClK4hCz8L12R4bkfUZlZj9nme9xroessB11gLe293Gtp+q6VEhHOAX8Ae/OIQ572vX13Ryvn/bdenlmu5g+/LrcfmbO7BCw7oTaFbIdo0N2Kd7i3C7n8qzrrjJltRbpThtX+5ZlFLcKPstT1W14LjQh2phg1KqUH6IT6OL01dedpUnVx/Dg18cQn5Nq+Izd5yqwdubTulf2Is4UFiPQkGIUc+LWsozXQHOzSnW8habS7qfL/fVf32brrCgOd1UsrSGCm6CTe1OnKxUCsbyub60QTtmT/1dGto6nl2Oo3hvS6702mggsJiVeyvRvT4hMkRSCugRFWqW/g4X9jdyAU7uQnnzuYMV19a3OUAp8O2hUqw6WKrp7WBzupFd2Sw9y6LgXdEkt8Ap5w5xn9XucGPCc7/gwte2wK5pgVOuJ+LvrzVGteaP3orY78f9mPudbk5zHXtubQZmv6dc/+XPtDgfujmK7adqMH/NcZ/raEm9Fc+t42OEvbmk92V6QoBbB+Au4e+7AKztgc/ocUxeNDmaFjipjACHepUGSj0YtbQzDhcnDWigQ+jberIGT685jsYANcBAx8TsSzvH6N1c+OoW/GXpPinmTA9REFPHP2jFZSqu03geRS1qWWM70kuU1il5zcKEiBBpU2GRKT3UiUIIAX733234eCe/OZYEOC/7y2ve2YknVx8LWOumXiBabE5c+25HUP8Hqoxoh4oaNO9T39a1TIB6NGi4mvjzHf2tSRks7lq+v8dT9otzp557qzqeS01GGV/G4pm1GR7vibE6L6ae8OiPQK2xenOuv/XdmgPYcORWtyoStsgtIL6sYQ1WJ6qaO55zuXXXoXre3tp4CmP/swHnvbwJT65Ol4Q5l8r7pDtjekTrjbg2ihbWujaHR4xYb+WWxXulec9DgFN53gDeBTj5XsLp5jyUwf663smFQVGgunP5fjz4hTKW7nsdq5vaBR6AJLTIN97Ldxcgr6bjmbI53R7158QEbvERFviQ3xSZKzUFONkN5O6UG7OqPH77vGrlOgnwz//Vb+/Ea+uz0WJz4qiQjE6epl5dJFxsh7gu1rc5/HKhFMePVp/1lT3b1uxqrD7U4YKbMi/Va03j0U+v98iAvf54BT7dW6RwA/5gWy725nXkghB/OzcFXt+Qja/SivHtIe0QCQD47lApLn59q9TnzAKnASFkJYC9AMYSQkoJIfcCeBXAFYSQHABXCK/7JC/dONHvczvKCFDUqxZp9SSrbYFTatfEhevH9HJ8mVYsZfELhFBRM9SHtDlnEuWN7ViwLtPnolvW2I7duXW4UBb0roXaFUo67vbcJMiRT27NNifWH69AWaNNaqOaFrsLybFh+H+zRqKx3SktNnL3FbWwof6K3x4qRUm9FcTLFlNssj8Z+UTWHi3DiPk/K451NsNrXasjoFiE/JpWXRc8OVrWHG8Z/LIrm7EntxZPrv7tpGevbLKhsinwLJHi5klPRvAlwImbi9J6z+daHAdujnpokwONh9TbgPkr2wTy3F3+5nbMeGUzAOBoSaNyffHyeU3tTpzz4kbFMXFTGWUxeaxTK4V4vZoWO1YdLJXeF+cdpxR353fTfSIKbOLv5k+B5N5MXasdZy/oKB/kcHEegoX4HKoFOIfKu0fttQP473rncncUxW6zu/CXpfs8FHXeiFDVcAMAu8Ym+aXUE7C7OCmrd2KkRVL0iT0pjsmECG0L3N0XpEh/Ky1wfBtcChfKjt9M/vvd99lBD9d5uWApIrroHi5uwL2fHpSUoXLFi1pBL7pQNsvWqf/+6mkdVnvGiEoJLeFCK8ymt7E3rw73rDiAZ9cqM+HW6XgriGNXHve79mg5/q5KwFPZZMPrG07iwS8OScfEPQDHUUnhpLd+VDfb8H/fKhOYBZpdta/Q1SyUcymlAymlZkrpYErpMkppHaX0MkrpaOF/dZbKPoOoWVHj4ji88GOWIg5DnEOOljZiZ67STVG+0LjcnEcAM8BrreSTb6EqVsnfOiTFdVbJtCxOLEV1npomRvB5YnU6VuwpxP4C/SHiTZulRq8cgIujXicw+Sbg8W/S8fcvD0saxwaNjWub3QWzkaBflAVujkruJfKFSL2R0Nps3bV8v18b2kDc135WxYwu2Z6Hf32rnY3SF3VtDoXyw9em+veLtuPyN5VZJD/bW4hTVUqhTmss621Gq5ttuPrtnfjz0jT8dKzz8bDBZk9uLT7Ylist4jMXbsbMhbzQYXe5Me6Z9VjnR6kG8bcTvQvU+HKhFAWCovo2rDpYgqOyTavcA+JkpbLPxLk+OtRz4ypS1WzD0p35KKhtwxVvbdc8p6uyjbeN3br0ctz4/m58pSrArKcA0RpXouU8OszsMWeolUBSTTG1BU7jWza1OzH2P+uRMi9Vs59b7S48vPKIR/07cchR1f/A6ct62RkopUiZl4rXN2Qrjh8rbUKLzLpqd3Eec6U456hjo7QscGpXPXmfeXO55hXG/LnrMyoDVhCHmz3Hn7fyLI9eNgY7nvgdxvSP8ohTSxBi2eIiQjQtcH+fNVL6OzqscxY4ALhaKK0QJQif1bJn7YFLRwCAlO/AbDR4rMsTBkUj0mLCT+nKeVh0ofRWEBwAGnUscA43H2P+xLfp2J3LJ9Rqd2gLdXJFUkVTOx5ZeSRo8XJ64Q16Slmt9VOeQRTgx424Lshpau+wborzltb4v3XJXkx/xfP6viAQd4agJTHpC+gFxO7MqcXy3QV4OfWEdExc3FKPVeD1DScV5zvcHQ9P6vEKTRdMh4vzail4bl0m5rzn3T2pvLEdl7yxFf/99RQ+21somba1tEGM4ON0KbXLWlR7yUpIKcWFr27Bt8JEqidgqJUDHu1wU2nDselEleI9LZevVpsLZqMBSVGhAIASITGDQyHAaWuV5ejFVHAcxceyWovVARQ1VmuGF67Pxq5c7SyTvqhvcyjiHbxZspfv6oibEmM6OI7i2bWZuEHlVqhngdfC16Yg2Kw9WqZbz0rOn5em4fUNJzWFiepmO2xOTtrsFtdZFS7jBwrrsV4QzNuE3zbUrD03+3KVETPIVTXb8eTqY7jx/d3Sbyzv35+PV+A7mYtOrqCtF90DP99b6JGd+NGvj+Cl1BN49OsjusqUZpsLS3fma74nZufzRosX18r/Ce2RZ/3Lr2nD5Od/VQiqALBidwGe0FBsiAJAVKinBU69bonvq2ugilQ22TDrja1Y+PMJHC1plO792nqlUAPwniY/ppfjv78o105KlfeWT3FOH54FwUQURNXu2mocKqEMkAlwKjdFp5BMSsTFcYo59/r/7cSSHbI4Ny/KDKebk7wkArG8iRgMRKHgNhuJQngcEB2qOD88xIihCeEAPNe75Xefh7dvnYJIi0nTAid3zZdb4MS5Xi8Gzqjjj7nkjnPx+3HK5Ohm1bkhqhwIf581Ek9fOx4Xj07EkRKly72oKH9eKAOhh3ru67DAUazYU4hvD5Xib58ehJujmorDh786gnNe3Cg98y+lnsC69HKPNft0oedlIN/vypFbSsWMlerhm6OToEu0boprK6C9jqbpKMPV+5GlO/Mx77u+79HCBDgvaPl5Ax3a2JiwjsnEm3JeXMxPVrYogmHlrNhTqIjTUdPudCO9tMmrFUAsSJlWUOdX6YPeAsfRPpc2tzsQk+F408rL41PUuDiKssZ2/FuYiPSCel1uzmMCk2N1uBSJDORoxd212l0wGQ1SPIIYHyQKpICGBU6jbQ43pxkvsze/Di//3KEcUWvlvRERom8hCYQQowF1rXZFvIN88VDzwk8di/clr2/FlBd+lRZhu5ABU0T8LXbm1OC9LTmKY2oCiYU63bjcHB79+ihu+sDz2aGU4vN9RWixORUbe3X8iJvrSIwRYjKg2ebEJW9sxT0rOmpT3rJ4r+RmI1ngNCwAfJv8c6GUI1rbRGtGiNGArSdrFG44YmyY2KfPrM3EmxtPYV9+HR5fdRTLdxVImSN9ufy+lHpCUTxYZERipNfrAO+uQOLmRyv5zrcqbfmCH7NwuNhz4+6QC3DqwtGq3ZbYFrH/JKFVGNI/ppejsM6KzdnVUoiB/Hw5kcJmXF0+QfzIDgGOKt4LZvFwSqluXHKW4MGgttiqn3917DvQsTGWF8YGNCxwLqqwemWUNWPJ9g7lgLfSAvIkJloxub4wEIJNj18qvY4KNSs21P+5frzi/DCd8QoAg2LDcONUPjOlVkZGi8za7isGTq5016sJZzEbpNpzIqP7K8ee/D4hRgP+ffU4XDAqEYNiw1DRaFMoDvx9BOUulvKEQDtzavCaoLxqd7pRUNumWD+dbg7/+PKwVNKnRrBAid8uWEPA6eY098hrjpRJWXDlbJSVJJr8wq9osjo90gFe+ZZ2HVTxt1NboP1N7GV3uVFcZ8Wc93ejtMGKl1JP6JZw6UswAc4LehY48ZkZENOhZfLmzvHRjnz8+eN9uOrtHYpUvp3B22ZWnVWqr3Dd/3Zh5PyfA4p1+i0gPkcGmatHo9WBlHmp+HwfH6CvdjGQT1hqodepM5k5ZfEOWpyoaEG6jzpCi28/B3fM5FM4t9pdCDESRFg6spfxn6PvQqlnGdFaYtUuhvJn/mRli1eXYK3YjM7QP8aCujaHZPEB/A8sr211oNHqVFwr52hJIw4U1uOOZfvx319PSaUa1HyyuwBPfXdc4w69A3HzrKVk2Jtfh2d+yMALP2YpnoV2p1shCFe32CR3oRCjAVcKLqhHihs1rSutds+Mp3J8WeBaNAS4rPJmUNoRX5SSGK54v8nqlNxgHapU7j8cKcP3h8vwwk9Z0mZEHeuihZagOX5glM/rtLLbqdEqM+GvIkCKgVNtyAHPjaK4ARILSovnE/DzlBgqEGExKb6v+DsX1rbhX9+mI7e6RSpwr7YwigKbeG/1rxbM5ASrD5Xiwle3aCZBEvsgyUcNTofKqtZsc+J/QtZGKcZQ+O0cbqpwaXeqLHBqvBWyd3Ge7peBQIhyDBoIUQjmSZHK7x2qE46iRm11BJQWOLnVT/zbpXCh7LherySBxWRU3HP//MswaXCs4hz5HCW3ZA6MCUW7060o8+HrGXzkstEAlHG0bq5jTVbPF2kFdQqvE6ebU5STKqzlDQii8jNYVmgnRzEkPtzj+Ptb8zyevSarUxrjIjWtdr/rv4rztnysOFyclP3dFzYnh00nqpBe0qiw8qs9E/oaTIDzgrdMlEDHZEEp9TmI9+QFnoREi3INza2IuPG1mA26Ljxy1EHSeuzJq8W+fO32L96eh0s1UtMHghhvNfn5X6Vjdpe7U64d3UF5Y7siq1tPIU688m4QLbRfCBnWqlWb41bZwqLWPutZ4BxuzmssnTzDlhx5AfBpKfG49uyBfBsEC5xaWBI3E03tThxUbWq0Ml0C2u6jasH0REUL3t/Kx09d9fYOXPrGNt3v0pU6YHL6R4XC7uJw3bsd7o9q7bmI3u+u5xL99qYcxQK37VSN5nh9/scsnKzynRQlWMj7Sa0JlVuj5FrTdocbtS0dG5myhnbJ6mI0EEVqb7V1I2VeKj4XxoVFp8yLnkVm4c8nYHO6NdNJP7cuE8Of+hmLNp6C0UAwOK5jU7J4ex4mv/ArnG6K6ybxz798oyr/bmJshj+KKDG9tZwBMaFIm38ZzhnKbybFjZ98U9rZYHx/lWN2FwdC+M2xpwCn/G3F71tY14bzF27GunQ+Y6Gboxj19M+Sxt3udENda6yyyYZ7Pz2A1YdKFXGjakFT7M6n1hyH3eVWZLwDgpvIRBTqtdbGVo0NpxZqF8pNMiuFVHdTqrPHKVzEXG7a6e/vcHEeMVmBQKB0Y+aosi3hKk8ILQuc1lStZYGTKzjlymnxM+TWXX/2NKFmo8Kq1y861MOSJPeUkrdzYEwYAOU+zOXmMCwhXBq3ah6/YgySoiyKPYWLox55DoYlhMNsJHh6TYYiblu9NoglKcQWB8uL2OniFF5o3tCqo+lvXgc5cmu1w8357blld7klt9gs2X7nb58eDLgNvQkmwHlBz4VSxOHmkFPVgrc25XR6EH1yz3kYluCpxdCjolFfsLj/cz5rz7aTNX4t2PLJ0ttA+PPHabjto32aA+7V9dkoqrN2eyDtSz+dwJz3d0uT1enkgle3SFndehJ5gP6mrCpsyKiUBBpRs6QWJBtlNXbcqoldT2hPPVbhNb27XlHcgbH8YhUfEcJnDxMWbDdHYTYSD3dFcQG/d8UBRQFYb23TEuDUm/DvDpfijV9O+uXq013pl5PjwjyO6Qlweu3yt5ZXXatDoQCilHa6VtzpRN5PakuA+H3MRgNssoD8dqcbXa2TegAAIABJREFUNa0dz/S69HIcKGiQ3gOA80ckANCO9xLjPQK1wC3ZkY9dObVolbnoDUsIR1y4cgMSajIoNiXvbOpwRZ+eEs+3U/YcyOe9QFx9t2R7lkcNMxvRPzoU4lAZ3S8SD146UmFJ6KwA1xyAAGcxGRBiMnh+ls4SYXPymRRFpY2LowprXXG9FQ991aF9d3F8ooK8Gs+5XT1mpKQzdVY8uvKoh1IvmIlM+gtxXloxoOJv5yt+90BhveIZkv9uDhfHJyoR7rVsVwFW7CnE5CG8oMC/17n5zu7iAs6sKmfRnyYrhCm3kChrYEwotj8xC+EW5fiUC3DJsfx+Z/zAaI/7+hLA5ONeywIn38do1evl72HwUACFqJT1enG9oteVPAOi001hMhApmYkWSZEWRTx5i82lKHAutkEe49dxf+UzXiq0TcrMqjcwexinm/PqGitXDKszdwK8ABdo2+Xj3eHiFH3vbe23OTlpTyx/hvQUgX2Fvt36HkbPhVLE4eJw+7K0LsWb/W5sP4+NsF72SwCoaek+y5A8blcvQYPcPK+1gRW1GsVCXKDN6fZqjSxrbPdL2MsWCopqFdv8rSD+si6O4m+fHcSDXxySYhpEi4Z6AyDXZMnLBox/ZgNW7CnsVDv0LHBhgsB27rA4AMrJzmw0SHErImK/H9GwnOr1o1acvd7z4U+yjO4qmZGS4JlQ4sEvDkkCdYvNKW0m9TZC/mbPtDndCu21Q+UyAwD3XJji171OJ26/BDii6JPqZjte+bnDjfyzvUV4SyjILCqIBgmKAz2BGejQ/ufXtKK0oUOT7U2IclOqcH26YGQi4oUMeCJhIUbJNRgA+kfzVujHLh/dUbDXKRfguk+AEC0K8jg0k4Eo3IQ66/Z2tKRRyhrnLW7E4eIEFzOjJDg8uzYDKfNSNd1P5egp27z1o5ryxnakzEtFyrxUpJc0KhSjWuPMH0+TnkJsm5iMyergXUmX7szHh0LyEl8xeq9vOKkQritkc5xDsFSqGSq4rTkDtMBdOiYJK++bCQB4/v+3d97xUZT5H/88W5NNr4QUEkJCS+ih9yIEURELoFh/KHpgPSuW88SCp96p53mWs93Zz17PhtgBUSnSu0gLnfSyu/P7Y+aZfeaZthtS5Xm/Xr4ku7O7szszz3zr5/u+PgMcLm9cPhQDcpM1mbFgUMLByjoUpMciNyVGZ8NEe0L3jkGdk/H23GG4bFS+7r3tHTimnNJAxIQ6/E+eP8A0qB7lduqGibO2XveMONPziq4X7H24PhCE2+mwbF1J5UppP19fpguaByUJUQYOBX+MD1XWYduBSvW8aa0sdENQsrSRJz/yDT5YLSvOGqlZV9b5dUFoI8ycxHp/UPP6ozXmAYk6f0B14NgzjBeraW+0771vZuwcuDp/sEluIG7uJLJKSzcm4mimcsgqPpkNCme/n5FhnaUYW3R+SvfbP8asfy0zfC+qmnjRcz/Y7jM1ZsLJqPgDQSxaX9YkteBz/tMyKfX95bWqA8D2h1BjxywDxxqo7A2Ad1w6JmhVwMzoYqF8V1qUgTHd0nDnaUUAtM3kboMSypeW7cS2A5WGEtPPMCqNLPw59fKynVhgoub1807jgdssTeXAGSkCHqiow92K8uwrP+zE2U8sQb0/aDr3hi9/NaPWH9ApePISzXecWqT5+7tGKms2JWwA4eVlIen6t1fswr+VUsd3Vu7BlxtD2aZ5L/+s9gz1zdGWHNGS06xE+dzlHVsWGkUd99evMOIvcgn3/vJaXP3qStP9veyFn9TeUkAOSPArhtfl1JzXvx6uxsjCVFw9vlA1SqtNMnDHCxVoqFf70FxwOIjmOrfKwMUwRnPXDnpBlBvfWI0fdxzG7H8v1z1H2V9RC69LzlDQ/Qh3YHZTiCmwDvGf3lurWdONRClas4SSrjXr9so9lGc+vgT97/pMXSPC5SBj3FJF30SfG/WBoGHgi8rus9m5cLjj1J7oqWS9eLvFKBtmhlGmqaLOjw37KtRr2ss5M3zGvF+nJI0DSLGrgNRk4Nx6ERN/UELv7ARMKsrQnDtsO4B8fmv3h7XB0uPN751UlIatDvAHgvC49PfDP4zpgt7ZCQD0PYHz39L3NksAvMz3o3bgyPu1LSrvrdqDcX/9Cos3yuOqWmvod4PfWMSE5ccdR3DL279gtkGpYlW9Xzcv1gi+SkL9/IC2B+5IlXmVQV1DULVx2Z5tu/1v6wgHzgK292D2iM665+ssTuC4CMQUvM7wHTh+4Z39vPnN2O792GjXbhNJ9waud4EnUzG22MZ5ozl3QKgvYOk287ln9PNoFNxMCILlscVbMfvfP+LLTQdst6UEghLu/mCdrs/mU6YHge8be2zxFsOm1/V7yy2j2o8t3qKK12zZX4GVvx3VzCphMzXUIAwEJSzeuF83ULiMycCaiZYAxjdZHq/LgTHd0k2fz0ry4fmLB6kZETb66XIQeFwOXenJuL9+ZRupZ+EN4Fve/sX09XRgqFWGurapSigT9SWUQGh/K2r96vwes3LlcMcf1DUENYZoXUMAFbV+nRM+TVFqA4BZTy8zFE9oSVjDiRVnuva1VZpSt4Umwk18mWoll4F7cemvOOVRY2Veo16ZPREOBj9SXa8rC6ys82sqIiRJDoYQQpAYLRvOZ/7ze/X52jAN6FfnDLHdhma0qTMfF+VWvyddX6wM9tgoF96eOwzPXTQQH101Eqf1ydRtc9YTS1TDz4iPftknX9cuh23vbHOTm+zTOIVG2Zl6f+uNEqAO3IGKOlz331WmlQwUs0AqO0/2t8M1KEiPRbcOcaio9au9sqxznhzjASGy4xCJA5fk88DtMt4JKrYysjDV9n3YjEge0/4RCErop/SBJfncmKL0TPOvscJIlRgARhTI+8VWgVAbgS+hpOcJe+5QRwqgPXB8Bi70udkG5fMUWuLIZk1pCeVtU3qge0ZIiOim0u5474oRAMIbbi9J2uxQSqzHcDu+tLy6lebANSiZRys+XbtPE9xjqawLhFXBkOjT/w5eZX1ig4j8WsWec7UNofs0GxSx2/+2Tvve+2aGTa8aRQHq/UHTFKw3zAULgG5RTTSJONDPpNTUB7DIoJeCJ96grhrQ3lDM5JD9Nhk4milbsu2QTjGRh60BN3N46E0x2q2PdFG+3XxQ0ytBo5YHwsx4AMDaPcfw9LfbcbWijLRm9zGdSlLxHZ+o/5YkCQ98slEjt3/Rcz+g74JPMfmRb/D4V+bzfh74ZCOe+Gor9lfUYsLfvtZJ9l/zWihrQKP7DYEgLn5uua78iI0e0fIBo5/SysmhuBxEvXGP6pqGM/pnaZ7n30OTgVPO+xhv+Oe5EY0xEAs7mKv1NVUGzutyGg5tptcANbJrGgKaz2SDPnQorBUuh6zexgZKahoCqKzzo3+nJNw8uTveV4yAB8/ug0tHhgJJrT0jzk6y344OccaRburY/W/NPmwqM54LZKQ+xopssMYjz4iCVNxY2g3XT+ymy8Adq2nQRdLTlf2k5VNsgCHcksYh+Sn440ldLbehn0vX+FivC9S+oN/XqufJ53GhX6ckjO2erhnzESleJTBT2xDE2Ae/bNR7UIycrn4mYg88CdFuzTE1yrY9+OlGdJ7/Uav0jLKZj7dW7Lbd3szP/JoJPG49UImOCVHwuByaYCGreJ3oc8PtcKA+whLK+Gi3puqGivIAQKby/gPzki2H1QNagZIvbxiLy0eHBm3Ta4UQgoVn9lIfDyegyHP1+EKc2T8bAPDUBQPwxXWjQQhRna2QiAnnwKnqjPJjJ/XsgPMUBWVANtp1JZTM72LlwHlcDkS5HZo1gDoy6fFR+PiaUbh2QlfcerJ2jMKormkAgKl99UEVisR5cKkx1gqmlKYKWkaK36aEErBWv62u84dVwcCXnwKhOZXsseeD/bHMeVznDxqqA5splbYXhANnAWuMGSlS1nMRiBtLu+GKsQUAImuOpFmMLmkxeGfecF206rQ+mXhx9mC4nURj6IVTUgYA8dHGCzLrRJkNVebVwyRJwvPfbce7K+UbFt2frzcdwKB7Qlklo6gom2kyU8CiFzQvUU8pK6/Fec8s06g00cN045urwxY9oYbFvvJaBIMSpv3zO7y/ao/p9kalsl9uPKAuCg98shH97/oMn6zdpz7/3+W/4YsNoYxe2TF7B/PNn2WVNbNygLJjrJKV+c2bz4wZ4XAQpCqlHYFgUNeLyd90NTc95efg1cYipTFzzljVsdqGAPJu/hD/WbJD/TschuQnWz7vchKs/NNE3ePfbD6IEX/5QnVequv9mihifJiqXJS0OC9eXf6b5rw9Ut2Aqjo/Yr0uXD66C3op0WOng6BLWqg0rtpE5XLR+jLsVEqaGwJBPP/ddpSV12p6xZqC453BFWtiKGaaZD8pLq6sUN0f5hrl+zNZEqLdmDumADnJPtVBYCPnsVxQggbU+H45QG80TOihnS81qagDBubJPaTpNpLy1OGiFRPRbqc6jJh+3zqLiLWLc5b4v8PF43KqgclIhFmMSDS4Hp6/eJCufNaIj9fu02SxjTJcVOmSBgffWbFbswY3J8dTujZ3TMjp2bAvpDS7v6IO+akxmuN83pBOmvM5IdoNt5Pgk7X78NTX2qHwy24Zj3lju8AIp4NoMk2zBnVS/91VCYqF02fM3xfYW41G5p+xY8LNwLFce1JX/HV6H+V9XchX1j5ajmg0B87PZOCoQMaQ/BRdUIYvoWTLOXOSrEXl4qPcXAZOawdePaEQl3L9faf2ycS2e09GaVGG5vEPrxqBK8cVKPvbOJoqaGnFr4eqcPWrKzD3pZ/w8Rr5+qr3BzVlzfdO66V7nVWA9ulvt+Mlk+zc8xcPVP9dkKYvB4/1ulAfkAzHk1DYKrjahqBhRUw799+EA2cFe1EaRRrq/QGNoZyd5FONEj7CE87nxEW5DW9sfXISMaIwFW6nQ+PAGYkkpBgYGWYllOyCYTRYFtCWUFbUNmD5jiP48/vrcMMbq3XPs5z7r2W48pUVOFbdgKELF+HnnUc0vUJmkWSqWEcXYT5qQh06NjLPRlFo06wd9DW7jtTgwU832vYy8rXaRtmPw1X1uOyFn1Tn9cY3V+P/nv/R8jWUnGTZaKXqdKzjzKqU7i2vxbPfbkdVnV9V5DPCbgQGIBt4qbG0n0KyVA4DtBLOh6rkY2mV6fvTKT1t96ExsIs2PR/+9O5azHv557AzelmJPjzH3CR43E5i2KMByOcMPe+r6wMapzHSrIfH5YAkyYOhKX948Sccqqw3nGlXkhdyPI2UvfyBIGb/+0d1uPa/v9+BP7+/DoPvXaT2ijUVAYsAQjjwjhIAXDA019DoZ0mL8xo6cOzsJqsqBjbKTdfvx88boD6mk0BXzvGkGP178hUCCdFuTZT9ifMG4PXLhwEAOtj0pdLj/exFA3HPtGIkxXhCGbgwSij5a55m7/94Uld8cOUIXUnuNzeONXyfyrqGsAOQT50/wPL5BOU4sPcgIxVAnoz4KJ3zaBXsodUf17y2EpcpasxGnPf0Mvzt042mz/Ns2FeOX0xmZNoZzjHc2siuDXM4A/+y0aG/u6THYs0e+TOfubAEd5+uNYyj3E64nA5sP1il2wd25h4V4DmzfzbuO0N+D7ZEsSMTKBnUWV5XUmO9to4Ev+az9192zXI5HZjQowP65iQaqis2Fna2npML5gSDkupU0Bgygf5eZnX+8Rk4fuh3XJRL2wOnqDLb4XAQXTapKDNBzYTyYzrotUODS2f0y8L8yd1172t0Hi7euN+2IioSvtiwH++u3IOvNh7AI4s2Y9m2Q9h9tEZj/47qal9+y2IVHGJFxIzs11glA8f2B/Iq6ey5+OTXW3Wqn4DxHNr2hHDgLNA6cPpDLffAhbbxOEOLSTgZEPV1ymJCX8MvoPR52YFjFcn0N3Mjw8WshJJ+ULTbaXpzZI3li55bjulPyjX59f4gyspr0eCXDBvml2w7hPdX7cH3Ww9i77FaPP7lVhxgSijNIsnUUaIG8jFOWYg6dGxpDhtFMauh52EdT6vyR3o8+cyO0bBcipmRZaVK2CfbOCLtdBBNBOrrTQew4IN1uPHN1Ro1Px7+V7hnWrHuRuR2OlRj1R/QZ+B4Z8TjcuDsAXJJyyHlWJqVEBekx2LGwBzT/bOC7fXi6ZgQpcn8sN/zw9V7dSV3ZvuXGufB2G7pquPMY1caQq/Dhz/fpHGkrZTIeFwOYliGuPdYLfxBydDBKUiPxfQS+RgcNVD2omqwh6rqsX5vOb7Z3HxiJ8ebgWNvsNTA6tEx3rbcKi3Oa/jZbLkx2zcR5XaomWZAe848ft4AXDw8D7nJPjx5/gC8OHuwLnNF942P2gN6eX6fx4m/nt0n9FnMepRhII7ALlc0Y5Gd5MOswXLJFzWOA5KEG15fhVveNh/snseNo9lyQL4WemUnoDgrQZcBNBrCC8j90OGqs7FrilHGL0k5DqxR7HE68NfpfTBrcCfd9vR9IgmAAuELBn275SD+rgzKDofSh7/Bqf8IjWDZsr9CvRfUNAQsyw2DUuie/vzFA/HFdWPU5/jfd1Rhmvrv/NRY9VweoozUYM92STIXX4jxONVr45IR+Vg6fzwePLs3Zg7S/9Y5zDEpzkrAO/OG48rxBabfh8KvjawDx1+7T19YgnfmDQ975mw4DOmSou6HkxDNWuAPSur+0EAqIaF7Gc3KWDlwOck+9TXrFkzC47P6a56Pj3ajvLYBOw5Wod4fVDJR4Z2vvJgJEFpf+HjY9JIcPDKzL+YqVV3V9QFcNrqLrhKgpl77wkBQwsXPLceZj3+PpoKq984e0Rkb9pVjxlNLAWiFheK8TeekJzHf0ahNI9br0gm83cwJw7Cvo9fTuO5cz387T8EJB84CdpHkF61YrxwB4LehBn8kCxZd5M0ajKnIidvp0KrVcVmh+CiXoWFjl4FL8rlNhypaqV4OvncR6gNBZCRE65wDyiHFyEyJ8eBgBZuBkxvkH/hE64SoPUaKE8QPQ6ZS0lv2V2KFUkLKGknhXo9s74BVDzzttavlFkkjWVyK2W9pFXEyy9y8PXeYei6x2VW70ib+Ow3unIK/Te+jeSwzMVrN7p3SO1Mt1aPQoaUstDSEOqN8ZPODK+V+rTp/ADFeF84xMBzseGhGX9PncpJ8mn4XKyEXo/2jZBp8NxZ6Q57aN9OwJIkGAD5fvx/fbw0N8o3E8Ix2Oy2vL6MMHADcf1YfxHic2HGoGpf+50d8vekArn51BbYeqFRna3lcDkx+5Bt8xQn7PPTZJryzYjduefuX4xZ/ON4eOBowmNKro9pj7PM4bZ3gWK9L10Nb7w/iuv+GyqrZnuUNd01G59SQs8IanAXpsbjj1CI4HASTijIwojBVFwSyKv/iT78ot8PUmDNShn3q/JLQfhncM1RBhqCE17kh1jz9OyVp/qZltFR5kC1Z7WbRRxqUwpfXJtxvyUOzqWwJICHysPQrxhk7C4k+d8TqkuEKBh0PlXV+TPjb15j6j+9wrKYBtQ0BpBgY5JSgJOGVOYPRNycRA/OSkRbnVY8nHwwoZIKgPTPj8dCMPjh7QLa6BrCXaveMOE1lijaYGQoiu5wEGYoAjxH8edo3J9EwSGEH+/lGCsRNzQ0Tu+HlSwajT06ikoELnStBSVIDCfTadBCCTsk+3H9Wb3ytZJ2tNAp8HifW3VmKL64bA5/Hpfud4qPc2FRWgTEPfqlU7wTDDtinGZRR0/WFnwfschJM7ZulKkX3zIxXvw9LTYNsbxytrkfezR+iyy0fAZAFcSRJ0ojkSJKEt37eFXHveXltA2I8TvTLTdKci6xdHEk//MSeHSzbGKLcDjwysy/emTfc0DaK9bp1Y0XoeU+dc7rm5KeGsnn8GtW+3bdmdOAIITsIIb8QQlYSQtrluHP2wuWjix3ivYoDpy2zHKuo+k3sqa11Zh29XllaQ5neLNkGY6PnPU6CBubGxmeF4qLchpmtGyZ1w7R+WbrGfpqyT/R5UGmWgbMpk2oIBOF2EEwuzjB8/rZ31gAAXl3+G15aFpKjrvMHsPCj9XhssTb7VaOKeMj7xpcHsPNXLnpOVuBkDw0J85K0MhDOZxqe6ZBm3lm2Kp/hy+ooOw+b9yCZlZgkMZkEVt7Yrr+FH5AZ43XqghCdU2PQIT4Ka++chIuH52FkQarmfY2CENQIpb8LH3GlkTN6Hi48o5ehYcfz38uG2m4DyJF8f1BCbUMAV72yAr8esu55jDJxqDJsytno9frIzH64YZK+bMWs1y6SvqMYr8tyZqKZAwfI1+ybP+/CZ+vKcMGzP+DdlXvw7so92Lxf7qcxK0N8ZNFmXPPaSry8bOdxKwwalTFaMZPJyH5701iNw0Id8RiPS/P423OH4QwlI5uZEIUPrhwBl9OhC1Qt2XZIc03ylQgZjMPOii4YwZ/3Ucw5TtXwzDAbMA4YB9LsSq/o+WSX7ezZMR7nD83VPPbYrP6YXpKtZt5otv2aCYX45NpRmm350n0rg9SsbJrtI6TQnlAjI8zsMxKi3er19eLswab7wbJu7zHN0PXmYKtSdbGxrAKznl6Kilq/LhvCqh1KEjAgNxnvzBuuXsvLbhmPr28YC6eDYNF1o9Vt2cxMcowH0/pl4wEmkzupSA6Qfn3DWOSlxmjOB/5ap2uK1VrU30JIhn2VlaAHhX6Mg4RXun+8uJwODFOuQ7kfNvScP6DvgSNEdmynl+So9yerDJzb6UC0x2nobAHy8aFiYk99vQ1bD1SFLUfPrumrlB7r9PgoPHHeADx2rjbTR/sSizIT8NFVIzFPycSlcuqUNMi9bo++R/T611dj5P2LVSfu551H8cf/rsKd70U2B/BYTQMSot1I5hQh2Ws4kmN/x2lFeHXOUMOSUPq+U/tmoW9OouF90CzgTYjsJLscRA1G3MIIyrT3wd08zf1txkqS1FeSpBL7Tdse7MnJRyQ7xEehPhDU3OzdTgd6ZSdgx31T0DtH66TRKMvjs/rjzT8Mw6fXjsIn14xSX8f+n0LfmwZc3C5tDxwvwRoX5TKM6KfEevHQjL5qD8cFQ3Px020T1EhKos9tasw1+K0Nh7V7yuF2OsKK2LIqlKf94zvDBlYqy00dLN5QZqMu1Dh32GTgFry/Tm28pdRZGM6svPlNSq8fvx9W8rfXvb4K7xkIorDzlGh/AsVs7ARbSsC+xi7TyNt7Po9Ld34VK4GEGK8LhBC4nA5sufdky/eljiZtvOYN1vQ4L3KSo7FgarH6mF100uUgGNQ5GY/M7IvnLtL2pfHnlcsplx0uWr8f763agzvfM54ZR2H3j7Vn6M3ZLNvjNgmmUOyGE9spuQGAz+u0DCRYCXEYlUov3XoI7yhqeOHIix+pasCW/RW225kRbgnl1eMLkZviw0KlD6dvTiKyk3yqoShBYsaHaL9zv05JGK4Ya8mxHhRnJcBJ9M4jnyXjpafpuJObJ3dXI9lm8M4M+973n9Xb8rVWBgIhBBvuKsW2e09GH+Uz7K4NB5OBs+Ku04t01+KQ/BTcf1YfNQNDjUyjjCLrlM0oybFcz80cuPE99FUY9DjFel144/KhuGdaaF0wy4Ik+Tzq+WskHGM04uPFpTvVgfAAcPFzP+hEe/iRFPX+YERz/DYzZfNrdpdj5W9Hdc7TleMK8aniHPM9TYDcY9ZJybSwJbWEEJzSuyPONSkrnTumAD/eNkF9LQsfRKOZcafJGrbqjol4xWKsxfWTugGQncWPrh6JF2cPthyDQc9Rq+BFc+F06jNwqgNHe+AMbpZWzq1dEG5AbpLuscY4rgnMGl5anKG5179x+VDNed4zM179Xv+6oESj5EorfozG71BRNNp/T2eh7ThUZbumsJTXNCA+2q0LQrmcRNfPSbFyamk10WWju+CcQZ3QmcmSXTG2QHPMjBw4szXI53YiPsoNj8uhfn5qnBexXhdO75upW2/beQUljk9C7ncOW9/LZ8fiolw4XFWPBldo8fCYlEAC8uJWXutHfLR8cnVlSlioeAR9PX2XtFgv9pXXquUSfA8cf/OJj3KbqkkCobKNGK8LKbFezBvbBQ9+ugkpsV5Vip8nnMHhboN5YKbbOomlYAjNwNWZOHBs6SLt7WN/daMj8Ox32/Hsd9ux474p6mMNnIHrcTlUY5pdwH/YcRiPLd6ia0i3ysD9sP0wfthuPusOAIbmp+CdlSEnzyzbwn4ue8O304/g38/ncWqCDQvP6IXpJcY9avdO66VZUHnY35Eag1eMLcBJPTvA7XTgmxvHaba3c+6pIzC1b6j3rSA9VtNnOCA3CecN6YTlO47AH5TUhdfu/DQrf8tWbo5ZSdEaw4xiNDSYxSzgQc/suCg3ymv9cBDzAcexXAbu5sndceHQPPT408cArAVi+H5FQDt/0Ww2Hcvt767BV5sO4KsbxiA3xfx4mxFuBu4PY7rgWkVCf/2CUvU8pIEXglBlgVEZDh1ZQbd3OuRSdbYElJeRT+IcuLmjC1B2rBYzTM55lrQ4L3bcNwV5N38IQHsO2Z3LdiVoUWo/nfI+BHjivP6a4BYLlURnxya4HKG+n2i3EzUNAXic9sYz/f2Mziv6fi9fOhjDuqTi4zV7Nc8/PKOvOu7ErEfx1D6ZeP77Hfjp1yOquAQtQY+NcqEkL1kjwmN2z0j0hTJwRrOwOiX7NGNv+uQkauYOAsDijQfw069HkM0oCq7Zrc1QjPvrl9h1pEaznrHcrlSPALIDbdT3HMX9FrFeV6inyaZEmV+b/sFlYFhYxWAeuhZQg7+0VwZe+/E3Vf2UhzXCP75mpO75C4bm4YKheerfI5TZcB9cOcKwj5ueo63iwCk9cLUNAXhdDo0KJV2ejFZyq155uz760V3TdI9FMk9s4Rm9DAMTLFbVFznJPrxx+TDMfeknfLK2DD/+egTPfLsdHot7Fg040/vN8h1H8PCizZgzKt8yUAjIQfOpRifZAAAgAElEQVRP15VhUF6y3oFzOHDDpK6aLBfF7P7w+R9Ha86VhWf0gj8QxO3vrsElI/M1SsuAcSDTbB2O9rgQF+VSHDh5G5/HiTV3TgIAPMHpHbRz/61ZM3ASgE8JIT8RQuY04+c0Gy5Ndk17qD0uJ+r82gG8VhcxvXkanXixygLMl//RaBs1VHQ9cEYZOIvIu1ct1ZQ/54pxhdhx3xQkRLvMSyjDceCcxPB7GfVZ2EmE1/kD2HWkWhWG4B0lVnmPluewCy5fksbv/8KP1uPGN1bpDH/aJwLoMwsPfLIRf35fm+kxmv8UThaS3lwyuB4s9rXUwIp2O0EIUeezjWUacPkSSZ6+OYn4x7n91L/5c/OcQZ1M+zTPHdwJQ5VGcTuoEZKZGK1mFXjod2PLGQcxhpyRofH23GFYOn+8eu4/eHYfTOuXrRivQfVKseuVMYryvzNvuFqOSiWjrxxXoFHls7shm/U5UmiJh8flwMuXDDY0vnwepyaYMaxLCqI9TtygRMCNBphSeMPxptJQKYrdiAQK7Y87Wt2AZ7/djqe/2WbzCi1m5dU3TOqmMYrZrFS0JyRRP75HOs7sn43bT+mp/g5Ghgs1TOh1TscIsAYCv07wGcoEnxsPz+yniXKHC+vw2DpwYfZA0t+k3h9EaXFHzZwqFprdYANC7P7Q72nWP81C133WybxAKbuk15GRAzq+ezpO75elKhX63Lwke+g70/sIdSZ8qnOhzxyZRegToj1qpp93xIGQQ085xWTmH9ujabROWAU7AeCFpaGKiap6v2GQM5YLpMR6XapxahffoMeWne3YGNwugn8qlT0AMLZbOnbcN8VyXiale0Y8umdYZ6QpxVkJGNMtXfc4vY9EtUJ5Wr0/iJeW7UT32z/GC0t/RTAo6TKPTT3rKyfZh6Xzx2seC7eEEpDvvZOKjFtOKHZZQKeD4MnzS1Tb4K4P1mHvMXPVSRoQYSsz/r5oM4rv+MTWxrtFEQc5WlNvOybn8Vn98fQFcsGd2flvFLhxOR1YeEZvnfMGRFZ+HeN1Ii7KDY/Toa4TbKCE3tdpBU64ondtlebMwA2XJGkPISQdwGeEkA2SJH1Nn1ScujkA0KlT5EIHLQF7cPkbt8cpZ2zqTBw4+sr81BjcOqUHbn17jW4bik8xWviyp9kjOuOkHh1wjlJW4eHmwPF9WWYllPz+8adsjNelEwuh2MnrA3K5mZFhM7Z7OnYdqUYVU26WlRiNXw+Z94JV1QVw4bM/qH/zTiqbgVMH33JObZ0/gJr6ABJ9Ht33elKZm1OSqzVy81Nj1MGp4WQWjGYAJfs82Fduvoj2zk5AZZ0f2w5U6RTjWCOoY0IUTu2TqfYslhZ3xI77pmjGMIQjIHFK70wEJeCj1Xttt20sNBpvlZGki+2A3CR8t+UQJhdn4PHzBmB/eS3Ka/2G/WhxUW7ERbnVY0EXYZfDgUAgkgxc6He9qbQ7Fv5vA/owfSoDOyfjhaW/IifJp1Hla6wDl5UYjRU7j2J0tzRs2FeB9LgoDCtIRWF6rC56zUcWqbE6d0wXjOuebthTRGHFAnJTfLh8dD6cDqC0qCNS4zzo+adPTF/LU1nnx4IP5ADFJSONy2GMMLtOeGPG7CYZ5Xaqc54aFGeQZhNeuXSIGu2l1Q/0XZyKE8+uTfz5Z6q82wjYaLFdpUG4PRZ0O7tSV2rIXf3qSvUxt9MBQuQSsYRoN/Yeq7Us6VbfS1U5Dv1uC6YWY8HUYkx+5BvNftUzvy3918uXDEbBrf+Dz+tUymBlJ+27m8epsuo04/boOf3w6bp9uHp8VwzpkqLpf6SYnRdJPjfe/MNQLNl6CB6XA2/NHYa0WK8qGe7mjNvS4gws/N96ncFIx0r8sP2woQKoFXwgsKougN0GDh8/yzA2ymWZOecxy/5FgoMQnGwxuL65Ia2YgWPLBt9buUfOwCmnx/UTu8IfCKpODs+dpxWhyKac2gz+nsUrIjYWemaH61ewrRcruSw0C3XgjOy8qvoAEqLN162jihL4prJKdZYgXXv562Sych72yUlEr6x4vLhU3yZjV93CE0kGzukgyE6Kxt5joREHbFCQfnJCtBsHKupEBs4MSZL2KP/fD+BtAIO455+SJKlEkqSStDR9SrqtwdYjb7p7MrxuB3YfrdEM4WRPKhpxH98jXdMbYGQAULlwfjaa20lw6ah8NSrKz4HjBUtKi60XcWoMBLjSjliP7PhV1Dbg4c83afbDSmSBIkEyNFzyU2OwdkGp5jGj/gWW7QcrsedoaDHkHaXD1Q2qwlwD1y8HAN9sPoAxD3yJvgs+w46DVaaz15Yr5WYPnNUbyTEetR+sJDfJtjZ86bZDqPUHdBksy9lTkA10KsebxTWHs4ua00FwzYSuughqks+jfqadAAV9t9P6ZOIJm1lNxwONJJqV6wAhg546RTQimh4fhYL0WMsSDnooVAfOSVRjH7DPwLHRt8tGd8GO+6ZoDMdTe3fEK5cOwVnKeATqNPDH9rFz+2N4QSgrWWkS8Jg1OBeLrhuNmyZ1x+2n9FRFGIyiiJdyzhLtiSCEoEfHeMvoIDUSRxam4svrx4AQgjmjuqBTik8eesuUwNoN0Q2n3NIINlNdWpShDrGOZIQKhS5JtJx8aJcUtVctVEIpb0PL89jzgF8nzMRrGgNbMmjvwIVnxNJslp1jYZQldzoIvrlxLO4/qzf+oAyEDkdsQi3HNLhkaKk2NcIbNCq9IWVlQuRz7515w9WSv9RYr1pyPVD5XgXpsbhhUnd4XA6cPyTXNiDy3c3j8Pdz5IqBRJ8bBelxOF8p4+vfKUkTXHE5iaaUKysx2lBoqKo+gOp6P6Y/uQQzn1pi+tm/GYhL9fqzNgCyeON+7DxcjRklOZrfms8Ysxm4JJv7QVPR2kYovXVZKTu2BETpjaUZuJRYLx44u4+pY3nhsDxNSW9j6ZOdgLMGNG5kDs+CqcUoTI/VlP5awQYQWDVkHhrgMrKH7GyJtDh5jaLz6tg1ycw+fHfecNx9ei9DFepIHThW4O3hGX1x4dBc0xLTYFDCjaXd8MLswardwQZU6B2LruPtPAHXPBk4QkgMAIckSRXKvycCWNAcn9VSsM3DHpdDYyCpjzM3qeKsBLxx+VC1rIyeKEZ9cmomSblpFnaIw+KNB5Acoy270vXAMY7W7af0RKmJEiTF6TRWNKOLwKNfbMFTX29DjMeF84bk4qSHvtLPzVC49eQeuOej9fL7BSTDHgyjXgneceH5ZfcxTqhF3wM3qmsajlY3qA25rBG/ihm6+vn6MlUAgYfKTo/tno7S4gz4PC7MHJQDl8OB9xUBkiSfW1VbZJn51FKMLExFtNupWfzsHLjJxRlYsk1eZHnDjV0HzUo+HA6CjPgo7D5aoxsgHO12IihJ6JwaowkqNDdDu6Rg+8KTLZ0NarypmZRGLJpRnlD5r9z/JD9u5MCxPUL0s40k3OV9IZpy0Q+uHIFVu/SRzCm9O8LrcuC7LfLxM8rA/fLniZqbzewRodKou6cVIyMhShWyoZH3GSU5eO3H33DX1KKIska0hDI+ym342z9x/gBMfEgueEj0uVFzzDxD2lgHLqCsRa/OGYKS3CTc/q5SZaA4XIuuG429RyOLTBv19tEbsYMtoZQkS0Ve+pvYqUaGA+sAmw13p4Sbgbt0ZD7GdEvX9EKHi9vpQHaSD9NL5HsS2ztqRWj9118z/zi3P95btVuVLGd7EendghACt8OBaLe52fCXM3vj6vGFlj08RmQlRqvruVXpMCAfj+QYDx6Z2Rffbj4Ih4PgD2O6YNF6uR+I8vbPu1Vlvj0W5WUj71+MZy4sUQOtvx2u1mU05ytlZFlJ0RhZmIZXfpAzC7z4VFyUC04HwcIzeqkz3Jqb1i4DowZ9dBMGTRoDHaHQAkKYGl67bGiTZR+HF6Tisz+Ott9QwSpgNKmoA4YXpOJP767Fff/bgKXbDhlmxMzaZyhHq+uRnxqDh6bL433k+zjtqbMOdi88o5d6rVAiDfCxAd7T+2Xh9H5ZeNNkpEp6XBR8Hhd8Htnxi3I7NGsyDUbZaJS1G5rra3QA8C0hZBWAHwB8KEnSx830Wc3KP87th0+vHaW7UIwcA34dLclL1kUejSKRfCng9RO74aVLBuvU0HgVSrYPK5z+K3U+CufA0c/fp9zk6vwBbN5fgV1HajTKiazTyka46wNBw883EiSwy8Ct2V2ucTCNHLgknwc+j1OV6zcr3zta3aBxsNhab1rq43E5EBflhtNB4PPIza9n9M/C8xcP1IwT4Fmx86guys/3a7CNystuGY+ZgzqpDkc658Cxx8QqQpWuKFHykbTrJnbFhrtK8efTigDI/VQthZ0BQQ16WnduFPww4+rxhQBCi77LIZdv0GuFLaGkhgRrPA7qnIxZgzvhtTnhjSnISfbhlN6Zlt8DMC4ZNRsFAcg3lgVTixEX5dJk4xae0Qub7p6sZhvChZZQmskpd+0Qpw5K5jNwL8zWFENoZkpFAr1O46PccDkdaha7MF12SrqkxaoCCHbcenIPxHBCOxRV7ER5yuEgCAQkzTpBj8dFw/LU6ocVt5+EZy46fgHkSIyzcHvgCCFhOW/lBsZVpBFsCl0TenTUl41lJERhzqgu6rU8qSgDpQZ9Om4nsSwRjHI7kW/QxxIOGfFRiHY70c2idDja7cQV4wpw3xm9MKZbOm47paf6HC+wsLGswlAN2IgdTFn/EpNMRnKMBxOLOuDO04rUAFyM14WJzAxUaizyynrNSRPOyG4U9JyJ1Glvan7Yfhj7ymtN1TebGmoftEbpKIXaNB3ivbhTufdT/nJmb7W0dteRGkPnDQAq66zX/0OV9eicGqPaeGz5qN2YKUDfkx2pYqfRPSE93ljQh52neMHQXLw2Z6jGPqHCQlRvItyxU22VZrniJEnaBqCP7YbtANaYu2p8oVpq0j0jDuO7p2PRhv3q8z6D6DGF7d/gieUycB6Xw9BB1PXAMVHCgEkq+70rhqv/poYQn4GjN76jSiSeEKLL8Lw7bzi6dohTFfLYcokGEwfOKFJr58Dx6fyahgAkSQIhBPX+ICrq5Nk7FbV+VNcH0P1287jAkep61VEDgIJb/6f+m34/o2gQIQRjuqVjrcFcFXY/E33a78Jn4EqLM/CyMiqhg3LDP6lnB3y2rgzxUS58ef0YjHnwSwDaslanhUM0rls6Vuw8qjs+XkXwZEh+CjbeXWoZmeP775ob+huX5CahtDgDwyNwLq89qauqYAiEFn9aMsf2YXVMiMKuIzWI9bpwrKYBgzon4+LhnU3FWiLF6riEy0+3naTpQXI4CDyN2D9qRFuVn6rlIsy1GRflwsjCNPxzVn98+MtefLh6r6GyXDjQmzd1KM4d1AmDO6eENfeP59JR+eqQeB5eDpxmWNnsKx3rcPspPdUgRmMES4yI5Pyh190rlw6xVCUOlyNVenXKxp7Pp/TOxKDOyUiPs+8HI4RgxsAcfLx2n2Zwr8vpiKjHyw4HCQVDU2K9WHvnJNMs59o7JyklnC4UGBSGTOufpbkfW8GXfpUzWej1+/Tr/n2Kai/dt9wUH/aV1yLG68RTF5SoiqUtlQ27fmJX/LzzKL7YsN9wfENLogbOLOyflqSlMnB3nV6MBVOL7DdsRuj8zPMG5+LCYXmoqvfj/o83ApCvk3BaYHhbgudwVb2mV/DWKT1wsTKD127MFCDPcvQHJdVWi2RWqhlmM/poSTkgZ/L5bH7oXqI80L79NzFGIBL+yBiShBDcUNoNizbsR8eEKLx7xXBbaVgz6MJn19Dudjo0FwybnaJOWdcOsdhUJssdT+2bid7ZoSye2gPHOXB0lg01FggB9ldoS06SYzyakkg26uQPSBojcXTXNHy16YBhSaGVCmWf7ARNCSQg90C9uvw3zCjJUQ3NJJ8bByud2HPMWkXsaHWD6eJEM1hW6Xyj516/fChuf2cNNuyr0EXevC4nXpw9GE9+vRXfbD6ItFgvBndO1khhP3pOP1TW+UEIQR4ToWUlp62MgCvHF+LfS3boZMdZBTAr523VHRMb1aN0PNASuIZA0FCCORKoscDPYTujfxZWK+fOFeMK8PdFm/HYuf2bzHkDjGdSAXL/0HUTu4X1HuFkysNBnR1p8X70lJpYlKGW1dLvcHKvjji5V0cs2/a5bl5WuNB1JDSvkjTKebNDLXtheuCq6vz4bF2Zuk1lrR8el6NJj/dFw/Lw/Pc7InoNzcCEq+Jqh5FQjN2MQivCcd4o8dGKgiRT9j5nVL6uMuR42LZQK+JhVaJql+E5pXcmNu6rwKNfbLH93L8v0g79ZisaNnIl6JeP7oKZXC9PaFxI65hQV4yTKxPKyms1Q8BbA3rImioD968LSmz7dq3gRz6Fy6Pn9NMIhYVDa5evUpuOCuHNHVOAlTuP4tN1ZWGvh1Y9cIGghMNV9UhmbJix3dJxz7Ri3Pr2Gk0fsuk+Oh1gTZJIRi6Ywa9jl4zojFun9LA9Hvxy2s79N+HAHQ904ayo9dveGM8ckI1Hv9iiK/MAQr1idoIMvIgJ2wNHb/SvXz4MhyrrkBrn1SjVAYBTuXB4o4BGqumQbAchKCvXLmT8RcfWFTcEJY3y3NMXluCnX48Yquh1sGjaN4uqzH/rFyTHeFTZ5wG5ydh1tEYTGY7xODVql/T7mDlwlbV+uBzE0mDgje1/XVCCgXnJmNYvCwv/twFHq+ux/NYJeOWHnfjbZ5vgdTkwojAVryyXs26psR68dpm2dC/K7TQsuWBVMe0iVEYLYLgN5EbnX3NDy43M5kdFAj3PqMIc5cpxhbj0Pz8CAHplJWAJJ/PcFPTMjMcNk7rhgU82ah7/x6z+GGsgr92c0ICN1bmSq2RaizPj8fbcYZj2z+91119yjBvbD1apf9Nsd1j7oPQ/HI9DEQ5qD5Zyu3U6CKrqA6pyJiCvwcdj9Bnx59OK1GxeuIQrYhIuc0bl45Ufdqo9u0DjSygjZUBuMh47t7+mD3re2IIW+ezGEq5kPO/kUXEpQO/AxRq0AtCgQmuWzwHW99OWglZDGLVMNIaTeh5fRrGxYwNO7WNcOt+WmTMqH9X1AbVcHgAePbefej7zDtz8ybISM4tVD9y2A5WoDwTRNV1ryw3uLAeo7MYhsDx5/gC8sOTXJgmyJXJ2zJkDssO6b9Hql/zUGKzedSzs/uG2yu+kla91oD1PFw3Ls9322gldsW7BJMM+Geoo2KW7rebA0fkZCdFu5KfFqn0pLHYZONpETqCXxaWGs9fl0MxMA2TFMi8jYuJ2OjAkP8XwgmqsEV9e04DvtxxEQXosembG65rH++fqVRCXbDuE25hhrCxV9QHbbAj/fKGSXaB9PQcr65EW51V7Nuj29IaWEkFktFtGHP7zf3Jvkp1QgqED1wozeMJl3rgC3DW1yLS3LBJofwPvrLMBhKaI8JkxwaBcydvSXfPQZ7+MuHRkPp69qAQn9eyAXlkJuGhYHh6e0VezTXaST83YA+GNDdHtQzM7FPR4mimEAnIGpakduMYQbg9cuMR4XepcQEqkPSTHw5TeHZsk8NJSUOOf709++dLBlq+jGbgDFXU4VFWP26b0wCmK6h4vJgaEstu0rPqn2yZgyfxxx7Xv7ZUq1YFrG/mAlgpwtAXioty4/ZSemkCC1+U0DYZfNrqL7jGrDBwdTdAnJ0HzeEF6LLbde3JEDtykogy8eIn1dRguDgfBB1eOUFtywhn9BISGsF8wLA+b7p6McwY1jXpoa9E2rrh2isNBbBX42G3NeuQ6xHnRv1OiptfHCI9L2wNXWevH9JJsXDIyP6yGeGr48D1wdDgjXYgbAkHs5zJw1GhYt6AUBMCnTPmSP2jcA8ez4a5S3WN/PrUnPli9V6MeBgDjuqcjIdqNt1fsBiALrOw+WoO8FLnskC/FdDkI3rtiOLYeqMS1r62y3RfA3tDnnSKf2v+odWBpHxLdnmaHIp1FRSOHdr1WRkNDWzsSbIXX5YxYpMMMGoSo5m46Hqcj4hk6jcHoPG+qsshICCcD53QQjOsuG7QuJzHMJnVK1vZD1vrtAxuR7ENTMDAvCTdP7o4ZJTmmn1dR628TjkZzBFJ4xdPm/r3bM8VZCdhx3xRMf3KJZvh5/05JKMqMN+1rLq9pwOpdR3GR0tvTo2M8/m94Z5QWZ+Bkg/E8tD2AXiuRBOt+b9D7XUwbuP6Aph/c/Xvn7g/X4/3VezG1TyaGdklBtw5xWLXrKDbuq8CbP+9CcowH+an60ni7QHNTsmT+ON3s2+KsBKTEerD7aE3YDlxRZkKTzF5sKwgH7jhpihpol9OBt+YOt92OHyNQXtuA+Ch32FLUoTlA2pM9yu3USK/XNgR1GTjaN0WdQImpX0yN9YZl9FEn480/DMWZj8tzeS4a3hm5qTG4+LnlmgjeQzP6orymAZIk4Z2Ve7D7aA12H6lRpZl5wzMgAb2zE9E7OxETe2bgia+22vZCRJqBowai00FwU2l3pCilp9SB4zNwkRqUAck+qwK0vwxcU+JSSygD3OMOzBtbgGteW2nZZ3m8GP3OreHABVQBkeP7bH5+WG1DIOzAA92Hpuw7M4IQgsuZyLGR4XCspm1k4JrjXOjC9RWajcQQhODPEK/LoXOyumfEqb2hy7YfxjlPLVWDmD06xsPhIKZVA385szfe/HlXk/YDtlfocGgrEbeWJBBGX5ZAy4HyWrUknW9HuXZC1xZ11ozomGB8T3epSYkT85i3jStOEBayiAmdvxFEdX0gop4mmlbPTNQbALwkd1mFcQklhQ5W7dkxHved2dvSiPv8j6OwkxmWOiBXKys7ujAN10/sivOH5GFGSQ7eW7UHCdFuJES78fDMfvj1cDUWb9yPijq/mjJn5/JdOa5AlcsF5FKOokxtyr9bhzhsLNP2NtiJefDPszcoVu2IOp50+6snFOKKl1dYymEbEVRnlFgvlkZGYlvOwDUlagbOoISSzohpToziNa3hwF06Mh/r91ZgesnxlYD06ySXHlNjtq4h/BthS2XgeIw+72BlHfLTWka23Yqm7oEDgJGFaTijXxbeWrEbaXFe3HtGryb/jN8b90zrhflvrca47h1wqLIOhBD8bXof/PfH3/DPxVtRWefH4+cNwIGKOtz05mpsP1iFnGQfnrt4IKJcTlsF05RYL+aM0pejnYjQDLGVIm5LYjS79URmVNc0rNtTjnunFQMAHprRB8t3HMGZ/bORnxqDSsWu2ry/Ep+vL0NZeS2KMuORFufF7iM1hsO42wp/m94Xj36xRSPWdyLRNq44QVj4PE5U1fsRDEqq7HF8BA7cyMJUPHn+AEPBhYF5SVi+Qy5jrG0I6ERMeAetOCsBi68fg7wUn20WsiA9DgVcE+zJvTLQQylFdDiIqqo1rCAVw7gRChcNy8PVr64EEMoYUAGZsd3SDBUAe2VrHbiPrxmJzvM/AhAa0G03eJs3zM2c1LRYL6LcDmQoUaJx3Ttg3QJ9uagR78wbrvYg0uxOukn9OuWEzsA5tGWqlObse2NJj4tCSW6SpuS3pVU9AXmOYFP0EwzITcKWeybjozX7cNUrK1DnNx/4zRNOH15zYDTnaX9FnWEfbHNw/1m9QQDc8MZq3XPN1X9DZ4pNL8mOuDT7RKQgPRavXz5M81hqrBdzxxRgQo8O8AckdE6NQefUGFw2Kh+v/fgbXpsztFWCMe2dOaPysXzHYUw4TvGRpuCRmX0xqHOy/YYnELS3njKtXzam9ctW/6bBim4ZcREHnVubvNQY/HX672JiWaMQDlw7IiXGg6AELN1+SFX2o1LP4UAIMW06fWH2YHVOR1l5Ler9QVw/sStO75eF7CTjuWH8oNJZgzthVJgy8f+cNSDs/Wal52k5ESEEP9w63tSYyUyIwl1Ti3D7u2txcq8MjZMZ7XbiCBpsB62y0fSbSrubbpfgc2PpfPN9sYItwRman4K7phZhWv9si1cY98idMBk4xUBevPGA5vGWcuCcDoInzx+AAXd/3uKf3Vy4nA51DEVtozJwLfv9jc7/QFBCsq9p5r7ZQbOevANXkpuE2GYqI6OlsnwfiCBy+JaDmYM66cYECMKnsEMcvrxhbGvvBgC0e1VBgSAShAPXjkhVMjPn/msZXlKi700lC886ALQvoCA9ztR5M+Keac1T2sMOY6QiJoD1TCNCCM4fmofS4o46J5eWKNo5cNRZKMlN0pRM2u1jY6H7bMeRav1w3xMtA8fTklkgXklW+h3Y1PT6Z2dL2tFaGTizLFeSTUa9OZk1uFOzrX9AqIS9PozBvALBicKDZ/fB4ao6JMd4sTjMIe4Cwe8F4cC1I1IYOWOqsNWU5TQjClLx7ZaD6ry1osx4m1e0PJGWuBjJ6dKZSnYOHDVQW7uBl+fXw/rByyeKA9fSzoIRHpcDX1w3Gr/sPoY73luL9Pj2r0BHz5873luLD68aGdZraDaopXvg6DmQkxyN3w7XqI8ntFAGjpIW58WBijp8d/M427Ln4yXcUTMCwYnEWQOyDf8tEJwICAeuHZEWFzJQHlm0GUBkPXB2vHjJYIy6fzF2Hq5GXJRLp1DXmrx/xQjURJAdMOLeab2Q6HNj7ks/A5Drp61QMwxtTJbYaOC7+wRx4NqKhHp+Wizy02J/NyU7VOVr7Z5yPP7lVhRlxmNgXrKlkqo/GAQhLR/goOdAT0Xq/c73ZfW0itqWFS9YdN1o1DYELCsBmgqaeRYllAKBQCAAhAPXrmAzcKmxHmQmRiMnghLHcEjyubHzMHDJiPwmGZHQVPCiJI3h3MHaPod8GweOZu8GtJA4QqQ8d/FAXPzcchAC+E6QHjgqPJOVGI0/ntQV170e3sw/gTWdUnxYOn88zn16Kf7y8QYAsjhLz8x4BIISEqLdGJCbhC7psSjKjMea3cfw5FfbWmXm0tAuKeiVlYDS4gyN+tigvJYVL4iPcreYoEhHRTm4OZyg2KYAAAgWSURBVEdkCAQCgaD9QKQ20MBRUlIi/fjjj629G20eSZJwxcsrMGNgTthiIZHy2+Fq1AeC6JKmH9z4eyHv5g8BIKyBjuv2lKNbRlybKN2jbCqrwIGKOgzn1DpPBCRJws7D1eiULKufbi6rwNYDVSgtNhbnEURGIChhX3ktNpVV4IkvtyIQlBAX5cLuozXYVFap275XVgLev3JEK+ypljp/oFkk/NsKkiRh8cb9GFWYdtyz/wQCgUDQdiGE/CRJUontdsKBE5xoXPXKCmwqq8DH14xq7V0RCNoNByvrsGTrIew+WoPeWQnon5sEr8vRpjL1AoFAIBC0Z4QDJxAIBAKBQCAQCATthHAdOFGLIRAIBAKBQCAQCATtBOHACQQCgUAgEAgEAkE7oU2UUBJCDgD4tbX3w4BUAAdbeycEtojj1PYRx6h9II5T+0Acp7aPOEbtA3Gc2gcn0nHKlSTJVqmwTThwbRVCyI/h1KEKWhdxnNo+4hi1D8Rxah+I49T2EceofSCOU/tAHCc9ooRSIBAIBAKBQCAQCNoJwoETCAQCgUAgEAgEgnaCcOCseaq1d0AQFuI4tX3EMWofiOPUPhDHqe0jjlH7QByn9oE4ThyiB04gEAgEAoFAIBAI2gkiAycQCAQCgUAgEAgE7QThwJlACCklhGwkhGwhhNzc2vtzokIIySGELCaErCeErCWEXK08nkwI+YwQsln5f5LyOCGE/F05bqsJIf1b9xucWBBCnISQFYSQD5S/OxNClinH6TVCiEd53Kv8vUV5Pq819/tEgRCSSAh5gxCyQbmmhoprqe1BCLlWWe/WEEJeIYREiWup9SGEPEsI2U8IWcM8FvH1Qwi5UNl+MyHkwtb4Lr9XTI7RA8qat5oQ8jYhJJF5br5yjDYSQiYxjwsbsBkxOk7Mc9cTQiRCSKryt7iWDBAOnAGEECeAxwBMBtATwDmEkJ6tu1cnLH4A10mS1APAEADzlGNxM4BFkiQVAlik/A3Ix6xQ+W8OgMdbfpdPaK4GsJ75+y8AHlKO0xEAs5XHZwM4IklSAYCHlO0Ezc8jAD6WJKk7gD6Qj5W4ltoQhJAsAFcBKJEkqRiAE8BMiGupLfA8gFLusYiuH0JIMoA7AAwGMAjAHdTpEzQJz0N/jD4DUCxJUm8AmwDMBwDFlpgJoEh5zT+VIKSwAZuf56E/TiCE5AA4CcBO5mFxLRkgHDhjBgHYIknSNkmS6gG8CmBqK+/TCYkkSXslSfpZ+XcFZIMzC/Lx+Ley2b8BnK78eyqA/0gySwEkEkI6tvBun5AQQrIBTAHwtPI3ATAOwBvKJvxxosfvDQDjle0FzQQhJB7AKADPAIAkSfWSJB2FuJbaIi4A0YQQFwAfgL0Q11KrI0nS1wAOcw9Hev1MAvCZJEmHJUk6Atm50BmygsZhdIwkSfpUkiS/8udSANnKv6cCeFWSpDpJkrYD2ALZ/hM2YDNjci0BchDqRgCsQIe4lgwQDpwxWQB+Y/7epTwmaEWU0qB+AJYB6CBJ0l5AdvIApCubiWPXejwMeeENKn+nADjK3DjZY6EeJ+X5Y8r2guYjH8ABAM8pZa5PE0JiIK6lNoUkSbsBPAg5Ar0X8rXxE8S11FaJ9PoR11Xr8n8A/qf8WxyjNgQh5DQAuyVJWsU9JY6TAcKBM8YoeinkOlsRQkgsgDcBXCNJUrnVpgaPiWPXzBBCTgGwX5Kkn9iHDTaVwnhO0Dy4APQH8LgkSf0AVCFU7mWEOEatgFICNBVAZwCZAGIglxDxiGupbWN2XMTxaiUIIbdCbst4iT5ksJk4Rq0AIcQH4FYAfzJ62uCxE/44CQfOmF0Acpi/swHsaaV9OeEhhLghO28vSZL0lvJwGS3nUv6/X3lcHLvWYTiA0wghOyCXm4yDnJFLVMrAAO2xUI+T8nwCjMspBE3HLgC7JElapvz9BmSHTlxLbYsJALZLknRAkqQGAG8BGAZxLbVVIr1+xHXVCigCF6cAmCWF5meJY9R26AI5aLVKsSOyAfxMCMmAOE6GCAfOmOUAChXVLw/kJtf3WnmfTkiUXo5nAKyXJOlvzFPvAaCKQxcCeJd5/AJFtWgIgGO0vEXQfEiSNF+SpGxJkvIgXy9fSJI0C8BiAGcpm/HHiR6/s5TtT5jIWWsgSdI+AL8RQropD40HsA7iWmpr7AQwhBDiU9Y/epzEtdQ2ifT6+QTAREJIkpJtnag8JmgmCCGlAG4CcJokSdXMU+8BmElkJdfOkEUyfoCwAVscSZJ+kSQpXZKkPMWO2AWgv3LfEteSAS77TU48JEnyE0KugHwiOAE8K0nS2lberROV4QDOB/ALIWSl8tgtAO4D8F9CyGzIBs/ZynMfATgZcjNyNYCLW3Z3BRw3AXiVEHI3gBVQBDSU/79ACNkCOVsws5X270TjSgAvKUbJNsjXhwPiWmozSJK0jBDyBoCfIZd7rQDwFIAPIa6lVoUQ8gqAMQBSCSG7ICvgRXQvkiTpMCHkLshOAgAskCRJZEybCJNjNB+AF8Bnir7PUkmSLpckaS0h5L+QAyR+APMkSQoo7yNswGbE6DhJkvSMyebiWjKAiECdQCAQCAQCgUAgELQPRAmlQCAQCAQCgUAgELQThAMnEAgEAoFAIBAIBO0E4cAJBAKBQCAQCAQCQTtBOHACgUAgEAgEAoFA0E4QDpxAIBAIBAKBQCAQtBOEAycQCAQCgUAgEAgE7QThwAkEAoFAIBAIBAJBO0E4cAKBQCAQCAQCgUDQTvh/yT6bKF15vUEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot each column\n", "groups = list(data.columns.values)\n", "plt.figure(figsize=(15, 10))\n", "for group in cols:\n", " plt.subplot(len(cols), 1, i)\n", " plt.plot(values[:, group])\n", " plt.title(data.columns[group], y=0.75, loc='right')\n", " i += 1\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAELCAYAAAAm1RZ5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl4U2X6hu+TNOmS7rSFbnRhX1rK0lJAkEVBBREURUBBHcdd0XF+jo7jLjM6LiiKMjDjjgOKAjqIG1hkEyiyKPtWulBK9z1Jk5zfH+GcJm3apkvappz7urxs05PkS0ie85zne7/3E0RRREFBQUGha6Dq6AEoKCgoKLQdiqgrKCgodCEUUVdQUFDoQiiirqCgoNCFUERdQUFBoQuhiLqCgoJCF0IRdQUFBYUuhCLqCgoKCl0IRdQVFBQUuhAe7flkISEhYmxsbHs+pYKCgoLbs3fv3gJRFEOdObZdRT02Npb09PT2fEoFBQUFt0cQhLPOHqvELwoKCgpdCEXUFRQUFLoQiqgrKCgodCHaNVNXUOhq1NTUkJ2djV6v7+ihKHQBvLy8iIqKQqPRtPgxFFFXUGgF2dnZ+Pn5ERsbiyAIHT0cBTdGFEUKCwvJzs4mLi6uxY+jxC8KCq1Ar9fTrVs3RdAVWo0gCHTr1q3VV32KqCsotBJF0BXairb4LLmFqG84voE1h9d09DAUFBQUOj1ukam/m/4ueZV5zBo4q6OHoqCgoNCpcQunrlVrMZqNHT0MBYVOSV5eHnPnziU+Pp7hw4czatQo1q5dS1paGtOmTWv0vs8++yyvvvpqs57P19e3NcNtEfv37+ebb76Rf//qq6946aWX2n0c7oDbiLrBZOjoYSgodDpEUWTGjBmMGzeO06dPs3fvXlatWkV2dnZHDw2z2dxmj1VX1KdPn87jjz/eZo/fEYiiiMViafPHdYv4RXHqCu7AiRMPU1Gxv00f09c3iT593mjw75s3b0ar1XLPPffIt8XExPDggw+SlpYm31ZUVMQdd9zB6dOn8fHxYfny5SQmJgJw4MABJk6cSFZWFo899hh//OMfqaio4LrrrqO4uJiamhpefPFFrrvuuibHm5aWxnPPPUd4eDj79+/n8OHDfPLJJyxZsgSj0cjIkSN55513UKvV3HvvvezZs4fq6mpmzZrFc889B8CePXtYuHAhlZWVeHp68sMPP/D0009TXV3Ntm3beOKJJ6iuriY9PZ1FixYxZMgQTp8+jUqloqqqin79+nH69GkyMzO5//77yc/Px8fHhxUrVtC/f3+H477tttvw8vLi0KFD5OXl8frrrzNt2jT0ej333nsv6enpeHh48PrrrzNhwgSuueYaXnrpJRITExk6dCgzZ87k6aef5qmnniImJoY777yTV155hc8++wyDwcDMmTN57rnnyMjI4Oqrr2bChAns3LmTdevWERMT48xHwWkUUVdQcGMOHTrEsGHDmjzumWeeYejQoaxbt47Nmzczf/589u+3noAOHjzIL7/8QmVlJUOHDmXq1KmEhYWxdu1a/P39KSgoIDU1lenTpztVnbF7925+//134uLiOHLkCKtXr2b79u1oNBruu+8+Vq5cyfz581m0aBHBwcGYzWYmTZrEwYMH6d+/P7Nnz2b16tUkJydTVlaGj48Pzz//POnp6bz99tsAfPDBBwAEBAQwZMgQtmzZwoQJE/j666+ZMmUKGo2Gu+66i2XLltGnTx927drFfffdx+bNmxscd0ZGBlu2bOHUqVNMmDCBkydPsnTpUgB+++03jh49yuTJkzl+/Djjxo1j69atxMbG4uHhwfbt2wHYtm0bt9xyC99//z0nTpxg9+7diKLI9OnT+fnnn+nZsyfHjh3j/fff55133mnyvWwJbiHqnmpPRdQVOj2NOer24v7772fbtm1otVpeeeUV+fZt27bxxRdfADBx4kQKCwspLS0F4LrrrsPb2xtvb28mTJjA7t27mTp1Kn/961/5+eefUalU5OTkkJeXR48ePZocQ0pKirx4ZtOmTezdu5fk5GQAqqurCQsLA+Czzz5j+fLlmEwmcnNzOXz4MIIgEB4eLh/v7+/f5PNJJ4EJEyawatUq7rvvPioqKtixYwc33nijfJzB0HiEe9NNN6FSqejTpw/x8fEcPXqUbdu28eCDDwLQv39/YmJiOH78OGPHjmXJkiXExcUxdepUfvjhB6qqqsjIyKBfv36sWLGC77//nqFDhwJQUVHBiRMn6NmzJzExMaSmpjb5ulqKW4i64tQVFBwzaNAgWawBli5dSkFBASNGjLA7ThTFeveVXHdd9y0IAitXriQ/P5+9e/ei0WiIjY11elGMTqeze94FCxbwj3/8w+6YM2fO8Oqrr7Jnzx6CgoK47bbb0Ov1iKLY7Frt6dOn88QTT1BUVMTevXuZOHEilZWVBAYGylcjzuDofXD0vgEkJyeTnp5OfHw8V155JQUFBaxYsYLhw4fLr/uJJ57g7rvvtrtfRkaG3fvjCtxmolQRdQWF+kycOBG9Xs+7774r31ZVVVXvuHHjxrFy5UrAmnuHhITILnj9+vXo9XoKCwtJS0sjOTmZ0tJSwsLC0Gg0/PTTT5w963Q7bzsmTZrEmjVruHDhAmDN9s+ePUtZWRk6nY6AgADy8vLYuHEjYHXD586dY8+ePQCUl5djMpnw8/OjvLzc4XP4+vqSkpLCwoULmTZtGmq1Gn9/f+Li4vj8888Bq8geOHCg0bF+/vnnWCwWTp06xenTp+nXr5/d+3b8+HEyMzPp168fWq2W6OhoPvvsM1JTUxk7diyvvvoqY8eOBWDKlCm89957VFRUAJCTkyO/B67GbZy6waxUvygo1EUQBNatW8cjjzzCP//5T0JDQ9HpdLz88st2xz377LPcfvvtJCYm4uPjw4cffij/LSUlhalTp5KZmclTTz1FREQE8+bN49prr2XEiBEkJSU1OMHYFAMHDuTFF19k8uTJWCwWNBoNS5cuJTU1laFDhzJo0CDi4+MZM2YMAFqtltWrV/Pggw9SXV2Nt7c3P/74IxMmTOCll14iKSmJJ554ot7zzJ49mxtvvNFucnjlypXce++9vPjii9TU1HDzzTczZMiQBsfar18/Lr/8cvLy8li2bBleXl7cd9993HPPPSQkJODh4cEHH3yAp6cnAGPHjmXTpk34+PgwduxYsrOzZVGfPHkyR44cYdSoUYD1xPPJJ5+gVqtb9D42B6Ghywv5AEF4D5gGXBBFcfDF24KB1UAskAHcJIpicVNPNmLECLElOx+9sOUFnk57GtNTJtQq178pCgrOcuTIEQYMGNDRw1BoJbfddhvTpk1j1qyOX+Do6DMlCMJeURRHNHAXO5yJXz4Arqpz2+PAJlEU+wCbLv7uMrRqLYASwSgoKCg0QZPxiyiKPwuCEFvn5uuA8Rd//hBIA/7ShuOyw1bUvTXernoaBQUFJ/ntt9+49dZb7W7z9PRk165dHTQi51i0aJGcs0vceOONcolkV6ClmXp3URRzAURRzBUEIawNx1QPxakrKHQuEhISmlVZ0ll48sknefLJJzt6GC7F5dUvgiDcJQhCuiAI6fn5+S16DE8P68SEIuoKCgoKjdNSUc8TBCEc4OL/G6zVEUVxuSiKI0RRHBEaGtqiJ1OcuoKCgoJztFTUvwIWXPx5AbC+bYbjGEnUlbJGBQUFhcZpUtQFQfgvsBPoJwhCtiAIfwBeAq4UBOEEcOXF312G4tQVFBQUnKNJURdFcY4oiuGiKGpEUYwSRfE/oigWiqI4SRTFPhf/X+TKQSqirqDQMO7cT33dunUcPnxY/v3pp5/mxx9/bLPHvxRxmzYBoIi6gkJdOnM/dWeoK+rPP/88V1xxRQeOqPWYTKYOfX5F1BUU2oqHH4bx49v2v4cfbvQpG+unbktRUREzZswgMTGR1NRUDh48KP9N6qfep08fVqxYAVi7Ck6aNIlhw4aRkJDA+vXOTZs1dr+PPvqIxMREhgwZwq233sqOHTv46quv+L//+z+SkpI4deoUt912G2vWrGHjxo3cdNNN8n3T0tK49tprAfj+++8ZNWoUw4YN48Ybb5T7qzgiNjaWv/zlL6SkpJCSksLJkycBOHv2LJMmTSIxMZFJkyaRmZmJ2WwmPj4eURQpKSlBpVLx888/A9aWACdPnqSyspI77riD5ORkhg4dKr++Dz74gBtvvJFrr72WyZMnO/VeuQq36f0CiqgrKNSls/VT9/Lycni/w4cPs2jRIrZv305ISAhFRUUEBwczffp0h8vzr7zySu6++24qKyvR6XSsXr2a2bNnU1BQwIsvvsiPP/4o97h5/fXXefrppxsck7+/P7t37+ajjz7i4Ycf5n//+x8PPPAA8+fPZ8GCBbz33ns89NBDrFu3jr59+3L48GHOnDnD8OHD2bp1KyNHjiQ7O5vevXvz17/+lYkTJ/Lee+9RUlJCSkqKfGWxc+dODh48SHBwcJP/Hq7ELUTdU22tU1e2tFPo1Lyh9FMXRdHh/TZv3sysWbMICQkBaFL4PDw8uOqqq/j666+ZNWsWGzZs4J///Cdbtmzh8OHDcgMwo9EoN81qiDlz5sj/f+SRRwCrAH/55ZcA3HrrrTz22GOA1ZH//PPPnDlzhieeeIIVK1Zw+eWXy/3dv//+e7766it5HkKv15OZmQlYT0QdLejgJqKuOHUFBcd0tn7qDd2vJX3SZ8+ezdKlSwkODiY5ORk/Pz9EUeTKK6/kv//9r9OPY/u8DY1Bun3s2LEsW7aMc+fO8fzzz/PKK6+QlpbGuHHjAOv7+MUXX9CvXz+7++/atcvlfdKdRcnUFRTcmM7WT72h+02aNInPPvuMwsJCwJrxA432SR8/fjy//vorK1asYPbs2QCkpqayfft2ORuvqqri+PHjjY5p9erV8v8lVz969GhWrVoFWE9El112GQAjR45kx44dqFQqvLy8SEpK4l//+pddn/S33npLPknu27fPqfelPVFEXUHBjZH6qW/ZsoW4uDhSUlJYsGCBw37q6enpJCYm8vjjjzvsp56ammrXTz09PZ0RI0awcuVKp/upN3S/QYMG8eSTT3L55ZczZMgQ/vSnPwFw880388orrzB06FBOnTpl91hqtZpp06axceNGuTQzNDSUDz74gDlz5siTvkePHm10TAaDgZEjR/Lmm2+yePFiAJYsWcL7779PYmIiH3/8MW+++SZgbUoWHR0tbzc3duxYysvLSUhIAOCpp56ipqaGxMREBg8ezFNPPeXU+9KeNNlPvS1paT/1nLIcohZHsXzacv44/I8uGJmCQstQ+ql3bmJjY0lPT5ezfHegPfqpdziKU1dQUFBwDreaKFV6vygodA46Wz/1mTNncubMGbvbXn75ZTIyMjpkPB2JW4m64tQVFDoHna2f+tq1azt6CJ0GJX5RUFBQ6EK4hairVWrUgloRdQUFBYUmcAtRB6tbV0RdQUFBoXEUUVdQcHMWLVrEoEGDSExMJCkpqdHJypa02m0paWlp7Nixo9n3S09P56GHHmrTsXz++ecMGjQIlUpFS8qq3Qm3mCgFRdQVFByxc+dO/ve///Hrr7/i6elJQUEBRmPn+J6kpaXh6+vL6NGjnb6PyWRixIgR9doctJbBgwfz5Zdfcvfdd7fp43ZG3MqpKw29FBTsyc3NJSQkBE9Pa9O7kJAQIiIiiI2NpaCgALA63/Hjx8v3cdRq1xFpaWlcfvnl3HTTTfTt25fHH3+clStXkpKSQkJCgrwCND8/nxtuuIHk5GSSk5PZvn07GRkZLFu2jMWLF5OUlMTWrVsdHgfWq4e77rqLyZMnM3/+fLvNPZ599lnuuOMOxo8fT3x8PEuWLJHH98ILL9C/f3+uvPJK5syZ0+gVyIABA+r1a+mquJdTt3QOB6Kg4IiHH4a2rvJLSmq8+ePkyZN5/vnn6du3L1dccQWzZ8/m8ssvb/QxHbXajYiIcHjsgQMHOHLkCMHBwcTHx3PnnXeye/du3nzzTd566y3eeOMNFi5cyCOPPMJll11GZmYmU6ZM4ciRI9xzzz34+vry5z//GYC5c+c6PA5g7969bNu2DW9vb9LS0uzGcPToUX766SfKy8vp168f9957LwcOHOCLL75g3759mEwmhg0bxvDhw51/Y7swbiPqnh6eSvyioFAHX19f9u7dy9atW/npp5+YPXs2L73U+JbBjlrtzpgxw+GxycnJhIeHA9CrVy95A4iEhAR++uknAH788Ue73YvKysocNulq7Ljp06fj7e3tcAxTp07F09MTT09PwsLCyMvLY9u2bfLrAOQNNBTcSNSVTF2hs9NR7dTVajXjx49n/PjxJCQk8OGHH+Lh4YHFYgGo1zLXUavdhpBiHQCVSiX/rlKp5G3bLBYLO3fubFCUJRo7rrG2tbZjUKvVmEwmh62EFay4VaauiLqCgj3Hjh3jxIkT8u/79+8nJiaG2NhY9u7dC2DXbx0ct9ptDZMnT+btt9+2GwPUb6vb0HEt4bLLLuPrr79Gr9dTUVHBhg0bWvxYXQ1F1BUU3JiKigoWLFjAwIEDSUxM5PDhwzz77LM888wzLFy4kLFjx6JWq+3u46jVbmtYsmSJ3NZ34MCBLFu2DLBGImvXrpUnShs6riUkJyczffp0hgwZwvXXX8+IESMICAho8Pi1a9cSFRXFzp07mTp1KlOmTGnxc3d23KL1LsCEDydgtpj5+faf23hUCgotR2m923FUVFTg6+tLVVUV48aNY/ny5U7t19rZaW3rXbfK1EtrSjt6GAoKCp2Eu+66i8OHD6PX61mwYEGXEPS2wK1EXYlfFBTans7WRtdZPv3003q33X///XL9u8TChQu5/fbb22tYHY4i6goKlzidrY1ua1i6dGlHD6HDcZuJUk+1tU79SP4RjuQf6ejhKCgoKHRK3M6p37PhHrRqLT/c+kNHD0lBQUGh09Eqpy4IwiOCIBwSBOF3QRD+KwiCV1sNrC5atRaD2UB2WTYl+hJXPY2CgoKCW9NiURcEIRJ4CBghiuJgQA3c3FYDq4vk1C9UXqDSWOmqp1FQUFBwa1qbqXsA3oIgeAA+wLnWD8kxWrWWMkMZFcYKqmqqXPU0CgpuR15eHnPnziU+Pp7hw4czatQo1q5da9ftsCFa0l/d19e3wb+dO3eOWbNmNfkYf//735v1nM5g24e9pb3cuwItFnVRFHOAV4FMIBcoFUXx+7YaWF20ai0mi7XXhCLqCgpWRFFkxowZjBs3jtOnT7N3715WrVpFdnZ2h4wnIiKCNWvWNHmcK0R9xIgRcmteRdRbgCAIQcB1QBwQAegEQbjFwXF3CYKQLghCen5+fosHKm0+DVBZo8QvCgoAmzdvRqvVcs8998i3xcTE8OCDD9odV1RUxIwZM0hMTCQ1NZWDBw/Kf3PUX72iooJJkyYxbNgwEhISWL9+vVPjycjIYPDgwQB88MEHXH/99Vx11VX06dOHxx57DIDHH3+c6upqkpKSmDdvHgCffPIJKSkpJCUlcffdd2M2mwHrVcGTTz7JkCFDSE1NJS8vD7DuZDR48GCGDBnCuHHjAOQrE0e93OPi4qipqQGs3SFjY2Pl37saral+uQI4I4piPoAgCF8Co4FPbA8SRXE5sBysbQJa+mS2ol5VU4Uoio12l1OoZebqmVzb91ruGHpHRw+lS/Pwtw+z/3zb1nsn9Ujijasabv946NAhp1ZSPvPMMwwdOpR169axefNm5s+fL9emO+qvHhYWxtq1a/H396egoIDU1FSmT5/e7O/c/v372bdvH56envTr148HH3yQl156ibffflt+/iNHjrB69Wq2b9+ORqPhvvvuY+XKlcyfP5/KykpSU1NZtGgRjz32GCtWrOBvf/sbzz//PN999x2RkZGUlNgXTsTGxtbr5T5+/Hg2bNjAjBkzWLVqFTfccAMajaZZr8VdaE2mngmkCoLgI1j/pScBLisg91R72v2uN+kbOFKhLt+e/JYdWZfmpeilxv3338+QIUPqdV7ctm2bvGp04sSJFBYWUlpqbbsh9SUPCQmR+6uLoshf//pXEhMTueKKK8jJyZFdcnOYNGkSAQEBeHl5MXDgQM6ePVvvmE2bNrF3716Sk5NJSkpi06ZNnD59GgCtVivPCwwfPpyMjAwAxowZw2233caKFStkV98Yd955J++//z4A77//fpdeYdpipy6K4i5BENYAvwImYB8XHbkrsHXqYI1gvDWN929WAKPZiN6kVyKrdqAxR+0qBg0aZNdad+nSpRQUFNTb49NR4z7JdTvqr75y5Ury8/PZu3cvGo2G2NjYen3ZncFRL/S6iKLIggUL+Mc//lHvbxqNRh6f7f2XLVvGrl272LBhA0lJSU2uiB0zZgwZGRls2bIFs9ksR0RdkVZVv4ii+Iwoiv1FURwsiuKtoii6bBPRuqKuTJY6R7nB2s9aKQPtmkycOBG9Xs+7774r31ZVVf+7MW7cOFauXAlYs+eQkBD8/f0Bx/3VS0tLCQsLQ6PR8NNPPzl02K1Bo9HImfakSZNYs2YNFy5cAKz5f1PPd+rUKUaOHMnzzz9PSEgIWVlZdn+v28sdYP78+cyZM6dLu3RwozYBiqi3jDJDGaBMLndVBEFg3bp1bNmyhbi4OFJSUliwYAEvv/yy3XHPPvus3Mv88ccf58MPP5T/5qi/+rx580hPT2fEiBGsXLmS/v37t+m477rrLhITE5k3bx4DBw7kxRdfZPLkySQmJnLllVeSm5vb6P3/7//+j4SEBAYPHsy4ceMYMmSI3d/r9nIHmDdvHsXFxcyZM6dNX0tnw236qX984GPmr5sv/57+x3SGRygbzTbFgfMHSPpXEiMjR/LLnb909HC6HEo/dfdhzZo1rF+/no8//rijh9Iol1Q/dYAgryCK9cWKU3cSxakrKMCDDz7Ixo0b+eabbzp6KC7H7UQ9LiiO4lxF1J1FFnUlU1doQ9ytB/tbb73V0UNoN9xP1APj+DX3V8V5Ooni1BVcQVfqwd7VcJuJUk8Pa2lUbGAsoEyUOosk6sr75Trac15KoWvTFp8ltxF1W6cOSpzgLLbxiyI+bY+XlxeFhYXKe6vQakRRpLCwEC+v1nUwd5v4JTkimYdHPsy1/a7lgY0PKM7TSSRRFxHRm/TKgq02JioqiuzsbFrT10hBQcLLy4uoqKhWPYbbiLq3xpvFVy2W9ylVRN05JFEHZRWuK9BoNMTFxXX0MBQUZNwmfpHQqrV4qDwcTvztzNpJryW9lJ2RbCgz2oi6ElkpKHR53E7UAXw0Pg6d+s7snZwuPs2JwhMdMKrOSV2nrqCg0LXpUqJ+rty68VJeZfO7yXVV7ERdceoKCl0etxR1nUbn0HXmVlj7RZyvON/eQ+q0lBnK5LbFilNXUOj6uKWo2zr1X7J/Yfjy4RRWFdY69QrFqUuUGcro4dsDUJy6gsKlgFuLutli5p7/3cOvub+Sfi5diV8cUGYoI9wvHFCcuoLCpYBbirpOq6PSWMl/9v2HA3kHADhZdFIRdQeUGcoI970o6opTr0eNuUZZOKTQpXBLUZec+jt73iElMgUfjQ/7zu+jwlgBKJm6hNlipsJYUSvqilO3wyJaiH0zlhW/rujooSgotBluK+oVxgqOFx5nTPQYegX1YmumtRG+SlBdspl6WkYaB/Nqd4mXTnJS/KIs2LKnRF/CufJzHLpwqMljN5/ZzMcHOncfbgUFcFNR12l0nC09S7Wpmt7Bvekd3JvjhccB6B/S/5KNX+753z08/uPj8u9SOWN3XXdAiV/qUlRdBEBBdUGTxy7ZtYSn05529ZAUFFqN27QJsMVH4yO3C+gd3JuMkgz5b0N7DOVw/mH0Jj1eHq1rjONuFFQVYLLUbuwriXqgVyA+Gh8lfqlDYVUhYH3fmqLMUKasVFZwC9zSqftofOSfewf3pldQL/n3oT2GAnCh8kK7j6sjsYgWivXFZJRkUGO2bugribq/p7+1tl9x6nbITt0JUS81lFKqL8UiWlw9LAWFVuGWoq7T6ADwUHnQM6AnvYN7A1ax79OtD3Dp1aqXG8qxiBbMopkzJWeAOqKudbxg61KmsLp5Tl1EtFuhq6DQGXFLUZecelxgHB4qD1nUI/wi5IU2J4pOsOH4hgYfI68izy6qcHeK9cXyz1Lvm3pOXRF1OySnLsUwjSG9l8XVxU0cqaDQsbi1qPcKtsYuUf5RaNVaIvwi5EnBhzY+xLT/TnNY3mg0G+n7dl+W7l7afoN2MbZic6LIKur5VdYe37JTrxO/ZJZmUm4ob79BdjIkMa+sqaS6prrRY0v1pQBKrt5MiquLefS7Rxm+fDgzV89ke+b2jh5Sl8ctRV2ntcYvvYOsDl2tUjO0x1AGhQ6iu69V1KVLa2lBEljF3CJayK/Mp8xQxp5ze9p55K7DkVP//PDnxAfFE+kfWc+pVxgrGLB0AOGvhdtVzFxKSE4daj8vjjCYDBjMBsD+fVZomvXH1vP6L6/jo/FhW+Y2Jn408ZKLRtsbtxR1yalLsQvAj/N/ZPGUxXh5eBHgGYCAANhn633fsrpzycEeKTjSjqN2LZJT9/bw5kTRCY4XHictI40/DvsjKkFlrX6xceq7c3ZTVVNFmC6Ml7e/LFcTXQpUGCswWUwU6WtFvbFcvdxYezWjOPXmIRUsbJy3kf/e8F+MZmOX+t51RtxS1KWJUltR99X6yptT/3n0n3n5ipeB2pYBoihytvQsB/MOkl9pFfWjBUfdvprh57M/sydnj+wgh0cM50TRCVbsXYGHyoPbkm4DkCdK9+Tsoai6iB1ZOwC4P/l+AHLKcjpk/O2NKIoMXDqQV7a/QmFVoXzyb0zUbSdHlUy9eeRX5uPl4YVOo5O/ryeLTnbwqLo2binqY2PG8lDKQ4yPHe/w738b9zfuTb4XqHUK0qTo+crzslOvqqkiuyzb9QN2IXf/724e+/ExWWxGRo4koySDxb8sZmb/mfLEsU6jI7c8lzHvjWHhtwvZmb2TQaGDSOieAEBWWVaHvYb2pNRQSlZZFum56RRVF9EzoCfQuKhLeToo8Utzya/KJ8QnBEEQiPaPRqvWKpvYuJhWibogCIGCIKwRBOGoIAhHBEEY1VbDbxwgAAAgAElEQVQDawx/T3/evPpNOVt3hK/WFx+Njxy/1Fistdt5FXmyUwc4ku++l4I15hpOFp0kszSTouoiPFQe8onu1iG3svza5fKxOo2OcmM5NZYaPj/0OdsytzEqahTR/tEAZJVeGqIuXZGcLDpJYXUhfbv1BZx36lL8crbkLDd+fiO55bkuHK37U1BVQKhPKGCd+4oPiudkseLUXUlrnfqbwLeiKPYHhgCdSiG767rL8Yu0IOd8Ra1TB/fO1c+UnMFkMZFdlk1RdRFBXkFM7TOVvD/n8f517xPoFSgfK50AI/0iMZgNlBnKGB09muiAi6J+iTh16crsZNFJCqsK5UigOfGLyWJi7pdzWXN4Dd+e/Na1A3Zz8qvyCdWFyr/3Du6tOHUX02JRFwTBHxgH/AdAFEWjKIqdahapu6+NqEtOvTKPC5UXCPUJJdg7mKMFRztyiK3iWMExwFrVc7zoOMHewQiCQJgurN6x0jzEY2MeY1SU9YJqdPRofLW+BHoFXjpOvdzq1Ktqqig1lNJd150gr6DG4xeDNX5RCSpKDCW8vO1ldmTtQCWo2H9+f7uMu7OTVZrFyH+PrDc3k1+ZLzt1gD7BfThZdFJpd+xCWuPU44F84H1BEPYJgvBvQRAazkM6gDBdWG38ctGpG81GThadJFQXyoCQAW7t1I8VHpN/PnD+AEHeQQ0eGx8UT6BXIHMGz+HFiS8yf8h8OXqI9o++5Jy6RLB3MCE+IU459Qi/CIqri/nq+FeM7TmW1KhU9ucpog6wN3cvu3N2s+XsFrvbC6oKCPEJkX/vHdybalO1vPWkQtvTGlH3AIYB74qiOBSoBOoVPAuCcJcgCOmCIKTn5+fX/bNL6a7rLk+USk4d4LcLvxHqE0r/kP5unalLTh2sE3hBXg2L+tyEueQ+mkuoLpSJcRP5cMaHCIK18iM64NIR9ZyyHFRC7ce+m083QnxCGq1Tl0Q9JiCGYn0xxwqOkdg9kaTuSew/v/+ScZ0ZJRnsy93n8G/SRL3t98lgMlBuLLdz6lLc9cKWFxj9n9Gy2VJoO1oj6tlAtiiKuy7+vgaryNshiuJyURRHiKI4IjQ0tO6fXUp3XXfyq/IxW8x2H56CqgJCdaHEBsaSX5WP3qRv13G1FUcLj9KvWz/598acuiAIDXatjPaPvmTil+zybAaFDsJDZW1QWtepH8k/wprDa+zuU2Yow0PlQbhfOCcKT1BqKKVvt74k9UiizFBm1yW0K/OXH//CzV/c7PBvUlXQ4YLD8m3S3JVtpt4n2NqbadneZezM3ulU3x13oLi62G4xW0fSYlEXRfE8kCUIgqQqk4DDjdyl3enu2x2LaKGwutDOqQOE+oQS4RcBuO9OSccKjjEmegyeamt9fmNOvTGi/aMprC5scql8VyCnLIfYwFhiA2OB+qK+aOsibl9/u919SvWlBHgGEOQVJDt6SdSBSyZXP118usH1DI6cuvSe2jr16IBoNCpN7f26SInoH776A7d8eUtHDwNoffXLg8BKQRAOAknA31s/pLZD6gOTV5FX7zIvxCdE3ubNtpWAu1BcXUx+VT79Q/rLFSzB3sEteizp/s2t2b9QecGuPNQdyC7LJtIvUo4Bunl3I9QnlAuVFzBbzBzMO0iFscLuBFdmLMPf09+umqhft34MDht8SU2WZpZmUllT6bCFsyTOJ4pOYDQb2Ze7T/5s2GbqHioP/nnlP3l8jDWp7SordM+Wnu00OtIqURdFcf/FaCVRFMUZoih2qtOu1AfmQuWFesvgbZ26O9YaSzs99QvpJ9eat8apQ/PLGm9deyu3rb+tRc/ZEehNegqrC4nyj5L7BgV7B5PYPRGj2cj+8/vlaijbWKDMYBV16f3VqrX0DOiJt8ab/iH9L4nJ0uqaanl+Kr8qnxe2vMAf1v9B/rsk6iaLiSc3Pcmw5cP45sQ3gH38AvBw6sPM6D8D6DqiXlxd3Gm6oLrlilJnkUr78irz6scvulB5787OcoZtDlJ+F6YLk512Y5l6Y0j333xmc7Mmrk4VnbKbrO3sSNFBpH8k1w+4npsG3USAVwAjo0YC8OGBD+XPie1ahlJ9qVXUL76/vYN7o1aprY/lF3lJbMhiexV3ofIC35z8hvf2vyfPJxRXF6NVawF4Y9cbAKw+tBqwj18kpKse27YLa4+sdUuDBdaTmu0VzKmiU6SsSOmQOYMuLeqNxS+hPqGE+ITgofJwy/IqqWugp9qz1U49JiCGoT2GsmjrIiZ+NLHRY1/b8RrPb3kesJ4ss8uy3ab6Q6pRj/KPYkLcBFbPWo1KUNErqBfdvLvx8cHajaXrOvUArwBZiKRSULA2l7sUNvTOLM2Uf75QeUEW+Q/3fwhYRW1YuLVOwmQxISCQW5GLSlA5NBvSbZJTrzHXcMNnN7B0j/u1w7aIFkr1pXZOfUfWDvac22O3EXx70aVFPdArEK1aa+fUpUU4obpQVIKKHr493NKpG0xWUdeqtbWi3kKnrlFr2PPHPTyS+gjbMrc1ekm8ZPcSPjn4CVU1VVQYKzCYDXautjMjO3W/SLvbBUFgZNRIu9dtO1dQN36xrThy1KceYE/Oni7VuMpW1HPLc2VH/cGBD7CIFkr0JUT5RxETEEOAZwDzh8wHrHMWtiWkEgGeAUCtqOtNekREtyytlXbFqjRWygZHMoqKU29jBEHA39OfCmOF7NSlqEG6JIzwi3Bvp+7hyejo0cQGxtqJTXNRq9RMjLO69MP5jouYskqzyCzN5Fz5ObvIwV3KIaUqJ6nJmS0jI60RjHSCrJepa2vjF1unrtPo6jl1URSZvmo6T25+sm1fQDux/uh67v3fvXa32Yr6bxd+wyyaGRM9hoySDH7J/oXiaus6iSfHPsmSq5dwde+rgfp5uoSnhyfeHt5yFi+VFbtjgz0pQjKLZnnuTvqsKaLuArRqLQaTQXbq8UHxaFQauvl0AyDcN9wtnbr04fFUe5LQPYEzC8/IE8MtZXDYYAB+v/C7w79vz7LuWlNZU2nXv8Nd3FW1yVrR4qgRnCTq42LGoRbU9pm6oZQArwCG9hjK42Melyf5wBq/1J0gO154nPMV5902H151aBUrfl1hF6tllmYS4ReBTqPj19xfAbhx4I2AtYW1tPjtj8P/yPwh87k89nLAcZ4uEeQdJDt1yaS4Ywto27JM6bMgiXpHVId5tPsztjNatRajxSg79UdHPcoTlz0hT+pE+EWwLXNbRw6xRUjxi9RDvi3oGdATnUYni7ooinx44ENOF58mNSrVbisy6YsNndep/+m7P5HUI0mOAqprqhEQ7OqkJUZGjUSn0TEmegw/nP5BdlgGkwGj2Yi/pz8atYZ/XPEPu/vZOvUlu5bgo/GRxdBdYqm6nCo6hVk0U2oolecRMssy6RnQkzx1HgfyDgDW90xA4FjBMYxmo13818O3B0k9kuz2PKhLoFdgrahf/DxLczTSamd3wHayt9JYSbB3cIc69S4v6p5qT4xmo+zUu+u6MyhskPz3cN9wCqsLMZgMbSqQrsZ2orStUAkqBoUN4lD+IQBOFZ+SF+KoBTUhPiH4an2pMFaw73ztcvHO6NTLDGW8uetNJveaXCvqpmq8Nd4OBSPQK5BTD50ixCeEt/e8LQuy7ebdjvDR+GCymDCajaz4dQVnS87KMZYjl7bp9CZ6B/cmJjCmTV6nK5DmAgqqCmpFvTSTpB5JiKLImZIzgPWqN9wvXBb5uhP1m+dvls2TIwK9AuvFL5U1lXYnE3fAdi5GcupSpNsRJ/ZLJ3656NQ1anuX5q6rSl3h1AEGhw6Wnbo0Afje9PesLq0yj+v6XQcgi3qkX2SnzEG3Z27HIlo4U3xGvq26phpvD+8G79PdtztqlZpQn1BZkCXRkSb26iJFOVU1VZQbyik3lrP+2HrAWnZqtpjlY80WM9f+91pe3v5y616cCymuLpZfs7QxtyiKZJZm0tO/p1wmrFVrCfEJoWdAT3nxVd2J+iDvoEb3PAjyqh+/gPvl6nbxi9E+flEydRegVWvtnHrdS293rVWXvgSNOaGWMChskLxSVHqOUF0on97wKWG6MO4afhdgzY39Pf3pHdy7Uzp1qVtgRkmGvGWh3qTHW9OwqEvYtg2QoiVpgr0u0n65lcZKKowV8u39uvVDRLRrFHa29CzVpmq5tLIzcqr4lPxzQVUB2zO3c/1n16M36ekZUCvqEX4RqASVfLKH5pfU2sYvtv2X3E7Uq+0zdb1JL78uxam7AFnUm3Dq7lYBYzAZ8FB5OCwXaw3SZOmh/EO1VwNqT1KjUsn7cx7jYsbJX97uuu7WDo+dMFNPy0gDrCc/yTVVmxp36hKhPqHyl1FaXCP1iqmLVCJbVVNFubGc/iH9UQtq5ibMBewjGGmhVmeeQD1VVCvqhdWFvL3nbb47+R3X9r2WqX2nyqIe5R8FWNc4SDS3pDbQK1AWROmzBtYT6d+3/p1fsn9p8jHMFrO8VWVHUdepS583jUqjOHVX4OnhicFskKtF6jp1qbytM3/RHGE0G9s0T5eQyiJPFJ6orbCpE/FIJ8Luvt2J9o8mpzzHLmboaCqMFaSfS2doj6EAcgRTbapusFOlLaG6UDk6ySjJQC2oZRGri+TUi/XFGM1Gbkm4hfz/y+eynpcB9k5NakHQmQ1EXad+rvwcyZHJfDXnK+KD4uuJurTHKzTfqQd5BVFqKMUiWuzily+PfsmTm59k/Afj+eLwF40+xh+++gM3fHZDs563rambqUuiPiB0APmV+e2+OK/Li3q9+KWOU/fV+gJ0ylWBNeYaubFU3Q+GweyaiV3p/ag2VTc4GRvpb128E6YLI9o/GpPFJF+CdwZ2ZO3ALJq5Pck6yStN7FXXVDsdv1hEC8X6Ys6UnCHKP0pu1VsXKTOW6vb9PP0I8g6SS/nyK/OZvWY2i3culjc1OV9xXo6EOhsni07SXdcdtaCmsKqQnLIcu8VakqhLt7XWqVtECxXGCrv45duT36IW1AwIHcA9G+5p9DF25+xusMd7e1GsL5Y/H7ZOfXDYYGosNZQby9t1PJeOqJsdZ+pSJm3rFDoDHx34iLg34xj6r6EYTAbmfjmXGatq66MNJoNLnLp0ojCYDHarVm2RvtDddd1lge9M9cVpGWl4qDzkCMTWqTsbv4DVqWaUZDQYvUCtU5d22JJOitKim3Pl5/ji8Bcs27tMduomi0mehOxsnCo+Re/g3nTz6UZ+VT455TnylRnQqFNvaDK5IWz7v0ifNen9HB87nlkDZlFQVdDgfgcW0cKZkjPkVuR26EmyuLpYfo9snXpCWAIA35z4hpmrZ9pFW66ky4u6p9rTbvFRXacuibxtptfRZJZmsmDdAny1vhwrPMbcL+ey6vdVfHfqO/nkZDAb2nySFGpdud6kt1u1aoscv1zc3xNq9/HsDGw5u4URESPo5tONcN9w2ak3Z6IUrC67KVGXMnXpi+yn9QOsy+MBduXswiyaOV54nF05u2Th66wRzKkiq6iH+IRwsugkepPezqnHB8UjIDAgZABQK+oBngFykzNnse3/In3WegX1AuC6ftfJ0ah0wqzL+Yrz6E16TBZThyzy+dvmv3HX13dRrC+WT3KVxkpyy3MREBgYOhCwNjZbd3Rdg2WxbU2XF/WmnLogCHIte2dByvdfm/wak3tN5ssjX6IW1OhNernc0FXxi4fKAwHBbh6iXvziVxu/+HlaRazcUHuJOeeLOTyX9lybj80ZKo2V7MnZw+Ux1hWNcUFxdvGLs5k6WBuAnSs/55xTvxg/Se+HRq0h0CuQrZlb5WP1Jj3jYsYBnXMO51z5OXLKc6xO3bub3IxKuhoDq6hnPJzB5F6TAavb9tP6tajvkOTUS/QlshvvFWwV9en9pteKegPR3uni0/LP7V1RdKHyAq/seIWPDnzE+Yrz8ndCcuphujB5/N+d/I7+If0bbJnQ1lw6om6pQSWoHLoJaTK1syC11Q32DubVK18lwi+CxVMWA9YMEVw3USpte2cbvzQ2USo5U2mRDsCWjC28t/+9DuneuDN7JzWWGsbHjgcgLjBO/vI7G79IEcPPZ39GRGzcqV/M1CXhkeIXsMY4Unme5GgnxE4AOt6p3/313Xx97Gu72/6+9e94qDyYlzDPbt9W2/gFrK9FWsAlCAI9A3q2qEOoHL/oa+OXhSMXsvSapcQExshtLxpaQ2K7BqG9479l6cswmo0YzAYySzPp5t0NLw8va6ZeeZ4evj3kK75qUzWXRV/WbmPr8qIuryg11zhcHi4d05niF1tRT+ieQPYj2TyQ8gDdvLux59weAJeugPX08LSPX+qcPEZFj+KK+CsYFTWq1qnbTAaVGkrJLM2UN/JoT7ZkbEEtqBkTPQawinp2WbY86eyMqIf7hpPUI4n39r0nP0ZD1M3UpZMc1Dr+Hr49uGngTQDyyaYjnbrBZGD5r8v54khtZcnZkrMs37ucO5LuIC4oTo6PoH5Xy7rcMOAGpvaZ2uxxSCcCW6c+ImIE9yXfB9RWpjUk6h3l1A0mA+/seYfUqFT5tiDvIHQanezUe/j2sOt7MzZmbLuNr8uLulatxWC2Zup18/S6x3QWbEUdrG5IEASSI5Nlp24wu2aiFC6e5MwNT5SG6cL44dYfCPcLl3NCKX6pMdfIlUTfnfrOJeNrjJ8yfmJY+DD5ZNMzoCcW0UJuRa7cJqApBEHgrmF3yZ+JZmXqnjaifvFL3T+kP4+MeoTXJr9GUo8k/D39O9SpSwJo23nxP/v+g0W08OQ4a2dJ2y3o6jr1ujw34TlemPhCs8dhG784MhDSFVODol5ymnDfcNSCul2d+r7z+8irzOPPo/4s5+aBXoHWNsw11ky9h28PfLW+8ndHKnFtDy4JUW/SqXfS+KVuTpkSkcKh/ENUGitd6tS9PLzsM/VGnsdT7YmHykN26rYTpt+f+r7B+7miWiG3PJcdWTvktq8AAV7WickyQ5l1otQJpw4wN2EuPhof1ILaLlOui1atRSWoGoxfwFr7H+EXwZ9G/QlBEAj3De9QUZcWi9muBD5acJT4oHg5JpK6mIb4hLjscyYZAqn6RSWo7EpHtWot3by7NThRerr4NH269aGHb492depSh9LBYYPlWCXIy+rUK4wVnK84T7hvOIIgEOoTSrhveKNXe21Nlxd1T4/ahl4NOfXONlFaVF2Ev6d/vdro5MhkLKKF/ef3u6z6BS6e5EwGp1oRCIKAn9ZPztRL9VZRD/YO5qeMnxzGWnqTntg3Ynl3z7ttOu41h9cgInLz4Jvl26Q4pNxQ7vREKVhPBrcn3c6QHkMarFEH6+vXaXTyAhRH8UvdPvfhfuGcrzjPNye+Yd6X85j+3+mU6ks5kn+kycU2bYEk5lmlWfLJ9WTRSbuOipJTb8qltwa1So2v1lc+4XqqPes1W+vu253zlQ3HL/FB8UT6R7arqB8vPI5aUBMXFCfHKlKfm+yybGosNXJ0NDhsMNf2vbZdu052+S6NklM3mA2NO/XOlKnri+ToxRYp28yvynfZRClYT3J6kx6DyfqeNdWKwM/TT3bqkrhd2/daPjzwIfvO77PLHgE2HN9AVlkWe3P3tum4Vx9aTUJYAgNCB9iNDaxL3kVEp+IXiTevetOpKwofjQ/lxnLUgtrupCE79RB7Ue/h24Ovjn3F1E+nEuoTSrG+mKtWXsWR/CNU1VRR1b+q0RNJa5Embw1mA/mV+YTpwjhZdNIuIpAy9aby9NYi5dBeHl4OT7g9fHtwvuI8L/78Il8c+YKvbv6K6IBo9CY958rPERcYR6m+tF3nb04UnSA2MBatWsvUPlOZNXAWY6LH2LWtlkT9m3nfKCtK2xrJZVbVVDXq1Dtb/OJI1KVJuaqaqnaJX5y9GvD39JczdSl+mdJrClBbrWPLp79/CrTt5FZWaRbbs7Yze9Bsu9sl5yzVMTsbv4DVSTb0mbFFqoDx1fraObJ+If3wVHsypPsQu+PDfcOpqqmib7e+ZDycwfJpy/kl+xeqaqqosdS4vKGVba+ezNJM8qvyKTeWO3TqrhZ1X60vlTUNx4mSqH926DP2n9/P5R9czoXKC3JPnrjAOCL92t+pS7tfBXkH8fmNnxPuF45Oq5MrhiRRb6jizpVcMqJeaaxs0KlL7Xkbwmwxs/bI2nZrJdCQqEviUWmsdO1E6cUrF6PZ6NSJw09b36kPCB1ApF9kPVEv0Zew4fgGoG278b2b/i4CAnMS5tiP7aJTl5bxN8epO4t0srWdJAW4uvfV5D6aWy+T79utLxqVhk9mfoKPxofbh97O1tu38ukN1pOdbVWHK8gqy5K/F1llWXL/dFtRlzJ1V8YvYP1MVxgr0Jv1Dj/PPXQ9yC7L5vcLv3N176s5U3KGr459ZVcqGukfSYm+pF2+n6IocqLoBH2C+9R/LZraNsNS99eOoMuLuvRBqaypbNipNzFR+ulvn3L9Z9dz27rb2uVSqqi6yK6kTEL60MjOph3iF2eew8+zfqYe6BVISmRKPVFf9fsqDGYDyRHJbSbqpfpSlu5ZyqyBs4gPircfm9Ze1J3N1JuD9O9im6eDNW93tCjnzmF3cvbhsyRHJsu3XdbzMkZEjADs669dQVZZFsPDhwNWp+5I1KP8o4gPimd09GiXjsVX6ytP/Dv6t+nu2x2j2YiIyP3J9wPWRVJSSWiEX4R8NXGs4JjLv5/nK85TYayw26dWwrZ3vKN9cNuLLi/qkiOpMFY0Wqfe0ESpKIq8sesNvD28+fzw57y28zWXjVXCqfjFhROltvGL007dYO/UAzwDSIlM4UTRCfIq8jiYd5ASfQnPpD3DyMiRzOw/kxJ9ibypQGt4Z887lBnKeOKyJ+qP7aJ7lrolNid+cRbp38W28qUxPFQeDp1clH8UakHteqdemkVi90R0Gp0s6ipBZVe66aPx4dRDp5jSe4pLxyJl6nqTvsH4BUBAYGzMWEJ9QjlXfk7e/yDcL1zeRWrY8mEkLktk/dH1vLbjNbae3Vrv8ZpLQVWB3YniRJG18qVPt4adureHd70TfHtySUyUgjWyaOhL19hE6fas7fya+yvvTn2XH0//yF83/ZUr4q8gqUeSS8ZrES0NirpWrUUtqKk0VjodjbQE2+oXZ5y6v6d/vZJGf09/UiJTABj3wTiOFx4nyj+K/Mp8Ns7byKEL1i3zcspzHLqe5vDxwY+ZEDuBoeFD67+WiyWXroxfJIdWN35pLh4qD2ICY+S2Bq6guqaawupCov2jiQ6IJrM0E61aS0xAjMtMQmPotDpyK3IJ9ApscKIUrFUk/p7+RPhFkFOeg5eHF35aP3y1voyJHsPHMz8mpyyHd9LfYcZqa+O7xO6JHLjnQIvHVmYoI+aNGBZNXMTDqQ8DyBOyjj6z0sm9h2+PDt1jtcs7dUn4Go1fHEyUVtdUM+uzWVyz8hqCvIKYP2Q+/5r2L7r5dOPWtbc22DmutZQbyrGIFoeiLggCOq2udqK0HeIXZ77otk69VF+Kn9YPtUrN8PDhCAgcLzzO3IS5lBvKWThyIcPCh8kNkFq7aKS4upgjBUeYFDfJ4d+lkktZ1F3o1NvCncUHxbvUqUuRV3RAND0DespOvbENol2JbfziMFO/KOqjokYB1j40klOXrnbUKjW3JN7CXy77C4fuO8SXN33Jo6Me5WDewWbvaCaKIs9veZ7D+YfJKMmgqqaKxb8sljfiOFF4Aq1aS7R//Z2wJKfekXk6XAKi7kz84mii9JfsX/jiyBdc1fsqvr3lW3w0PnTz6ca/r/03v1/4nTlfzJGbhLUldVeT1sVH40OFsYIaS027LD5yKn65WNIoiiIlhhJ5wU+AVwDzEufxwoQXWHn9SgoeK+D1Ka8DtU2iWpur78rZBVhbFzQ2Ppc6dU1t9Utrse1V4wqkGvVo/2h6+vfkeOFxjhQccTjx1x40Fb/EBcbRw7cH1/W37o0b4RthzdQrch1O4vpqfZk5YKa82fi3J79t1ngqayp5Ju0ZPj7wsWw4Mksz+erYVwCcLD5JfFC8w4oW6YqtI/N0aANRFwRBLQjCPkEQ/tcWA2pr7KpfmuHUpR3S37r6LTlGAJjadypvXf0W646u4y8//qXNx9uUqOs0Onn7LJe2CWhG/OKn9cMiWqiqqaJUb78T/MczP+Zv4/4GXOwAefGyVJrcaq2o78zaiUpQ2f0bORqflKm7YqK0rZ16flW+3X6nbYntnqu9g3tTaijFV+sri2B7I63CNJgdT5T6efqR+2gu1/S5BrBOjOZV5JFZmtloZU5CWAKRfpFsPLmxWeORrsAzyzJllx/gGcBbu98CrD1ymtrasIfOzUUdWAgcaYPHcQmSKDW1+KjuROnBvIN013WXO8XZ8kDKA9ww4AY+O/RZm8+2O+PUZVF3dUMvJ2vh5f4vxnJK9CVObZag0+oI9ApsdX3xzuydJIQlNOqS/Tz95H9fV8QvcvVLKzN1qG0eZlsBk1eRJ+9v2lpOF59GJaiI9o/mvuT72Dx/M5kPZzIyamSbPH5z8dX6UlVTRXVNtVMGIsIvAhGRzNJMwn0bjjkEQeCq3lfxw6kfmrWHqbTTWGZppvzZXDBkgXU3rYvbG8YGxDq8r+TU3Tp+EQQhCpgK/LtthtP22GbCjTp1U32nPqTHEIfHg7XbXk55jl3/jLagSaeu1cnHtEv1i5MljWCdDyg1lMrxS1NE+Ue1yqlbRAu7cnbJeWuD47Nx0K6sU2+L+EUqybSNYO7dcC9TP21+F0RHHC209njx9PDEz9OPCXETnFpg5SokISzWFztlIGzdeVM19Nf0uYZSQylbMrZgtpjZf35/k48vOfWs0ixyynII8QlhcNhgjGYjRwuOUlhdKFfb1Hstmq4Rv7wBPAZ0zg0XqSPqTjb0MllMHLpwiMSwxAYfV2rtuj1ze6vHWKIv4XD+YcDJ+KXa9fGL0Wxs1kQpWKsFSvQldvFLY7RmJeC2zLlweJgAACAASURBVG3ctu42ygxl9doQ1BufjYN2iVPXOq5Tbwm9g3vjofLglR2vUFhViNFs5IfTP5BRktEmm3sfLTharxdNRyIJYWFVIV7qpqMx24VcjTl1sC7+8tP6sfK3lby8/WWG/muoXWdKR1SbrE49uyybzLJMIv0i5fLFTWc2Afb7stq9FnfP1AVBmAZcEEWx0QYegiDcJQhCuiAI6fn57b/llO3Zv7HWuxbRIl+mHS88jsFsaNSpJ3RPQKfRsSNrR6vHeO+Gexn1n1HUmGtqOzQ2sOlAe8UvYI1TnJ0olY4v1Zc6vVdla5z6s2nP8vnhz5nca7KctzY4PhuxdWmm3gbxS5B3EB/P/Jj0c+lM/Ggi2zK3UWGswCyaW93Z0WyxbqvXP6R/q8fZVkhXN85O/DfHqXtrvLlh4A2sObyGxb9YN5lpamGX5NTNopm95/YS6R8pVwb9ePpHgAad+sjIkcwZPEc2fB1Fa5z6GGC6IAgZwCpgoiAIn9Q9SBTF5aIojhBFcURoaPts52SLU05dyt0vRjAHzlsnSev27LDFQ+VBalQq27Na59TPV5xnzeE1lBnKOJh3kKLqInQaXYMfcJ1WJ6/edJVTl4SvzFDmdJ061MYvzjr1+KB48iry5MqU5lBVU8VlPS/ju1u+a3KbMFfHL21Z/QJw8+Cb+WjmRxzMO8gD3zwg327bs6UlZJZmojfpO5Wo267CdGqrQZ9Q1IK18sSZFgbzEuZRbiynoKoAaHpiXsrUwbpgLdIvkgi/CLw9vEnLSAMa7q8f5B3Epzd82qKt/dqSFou6KIpPiKIYJYpiLHAzsFkUxVvabGRthLPxC1jLHmesmsEzac+gUWnqddery+jo0RzIO9CqSoV///pv+QphR9YOjhcdb/TD6uPhU2/cbY0k5M6KuiSaeZV5mCwmp536NX2uQURk/dH1zR5jQ9USDsd30UELCC45EbZl9YvErIGzSOyeyJGCI3JzrdbO3xwrtE62dsb4BZwzKWqVWo43nJmQnBA7gWj/aEZGWieCm4r76q4/ifSLRCWo6BXci3JjOVq1tsPjlaa4ZOrUofGJUrD2lF5/bD3lxnLmJsxtMk8eHj4ci2iRV0c2lxpzDf/a+y8m95pMlH8U3536jh9O/dBonGDrbFzZTx2scwvNiV8kJ+msUx/SfQjxQfF226o5i96kd17UL4qtl4eXS1b6Sa+/LXeLVwkqnh73NADzE63lhq116kcLjgJ0Kqdue3XjrEmJ8IuQV5M2hVqlZscfdrBx3kYCPAOaduqmarvfJYMl1fFH+0c32Yq6o2mT0YmimCaK4rS2eKy2xvbs35AISh8m6RLt3anv8sGMD5p8bGky03bT5ebw0YGPyC7L5qGUhxgdPZoNJzZgMBu4YcANDd6nuc6mJdiKZXMmSiUn6Wz1iyAI3DDgBjad2SRP/jpLs0T9oui6InoBqxtcPGVxowugWsLMATN5b/p7/G3c39BpdK126kcLjhLsHWy3VV1H09z4BSAuKK7RLQbrEuUfRZB3EJH+kU2Kej2nfnFiVhL15jxvR9G5TzltgDPxi3SM1AvZ2WzUtj4baNYKU6PZyItbXyQ5Iplr+lzD6ChrN7wwXVijnfGkS31wffxS9+eG0Gl1CAi1ou5k/ALWTYtNFhPrjzUvgtGb9E5VS4C9U3cFnh6ePJz6cJtvbKESVNw+9HaCvIOIDohuE1Hv161fh/YlqUtLTMriKYv54qbmX905MzEvZerSZ1haJCdNljZU+dKZuLREvYn4pbCqeaIuOcAyQxlbz24l4KUAuXl/U3z626dklGTw7PhnEQRBFvKZ/Wc22lTf1tm4sp+6o58bQiWo8NX6yl8YZ+MXgJTIFPp268vSPUubtZCroWXljpCdugvKGduLaP9oskqzOHThEN+dbP6G3j+f/ZndObsZHDbYBaNrObbfNWdPuhF+EQ67JDaFMyW0UvwiNeySnfrF52uo8qUz0eVF3a6ksYmJUqmc0GlRt9n/8mjBUapN1Ww6vcmp++7I2kE3727yJsnDwofx6KhH+dOoPzV6v/Zw6rZfLmdPHH6efhwrOIZaUMubFzuDIAg8kvoI6efS2Zq5lZyyHKfqsRvqv+1wbFrXxi/tQbR/NNll2dy69lauWnkVs9fMdnoLxn25+5jyyRRiAmN45vJnXDzS5mFnUlz0eZaI8o8itzy30StqKX4ZGDrQ2u/p4r4Gg8MGo9Po5J73nZkuL+q2Qt6kU29F/CK1nN2Wta3B49PPpfPANw9gES2cKTlDfFC8fCmsVql5dfKrTbahbY9M3Zl5iLr4af0QEXl9yuv1dvppivlD5tPNuxvXrbqOqMVRfHKwXmVsPVqUqbuzUw+IJrciV97z9bNDn/H18a+duu/nhz/HZDGx5bYtzf63cTXt8XmWiPKPQkTkfIXjjayhNn55dvyzbJy3Uf5+hviEUPSXoibXRHQGuryoq1Vqua61KafeXFH39PBEo9JQZiiTd/xprDH/54c+Z+mepWSXZXOm+Ey9XXqcoT2rX+r+3BjT+k7j0VGP8mDKg81+Ph+ND0+OfZJg72C0aq3cTK0hTBYTZtF8yTl1sEZdH8/8GLC2gW2I8xXnWbhxIVU1VfyS/QtJPZII04W1y1ibg0atkT/HrprzkJDy8dPFp9mTs8fhMXqTHpWgIiYghnEx4+z+1hH95ltClxd1qBWmxlaUQvMzdajddFly6qeKT8lbbdUlu9yaOR+6cIjM0ky5eVNz6Kzxy6uTX+XVya+2eBLukVGPcOqhU/QJ7tPkJhHSJXJznbqrRcOVRAdYRX1i3ER6B/emu647p4pPNXj8D6d+YMnuJXx55Et25+wmNbLxVgodieTW2yN+Abjz6zsZ+e+RDktEq03VLit9bS8uCVGXRLupFaWF1YWoBXWzLgOlXuKSqIO1L4kjpInETWc2UWOpIS6o+aLe3vGLq79odYkLarqfuCTqTuf9WvePX/p262uthkm6HYBewb0aFXWpImvR1kVU1lS2ebllWyJdfbrcqV+Mnk4WnURElHvx26I36d36cwKXmqg3svE0WJ26r9a3WWdpP62fHL8MCBmAj8aHn8/+7PBYSdS/OfENQIucentMLNnFLy7OOesSHxjPmeIzjVbCtNSpu3P8EhsYS8bCDOYMngNAr6BenCpqWNSlVc7SgqOmmp51JNKVsas/a928u+Gp9sRH44NGpXEYwVTXVLv15wQuEVGXPizOOPXmNmWS9ucs0ZcQ4hPC+NjxbDixoZ4oiaIo76RypMDafr4lTt0ufukki4/akrigOMqN5fL8hiOkqg9nRd1D5YGXh5fbO7DogGjZcPQK6kV2WXaD2ypK2wuCde1DSwxEe9Fe8YsgCNyaeCuvXvkqST2S2H1ud71j9GbnJ+A7K5eEqEvC1NSKUqPZ2OymTH6efnZ9xGf2n8mZkjMczDtod1xhdSEGs0FeYiwgNKv0T8I2fmnrxS4SHRm/SJPHjXXTa65Tlx7X0b6S7kqv4F6IiA2+T+XGcrkkb3T06E6dEbdX/AKwYvoK7k2+l+SIZPae21uvfLa6ptrtT/6XlKg3NVEKze+05+/pL8cvAZ4BXPv/7Z13eFzF1cZ/s029d8lNliV3bIONDaaYDg6EkNAJLXRCAgESIARI+CAQQmihhQBJIKaH3kwzYMCADe7dlptkWb2XrfP9cfburmSVVZfMfZ9Hz2rv3jp35p13zjlzpuAkFIrXNrzWaj/D9DIrexYgTpueqGBDqUdYI/qtoQ6m+cVQlJ3Z1XtC6ksuWsLNh93cu5sbQshLygPo0K7e4GogMTKRj8/7mIeOf2ggb63bGCjzSygOzDmQeld9IMmZge6Eyg5V/CBIPRD90oX5BbpP6nGOoKM0ISKBjNgM5o6ay+sbXm+1n0HqR489GuiZ6QWCqqY/FXSr6JdBcJQCnUbA9ITU4yPih01IWjjIS/aTegd29XpXPbGOWKZlTgtEzgxVGKPPgSRTY03btnb1Zo9pUx8WCNdRCj0j9YBS9yey+umEn7KydCVfF30d2G8vUu+hjTPCGoFFWfpV1dgstoCZaKCVeqwjlrTotLDMLwPd4QwlpEWnEeuI7VCp1zvr+zQVcH9iIIRKW4xPHU+MPWavJe5MpT5MEG5II/TM/GKsTGPkPLlo/4vIicvh0rcuDUxJLqorwqqsHDTiILJiswJmmO5CKUW0PbrfG4BRJoOhbscmjaWwpmPzi7H04HBvfL2BUopxyeM6Nb/0xUpMA4FY+8CbXyzKQnZcNnsaW88uNW3qwwRdKfXQWadGBQsXoQ3HyOwWHxHPI/MfYXXZav625G+AJOfPissiwhbB9mu2c8WsK7r9HAZi7DH93gAMwhwMNZyblMvKPSs7XE+yJ+aXfRHjksd1OKvUML8MBwykozQU6THpe626ZSr1YYKuQhohSPw9UeoGQvOInzzhZE6ZcAp/+uxPbK3aSlFdUWBGm8Pq6FWi/Wh7dL8raIPMB9r8AnDlzCtp8bQw84mZ7dqMTVIXFCQXUFhd2G6CquFkfhmfMp6cuJwBFxDtkbppUx8m6EqpQ5DEemJTN9A2j/jfT/g7doudC964gA0VGwK5J3qLGEfHa5j2FQwyHwylfujoQ1l0/iLKm8r5YOsHe/1ukrpgfOp4vNrbrlO5wdUwbEj9gukXsOs3uwZ8RaF2Sd3dHHae/qGKHxapd6LUDRLrSZy6gbYr/uTE5/Dg8Q/y5c4vKaorCoSh9RYDan4ZBKUOMDl9MgDVLXuviGSSusDI6LmxYuNev9W76oeNTV0pNShx9Okx6VQ0VbSKVW/xtAx7pd4/s1eGGLpK6BW6T6/ML+2s+HPhjAs5ecLJrC5dzfTM6d06d0fIT8kPK+d4b2CUx2CFAUbaIom0Rba7zJ0xo3SwOpyhAoPUN1VuarXd6/PS5G4aNjb1wUJ6TDo+7aOquYq0mDQgmNBrOOMHQeoOSz8qdUfHSt1AclQyh485vFvn7Qz/Pvnf/a5sBtP8YiAxMpGalpq9tptKXWCsN9qW1BvdjQDDxvwyWDBSEZc1lpEWk4bH58Hj85jRL8MBXaUJgF7Y1NuJfulvWC3Wfrc/djVhayCQFJnUqfllX5pM1FMUpBTsNSvSyPsyXMwvfY3t28PbzyD10sZSIFivhrv5ZXiQelERbNjQ48PDMb8YBNGThF4QXKdzX0GkLbJfUxGEg6Sojkl9uOe87isUpBTspdSNtLv7Un0MF199Bbm5sGZN1/tmxGQABJyl+8oIcHiQ+kUXwXnn9fjwfnWU+oe4CREJ+xTJRFgjBl0Jd2Z+Ge4Nr68wPmU8JQ0lrbIyBpT6D9D8stM/tWHLlq73DTW/QHApO9P8MhDIyYHdu3t8eH+GNEbaIrFZbB3a04crImwRgz4NPykyqV1HaYun5QfvJDUQiICp3IhP+/h0+6cBpf5DNL/U1cnnno6XIQ0gKSoJq7KaSn1QkJ0tb8nbs4iPcCYf9VSpK6WIc8QNmD19oGCYXwYTHdnUnV7nsG94fQVjdfvFOxbzwpoXOOI/R/DJtk+AH6ZSr/UvQFZa2vW+FmUhLSYtqNQ9fqVu2tQHANnZQuhlZXv9tH07/OhHUF+/92EG+jOkEUQRDWWl/vXX3R/onDz+ZM6fdn7/3FCYSIxMpLalFp/2tdpuml+CGJUwigmpE3h/6/uBzKDfFsviDz9Em3p3lDq0noC0ryj14RHSmOOfiVlcDFlZrX767DN4911xjBzUwTKMp006DZvF1iqmvC16miYAJGPeUFyp3cCJJ8LZZ8ND3Uirffrk0zl98un9dk/r18OIERDXiZhMikpCo6lz1gWSpYFJ6m1xXN5xPL7s8UAdXr5nOfDDNL8YSr0npG7a1AcS2dny2Y7cLC+Xz+q9R+kB5Cblcu1B13Z6iQhrBArVoxf635/+l78d+7duHzcQcLmgslL+hgrcbpg5E+6/v/P9kiKTAPZylpqk3hrH5R2H0+sM2NIrmiqAH6b5pSdKvW1I43CvWz0mdaXUSKXUIqXUeqXUWqXU1X15Y60QqtTboELqb6ekHg4irBHdXnTawITUCT1amm4gYJC5oWCGArZtg6Ym+ewMhjpv6yw1Sb01Dh9zeGBB5cNGHxbYHrpI+Q8F3Vbq0en7nE29N+YXD3Cd1vp7pVQc8J1S6kOt9bo+urcg0tPBYumxUg8Hs3JmUd5U3ruTDEEYnZ6hYIYCjHCzrhpeUpQo9bbOUqfX2akp7YeGaHs050w9JxC7//mOz4mxx/T5BLW77oLVq+G55/r0tH0Ko56XloLW0JVGy4jNoMHVQL2z3lTqWusSrfX3/v/rgfVA36QhbAubDTIzO1XqVVW9u8TlMy/nzbPe7N1JhiAMpT4sSd00v4SNp05+ikd+9Aj5yflA/9jTP/kEFi3qm3M1N8OKFV3v110YSr25ufPgCQMTUicAsL5ivWlTD4VSagwwA/imL87XLrKz+1WpdwWns3/P318wOr3+ML9UVPTMVr/Zv65DSUnn+w0l88v778PTT/f+PN9/324QV59hXPI4oH8iX0pKpJ1p3ftzPf00HHhg34uNujoZ1EN4Jpip6VMBWF26OmB+Ge6CodekrpSKBf4HXKO13usVKaUuVUotU0otKy/vhXkjJ0eU+llnwS9+EdjcVzb1zrBxI8THw8cf9981+gttzS9FRaJi+gLnngsXXND94wylXl7e+dSDjswvg0Hqf/4z/OEPvTuH1nDkkWLG6C8YpN4fTtKSEhE3fVF/SkrEYW7Uz75Cba2kCYDwSD03KZdoezSry1abuV8AlFJ2hNAXaK1fbW8frfUTWuuZWuuZaWlpPb9YdjZs3QovvQQfBBdO6I5S/+MfJWa7u/jwQ4kiefzx7h872AiQeq0PrWH6dLj77r4597Zt4U3HbgvjGJ+vc9Ua64jFoiztm18GcCEDn09MBQap9RRlZUI6vZgc3SVyk3KxKEuH5pfmZvjuu+6f1+kMmjh7a+qEYHvtazFWVwcFMsk2LFK3KAuT0yazumy1aX5REibyFLBea31f391SB8jJkRrp84lir6nB7YYaf3vvqnL4fPCnP8E993T/0l9+KZ9vvhk0N2zZEn42uMFERZGoD4/XQnm53P/33/f8fK++Ci+84D93RXgz90LhdktnMHGifO+s4VmUhcTIxL3ML06Pc0BTGBQWBu2zRUU9P48R7dObAWtXcFgdjE4Y3aEj+T//EbNHuNEhBkLfc3uk3tIC994rn+Eg3HbbHbhccn2D1MOtm1PTp7K6dDWbqzYT54jDZhke03c6Qm+U+lzgXOBIpdQK/9/8PrqvvWHEqtv9s0LXrWtlz+1KPTQ1yefHHwuxdAdffglTpkilef55qThHHAGnntq98wwGKjcFx7eFhfLZ04SXLhdcfjnceaeYTaqqpFF2R73u2CHHHnqofA/HWdpX5pdPP4XDDuu++SDUobdjhwiEntiVDVLva5NDWzwy/xFuPvTmdn/buVPuf+3a7p0z1P/RHhEvWgS//S28/HJ45zPO0Req34BhYszNBas1/I5rasZUypvKeX7N85w99exhn5ivN9EvX2itldZ6P631dP/fu315c61gkPpll8nn2rWBxhEf768kHg8sXdru4Q0N8llXB998I8ornIa5a5f8XXwx7L+/qJG77hLF9t13YhEayqjY0Rj4v3CDSz4Le2ZGePttUZmlpaK0jPLrjlo3TC+HHCKf4ThLQ80vWusek/qSJbB4MXz0UfeOW748+P+OHXDJJTKx+dFHu0fuRqfan0od4IT8E5gzYk67vxnX7m7HHvqe2iNiQ2C980545+sPpW4EAyQlQUZGN0jd7yx1eV1cdsBlfXdDg4ThMaMU4PDD4ZZb4P/+D6KjYe3aQAXNH+uVynH//TK2/PbbvQ43SB2EmI1G2Ravvw6Nfh70+SQ/M8DcuWJTLyuD228X5Q7wyit994gGehpd8N//isshFBVlGgvijSz8RgrM5wtGoHQHTz7pP2dF6wbTtvEsWCDpG9qDcV2D1MOJVQ9V6m6fG43uEakbSu7N0MhVp7PLAl+xAsaPl/937BAfS20t/PKXEuYXLkKVel9EkPQEhg9j/fruHdcVqRvbFi4MbyTcH6RuvN/4+O6R+pR0acyzc2YzI2tG393QIGH4kHpkpLBpYiJMmiRK/SMZFxesfInmZnD+/QnZt53YM4OolYI33pDvbR1Gu3bBKacIKZWWQkKCpHKPjoZp02DWLHj2WUhJEYKfNavvSf322zvOYROK+noZ7hrqxOuFX17u4YwzxHcAgMtFRWMkI6NkSLN1TVPg+O4qteJiabBZWUJIoce3bTy/+x3ccUf751m+HFJTYcwYeZXhmF+qmoMs0psJIkajf+st6dhoboZRo+CBBzo9bvlymJ2yhazYOpYvl3pytX/+dHdirQ1S93gGb4avIYQ6I/WvvhLhE4pwSb2mJiiEOkNbR6nWEl0UOirqLowyTUiAtLTwzVwZsRn86sBfcddR4YUlaQ3/+1/no12te+aQ7gsMH1IPxeTJsHQp5ff8C4D8OBn/V++qF7Z4/vmgEd0PQ6kffbS89HFjvWzc2FouGUPIXbuk0jc0iEPvmmuCpvyf/UzUzty5YlNftiyYmL8naGpqrdqWLxcLksvV+XGLF0vDe/hh+b56pY+6Rhv59m388Y+waRPw/fdU6BRyc8VGWLg9+Lo3bICVK1uPYDrD228LEV5xhXxfFzJvOJSYvV75vnJl+2r022+lM1RK5pN1ZX7Jis1id/1utP9kxqLTWzdG8sYb4d27gdDZht9+C3zxhbzMZ5/t8JjiYrnH6dtfZ3TjOj74QO7jmGOEOELJ8f77O4+Q2rZN5tFB/5tgOkI4pP73v8ONN/o7Pj9KSkT92u3tq+uqKoiKkt9bmWC0lsJ++ml45hmZkkpQqRudQVOT+GpefLHnzxaq1NPSulfGD53wEEfkHhHWvsuWSdvvzH/wzjuS32jlyvDvoa8wfEm9tpZyWyYA4646DoCqrCnw5JMsrJvDkvEXCGv436xBXrddXkrxulqO3PUMm5Y3tjqtUSl27w5OXn32WalsoTAmN8yUVNYBW2l3sXWrKN9QIigrk8bUVUdh3OsjD3lwbd7BFy/sAuBO9+8AWP/yGpxnXUADcYydJuFtheXxWCyaESM0/3tFs/8MH3ce8m5Ys2refRdGj4Z58+R7R6Ru3H95+d4qvKFByGTWLPmeldW1Uh+VMIoGV0PArm4o9Q/fi+Cmm7q87Vaoq5NnsFo1773WAgsXspzp1C/fLHaVdvDPf8rnj0qeZLTeTkuLdJAzpvmYOKaJ9euDPdeDD8Kvf91+mKfHI+902jT53t/O0o5QViZOxJKSjkcLq1ZJ5xxKiiUl8r6SkztW6pmZMspcvDjkhwULYPZsGfKefz5Mm0bLws8CUTJGB2HcS28mZoUq9dTU4P0vXtyr1TD3gkHUnZkwjQiznoT89hbDk9T9bFox9yckJUH6YRIfV33zvXgOO5KfWV5jbtEL3FL6y4AKa6gTu3Lso/cQ8/GbFLjXUNEcS9XiYBiAUSlCST2nk8QHSTI3pkd2Qa0lkqSurrUd3KjUXXUURohdSZmNl+Y9yuJ36xnBLo4+UH7Y/Id/U+kSMs+bInG3xc4UUnwVTGr4lhUrFT5t4e01Y6TBfdPxZGCnU6KG5s8XtQbB6ImoqNbEHKq826qU778XwjdIPRylbiRK21UnnZZB6s0NkWzZImQZLurqYHS2i7G+Lax/dhnN733KHL7hLm6iPdnf3Cx+l5PmlFGgNzIaIf5RqU0kzylg4tJnWL/CidYystq1S+zJ11+/97V37RKiNJ59MJS60yllcMAB8r09td7SIpPtoHU8/Z49QupJSR2Q+q4GkkvWMC2ngjVrQlT+ggUyet68WZh17FhqLr8xcFxfknpbpd7QIM9z3nlw2209P29brFoln521UWON1KIiGYUMZJbUYUfqv/sd3PzhPNi0ifLUiaSmhpDr6OmsWq1o9EWTX2DhDm5hx2PvgtY0looqj/3sHXj8ccYni1TadNVDATuBUbGKi+UvLq6LfN8hpO5yidMsXAfYyy9LFEZ+vlgBjOFouKRuVOAxbOMPu6/g03XpHJq8lqTnHyUlop7N8y6h4mVJ1GHMsNNYSI1tZmKTyIgDR5awxjuJXYlTQwzxe2PxYvFBhJL6xo0QEaHJHeNrReqhRGBUfgNGYFJbUu+szAxS31krQxeD1FvqI3G7uzdXoK4O4qt3kqe3sLUkii3rnLhwsDjqOHjtNdnp6aclvEVrFiwQ8r02/22wWBg9RprLjKqPITqaiXluqpsiKVu4nO3bhcimTZP+oW0QlmFPP/BA+RwMpW50JIf5Ezm2R+rr1wdn+Ya+y5ISyCr5nuTyjULqWrd6cVWFNSS37GbK0n/R0AA7//xfaUQffQRnnAHjxom3+YknqNkeVEFVZdIrG/W/u/MeQtHWpm48c3Fx36ZmaJfU33lHoiz8MERPUZGMclNT+yfXTXsYVqTu8Yip4u13FOTnU1EhLy+UXA0nze9/L59btmj4+msaSsX+EuuRnQpOknCGTauaA7OL2ir1zlQ6tL7um2/CUUcFuQFETXcUCfDVVxAbC089Jc/1wQdBJQVhkHqR7PjCsf+ihCzKdDqHzHbD2LGMmx7HZjWeihbJ/5GVBZGR0gBTpo/iordP4U/nbuGpd2XBkfePvAfee08M5iGe35YW+OlPZUQRESGx+fFLPybC7sXlglQqyCpd0a5Sj4zcW6kvXSp+SaNjmD5dVExnk6HaknqTW3wlTfXiKDVUpYH//a/N8D+0zOo08TvXMC6riS2WAjYidWCpexquT7+UcJZLL5Uwn1WrWLhQOsTDixbAtGmMnie94wzbanj3XSb+RVaGWn/TM4HQ1jvvlGf/1yONQaYiGCVjkPpgKHXjmrNng8PRPqmHPtdOggAAIABJREFUdsQGqXu9UFqqyVr9AcmVm6guaYGf/5wt2YcxMrmB9es01RU+ki21TN0iE8tX3/IiJ4zbzEGez1l7QMii8UceSfXNsvZAGmVUl4qPpLZapH3Z9tYm0e6gtlaeKyJCSBRkcNCX6Qi0DrgFWrfRq68WxYkIvE2bpL0V7fIFzDR5eX1zD11hWJH60qVClAZxlJYKqScny3eD1HNyhIAAttomwCuv0FAmM05io6Wwc39xBDabZmPENPEMEST1ykpRVkZofEeIixP7enV1sAHcemtQ6Rx4oKQmaA9Gh3TwwXL/77zTuqEXFkrlaOygjtdt2kMcdcz+88k8fO632HFxzEWjAVH/W7YEK3JqKiQkqMD/U4/J5NZnxjF5MowcCe+6jhb59uyzcNppIi2ATRs1r70GjoZKbvzpJmLefRl1/HFkeMQ2leosJqNqPaU7g9MIjXI4/PD2Sd1Q6QAnnCAO07fe6riMM2IzsFvsAVLfWi3s2bR7DNDaVlpTI/lobr3Vv+Hzz1u1vLoKF/FNJeQdl0edL44lUy8FwOmxseLwa8TWMmqUeDOfe47CQhhf4EN9+w3Mnct+50wlkmaO+vVkGDGCCbNk1ub6TVa2bpF6tf+O1zhlXhUv/MdJy9mSo+jVVyV3zBlnwKSUUiIj9aAodUOtZmbKrMuOSD3SKkpkd5GPu++Weu71KrJ8xSRRQ9X2WnjuOV6sn09RdSzf3PI2VS1RJE8fxeTZMrR9f9oNvN8yj2+YzQHnTjSqFAA1c38EwFjLDqprhYJqdkjjK6u0or2tly8MF3V1otIhqNSNOthX5b17t5ifjGWTm5qAbdt4Z+t43tg8CRob2bwZPB5pb0UrK9m8Wcq8s1F/X2JYkbqRUKuiQnpfQ00n+lc6q6oSUj/4YNnucMDW+BmwYweNlf68DrffBGefjf2Q2Ywdq9g0+miRd0VFrRxHq1d3rdQtFrl2dXWw0qxdK9Po6+qEcAzbWltUVgrBWq1w/PESLmg0OqtVuOjii2Hq1PYjVOoqXMRTB7m5XPKfQ6hbXkj+z/YDhNR37QpW6KwssTNCUMGAEOr8+fDRpzZcH35GS1EFZZPmSZauPXuoXS4E+lDpGfzx+fFw+ukwZgwZWqR5CpVkOqrYsyc4Et+9WxrUzJny/IZDrKZGnmn//YPXNzo1g9S1FmdiaJIvi7IwIn5EgNTXl6+XPOGVkrhq40Yhy5/9TKbANzf7h76PPCI9y0knBQzvdQ0W4lUD4348GYB33ccS419HYuG8P/PjCZv49I+fwnHHwfPPs22bJpft0rMecQQjjx5PQ0kDh/z1ZEA6xBiHi/VNo9i6upFo1UTmL3/KBR/+nGqSeWuhnZaiCi652MesmT7+9X9FqAnjSbNVD6pST0+HCRNad4gbNkg01dLPGpniXUE6pexeXsrCp4pIcu3hHPUc80+2kzw6jqqmSIiJ4c3x4jzY/up3VJFM8tQc4r98j9GjNU9vnAvAx3/+lsmTFaecIlFkDz8ctKPnZjZR54qSEM8dfke4jqThxXckn8ff/tbaI98eFi8O5IKqrQ3W8/ZIvS/mBhgjmZOlCohZ7eOPuZk7uYXbYc0a1q6SCjyZNRTtFKWenz9wExOGFakbMwG1lmCF6mohXqtVXubatbL94INlW24ubLUWwO7dNFS5iaEBy3k/F+eNxUJBAWyyTBAWefXVVqTudndN6iAmGIPUk5JkiPXCC0HPeEfJmyoqJN4dYMYMGXUYpoRp0zSb1rp4eYGLbdvgjxduF6K98sqAB6qu2kO8qpeLKkXk9AmBc+dLSm0eeURCL1NSggomlNRB1HJDg1igrrkxkhnlH+Arr4CXX6a2UDxiCQ/cLoV/113wzTdkJMiQOTXDSuYh42jyRtKwVpyIJSWQneZm7owmvN6gmdFoXDPazO046SQxv9x1lwQ1jR69d4ThqIRRAUfp+or1jI7LA6/kflm0SPwTr74qYXgg5FV21Z9gv/2oXLeHxy/4WvKCeOzEJ9vImyDxqRs2yMhh1Cj40x023tqQz70vjYKzz6ZmVx3V1YqxK18VWfvjHwNgzQwmpVMKJua2sJJpbF1WzVi9FXXMMRw1q44RyY085LuKV6/7gqpqC3+uuIyoKy+E2lpSm3ZSsae1h3fjxr7LnhmKbduCTjpDNKSlSahuYWGw073tNpn3sPi7GPazbyBblbB7VQVrt0ZwfNyX/PcXn5D7wNUkH5hHHQnsOut3fPu9lOMapuDDSvLkLLBamTpV0dKiGDMG5t04hw8/lDb5+OPwq18Fk+qNnSQO/Jo1RdTuCiZ4LTvnN3DDDeJxnj2bz95tbDenTMXOJk47ppprf7wZGhtbKXWjnhv1zuPpmzS/hunl5Pn+2dlPLcL9wSLWM5FdjISVK1nz2mYseDk6eTnFTUlsXOMif/1b7a4H0R8YFqS+cqWYJ5YsCSbrMQL7DeJNSpKGDcHJO2PHwlbPaCgupqHWQywNQVsN4tRavdHBI/ZrYPt2amtbr5TSXVJPTxeSWL3aHydOx+/RUOoQJGHDHzBndAmNLgctPgcHWb7hgVdG8Pl/d8Jjj8HNktOjvk4TF+Fqd2mXcSJiqa2FM8+U/w0FY3QkBo48UmKLX3tNOqPd5XZWRMyB7dup2SWRNAn754nD4MYbISWFjOlii0+dmk3msTI62PP2MgB279ZkbfuK466fyoRxbu6+Wzphw0nUHqmD+EDi4sQe2tbBOiphVECpb6jYwOiYiYFn2rJFzj93rhDUWZPkQmuO+DUsW8YjI//CFQsOYcU30hHFZ0SRmxsstoICqS9er5D7++9D2UEns23k4QDk7lkiNjRb+0mejp9v5QsOYenaaPLYCrfdhnXJF9x0ezRfcCjXvjSHXAo5osLvGT/rLNJ8pZRvrJIbr6vjlWeamDhRhGlfwu2WZ9t/fxkBlZfLYyTGuJn4/K2BmcUuF7z3tofZ9u/IYjcnnJtKdqqblTsSKNdpTD5zqvgZRo8mee4kAP6bKSo9ORlWJB8l/6dZgeBs65NOknJOTpbO1yDzzz+Xz9y5Yt+sfv8bakqCPVpZzgwZln/2GdsaUpn3oxhu/6OvlS2yqgr2n+bhFeeP+a/zNFiwgIqK4Kg9KUlG0qEmpp5EoLRNDb1qFYzI8nDAFbMB2Hr/G2x5bTUuIqghiYZlG1j7aRnjbNvJv3AubhyU1zjI927oPM90H2JYkPrvfw8nniiVz0il3pbUb7lFIvPuvTdot83Lg62NGejdJTTU+Yi1NIuE9+PGG+HEExVXue/n1a+zA3HMBsIh9VDzS2qqmEt27AjeX2lp+2F3oUrdIOEAqXvEcZs72svbG/PJy2xkfsRHfPbjv0ne3K+/pq7BSnx0+5XE6CQslmDSsfbMLyBEeuihoqKMkcrH8T+BHTuo3S2NKHFc64PSDxKPT+pB+WTvLwRf/JVfqe/ykt28Bcv2Qm5ouJWVK2V0vGKFOEgzM5GQlTPPhA8+YOJEGVEsXCiNPi9v77VLRyWMoriuGKfHyabKTeQ4hNSN93zoofDWP3bz+OS/c9c6GRevPfn3YLezKEG+b/pATho/Ip7ISBgxQo4tKJAB0NVXi7Pb64UX345h252yZlvurDQxO3WAcy6NwYeVPa4UxqnCQK91yaWK/OQKSsnkoqN2YPlmiVTOZ54hLcFNxa4mSEvji4T5nHO+Fa3h878sEZNRH63I8tFHUv+Ki2Wy1LZtotLVyy8xcYvkSlj/fTOff+SivsnG71P/ye7FhZz61AlkT4hjF+KknnxyfuCcSanSfh5/JpoxY0QUbK2SiAFDL02fLp8nntj6fiZOlOa3apU4k7NmSgOrXrKB2orgbLuyR16WEx96KN+PlPf3j7810JSYLfbC4mI+ed/Jrpp45id/TTnplN7/HGvXaiZJn4PVKvcT2vbCtatXVko9qK0VoXbkkcFollWrYD/LGlJK1xEX5aYw71hWe4Kj5F1vLmd9eSqTCryMOCQ3sL3grgtFNQwAhgWp/+UvotI3bpQ1MkBmdUGwcV50ETzxBFx3XXByUF4e1LsiqfTE01jlIsbeeppmbKyoewtelu9MCSTYdzjk94Cj9LPPxHD729/K1MqQsWBSktiLQ0kdglEw7eUMd7nE4WsQbF6eKJqVK+XaMzZL4PrZP7eSPC6Zz5YnMGKkhfOXX40PBUuWUOd0EB/Xvp0uMVEI9Igj/CRKx+YXkHbidkuDHz8ePvYdKaReJuSSkGxttX9GpsjclFTFmLFS2NtW1Mps0nIL2eyGJ57g7JpHybGXcu+NFaxYVM30UVWSu2f6dJk6+LvfodBceSUce6yUQW5u+6Tu1V6+2PkFbp+bNIs0otkiljg/432SZuZx2ebrGfXoTSQladass9DSAks2ywNv+kjMN3GjhXmMjrSgQHzEDzwgI7fp08X8s61MjO1jP3i8lRBoiwkTYGacGKfzspslpwQy+nngEQejk+r4xdOHCKNddx3YbKQeOJZybzIccww3jnmBzIRmzkj7mG+ap+L7fLFMTe0EPp+ETXaVY+W556QuvPmmjBxfeQXS0zX89a+MT6tG4WP9gu95846VRNLM0f88I5CUJ/vAkYHzTJ4SHA0axL1zp4itUBFk/PbTn4rZ7ZhjWt9PRISUl9bSbpKS5bxVG0qprfIRoaS+BdqLUqyYIA2+yhPPMwc8KAr+zjtZ+swG7Li44np5T29tGEdDg2La1/8Qr/QNN5AWWWecBgiP1J1OyMv18siDHr5b6qOqCr78wsexx8pvG9b72K/4PdS1v2FsgZ3CguNZfXowJ8a20ii2MI7xR41gxMhgueUf3Iu1JLqJYUHqU6bAnDnSAI1wuLZKvT0YIURbyRPzS8TercBmg4yoOnZXR1FbK43AIPOcP14iht5580T2PPSQjCnT0oTkv/iilfkllNQLC4Nc0NYEYwwDDaVuKEevF9JTvUze8AqPn/we110nv2dmSl6MHbusfJV0Inz3HXWeaOKTOn59r74qnZyBjswvIHZ1EEF6zDGwuHYqru27qa3yEKGcRLRJXW68g9RUER8W5aNwl52ybY34tIWs+Ca4+GIcr7/Eld6H+WhFKqt3xDF96RMSmjJ7tgytVq4MjsX9MEg91KllhDV+sFUcYskeUepnnK55/IxFnPvKj8XbvGED6orLmTxZsXatCAGnUxrWphUSChk/Lh0I1g0jUZeBs8+WKJ2PP5a6YAznO8O508TQmrdfTKvt88+MZ3tVPFmj7K22p8+bRD3x/Pu45/ly+wiuuz2RE/56FHXeWNbPuxLuuIM7ry4jP186GL12XasMaf/5D/zkJ51nRGxqEmI99VTptI84QupXmqUSVq4k6u7bGBO5h5UflvLGknSOyVhF9I+C0+Sz8+VZ4uNbtzGDuI1JoqHi0/jNbhdHYnsZbPcTax2JiSEhwdtqqalV5MVIkHqoCFqhZjA5cgsHjCrngZoL8J11DjzzDEs/b2Za9Gb2P09sPQvyZZ7F9F1viYny3ntJK5JEMuPyxA8VDqlX7Gyitt7Khw9v4Pvnxcl1u/smdu+GN9/QuD0WpsZLjzZpEnyz1MLS2oJAZMsXHIIbBwXTowOCEwYunBGGCamHIiJCKk9dXdeTg1qRujeK2Kj2zRVZCU2UNCVQW6tJcDSRndKCBS+Zn74gPcndd8ssgro6MbqefbYk5z7qKJIqNgdIPS1NlItxT8bMvbbOUoPUU1OR1nf33eT7RO2l26tRwGV/zApUepBGEhUFz8VcAgsXUkc88SmODp/94IPFp2CgM6U+aZKk5bjlFjGdN3ki+Loij9oKDwmOvb13hjrLyZEGPCq9hW2MoeRjiVTInpYmLfq447j4iwtw2H14sTH9huOlt1u4EG66SV5km2RaublSzKGzdMenCPP+83uZsx/bIko99YDRXPbikTh+fIJ4S/2zrKZMkaijTz6RUZsFL5taRHnGTxSGmjtXOu/c4AgZCJqr3ntv7986wkU/q+FeruOIk8JbF/TMM6WuXHihENsvfhH0Ay059jZqSeAvD0VSXNjCeefBv2Y+LJ3Wnj243cFkaZ2lff74Y3GAGz4VvyuG9K1L5MHOOYeJs2J5jZ+yk9Fc+uCUVscbwmbSpNbkPHmydChPPSVl255S7wyG6ElMDAlFdsdQ22AhI6GFhITWpL58rYMZp47jN39OY+NGeH/GTfgam/iueSKz5ljJylYkJcFnW3KwWmHytrdlGNzSQuoEUcfTqqVDrLj2z10uO1WxQlZBWbItk+/eLGKUtYiTLxEV89g1QvL7XTEX4uO57DJp9wsXSrtRSvOxQ5aUKCiQd2y3i2DzD+AGBMOO1CFoUujK5m00yq3k0UAssTHtmyuy0jyUkEltlZeEl59kxHdvkMkebC8uEDvKDTcIo0ZESLjbP/4htqDp00l6/WncbhkKp3r3oNABR5GRJ6VtPTIUQ8qiV8QAftNNjCuWipe+e4VMqzaShPgRFycBGC9VHImropZ64ohLD3/ZrfR0GTmkp7f/+7nnigI3yGUl06htspEQvffoZs4cEY7GzMTcfDuFjKX4qfekPA8dF7zuQXmceZZUs2nnTw++lKgomezz+utiU/NPJTR+Dp3YkZuUy/3H3U91SzVZsVm46qWHSshPl4Qrzz/fypE5ZYrYQx98UDrWjLgmNiEe9vg8aegXXCAjKHtrEU1ubjCnT2in2BliTjiM68a+jv2Eo8Paf+xYId2sLPHrxMZKNUhJgSVb0njy2nXUE8/nMfOZwmqe0r8Qm9199/Hs/RWBsulsNq1B+IZ9+8iDmrls+jf8pO4ZicePiAjE2V97LZx4RutRhkHqkye3Pm9srDQJY3uoUg8VIR3BUOpJSSFKnSRqSCQhUZGeLlXByD1TXCzPcNpp0t7vfzufTdPPoI4EZp2Rh1JyL1rLqCsqyn+Tdjtph4uBfUL1Emy4qahUMtruBJXrpB5Wkso7FbPZv6CB8Y9dQ4qthkUlE7DjYvzN0vMfdlhwMtmMGZCZqVjmkQIfP146vZycoI9roDAsST1LfHNdknpUFGRlabaTSyMxxMS1v6JJVpaimBzqGy3E+2q49ZI9/PuvFYEwtnaRmAjPPkuSL+hST/3rDXDnnQE1csghQqQB88uqVXDjjVSWivcm9bHb5Y1/+in5p8hBabHN0vW3M3Y980yobInhA47Fh5X47PBXjP/FLyRs0VDsHSEtDSwWTSkZ1JJAQuzeE0GUkgpt3OLY8Xa2WfNZuVR8FgXnzGq1/513SmTHhAltTnTrrSI7X3lFJN/hhzP2N+IYa2tXv2bONfzjxH/w+0N/T021xoqH6OMOlQxabWTQqafKTP85c8SMnZkBjUhZxSd2XeVPO00+w1XqjB8vLDpmTJgHiGItKgpMQkQpud833oC7H0vg8MNh5s5XOffker5yzmTrj35N2UMvcOMNPg7kG6ZGbGTH2o5TbBYXaSIcPpKTNLz8MiotlcdXzOG0M22i+pGRwk03tb9m7ahRQkpto5Xa2w8gJoa9zHTtIdT84nBAfLxmjyVb6lqqjfR0capnZ4uFE4TUHQ646iqxgt478SkAZh0sPbIhoowOzIARq55zyy9ISbNQOXamCLJ168Q31k7geuXmYGKbeuI54KQclNXCXAm7Z+KIBuxxMptZqeD7239/KQufT57NGBH/5S+9X7C829BaD9jfAQccoPsCP/+5JJ4477yu9z3wQK2PcSzSqZTpKw5d3e4+t1y6RxvJLO61XK91c3N4N+Lz6ZdiLwgc+zbztQb92EnvaNB661atc3K0vvBC//6HHaY16MenP6ZB66LL/y9wqtdfl3Ncd7W7w8tt2yb73M4fNGj92AMt4d1nN5GR5tGX8A99MF/oo6aWdrn/HXfIfR0xo0pPnODt/gU3bdL6iiu0njNH12YWaND6L3/2dLj7FRc06hTKtX7wwbBOf8IxrsA7qq/vev/CQq3tdq3//e9wH6Bv8OKLWhcUaH3AAVovXizbdu3SWimtrzq7Uv/I+q6OsDj1mj++rH9sf0dPjd6itbf98j5z7g6dx2atTzxR64gIrefM0frdd7V2ucK+n2XLtG7poor5fFrHxGg9cmR45/T5tB4xQuubbpLvM2ZofULcYh1Pjb769N36lFO0DiaWkb/yctm3qkrr/HzZFhOjtcdfRR5+WLbdc0/raz3wgGx/4w2tJ0/W+qfzKluf+NZb97q/Rw/5rwatbTafBq3feUe233OPHPLzn+/9PF9+Ka/h1FNlnwMPDK8sugNgmQ6TZ4flCqvhml9A7FnrV40S80ty+wsiZhcEFW/CiHjxXIYDpUialA3+hZZS506A0Ylc+NwpTNj/KsZ6Lyc7O5/iYrj1oiKO/Fwxb/RoKldIzHXKn34dOJURjZGe3fEryckRu91apoCG+LT+WXw5I9NCaXkmtSSQmdJ1FTHMFJ+uSOLCC3twwfz8wDJU8e+8Q/KJlWx7dzfcNLXd3Wt3N5FAbdhSOnOEKDqlNDExXa8/mZsr8e/h1K++xOmn7x09OWKEhNQ9/FwycAL33w+TrzmVMV+sY9FHaeh/Pom67NK9zlW8zUUOuyXlw5gxMm23PYdKJzB8Qp1BKVGojo7dO3vt/913Qb/TuHHw3eYC6kggIcdCun8ZhDvvlAibVauCt52UJOsN/OlPYmExAhGM0Na2i8sYPDFihJyjwpcMv/mNUHplpaxIM3aspAT2o7JYInAOPVSxaFGwDAylPrVNlVRK/FcgM4whOJdmsDAsSd0wv4R6lzvCyJHwvjubFiKJTW6fBLPygsP3hIIOjM4dIGnGmCCpHz4Z7riXiHnzmHfttTD57+SkfcH7y2fwgWcEL1meYO1XCVTMW0rMLg+R6cEV38ePl1xSbWN7Q2G3i91ubdUMcPZfLon0DEXZxhHUuBJJyOi6gzNIXevwVm3qFPPnkxu7icIvSig85mHG/PcOLBmtw8Fqy53dI3V/446PV+1GZLSHAQopDgtPPikx/FOmBE0NY06YSP1Hiurf/pnkH58UbBR+FFVGcVC6Ez5eKYzWTULvDo49tnvzakL9Ovn58PLLsiEhJ4bpY8UHdf317XcUMTGSQSAUBx4o1q+2PpCTT5YAgBkz5PHXrwfuu09+9Hol+Py++1qRekUFxNmaufjiqEBoMEi0zx13SBrfjmCQetuIqoHGsLSpd0epjxwJTV4hptgOHItZ2cGWnjCle6056aCgoTj12P2l677kEpmqd/HFZNeup8VjJ5JmNvoKePnzDCoPOpGU9Nb9qc0m5j5j8kRnz7PRI2E98fGd79tTZGRAqUWUemJm16Qeyq1z2l/vOHwoRe4RY/iAY8n76B+8/MtFe+1SW+UTUg/Thh0k9V7e2yBhzBjxp0wJCVAZPUbq7PaWTEmqEgLd4qTYmUrOGLscZBRAP+GBBwI58bqNcUGfOolJFk45ReLqw1X+BtpzakdGSgCAUn6l7g9QeOklGDnGSu3ZV8hQwMgl4HRSWW8nJbaFs88OzlAHGRXcfHPnRWkIgcFW6sOS1GfNEiIJTQ7VEUYG51AQk96+YzFU5CQcMK7dfTpC0uHi+bHhJn5uyNgsMxMefZTsG6Vrv/9BK5Mmydyb8vKeC6dRo8DtlXFnf5FUejqUuFNpII6ETmLhDaSliYKKj++6UwoHF/8ygvPOA4dysezLvWdX1tYrCbWMDc9RPNxJvT0Y/dmOn10rLHXffTJ199RTqXjpE1xEMGJyGEH2g4zQyJCunPi9QUqKWFx8PjHfFBXB55mny/DXSDa0fTuVpJCa1LPp/IcdJmscGxliBwvD0vySnx/+EnKhJprYjJh29wntfROmhxvyIIgfKTUxNaIeZds7UPenP1OUlcMvLncQlwI//7kMFY1wwO4itJPqT6Xe4hWpFE5DU0omTKanB2fz9gbHHSd/yxdWs35PkvSCaUETTG2TnYQOZtO2h32Z1Lcf8DPwnEpgphpQvLAUOIERc8KwTw4yQpV6f5J6aqpYXBYsCCZ+/PT7eE6aP1823n47bNlCBWmkpHc8g7gzpKW1VveDhWGp1LuDUBLsSNjZ7ZCWLGGGCWE4BkNhtUJCvI/Use3XyIkTJV7a4RAn2IgRMt24p0p9IEg91OYZbkN75RWZkNKXmDjVzjomSYhnCGpdUWGNIAzsi6SelCQ+le27rJKJ7YYbJI3FDTdQ1CAvLWe/dqYPDzFkZATbZTizd3sKY9rHeefJyPzgg2X+IL/5jQTGX301fPGFKPUR4c//GIrY50k9KyuoHjsbrWeNEDLvScNPSraQmtF17263S1g1tD9dPxyEknp/OUoN5xCET+qjR/e96XbiwUlsZwzNb34Y2OZze6nzxZKQFr7RdV8kdaVEra9bB9pilWDze+6B226jOF2Cy0NzjwxVKBVU6/2p1I88UibMnX66zJk47jiJpKne73CZAfbkk3D33VRYM0jJ7p+osoHCPk/qNltwdlxM+9YXQMjfau3ZdN5DDgmGNXWFSy4JLlLQExjOGLs9vMkePUFPlHp/YNJkhcbCxrc2BVZ4aNhcgsZCQlb4LyouTiaiDdTKMwOFI4+UyTjHHhuycl5UFEXn/wGLRbfqnIcyBoLUQUyeL74oE5jnzZNorcWLEdPLVVfhfvBR6ryxpKQO/c6wM+zzpA5Bu3pnSn3kSFHP4Ya8heLZZyWuNhwkJkpq3iuv7P51IKjU4+N7dq/hoCdKvT8wUfJ2sb4lV9LWArUL3gYgIS98+5VSImR7FEM/hHHffZK2+JNPgrldAIorIsjKUh2lgB9ymDDBb8YcwLo2e7Y/l9JziPL7+9+pOuMKoF+jPwcEPwhSN4iwM1K/+WYJIhgIREb2nJAzMkSl96cpIcQnOaikXlDgX+hgyqmyDtq//03tvZLUq7tRSr/+dSCr7LCH213Jzp334HRu5corJYXOY4/BN99IVuhNmyAzs4H1689n06ZLuKYYAAASAUlEQVQr2LnzL1RVfYTWPVv7s79xzTXiNumvkSdAff0Kdu9+goaGNWitiYiA667TvPhiMNtlICfT0HdFdIpe9eVKqeOBBwEr8KTWup0sEr1HVdUHgIWEhIOprV2M212B1RpPTc0iwEJy8rEkJh6JxWLD53Njsdjx+Tz4fI3YbAkBUo+KakFrO0qJ/dvrbcTtriAiYiRjxlgYPdpLY+MmIiPHYLWKs8Tnc6G1D6s1GK/t83koLn6QmppP8XqbSEycR2ys2DFbWrYBPmy2RECRmHg4kZEhqez8aG7eSnn5/3A6i4mLm0ly8gnYbHEo5UB1wvhGkqD2SN1otEr1rq+OjBQyr63tnNRbWnb4y28UFosDr7eRxsZ1lJUtoK5uKR5PFcnJxxMVlYdSEaSmnsSePc9QUfEqDkcOVmt04J4djnQiI8cE/gAaG1czevS5rErfH11kQ114IcuirwQXjBzlxes13k0MWntwuyuw21OxWOwd3/Qgw+ncA/iwWKJpalpPZOQoIiKCEy58PhfNzZuJiBgJKGpqPiMubgYORzYtLYXU1HzKtm234XIVs23bLSQnH8uZZyayYMHfmTMnEYvFi89n5YQTXqGi4g2UsuHxSH6imJj9iIvbH4+nHocjE5+vCa+3iZiYKdjtKdjtKSQnH4dSdlyuMrR2o7XH/+nDbk/B4chEKRstLdtobFyH11tLcvKPsNsT8XjqqK39Cpstjri42TQ0fI/HU0dERBbR0RMC7a4tUlIky6Fc0wf4qK9fhsdTi82WSGLiPGy2ODyeBmprF2O1xhAdPRGHI6g+vN5m6uuX4vHUYLXG0Ny8BZstGYcjk8LCG6irWxLYNyJiJNHRE5g37zuef/47Lr10BBs3eigvtwE2kpKaqa5egstVQlzcTGy2RP99aZSyYrXGo5SNyso3aWnZQWTkGDyeOqzWWOLiZuD1NmC3p7Z6rwOJHpO6kjf0CHAMUAQsVUq9qbXuYqXY7mPHjjuprf0cUEAwlM1iiURrH0VFf8Nuz8BqjaKlZTs2WxJebwNau4mJmUJu7rWMHHkSa9fmsnmzjZiYaXi9DTQ2rkJrNxZLDA5HJh5PNR5PFRZLJBERo3G7y/B4JAeszZaIw5GFw5GJ211BY+NqoqMnY7E42L79tlb3FQqLJZoRI36DUgqrNQ6bLZmmpvUUFz+C1k4sliiKi1tnjlPKDliIiBhBdHQBUVF5WCyR2GzJxMbuR0HBkbhcJXz99VFEReUTGzsNrb2Ulv4Xr7eeqKhxREXlExUlsyDKy1/C4cgkLe1ULJZQW7SX5uZCPJ5aYmImExGR4yeBWlJTz6K2NpKqqv+jsnIzTmcRbnc5kZFjcTjSaW4upKbmk3af2WqNJzHxCCyWSMrL/4fXK4sVFBb+FoDExKPw+RrxeKr87xQaGpbjcu2dFjUrawRfr53OJ880k1wI9z9yFiNbNtLSMkHsoYBSEWjtBnyACrwnpazY7WlER48nKmocDQ2raGhYTkTECOz2ZCyWSCyWKP+f/G+1ynchru14PNVYrQm4XHvQ2onDkYPWLrT2YLFEoFQEFksEWntpbFyJ1h7/Pk6/aKikuXmz/xoO6uuX7fWMkZG52GxCik7nLrR2AVaUsqG1E7Bgt6fidktO2ujoiUyY8BRlZS9TX78Um20b//jHWXzxxdHU1KQybdpHHHGEh8mTt2K3p+B211BV9Q47d95NdfVHWK2x/s8YLBYH5eUvhr49oLM4banHxjuV953gL9/l/ncASjn8zxGsEzZbEkopEhOP8Le3Orzeeuz2FFyuPZSVvRg4vk2NwuHIwOOpwuczFqhRxMZOR2sfbncpLld5h/ftcGQybtzfSUo6itraL6mqeo/m5k1kZ5/Ir351Bddc8x5/+MOvSU7eA7zKzp0H4XCs7KQMpF37fE2d7hMdPZGoqAIiI0cRGTmajIzzWnVE/QWle7jEtlLqIOCPWuvj/N9vAtBa39XRMTNnztTLlu1dqbuC19tMdfUH1NZ+SULCoURF5eF2VxIXJ4kZqqs/pLR0AaCJjp6M212O1RqH1RpLbe3n1NYuxudzkp5+FlZrNI2N67FaY4iNnU5kZC5NTRtwu8uxWKKIj59DY+ManM4iHI4MPzlYcLn24HLtwekswedrYtSoG0lPl0QdLlcpLS27AC+RkWNQyo7HU4PX20Bh4Q1UVb2PWLqCFTYt7XTy8v5GREQOdXVfUVf3LT5fCz5fi580vLS07KC5eTPNzYVo7cLnk9zmNTVi9Bs9ehIeTzVNTZvQ2k1q6o+JjMzzH7OJ5uataO0lKekYnM4dNDWFLB/vh8USidUai9vdegWBX//6czZunMnChbFERIz0E2EKzc2b8HhqsNtTSUs7lZiY/XA6i9DajdUag8ORTVLS0SEjHQ+gcblKKC9/hdjYGSQltT87w+ttwencRUvLNrT2EBOzH+++q/jZz3K4/vqVHH/8Nxx99KXceOMHXHbZtwFF7nZXYrFE4HBk4XKV4XTuxOUqBXw4nSU0N2/C52vGYokhLm4mbncpHk8tPl9zoMw7gnQYTqzWeCyWSNzuMpSyoZQNn89JaGcuI5YoXK7dgXK12YTwvN5mPJ4aUlLmB0RHdHQBTU0bqa//Hq+3AZstnoiIkcTETKGpaSM+XxNJScdSW/s5TmcR8fEHk5BwCDExk3o9GguFx9OAz9dIc/NWqqrew2KJxOHIQikHFosdpWyABbe7HKdzN253BTExk/2jU01R0QO43WUkJBxKQsJhuN1l1NV9TXz8QURE5NDSsoO6uiV4vY14vY1UV3+Ez9eI1Rrvr3vlgCI7+wqionLR2kNc3Czs9nSczl3U1HyC07kbmy2elJQT0dpLXd3X1NR85q9z0k7j4g7E4cjE660nMnIsTucumprWkZ5+JjZb+0POpqZtHHZYBKWl0Vx22Vfccst8liz5O+PG5RIZOZL6+u/99UOhlEJrL253FW53KUlJxxEfPwencxc2W0JA7FmtCbS0bKem5lOczh20tOzA661n9uwtREX1bLUMpdR3WuuZYe3bC1I/FThea32x//u5wGyt9VUdHdNTUu8tvN4WvN5aHI6BDwfQWuPx1GCzxeP1NuLxVONwZGKxdN+A6PHU0ti4hoaGVURG5pKScnzgGlq79jqn1l683iZstji01rjdZYS+b6UUdnsqSllxucpxu8vw+YScTzstgqVLUykqasLhGFzP0TnnyBoYY8fKxK2iIroV2aG1D6dzN3Z7SqCzafu7z+fyk7xB9E4iIkZgs8Xh8zkDZjGfz4NSVn8D137zhEuy49nCT4X8Q4ZRBw0zo9Y+tPYOmtnszTclT0xmJuzZI+vWRPVxqLrbXeM3r/ZsYlN3SL03NvX2DL979RBKqUuBSwFGDVKWJKs1spVNfCAhxCmrAdhs8dhsPfdw2mwJJCTMJSFh7l7XUGrvTkIpKzZbXGCfzjo1hyOt1dDw8stlQWeHYwCXbOkADz4oa0Ts2SMzcrsbqqeUhcjIjmdXKmUJqSN7r/QQ2llaLLaQ45TfVDZ0bfhDEW19RkpZ+nTk0V2ceKJERm3eLEso9DWhA9jtA5eyYViYX0yYMGHih4zuKPXedI9LgXylVK5SygGcCbzZi/OZMGHChIleosfmF621Ryl1FbAQcZk/rbVe22d3ZsKECRMmuo1exalrrd8F3u2jezFhwoQJE73ED2JGqQkTJkz8UGCSugkTJkzsQzBJ3YQJEyb2IZikbsKECRP7EExSN2HChIl9CD2efNSjiylVDuzoo9OlAhVd7tU1EoDaPjhPX5+rP87ZV2VmYKiW3VAts76uH2aZDd65+vp8nZVZKhCjtQ4vG5jkrxh+f8CyPjrPE314T312rn66vz4ps6FedkO1zPq6fphltk+Vf4dl1t3yNM0v8NYQPVd/nrOvMFTLbqiWWV/fl1lmg3eu/jhfn2BAzS99CaXUMh1mLgQTArPMug+zzLoPs8y6j87KrLvlOZyV+hODfQPDEGaZdR9mmXUfZpl1H52VWbfKc9gqdRMmTJgwsTeGs1I3YcKECRNtMKRIXSk1Uim1SCm1Xim1Vil1tX97slLqQ6XUZv9nkn+7Uko9pJTaopRapZTa37/9CKXUipC/FqXUTwbz2foDfVVe/t/u8Z9jvX+fjle/Hsbo4zL7i1Jqjf/vjMF6pv5GD8psglJqiVLKqZS6vs25jldKbfSX542D8TwDgT4us6eVUmVKqTVhXbwvQ3z6IKwnC9jf/38csAmYBNwD3OjffiPwF///84H3kFWY5gDftHPOZKAKiB7s5xuq5QUcDHyJpFC2AkuAeYP9fEO8zH4EfIhkOo0BlgHxg/18Q6TM0oFZwJ3A9SHnsQJbgbGAA1gJTBrs5xvKZeb/7TBgf2BNONceUkpda12itf7e/389sB7IAU4G/uPf7T+AobpPBp7Rgq+BRKVUVpvTngq8p7XufOnvYYg+LC8NRCINLQJZn610wB5kANGHZTYJ+Exr7dFaNyIEdfwAPsqAobtlprUu01ovBdxtTnUgsEVrXai1dgEv+M+xz6EPywyt9eeIMA0LQ4rUQ6GUGgPMAL4BMrTWJSCFhfRqIIW0K+SwIv+2UJwJPN+f9zoU0Jvy0lovARYBJf6/hVrr9QNz54OHXtaxlcAJSqlopVQqcAQwcmDufPAQZpl1hHDa6z6HXpZZt9GrRTL6C0qpWOB/wDVa67pOzLudLn7tV1RTkdWZ9ln0tryUUuOAiYCxOvOHSqnD/Aphn0Rvy0xr/YFSahbwFVCOmKw8/XKzQwTdKLMOT9HOtn06/K4PyqzbGHJKXcny7P8DFmitX/VvLjXMKv7PMv/2IlqroxHA7pDvpwOvaa33GtLsK+ij8joF+Fpr3aC1bkBsyHMG4v4HA31Vx7TWd2qtp2utj0EIa/NA3P9goJtl1hG6aq/7FPqozLqNIUXq/oiLp4D1Wuv7Qn56Ezjf///5wBsh28/zRyjMAWqNoY0fZ7EPm176sLx2AocrpWz+ing4YgPc59BXZaaUsiqlUvzn3A/YD/hgQB5igNGDMusIP5jF6vuwzLqPwfYSt/HyHoIMx1YBK/x/84EU4GNECX0MJPv3V8AjiEd9NTAz5FxjgGLAMtjPNdTLC4lK+AdC5OuA+wb72YZBmUX6y2od8DUwfbCfbQiVWSaiyuuAGv//8f7f5iORIFuBmwf72YZJmT2P+Lrc/u0XdXZtc0apCRMmTOxDGFLmFxMmTJgw0TuYpG7ChAkT+xBMUjdhwoSJfQgmqZswYcLEPgST1E2YMGFiH4JJ6iZMmDCxD8EkdRNDGkopr5L0yWuVUiuVUtcqpTqtt0qpMUqps3twrakqmK65Sim1zf//R0qpbKXUKz1/EhMmBgZmnLqJIQ2lVIPWOtb/fzrwHPCl1vq2To6Zh6QvPbEX1/038LbW2iRyE8MKplI3MWygtS4DLgWu8k/bH6OUWqyU+t7/d7B/17uBQ/0q+zf+Kf1/VUotVbLQxWXdvbb/Wmv8/1+glHpdKfWWX81f5R9BLFdKfa2USvbvl6eUel8p9Z3/Pif0VVmYMNERTFI3MaygtS5E6m06kgzpGK31/sAZwEP+3W4EFmtJtnU/cBGSs2UWshDBJUqp3F7eyhTgbCRH+J1Ak9Z6BpKt8Tz/Pk8Av9JaHwBcDzzay2uaMNElhmTqXRMmuoCRv9QOPKyUmg54gYIO9j8W2E8pdar/ewKQD2zrxT0s0rL4Qb1SqhZ4y799tf9asciKUi+HpFuN6MX1TJgICyapmxhWUEqNRQi8DLgNWaFpGqLeWzo6DFHMfZlX3xnyvy/kuw9pVxagRms9vQ+vacJElzDNLyaGDZRSacDjwMNaPPwJQInW2geci2SbBKhH1oU0sBC4wp9WGKVUgVIqpj/vVWtdB2xTSp3mv6ZSSk3rz2uaMAGmUjcx9BGllFqBmFo8wLOAkZ/6UeB/fuJcBDT6t68CPEqplcC/gQeRVMzf+/NclxNcg7Q/cQ7wmFLqD/77fwFZBs+EiX6DGdJowoQJE/sQTPOLCRMmTOxDMM0vJn6QUEpNRUw5oXBqrWcPxv2YMNFXMM0vJkyYMLEPwTS/mDBhwsQ+BJPUTZgwYWIfgknqJkyYMLEPwSR1EyZMmNiHYJK6CRMmTOxD+H/O8QeiprlC+gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## resampling over week and computing mean\n", "data.Global_reactive_power.resample('W').mean().plot(color='y', legend=True)\n", "data.Global_active_power.resample('W').mean().plot(color='r', legend=True)\n", "data.Sub_metering_1.resample('W').mean().plot(color='b', legend=True)\n", "data.Global_intensity.resample('W').mean().plot(color='g', legend=True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VOXZ//HPBQQCBBAMti5AoGIQIQskIYphC6AVRNuKiAui9UEF17ZawKr8qProC35aUZ4HwQouqSAgigsVFSIGlSUKaBNcUATEsvmTHSVw//6YyZRAEibLzAk53/frNa/MnJxz7itDmCv3ue9zX+acQ0RE/KuO1wGIiIi3lAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOfqeR1AOOLj411CQoLXYYiInFDy8/O3O+daHm+/EyIRJCQksHLlSq/DEBE5oZjZt+Hsp0tDIiI+p0QgIuJzSgQiIj53QowRiNQ2Bw8eZNOmTRw4cMDrUKQWiI2N5YwzziAmJqZSxysRiHhg06ZNNGnShISEBMzM63DkBOacY8eOHWzatIm2bdtW6hy6NCTigQMHDnDyyScrCUiVmRknn3xylXqXSgQiHlESkOpS1d8lJQIREZ/TGIFIDfBOwZZqPV/fjr+o1vNJ7eaPRPD5Akj8tddRHKOs//z6TywA+4v2V/rY3T/vPu4+W7dsZfRdo8lfnk/z5s2pX78+d999N82bN2fixIm8/vrrZR47btw44uLi+NOf/hR2THFxcezZsyfs/cvzyiuvcNZZZ9GxY0cA7rvvPnr06EHfvn2r5fx+o0tDIj7knGPo4KF0P787X3/9Nfn5+cycOZNNmzZ5HVpYXnnlFQoKCkKvx48ff8IngaKiIs/aViIQ8aH3Fr9H/fr1+f2I34e2tWnThltvvbXEfj/88AOXXnopSUlJZGZmsmbNmtD3Vq9eTZ8+fWjfvj3Tpk0DYM+ePWRnZ9OlSxc6d+7Mq6++GlY85R333HPPkZSURHJyMtdccw0ffPAB8+fP56677iIlJYV169YxfPhw5syZw4IFC7j88stDx+bm5nLxxRcDsHDhQs4991y6dOnC4MGDy+2dJCQk8Oc//5mMjAwyMjL46quvAPj222/Jzs4mKSmJ7OxsNmzYwKFDh2jXrh3OOX788Ufq1KnDkiVLAMjKyuKrr75i7969XH/99aSnp5Oamhr6+WbMmMHgwYO5+OKL6d+/f1jvVST449KQiJRQWFBIckrycfe7//77SU1N5ZVXXmHRokUMGzaMVatWAbBmzRo++ugj9u7dS2pqKgMGDOCUU05h3rx5NG3alO3bt5OZmcmgQYOOO6slNja21OMKCgp48MEHWbp0KfHx8fzwww+0aNGCQYMGMXDgQC677LIS5+nXrx833ngje/fupXHjxsyaNYshQ4awfft2HnjgAd555x0aN27MI488wqOPPsp9991XZkxNmzZl+fLlPPfcc9xxxx28/vrr3HLLLQwbNoxrr72WZ555httuuy10maqgoIBvvvmGrl278v7779OtWzc2bdrEmWeeydixY+nTpw/PPPMMP/74IxkZGaEezIcffsiaNWto0aLFcf89IkU9AhFh1KhRJCcnk56eXmJ7Xl4e11xzDQB9+vRhx44d7Ny5E4BLLrmEhg0bEh8fT+/evVm+fDnOOcaOHUtSUhJ9+/blu+++Y8uW4w+El3XcokWLuOyyy4iPjwc47odlvXr1uPDCC3nttdcoKirijTfe4JJLLuGjjz6ioKCA7t27k5KSwrPPPsu335a/MOfQoUNDXz/88EMg8KF95ZVXAnDNNdeQl5cHBP7yX7JkCUuWLGHMmDHk5eWxYsWK0Pu5cOFCHn74YVJSUujVqxcHDhxgw4YNQCB5eZkEQD0CEV86u+PZzH9lfuj15MmT2b59O2lpaSX2c84dc2zxX/dH/5VvZuTk5LBt2zby8/OJiYkhISEhrBudyjrOOVfhOfJDhgxh8uTJtGjRgvT0dJo0aYJzjn79+vHiiy+GfZ4j2y0rhuLtWVlZTJkyhc2bNzN+/HgmTJhAbm4uPXr0AALv49y5c0lMTCxx/LJly2jcuHGFfr5IUI9ApAbo2/EXxzx6dTi50o/j6dm7JwcOHODpp54Obdu3b98x+/Xo0YOcnBwgcL09Pj6epk2bAvDqq69y4MABduzYQW5uLunp6ezcuZNTTjmFmJgYFi9efNy/uouVdVx2djYvvfQSO3bsAAJjFgBNmjRh9+7SZ0b16tWLjz/+mGnTpjFkyBAAMjMzWbp0aeha/759+/jiiy/KjWnWrFmhr+eeey4A5513HjNnzgQCyev8888HoFu3bnzwwQfUqVOH2NhYUlJSeOqpp8jKygLgggsu4Iknnggl1k8++SSs9yValAhEfMjMeHH2i+S9n0fbtm3JyMjg2muv5ZFHHimx37hx41i5ciVJSUmMHj2aZ599NvS9jIwMBgwYQGZmJvfeey+nnXYaV111FStXriQtLY2cnBw6dOgQVjxlHXfOOedwzz330LNnT5KTk/nDH/4AwBVXXMGECRNITU1l3bp1Jc5Vt25dBg4cyIIFCxg4cCAALVu2ZMaMGQwdOjQ08L127dpyY/rpp5/o1q0bjz/+OI899hgAkyZNYvr06SQlJfH888/z+OOPA9CgQQNatWpFZmYmEOgh7N69m86dOwNw7733cvDgQZKSkujUqRP33ntvWO9LtFhpXb+aJi0tzVWpQpnuI5AaprCwkLPPPrvcfcK5F6A6NKnfJCrtnEiKqyIWj02cCEr7nTKzfOdcWhmHhKhHICLicxosFpGo+fTTT0OzkIo1aNCAZcuWeRLPb37zG7755psS2x555BHWr1/vSTxeUSIQkajp3Llz6D6EmmDevHleh1AjROzSkJk9Y2ZbzeyzI7ZNMLO1ZrbGzOaZ2UmRal9ERMITyTGCGcCFR217G+jknEsCvgDGRLB9EREJQ8QSgXNuCfDDUdsWOueKV1b6CDgjUu2LiEh4vBwjuB6Y5WH7IjXH5wuO2VS3CstQH2rfryrRiM94Mn3UzO4BioCccvYZYWYrzWzltm3boheciE9s3bKV64ddT7t27ejatSvnnnsu8+bNIzc3N3QjVlnGjRvHxIkTK9ReXFxcVcKtlFWrVvHmm2+GXs+fP5+HH3446nHUdFFPBGZ2LTAQuMqVczebc26qcy7NOZfWsmXL6AUo4gM1uR7BoUOHqu1cRyeCQYMGMXr06Go7vxeccxw+fLhazxnVRGBmFwJ/BgY5545d2EREoqKm1SPIzc2ld+/eXHnllaFlGV544QUyMjJISUnhxhtvDCWIm2++mbS0NM455xzuv//+0DlWrFjBeeedR3JyMhkZGezcuZP77ruPWbNmkZKSwqxZs5gxYwa33HILO3fuJCEhIfSBum/fPlq1asXBgwdZt24dF154IV27diUrK6vcpSiGDx/OTTfdRFZWFmeddVaoqtuBAwe47rrr6Ny5M6mpqSxevBiAiy66KPQepqamMn78eCCwBMXTTwfWfZowYQLp6ekkJSWFfr7169dz9tlnM3LkSLp06cLGjRvDel/DFbExAjN7EegFxJvZJuB+ArOEGgBvB1ft+8g5d1OkYhCR0tW0egQAy5cv57PPPqNt27YUFhYya9Ysli5dSkxMDCNHjiQnJ4dhw4bx4IMP0qJFCw4dOkR2djZr1qyhQ4cODBkyhFmzZpGens6uXbto1KgR48ePZ+XKlTz55JNAoBAMQLNmzUhOTua9996jd+/evPbaa1xwwQXExMQwYsQIpkyZQvv27Vm2bBkjR45k0aJFZca9fv163nvvPdatW0fv3r356quvmDx5MhC4gW7t2rX079+fL774gh49evD++++TkJBAvXr1WLp0KRBY7vvqq69m4cKFfPnll6ElvQcNGsSSJUto3bo1n3/+OdOnT+d//ud/jvteVlTEEoFzbmgpm/8eqfZEpPJGjRpFXl4e9evXZ8KECaHteXl5zJ07Fyi7HkHDhg1D9QgGDBjA2LFjWbJkCXXq1AnVFfjlL3953BgyMjJo27YtAO+++y75+fmh9fz379/PKaecAsBLL73E1KlTKSoq4vvvv6egoAAz49RTTw3tX7xCanmKE0fv3r2ZOXMmI0eOZM+ePXzwwQcMHjw4tN9PP/1U7nkuv/xy6tSpQ/v27WnXrh1r164lLy8v1Lvq0KEDbdq04YsvviArK4tJkybRtm1bBgwYwNtvv82+fftYv349iYmJTJs2jYULF5KamgoEelhffvklrVu3pk2bNqFF7aqb7iwW8aGaVo8AKLEuv3OOa6+9lv/+7/8usc8333zDxIkTWbFiBc2bN2f48OGVrlswaNAgxowZww8//EB+fj59+vRh7969nHTSSRW6+7m096Gs4c/09HRWrlxJu3bt6NevH9u3b2fatGl07do19HOPGTOGG2+8scRx69evj2jdAi06J1ITJP76mMeh9v0q/TiemlaP4GjZ2dnMmTOHrVu3AoGxim+//ZZdu3bRuHFjmjVrxpYtW1iwIDDttkOHDmzevJkVK1YAsHv3boqKisqtWxAXF0dGRga33347AwcOpG7dujRt2pS2bdsye/ZsIPDBvHr16nJjnT17NocPH2bdunV8/fXXJCYmlnjfvvjiCzZs2EBiYiL169enVatWvPTSS2RmZpKVlcXEiRNL1C145plnQvWUv/vuu9B7EEnqEYj4UHE9gtF3jWbSo5No2bJlqJbvkcaNG8d1111HUlISjRo1KrUewYYNG0rUI7j44otJS0sjJSUl7HoER+vYsSMPPPAA/fv35/Dhw8TExDB58mQyMzNJTU3lnHPOoV27dnTv3h2A+vXrM2vWLG699Vb2799Pw4YNeeedd+jdu3eoROSYMccuZDBkyBAGDx5Mbm5uaFtOTg4333wzDzzwAAcPHuSKK64gObns8ZTExER69uzJli1bmDJlCrGxsYwcOZKbbrqJzp07U69ePWbMmEGDBg2AQK2Cd999l0aNGpGVlcWmTZtCiaB///4UFhaGCuHExcXxwgsvULdu3Uq9j+FSPQIPqR6Bf6keQe0wfPhwBg4cyGWXXeZ1KKpHICIiladLQyISNTWtHkG4HnzwwdC4QbHBgweHpqOe6JQIRCRqalo9gnDdc8893HPPPV6HETG6NCQi4nNKBCIiPqdEICLicxojEKkBcjfmHrNtfxXqEZx/+vnH3Wfrlq2Mvms0+cvzad68OfXr1+fuu++mefPmTJw4MbSAWmnGjRtHXFwcf/rTn8KOKS4uLnSj1NE2b97Mbbfdxpw5c8o9x0MPPcTYsWPDbjMcK1eu5LnnnmPSpEnk5uZSv359zjvvvGpto6ZTIvDA7kWBlQhjN/5Y+vf/fWwp5yZ9ekc0JglfaR/aFdWsqFmJ+wSq8qFfGcXLUF959ZXMnhmYDfPtt98yf/58mjdvHtVYAE477bTjJgGITCJIS0sLLa2Rm5tLXFyc7xKBLg2J+FBNW4Z6/fr1dOrUCQisEPrb3/6WCy+8kPbt23P33XcDMHr0aPbv309KSgpXXXUVUPZS1XFxcdxzzz0kJyeTmZnJli2Bmzdnz55Np06dSE5OpkePHgChQjzr169nypQpPPbYY6SkpPD+++/Ttm1bDh48CMCuXbtISEgIva5NlAhEfKiiy1CvWbOGhx56iGHDhoW+t2bNGt544w0+/PBDxo8fz+bNm4mNjWXevHl8/PHHLF68mD/+8Y9lLsBWnlWrVjFr1iw+/fRTZs2axcaNG3n44Ydp2LAhq1atIicnp8RS1atWraJu3bqh9X327t1LZmYmq1evpkePHqFENX78eN566y1Wr17N/PnzS7SZkJDATTfdxJ133smqVavIysqiV69evPHGGwDMnDmT3/3ud8TExFT456nplAhEhFGjRpGcnBxaxrlYXl5e6Aawspahjo+PDy1D7Zxj7NixJCUl0bdv39Ay1BWVnZ1Ns2bNiI2NpWPHjqUuXnfkUtUpKSm8++67fP3110Bg7aHicptdu3Zl/fr1AHTv3p3hw4czbdq0sCqh3XDDDUyfPh2A6dOnc91111X4ZzkRaIxAxIdq4jLURypeoA2gbt26FBUVHbNPWUtVA8TExITiO/L4KVOmsGzZMt544w1SUlKOe3Nb9+7dQ4VnDh06FLp8VduoRyDiQzV9GeqyxMTEhK7Rl7VUdXnWrVtHt27dGD9+PPHx8ceUfCxt2ephw4YxdOjQWtsbAPUIRGqEcKZ7Vqeavgx1WUaMGEFSUhJdunQhJyen1KWq27RpU+bxd911F19++SXOObKzs0PlKotdfPHFXHbZZbz66qs88cQTZGVlcdVVV/GXv/yFoUNLK7pYO2gZag8UTx9dXcb00eRWmj5ak1XL9NEfm3Fm4plVD6YaaBnq8s2ZM4dXX32V559/3utQylWVZajVIxARKcOtt97KggULePPNN70OJaKUCEQkak60ZaifeOIJr0OICiUCEYmaE3UZ6tpOs4ZERHwuYonAzJ4xs61m9tkR21qY2dtm9mXwa/QXNRERkRIi2SOYAVx41LbRwLvOufbAu8HXIiLioYglAufcEuCHozZfAhRPRH4WuDRS7YuISHiiPVj8C+fc9wDOue/N7JQoty9SI+3Pfb9az9ewV9Zx95nw8ARmz5xNTL0Y6tSpw1NPPUW3bt1K3bcy9Qcqq7I1AY6sK1BdZs+ezbhx4ygsLGT58uXHLMFRW9TYWUNmNgIYAdC6dWuPo6m8dwqOXXCrrDoExUq70exAwRb6dvxFtcUl/rbso2X8881/8v6y94lvEs/27dv5+eefvQ4LqFxNgKKiohJ1BapLp06dePnll7nxxhur9bw1TbRnDW0xs1MBgl+3lrWjc26qcy7NOZfWsmXLqAUo4gdb/r2Fk08+ObS4W3x8PKeddhoJCQls374dCPyF3atXr9AxpdUfKE1ubi49e/bk8ssv56yzzmL06NHk5OSQkZFB586dWbduHQDbtm3jd7/7Henp6aSnp7N06dJSawKUth8EeikjRoygf//+DBs2LFRXoPh7119/Pb169aJdu3Ylegl//etf6dChA/369WPo0KFMnDixzJ/l7LPPJjExsXJv8gkk2j2C+cC1wMPBr+FVrRCRatWnbx8eefARUs9JpX+//gwZMoSePXuWe8yaNWv46KOP2Lt3L6mpqQwYMIDTTjut1H1Xr15NYWEhLVq0oF27dtxwww0sX76cxx9/nCeeeIK//e1v3H777dx5552cf/75bNiwgQsuuIDCwkJuuummEpehrrzyylL3A8jPzycvL4+GDRuSm5tbIoa1a9eyePFidu/eTWJiIjfffDOrV69m7ty5fPLJJxQVFdGlSxe6du1a9Tf0BBexRGBmLwK9gHgz2wTcTyABvGRmvwc2AIMj1b6IlC0uLo4lHy3hg7wPWJa3jCFDhvDwww+Xe0xx/YGGDRuG6g9cemnp8z3S09M59dRTAfjVr35F//79gcANZYsXB9baeueddygoKAgds2vXrmNW/jzefoMGDaJhw4alxjBgwAAaNGhAgwYNOOWUU9iyZQt5eXmhnwMCi8xJBBOBc66spfqyI9WmiISvbt26ZPXM4qJ+F9G5c2eeffZZ6tWrx+HDhwGOqSNQWv2BshxZT6BOnTqh13Xq1AnVBjh8+DAffvhhmR/kxcrbr3HjxmHFUFyT4ERYZNMLurNYxIe+/PxLvvryq9DrVatW0aZNGxISEsjPzwdg7ty5JY4prf5AVfTv358nn3yyRAxwbE2AsvarjPPPP5/XXnuNAwcOsGfPnlAZSr+rsbOGRPwknOme1WnP3j3cdedd7PxxJ/Vj6nPmmWcydepUCgsL+f3vf89DDz10zFTS0uoPVMWkSZMYNWoUSUlJFBUV0aNHD6ZMmXJMTYCy9quM9PR0Bg0aRHJyMm3atCEtLY1mzZqVuf+8efO49dZb2bZtGwMGDCAlJYW33nqrsj9yjaV6BBFW6vTRFR9U+DwH0s/T9NEaQvUITmx79uwhLi6Offv20aNHD6ZOnUqXLl28DqvKVI9ARCRMI0aMoKCggAMHDnDttdfWiiRQVUoEIlIpJ1ptgWL/+Mc/jtk2atSo0P0JxW6//fZaXaf4SEoEIlIptam2wOTJk70OwVOaNSTikRNhfE5ODFX9XVIiEPHAobqH2Pn/dioZSJU559ixYwexsbGVPocuDYl4YG/jvWz5YQvbt233OhRi61X+A0RqhtjYWM4444xKH69EIOIBV8exp8ker8MAILVVqtchiMeUCER8rjruiwhHr1a9otKOVJzGCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnwkoEZtYp0oGIiIg3wu0RTDGz5WY20sxOimhEIiISVWElAufc+cBVQCtgpZn9w8z6VbZRM7vTzP5lZp+Z2YtmpnVwRUQ8EvYYgXPuS+AvwJ+BnsAkM1trZr+tSINmdjpwG5DmnOsE1AWuqMg5RESk+oQ7RpBkZo8BhUAf4GLn3NnB549Vot16QEMzqwc0AjZX4hwiIlINwu0RPAl8DCQ750Y55z4GcM5tJtBLCJtz7jtgIrAB+B7Y6ZxbePR+ZjbCzFaa2cpt27ZVpAkREamAcBPBRcA/nHP7Acysjpk1AnDOPV+RBs2sOXAJ0BY4DWhsZlcfvZ9zbqpzLs05l9ayZcuKNCEiIhUQbiJ4B2h4xOtGwW2V0Rf4xjm3zTl3EHgZOK+S5xIRkSoKNxHEOudCBVaDzxtVss0NQKaZNTIzA7IJjD2IiIgHwk0Ee82sS/ELM+sK7K9Mg865ZcAcAmMOnwZjmFqZc4mISNWFW7z+DmC2mRXP7jkVGFLZRp1z9wP3V/Z4ERGpPmElAufcCjPrACQCBqwNXt8XEZETXLg9AoB0ICF4TKqZ4Zx7LiJRiYhI1ISVCMzseeBXwCrgUHCzA5QIREROcOH2CNKAjs45F8lgREQk+sKdNfQZ8MtIBiIiIt4It0cQDxSY2XLgp+KNzrlBEYlKRESiJtxEMC6SQYiIiHfCnT76npm1Ado7594JrjNUN7KhiYhINIS7DPV/Ebgb+KngptOBVyIVlIiIRE+4g8WjgO7ALggVqTklUkGJiEj0hDtG8JNz7ufAGnEQLCijqaTHsXvRYmI3/uh1GCIi5Qq3R/CemY0lUFWsHzAbeC1yYYmISLSEmwhGA9sIrBZ6I/AmFaxMJiIiNVO4s4YOA9OCDxERqUXCXWvoG0oZE3DOtav2iEREJKoqstZQsVhgMNCi+sMREZFoC2uMwDm344jHd865vwF9IhybiIhEQbiXhroc8bIOgR5Ck4hEJCIiURXupaH/e8TzImA9cHm1RyMiIlEX7qyh3pEOREREvBHupaE/lPd959yj1ROOiIhEW0VmDaUD84OvLwaWABsjEZSIiERPRQrTdHHO7QYws3HAbOfcDZEKTEREoiPcJSZaAz8f8fpnIKGyjZrZSWY2x8zWmlmhmZ1b2XOJiEjVhNsjeB5YbmbzCNxh/BvguSq0+zjwT+fcZWZWH2hUhXOJiEgVhDtr6EEzWwBkBTdd55z7pDINmllToAcwPHjunynZ2xARkSgKt0cAgb/adznnpptZSzNr65z7phJttiOwkul0M0sG8oHbnXN7j9zJzEYAIwBat25diWaCPl9Q+WNrkNgVH7D73ycds71JH83sFZGqCbdU5f3An4ExwU0xwAuVbLMe0AX4X+dcKrCXwDLXJTjnpjrn0pxzaS1btqxkUyIicjzhDhb/BhhE4EMb59xmKr/ExCZgk3NuWfD1HAKJQUREPBBuIvjZOecILkVtZo0r26Bz7t/ARjNLDG7KBgoqez4REamacMcIXjKzp4CTzOy/gOupWpGaW4Gc4Iyhr4HrqnAuERGpgnBnDU0M1ireBSQC9znn3q5so865VZSscSAiIh45biIws7rAW865vkClP/xFRKRmOu4YgXPuELDPzJpFIR4REYmycMcIDgCfmtnbBGcOATjnbotIVCIiEjXhJoI3gg8REallyk0EZtbaObfBOfdstAISEZHoOt4YwSvFT8xsboRjERERDxwvEdgRz9tFMhAREfHG8RKBK+O5iIjUEscbLE42s10EegYNg88JvnbOuaYRjU5ERCKu3ETgnKsbrUBERMQbFalHIMA7BVuO2Ra74gMPIjlx5G7M9ToEESlHuKuPiohILaVEICLic0oEIiI+p0QgIuJzSgQiIj6nRCAi4nNKBCIiPqdEICLic0oEIiI+p0QgIuJzSgQiIj7nWSIws7pm9omZve5VDCIi4m2P4Hag0MP2RUQEjxKBmZ0BDACe9qJ9ERH5D696BH8D7gYOe9S+iIgERb0egZkNBLY65/LNrFc5+40ARgC0bt266g1/vgASf13189QwuxctLnV7kz69oxyJiJyovOgRdAcGmdl6YCbQx8xeOHon59xU51yacy6tZcuW0Y5RRMQ3op4InHNjnHNnOOcSgCuARc65q6Mdh4iIBOg+AhERn/O0ZrFzLhfI9TIGERG/U49ARMTnlAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOeUCEREfE6JQETE56KeCMyslZktNrNCM/uXmd0e7RhEROQ/6nnQZhHwR+fcx2bWBMg3s7edcwUexCIi4ntR7xE45753zn0cfL4bKAROj3YcIiIS4OkYgZklAKnAMi/jEBHxMy8uDQFgZnHAXOAO59yuUr4/AhgB0Lp162pvf/eixWV+r0mf3tXeXnVYvfHHUrcntzopypGIVFzuxtyotNOrVa+otFObeNIjMLMYAkkgxzn3cmn7OOemOufSnHNpLVu2jG6AIiI+4sWsIQP+DhQ65x6NdvsiIlKSFz2C7sA1QB8zWxV8XORBHCIiggdjBM65PMCi3a6IiJROdxaLiPicEoGIiM8pEYiI+JwSgYgJpMaVAAAFRklEQVSIzykRiIj4nBKBiIjPKRGIiPicEoGIiM8pEYiI+JwSgYiIzykRiIj4nGf1CKJl9/J//efF8n/B6V1DL8ta359n55W6xn+06hR8u3dtxfYvZfdtsTvLPSal1Ulat11qpWjVPYiWaPw/VY9ARMTnlAhERHxOiUBExOeUCEREfE6JQETE55QIRER8TolARMTnlAhERHxOiUBExOeUCEREfE6JQETE5zxJBGZ2oZl9bmZfmdloL2IQEZGAqCcCM6sLTAZ+DXQEhppZx2jHISIiAV70CDKAr5xzXzvnfgZmApd4EIeIiOBNIjgd2HjE603BbSIi4gEv6hFYKdvcMTuZjQBGBF/uMbPPK9BGPLC9ErFFmuKquJoam+KquJoaW22Oq004O3mRCDYBrY54fQaw+eidnHNTgamVacDMVjrn0ioXXuQoroqrqbEproqrqbEpLm8uDa0A2ptZWzOrD1wBzPcgDhERwYMegXOuyMxuAd4C6gLPOOf+dZzDREQkQjypWeycexN4M4JNVOqSUhQoroqrqbEproqrqbH5Pi5z7phxWhER8REtMSEi4nO1KhHU1KUrzOwZM9tqZp95HcuRzKyVmS02s0Iz+5eZ3e51TABmFmtmy81sdTCu/+N1TEcys7pm9omZve51LEcys/Vm9qmZrTKzlV7HU8zMTjKzOWa2Nvi7dq7XMQGYWWLwvSp+7DKzO7yOC8DM7gz+7n9mZi+aWWxE26stl4aCS1d8AfQjMEV1BTDUOVfgaWCAmfUA9gDPOec6eR1PMTM7FTjVOfexmTUB8oFLvX7PzMyAxs65PWYWA+QBtzvnPvIyrmJm9gcgDWjqnBvodTzFzGw9kOacq1Fz4s3sWeB959zTwZmCjZxzP3od15GCnx/fAd2cc996HMvpBH7nOzrn9pvZS8CbzrkZkWqzNvUIauzSFc65JcAPXsdxNOfc9865j4PPdwOF1IC7vF3AnuDLmOCjRvzFYmZnAAOAp72O5URgZk2BHsDfAZxzP9e0JBCUDazzOgkcoR7Q0MzqAY0o5V6r6lSbEoGWrqgCM0sAUoFl3kYSELz8sgrYCrztnKsRcQF/A+4GDnsdSCkcsNDM8oN35tcE7YBtwPTg5bSnzayx10GV4grgRa+DAHDOfQdMBDYA3wM7nXMLI9lmbUoEYS1dIccyszhgLnCHc26X1/EAOOcOOedSCNx5nmFmnl9SM7OBwFbnXL7XsZShu3OuC4GVfUcFL0l6rR7QBfhf51wqsBeoMeN3AMHLVYOA2V7HAmBmzQlczWgLnAY0NrOrI9lmbUoEYS1dISUFr8HPBXKccy97Hc/RgpcRcoELPQ4FoDswKHgtfibQx8xe8Dak/3DObQ5+3QrMI3C51GubgE1H9OjmEEgMNcmvgY+dc1u8DiSoL/CNc26bc+4g8DJwXiQbrE2JQEtXVFBwUPbvQKFz7lGv4ylmZi3N7KTg84YE/mOs9TYqcM6Ncc6d4ZxLIPD7tcg5F9G/1MJlZo2DA/4EL730Bzyfpeac+zew0cwSg5uyAc8ncBxlKDXkslDQBiDTzBoF/49mExi/ixhP7iyOhJq8dIWZvQj0AuLNbBNwv3Pu795GBQT+wr0G+DR4PR5gbPDOby+dCjwbnMlRB3jJOVejpmrWQL8A5gU+N6gH/MM5909vQwq5FcgJ/oH2NXCdx/GEmFkjAjMNb/Q6lmLOuWVmNgf4GCgCPiHCdxnXmumjIiJSObXp0pCIiFSCEoGIiM8pEYiI+JwSgYiIzykRiIj4nBKBiIjPKRGIiPicEoGIiM/9f9sLyIjmXKhmAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Below I show hist plot of the mean of different feature resampled over month \n", "data.Global_active_power.resample('M').mean().plot(kind='hist', alpha=0.3, legend=True )\n", "data.Global_reactive_power.resample('M').mean().plot(kind='hist', alpha=0.3, legend=True)\n", "#df.Voltage.resample('M').sum().plot(kind='hist',color='g', legend=True)\n", "data.Global_intensity.resample('M').mean().plot(kind='hist', alpha=0.3, legend=True)\n", "data.Sub_metering_1.resample('M').mean().plot(kind='hist', alpha=0.3, legend=True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD8CAYAAAB6paOMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGCVJREFUeJzt3Xt0VfWd/vH3w0XxgrVKnGkFDLgQb4SLAUEFlUu1iqK/5Q0tg7VTxhnr1HFWR9FRqeNvLf3pjMXWXxVrBRkqrVIRp2XqDWSogAZFpeC0eKPRjsbYoshEQT/zxzlkAhKyE3L2PmE/r7WycvbOPuf7JDnJc/bl7K2IwMzM8qtT1gHMzCxbLgIzs5xzEZiZ5ZyLwMws51wEZmY55yIwM8s5F4GZWc65CMzMcs5FYGaWc12yDpBEjx49orKyMusYZmYdysqVK9+LiIqWlusQRVBZWUlNTU3WMczMOhRJbyZZzpuGzMxyzkVgZpZzLgIzs5zrEPsIdmTz5s3U1tbS0NCQdRQrY926daNnz5507do16yhmZavDFkFtbS3du3ensrISSVnHsTIUEdTX11NbW0ufPn2yjmNWtjrspqGGhgYOPPBAl4A1SxIHHnig1xrNWtBhiwBwCViL/Bwxa1mHLgIzM9t1HXYfwee09ys/X8vZzHLCawS74J133uHCCy+kb9++HHPMMYwYMYKHH36YxYsXM378+J3ed9q0adx2222tGm/ffffdlbjbmD9/PmvWrGmcvv7663niiSfa7fFzQ8ruw6yduAjaKCI466yzGDVqFK+99horV65k7ty51NbWZh0tke2L4MYbb2Ts2LEZJtp1W7ZsyTqCWYfkImijp556ij322INLL720cd4hhxzC5Zdfvs1y77//PmeddRZVVVUMHz6cl156qfFrL774IqNHj6Zfv37cc889AGzcuJExY8YwZMgQBgwYwCOPPJIoz87ud//991NVVcXAgQOZNGkSzzzzDAsWLOA73/kOgwYN4tVXX+Xiiy/moYceYuHChZx33nmN9128eDFnnHEGAI899hgjRoxgyJAhnHvuuWzcuLHZPJWVlVx11VUMGzaMYcOGsW7dOgDefPNNxowZQ1VVFWPGjGH9+vV8+umn9O3bl4jgT3/6E506dWLJkiUAjBw5knXr1vHRRx9xySWXMHToUAYPHtz4/c2cOZNzzz2XM844g6985SuJflZmtp2IKPuPY445Jra3Zs2abWcUtuq330cLpk+fHldcccUOv7Zo0aI4/fTTIyLiW9/6VkybNi0iIp588skYOHBgRETccMMNUVVVFZs2bYq6urro2bNnvPXWW7F58+bYsGFDRETU1dXFoYceGp999llEROyzzz7N5mnufqtXr47DDjss6urqIiKivr4+IiImT54cDz74YOP9t05v3rw5evXqFRs3boyIiEsvvTRmz54ddXV1MXLkyMb5N998c3z3u99tNs8hhxwSN910U0REzJo1q/HnMX78+Jg5c2ZERNx7770xYcKEiIg45ZRTYvXq1fHoo49GdXV13HTTTdHQ0BCVlZURETF16tSYPXt2RET88Y9/jH79+sXGjRvjvvvui4MPPrjx+9qRzz1X2lN7P+/a8TlqBtREgv+xXiNoJ5dddhkDBw5k6NCh28xfunQpkyZNAmD06NHU19ezYcMGACZMmMBee+1Fjx49OPnkk3n22WeJCK655hqqqqoYO3Ysb731Fu+8806L4zd3v6eeeopzzjmHHj16AHDAAQfs9HG6dOnCqaeeyqOPPsqWLVv4xS9+wYQJE1i+fDlr1qzh+OOPZ9CgQcyaNYs339z5iQ0nTpzY+HnZsmUALFu2jAsvvBCASZMmsXTpUqDwyn/JkiUsWbKEqVOnsnTpUp577rnGn+djjz3GzTffzKBBgzjppJNoaGhg/fr1AIwbN67F78vMmrf7HDWUsqOOOop58+Y1Tt9555289957VFdXb7Nc7ODoo63Htm9/jLsk5syZQ11dHStXrqRr165UVlYmekNUc/eLiFYfS3/++edz5513csABBzB06FC6d+9ORDBu3DgeeOCBxI/TdNzmMmydP3LkSO666y7efvttbrzxRm699VYWL17MqFGjgMLPcd68efTv33+b+69YsYJ99tmnVd+fmW1r91kjaO8V7xaMHj2ahoYGfvjDHzbO27Rp0+eWGzVqFHPmzAEK29t79OjBfvvtB8AjjzxCQ0MD9fX1LF68mKFDh7JhwwYOOuggunbtyqJFi1p81b1Vc/cbM2YMP/vZz6ivrwcK+ywAunfvzocffrjDxzrppJN4/vnnueeeezj//PMBGD58OL/+9a8bt/Vv2rSJ3/72tzvN9NOf/rTx84gRIwA47rjjmDt3LlAorxNOOAGAY489lmeeeYZOnTrRrVs3Bg0axN13383IkSMBOOWUU/j+97/fWKwvvPBCop+LmbVs9ymClEli/vz5PP300/Tp04dhw4YxefJkbrnllm2WmzZtGjU1NVRVVXH11Vcza9asxq8NGzaM008/neHDh3Pdddfx5S9/mYsuuoiamhqqq6uZM2cOhx9+eKI8zd3vqKOO4tprr+XEE09k4MCBXHnllQBccMEF3HrrrQwePJhXX311m8fq3Lkz48ePZ+HChY2HwVZUVDBz5kwmTpzYuOP7lVde2Wmmjz/+mGOPPZbp06dz++23A3DHHXdw3333UVVVxezZs5k+fToAe+65J7169WL48OFAYQ3hww8/ZMCAAQBcd911bN68maqqKo4++miuu+66RD8XM2uZdrTpotxUV1fH9lcoW7t2LUcccURGiawlW68qt3XfRJZK+lzJ8nj+DvC3a9mStDIiqltazmsEZmY5553FHczLL7/ceBTSVnvuuScrVqzIJM/ZZ5/N66+/vs28W265hTfeeCOTPGbWeh26CNpyRExHN2DAAFatWpV1jEYPP/xw1hF2qiNs+jTLWsk2DUn6saR3Ja1uMu9WSa9IeknSw5L2b+vjd+vWjfr6ev+hW7MiChem6datW9ZRzMpaKdcIZgI/AO5vMu9xYGpEbJF0CzAVuKotD96zZ09qa2upq6vb5aC2+9p6qUoza17JiiAilkiq3G7eY00mlwPntPXxu3bt6ssPmpm1gyyPGroEWJjh+GZmRkZFIOlaYAswZyfLTJFUI6nGm3/MzEon9SKQNBkYD1wUO9nTGxEzIqI6IqorKirSC2hmljOpHj4q6VQKO4dPjIjPn5jHzMxSV8rDRx8AlgH9JdVK+gaFo4i6A49LWiXprlKNb2ZmyZTyqKGJO5h9b6nGMzOztvG5hszMcs5FYGaWcy4CM7OccxGYmeWci8DMLOdcBGZmOeciMDPLOReBmVnOuQjMzHLORWBmlnMuAjOznHMRmJnlnIvAzCznXARmZjnnIjAzyzkXgZlZzrkIzMxyzkVgZpZzLgIzs5xzEZiZ5ZyLwMws51wEZmY55yIwM8u5khWBpB9LelfS6ibzDpD0uKTfFT9/sVTjm5lZMqVcI5gJnLrdvKuBJyOiH/BkcdrMzDJUsiKIiCXA+9vNngDMKt6eBZxVqvHNzCyZtPcR/FlE/AGg+PmglMc3M7PtdMk6QHMkTQGmAPTu3TvjNFb2pKwTpC+r7zkim3GtZNJeI3hH0pcAip/fbW7BiJgREdURUV1RUZFaQDOzvEm7CBYAk4u3JwOPpDy+mZltp5SHjz4ALAP6S6qV9A3gZmCcpN8B44rTZmaWoZLtI4iIic18aUypxjQzs9bzO4vNzHLORWBmlnMuAjOznHMRmJnlnIvAzCznXARmZjnnIjAzyzkXgZlZzrkIzMxyzkVgZpZzLgIzs5xzEZiZ5ZyLwMws51wEZmY55yIwM8s5F4GZWc65CMzMcs5FYGaWcy4CM7OccxGYmeWci8DMLOcSFYGko0sdxMzMspF0jeAuSc9K+htJ+5c0kZmZpSpREUTECcBFQC+gRtJPJI1r66CS/k7SbyStlvSApG5tfSwzM9s1ifcRRMTvgH8ErgJOBO6Q9Iqk/9OaASUdDPwtUB0RRwOdgQta8xhmZtZ+ku4jqJJ0O7AWGA2cERFHFG/f3oZxuwB7SeoC7A283YbHMDOzdpB0jeAHwPPAwIi4LCKeB4iItymsJSQWEW8BtwHrgT8AGyLise2XkzRFUo2kmrq6utYMYWZmrZC0CE4DfhIR/w0gqZOkvQEiYnZrBpT0RWAC0Af4MrCPpK9tv1xEzIiI6oiorqioaM0QZmbWCkmL4AlgrybTexfntcVY4PWIqIuIzcDPgePa+FhmZraLkhZBt4jYuHWieHvvNo65HhguaW9JAsZQ2PdgZmYZSFoEH0kasnVC0jHAf7dlwIhYATxEYZ/Dy8UMM9ryWGZmtuu6JFzuCuBBSVuP7vkScH5bB42IG4Ab2np/MzNrP4mKICKek3Q40B8Q8Epx+76ZmXVwSdcIAIYClcX7DJZERNxfklRmZpaaREUgaTZwKLAK+LQ4OwAXgZlZB5d0jaAaODIiopRhzMwsfUmPGloN/Hkpg5iZWTaSrhH0ANZIehb4eOvMiDizJKnMzCw1SYtgWilDmJlZdpIePvq0pEOAfhHxRPE8Q51LG83MzNKQ9DTU36TwbuC7i7MOBuaXKpSZmaUn6c7iy4DjgQ+g8SI1B5UqlJmZpSdpEXwcEZ9snSheUMaHkpqZ7QaSFsHTkq6hcFWxccCDwKOli2VmZmlJWgRXA3UUzhb6V8AvaeWVyczMrDwlPWroM+Ce4oeZme1Gkp5r6HV2sE8gIvq2eyIzM0tVa841tFU34FzggPaPY2ZmaUu0jyAi6pt8vBUR3wNGlzibmZmlIOmmoSFNJjtRWEPoXpJEZmaWqqSbhv65ye0twBvAee2exszMUpf0qKGTSx3EzMyykXTT0JU7+3pE/Ev7xDEzs7S15qihocCC4vQZwBLg96UIZWZm6WnNhWmGRMSHAJKmAQ9GxF+WKpiZmaUj6SkmegOfNJn+BKhs66CS9pf0kKRXJK2VNKKtj2VmZrsm6RrBbOBZSQ9TeIfx2cD9uzDudODfI+IcSXsAe+/CY5mZ2S5IetTQ/5W0EBhZnPX1iHihLQNK2g8YBVxcfOxP2HZtw8zMUpR00xAUXrV/EBHTgVpJfdo4Zl8KZzK9T9ILkn4kaZ/tF5I0RVKNpJq6uro2DmVmZi1JeqnKG4CrgKnFWV2Bf23jmF2AIcAPI2Iw8BGF01xvIyJmRER1RFRXVFS0cSgzM2tJ0jWCs4EzKfzTJiLepu2nmKgFaiNiRXH6IQrFYGZmGUhaBJ9ERFA8FfWONuUkFRH/BfxeUv/irDHAmrY+npmZ7ZqkRw39TNLdwP6Svglcwq5dpOZyYE7xiKHXgK/vwmOZmdkuSHrU0G3FaxV/APQHro+Ix9s6aESsYttrHJiZWUZaLAJJnYFfRcRYoM3//M3MrDy1uI8gIj4FNkn6Qgp5zMwsZUn3ETQAL0t6nOKRQwAR8bclSWVmZqlJWgS/KH6YmdluZqdFIKl3RKyPiFlpBTIzs3S1tI9g/tYbkuaVOIuZmWWgpSJQk9t9SxnEzMyy0VIRRDO3zcxsN9HSzuKBkj6gsGawV/E2xemIiP1Kms7MzEpup0UQEZ3TCmJmZtlIeviodSRSy8uYmRW15sI0Zma2G3IRmJnlnIvAzCznXARmZjnnIjAzyzkXgZlZzrkIzMxyzkVgZpZzLgIzs5xzEZiZ5ZyLwMws5zIrAkmdJb0g6d+yymBmZtmuEXwbWJvh+GZmRkZFIKkncDrwoyzGNzOz/5XVGsH3gH8APstofDMzK0q9CCSNB96NiJUtLDdFUo2kmrq6upTSmZnlTxZrBMcDZ0p6A5gLjJb0r9svFBEzIqI6IqorKirSzmhmlhupF0FETI2InhFRCVwAPBURX0s7h5mZFfh9BGZmOZfpNYsjYjGwOMsMZmZ55zUCM7OccxGYmeWci8DMLOdcBGZmOeciMDPLOReBmVnOuQjMzHLORWBmlnMuAjOznHMRmJnlnIvAzCznXARmZjnnIjAzyzkXgZlZzrkIzMxyzkVgZpZzLgIzs5xzEZiZ5ZyLwMws51wEZmY55yIwM8s5F4GZWc65CMzMci71IpDUS9IiSWsl/UbSt9POYGZm/6tLBmNuAf4+Ip6X1B1YKenxiFiTQRYzs9xLfY0gIv4QEc8Xb38IrAUOTjuHmZkVZLqPQFIlMBhYkWUOM7M8y2LTEACS9gXmAVdExAc7+PoUYApA7969U05nZs2Sshs7Iruxd2OZrBFI6kqhBOZExM93tExEzIiI6oiorqioSDegmVmOZHHUkIB7gbUR8S9pj29mZtvKYo3geGASMFrSquLHaRnkMDMzMthHEBFLgQw3MpqZWVN+Z7GZWc65CMzMcs5FYGaWcy4CM7OccxGYmeWci8DMLOdcBGZmOeciMDPLOReBmVnOuQjMzHLORWBmlnOZXY8gNT53utnuI8u/56yk8H/EawRmZjnnIjAzyzkXgZlZzrkIzMxyzkVgZpZzLgIzs5xzEZiZ5ZyLwMws51wEZmY55yIwM8s5F4GZWc5lUgSSTpX0n5LWSbo6iwxmZlaQehFI6gzcCXwVOBKYKOnItHOYmVlBFmsEw4B1EfFaRHwCzAUmZJDDzMzIpggOBn7fZLq2OM/MzDKQxfUIdnRC8c+dcFvSFGBKcXKjpHrgvVIGa4Me7CxTdudO33mubJRjJijPXOWYCcozVzlmgvbMtWv/Rw5JslAWRVAL9Goy3RN4e/uFImIGMGPrtKSaiKgufbzkyjETlGeucswE5ZmrHDNBeeYqx0xQvrmak8WmoeeAfpL6SNoDuABYkEEOMzMjgzWCiNgi6VvAr4DOwI8j4jdp5zAzs4JMrlkcEb8EftnKu81oeZHUlWMmKM9c5ZgJyjNXOWaC8sxVjpmgfHPtkMIXWDczyzWfYsLMLOfKrghaOv2EpCslrZH0kqQnJSU6PKqUmZosd46kkFTyowWSZJJ0XvFn9RtJPyl1piS5JPWWtEjSC8Xf4WkpZPqxpHclrW7m65J0RzHzS5KGlEGmi4pZXpL0jKSBpc6UJFeT5YZK+lTSOeWQSdJJklYVn+tPlzpTklySviDpUUkvFnN9PY1cbRIRZfNBYefxq0BfYA/gReDI7ZY5Gdi7ePuvgZ9mnam4XHdgCbAcqM46E9APeAH4YnH6oDL5/c0A/rp4+0jgjRRyjQKGAKub+fppwEIK73EZDqwog0zHNfndfTWNTElyNfk9P0VhP985WWcC9gfWAL2L0yV/rifMdQ1wS/F2BfA+sEca2Vr7UW5rBC2efiIiFkXEpuLkcgrvQ8g0U9E/Af8PaChxnqSZvgncGRF/BIiId8skVwD7FW9/gR28h6S9RcQSCn+EzZkA3B8Fy4H9JX0py0wR8czW3x3pPM8T5Sq6HJgHpPGcSpLpQuDnEbG+uHy55AqguyQB+xaX3ZJGttYqtyJo7eknvkHhlVwptZhJ0mCgV0T8W4mzJM4EHAYcJunXkpZLOrVMck0DviaplsIrystTyNWScj/tSRrP80QkHQycDdyVdZYmDgO+KGmxpJWS/iLrQEU/AI6g8GLnZeDbEfFZtpF2LJPDR3ci0eknACR9DagGTixpohYySeoE3A5cXOIcTSX5OXWhsHnoJAqvJv9D0tER8aeMc00EZkbEP0saAcwu5sryDyTx8y5tkk6mUAQnZJ2l6HvAVRHxqbI7hcr2ugDHAGOAvYBlkpZHxG+zjcUpwCpgNHAo8Lik/4iID7KN9XnlVgSJTj8haSxwLXBiRHyccabuwNHA4uIfxp8DCySdGRE1GWXauszyiNgMvC7pPykUw3MlypQ01zeAUwEiYpmkbhTOy5LK6nwzEj3v0iapCvgR8NWIqM86T1E1MLf4XO8BnCZpS0TMzzBTLfBeRHwEfCRpCTAQyLoIvg7cHIWdBOskvQ4cDjybbazPK7dNQy2efqK4GeZu4MyUtgXuNFNEbIiIHhFRGRGVFLbnlrIEWsxUNJ/CjnUk9aCw+vxaCTMlzbWewis3JB0BdAPqSpyrJQuAvygePTQc2BARf8gykKTewM+BSWXwyrZRRPRp8lx/CPibjEsA4BFgpKQukvYGjgXWZpwJtn2u/xnQn9L/DbZJWa0RRDOnn5B0I1ATEQuAWynseHmw+KpkfUScmXGmVCXM9CvgK5LWAJ8C3yn1q8qEuf4euEfS31HY/HJx8RVTyUh6gMImsh7FfRM3AF2Lme+isK/iNGAdsInCK7mSSpDpeuBA4P8Xn+dbIoWTmCXIlbqWMkXEWkn/DrwEfAb8KCJ2evhrGrkoHEAyU9LLFDY/XhUR5XimVL+z2Mws78pt05CZmaXMRWBmlnMuAjOznHMRmJnlnIvAzCznXARmZjnnIjAzyzkXgZlZzv0PDiDh0vkaqsgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Below I show hist plot of the mean of different feature resampled over month \n", "data.Global_active_power.resample('M').mean().plot(kind='hist', color='r', legend=True )\n", "#from pyqt_fit import kde\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison of the mean of different features resampled over day" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n", "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+YlXWd//Hne8ZDDKSOGJr8Wvx1oSEwJgo2riItqamoqKFCSe7i1lX+iCIxKSDXdGOX3Da7TNN0NzSU6PgzDTUyCVF0sIGUzGKRo99AkUJFHeH9/eOcg8MwwDlnzv3zvB7XNRdz7nPPfX9uHM+Lz+f+3J+3uTsiIiJxUBd1A0RERIoUSiIiEhsKJRERiQ2FkoiIxIZCSUREYkOhJCIisaFQEhGR2FAoiYhIbCiUREQkNvaIugFl0NITIpJ0FnUD4k49JRERiY0k9ZSq5o6lazrdfsGIASG3RERE2lNPSUREYkOhJCIisaFQEhGR2FAoiYhIbCiUREQkNhRKIiISGwolERGJDYWSiIjEhkJJRERiQ6EkIiKxoVASEZHYUCiJiEhsKJRERCQ2FEoiIhIbCiUREYkNhZKIiMSGQklERGJDoSQiIrGhUBIRkdhQKImISGwolEREJDYUSiIiEht7RN2AoN2xdE3UTRARkRKppyQiIrGhUBIRkdhQKImISGwolEREJDYUSiIiEhsKJRERiQ2FkoiIxIZCSUREYkOhJCIisZH6FR3CtLPVIy4YMSDkloiIJJN6SiIiEhvqKYVAPSgRkdKopyQiIrGhUBIRkdjQ8F07nQ2zaYhNRCQ86imJiEhsKJRERCQ2FEoiIhIbCiUREYkNTXSIkCZWiIhsT6FUoZ09ECsiIpVTKO2GwkdEJDwKpZjRkkQiUssUSglRTo9NASYiSaXZdyIiEhvqKaWQelUiklQKpRoX9kQOhaCI7Iq5e9RtKImZPQR8pMwf+wjwWgDNiZNauEbQdaZJLVwjdH6dr7n7yVE0JikSE0qVMLNl7j486nYEqRauEXSdaVIL1wi1c53VpokOIiISGwolERGJjbSH0k1RNyAEtXCNoOtMk1q4Rqid66yqVN9TEhGRZEl7T0lERBJEoSQiIrGhUBIRkdhQKImISGwolEREJDYSE0onn3yyA/rSl770leSvkqT0864kiQml116rhaWyRERq+/MuMaEkIiLpp1ASEZHYUCiJiEhsJLrIX1tbG2vXruWdd96JuikSI927d6dfv35kMpmomyIiZUp0KK1du5Y999yTgQMHYmZRN0diwN15/fXXWbt2LQceeGDUzRGRMiV6+O6dd95h3333VSDJNmbGvvvuq96zSEIlOpQABZLsQL8TIsmV+FASEZH0UChJyS666CL2228/jjjiiMja4O5ceumlHHLIIQwdOpRnn302sraISPUplGLo/fffD+S4W7Zs6dLPT5o0iYceeqhKranML3/5S1588UVefPFFbrrpJr74xS9G2h4RqS6FUhesXr2aww47jAsvvJChQ4dyzjnn8PbbbwPwzDPPcMIJJ3DUUUdx0kkn8eqrrwJw8803c/TRRzNs2DDOPvvsbftPmjSJKVOmcOKJJ3LFFVfwm9/8hqamJpqamjjyyCPZtGkT7s7UqVM54ogjGDJkCPPmzQNg0aJFjBo1inPOOYfDDjuMCRMmUKwoPHDgQL797W9z3HHHcffdd3fpeo8//nh69eq1w/Ybb7yRG2+8cYftt912G2eccQYnn3wygwYNYtasWV06P8A999zD5z73OcyMkSNHsnHjxm1/tyJBy7bkaL7uMQ6c9gDN1z1GtiUXdZNSJ9FTwuNg1apV3HLLLTQ3N3PRRRfxwx/+kMsuu4xLLrmEe+65h969ezNv3jyuuuoqbr31VsaNG8fkyZMBmD59OrfccguXXHIJAH/84x955JFHqK+v5/TTT+eGG26gubmZN998k+7du7NgwQKWL1/Oc889x2uvvcbRRx/N8ccfD0BLSwsrV66kT58+NDc3s3jxYo477jgg/9zOE088sUPb586dy+zZs3fYfsghhzB//vyS/w6+8IUv7PS9p556ihUrVtCjRw+OPvpoTj31VIYPH77dPuPHj2fVqlU7/OyUKVP43Oc+t922XC5H//79t73u168fuVyOAw44oOT2ilQi25LjygWtbG7LjzjkNm7mygWtAJx5ZN8om5YqCqUu6t+/P83NzQBMnDiR73//+5x88smsWLGCMWPGAPlhs+KH5ooVK5g+fTobN27kzTff5KSTTtp2rHPPPZf6+noAmpubmTJlChMmTGDcuHH069ePJ554gvPPP5/6+nr2339/TjjhBJ5++mn22msvjjnmGPr16wdAU1MTq1ev3hZK48eP77TtEyZMYMKECcH8xRSMGTOGfffdF4Bx48bxxBNP7BBKxR5fKYo9wPY0207CMPvhVdsCqWhz2xZmP7xKoVRFCqUu6viBaGa4O4MHD2bJkiU77D9p0iSy2SzDhg3jtttuY9GiRdve69mz57bvp02bxqmnnsqDDz7IyJEjeeSRRzr9QC760Ic+tO37+vr67e5LtT9ue9XqKe1KZ38/HZXTU+rXrx8vv/zyttdr166lT58+VWmryK68snFzWdulMgqlLlqzZg1Llizh2GOP5c477+S4445j0KBBrF+/ftv2trY2/vjHPzJ48GA2bdrEAQccQFtbG3PnzqVv387/hfXSSy8xZMgQhgwZwpIlS3jhhRc4/vjj+dGPfsSFF17Ihg0bePzxx5k9ezYvvPBCRW2vVk/pBz/4AQBf/vKXd3hv4cKFbNiwgYaGBrLZLLfeeusO+5TTUxo7diw/+MEPOO+881i6dCl77723hu4kFH0aG8h1EkB9GhsiaE16aaJDFx1++OHcfvvtDB06lA0bNvDFL36Rbt26MX/+fK644gqGDRtGU1MTv/vd7wC4+uqrGTFiBGPGjOGwww7b6XGvv/56jjjiCIYNG0ZDQwOnnHIKZ511FkOHDmXYsGGMHj2a7373u3z0ox8N61I5//zzOfbYY1m1ahX9+vXjlltuAeCFF17YNkTX0XHHHcdnP/tZmpqaOPvss3cYuivXpz/9aQ466CAOOeQQJk+ezA9/+MMuHU+kVFNPGkRDpn67bQ2ZeqaeNCiiFqWT7WpIKE6GDx/uy5Yt227b888/z+GHHx5Ri/Kz70477TRWrFgRWRvi4LTTTmPBggV069Ztu+233XYby5Yt29aTClPUvxuSTtmWHLMfXsUrGzfTp7GBqScNKvd+Ukk3QDv7vEuBkq5dw3fSZffff3/UTRAJxZlH9tWkhoAplLpg4MCBNd9L2pVJkyYxadKkqJshIgmS+HtKSRl+lPDod0IkuRIdSt27d+f111/Xh5BsU6yn1L1796ibIiIVSPTwXb9+/Vi7di3r16+PuikSI8XKsyK7U4WJC1JliQ6lTCaj6qIiUpFsS46p85+jbUt+pCW3cTNT5z8HaNmgKCV6+E5EpFKz7lu5LZCK2rY4s+5bGVGLBBRKIlKj3ni7raztEo5ED9+JiJSreB9J4kmhJCI1o2P5ic40NmRCbJF0pOE7EakZnZWfaC9TZ8wcOzjEFklH6imJSM3YVZmJvpoSHgsKJRFJnZ09f7Sz8hN9GxtYPG10BC2VjjR8JyKpUrxvlNu4GeeDsuXZlpzKTySAQklEUmV3ZcuvHTeEvo0NGPke0rXjhmjILkY0fCciqdLZ8Fz77So/EW/qKYlIqtRb57XkdrZd4kU9JRFJheLkhi07qRqws+0SLwolEUm8Uh6K7dvYEGKLpFIKJRFJpPbTvuvMdtkTMtAMu4RQKIlI4nQsO7G7oTlH5SiSItBQMrNbgdOAde5+RGFbL2AeMBBYDXzG3d8Ish0ikg7F3tHOZtjtjIbukiPo2Xe3ASd32DYNeNTdDwUeLbwWEdml9g/FlkMPxyZLoKHk7o8DGzpsPgO4vfD97cCZQbZBRNJhd4uptlec/q2HY5MnintK+7v7qwDu/qqZ7bezHc3sYuBigAEDBoTUPBGJo10tplrUkKnj+atPCaE11afPu7xYPzzr7je5+3B3H967d++omyMiEepTwn2h7h3WtUsSfd7lRRFKfzWzAwAKf66LoA0ikjCdLaba0UaVMk+8KELpXuDCwvcXAvdE0AYRSZjiYqq7Wi6olN6UxFvQU8LvBEYBHzGztcAM4DrgLjP7Z2ANcG6QbRCR5Mm25Jgybzlb2207dL+efOnEQ9mrYQ/e6KRHlKk3zbJLgUBDyd3P38lbnwzyvCKSXNmWHJfPW77D9hfXvdXpdoB9emSYcfpgzbJLAa3oICKxMvvhVWXtv0+PDC3f+lRArZGwxXr2nYjUnlKmfrfX2VCeJJd6SiISqWxLjln3rdwWLmbkF6uTmqRQEpHIdFxYFaDcskeNDZkqt0qipOE7EYnMVb9o3S6QKjFz7OAqtUbiQKEkIpGYnm3lrfdKW8tuZ7rVm2bcpYxCSUQicefSl7v083UG3z1nWJVaI3Ghe0oiEondFebr6ND9evL2e1t5ZeNm+jQ2MPWkQeolpZBCSUQiUb+bEuYdvf3eVhZPGx1giyQOFEoiEopi1dhiT+eg3j14cd1bJf98ucX9JJkUSiISuGLV2GKRvkoCZlcLsUp6KJREJFDZlhxT7lrO1i4+EFvuPShJJs2+E5HAFB+O7WogQb60uaSfekoiEoidrfZdiYZMvcpS1AiFkohURfuJDI09MlVZKNVA079rjEJJRLqs40SGagTSofv1ZOGUUV0+jiSL7imJSJfNfnjVtkCqBgVS7VJPSUS6rNwaSB311RCdFCiURKTLunIPaZ8eGa3UINto+E5EKpZtydE061cVB1Km3phxukpPyAfUUxKRimRbcky9+znaKnwISUN20hmFkoiUbXq2lZ8+uaain20+uBdzJx9b5RZJWiiURKQsE25ewuKXNlT0swok2R2FkoiUbHq2teJAun58k4bqZLcUSiKyW9OzrcxduoZK10RVIEmpFEoisktdGa4z4HsKJCmDQklEdirbkqs4kAD+ct2pVWyN1AKFkohsJ9uSY+a9K9m4uevr14mUS6EkItt0Zap3R6p/JJXQig4iAuR7SNUKJED1j6QiCiURAeCrd1WnIF+RJjdIJRRKIsL0bCtbqlCyvEhDd1Ip3VMSqXFdmfLdmUy9aehOKqZQEqlhXZ3y3dE+PTLMOH2whu6kYgolkRqTbckx676VVSlZDgoiqS6FkkgNybbkuHxedSc0tHzrU1U9ntQ2TXQQqSFXLvh9VY/Xs1t9VY8nolASqSGb27ZW7Vj1dcY1Zw2p2vFEQMN3IjVjera1y8cwwFHVWAmOQkkk5bItOb5293O8X2HZ8va04rcETaEkkmLVnNjQkKlTIEngFEoiKVXNxVUBrh03tGrHEtmZyELJzL4C/Av5IepW4PPu/k5U7RFJg2xLjtkPryK3cXPVjtnYkGHmWD2HJOGIJJTMrC9wKfAxd99sZncB5wG3RdEekTQYM2cRL657q6rHXK0ifRKyKKeE7wE0mNkeQA/glQjbIpJoE25eUvVAEolCJKHk7jngP4A1wKvA39z9Vx33M7OLzWyZmS1bv3592M0USYxqrl8n0dDnXV4koWRm+wBnAAcCfYCeZjax437ufpO7D3f34b179w67mSKxlm3J0XzdYwyc9kAgx9+nRyaQ40rn9HmXF9Xw3T8Bf3H39e7eBiwAPhFRW0QSJ9uS48oFrVWd0NDRjNMHB3ZskZ2JKpTWACPNrIeZGfBJ4PmI2iKSOLMfXsXmti2BHb+HnkmSiER1T2kpMB94lvx08DrgpijaIpJEQfaQMnXGd/RMkkQksueU3H0GMCOq84skURDTviH/LNLfNrfRR2vaScS0ooNIQoy4ZiF/3fReIMdePkM1kSQeVLpCJAGyLbnAAqlvY0MgxxWphHpKIjFUXC7olY2b6dPYwFvvvh/IeRoy9Uw9aVAgxxaphEJJJGaK072Ls+uCmtSgmkgSRwolkZiZdd/KQKd71xnM+YzqIkk8KZREYiTbkuONt9sCO756RxJ3CiWRGJn98KpAj7942uhAjy/SVSXNvjOzejN7JOjGiNS6VwJ8KLaxQWvZSfyVFEruvgV428z2Drg9IjWteya4pzRmjtVadhJ/5QzfvQO0mtlCYNsj5e5+adVbJVKDpmdb2dy2NZBjXz9eExskGcoJpQcKXyJSZdmWHD99ck1gx1cgSVKUHErufruZNQAD3D3Yu7EiNSDbkmPWfSsDnW0HWrFBkqXkAWwzOx1YDjxUeN1kZvcG1TCRNMu25Pjq3c8FHkiZOtOKDZIo5dxVnQkcA2wEcPfl5CvHikiZZt23ki1bPdBzNDZkmH3uMA3dSaKUc0/pfXf/W74m3zbB/l8lkkJBPyC7+rpTAzu2SNDKCaUVZnYBUG9mhwKXAr8Lplki6ZRtyXH5vOWBHb9HgFPKRcJQzm/wJcBg4F3gTuBvwOVBNEokrYIMpDpDFWMl8crpKX3U3a8CrgqqMSJp074Ehe1+94oZWmRV0qGcULrNzPoCTwOPA79199ZgmiWSfB1LUAR1A7YOmKOHYyUlynlO6Xgz6wYcDYwCHjCzD7t7r6AaJ5Jksx9eFUgJijqDvbpn+NvmNvpo1W9JmZJDycyOA/6x8NUI3A/8NqB2iSReEMX5GjL1XDtuiEJIUquc4bvfAMuAa4EH3f29YJokknzTs8GMbCuQJO3KCaV9gWbgeOBSM9sKLHH3bwbSMpGECmodu4kjByiQJPXKuae00cz+DPQH+gGfAFSgRaSDbyz4fdWP2XxwL/7tzCFVP65I3JRzT+klYBXwBHAj8HkN4Yl8INuS46pftPJ2lctP7FFnzJ18bFWPKRJX5QzfHeruwRR7EUm44gKrQaxn9x/nDqv6MUXiqpxQ6mNm/03+vpKT7zFd5u5rA2mZSAIUH44NYqYdQPd6030kqSnlLDP0E+BeoA/QF7ivsE2kJhUfjg0qkABeuObTgR1bJI7KCaXe7v4Td3+/8HUb0DugdonEXlAPxwIcul9PrfYtNamc4bvXzGwi+cVYAc4HXq9+k0SSIYge0v57dmPpVWOqflyRpCgnlC4CfgB8r/B6cWGbSM2Ynm3lzqUvs8WDWclOgSS1rpznlNYAYwNsi0isTc+2BvJQbFFdkMuIiyREOc8pHQT8FzCS/Oy7JcBX3P3PAbVNJBaCnmFXdMGIAYEeXyQJypnocAdwF3AA+Rl4d/PB/SWRVCpWig06kHp2q9eKDSKUF0rm7v/bbvbdTwmuRIxILARZKba9a85SIIlAeRMdfm1m04CfkQ+j8eRrKvUCcPcNAbRPJDITbl4Synl6ZOr0gKxIQTmhNL7w57922H4R+ZA6qCotEomBbEuOxS8F/++sTL3xnXFDAz+PSFKUM/vuwF29b2Zj3H1h15skEr1Z960M7NjFSXaqGiuyo3J6Srvz74BCSRIv25LjjbfbAjv+X7RSg8hOlTPRYXf0lIWkwpS7gpvcMHGkpn2L7Eo1Q0kz8STxsi05Aqg+AeTXs9O0b5Fdq2YoiSTeVb9oDezYC6eMCuzYImlRzVBaXc7OZtZoZvPN7AUze97MVFpTIjM928rAaQ/w1nvBrPrdt7EhkOOKpE3JoWRmPczsm2Z2c+H1oWZ2WvF9dx9X5rn/C3jI3Q8DhgHPl/nzIlUR9Jp2AFNPGhTo8UXSopzZdz8BngGKPZq15Jcaur/ck5rZXsDxwCQAd38PeK/c44h0RVhr2jUf3EvTvkVKVM7w3cHu/l2gDcDdN1P5jLuDgPXAT8ysxcx+bGY9O+5kZheb2TIzW7Z+/foKTyWyozCqxtabMXHkAOZO1si07J4+7/LK6Sm9Z2YNFGbZmdnBwLtdOO/HgUvcfamZ/RcwDfhm+53c/SbgJoDhw4drdp9UTZBVY1UxViqhz7u8cnpKM4GHgP5mNhd4FPh6heddC6x196WF1/PJh5RIKIIeshORypSzzNCvzOwZ8vWUDLjM3V+r5KTu/v/M7GUzG+Tuq4BPAn+o5Fgi5cq25AI7tmbZiXRNOUX+7iVfP+led3+rCue+BJhrZt2APwOfr8IxRXYrqHIUmXrTLDuRLirnntJ/kl8p/DozewqYB9zv7u9UcmJ3Xw4Mr+RnRcoVRinz2ecM0yw7kS4qZ/juN8BvzKweGA1MBm4F9gqobSJVEXQgNWTquXbcEAWSSBWUtUp4Yfbd6eR7TB8Hbg+iUSLVFFQgGSo/IVJt5dxTmgeMID8D7wZgkbtvDaphIl2VbckFWhdJJShEqq/cFR0ucPdgHu4QqaJsS46p85+jbUvNPu4hkki7DSUzG+3ujwE9gDPMtl/Ewd0XBNQ2kYpkW3J89a7n2OLBBZKmfosEo5Se0gnAY+TvJXXkgEJJYiPbkmPq3cEGUkOmXlO/RQKy21By9xmFb7/t7n9p/56ZHRhIq0QqNPPelbQFVaUPaGzIMHPsYE1sEAlIOfeUfs6OSwHNB46qXnNEKjfh5iVs3NwWyLF7ZOr4zrihCiORgJVyT+kwYDCwt5m1r5m0F9A9qIaJlGPojIf4+7vBzME5dL+eqhorEpJSekqDgNOARra/r7SJ/AO0IpEacc3CwAJp4sgB/NuZQwI5tojsqJR7SvcA95jZse6+JIQ2iZQk25Ljql+0BlrCXIEkEq5ySld8wcwaiy/MbB8zuzWANonsVnGWXVCBBCphLhKFciY6DHX3jcUX7v6GmR0ZQJtEdmvKvOUEuZxIt3rTpAaRCJQTSnVmto+7vwFgZr3K/HmRLhszZxEvrqtG5ZRd++45wwI/h4jsqNzSFb8zs/mF1+cC11S/SSKdCyuQmg/upV6SSETKKV3xP4XKsyeSXyB5nLurWqyEJoxAAlj9ukqli0SlrOE3d19pZuspPJ9kZgPcPbhCNSIFY+YsCu1cr2xUKEm0Nrz1XtRNiEzJs+/MbKyZvQj8BfgNsBr4ZUDtEtlmws1LQuslQb5GkohEo5wp4VcDI4E/uvuBwCeBxYG0SqQg25Jj8UsbQjufFlsViVY5odTm7q+Tn4VX5+6/BpoCapcI2ZYcl89bHvh5isVY+jY2qKy5SMTKuae00cw+DDwOzDWzdcD7wTRLal3QgdSQqeOdtq0qZy4SM+WE0hnAZuArwARgb+DbQTRKJMhAun58k0JIJKbKmRJevNO8Fbi94/tmtsTdj61Ww6Q2Tc+2cufSlwM9hwJJJL6quSKDylhIl0zPtvLTJ4N9wkBlzEXirZyJDrsTXLlPqQlBBxJokVWRuKtmKIlUJNuSY+C0BwI/T2NDRkN3IjFXzVCy3e8isr1sS44pdwU/7bshU8/MsYMDP4+IdE017yl9torHkhrxtbufY2vAA799Ne1bJDF2G0pmtonO7xcZ4O6+F/lvVlS5bZJyh131IO8HmEgqZS6SPKWUQ98zjIZI7SgO2QXZQ1IgiSRT2cN3ZrYf7aZ/a5VwKUcY074BBZJIQmmVcAlNWIGkZ5FEkkurhEsosi25UAJJq3yLJJtWCZdQTL07uGnf9ZZ/GkGrfIskXyWrhP8WrRIuZRgzZxFtW4M5tgEvXfvpYA4uIqErp6dUXCX8cuAh4CXg9CAaJekxPdsaaNVYVYkVSZeyVgk3s48CxwAbgIcLw3kiOxXkfSTdPxJJn3Jm3/0L8BQwDjgHeNLMLgqqYZJ82ZZcYMc2Q/ePRFKonHtKU4Eji70jM9sX+B1waxANk+QaOuMh/v7ulmBP4qqLJJJG5YTSWmBTu9ebgGCrsUniHHLlA7wfQhET3UsSSadS1r6bUvg2Byw1s3vIr4V3BvnhPBEAJty8JJRA0r0kkfQqpadUXPvupcJX0T3Vb44kVbYlx+KXNoRyLt1LEkmvUhZkndX+tZntmd/sb3b15GZWDywDcu5+WlePJ9G5fF7wNZEg/4CsAkkkvcqZfXeEmbUAK4CVZvaMmXW1atplwPNdPIZELIyqsQCZOtOwnUjKlfPw7E3AFHf/B3f/B+CrwM2VntjM+gGnAj+u9BgSvbACqbEhw+xzh6mXJJJy5cy+61lY7w4Ad19kZj27cO7rga/zwT2rHZjZxcDFAAMGDOjCqaTaJty8JJR7SJl6Y/Y5CiNJv/afdx/5aO3+vpfTU/qzmX3TzAYWvqaTL2NRNjM7DVjn7s/saj93v8ndh7v78N69e1dyKglAWIEEKJCkZrT/vNuzsVfUzYlMOaF0EdAbWAD8ovD95ys8bzMw1sxWAz8DRpvZTys8loQsrECyUM4iInFScii5+xvufqm7f9zdj3T3y9z9jUpO6u5Xuns/dx8InAc85u4TKzmWhCfbkgvtHhLkH4ab/fCq0M4nItEr5eHZ+8h/PnTK3cdWtUUSS9mWXGjTvtt7ZePm0M8pItEpZaLDf3SyrRhSXR5hcfdFwKKuHkeC9dW7wg8k0HJCUrvuWLqGC0bU3gSvUkKpEejn7jcAmNlT5O8nOXBFgG2TmJiebWVLCMsHdaTlhERqTyn3lL4O3NvudTdgODAK+EIAbZIYybbkAq2J1FFjQwZDpc1FalUpPaVu7t5+NfAnCuUrXu/ic0qSAGEuHzT1pEEKIZEaV0oo7dP+hbt/ud1LPTyUYhNuXhL4Oa4f36QgEpFtSgmlpWY22d23W1LIzP4Vla5IrbCmfiuQRKS9UkLpK0DWzC4Ani1sOwr4EHBmUA2T6IS5np2ISHullK5YB3zCzEYDxVXBH3D3xwJtmUQirECqA2aO7eoi8yKSNiUvyFoIIQVRioUVSGYw5zO6lyQiOypn7TtJsQPDqolUb3xPgSQiO1FO6QpJqRHXLNz5OlJVtE+PDDNOH6xAEpGdUijVuOnZVv666b1Az5GpMxXoE5GSKJRq2IhrFgYeSIACSURKplCqUUNnPMTf390SyrkUSCJSKk10qEEjrlkYWiDVm0r1iUjpFEo1ZsycRaEM2RWdP6J/aOcSkeRTKNWYF9e9Fer5/u3MIaGeT0SSTaFUQ8IsZQ75lb9FRMqhUKoRYQeSCvSJSCU0+64GRNFDUm0kEamEQinFxsxZFNo9pIZMHc9ffUoo5xKR9FIopVTYvaPumfpQzyci6aR7SikUdiABbHy7LfRPyk7YAAAOQUlEQVRziqTdHUvXRN2E0CmUUibbkovkvH00005EqkChlDKXz1se+jk1005EqkX3lFIkimE7zbQTkWpSKKXEmDmLQj9nY0OGxdNGh35eEUkvDd+lRNjLB9UZzBw7ONRzikj6KZRSIIphuzkqaS4SilqbgafhuwSLIowg30tSIIlIENRTSqioAglgq0d2ahFJOYVSAkUZSKDVv0UkOAqlhInq4dgiPZMkIkFSKCVMFA/HFu3TI8O144bofpJIyGppsoMmOiRIVMN2ekBWRMKiUEqIKAJp4sgBKmcuIqFSKMXciGsW8tdN74V+3saGjAJJREKne0oxFlUgZepMqzWISCQUSjEWRSCZwexzh+n+kYhEQqEUU1HcQ8rUGxNGDGD2w6s4cNoDNF/3WORT0EWktuieUgxFEUj79Mhw6tAD+PkzOTa3bQEgt3EzVy5oBbSskIiEQz2lmIkikAxo+dan+PUL67cFUtHmti3MfnhV6G0SkdqkUBImjBwAwCsbN3f6/s62i4hUWyShZGb9zezXZva8ma00s8uiaEfcRNFLaj6417ap3312sqbdzraLiFRbVD2l94GvuvvhwEjgS2b2sYjaEgtRPRw7d/Kx215PPWkQDZn67fbRWnciEqZIJjq4+6vAq4XvN5nZ80Bf4A9RtCdKUT2L1LNb/Q4PxxYnM8x+eBWvbNxMHy0vJBIbdyxdwwUjBkTdjMBFPvvOzAYCRwJLO3nvYuBigAED0vcfI8oSFGd9vPOgOfPIvgohkQi0/7z7yEdr9//BSCc6mNmHgZ8Dl7v73zu+7+43uftwdx/eu3fv8BsYoKEzHor0/L9+YX2k5xeR7bX/vNuzsVfUzYlMZKFkZhnygTTX3RdE1Y6o/P3dLbvfKUCaUScicRTV7DsDbgGed/c5UbQhSlFXjgXNqBOReIrqnlIz8Fmg1cyKVeu+4e4PRtSe0MQhkDSjTiSZOhb7S+PEh6hm3z1BfiGBmhJlIBX/sjWjTkTiLPLZd7Ui6h7S98Y3KYhEJPa0zFAIog6kiSMHKJBEJBHUUwpYlIHUI1PHd8YNVSCJSGIolAIUdQ/pD1efEun5RUTKpVAKSNSB1FdTvkVSr+NsvJ1J0iw93VMKwGFXRTuzXVO+RSSpFEpVlm3J8c4Wj+z8jQ0Zrh03RPeRRCSRNHxXZZfPW777nQJg5Iv1dVz5W0QkSdRTqqIo7yM5WmRVRJJPoVQl07OtUTdBi6yKSOJp+K4Kop5pV6RFVkWkoyTNvAP1lLosikCqM8jUbb90oGbciUgaqKfUBVH1kOZ8pglQ2XIRSR+FUoWyLblIztt+HTuFkIikjUKpQmFP/W5syDBz7GAFkYikmkKpAlEM2y2f8anQzyki8ZS0yQvl0ESHMkURSPVWc/UQRaRGqadUounZVn76ZGmLH1bb+SP6R3JeEZGwqadUgigDaaKWDhKRGqKeUgmiCKSGTL0WVhWRmqNQ2o0w7yHVGWz1fC0kPXckIrVIobQLYQaShulEpBRpnnkHuqe0UwokEZHwKZQ6EfZqDQokEZE8hVInoirUJyJS6xRKHYT9cGxjQybU84mIxJkmOhREsVJDps6YOXZw6OcVEYkrhRLRlaCYfe4wTfsWkbLcsXT75ybTNhuv5ofvxsxZFMl5+zY2KJBERDqo+VB6cd1boZ9TVWJFRDpX06EUxrBd88G9uH58E30bGzDyPSQtHyQi0rmavacUdCDVm3H+iP7bnkFSCImI7F5NhlKQgZSpgxe/c2pgxxcRaa/jxIc4qWQSRk0P3wVh9rlNUTdBRCSxaqqnFGQPSSt7i4h0Xc2EUpCB1CNTx+JpowM7vohIraiJ4bsgA6nO4DvjhgZ2fBGRWpL6nlKQgbRPjwwzTh+sITsRkSpJfSgFRTWQRER21NVlj1I9fBdUL0mBJCISjNT2lIIIpA/tUce/nz1Uw3UiIgFJZSgFEUjNB/di7uRjq35cERH5QGTDd2Z2spmtMrM/mdm0qNqxOwZcP75JgSQiEoJIekpmVg/cAIwB1gJPm9m97v6HKNrTGd03EhEJX1TDd8cAf3L3PwOY2c+AM4DIQ6mxIcPMsZrmLSLR6dWzW+qK95UqqlDqC7zc7vVaYETHnczsYuBigAEDqv8faPV1WjhVROIh6M+7pIjqnpJ1ss132OB+k7sPd/fhvXv37tLBO1IgiUicVPp5lzZR9ZTWAv3bve4HvFKtg//lulM5cNoD26WcFbaLiEh8RRVKTwOHmtmBQA44D7igmidQAImIJE8koeTu75vZl4GHgXrgVndfGUVbREQkPiJ7eNbdHwQejOr8IiISP6le+05ERJJFoSQiIrGhUBIRkdhQKImISGwolEREJDYUSiIiEhsKJRERiQ1z32HJuVgys/XA/5X5Yx8BXgugOXFSC9cIus40qYVrhM6v8zV3P3l3P2hmD5WyXxolJpQqYWbL3H141O0IUi1cI+g606QWrhFq5zqrTcN3IiISGwolERGJjbSH0k1RNyAEtXCNoOtMk1q4Rqid66yqVN9TEhGRZEl7T0lERBJEoSQiIrGRylAys5PNbJWZ/cnMpkXdnmoxs1vNbJ2ZrWi3rZeZLTSzFwt/7hNlG7vKzPqb2a/N7HkzW2lmlxW2p+06u5vZU2b2XOE6ZxW2H2hmSwvXOc/MukXd1q4ys3ozazGz+wuv03iNq82s1cyWm9mywrZU/c6GJXWhZGb1wA3AKcDHgPPN7GPRtqpqbgM6PlA3DXjU3Q8FHi28TrL3ga+6++HASOBLhf9+abvOd4HR7j4MaAJONrORwL8D3ytc5xvAP0fYxmq5DHi+3es0XiPAie7e1O7ZpLT9zoYidaEEHAP8yd3/7O7vAT8Dzoi4TVXh7o8DGzpsPgO4vfD97cCZoTaqytz9VXd/tvD9JvIfZn1J33W6u79ZeJkpfDkwGphf2J746zSzfsCpwI8Lr42UXeMupOp3NixpDKW+wMvtXq8tbEur/d39Vch/oAP7RdyeqjGzgcCRwFJSeJ2FYa3lwDpgIfASsNHd3y/skobf3euBrwNbC6/3JX3XCPl/UPzKzJ4xs4sL21L3OxuGPaJuQACsk22a954wZvZh4OfA5e7+9/w/sNPF3bcATWbWCPwCOLyz3cJtVfWY2WnAOnd/xsxGFTd3smtir7GdZnd/xcz2Axaa2QtRNyip0thTWgv0b/e6H/BKRG0Jw1/N7ACAwp/rIm5Pl5lZhnwgzXX3BYXNqbvOInffCCwifw+t0cyK/1hM+u9uMzDWzFaTH0YfTb7nlKZrBMDdXyn8uY78PzCOIcW/s0FKYyg9DRxamOHTDTgPuDfiNgXpXuDCwvcXAvdE2JYuK9xzuAV43t3ntHsrbdfZu9BDwswagH8if//s18A5hd0SfZ3ufqW793P3geT/P3zM3SeQomsEMLOeZrZn8XvgU8AKUvY7G5ZUruhgZp8m/y+yeuBWd78m4iZVhZndCYwivyT+X4EZQBa4CxgArAHOdfeOkyESw8yOA34LtPLBfYhvkL+vlKbrHEr+5nc9+X8c3uXu3zazg8j3KnoBLcBEd383upZWR2H47mvuflrarrFwPb8ovNwDuMPdrzGzfUnR72xYUhlKIiKSTGkcvhMRkYRSKImISGwolEREJDYUSiIiEhsKJRERiQ2FkoiIxIZCSUJlZvub2R1m9ufCOmFLzOwsMxtVLG2wi5+daWZfK/N8b+7ivT5mNn9n77fb7xvlnLMUZjbczL5f+H6UmX2i2ucQSSKFkoSmsFpDFnjc3Q9y96PIP+nfL4r2uPsr7n7O7vek6qHk7svc/dLCy1GAQkkEhZKEazTwnrvfWNzg7v/n7v/dfqdCcbSsmf3ezJ4srH5QNMzMHisUTptc2P/DZvaomT1bKLRWUqkSMxtYLJhoZpPMbIGZPVQ49ncL268DGgrF2+YWtk0sFOhbbmY/KtTwwszeNLNrCoX7njSz/QvbzzWzFYXtjxe2jTKz+wsroX8B+ErheP9oZn8prP+Hme1VKCCXKftvWySBFEoSpsHAsyXsNwtocfeh5Hsp/9PuvaHk6/McC3zLzPoA7wBnufvHgROB/7TKlhVvAsYDQ4DxZtbf3acBmwvF2yaY2eGFfZrdvQnYAkwo/HxP4MlC4b7HgcmF7d8CTipsH9v+hO6+GriRfNG7Jnf/LfnFWU8t7HIe8HN3b6vgekQSR6EkkTGzGwq9h6c7vHUc8L8A7v4YsK+Z7V147x533+zur5Ff2PMY8uUQvmNmvwceIV+fZ/8KmvSou//N3d8B/gD8Qyf7fBI4Cni6UAvpk8BBhffeA4r3xZ4BBha+XwzcVujZ1ZfQjh8Dny98/3ngJ2Veh0hipbGeksTXSuDs4gt3/5KZfQRY1mG/XdXc6bhYo5PvqfQGjnL3tkKphO4VtK/9oqBb6Pz/DwNud/crO3mvzT9YTHLbz7v7F8xsBPnez3Iza9pVI9x9cWFo8QSg3t1XlHshIkmlnpKE6TGgu5l9sd22Hp3s9ziFIbHC6tKvufvfC++dYWbdCyswjyJfqmRv8sXk2szsRDrv4XRFW7t7Oo8C5xSKuRXvf+3yfGZ2sLsvdfdvAa+xfb0vgE3Anh22/Q9wJ+olSY1RKEloCr2IM4ETCjfznyJfvuGKDrvOBIYXhuOu44OaNABPAQ8ATwJXF4qrzS3sv4x8mFW76udNwO/NbK67/wGYTr709e/JlzE/YDc/P7swAWMF+cB9rsP79wFnFSc6FLbNBfYhH0wiNUOlK0RiyMzOAc5w989G3RaRMOmekkjMmNl/A6cAn466LSJhU09JUs/MhlCYzdfOu+4+Ior2iMjOKZRERCQ2NNFBRERiQ6EkIiKxoVASEZHYUCiJiEhs/H+YZxPd5o8RQwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## The correlations between 'Global_intensity', 'Global_active_power'\n", "# data_returns = data.pct_change()\n", "sns.jointplot(x='Global_intensity', y='Global_active_power', data=data) \n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n", "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.\n", " warnings.warn(\"The 'normed' kwarg is deprecated, and has been \"\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGoCAYAAADmTPpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+Yk+WZL/DvPSFABpVBnW0lQEFtQRGYqaPSHdcKrWKL4ixqqcW2bvfo1tO1Bd2p45ZWtO7K7pxWt1t7vPTU1R6pO4I0otjSH6A9UKEFZ6ZAhVorRaK7ohCrTHQymfv8kbwhybxv8r759b5Jvp/rmstJJj8e4kzuPM9zP/ctqgoiIiIvaHB7AERERAYGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8oxRbg/AAZaeIKJqJ24PwOs4UyIiIs+oppkSkaf9cPsB0+s/c96UCo+EqHpxpkRERJ7BoERERJ7BoERERJ7BoERERJ7BoERERJ7BoERERJ7BlHCiMjNLFWeaOJE5zpSIiMgzOFMicgEP2hKZY1AiKoBVUCGi4nD5joiIPINBiYiIPINBiYiIPIN7SkQewgQIqncMSkQ5MKGBqLK4fEdERJ7BoERERJ7BoERERJ7BoERERJ7BoERERJ7B7DuiKsBK41QvGJSIkpj+TeQ+Lt8REZFnMCgREZFnMCgREZFnMCgREZFniKq6PQa7qmag5G21ntDArDxPE7cH4HWcKRERkWcwKBERkWcwKBERkWcwKBERkWewogPVtFpPaiCqNQxKRDWGdfKomnH5joiIPINBiYiIPIPLd1QTuHdEVBs4UyIiIs/gTImoDljNJJkAQV7DoERVhct0RLWNy3dEROQZnCkR1TGeaSKvYVAiz+JSHVH94fIdERF5Bpv8kes4I6oOXNYrCTb5y4PLd1RRDEBElAuDEhHZwqQIqgQGJSoLzoiIqBDcU6KiMQBRNs6gLHFPKQ8GJbKNwYeKxWDFoJQPg1KdY6Aht9VZoGJQyoNBqQL4xk9UeR4NdgxKeVRNUBKRnwA42YWnPhnAGy48bzE45sqotjFX23iB2hvzG6p6SSUHU22qJii5RUR2qGqb2+NwgmOujGobc7WNF+CY6xHLDBERkWcwKBERkWcwKOV3v9sDKADHXBnVNuZqGy/AMdcd7ikREZFncKZERESewaBERESewaBERESewaBERESeUTVB6ZJLLlEkSg3xi1/84le1ftlSo+93tlRNUHrjjWqrNEJEVJh6fr+rmqBERES1j0GJiIg8g0GJiIg8Y5TbAyDyilgshoMHD+Ldd991eyhU5caOHYtJkybB7/e7PZSqw6BElHTw4EEcf/zxmDp1KkTYi40Ko6p48803cfDgQUybNs3t4VQdLt8RJb377rs46aSTGJCoKCKCk046iTPuAjEoEaVhQKJS4O9R4RiUiIjIMxiUiMh1qoovf/nLOP300zF79mw8//zzOW+/aNEinHXWWRUaXSanYyVnGJSIatzQ0FBZHjcej5fssX784x/jxRdfxIsvvoj7778fN9xwg+Vt161bh+OOO65kz+2Uk7GScwxKNSDUG0b7qk2Y1rUB7as2IdQbdntIVID9+/djxowZ+PznP4/Zs2fjyiuvxMDAAABg586d+OhHP4qzzz4bCxYswGuvvQYAeOCBB3DOOedgzpw5uOKKK1K3v/baa3HTTTdh3rx5uOWWW/Dss8+ipaUFLS0taG1txdtvvw1VRWdnJ8466yzMmjULPT09AIBnnnkGF154Ia688krMmDEDS5cuhdEMdOrUqbjjjjtw/vnnY82aNSX7tz/xxBP43Oc+BxHB3LlzEYlEUv/GdO+88w6+/e1vY8WKFRnX33fffbjvvvtG3P6hhx7C5ZdfjksuuQTTp0/H7bffXrGxUmGYEl7lQr1h3LpuF6KxxKfWcCSKW9ftAgB0tAbdHBoVYN++ffj+97+P9vZ2fOELX8D3vvc9fOUrX8GNN96IJ554As3Nzejp6cHXvvY1PPjgg1i8eDGuu+46AMCKFSvw/e9/HzfeeCMA4Pe//z1+/vOfw+fz4bLLLsO9996L9vZ2vPPOOxg7dizWrVuHvr4+9Pf344033sA555yDCy64AADQ29uLPXv2YOLEiWhvb8fWrVtx/vnnA0icwdmyZcuIsa9evRrd3d0jrj/99NOxdu3anP/ucDiMyZMnpy5PmjQJ4XAYp5xySsbtvv71r+Pmm29GY2NjxvVf/OIXLR/717/+NXbv3o3Gxkacc845WLhwIdra2jJus2TJEuzbt2/EfW+66SZ87nOfK2isVBgGpSrXvXFfKiAZorE4ujfuY1CqQpMnT0Z7ezsA4JprrsF3vvMdXHLJJdi9ezcuuugiAIllM+MNcPfu3VixYgUikQjeeecdLFiwIPVYV111FXw+HwCgvb0dN910E5YuXYrFixdj0qRJ2LJlC66++mr4fD68733vw0c/+lH85je/wQknnIBzzz0XkyZNAgC0tLRg//79qaC0ZMkS07EvXboUS5cuLejfbczE0mVnsPX19eEPf/gD7r77buzfv9/2Y1900UU46aSTAACLFy/Gli1bRgQlY5ZYqrFS4RiUqtyrkaij68nbst/cRASqipkzZ+K5554bcftrr70WoVAIc+bMwUMPPYRnnnkm9bNx48alvu/q6sLChQvx9NNPY+7cufj5z39u+uZqGDNmTOp7n8+XsS+V/rjpnMyU7r33XjzwwAMAgKeffhqTJk3CK6+8kvr5wYMHMXHixIz7PPfcc9i5cyemTp2KoaEhvP7667jwwgsz/s1mzF7TbE5mSnbGSoXjnlKVm9gUcHQ9eduBAwdSwefRRx/F+eefj+nTp+PQoUOp62OxGPbs2QMAePvtt3HKKacgFoth9erVlo/70ksvYdasWbjlllvQ1taGvXv34oILLkBPTw/i8TgOHTqEX/7ylzj33HMLHvvSpUvR19c34sts6e5LX/pS6ucTJ07EokWL8IMf/ACqim3btmH8+PEjlsNuuOEGvPrqq9i/fz+2bNmCD33oQ6mA9N3vfhff/e53Tcf1s5/9DIcPH0Y0GkUoFErNRNP19PSYjj07IAGwNVYqHINSletcMB0Bvy/juoDfh84F010aERXjjDPOwMMPP4zZs2fj8OHDuOGGGzB69GisXbsWt9xyC+bMmYOWlhb86le/AgB885vfxHnnnYeLLroIM2bMsHzce+65B2eddRbmzJmDQCCAT3ziE/jrv/5rzJ49G3PmzMH8+fPxr//6r3j/+99fqX9qhk9+8pM49dRTcfrpp+O6667D9773vdTPWlpa8t5/7969qSW6bOeffz4++9nPoqWlBVdcccWIpbtSjpWKJ7mm8F7S1tamO3bscHsYnhTqDaN74z68GoliYlMAnQumcz+pAC+88ALOOOMM155///79uPTSS7F7927XxlCtLr30Uqxbtw6jR4/OuP6hhx7Cjh07LGdR5WTx+2Rr86lG3+9s/du5p1QDOlqDDEJU15566im3h0AlwqBE5BFTp07lLKnErr32Wlx77bVuD4Mc4J4SUZpqWc4mb+PvUeEYlIiSxo4dizfffJNvKFQUo5/S2LFj3R5KVeLyXQ1i4kNhJk2ahIMHD+LQoUNuD4WqnNF5lpxjUKohod4wVq7fg0g0lrqOZYfs8/v97BRK5DIu39UIowZeekAyGGWHiIi8jkGpRpjVwEvHskNEVA0YlGpEvqDDskNEVA0YlGpEvqAzb0ZzhUZCRFQ4BqUaYVYDL93mvcwoIyLvY/ZdjTAy65b19Jn+nHtKRFQNOFOqIR2tQQTZyoKIqhiDUo0ppJVFqDeM9lWbMK1rA9pXbUKoN1zuYRIRmeLyXY0xlvHMKjqYVXoAgFvX7Uqlk/OwLRG5if2U6oRxuDb9LFPA78NYfwOODIw8cBtsCmBr1/xKDpGoHrCfUh6cKdUJs8O10Vjc8sAtEyOIyA0MSlWkmEKrToMMEyOIyA0MSlUie/nN2PvZ8afD2Lz3UN5ANbEpgLBJYGoK+PHe0PCIZb1ciRFEROXC7LsqYbX8tnrbAYQjUSiOBSqz7DmrrLyVi2birsWzEGwKQJDYS7pr8SwmORCRKzhTqhJWy2/ZaSpGRfDsoGKWlTdvRjNuf3JPKtGhKeBn7yUiclVZg5KIPAjgUgCvq+pZyetOBNADYCqA/QA+papHyjmOWmC1/GbGKoB1tAZTASfUG0bn2n7E4sfCWiQaQ+ea/tRtiYgqrdzLdw8BuCTrui4Av1DVDwL4RfIy5WG2/GaVX2knSaF7476MgGSIDStufqyfB2iJyBVlnSmp6i9FZGrW1ZcDuDD5/cMAngFwSznHUW1yZdllL789vjOcsdfkbxAMDA5hWteGnIkPubLx4qo8QEtErnBjT+l9qvoaAKjqayLyF1Y3FJHrAVwPAFOmTKnQ8NxllWUHZC6/Gdo+cGIqUI0P+HF0cCi1R5SrOkO+5UCrvSkiKo96fL8z4+nsO1W9X1XbVLWtubk++gFZZdlZtTPvaA1ia9d8vLxqIcaNGTViSc7qvp0LpsPvy33AmgdoiSqnHt/vzLgRlP5bRE4BgOR/X3dhDJ5lFQjsBAgn9+1oDaL7yjmY0Oi3fDweoCWiSnMjKK0H8Pnk958H8IQLY/Asq0BgJ0A4vW9HaxC937gY9yxpcVxZnIioHMoalETkUQDPAZguIgdF5G8BrAJwkYi8COCi5GVKKqT1RLH3XbPjQFayBHiAlohcUe7su6stfvSxcj5vpWRnyc2b0Wyr5E8uuVpPlOK+K0K78Oj2VxDPUR0+NpzoYNu9cR8P0xJRRbF1hU3pb+Y+Ecw9dQKeP/CWZZVtIDFLMWYcxRRTzcXJ464I7cIj2w44evz0fwMRFY2tK/JgmSEblj7wHLa+dDh1Oa6acdlKeuZbqRvphXrDGSWC7Dzuo9tfcfw8TA0nokrydEq4F4R6w7YCkJVXI1HHad52xtS5pt+0OV+ux821ZJdLOBJ11Cad7dWJqFCcKeVRaOAwTGwKFJXmbWbl+j2IDVsHGKvH9YkUFZjszO7yHf4lIsqFM6U8ijlAamS+FZPmbSYSHTlDsvO4V583uaDnM9iZ3ZV6VkhE9YVBKY9cgaP9tBMz+hBdM3eKaV+iYtK8ncr1uHd2zMI1c6fAJ8f2G43vfCJoP+1ENAWsD9MCiSCda3mu1LNCIqovXL7Lo3PB9IzlKEP7aSdi9XUfsfUYuVK1C8nKm9DoN91PEsl/vujOjlm4s2PWiOuzl92sjA/4cy7PWdXUY3UIIrKjroOSnYBg99xQdjZcU8CPlYtmpm5nVky10P2X2y6bOaIXkt8n6L5yTsH7NmbLbtkCfh9EYLk8Z8wKs4Mbq0MQkV01H5SsAo+TgGAWULKfo5CGebn2X3I9XzEHbK3kWl4TIPUcy3v6ct6/HGMjovpR00EpV+ApNCCYydcwDzAPTFaBIByJouX2n6YSGiY0+nHbZTNTz1WON3urZbdgUwBbu+anLndv3Jd3eS5fECcislLTQSlX4MkVENpXbXL0xl9ow7xcPY3SM+yODMRw02N9SM8CL3Wqda5lt/TZ5viAH36fZARhLs8RUanUdPZdrkywXBvv4UgUimNv/PkOf+bbxM/V08hui3OzY0lWj1vI4dWO1iDuWjwrI3vwirODWLl+D5b19KVek0g0Bmhi9padZUhEVKyaninlygSbN6PZVh04O0t6nQumj9hTymbV0wjIXJLL1Q3WTPbt7e6VWe21GbfJlY0XG1Y0jh6F3m9cbDmuctX6I6LaVtMzpVzngzbvPWT7cfKdsbHTMK9BxHTGkt45dmvXfAQdpk6nnzkC7B1eNQJOrhlhvmy8XK+J2eMv7+nDVJYdIqI8ajoomS1JGUtNTg5z2jlj09EaxG2XzbQ8fGrsLeV7Q3a6NxNXzVims3N49fYn9+QMXKHecN4Z2/gch2zNApoxh7S7JEpE9amml+8A60wwu0tldjfx7Rw+tZvuvXL9nrylhNKlz3bGB/ym91UAU7s2oNHfgIHYsOnjhJPVGoxU9lyODg4h1Bs2PXuV73UtpvI4lwWJalvNByUrnQumo3NNf87CpkEHb3p2Dp8C9srtrFw001Z1hWzRWBxj/Q0I+H2W97UKSIbbn8xd7NUQi2tqZmUEiaZGP955d8jWWAspO8Rir0S1r26DkvEmlj0rya7EYJfdN1mzpUCzT/93LZ5leSYol8hADHcvaSnovgBMyxdZMYKCESSc3LeQskOlPFtGRN5Ut0EJKO0hTzvLgWZLgVaf/u9aPAtbu+ajfdUmR8FFkWhl7jRholBOZ3NA4eeaWOyVqPbVdKJDJZll+vl9gqZA7vM8+bLlCn3DDUei9noPV0BTwG+abOJUqVuAEJH31PVMqZQKrfmW79N/IWeXDFY7Qw0CjB1lnfBgZBCmL2uOG+2D39fgKAEDSHzq+fO7MUSiMfhEMG9Gc8GzUxZ7Jap9DEolVMhyYL5WD3YP+eaS3uoifc9sRWgXVm87kBG8An4fVi4yr7MHIG8Chq9BcPyYUXgrGsOoBiA2jFR0jKvikW0H8Mi2A46SSAws9kpU+xiUXJbv07+TQ75mmgJ+08oLod4wHt8ZzghIAuCKsxNv8Nn7XMt7+ixnXuniw4pINIZxo304OmgdvArNnGOxV6Laxj0ll+U64AuMLCPklFhsLFkdcN2891DOw6925QpIBrZJJ6JsnCmVmVm6NzByCSq9PUT6fQXOA0K6iEWadq4q6ZVUSFV2IqpdnCmVkVkNuJvX9GdU3TaWxlaEdo24f/fGfUUFJCAR0MzqzXkpY83Oa0FE9YEzpRIxmxGZLYPFTaolKIDV2w6g7QMnZswSSnX+xmz/xmwvywusXguAJYaI6oGoFvtZvDLa2tp0x44dbg/DlFndu1ylfqxkd3l1enA2H58IhlUxsSmAqScF8NwfD5v2afKC7NfC6jW+a/EsAMzIo6ph6/igl9/vimDr386gVAKlCh4C4OVVC1OX7RR5rVUCpMolGTNGs9/UCY1+vBsbzniNjH24QtLOicqMQSkPLt+VQKlmM9n7PNnncqrj40NpNDX68xbMBczr7WW3yQBYsJWoWjAolYBPBPEiZ5xWlQnSz+WUejnPy5wUd80lGotj5fo9XN4jqhLMviuBYgMSAIz15/9f0blgOvy+3DNg46dNAX/OTrj1JBKN5eyyS0TewZlSCQQtSgU5OWN0ZCCWd6nJuH5ZT5/pz7knZQ/bXRB5F2dKJWBWITzg92Hp3CkZlRoa88yGjDfLUG8Y7as2ZbQ5N3S0Bi3bUmTvSdltPFiP2O6CyJs4UyoBu4VCp3VtyPtY2Y3z7J4xMtuTKsUbb8DvQ4PYKxvkJYJEkB4YHDLdn2ri0iaRJzEolYidQqF221CY9Ve6/ck9qce3GwSLaXsBJN7YPzxlPJ774+GCH8MN6WecQr1hdK7tRyyeuZB6ZCCG1jt+itsuM6+IzqU9IncwKFXQvBnNI1pF2HVkIIZQbzgjMOV64wz1hnH0vaECR5qgALa+VF0BSZB4nYFjFSCyA5LhyEAMnWv7AUUq9Zxp5ETuYlCqELNWEU7Z3ZwP9YZtnfGpRQrg8Z2JPbjHd4bz7qmZBSwmQhC5h0GpQkqRdBCORHHarU8jrpqzWsHK9XvqMiAZorE4Ht3+SlGp+kyEIHIHs+8qpFRvcsYbba7zNk5blteiYs+OeamKOlE9YVCqEKs3uWBTAPcsabFXFCpLNBbHzY/18yBoEfw+gb8h89W3qq5BROXHoFQhVmeZjCW4pXOnjAhMdgJVXHXEjCnfeShKCDYF0H3lHHRfNcey8y8RVZZr714islxE9ojIbhF5VETGujUWu3Idas31MyB/2/M7O2bh7iUtGT+/e0kLfFb9zNOktxUP9Ybrej/JrvQPBG7I9/tCVK9caV0hIkEAWwCcqapREXkMwNOq+pDVfdwu5W5VsmdCox8LZ58yItPL6PVT7JveVBsHbg3jRvuq7pCrm5oCfqxcNNOyT1OpAlaoN4yV6/fk3Osr9XOSZ7F1RR5urvOMAhAQkVEAGgG86uJYAOT+9GqVPXdkIIbV2w6YHng1Zi/FsCopZIYByZlINIZlPX1l+38HHEvPz5d8UsrnJKpmrqSEq2pYRP4XgAMAogB+qqo/dWMshuyZUPYhylzZc1ZzzWIy7oyDn/XSqsJrSpUt2b1xn+3lVKahE7kUlERkAoDLAUwDEAGwRkSuUdVHsm53PYDrAWDKlCllHZPZTCj9EGUhJXvspBUbwSe9xA0AVvd2WbEp4YV8qGAaen2r5Pudl7l1ePbjAF5W1UMAICLrAPwlgIygpKr3A7gfSKyxlnNAVp9SjevNiqCmy25TYZVWnB6Emhr9eOfdoRElbsaMamBAcpEARaWEF9IyhGnoVMn3Oy9zKygdADBXRBqRWL77GABXd/WsZkLGp1djA9pswzrg9+GKs4PYvPfQiKKeuYKQWfXqaCzOgOQyRXF175xW75jQ6Mdtl81kkgMR3NtT2i4iawE8D2AIQC+SnxDcYqcdhFEE1WzJzewNJfsTc6lafFN5Fdux1+neUOPoUQxIREmu1b5T1dsA3ObW82ez2w7CuK2dNxE22fO2CY1+0w8Kb0UzK7I75XT/MRyJon3VJrbMIAILsmawG2zsYjaVdxk9l878+o8xEBvO+NmwIqN/lR3ps+fxAT/8PrFsmWGGLTOIEliPpozGB9jd1KuMZdnsgGRwstRqLNOGI1EoEuefnAQkA88qEXGmVBJWad1HB0c22WsQQNX6bBOVX1Pyw0L7qk0lebxSLtNydk31jkEpS/YyjAgQGYhZ7jGZHbpd1tOHBkksA2UL+H0YYOUF1/gbBJfOOSVvynbAQVHbUgaSBhFM69pQsbbsdpN2iCqFQSlNdoBJT/02gs2OPx3GnR2zUtdbfUq2OsR/dDCOpoCfPY9cEhtWPLLtQN7bjc2q6J5LIQerrWT3ywJKs8dk55A297XIC1wpyFqIShQobF+1ydGbS6EFUMeN9mFYwcw8DxMAL69aaOu2hRyWtctIyCiG2fgCfh/G+htM985K8ZxkiQVZ82CiQxqnyzCFFkA9OhjHXYtnFX0ehsrHScmf9LYkQO6/vIC/AeNGZ87CmnIkxJRiadCqhJZVMgf3tchNtpbvRMQHYKOqfrzM43FVKZdh8rn9yT14592RiRDkvkJK/qQfJ8hVxSMaG0bA78M9S1oylsisZumlqIfnNMiwBh+5ydZMSVXjAAZEZHyZx+Mqs+6w5XJkIMZmfB4UbArgirOD6N64r+AGfB2tQWztmo+XVy1E4+hRI/4/m6V+5+pMXCyrINMU8JftOYkK5STR4V0Au0TkZwCOGleq6pdLPiqXpFd1YMuI+hNMJgBkb/4vN0lwsZKdUGD1exSORDOqRjipKOKUVQmtlYtmlu05iQplO9FBRD5vdr2qPlzSEVlwY+PPTsdQqi3BHIEke8ktm1lCQXb1+GxG91umftcNJjrku5GT7DsRCQCYoqoVP3bu5v+kaV0beNiVMKHRj95vXGz5c6t9oXyByW4rdAaWmsCglIft7DsRuQxAH4CfJC+3iMj6wsZWXZxs/Np61akq5Ss9ZJVQkO8DjZ3yQtmljIwzRfn2u0K9YbSv2lTw/hhRpTlJCV8J4FwkOsVCVfuQ6Bxb88w2of0NAr8vMwQF/D7OqOpYMVlr4Ug0Z+DI1RnZSqGBjMhNThIdhlT1LZGMN+K6eA+22oQ2u45JErXLrPTQitAuPLr9lVQlhmKkBw4gs6pCvs7IZnIFMi77kVc5CUq7ReQzAHwi8kEAXwbwq/IMy3us2lpkX7fjT4dtlbGh6jMY14yMuRWhXWX5f20WOPJ1RjZTSCAjcpuT5bsbAcwE8B6ARwG8BWBZOQZVzTbvPeT2EKhM4sOasVz26PZXyvZc2QHI6gzdwOCQ5XKcVcDi4VjyMiczpfer6tcAfK1cg6kFxX4KtaouTt6Q/v+30CW7fNl4ZoxZU/YRhSMDMcsiqlbnk/IdjmWWH7nJyUzpIRF5SUT+U0T+p4jkP0lYh3J9Cp3Q6EdjjpYIfp/gM+dNKcewqESa0uoVFpppWehnjo7WIMaNGfk50irhIb0mnyBxBitf6jmTI8httmdKqnqBiIwGcA6ACwFsEJHjVPXEcg2uGll9Ok1/Mwj1hrH8sT5kf9COxRWb9x7KeYCT3GX8Pwv1htHQIIiXaVorSJx7yp6tON0nstoLtcLkCHKb7aAkIucD+KvkVxOApwD8vzKNq2qZZerNm9GM7o37sLynL3XZauUnHImi/bQTGZQ86q3k0ln3xn0FB6SmgB9HB4dytkxvaJDU70B6Rl4hCQ9OMDmC3OZkT+lZADsA3AXgaVUdLM+Qql92xejsWmqr82RsbX3pcNnHSIVpEEGoN1zwm7Qg0Twy19LfmFENeG9oOOM6Y7ZS6D6RXeUOekT5ONlTOgnAHQA+AuAnIvJzEflmeYZVO8yWQ5jHUL3iqlje05ext+SEZv3XTHZAMrwaiRa0T+REOauVE9nhZE8pIiJ/BDAZwCQAfwmAXery4LJH7VEAf47GEPD7Kto92JitON0ncqKc1cqJ7HCyp/QSgH0AtgC4D8DfcAkvv0o2DqTKiStw1+JZFa3gMW9Gc1H3t5vqXc6gR5SPkz2lD6qq+bpCHTP+0MORKHwiiKum+vJ0tAbRuWA6lvf0ccmuRlWytFTPr19B2wdOLChgmO1tWp1vInKTk6A0UUT+HUA7EisYWwB8RVUPlmVkHpX+aXOsvwHR2LE4bRymzP6DX9bT58pYqbzK9f/V6gB1bFixcv2egoKI3VRvHpwltzlJdPgPAOsBTAQQBPBk8rq6kX2wMD0gZYvG4rj5sX5M69oAn7ChBdkzZlQDvv2pFsufF9pw0k6qNw/Okhc4CUrNqvofqjqU/HoIQHGL3FXG7NNmLnFVKAovR0P1Z3BouCwzEzt18Appj0FUak6C0hsico2I+JJf1wB4s1wD8yJm0lG5TWwKINQbhtXkekKBqeh2Ur15cJa8wElQ+gKATwH4r+TXlcnr6kYpDhAa50uIsgWS7ChuAAAgAElEQVT8Pkw9KZBIjDGZXPt9gtsum1nQY9s538Sq4uQFTs4pHQCwqIxj8bx5M5pt9c8xsvDMpGfpEaWLxuKW1Tx8Iui+ck5GpRCnCQn5Ur3nzWjG6m0HMjJFA34f5s1oNq3DR1QOtmdKInKqiDwpIodE5HUReUJETi3n4LwmV6+kYFMA9yxpwf5VC/GtT83JORtiQCKnhlVHlK4qZUJCqDeMx3eGMwKSAPjwlPF4fGeYyQ9UMaI23yBFZBuAe5Fo8AcAnwZwo6qeV6axZWhra9MdO3ZU4qksTevaYHreSAC8vGphxnXl6kpK9S3YFMDR94ZMs/CCTQFs7Zpf0OO2r9rk+KxVkLOmQthavffC+10Z2Pq3O9lTElX9v2nZd4+gzsq42V1zD/WG2YGWyiIciVqmhReTkFDIfTlronJwEpQ2i0iXiEwVkQ+IyFeR6Kl0oojURU8lswwmQbLdxKpNCPWGM5ZWiCrJyNxrX7UJ07o2pH4n7d63EEwZp1JzUtFhSfK/f5d1/ReQmDHV/P5SerHKcCSa0dba+NSYqPJQuSKdRMCxhIRCSwl1LpiOm3r6UEgdMaaMUynZnimp6rQcX6eKyEXlHKhXdLQGsbVrPoJNgRFrl9FYHEcGCjtxT+TEmFENI9K7N+89VPDh147WYMH93ZkyTqXkZPkun38p4WN5Hj8dkpveGxpOZcS9+lYUy3r6LJeM7f6uFtJIl72WqNRKGZTq6kwoPx2SV+RLoLX7u+q0RmOpGwwSAaUNSnWViWeV9EDkJU5mMlefN9n24xrljpb39DlKqCDKx0miA6XJ7tA5PuAvuIIzUTn4RHDF2fYb9t3ZMQsARlR1MHNkIJbaP2VvJiqlUs6U9pfwsaqCkfRw95IWvDfE/ofkLXFVPL4z7GgWc2fHLLy8aiHuWdLiqPgrU8OpVJyUGWoUka+LyAPJyx8UkUuNn6vqYidPLCJNIrJWRPaKyAsi8hEn9/cSpy0tiCql0GDR0RpE7zcuxj1LWkYsU1th8g+VgtMmf+8BMILHQQB3FvHc/wbgJ6o6A8AcAC8U8Viu4h8jeVkxv59m1cWbAuYzqPEW1xM54WRP6TRVXSIiVwOAqkZFCmupKiInALgAwLXJxxoEMFjIY3nBxKYAKzhQxRg15wBkVAofGBwyPSdXbKZodnXxUG8YnWv6EcvKIT86OIRQb5j7SlQUJzOlQREJIJllJyKnITFzKsSpAA4B+A8R6RWR/yMi47JvJCLXi8gOEdlx6JB3a8mZZeIRlYNRdNUIFFu75uPlVQuxtWs+brtsZt5GfqXQ0RrEcWNHfp6NxZX7SkWolve7cnMSlFYC+AmAySKyGsAvAHy1wOcdBeDDAP63qrYCOAqgK/tGqnq/qrapaltzs3c7r5stcbSfVhflAKnCwpGoZeKCnUZ+pRKxqFzCpezCVcv7XbnZbl0BACJyEoC5SBzJ2aaqbxT0pCLvT95/avLyXwHoUtWFVvepxlLuSx94zrJpG1ExGv0NiMaGXWu6Z9Xqopj2GXWCrSvycJJ9tx7AxQCeUdWnCg1IAKCq/wXgFREx1hU+BuB3hT6eF4V6w/j1y0fcHgbVqIHYsKtN98yWrFlyiErByfLdtwD8FYDficgaEblSRMYW8dw3AlgtIr8F0ALgn4t4LM9ZuX7PiI1gonIo1xmhXG0wKrlUSPXFdvadqj4L4FkR8QGYD+A6AA8COKGQJ1bVPgBthdzXq0K94VQ2FMMRVdKryb2m25/ck8rAawr4sXLRzIIChdEXLFcbjOysPKJScFRmKJl9dxkSvZU+DODhcgyqmhiBKLu/ElEljQ/40bm2H7H4sd/ASDSGzjX9AJyX/zE7EG7MyBiIqJyc7Cn1IHHAdT6Ae5E4t3RjuQZWDUK9YdyU1jKAAYncIoKMgGSIDReWpm2VRcfsOio3JzOl/wDwGVWtq3o6uZZEbl3324I6dRKVmlWKNpBYemtftSmVpZe+zGyVvWd1IJwtW6jc8qaEi8h8Vd0kIqa17VR1XVlGlsWNFMlQb3jEkohhQqOfXWbJM3wiiOf5W/b7BEvOmYzHd4YzluYCft+IJIXsPSWr25FjTAnPw87y3UeT/73M5OtSqzvVgu6N+0wDEgAGJPKUfAEJSCzv/XD7AVst07Oz65oCfoz1N7B/EpVd3uU7Vb0t+e0dqvpy+s9EZFpZRuUBod4w69lRzbE6pWC2V2Rk19nJxCMqFSfnlB43uW5tqQbiJcYfIVG9yLVXlCsTj6jU8s6URGQGgJkAxmftK50AoJjDs56SvvnbYGN9nqhW5KvEwEw8qiQ72XfTkdg7akJiH8nwNhIHaKte9vKE3YAU8PvQIMDRwbpKSKQaIYCt2nm5MvHsZPIROWFnT+kJAE+IyEdU9bkKjKniCu0cy26zVK2cFE7tXDDdNBNv3ozmEXtNy3v6sONPh3Fnx6yyjJtqn5M9pS+KSJNxQUQmiMiDZRhTxXEZguqJ08KpVnXuNu89NOKDmQJYve0As/OoYE6C0mxVjRgXVPUIgNbSD6nyeCCQ6sWERj/GjHKe2p3eULBzwfRUaS0zCjAJggrmpKJDg4hMSAYjiMiJDu/vWWbLE0S1xt8geOe9odTZu3Akis41/bj9yT2IDMQwelQD3hs6VqNktE8wGNfUwdxgUwDzZjSPOHxrhqsPVCgnQeVbAH4lIkYa+FUA/qn0Q6o8Y2PW2LBtYrUGqkFmrVRiw5r6XU8PSAAwmAxeRuJPOBLF6m0HbNV45OoDFcpJ64ofiMhOAPOQSNxZrKo105gvuwz/1K4NLo6GyJvsBCQ2+6NiOFp+U9U9InIIyfNJIjJFVQ+UZWQuC1qkwRLRSD4RDKsyLbxEDh8ddHsIrrEdlERkERJLeBMBvA7gA0i0sphZnqG5a96MZjyyLX+8FQF4zpbq3dXnTWYaOJWEk+y7bwKYC+D3qjoNwMcAbC3LqDxg895Dtm639LwpuGdJC4JcQ6c6YFXmecNvX6voOKh2OQlKMVV9E4ksvAZV3QygpUzjcp3d7KHHdyZSajsXTIffZ6syO1FVCjYFLPeUjgzEeDaJSsJJUIqIyHEAfglgtYj8G4Ch8gzLfXazh6KxOG56rA/Levos21wQVTsBsLVrfs4VAZ5NolJwEpQuBzAAYDmAnwB4CZm18GpK54LpCPh9tm5r1Q6AqFY0NfoBoKDCrURO2A5KqnpUVYdVdUhVH1bV7ySX8wAAIlJTdfHSS6sANlsmEtWod94dQqg3jI7WIJoCftPb8GwSlYKTmVI+NdPGwmCUVtm/aiHuXtJi+cdIVOtiw5panps58XjT2xw++h73lahooiXKZxaR51X1wyV5MBNe6Vkf6g3j5sf62W+JyMI1c6cwPdyarUWXU8+YrX984bflHkul2fq310TtukoyDgUu6+lzeSREpdUgwNhRDRiIDee/cQ6rk+f7Nu89xD5L5Fgpl+/qZtulozUIfylfOSKXpLej+Mx5U6Al+DNWAI9sO4BwJApFombesp4+tN7xUy7vUV6lfGv9bAkfy7NCvWGc+fUfo8gPk0Se8F9vvYulc6dga9d80/5IpXRkIIZb1+1iYKKc8i7ficjbMK/DKABUVU9A4pvdJR6b5xxrm86IRLUhropHth3Aj54P4+hg+Vu3RGNxdG/cx6U8smSnHbp5qk0dKrRtOpHXVSIgGXieiXJxvHwnIn8hIlOMr3IMyqv4x0SUaf+qhZjQ6OyoBM8zUS62g5KILBKRFwG8DOBZAPsB/LhM4/Iku39Mfp+UdLOOyIt8kkiKuO2ymSOqn/garBMm5s1oLuu4qLqxSrgDVqWHBECjvyGVxdR95Rx8e0kLAkzRoxoWV0X7qk0AkFH9xCeCeI7aW3Yr8FN9cnJOKaaqb4pIqkq4iPxL2UbmQdlt0/Odv+hoDaLl9p8iEmVrdapN4UgUnWv60X3VHHQumJ5MBMq9P8VlcMrFSVAyqoT/PySqhL+OGq4SbiW7bXo+bzEgUY2LDSuW9fQl0nFt3J57SpSL0yrhUQDLUAdVwkuFf4BUL+wEJL9PclYaJ3JUJRxAM4BPAjgM4LH0KuFkzkkLDKJaNqHRj+4r5/CMEuVke/lORP4HgG8A2ITE3v6/i8gdqvpguQZXC4w/wJXr93BviepOwO/DXYtnMRCRbU72lDoBtBqzIxE5CcCvADAo5WHsQ4V6w+jeuA9hbvRSHfCJmAYk4++AxVrJjO3WFSLyCwCfUNXB5OXRAJ5W1Y+XcXwpXmldUQrHyhWxOgR5iwhQiq4sRtJDU8APESAyEMPEpgDmzWjG4zvDGb/7dTabYuuKPOzUvrsp+W0YwHYReQKJ37fLAfy64OHVkOxPfvNmNI8o2w9kppJfcXYwdZsGEfZnIk8o1a+h8TDpS9bhSBSrtx0YkRDBeniUzs7ynVH77qXkl+GJ0g+ndCq1RJA96wlHongk2U/GuNy5th/QROqscd3jO8OpT4dLH3gOW186XPKxEXmNVczj2SUy2CnIenv6ZRE5PnG1vlO2URXJLFDcum4XAJQ8MNkp0hqLj/xTTP90uO2PR0o6JqJqw6MTZHCSfXcWgP8L4MTk5TcAfE5V9xT65CLiA7ADQFhVLy30cbKZBYpSLRFkz8CKSVoIR6KY2rWhqPEQVZvsQ7YBv49nlyjFyeHZ+wHcpKofUNUPALgZwANFPv9XALxQ5GOMYLUUUOwSgTEDS++oWTftdolKZOncKRkdb+soyYFscJISPk5VNxsXVPUZERlX6BOLyCQACwH8E4Cb8tzcEasZTLFLBGYzMKYnEDnT9oETcWfHLLeHQR7lZKb0RxH5uohMTX6tQKKNRaHuAfBVAJZtXEXkehHZISI7Dh2yX1nYrIpCKZYIuBlLVLzOtf1siW4i/f3u7Uj9Jj45CUpfQKLM0DoAP0p+/zeFPKmIXArgdVXdmet2qnq/qrapaltzs/0eLB2twVQp/VIuEXAzlqh4sbiie+M+t4fhOenvd8c3nej2cFxje/lOVY8A+HKJnrcdwCIR+SSAsQBOEJFHVPWaEj2+42redtgtzU9EuYUjUYR6w9xLohHsHJ59Ejm2TlR1kdMnVdVbAdyafPwLAfxDKQNSuRh/QMt6+lweCVH1K9cxDapudmZK/8vkOiNI1V3yWUdrkPXriEqAlRxy++H2A/jMeVPcHkbF2dlTagJwlqo+q6rPAugG8DCAhwD8RbEDUNVnSnlGqRLYjoKoNJg8RNnsBKWvAlifdnk0gDYAFwL4YhnG5HnpiRREVDgmD1E2O8t3o1X1lbTLW5LtK94s5pxSNcjVamLcaB8GBuMINgUwMDiEIwPslUTkhACs5EAj2JkpTUi/oKp/n3bRfp52lQn1htG5pt9y7+joYDxV1YEBici5xtE+LO/pQ/uqTTy3RCl2gtJ2Ebku+0oR+TvUcOuKlev3pKp6E1HpNAX88Psk44Pdret2MTARAHvLd8sBhETkMwCeT153NoAxADrKNbBysdvSgq3LiUpPAIwbM2rE3xcz8chgp3XF6wD+UkTmA5iZvHqDqm4q68jKoJItLYhopIlNgbIVTKbaYLvMkKpuUtV/T35VXUACcre0SBfqDdffASyiCpg3o9ky446ZeAQ4q31X9ex8QjNmU9xNIiq9p/pfs1UwOdQbRvuqTZjWtYGJEHXGSeuKqmenpYWdTrJEVJhINIblPX0YH/BjrL8BkYHYiL1dJ8vsdveIqXrU1UzJzic0O+vajf4GTGj0j7i+/bQTsX/VQtyzpIUVH4gsKBLB6d3YMO5e0oKtXfMzAomTZfbsppvM4qt+dTVTMn7xc32yytfifEKjH73fuNjx87BWHlGmaCyOmx/rx/Kevoy/RbuJELmCF2dL1auughKQv6VFrvYUfp/gtssSCYi5lg3SK0H4RBiQiCzENbF7m75EZ7dzNLP4alPdBaV80mc5RlCJqyKYFnhyrXkDyPiZ8UdHRLkZsxyzD4ZmnaPtBi+qLgxKJvLNpqyWDZb19KWCGBE592okamuZHTBf1TALXlRdGJQKkGt5gAGJqHDGLMdO52i7wYuqC4NSAZi4QFScpoAf7w0Nj1hxOPrekKM26XaCF1WXukoJLxU2+SMqXMDvw8pFM3HX4lkjjlZEorGMtG4eoq0/nCkVIDsZgojsEQCTJozFzY/1Wy51G/uzK9fvwdHBIcTiIzP0ODuqXQxKDpilgQMw3WxlVQiikRTAi68ftXVbs0r9PIdU+7h8Z5PV6XEAGa3RRcCARFRGPIdU2xiUbMp3erxzwXT4GwRMviMqL55Dqm0MSjblOz3evXEfO9USVcC8Gc1uD6Fifrj9gNtDqDgGJZvy9YDhkgJRZWzee8jtIVAZMSjZlK/COJcUiCqDGa+1jUHJpo7WYCqhQQAEmwK4a/GsVBaQsadEROXlk2N/ZzzHVHsYlBzoaA1ia9d83L2kBQCwvKcv9YfQ0RpE91Vz0BQY2WeJiErHON/Efkq1ieeUHLLTFTPXwUAiys/fIJaJQ8bxC/ZTqk0MSjmYHZbN9YewZscBbH3psEujJaodsWGFIHHYNl36Pm699FP64fYD+Mx5U9weRsUwKFmwmhFZHYwNR6LcgCUqIQXgaxAcP2YU3orGRlQBZz+l2sQ9JQtWM6L0TVYiKq/4sCISjaGp0T+iLUW+jFiqTpwpWbBaAoir+bICEZXPkYEYlvX0YVlPX0YXaID9lGoNg5KFXD2TGJCI3BOORLHcIkBR9ePynQX2TCLyLuODYb2kgddTuSEGJQvph2WJyLuM7FeqDQxKORiHZYvVFPCP6LBJRKUTjkRrfrZUL7inVEYC4OVVCwEA07o2uDsYohrHrrS1gTMlGwpNA08/LzHWz5eaqBB2l9C5jFcb+E5pw9XnTS7ofpGBwdSSwntDw6UcElHdcHIonQfYqx+Dkg13dszCNXOnwOl86ehgHMt6+jC1awPY/4+oNHKtXAjAvaUqx6Bk050ds3D3khYmLBC5LFexYwUsl/DY5qI6MNHBpuxaeETkTWbVWOxU9ydv4EzJJrNaeETkPWYFWXNV9ydvcSUoichkEdksIi+IyB4R+Yob43Ci1srhE9Uiq4Ks9dLmoha4NVMaAnCzqp4BYC6AL4nImS6NxZZSlMNnu3Si8rpr8SzT5Tirv1+2ufAeV/aUVPU1AK8lv39bRF4AEATwOzfGY0fngulF7ymNHtWA2CCXAInKZVlPHzrX9MHva8BALHEMY0KjHwtnn4LHd4Yz/n6rrc1FvTT7cz3RQUSmAmgFsN3kZ9cDuB4Apkxx939Gepn8fGchrFpbHGVAIiq72DAQGz52LvDIQAyPbMssaNoU8GPlopmeSnJIf787+f3eGVeluZroICLHAXgcwDJV/XP2z1X1flVtU9W25ubmyg8wS0dr0Fb1cB5JIvK2o4NDbg9hhPT3u+ObTnR7OK5xLSiJiB+JgLRaVde5NQ6nmIVHVP1icWXmnUe5lX0nAL4P4AVV/bYbYygUs3WIagP/lr3JrT2ldgCfBbBLRPqS1/2jqj7t0nhsa2r048hAzO1hEFGRqjHzLrvZXy0mPriVfbcFcFxKznWh3jDeYkAiqgnhSBTTbt0Ao2qRkaDkE0Fcla3WXcKKDg50b9wH1vomqh3pZfSMb43aevXSat1rXE8J94JQbziV6p3rUxLL4hPVF6MUEWdLlVOXQckIQq9Gohgf8OPo4BBi8cSno/RPSZ1r+wEcO6NkBCwiqh9MiKisulu+M6oFhyNRKIBINJYKSNliccXtT+5JXWZAIqo/1ZgQUc3qbqbk9JxReqZdsCnAJTyiOuL1UkTZ2XhWqilLr+5mSsVMxTsXTK++lEEiKohPxLLAK5VP3QUlp1PxpsCxTrMdrUEsnVs9nziIqDANAL71qTkMSC6ou6BkVrvO3yAYM2rkS+FvEKxcNDN1OdQbxlP9r5V9jETkrmEAO/502O1h1KW6C0odrUHctXgWgk0BCBL7REvOnYwGyVyYEwBLzp2c+qQU6g2jc00/IlEeniWqB49uf8XtIdSlukt0ABKBKX1a3r5q04jkBwXwyLYDeHT7Kzj5OD/+++3BCo+SiNxUK9m21ZTkANThTMlMruSHuCoDElEd8gnTmtzAoASeQyCika4+b7LbQ6hLDEowT34govrkE8E1c6fgzo5Zbg+lLtXlnlI2J63Oiag2BZsC2No13+1h1D3OlJI6WoP8hSSqU16v3FBPOFPKwlJCRPVhtE8QiysmVmHfpGrLqHOCQSlL54LpWNbTl/+GRORpXI6rTly+y9LRGsQ9S1rg5ytDVLW4HFe9OFMykX24NtQbxlfX9mPQosUFEXkH25hXNwYlG4wgFeoN4x/X/RYDMTZFJ/KaRn8DfvfNT7g9DCoSg5ID6cFp5fo9BdfBC/h9qZL4K0K7sHrbAXAORlScgdgwpt26AUZ1oAmNftx2WaKgstFpuhqTGuqNaJXUd2pra9MdO3a4PYwMod4wvvajXTg6aL9poCF7E9Zo0e4k808ABjOiHBoE8DVIRnfp9A+FLrBVu+jUM2brnQ89ZfqzKs68s/Vv53Z+ETpag9hzxyW4Z0mL44oQ2cHHOCd1z5IW24+hSHwaZDUKInPDioyABADRWBzLevrQvmoTQr1hl0ZGVhiUSsBoh5HeEDAfq2KPHa1BR49zZCBm2guKiHILR6K4dd0uBiaP4btZiXS0BtF328W2b5+rLP7KRTMdzX7Y44moMNFYHDc/1s/A5CFMdCgxuxUhgsnK5MZekrEJO29GMzbvPYRoLA6fCOKqaAr48fa7MTAjnaj04qq4dd0uAGAChAcwKJVY54LpuHXdrhFNA9MZB/tCveGM24YjUTyy7UDqdsZsKhqLMyARlVE0Fkf3xn1VEZR+uP1AxuUqTnwwxeW7EjNrt37N3CkZl43Mn+6N+3IGL8N7QzwXRVRurHnpDZwplUF2RQgzod4w/wiIPCbUG66K2VItY1ByQag3jM61/W4Pg4iy3P7kntQBeR64dQeDkgu6N+4bcXaCiNx3ZCBmutfLRIjKYVAqM7PsOi7bEXmXWeuaakqEqHYMSmWUL7uOiKrHqx79MJmdjeclhWQGMig5kF6fTgSpwo/jRvvg9zXwECtRDWsQYSJEBTAo2ZRdzTu9IEOiIKvzoqxEVD14yLYyGJSAoltREFF9MMoSLe/pY1ZemdR9UAr1htG5ph+xYWbDEVF+RqUVZuWVR91XdOjeuI8BiYgKYmTlUenU/UzJqxk1RFQd+B6SqdhafHU/U5qYrNZNRFQIvoeUVt0Hpc4F0/kiEFFBjIr/VDp1/37c0RrE+Eb7nV6JiABgQqM/VfGfSse1PSURuQTAvwHwAfg/qrrKrbFEBpgKTkTWJjT6oQq8FY0xFbzMXAlKIuIDcC+AiwAcBPAbEVmvqr9zYzwTbXaLJaL6cs3cKbizY1bFn/fEcaNrrnmfXW7NlM4F8AdV/SMAiMh/ArgcgCtByaxbrN8ngILp4kQl0H7aiVh93UfcHgZVAbf2lIIAXkm7fDB5XQYRuV5EdojIjkOHDpVtMGbdYruvnIPuq+aM6CDbFDi2/9Tob4C/7nfliHJjQLKnUu93XieqlZ8JiMhVABao6v9IXv4sgHNV9Uar+7S1temOHTsqNcSqtSK0C49ufwVxVfhEcGpzI146dBSc8FE5+AT41qdauL9in9i5UY2+39n6t7u1fHcQwOS0y5MAvOrSWGrKnR2zXFkDJyIqBbcWn34D4IMiMk1ERgP4NID1Lo2FiIg8wpWZkqoOicjfA9iIREr4g6q6x42xEBGRd7h2TklVnwbwtFvPT0RE3sPcMSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gwGJSIi8gxXat8VQkQOAfiTC099MoA3XHjeYnDMlVFtY6628QK1N+Y3VPWSfA8gIj+xc7taVDVByS0iskNV29wehxMcc2VU25irbbwAx1yPuHxHRESewaBERESewaCU3/1uD6AAHHNlVNuYq228AMdcd7inREREnsGZEhEReQaDEhEReUZdByURmSwim0XkBRHZIyJfSV7fLSJ7ReS3IvIjEWlKXj9VRKIi0pf8us9DY/5mcrx9IvJTEZmYvF5E5Dsi8ofkzz9cBWO+UETeSnudv+GVMaf9/B9EREXk5ORlz77OOcbs2ddZRFaKSDhtbJ9Mu8+tydd5n4gs8PJ4vfCeUXVUtW6/AJwC4MPJ748H8HsAZwK4GMCo5PX/AuBfkt9PBbDbo2M+Ie02XwZwX/L7TwL4MQABMBfA9ioY84UAnvLi65y8PBmJrsl/AnCy11/nHGP27OsMYCWAfzC5/ZkA+gGMATANwEsAfB4er+vvGdX2VdczJVV9TVWfT37/NoAXAARV9aeqOpS82TYAk9waY7YcY/5z2s3GATAyWC4H8ANN2AagSURO8fiYXWc15uSP7wbwVWSO17Ovc44xuy7PmM1cDuA/VfU9VX0ZwB8AnFv+kSYUMF5yqK6DUjoRmQqgFcD2rB99AYlPwIZpItIrIs+KyF9VaHimsscsIv8kIq8AWArAWIoJAngl7W4H4eIfkc0xA8BHRKRfRH4sIjMrPtA06WMWkUUAwqran3Uzz77OOcYMePR1Tl7198ml0AdFZELyOs+8zjbHC3joPaMquD1V88IXgOMA7ASwOOv6rwH4EY6lzo8BcFLy+7OR+OM4oZJjzTfm5M9uBXB78vsNAM5P+9kvAJzt8TGfAOC45PefBPCiF343ADQi8QY0Pvmz/Ti2FObJ1znPmD35Oicvvw+AD4kPzv8E4MHk9fcCuCbtft8HcIWHx+uZ94xq+ar7mZKI+AE8DmC1qq5Lu/7zAC4FsFSTv1GaWDJ4M/n9TiTWsz/klTGn+SGAK5LfH0RiP8EwCcCr5R3hSE7GrKp/VtV3kt8/DcBvbM5XksmYT0NiH6NfRPYj8Vo+LyLvh0ZeklMAAAO5SURBVHdfZ8sxe/h1hqr+t6rGVXUYwAM4tkTn+uvsZLxeec+oJnUdlEREkPik9YKqfjvt+ksA3AJgkaoOpF3fLCK+5PenAvgggD96ZMwfTLvZIgB7k9+vB/C5ZHbYXABvqeprFRswnI9ZRN6fvA9E5Fwkfk/frNyIzcesqrtU9S9UdaqqTkXiDfLDqvpf8OjrnGvMXn2dk9en78f9NYDdye/XA/i0iIwRkWlI/A3+2qvj9cJ7RrUZ5fYAXNYO4LMAdolIX/K6fwTwHSSm3T9L/s1uU9UvArgAwB0iMgQgDuCLqnrYI2P+WxGZDmAYiQyrLyZ/9jQSSzN/ADAA4G8qO1wAzsd8JYAbkq9zFMCnjdmq22NOzijMePZ1zjFmz77OAK4WkRYkEjP2A/g7AFDVPSLyGIDfARgC8CVVjXt1vPDGe0ZVYZkhIiLyjLpeviMiIm9hUCIiIs9gUCIiIs9gUCIiIs9gUCIiIs9gUKKqJiLPSFalaBFZJiLfs7j9VBExzpC0SFr1aSJyH4MSVbtHAXw667pPJ6/PpwWJs0VE5BEMSlTt1gK4VETGAKkimRMBbJFEX6zdIrJLRJak30lERgO4A8ASSfS5WSIi54rIr5LFM3+VPNgLEWkUkceSxTZ7RGS7iLQlf3axiDwnIs+LyBoROa6C/3aimlPvFR2oyqnqmyLyawCXAHgCiVlSDxLFSFsAzAFwMoDfiMgv0+43KImmdm2q+vcAICInALhAVYdE5OMA/hmJenz/E8ARVZ0tImcB6Eve/mQAKwB8XFWPisgtAG5CItgRUQEYlKgWGEt4RlD6AhKlYB5NlqD5bxF5FsA5AH6b43HGA3g4WZNPAfiT158P4N8AQFV3i4jxGHORaPC2NVmOajSA50r47yKqO1y+o1oQAvAxSbQgD2iiCZsU8DjfBLBZVc8CcBmAscnrrR5LAPxMVVuSX2eq6t8W8LxElMSgRFUv2X7hGQAP4liCwy+R2C/yiUgzEoUxs6tJv41ES2vDeADh5PfXpl2/BcCnAEBEzgQwK3n9NgDtInJ68meNIsK2BERFYFCiWvEoEvtH/5m8/CMklur6AWwC8NVki4l0mwGcaSQ6APhXAHeJyFYkGrYZvgegOblsd0vycd9S1UNIBK9Hkz/bBmBGOf5xRPWCVcKJ8kj2w/Gr6rsichoSXWU/pKqDLg+NqOYw0YEov0YAm5MdRwXADQxIROXBmRIREXkG95SIiMgzGJSIiMgzGJSIiMgzGJSIiMgzGJSIiMgz/j8FN7EgzmEjyQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "## The correlations between 'Voltage' and 'Global_active_power'\n", "sns.jointplot(x='Voltage', y='Global_active_power', data=data) \n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From above two plots it is seen that 'Global_intensity' and 'Global_active_power' correlated. But 'Voltage', 'Global_active_power' are less correlated. This is important observation for machine learning purpose." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison among features" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD3CAYAAADlsBq6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHIBJREFUeJzt3XmcXWWd5/HPt6qSsIRIIICBAAFBJS4ETaO8aDdEhG5EHRdg2hZsaF/0uDHaiozd4qC06LSNOjqO0WBoiRJEbREXRNl0UBBkNywxgIQEkSSAyBJS9Zs/znPTJ0XVPeemnlNV9+b7fr3OK3c59zzPrVT97rPd56eIwMysnb6JroCZTX4OFGZWyYHCzCo5UJhZJQcKM6vkQGFmlRwozCYhSWdLekDSLaM8L0mfl7Rc0k2SXlR67jhJd6bjuBz1caAwm5wWA4e3ef4IYN90vBP4EoCkHYDTgJcABwKnSZo51spssYFC0qOS9m7z/N2SDh3POnUzSXMlhaSBdP9HuT7NtkQRcSWwts0prwf+PQq/AraXNBt4LXBJRKyNiHXAJbQPOLUMjPUC3SoiprduS1oMrIyIf2q6XEnHAydGxF82XdZEiogjJroOPW434N7S/ZXpsdEeH5MtNlB0C0kCFBFDE10XG13fjDnBhidqnRuPr7kVKJ+8MCIWdlikRrp0m8fHpKe6HpLeIen7pfvLJZ1fun+vpPnpdkjaR9I7gb8BPpS6I98vXXJ+Gih6WNJSSVuVrvX36fprJV0oadf0+CZN8PTY5ZJOlLQf8H+Bg1JZD43yPi6XdIak/wc8Buwt6RmSFklaLek+SZ+Q1J/O30fSFameD0paWrrW59L7fkTSdZJeVnruY5K+JelcSX+SdLOkZ0s6NQ2k3SvpsGH1+qSka1JZ30t94tHew4np9vGSfiHpXyWtk3SXpCNK5+4l6cpUh59K+qKkc0f5b56cBp9kyn5vrHUAT0TEgtLRaZCAoqWwe+n+HGBVm8fHpKcCBXAF8DJJfam/NgU4GCCNR0wHbiq/IP0nLQE+HRHTI+J1paffStG/2wt4IXB8utYhwCfT87OBe4DzqioXEcuAk4BfprK2b3P631IMUm2Xrn8OsAHYBzgAOAw4MZ37ceAnwEyKX4z/XbrOr4H5wA7AN4BvlQMe8Drg6+m11wMXU/xe7AacDnx5WL3eDvwdsGuqz+er3nfyEuB2YBbwaWBRai2R6nUNsCPwsfTeu476+msdmVwIvD3NfrwUeDgiVlP8/x0maWYaxDwsPTYmPRUoImIF8CeKP4xXUPyA7pP03HT/5x024T8fEasiYi3w/XRdKFogZ0fEbyLiSeBUilbC3DzvBIDFEXFrRGyg+CM/Ajg5Iv4cEQ8AZwHHpHOfAvYEdo2IJyLiF62LRMS5EbEmIjZExGeAacBzSuX8PCIuTuV8C9gJODMinqIIfnMllQPa1yPiloj4M/DPwFtbLZsK90TEVyJikCLozQZ2kbQH8BfARyNifar7hZ39qCYDZQ0Ukr4J/BJ4jqSVkk6QdJKkk9IpPwRWAMuBrwD/DSD9rn6c4gPi18Dp6bEx6cUxiiuAV1J88l4BPEQRJA5K9ztxf+n2YxSfoqR/f9N6IiIelbSG4lP4vs2q9dOVB6T2pGgdrf7PD2H6Sud8iOKX4xpJ64DPRMTZAJI+QNHy2JWirzqD4lO95Q+l248DD6Y/5tZ9KFpirW5SuV73pHqVrzeajT/LiHgsvY/p6bVrI+Kx0rn3smnzedKTRN+UqdmuFxHHVjwfwLtGee5s4OxslaF3A8XrKLoL/0LxC/43FIHiC6O8ptPBnlUUf7wASNqWotl8H/Dn9PA2wCPp9jM3o6zyefcCTwKz0if/pidG3A/8farLXwI/lXQlxaf2KcCrgVsjYigFkpEGvOoq/wHvQdGaeZDN/8NeDewgaZtSsOiqIAGARF++bsWkM+FdD0mHS7o9DQx+OMMlrwBeBWwdESuBnwNvovjDXjzKa/4AjLqmYgTfAN4hab6kaRQB6Xrga8CVFH33RZL6Jf0d8KxhZc2RVPvjJ/U9fwJ8VtK1km6UdIeKaV0kvUXSnHT6OoogM0gxvrEB+CMwIOmjFC2Kulq/H4tLj71N0jxJ21CMYVxQaoF06nLgIooguELSVEkHUQT6bCRtL+kCSbdJWpbKyG6cxyjG1YQGitS3/SJF/3secKykeWO5ZkTcATxKESCIiEeAuyj6e6NZBMyT9JCk/6hRxs8o+uffpvhEfBbFIOUHImI/4GjgDRR/tM8Driq9/FLgVuB+SQ928NbeDvRTtBLmUrRcDk4DWX8BXC3pUYr+/fsi4i6KMZofAXdQdBOeYNOuQ5X3jvDY1ykCx/3AVqOc04lXUQwU3wmsAT4BLKUIHrl8DvhxRDwX2B9YlvHaBeUdo5hsNJFb4aXI/rGIeG26fypARHyygbLmAhdFxPNzX3uU8r4HfCEiLmno+tsAvwD+ISKubuD6cygGHc8A3h8RR0q6HDg3Ir6aqYy7gQUR8eCwx5cCt0XEaRnKmAHcCOwdDf6yD8yYHdMPPKHWuQ//7IzrImJBU3VpwkR3PRpZRTbRUlA6AGjiD7hf0g3AAxRLdbOXkXyWYpC0yYVeAfwkdQc+kqa1D6dYnlzZsqtpb4qu19ckXS/pq2lMKbPeblFMdKBoZBXZRJI0naJLcnLq9mQVEYMRMZ9ivcSBkrK3kCQdCTwQEdflvvYwB0fEiyhaLadRzCx9nqKVdH2mMgaAFwFfiogDKLpsOcbCNtXjXY+JnvVoZBXZRJE0hSJILImI7zRZVkQ8lLoChwMjfhV5DA4GjpL0VxTjEDMknRsRr8xZSESsSv+eK2kf4NGI+NecZVD8jq0stbwuoKFAkXN6dLKZ6BbFr4F90xLeqRQLiLpwsc3G72QsApZFxL81VMZOrcVPkrYGDgVuy11ORJwaEXMiYi7F/8mlEfG2nGVI2lbSdq3bFCsIcwe81tTxvZJai8xeDfw2dzmit2c9JrRFEREbJL2bYnS+n2K14625y0mr3F4JzJK0EjgtIhZlLuZgiqXHN6cxBID/ERE/zFjGbOCcNFvUB5wfERdlvP542gX4blp4NQB8IyJ+3FBZ7wGWpA+jFcA7speQuh69akJnPcx6xZSZe8SOh3yg1rl/+M7JXTfrMdFjFGa9QfR0i8KBwiwD0dtdDwcKs0wcKMysPfXRN+Dp0Uap2GWqJ8rxe5mc5TRehkD9/bWObjQpAgXFTk69Uo7fy+Qsp9Ey1ONLuN31MMuhx9dRNBIoNLBVaOr06hNbpmxL3zazOl7Qsc/ec6pPKtl51zk8+/nzOypnu/Uj7n87qt133oEXP3tux+/l+pWPdvaCzfiZ7bVXZ9+3mzV7N571vP07fi9bDXTWUJ292+48b/8DOirn92sfrz6pZNrMXdhu9+d2VMYT6+7nqUcfqr3JjwNFhzR1OgPPOaqJS2/ii0vPbLyMl909PivKZ5xyVfVJY/TJxR9vvAyAeTt38CGxmd6z9MbGy7j2M531Vvr6xrJx2OQ2WcYozLqaJNRX76h5vbY7v0k6S9IN6bhDpdQPkgZLz2X5pPMYhVkm/f15PndLO7+9huLbr7+WdGFEbPwyW0T899L576HY/6Tl8bQVQTZuUZjlIHK2KA4ElkfEiohYT5E24fVtzj8W+GaGdzEqBwqzDIqvmWcLFLV3fpO0J8WO85eWHt4qbcL8K0lv2My3tAl3PcyyEH2qPZg5S9K1pfvDc492svPbMTx9J/Q9ImKViux4l0q6OSJ+V7dyI3GgMMshdT1qerDia+ad7Px2DMMSAZV2DluRdkE7ABhToHDXwyyTjF2PWju/pV27ZlJKRaEi5+i0dHsWxYZKY97Rq1agaCBJj1lPkaB/QLWOKikbXGvnt2UUO5ndKul0SeUFSscC5w1LQ7AfcK2kG4HLKPLIjjlQVHY96kzVmFmxliKXtIXiD4c99tFh9z82wuuuAl6QrSJJnTGKjVM1AJJaUzUOFGaJpJ5emVknUIw0VfOSZqpj1r06GMzsOnUCRa2pmvR9/2Jx/JQGEjGZTXJbeqCoNVWT5oEXApv1TVCzriY6WUfRdeoEio1TNcB9FFM1/7XRWpl1mdbKzF5VGSjGK0mPWVeT6O9wH45uUmtl5khTNWa2qZzTo5ONl3CbZVB0PSa6Fs1xoDDLQb29w5UDhVkmW/RgppnVIY9RmFl7ctfDzKpIMLClT4+aWbV+tyg6s8/ec8Yl58ZfH9381hiPXvzR6pMy+M6SIxsv4/m7jM93cJbcsLrxMs57x4sbL+Owc7apfa6QA4WZVZBbFGZWQThQmFkFCQYcKMysnV5vUfTufI7ZOJLE1IH+WkfN61XlHj1e0h9LOUZPLD13nKQ703FcjvfnFoVZJrlaFB1saL00It497LU7AKcBCyh2orsuvXbdWOrkFoVZBkqzHnWOGjrNPVr2WuCSiFibgsMlwOGb9aZKHCjMMmito6gZKGal3KCt453DLlc39+ibJN0k6QJJre0qa+ct7YS7HmaZ9Nf/UlhVSsE6G1p/H/hmRDwp6STgHOCQmq/tWGWLQtLZkh6QdMtYCzPrVZm7HpUbWkfEmoh4Mt39CvDiuq/dHHW6HovJ0Mcx63UZA0Vl7lFJs0t3j6JIPQjF3raHpRykM4HD0mNjUmdz3SslzR1rQWa9rE9iWqZvj462obWk04FrI+JC4L0pD+kGYC1wfHrtWkkfpwg2AKdHxNqx1inbGEU5AdDOu87JdVmzrpFzwVVV7tGIOBU4dZTXng2cna0yZJz1iIiFEbEgIhY8Y+aOuS5r1hUyj1FMOp71MMug15dwO1CY5dDjXzOvMz36TeCXwHMkrZR0QvPVMusuHS646jp1Zj2OHY+KmHUzCaZ6z0wza8djFGZWrcfHKBwozDIQ6uS7Hl3HgcIskz4HCjNrR0B/78YJBwqzLJxSsHPbrX+Il919YfWJYzQeyXmmv/b0xssAePj0FzVextStD2q8DIAPvnCnxsvoXzN8V7j8pmx4vPa5Aqb0eXrUzNpw18PMqknuephZe8KzHmZWg7seZtaWWxRmVs1LuM2sSjE92ruBoncnfs3GkRB9qnfUul517tH3S/ptSgD0M0l7lp4bLOUkzbKgyS0Ksxwydj1q5h69HlgQEY9J+gfg08DR6bnHI2J+lsokdXa42l3SZZKWSbpV0vtyVsCsFxSDmfWOGipzj0bEZRHxWLr7K4pEP42p0/XYAHwgIvYDXgq8S9K8Jitl1o36pVoH+XKPtpwA/Kh0f6t03V9JekOO91ZnK7zVwOp0+0+SllFUuvnF9mZdosPp0Ry5R4sTpbcBC4BXlB7eIyJWSdobuFTSzRHxu7qVG0lHYxQpY9gBwNVjKdSs5wj6800N1MofKulQ4CPAK0p5SImIVenfFZIup/ibHVOgqP3WJE0Hvg2cHBGPjPD8O1tNqT8+/Kex1Mms6wgxpa+v1lFDndyjBwBfBo6KiAdKj8+UNC3dngUcTIbWf60WhaQpFEFiSUR8Z6RzImIhsBDgxc+eO+Y062bdJOfKzJq5R/8XMB34lopyfx8RRwH7AV+WNETREDhz2GzJZqkMFCpqsQhYFhH/NtYCzXpS3q5Hndyjh47yuquAF+SrSaHOWzsY+FvgkNIijr/KXRGzbtZqUeRacDXZ1Jn1+AUjj8KaWUmXxoBavDLTLJO+Hv48daAwy0C4RWFmVTIPZk42DhRmGQi562Fm1dz1MLNKPbxvjQOFWS49HCeaCRTXr3yUGadc1cSlN/GdJUc2XsZ4ZPACeMZHf9N4GecufmPjZQA8d9r0xss4+aJ7Gi/jjofrfxPBm+uaWS3ert/M2pJAblGYWRUPZppZpR5uUDhQmOUgejv3hQOFWSYeozCz9upvxd+VHCjMMhCeHjWzGnq561EnU9hWkq6RdGPKFPY/x6NiZt0kc6awOrlHp0lamp6/OqXSaD13anr8dkmvzfH+6gzUPgkcEhH7A/OBwyW9NEfhZr1ENY/K6/xn7tEjgHnAsSNk5zsBWBcR+wBnAZ9Kr51Hsb3/84DDgf+TrjcmlYEiCo+mu1PS4e34zTaRNZt5Ze7RdP+cdPsC4NVpx/zXA+dFxJMRcRewPF1vTGpN/Urql3QD8ABwSUQ8LVNYOQFQbHhirPUy6y5qLeOuPsiTe3TjORGxAXgY2LHmaztWazAzIgaB+ZK2B74r6fkRccuwczYmAOrbZpZbHLZFUQSK2r/2OXKPjnZO7bylnehoMVlEPARcTtH3MbMSDW2oddRQJ/foxnMkDQDPANbWfG3H6sx67JRaEkjaGjgUuG2sBZv1loAYqndUq8w9mu4fl26/Gbg0IiI9fkyaFdkL2Be4Zqzvrk7XYzZwTho57QPOj4iLxlqwWc+p3/WouEyt3KOLgK9LWk7RkjgmvfZWSedTJCbeALwrDR2MSZ1MYTdRpE03s9FE1G0t1LxcZe7RJ4C3jPLaM4AzslUGr8w0y0YZA8Vk40BhlosDhZm1l7frMdk4UJjlEAGDtaY+u5IDhVkmHqMws2oOFJ3Za6/d+OTijzdx6U08f5dtGy9j6tYHNV4GjE9ynrcd/8+NlwGw/Kefb7yMLx29f+NlvGnR1vVPjsi2jmIycovCLBe3KMysiscozKyCp0fNrEoE1PtmaFdyoDDLQLjrYWZ1DDlQmFlbnh41syqBBzPNrJrHKNiYa+Ba4L6IOLK5Kpl1I896tLwPWAbMaKguZt0rAobGvOPcpFU3r8cc4K+BrzZbHbPuFUNDtY5uVHe7/s8CHwK6812aNS61KOocYyRpB0mXSLoz/TtzhHPmS/plyhd8k6SjS88tlnSXpBvSMb+qzDrb9R8JPBAR11WctzFT2CPr1lRd1qy3BOMWKIAPAz+LiH2Bn6X7wz0GvD0iWjlIP9tKu5F8MCLmp+OGqgLrtCgOBo6SdDdFDsRDJJ07/KSIWBgRCyJiwYyZO9a4rFnvCIIYHKx1ZFDOO3oO8Ian1Sfijoi4M91eRZEOdKfNLbBOkuJTI2JORMylyB1waUS8bXMLNOtJQbEys85RnXu0yi4RsRog/btzu5MlHQhMBX5XeviM1CU5S9K0qgK9jsIshxgiNqyve3ZV7lEk/RR45ghPfaSTakmaDXwdOC5i40KPU4H7KYLHQuAU4PR21+koUETE5RS5R81suIwzGhFx6GjPSfqDpNkRsToFggdGOW8G8APgnyLiV6Vrr043n5T0NeAfq+rTUZJiMxtNEEODtY4MynlHjwO+N/yElLP0u8C/R8S3hj03O/0rivGNW6oKdKAwy2F8Zz3OBF4j6U7gNek+khZIaq11eivwcuD4EaZBl0i6GbgZmAV8oqpAj1GYZRHj9jXziFgDvHqEx68FTky3zwWeNjuZnjuk0zIdKMxyCHJNfU5KDhRmWfT2dz0cKMxyiCA2PDXRtWiMA4VZFm5RdGyrgT7m7Ty9iUtvYskNq6tPGqMPvnCzV7125LnTmv95jUcGL4B9Dn1v42Xcf+UXGi9joF/1T27NevQotyjMMgiia79CXocDhVkOblGYWTWPUZhZFa+jMLNqAZ4eNbO2InJ94WtScqAwy8SzHmbWXgQx6EBhZm1E4ECRNtb9EzAIbKjaxstsy+MFVy2viogHG6uJWTdzi8LMqkQEg+t7d3q07lZ4AfxE0nWjbS1eTgC0bo0TANmWp5dTCtZtURwcEask7QxcIum2iLiyfEJELKTY+pvn7X9AZK6n2eTW47MetVoUKdMQEfEAxc6+BzZZKbNuFINDtY6xqpN7NJ03WNpY98LS43tJujq9fmnasbutOrlHt5W0Xes2cBg1tvc225JExHh2PerkHgV4vJRf9KjS458CzkqvXwecUFVgnRbFLsAvJN0IXAP8ICJ+XON1ZluUocGhWkcGlblHR5NyeRwCXNDJ6yvHKCJiBbB/3YqYbZGGgqH1G+qePUvStaX7C9MYX12b5B5NY4cj2SqVswE4MyL+A9gReCgiWpVdCexWVaCnR80yCDr6rsd45R7dI01C7A1cmpL+PDLCeZWTDw4UZjlknvXIkXu0NAmxQtLlwAHAt4HtJQ2kVsUcYFVVfZxS0CyT8Zr1oF7u0ZmSpqXbs4CDgd9GRACXAW9u9/rhHCjMcggYGhqqdWRQJ/fofsC1aRLiMooxit+m504B3i9pOcWYxaKqAt31MMsgGL8FVzVzj14FvGCU16+gw7VQDhRmOXjPzM79fu3jvGfpjU1cehPnvePFjZfRv+a31SdlcPJF9zRexpeOHp9Z7vFIzvPMl7+78TI23P77+idHMPRU7enRruMWhVkWvf1dDwcKswwiyLXqclJyoDDLwjtcmVkV73BlZpUCYrB3t2FxoDDLIAiPUZhZhYDBpxwozKwN5/Uws2oRPT1GUetLYZK2l3SBpNskLZN0UNMVM+s2Q4NR6+hGdVsUnwN+HBFvThtxbtNgncy6z5be9ZA0A3g5cDxARKwH1jdbLbPuEsDQUHe2Fuqo0/XYG/gj8DVJ10v6atqN28xa0hhFnaMb1QkUA8CLgC9FxAHAnxlhe/ByprCn/vxQ5mqaTW4RMLh+sNbRjeoEipXAyoi4Ot2/gCJwbCIiFkbEgohYMGXb7XPW0WzySysze7VFUWe7/vsl3SvpORFxO8XOOuOzSYNZ1+jtlZl198x8D7BE0k3AfOBfmquSWRcKiKGodYxVnZSCkl5VSid4g6QnJL0hPbdY0l2l5+ZXlVlrejQibgDa5iEw25IFjOcaiVZKwTMlfTjdP2WT+kRcRvGhjqQdgOXAT0qnfDAiLqAm78JtlkPK6zFO2/V3mlLwzcCPIuKxzS3QgcIsk3EczNwkpSAwWkrBlmOAbw577AxJN0k6q5X/ox1/18MsgwgYfKr21Gdl7tFMKQVJmcReAFxcevhU4H5gKrCQottyervrOFCY5RAdfY+jMvdojpSCyVuB70bEU6Vrr043n5T0NeAfqyrsrodZDuO7jqIypWDJsQzrdqTggiRRjG/cUlWgWxRmGQTj+qWwM4HzJZ0A/B54CxQpBYGTIuLEdH8usDtwxbDXL5G0EyDgBuCkqgIdKMxyiPGbHq2TUjDdvxvYbYTzDum0TBXJjfOS9Eegk9RXs4AHs1dkYsrxe5mc5WxOGXtGxE51Ttx36tZx1qx9al30datvua5qjGKyaaRFUfeH2yLp2vH4wY1HOX4vk7OcpsuIgKEGPnQnC3c9zDIIYH0P70fhQGGWyaBbFI1bWH1K15Tj9zI5y2m0jAC69BvktTQymGm2pdlrYOs4ffu5tc59+5rbPJhptqXq5RaFA4VZBkF4jMLM2itmPSa6Fs1xoDDLIMKzHmZWg8cozKytYnq0dyOFA4VZBr2+jsKBwiwTtyjMrK1iMHOia9EcBwqzDAJ4yi0KM2vPC67MrIIHM82sUq9Pj3oXbrMc0mBmnWOsJL1F0q2ShtKGuqOdd7ik2yUtT6kHW4/vJenqlLt0qaSpVWU6UJhl0GpR1DkyuAX4L8CVo50gqR/4InAEMA84VtK89PSngLMiYl9gHXBCVYEOFGaZjFeLIiKWRcTtFacdCCyPiBURsR44D3h9yuVxCNBKUFwnd6nHKMxyGGLS7Zm5G3Bv6f5K4CXAjsBDEbGh9PjTtvQfzoHCLIMHWX/xl7lnVs3TtxpL7tGIaJcZbOMlRngs2jzelgOFWQYRcXjm642ae7SmlRRZwlrmAKsocptsL2kgtSpaj7flMQqz3vRrYN80wzEVOAa4MIpNci8D3pzOq8pdCjhQmHUdSW+UtBI4CPiBpIvT47tK+iFAai28G7gYWAacHxG3pkucArxf0nKKMYtFlWV6F24zq+IWhZlVcqAws0oOFGZWyYHCzCo5UJhZJQcKM6vkQGFmlRwozKzS/wfPou0YG/eA2gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Correlations among columns\n", "plt.matshow(data.corr(method='spearman'),vmax=1,vmin=-1,cmap='RdBu')\n", "plt.title('without resampling')\n", "plt.colorbar()\n", "plt.figure(figsize=(40,40))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparison of mean of resampled features" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD4CAYAAAAU5qhvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHr1JREFUeJzt3XmYXVWZ7/HvrzIQIEQCQUAjBh5wYGjBphFu+oEmgkRbAb2I4AQKTePUKqhIayuCXHG4wu1Hrw0tEFSaQRRFUTEySKOChCsyxUgEhzCFeRBIUVXv/WOtE3YOp2rvk7PPqTqV3+d59pPa41r7pOo9a6+1934VEZiZjWVgvCtgZhOfA4WZlXKgMLNSDhRmVsqBwsxKOVCYWSkHippIukrSRTUda4mkRXUca10kabqkEyTt3LR8nqSQ9Prxqlu/cqCwyWg68Glg57INJypJZ0laKemWUdZL0r9LWi7pJkmvLKw7TNLteTqsjvqMS6CQNEXS9PEo2zqXf0lnjHc9JrlFwMIx1r8W2C5PRwFfA5C0CSlIvgrYDfi0pNmdVqYngULSotycPlDSrcDTpBNB0laSzpf0kKQnJV0m6aVN+x+fI+fTku6T9BNJW+R1G0r6iqRlef87JX1V0qymY4SkD0v635IelPSApI/kdYdJukPSIzmSzyjsd3je9+8k/bekpyT9XtIbK5z3jpIulfR4nr7dqHfTNr/I57ZU0v4VP9MpuXn9Z0mrJN0q6a2F9e/Kyzdu2m+HfD6vLiw7IP//PC3pXklfkDStsP6E/Hn9vaTrSf9/bx6lXo1tX5WP+ZSkayRtLen5kr4n6Yl8rgvaOae8TeN3ad/8TfrXfPwdCps9nv89O59rSJpXWL+BpNMlPSpphaTPSJpQreuIuBp4aIxNDgC+Ecm1wMaStgT2AxZHxEMR8TCwmLEDTiW9/HDmAV8APge8DrgzR79rgJcCRwMHAxsCP5O0PoCkdwL/CnyZ9CG8B1ietwPYAJgCfIIUZf8NWAB8u0UdjgVmAocC/wV8UdIXgMOBf8nlvA34UIt9LwC+D7wJuBn4tqRXjHaykrYFfgHMAN6Ry9gB+IEk5W3WBy7LdXor8FngNGCr0Y5bcGI+5zOA/XNZ50o6NK//bv63OaC9BVgJXJXrcHDe9tf5OJ8hfUN9rmm/DYBzgK+TfvF+PUbdNsj1OpX0WW8FfBM4j/T//SbgLtJnuEEb59SwFfBF4OR8/OcDFzY+V9L/P6TPc4883VPY/wvAE8BBwLeAT+Wf+8kLgb8U5lfkZaMt70xEdH0iNaMC2Llp+UnAg8AmhWWzgUeB9+X5rwDfaaOsqcD8XN5WheUBXFmYHyD98jwMzCosvxC4rjB/eN73X5v2/R1wfmHZVcBFhflvAsuA6YVl2wHDwD/m+fcCzwBzC9s06r5ojHPcBPgr8Omm5T8ClhXmvw/8pGmbZcBX8s8C/gSc3bTNu4GngE3z/Am5TgdU+Pwb2+5VWPbevOxThWXb52WvbfOcFgFDwHaFZQfmY70sz8/M84c3HWteXv6NpuU3Fv8v12bSRi8Mrb9ppQm4BVhSmI4a5bOcB9wyyrpLgb8vzF8O/C3wUeCTheX/BhzbyblFBFPpnbsi4samZfuQmkaPSWrU5XHgBmDXPH8jcISkz5A+nBsiYrh4EEnvAI4h/SFuWFj1EuDPhfnLGz9ExIikO4EnI+KxwjbLgf/Rov4XN+37fUZpfhfO7RxgpHBudwJ/zOd2Keka8oaIWFE49i8krRzjuAA7kr61m1tNFwCLJD0/Ilbm+XMkzYmIB5RGAV4CHJm3fwnp2/nCQh0BriC1hHYEft6oGvDjkno1DAL/XZhfXjhu87LGt13VcwL4Y0TcXtjmtvzvXFIAL/PTpvnbqNaKG93wKqa9vPRqFIDB//f1pyNi1/Itx7QCeFFhfi5wd17+D03Lr+qwrJ5eetzXYtkcUlP4maZpb579EM4iXRIcDFwH3CfpJElTAHJfwTeAX5H+cHfn2eZ2c4fbI03zg6Msa9VR1/zHuxLYssV2xXM7rsW5bVM4ty1aHLdVWc0a5TZ/po35RufVJbnMN+X5t5Ca/NcU6gjpW7tYxzvz8uIv4sMRMVhSr4bHI2KkMN/Yb/VnXThW47Ouek5rHKfp+FU7WKv+n7dFA1MqTTW5BHinkt2BRyPiHtKl7GskzVbqxHxNXtaRXrYoWj3P/hDphE9qse5xSN/epGvdUyW9iNSHcDLpF/4/SMHhuoh4b2NHSXvVW3UgXQc/2DR/zyjbQjq3i0nX9M0eyP/eC7xslLLG0ii3uU6bF8omIp6QdCkpQJxBCrYXRm6T8mxn2VHAb1qUc2fh526/j6DSOU1cqjMIIOk8UstgjqQVpJGMaQAR8R+k4P46UsvsSeBded1Dkk4Crs+HOjEiOv7sehkoWrmc9Mt7a0Q8VbZxRPwFOEXSu0jXuADrA6uaNn1brbVM3ggsBcg95Acwdofe5aTm9A2FP8xm1wNvkzS3cfkhaT7lgeIW0i/Hm0kdgA0HA7+PiPsLy84HLpD0BlJr5vzCumWkgDsvIv6zpMxua+ecyrTbwuiYJAam1TfiHxHNHbjN6wN43yjrziK1xGsz3oHiy6Tr5YckPUrqfLsc2Au4JiLOk3Q66dvkWlIn596kvojj8jEWA1+V9AnSpcnrgFcXC5HU+ND+ldQ5ujaOlDRI+oX+J2BbUo97w3rAnpKWAiOk1sTrgEtz+Q+Qrsf3JXVUXgWcDXwyb3MCKeidxLMtjjUoDdtenct6kjRGPkTqEHtTLq/5F+zSvO3pwJ0RsTq45b6WY4FvKg0n/5j0R7YNqYPwYFJfw4Z0z/GSjiR1UJ4GfLLCOY0pIgZz/9PBSjcsTQU+wLM3YL0M+GFN9U8kBmpsUUw04x0oHib9Ev8c2JP0B/h64ErgprzNr/LyfyZ9QywH/ikivpfXn076xf5gXr+YNNR4baGcReSmWQcOIV0CfZbUYfSWiCg21wO4KSL2kbQRqUP2bbncM0hB4C5SIFwOEBFPStqPdAl1Pqmj81hS8GhlFbAgX1KsB/yBdN6z8zHfHhHFFgMR8bSkS3JdTmk+YERcIOkxUhB9N2lU5g7SH9LRpFZUpx1vY/n3iPg8pPsoSAHjPaRLjpbnVNHRwJeAn5EC68dJn+2drDl8WJs6Lz0mGo3eKu5B4dIewAkRsV+ePx4gIprH8Osoax7ww4jYsc39Did9828UEU+0sd/3ScOQi9spr43jb0DqlHxPRFzXhePPJY3anAwcExG1Px8h6Y/ArhHRsgVVUxmzgN8C24xxCdixKbO2jJm7VvsueuzKz91Qw6hHT4333WjduTlknOWgtAvpUqjuY0+RdCNpZGRxN4JEdhrwMdJlVLcE8FNJN0g6qktlbAPcT7pL8zeSvi6p9kspARoYqDT1o/GutVos6+u3/UqaCXwH+FDT/Rm1iIjhiNiZND6+m6S2WkhVKD1duTIibqj72E3mR8QrSXfUvk/Snl0oYyrwSuBrEbEL6aauj9dfjHo9PNpT4x0oRrtpZMKIiEURoSqXHUrPR3wHODcivlu2fYf1eoR0I03H9/G3MB/YP18anA8skPStuguJiLvzvytJnb+71V0G6XdsRaHldREpcNRLDhTddD2wXX5gaDqpw/CSca7TWsnPGZwJLI2IL3epjM2UH/LKz4nsQ7U7EdsSEcdHxNyImEf6P7kiIt5eZxlKD/Nt1PiZdGNQy0eqOxER9wJ/0bMPGr6aZ+/krE8eHq0y9aNxHfWIiCFJ7yfdOTYFOCsibq27nFY3r0TEmTUXM5/08NfNuQ8B0vMhP6qxjC1Jt2RPIQX5CyOi3mG+3tkcuDg/xzUV+K+I+EmXyvoA6eGy6aQRnU5HwJ4j9VH0Z2uhinEd9TCbLKbNflHM/ocPV9r2/u8d23ejHuN9H4XZJOEbrsysjCb3pYcDhVkNVPNDYRONA4VZTRwozGxsGmBgan8OfVYx3vdRANDF23d7Xo7PZWKW0/UyBJoypdLUjyZEoCC9OGWylONzmZjldLUMTfJbuH3pYVYHuTOzbZo6IzR9ZvUdpm3IwAZz2r7za8dZ7e3yglkb8jdbbNrWTvfN3KJ8o4KNNtuSzbfdoe1zuf/uVq8UHcNafGYbbTanfKOCGZtszvNe/LK2z6Xde/hmzN6cWVu1V87QM8PlGxVMm7UZG2y5XVtlDD66kqEnH2314GJLDhRt0vSZTH1ppTw2Hblk36Gul3HqHh/pehkAXzvxtK6XMf+oI8s3qsHgcDefTE8euKv2B3Of4/eLPtjW9gMDlWNK35kofRRmfU0SGqg2VTzeQqXsd8slPeexeEmnSroxT7+X9Ehh3XBhXS0PWbqPwqwmU6bU872bH/r7Kun9qiuA6yVdEhGrn3qNiA8Xtv8A6UVJDU/ld5bUxi0KszqIOlsUuwHLI+KOnP/kfNJb30dzKCldY9c4UJjVID1mXlugqPyKSEkvBrZmzSxsM5QSOV8r6cC1PKU1+NLDrBZiQJU7M+dIWlKYPyMizljjYM812ojNIaSct8VhoK0i4m5J2wBXSLo5Iv5QtXKtOFCY1SFfelT0QMn7KNp5ReQhNCUCKrxi8A5JV5H6LzoKFL70MKtJjZcelV4RmV/vN5uU+6axbHbO+YKkOaQ3r3X86r9KgaJsqMZsXSfBlKmqNJWJiCGg8YrIpaRXHt4q6URJxRuUDgXOb8pX8nJgiaTfkhJpnVIcLVlbpZceVYZqzCzdS1GX/K7VHzUt+1TT/Akt9vslsFNtFcmq9FGsHqoBkNQYqnGgMMskTeo7M6sEilZDNa/qTnXM+lcbnZl9p0qgqDRUk5/3T4/yTutm8muziWldDxSVhmryOPAZwFo9CWrW10Q791H0nSqBYvVQDXAXaajmrV2tlVmfadyZOVmVBopeZfMy62sSU6ZO3tuSKt2Z2WqoxszWVOfw6ETjW7jNapAuPca7Ft3jQGFWB03uN1w5UJjVZJ3uzDSzKuQ+CjMbm3zpYWZlJJi6rg+Pmlm5KW5RtGfHWdGTnBsvWdz9OPfExzbpehkAxyzsfi6MuftN63oZAINLl5Rv1KH1Fu5SvlGHdvth9d8vIQcKMyshtyjMrIRwoDCzEhJMdaAws7FM9hbF5B3PMeshSUyfOqXSVPF4ZblHD5d0fyHH6JGFdYdJuj1Ph9Vxfm5RmNWkrhZFGy+0viAi3t+07ybAp4FdSW+iuyHv+3AndXKLwqwGyqMeVaYK2s09WrQfsDgiHsrBYTGwcK1OqsCBwqwGjfsoKgaKOTk3aGM6qulwVXOP/k9JN0m6SFLjdZWV85a2o0pej7OA1wMrI2LHTgs0m6ymVH8orCylYJUXWv8AOC8iVkk6GjgHWFBx37ZVaVEsooami9lkVvOlR+kLrSPiwYhYlWf/E/jbqvuujdJAERFXAw91WpDZZFdjoCjNPSppy8Ls/qTUg5DebfuanIN0NvCavKwjHvUwq8GAxHo1PT062gutJZ0ILImIS4B/yXlIh0hf5IfnfR+SdBIp2ACcGBEdf9HXFiiKCYBeMMsJgGzdU+cNV2W5RyPieOD4UfY9CzirtspQY6AoJgD6my02dQIgW6fID4WZWZl1/hZuSecBvwJeKmmFpCO6Xy2zPlPvqMeEUyVT2KG9qIhZP/OLa8yslATT/c5MMxvLZO+jcKAwq4NHPcysjFA7z3r0HQcKs5oMOFCY2VgETJm8ccKBwqwWTinYvvtmbsGpe3ykG4deQy+S88zc91PlG9XgmM9+rOtlvPd5W3W9DIAtdu/4PSml9jprWdfLWPZw9aRMAqYNeHjUzMbgSw8zKyf50sPMxiY86mFmFfjSw8zG5BaFmZXzLdxmViYNj07eQDF5B37NekiIAVWbKh2vPPfoMZJuywmALpf04sK64UJO0kua910bblGY1aHGS4+KuUd/A+waEU9Keg/wBeAted1TEbFzLZXJqrwK70WSrpS0VNKtkj5YZwXMJoPUmVltqqA092hEXBkRT+bZa0mJfrqmyqXHEHBsRLwc2B14n6Ttu1kps340Rao0UV/u0YYjgB8X5mfk414r6cA6zq3KOzPvAe7JPz8uaSmp0s0p2M3WWW0Oj9aRezRtKL0d2BXYq7B4q4i4W9I2wBWSbo6IP1StXCtt9VFImgfsAlzXSaFmk45gSn1DA5Xyh0raB/gEsFchDykRcXf+9w5JV5H+ZjsKFJVPTdJM4DvAhyLisRbrj2o0pZ567OFO6mTWd4SYNjBQaaqgSu7RXYDTgf0jYmVh+WxJ6+Wf5wDzqaH1X6lFIWkaKUicGxHfbbVNMVPY5tvu4Exhtk6p887MirlHvwjMBL6tVO6fI2J/4OXA6ZJGSA2BU5pGS9ZKaaBQqsWZwNKI+HKnBZpNSvVeelTJPbrPKPv9EtipvpokVU5tPvAOYEHhJo7X1V0Rs37WaFHUdcPVRFNl1OMaWvfCmllBn8aASnxnpllNBibx96kDhVkNhFsUZlam5s7MicaBwqwGQr70MLNyvvQws1KT+L01DhRmdZnEcaI7geL+u+/jayee1o1Dr+GYhdUzOa11GT3I4AXw5U9+qetlLDni3V0vA2BocLjrZfz1sVXlG3VoeKT6kwh+ua6ZVeLX9ZvZmCSQWxRmVsadmWZWahI3KBwozOogJnfuCwcKs5q4j8LMxlb9Vfx9yYHCrAZicg+PVkkANEPSryX9NicA+kwvKmbWbyRVmioeqyyl4HqSLsjrr8tvyG+sOz4vXyZpvzrOrUr/yypgQUS8AtgZWChp9zoKN5ss6swUVkgp+Fpge+DQFkm3jgAejohtgVOBz+d9tye9tXsHYCHwf/PxOlIaKCJ5Is9Oy5Pfsm3WRBWnCkpTCub5c/LPFwGvzi/CPgA4PyJWRcSdwPJ8vI5UGtGRNEXSjcBKYHFEOAGQ2RpqzWZeJaXg6m0iYgh4FNi04r5tqxQoImI4Z0eeC+wmacfmbYoJgGLo6U7rZdZf1LiNu3yiPPdolZSCo21TOR1hO9oa9YiIR3KKsoXALU3rVicAGthgji9NbJ2iCBSVf+3Lco9WSSnY2GaFpKnA84CHKu7btiqjHptJ2jj/vD6wD/C7Tgs2m2w0MlRpqqA0pWCePyz/fBBwRUREXn5IHhXZGtgO+HWn51alRbElcE7uOR0ALoyIH3ZasNnkEhD1vB+lYkrBM4FvSlpOakkckve9VdKFpHyjQ8D7IqLjF4RUSQB0EykbspmNpfqlR4VDlaYUfBp48yj7ngycXFtl8J2ZZvWI+loUE5EDhVlN5EBhZqUcKMxsbL70MLMyETBcaeizLzlQmNXEfRRmVs6Boj0bbTaH+Ucd2Y1Dr2HuftO6XsZ7n7dV18uA3iTnufrMs7peBsAb3v/PXS9j75226HoZ914wvfrGEbXeRzHRuEVhVhe3KMysjPsozKyEh0fNrEwEVHsytC85UJjVQPjSw8yqGHGgMLMxeXjUzMoE7sw0s3Luo2B1UpIlwF0R8fruVcmsH3nUo+GDwFJgVpfqYta/ImCk41dTTlhVEwDNBf4R+Hp3q2PWv2JkpNLUKUmbSFos6fb87+wW2+ws6Vc5X/BNkt5SWLdI0p2SbszTzmVlVgoUwGnAx4DJexFm1pHcoqgyde7jwOURsR1weZ5v9iTwzoho5CA9rZF2I/toROycpxvLCqyS1+P1wMqIuKFku9WZwgafeKTssGaTS9DLQFHMO3oOcOBzqhPx+4i4Pf98Nykd6GZrW2CVFsV8YH9JfyQlS10g6VstKnZGROwaEbtOn7lx82qzSS0IYni40lSDzSPiHoD87/PH2ljSbsB04A+FxSfnS5JTJa1XVmCVbObHR8TciJhHSjJyRUS8vWw/s3VKkO7MrDKV5x5F0s8k3dJias5qPiZJWwLfBN4VsXr89njgZcDfAZsAx5Udx/dRmNUhRoihwapbl+UeJSL2GW2dpPskbRkR9+RAsHKU7WYBlwKfjIhrC8e+J/+4StLZwEfKKly1M7NRwFW+h8JsFNVbFJ0q5h09DPh+8wY5Z+nFwDci4ttN67bM/4rUv3FL8/7N2goUZjaaIEaGK001OAXYV9LtwL55Hkm7SmrcwnAwsCdweIth0HMl3QzcDMwBPltWoC89zOrQGPXoRVERDwKvbrF8CXBk/vlbwHMGHfK6Be2W6UBhVovwY+ZmViKoa+hzQnKgMKvF5H7Ww4HCrA4RxNAz412LrnGgMKuFWxRti4DB4e537AwuXdL1MrbY/YVdLwNgaLD7v2S9yOAF8IOvnN71Mj568Ze6Xsb5M9r48+jhqMd4cIvCrAZB1PII+UTlQGFWB7cozKyc+yjMrIzvozCzcgEeHjWzMUXU9cDXhORAYVYTj3qY2dgiiB7cOzReKgWK/L7Mx4FhYKjs7Txm65oIHCiyvSPiga7VxKyv+YYrMyvjFgWQ7jv7qaQATo+IM7pYJ7O+ExEMD3p4dH5E3C3p+cBiSb+LiKuLG+RXjh8FMGP25jVX02zim8yXHpVerpszDRERK0lv9t2txTarEwBNcwIgW9fkUY8qU6eq5B7N2w0XXqx7SWH51pKuy/tfkN/YPaYqKQU3lLRR42fgNVR4vbfZuqZXgYJquUcBnirkF92/sPzzwKl5/4eBI8oKrNKi2By4RtJvgV8Dl0bETyrsZ7bOiIieZTOnQu7R0eRcHguAi9rZv7SPIiLuAF5RtSJm66qR3o16rJF7NPcdtjJD0hJgCDglIr4HbAo8EhFDeZsVQOnbmTw8alaHkWBkcKh8u2RO/gNuOKN5JFHSz4AtWuz7iTZqtVUehNgGuCIn/XmsxXZRdiAHCrMaBG2NevQk92hhEOIOSVcBuwDfATaWNDW3KuYCd5dV2CkFzerQw1EPquUenS1pvfzzHGA+cFtEBHAlcNBY+zdzoDCrSQ8DRZXcoy8HluRBiCtJfRS35XXHAcdIWk7qszizrEBfepjVIWCkRzdcVcw9+ktgp1H2v4MW90KNxYHCrAaBHzM3szJ+Z2b7hp4Z5oG7Wo3C1Gu9hbt0vYy9zlrW9TIA/vrYqq6XsfdOrUbb6teL5Dx7vvEjXS9jaPmK6htHMPJM5eHRvuMWhVktfOlhZiUienpnZs85UJjVwm+4MrMyfsOVmZUKiOHSRyb6lgOFWQ2CcB+FmZUIGH7GgcLMxuC8HmZWLmJS91FUenpU0saSLpL0O0lLJe3R7YqZ9ZuR4ag09aOqLYr/A/wkIg7Kb+zdoIt1Mus/6/qlh6RZwJ7A4QARMQgMdrdaZv0lgJGR/mwtVFHl0mMb4H7gbEm/kfT1/Np+M2vIfRRVpn5UJVBMBV4JfC0idgH+Sos8ApKOkrRE0pKhJx+tuZpmE1sEDA8OV5r6UZVAsQJYERHX5fmLSIFjDcVMYVM3eF6ddTSb+PKdmZO1RVElr8e9kv4i6aURsYz0Cq7byvYzW7dM7jszq75c9wPAuZJuAnYG/lf3qmTWhwJiJCpNnaqSe1TS3oW8ozdKelrSgXndIkl3FtbtXFZmpeHRiLgRGDMPgdm6LKCX90g0co+eIunjef64NeoTcSXpSx1JmwDLgZ8WNvloRFxERX5dv1kdepvXo93cowcBP46IJ9e2QAcKs5r0sDNzjdyjwGi5RxsOAc5rWnaypJskndpIFDQWP+thVoMIGH6m8tBnr3KPklMO7gRcVlh8PHAvMB04g3TZcuJYx3GgMKtDtPUcR09yj2YHAxdHxDOFY9+Tf1wl6Wyg9JXmvvQwq0Nv76MozT1acChNlx05uCBJpP6NW8oKdIvCrAZBTx8KOwW4UNIRwJ+BN0PKPQocHRFH5vl5wIuAnzftf66kzQABNwJHlxXoQGFWh+jd8GiV3KN5/o/AC1tst6DdMpWyoNdL0v3An9rYZQ7wQO0VGZ9yfC4Ts5y1KePFEbFZlQ23m75+nDpn20oHfcM9t9xQ1kcx0XSlRVH1w22QtKQXH1wvyvG5TMxyul1GBIx04Ut3ovClh1kNAhicxO+jcKAwq8mwWxRdd0b5Jn1Tjs9lYpbT1TIC6NMnyCvpSmem2bpm66nrx4kbz6u07Tsf/J07M83WVZO5ReFAYVaDINxHYWZjS6Me412L7nGgMKtBhEc9zKwC91GY2ZjS8OjkjRQOFGY1mOz3UThQmNXELQozG1PqzBzvWnSPA4VZDQJ4xi0KMxubb7gysxLuzDSzUpN9eNRv4TarQ+7MrDJ1StKbJd0qaSS/UHe07RZKWiZpeU492Fi+taTrcu7SCyRNLyvTgcKsBo0WRZWpBrcAbwKuHm0DSVOArwKvBbYHDpW0fV79eeDUiNgOeBg4oqxABwqzmvSqRRERSyNiWclmuwHLI+KOiBgEzgcOyLk8FgCNBMVVcpe6j8KsDiNMuHdmvhD4S2F+BfAqYFPgkYgYKix/ziv9mzlQmNXgAQYvO50/zam4+YxOco9GxFiZwVYfosWyGGP5mBwozGoQEQtrPt6ouUcrWkHKEtYwF7iblNtkY0lTc6uisXxM7qMwm5yuB7bLIxzTgUOASyK9JPdK4KC8XVnuUsCBwqzvSHqjpBXAHsClki7Ly18g6UcAubXwfuAyYClwYUTcmg9xHHCMpOWkPoszS8v0W7jNrIxbFGZWyoHCzEo5UJhZKQcKMyvlQGFmpRwozKyUA4WZlXKgMLNS/x+J1ReSD0aBaAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQoAAAD4CAYAAAAU5qhvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHsNJREFUeJzt3XmYXFWd//H3pzsJYQlrADMEDEEGRXwMwoBOeHSMiIgOoAMIgoLCj0fEfQERRxBEUWeEmdFxQFYVWd1QEEQWGVSWMCAEwxKDQgQMq4AsId3f3x/nFNwU1XVvp29Vuiqf1/PcJ113O6eqO98695x7z1cRgZlZOwMrugJmNv45UJhZKQcKMyvlQGFmpRwozKyUA4WZlXKg6AJJV0m6oKZzzZV0Rh3nMqvKgcJsHJJ0mqTFkuaNsF2S/lPSAkm3SHpNYdv+ku7Ky/511GfcBQpJg5Imreh62PLJf8CTV3Q9WpG06oquwyicAezcZvtbgc3zcjDwLQBJ6wJHAdsD2wFHSVpnrJVZ4YFC0hm5Ob27pNuAZ0hvEkmbSDpH0iOSnpJ0qaQtmo4/IkfVZyT9RdIlkl6St60u6RuS7sjH3y3pm5LWbDpHSPq4pH+X9LCkhyR9Km/bX9JCSY/lKD+5cNwB+dh/kPS/kp6WdKekd1R431tJukjSE3k5v1Hvpn1+nd/bfEm7VvxMByUdLekeSc9Kuk3Suwvb35fXr9103Cvz+3lTYd1u+ffzjKQHJH1V0sTC9qPz57WDpBtIv789W9Spce43NK1fQ9KTkj5SWLeDpF/l39nDkr4taUph+7T8u1hY+My/WPyCkTQjl7evpO9Iegz4aZXPbzyIiKuBR9rsshvwnUiuBdaWNA14C3BZRDwSEY8Cl9E+4FSywgNFNgP4KvBlYBfg7hwZrwG2AD4A7AWsDvyy8c0g6b3AZ4Gvkz6gQ4AFeT+A1YBB4EhSBP5XYA5wfos6fBJYA9gH+D7wNUlfBQ4APpLL2Rf4WItjzwV+ArwTuBU4X9KrR3qzkl4G/BqYDLwnl/FK4KeSlPdZFbg01+ndwBeBE4FNRjpvwTH5PZ8M7JrLOkvSPnn7D/O/zQHtXcBi4Kpch73yvtfn83yB9O315abjVgPOBE4h/VFe31yhiLgNuBZ4X9OmPYGJpM8cSbOBy4EHgD1In/cuwOmFY6aS/hN9Ipf3tXze/2rxWfwb8EQu50sttveqjYB7C68X5XUjrR+biFihC6mJFcCspvXHAg8D6xbWrQP8FTg0v/4G8INRlDUBmJ3L26SwPoArC68HgPuBR4E1C+vPA64rvD4gH/vZpmNvB84prLsKuKDw+rvAHcCkwrrNgSHgbfn1B4HngOmFfRp1P6PNe1wX+BtwVNP6i4E7Cq9/AlzStM8dwDfyzwL+BJzetM/7gaeB9fLro3Oddqvw+R8EPAmsUVh3ddNn87/F30VeNyeXsVWb3+u7Sa2ZSXndjHzMj7rxd6wpG4VWXa/SAswD5haWg0d4XzOAeSNsuwjYofD6cmAb4NPA5wrr/xX45Fjf3wTGhz9HxM1N63YkNZsel9So5xPAjcC2+fXNwIGSvkD64G6MiKHiSSS9h/TNszkvtDQA/h64p/D68sYPETEs6W7gqYh4vLDPAuAfW9T/R03H/oQWze+m93YmMFx4b3cDf8zv7SLS9eWNEbGocO5fS1rc5rwAW5G+4ZtbTecCZ0jaICIW59dnSpoaEQ9JmkX6TA7K+/89qfVyXqGOAFeQWkJbAb9qVA34eUm9AM4htYr2BE6XtBmwA/DPAJJWA14HfLipzGtIQXMbYF5udX2U1LrZNNenYRPS76nhogr1GruhZ5n4itIrTgCW/N8pz0TEtuV7trUI2LjwejpwX17/T03rrxpjWePm0uMvLdZNJTWFn2ta3sgLH9BppEuCvYDrgL9IOlbSIEDuK/gO8FvSH+dreaG53dzh9ljT6yUjrGvVUdf8n3cxMK3FfsX3dniL9zaz8N5e0uK8rcpq1ii3+TNtvG50bF2Yy3xnfv0u4M+k/5SNOkJqiRTreHdeX/wjfTQilpTUi4h4ktQqa1x+HEC6xLikULdB4L+bynyWdHnSKPNjwL+TAvRupKB6aN7W/Ptp9bfVERoYrLTU5ELgvUpeC/w1Iu4nXa7uJGkdpU7MnfK6MRkvLYpWz7o/Qvowjm2x7QlI397ACcAJkjYm9SEcR/qD/x9ScLguIj7YOLC5M60mG5Auk4qv72+z/yOkP/JTWmx7KP/7APDyEcpqp1Fuc502LJRNRDwp6SJSgDiZFGzPi9xe5YWOtIOBm1qUc3fh59HMVXAK8GtJmwPvJXXINVqBj+VzHU0KUM3uy//uCZwfEUc2NkjacoTyujSPguoMAkg6m9QymCppEWkkYyJARPwP6fPZhdR6eoocfCPiEUnHAjfkUx0TEe06RSsZL4GilctJf7y3RcTTZTtHxL3A8ZLeBzT+aFYlfRsV7VtrLZN3APMBJA2QvuVe1KFXcDmp6X5j4T9msxuAfSVNb1x+5I6+skAxj/SHsyepU7NhL+DOiHiwsO4c4FxJ/0xqzZxT2HYHKeDOiIhvl5RZWUT8RtLtpNbgJqQ+qsa2v0m6FtgiIo4Z4RTQvd9rZZIYmFjfqH5E7FOyPXihFdW87TTS51ub8RAoNgK2krQAOCUijs/rvw7sB1wh6b9If7QbAm8AromIsyWdRPrmu5bUyflGUl/E4fkclwHflHQj6T/CUN6vbgflUYpdSdfMU0itoZEcTQokF0k6jdSK2Ah4M6mj8ipSL//n8j5Hk/5zfBFYCuyqNJR8QUQcVTxx/kY5EficpKWkzrJ3kr59mv/4LiIFlZOAuyPi+sJ5hpWGiL+fh1YPJV16zQR2B/aIiKcqf0LLOpU0UvEsaYRoCFiar9sPAy6XNAxcQGo9bgK8DTgyIu4k/V4/Iuk64A+kIPGykQrLw8CnkIJzAO+PiN8uZ91HKoSBGlsU480K7aPIfQnbA3eSWgH7NJqQEfEQqU/hdtLlxS9IQ6hrAbfkU/wWeD3pP9XFpG/2/xcRP87bTyJdy84kNdsmknrH67Y3aXj25aQ+hP2A3UdqDuc/9teS/pOeTOoI/ALpP86CvM9T+Zx/I33TH0XqlL2VFIRmATvn69NmnycNYR4C/Iz0Ge0XEcUWAxHxTD7XNFLnZrO/I3VYrknqHP0haTTm/0hBY3k1fj9PAm+MiFmNzr2IuCbXd33S6NBPScHjXl7obzgGOJsUOM/OdXn+PowW/oM0wvNy4NXk1l/dutxH0VUaueXbhcKl1wFHR8Rb8usjACKieZy+jrJmAD+LiK1qPOcBpCA1JXfUFbf9hDTUeFld5TWdfzVSx+MhEXFdB84/nTQycxzwiYh4e43n/iAp6D8MbJO/FDpC6ea63wEz21zmjdngmtNijW2bbxFp7fErv3xjDaMeXbWiRz06c3PICpaD0takkZi6zz0o6WZSy+WyTgSJ7ETSN/lwXSfMd0vuRBqpOiOf+xeSbpR0cF3lNJkJPEgajr1J0imSVi87aLQEaGCg0tKLVnSt1WJdT8/2K2kN4AfAx5ruwahFRAxFxCzS+Ph2kmprITVIejuwOCJurPnUR5MuheaTbgSaHRGvId01e6ik19dcHqR+uNcA34qIrUmXcp+pvxj19aXHig4UI9000hMi4oyIUOOyQ+kZiB8AZ0XED9sfPeayHyPdSDPm+/hbmE3qMP0jqX9kjqTvjfWkEXFAREyKiDdHxKMRcV9ev5g0XLzdWMtoYRGwqNDyuoAUOOolB4pOugHYXNKm+YGevWk/WjBu5bsFTwXmR8TXO1TG+rkHv/EsyI6kzt5aRcQRETE9ImaQfidXRMR+dZah9MDelMbPpBuDWj5SPRYR8QBwr154mPBNwO/rLoc8PFpl6UUrdHg0IpZK+hDpzrFB4LRIDw/VqtXNKxFxas3FzCY94HVr7kOA9AxIqxuHltc00m3Xg6Qgf15E/KzG83fThsCP8jNwE4DvR8Ql7Q9Zbh8mPRQ3CVjIix9MG7PUR9GbrYUqVuioh1m/mLjOxrHOP3280r4P/viTPTfqMR5uuDLrA/19w5UDhVkd1N+XHg4UZjVQzQ+FjTcOFGY1caAws/Y0wMCE3hz6rGJF30cBQAdv3+16OX4v47Ocjpch0OBgpaUXjYtAQZocpV/K8XsZn+V0tAz1+S3cvvQwq4PcmTlqmjA5NGmN6gdMXJ2B1aaO+s6vqdPKJnta1hpTp7HBZluOqpyNJzwzqjI23nA9ttli5qjfy033jvL5seX8zLpRxsDEVUa3/+S1mLDWRqMq55UzNyzfqWCj6Rvz6q1fM6oy7r3nHh55+KFWDy625EAxSpq0BhO2qJSrZkz+5bPt5iqpx4nr1/74QUtTPn5FV8rphinTNut4GRef9dGOl7HLnNE9zDowUDmm9Jzx0kdh1tMkoYFqS8Xz7ayU4W6BpBc9Fi/pBEk35+VOpUxojW1DhW21PGTpPgqzmgwO1vO9mx/6+yZpDtVFwA2SLoyI5596jYiPF/b/MGmipIan85wltXGLwqwOos4WxXbAgohYmPOlnEOa2X0k+5DmDu0YBwqzGqTHzGsLFJWniJT0UtLM78VOrslKiaWvlbT7cr6lZfjSw6wWYkCVOzOnSppbeH1yRJy8zMlebKQRm71JaRuKqTQ3iYj7JM0kpbu4NSL+ULVyrThQmNUhX3pU9FDJfBSjmSJyb5oSARWmGFwo6SpS/8WYAoUvPcxqUuOlR6UpIvP0fuuQ8ts01q0jaZX881TSzGtjnvqvUqAoG6oxW9lJMDhBlZYyEbEUaEwROZ805eFtko6RVLxBaR/gnKZ8Ja8A5kr6HXAlcHxxtGR5lV56VBmqMbN0L0Vd8lyrFzet+3zT66NbHPcb4FW1VSSr0kfx/FANgKTGUI0DhVkmqa/vzKwSKFoN1WzfmeqY9a5RdGb2nCqBotJQTX7ePz3KO7H2jG1m497KHigqDdXkceCTgc4/1Wg23ojR3EfRc6oEiueHaoA/k4Zq3t3RWpn1mMadmf2qNFB0K5uXWU+TGJzQv7clVbozs9VQjZktq87h0fHGt3Cb1SBdeqzoWnSOA4VZHdTfM1w5UJjVZKXuzDSzKuQ+CjNrT770MLMyEkxY2YdHzazcoFsUozN12gZdyblx6pf+s+Nl3HXg+zteBsCBXfi8uuWQ2Zt2vIwdDvt5x8u4b9FfK+8r5EBhZiXkFoWZlRAOFGZWQoIJDhRm1k6/tyj6dzzHrIskMWnCYKWl4vnKco8eIOnBQo7Rgwrb9pd0V172r+P9uUVhVpO6WhSjmND63Ij4UNOx6wJHAduSZqK7MR/76Fjq5BaFWQ2URz2qLBWMNvdo0VuAyyLikRwcLgN2Xq43VeBAYVaDxn0UFQPF1JwbtLEc3HS6qrlH/0XSLZIukNSYrrJy3tLRqJLX4zTg7cDiiNhqrAWa9avB6g+FlaUUrDKh9U+BsyPiWUkfAM4E5lQ8dtSqtCjOoIami1k/q/nSo3RC64h4OCKezS+/DWxT9djlURooIuJq4JGxFmTW72oMFKW5RyVNK7zclZR6ENLctjvlHKTrADvldWPiUQ+zGgxIrFLT06MjTWgt6RhgbkRcCHwk5yFdSvoiPyAf+4ikY0nBBuCYiBjzF31tgaKYAGiNqdNK9jbrP3XecFWWezQijgCOGOHY04DTaqsMNQaKYgKgDTbb0gmAbKUiPxRmZmVW+lu4JZ0N/BbYQtIiSQd2vlpmPabeUY9xp0qmsH26URGzXuaJa8yslASTPGemmbXT730UDhRmdfCoh5mVERrNsx49x4HCrCYDDhRm1o6Awf6NEw4UZrVwSsHR23jCM5y4/rxOnHoZ3UjOc/Wptd4yP6KLTpjTlXK6YeGRny/faYw22+awjpfx8KUTK+8rYOKAh0fNrA1fephZOcmXHmbWnvCoh5lV4EsPM2vLLQozK+dbuM2sTBoe7d9A0b8Dv2ZdJMSAqi2Vzleee/QTkn6fEwBdLumlhW1DhZykFzYfuzzcojCrQ42XHhVzj94EbBsRT0k6BPgq8K687emImFVLZbIqU+FtLOlKSfMl3Sbpo3VWwKwfpM7MaksFpblHI+LKiHgqv7yWlOinY6pceiwFPhkRrwBeCxwqactOVsqsFw1KlRbqyz3acCDw88Lryfm810ravY73VmXOzPuB+/PPT0iaT6p0cwp2s5XWKIdH68g9mnaU9gO2Bd5QWL1JRNwnaSZwhaRbI+IPVSvXyqj6KCTNALYGrhtLoWZ9RzBY39BApfyhknYEjgTeUMhDSkTcl/9dKOkq0v/ZMQWKym9N0hrAD4CPRcTjLbYf3GhKPfjXF20262tCTBwYqLRUUCX36NbAScCuEbG4sH4dSavkn6cCs6mh9V+pRSFpIilInBURP2y1TzFT2DZbzHSmMFup1HlnZsXco18D1gDOVyr3nojYFXgFcJKkYVJD4Pim0ZLlUhoolGpxKjA/Ir4+1gLN+lK9lx5Vco/uOMJxvwFeVV9NkipvbTbwHmBO4SaOXequiFkva7Qo6rrharypMupxDa17Yc2soEdjQCW+M9OsJgN9/H3qQGFWA+EWhZmVqbkzc7xxoDCrgZAvPcysnC89zKxUH89b40BhVpc+jhOdCRQ33fs4Uz5+RSdOvYwDP/uRjpfRrQxe3fi8umXKtO07XsYt+9Y6L0tLu5y6WuV9PbmumVXi6frNrC0J5BaFmZVxZ6aZlerjBoUDhVkdRH/nvnCgMKuJ+yjMrL3qU/H3JAcKsxqI/h4erZIAaLKk6yX9LicA+kI3KmbWayRVWiqeqyyl4CqSzs3br8sz5De2HZHX3yHpLXW8tyr9L88CcyLi1cAsYGdJr62jcLN+UWemsEJKwbcCWwL7tEi6dSDwaES8DDgB+Eo+dkvSrN2vBHYG/jufb0xKA0UkT+aXE/PiWbbNmqjiUkFpSsH8+sz88wXAm/JE2LsB50TEsxFxN7Agn29MKo3oSBqUdDOwGLgsIpwAyGwZtWYzr5JS8Pl9ImIp8FdgvYrHjlqlQBERQzk78nRgO0lbNe9TTAAUS58Za73Meosat3GXL5TnHq2SUnCkfSqnIxyNUY16RMRjOUXZzsC8pm3PJwAaWG2qL01spaIIFJX/7Mtyj1ZJKdjYZ5GkCcBawCMVjx21KqMe60taO/+8KrAjcPtYCzbrNxpeWmmpoDSlYH69f/55D+CKiIi8fu88KrIpsDlw/VjfW5UWxTTgzNxzOgCcFxE/G2vBZv0lIIbrOVO1lIKnAt+VtIDUktg7H3ubpPNI+UaXAodGxNBY61QlAdAtpGzIZtZO9UuPCqcqTSn4DLDnCMceBxxXW2XwnZlm9Yj6WhTjkQOFWU3kQGFmpRwozKw9X3qYWZkIGKo09NmTHCjMauI+CjMr50BhZm1F1HofxXjjQGFWF7cozKyM+yjMrISHR82sTARUezK0JzlQmNVA+NLDzKoYdqAws7Y8PGpmZQJ3ZppZOfdR8HxSkrnAnyPi7Z2rklkv8qhHw0eB+cCaHaqLWe+KgOExT005blVNADQdeBtwSmerY9a7Yni40jJWktaVdJmku/K/67TYZ5ak3+Z8wbdIeldh2xmS7pZ0c15mlZVZKVAAJwKHAf17EWY2JrlFUWUZu88Al0fE5sDl+XWzp4D3RkQjB+mJjbQb2acjYlZebi4rsEpej7cDiyPixpL9nCnMVl5BNwNFMe/omcDuL6pOxJ0RcVf++T5SOtD1l7fAKi2K2cCukv5ISpY6R9L3WlTs5IjYNiK21YTJy1sfs54UBDE0VGmpwYYRcT9A/neDdjtL2g6YBPyhsPq4fElygqRVygqsks38iIiYHhEzSElGroiI/cqOM1upBOnOzCpLee5RJP1S0rwWS3NW87YkTQO+C7wv4vnx2yOAlwP/AKwLHF52Ht9HYVaHGCaWLqm6d1nuUSJix5G2SfqLpGkRcX8OBItH2G9N4CLgcxFxbeHc9+cfn5V0OvCpsgpX7cxsFHCV76EwG0H1FsVYFfOO7g/8pHmHnLP0R8B3IuL8pm3T8r8i9W/Maz6+2agChZmNJIjhoUpLDY4H3izpLuDN+TWStpXUuIVhL+D1wAEthkHPknQrcCswFfhiWYG+9DCrQ2PUoxtFRTwMvKnF+rnAQfnn7wEvGnTI2+aMtkwHCrNahB8zN7MSQV1Dn+OSA4VZLfr7WQ8HCrM6RBBLn1vRtegYBwqzWrhFMWoDE1dhyrTNOnHqZRwye9OOl7HwyM93vAyAKdO270o53fDE/X8o32mM1p082PEyBjWKnbs46rEiuEVhVoMganmEfLxyoDCrg1sUZlbOfRRmVsb3UZhZuQAPj5pZWxF1PfA1LjlQmNXEox5m1l4EMbSSB4o8X+YTwBCwtGx2HrOVTQQOFNkbI+KhjtXErKf5hiszK+MWBZDuO/uFpABOioiTO1gns54TEQwt8fDo7Ii4T9IGwGWSbo+Iq4s75CnHDwYYmLxWzdU0G//6+dKj0uS6OdMQEbGYNLPvdi32eSEB0KTV662l2XiXRz2qLGNVJfdo3m+oMLHuhYX1m0q6Lh9/bp6xu60qKQVXlzSl8TOwExWm9zZb2XQrUFAt9yjA04X8orsW1n8FOCEf/yhwYFmBVVoUGwLXSPodcD1wUURcUuE4s5VGRHQtmzkVco+OJOfymANcMJrjS/soImIh8OqqFTFbWQ13b9Rjmdyjue+wlcmS5gJLgeMj4sfAesBjEbE077MI2KisQA+PmtVhOBhesrR8v2Rq/g/ccHLzSKKkXwIvaXHskaOo1SZ5EGImcEVO+vN4i/2i7EQOFGY1CEY16tGV3KOFQYiFkq4CtgZ+AKwtaUJuVUwH7iursFMKmtWhi6MeVMs9uo6kVfLPU4HZwO8jIoArgT3aHd/MgcKsJl0MFFVyj74CmJsHIa4k9VH8Pm87HPiEpAWkPotTywr0pYdZHQKGu3TDVcXco78BXjXC8QtpcS9UOw4UZjUI/Ji5mZXxnJmj98qZG3LxWR/txKmXscNhP+94GZttc1jHywC4Zd9ZXSmnG7qRnGetfzy042UsveOe6jtHMPxc5eHRnuMWhVktfOlhZiUiunpnZtc5UJjVwjNcmVkZz3BlZqUCYqj0kYme5UBhVoMg3EdhZiUChp5zoDCzNpzXw8zKRfR1H0Wlp0clrS3pAkm3S5ov6XWdrphZrxkeikpLL6raovgP4JKI2CPP2LtaB+tk1ntW9ksPSWsCrwcOAIiIJcCSzlbLrLcEMDzcm62FKqpceswEHgROl3STpFPytP1m1pD7KKosvahKoJgAvAb4VkRsDfyNFnkEJB0saa6kuQ8/5FzGtnKJgKElQ5WWXlQlUCwCFkXEdfn1BaTAsYxiprD1pk6ts45m41++M7NfWxRV8no8IOleSVtExB2kKbh+X3ac2cqlv+/MrDq57oeBsyTdAswCvtS5Kpn1oIAYjkrLWFXJPSrpjYW8ozdLekbS7nnbGZLuLmwrnTWp0vBoRNwMtM1DYLYyC+jmPRKN3KPHS/pMfn34MvWJuJL0pY6kdYEFwC8Ku3w6Ii6gIk/Xb1aH7ub1GG3u0T2An0fEU8tboAOFWU262Jm5TO5RYKTcow17A2c3rTtO0i2STmgkCmrHz3qY1SAChp6rPPTZrdyj5JSDrwIuLaw+AngAmAScTLpsOabdeRwozOoQo3qOoyu5R7O9gB9FxHOFc9+ff3xW0unAp8oq7EsPszp09z6K0tyjBfvQdNmRgwuSROrfmFdWoFsUZjUIuvpQ2PHAeZIOBO4B9oSUexT4QEQclF/PADYGftV0/FmS1gcE3Ax8oKxABwqzOkT3hker5B7Nr/8IbNRivzmjLbMjgeKWm296aPq6U/40ikOmAt14QGTU5fyxC2UATP9wd8oZh2V0q5zlKeOl1Xft3duzq+hIoIiI9Uezv6S5ZZ07dehGOX4v47OcTpcRAcPhQGFmbQSwpI/no3CgMKvJkFsUHXdy+S49U47fy/gsp6NlBNDHXRQo+jgKmnXLphNWjWPWnlFp3/c+fPuN3ej7qdN4aVGY9bx+blE4UJjVIAj3UZhZe2nUY0XXonMcKMxqEOFRDzOrwH0UZtZWGh7t30jhQGFWg36/j8KBwqwmblGYWVupM3NF16JzHCjMahDAc25RmFl7vuHKzEq4M9PMSvX78Khn4TarQ+7MrLKMlaQ9Jd0maThPqDvSfjtLukPSgpx6sLF+U0nX5dyl50qaVFamA4VZDRotiipLDeYB7wSuHmkHSYPAN4G3AlsC+0jaMm/+CnBCRGwOPAocWFagA4VZTbrVooiI+RFxR8lu2wELImJhRCwBzgF2y7k85gCNBMVVcpe6j8KsDsOMuzkzNwLuLbxeBGwPrAc8FhFLC+tfNKV/MwcKsxo8xJJLT+JPUyvuPnksuUcjol1msOdP0WJdtFnflgOFWQ0iYueazzdi7tGKFpGyhDVMB+4j5TZZW9KE3KporG/LfRRm/ekGYPM8wjEJ2Bu4MNIkuVcCe+T9ynKXAg4UZj1H0jskLQJeB1wk6dK8/u8kXQyQWwsfAi4F5gPnRcRt+RSHA5+QtIDUZ3FqaZmehdvMyrhFYWalHCjMrJQDhZmVcqAws1IOFGZWyoHCzEo5UJhZKQcKMyv1/wGLGSF6BITOSAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Correlations of mean of features resampled over months\n", "plt.matshow(data.resample('M').mean().corr(method='spearman'),vmax=1,vmin=-1,cmap='RdBu')\n", "plt.title('resampled over month', size=15)\n", "plt.colorbar()\n", "plt.margins(0.02)\n", "plt.matshow(data.resample('A').mean().corr(method='spearman'),vmax=1,vmin=-1,cmap='RdBu')\n", "plt.title('resampled over year', size=15)\n", "plt.colorbar()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is seen from above that with resampling techniques one can change the correlations among features. This is important for feature engineering." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Global_active_powerGlobal_reactive_powerVoltageGlobal_intensitySub_metering_1Sub_metering_2Sub_metering_3
Global_active_power1.0000000.247017-0.3997620.9988890.4844010.4345690.638555
Global_reactive_power0.2470171.000000-0.1122460.2661200.1231110.1392310.089617
Voltage-0.399762-0.1122461.000000-0.411363-0.195976-0.167405-0.268172
Global_intensity0.9988890.266120-0.4113631.0000000.4892980.4403470.626543
Sub_metering_10.4844010.123111-0.1959760.4892981.0000000.0547210.102571
Sub_metering_20.4345690.139231-0.1674050.4403470.0547211.0000000.080872
Sub_metering_30.6385550.089617-0.2681720.6265430.1025710.0808721.000000
\n", "
" ], "text/plain": [ " Global_active_power Global_reactive_power Voltage \\\n", "Global_active_power 1.000000 0.247017 -0.399762 \n", "Global_reactive_power 0.247017 1.000000 -0.112246 \n", "Voltage -0.399762 -0.112246 1.000000 \n", "Global_intensity 0.998889 0.266120 -0.411363 \n", "Sub_metering_1 0.484401 0.123111 -0.195976 \n", "Sub_metering_2 0.434569 0.139231 -0.167405 \n", "Sub_metering_3 0.638555 0.089617 -0.268172 \n", "\n", " Global_intensity Sub_metering_1 Sub_metering_2 \\\n", "Global_active_power 0.998889 0.484401 0.434569 \n", "Global_reactive_power 0.266120 0.123111 0.139231 \n", "Voltage -0.411363 -0.195976 -0.167405 \n", "Global_intensity 1.000000 0.489298 0.440347 \n", "Sub_metering_1 0.489298 1.000000 0.054721 \n", "Sub_metering_2 0.440347 0.054721 1.000000 \n", "Sub_metering_3 0.626543 0.102571 0.080872 \n", "\n", " Sub_metering_3 \n", "Global_active_power 0.638555 \n", "Global_reactive_power 0.089617 \n", "Voltage -0.268172 \n", "Global_intensity 0.626543 \n", "Sub_metering_1 0.102571 \n", "Sub_metering_2 0.080872 \n", "Sub_metering_3 1.000000 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(data.corr())\n", "pd.plotting.scatter_matrix(data, figsize=(12, 12))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Please check your scatter_matrix as below:
\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### StatsModels\n", "\n", "`statsmodels` is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct. The package is released under the open source Modified BSD (3-clause) license. The online documentation is hosted at [statsmodels.org](http://www.statsmodels.org/).\n", "\n", "1. Statistics `stats`\n", " * statistical tests\n", " * kernel density estimation\n", " * generalized method of moments \n", "

\n", "1. Linear regression\n", " * Linear model\n", " * Generalized Linear Model (GLM)\n", " * Robust Linear Model\n", " * Linear Mixed Effects Model\n", " * ANOVA (Analysis of Variance)\n", " * Discrete Dependent Variable \n", "

\n", "1. Time-Series analysis\n", " * ARMA/ARIMA process\n", " * Vector ARMA process" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "timeseries = data.Global_active_power.resample('D').mean()\n", "# for i in range(num_timeseries):\n", "# timeseries.append(np.trim_zeros(data.iloc[:,i], trim='f'))" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Date_Time\n", "2006-12-16 3.053475\n", "2006-12-17 2.354486\n", "2006-12-18 1.530435\n", "2006-12-19 1.157079\n", "2006-12-20 1.545658\n", "Freq: D, Name: Global_active_power, dtype: float64" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "timeseries.head()" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1442" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(timeseries)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train and Test splits\n", "\n", "Often times one is interested in evaluating the model or tuning its hyperparameters by looking at error metrics on a hold-out test set. Here we split the available data into train and test sets for evaluating the trained model. For standard machine learning tasks such as classification and regression, one typically obtains this split by randomly separating examples into train and test sets. However, in forecasting it is important to do this train/test split based on time rather than by time series.\n", "\n", "In this example, we will reserve the last section of each of the time series for evalutation purpose and use only the first part as training data. " ] }, { "cell_type": "code", "execution_count": 199, "metadata": {}, "outputs": [], "source": [ "# we use minute frequency for the time series\n", "freq = 'D'\n", "\n", "# we predict for 60 days \n", "prediction_length = 60\n", "\n", "# we also use 60 days as context length, \n", "# this is the number of state updates accomplished before making predictions\n", "context_length = 60" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We specify here the portion of the data that is used for training: the model sees data from 2006-12-16 to 2008-12-31 for training." ] }, { "cell_type": "code", "execution_count": 201, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Date_Time\n", "2006-12-16 3.053475\n", "2006-12-17 2.354486\n", "2006-12-18 1.530435\n", "2006-12-19 1.157079\n", "2006-12-20 1.545658\n", "Freq: D, Name: Global_active_power, dtype: float64" ] }, "execution_count": 201, "metadata": {}, "output_type": "execute_result" } ], "source": [ "timeseries.head()" ] }, { "cell_type": "code", "execution_count": 202, "metadata": {}, "outputs": [], "source": [ "start_dataset = pd.Timestamp(\"2006-12-16\", freq=freq)\n", "end_training = pd.Timestamp(\"2010-07-11\", freq=freq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The DeepAR JSON input format represents each time series as a JSON object. In the simplest case each time series just consists of a start time stamp (``start``) and a list of values (``target``). For more complex cases, DeepAR also supports the fields ``dynamic_feat`` for time-series features and ``cat`` for categorical features, which we will use later." ] }, { "cell_type": "code", "execution_count": 203, "metadata": {}, "outputs": [], "source": [ "training_data = [\n", " {\n", " \"start\": str(start_dataset),\n", " \"target\": timeseries[start_dataset:end_training - 1].tolist() # We use -1, because pandas indexing includes the upper bound \n", " # \"target\": ts[start_dataset:end_training - 1].tolist() # We use -1, because pandas indexing includes the upper bound \n", " }\n", " #for ts in timeseries\n", "]\n", "# print(len(training_data))" ] }, { "cell_type": "code", "execution_count": 204, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1303" ] }, "execution_count": 204, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(timeseries[start_dataset:end_training -1])" ] }, { "cell_type": "code", "execution_count": 205, "metadata": {}, "outputs": [], "source": [ "test_data = [\n", " {\n", " \"start\": str(start_dataset),\n", " \"target\": timeseries[end_training:end_training + 10 * prediction_length].tolist() # We use -1, because pandas indexing includes the upper bound \n", " }\n", " #for ts in timeseries\n", "]\n", "# print(len(test_data))" ] }, { "cell_type": "code", "execution_count": 206, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "139" ] }, "execution_count": 206, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(timeseries[end_training:end_training + 10 * prediction_length])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's now write the dictionary to the `jsonlines` file format that DeepAR understands (it also supports gzipped jsonlines and parquet)." ] }, { "cell_type": "code", "execution_count": 207, "metadata": {}, "outputs": [], "source": [ "def write_dicts_to_file(path, data):\n", " with open(path, 'wb') as fp:\n", " for d in data:\n", " fp.write(json.dumps(d).encode(\"utf-8\"))\n", " fp.write(\"\\n\".encode('utf-8'))" ] }, { "cell_type": "code", "execution_count": 208, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 4 ms, sys: 0 ns, total: 4 ms\n", "Wall time: 2.18 ms\n" ] } ], "source": [ "%%time\n", "write_dicts_to_file(\"train.json\", training_data)\n", "write_dicts_to_file(\"test.json\", test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have the data files locally, let us copy them to S3 where DeepAR can access them. Depending on your connection, this may take a couple of minutes." ] }, { "cell_type": "code", "execution_count": 209, "metadata": {}, "outputs": [], "source": [ "s3 = boto3.resource('s3')\n", "def copy_to_s3(local_file, s3_path, override=False):\n", " assert s3_path.startswith('s3://')\n", " split = s3_path.split('/')\n", " bucket = split[2]\n", " path = '/'.join(split[3:])\n", " buk = s3.Bucket(bucket)\n", " \n", " if len(list(buk.objects.filter(Prefix=path))) > 0:\n", " if not override:\n", " print('File s3://{}/{} already exists.\\nSet override to upload anyway.\\n'.format(s3_bucket, s3_path))\n", " return\n", " else:\n", " print('Overwriting existing file')\n", " with open(local_file, 'rb') as data:\n", " print('Uploading file to {}'.format(s3_path))\n", " buk.put_object(Key=path, Body=data)" ] }, { "cell_type": "code", "execution_count": 210, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Uploading file to s3://sagemaker-us-west-2-742595989409/deepar-household-electricity-notebook/data/train/train.json\n", "Uploading file to s3://sagemaker-us-west-2-742595989409/deepar-household-electricity-notebook/data/test/test.json\n", "CPU times: user 28 ms, sys: 0 ns, total: 28 ms\n", "Wall time: 122 ms\n" ] } ], "source": [ "%%time\n", "copy_to_s3(\"train.json\", s3_data_path + \"/train/train.json\")\n", "copy_to_s3(\"test.json\", s3_data_path + \"/test/test.json\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's have a look to what we just wrote to S3." ] }, { "cell_type": "code", "execution_count": 211, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\"start\": \"2006-12-16 00:00:00\", \"target\": [3.0534747474747492, 2.354486111111111, 1.530434722222219...\n" ] } ], "source": [ "s3filesystem = s3fs.S3FileSystem()\n", "with s3filesystem.open(s3_data_path + \"/train/train.json\", 'rb') as fp:\n", " print(fp.readline().decode(\"utf-8\")[:100] + \"...\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We are all set with our dataset processing, we can now call DeepAR to train a model and generate predictions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Train a model\n", "\n", "Here we define the estimator that will launch the training job." ] }, { "cell_type": "code", "execution_count": 212, "metadata": {}, "outputs": [], "source": [ "estimator = sagemaker.estimator.Estimator(\n", " sagemaker_session=sagemaker_session,\n", " image_name=image_name,\n", " role=role,\n", " train_instance_count=1,\n", " train_instance_type='ml.m4.xlarge',\n", " base_job_name='deepar-home-electricity-demo',\n", " output_path=s3_output_path\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we need to set the hyperparameters for the training job. For example frequency of the time series used, number of data points the model will look at in the past, number of predicted data points. The other hyperparameters concern the model to train (number of layers, number of cells per layer, likelihood function) and the training options (number of epochs, batch size, learning rate...). We use default parameters for every optional parameter in this case (you can always use [Sagemaker Automated Model Tuning](https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/) to tune them)." ] }, { "cell_type": "code", "execution_count": 213, "metadata": {}, "outputs": [], "source": [ "# hyperparameters = {\n", "# \"time_freq\": freq,\n", "# \"epochs\": \"5\",\n", "# \"early_stopping_patience\": \"10\",\n", "# \"mini_batch_size\": \"20\",\n", "# \"learning_rate\": \"0.001\",\n", "# \"context_length\": str(context_length),\n", "# \"prediction_length\": str(prediction_length)\n", "# }\n", "hyperparameters = {\n", " \"time_freq\": freq,\n", " \"context_length\": str(context_length),\n", " \"prediction_length\": str(prediction_length),\n", " \"num_cells\": \"40\",\n", " \"num_layers\": \"3\",\n", " \"likelihood\": \"gaussian\",\n", " \"epochs\": \"20\",\n", " \"mini_batch_size\": \"32\",\n", " \"learning_rate\": \"0.001\",\n", " \"dropout_rate\": \"0.05\",\n", " \"early_stopping_patience\": \"10\"\n", "}" ] }, { "cell_type": "code", "execution_count": 214, "metadata": {}, "outputs": [], "source": [ "estimator.set_hyperparameters(**hyperparameters)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We are ready to launch the training job. SageMaker will start an EC2 instance, download the data from S3, start training the model and save the trained model.\n", "\n", "If you provide the `test` data channel as we do in this example, DeepAR will also calculate accuracy metrics for the trained model on this test. This is done by predicting the last `prediction_length` points of each time-series in the test set and comparing this to the actual value of the time-series. \n", "\n", "**Note:** the next cell may take a few minutes to complete, depending on data size, model complexity, training options." ] }, { "cell_type": "code", "execution_count": 215, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:sagemaker:Creating training-job with name: deepar-home-electricity-demo-2018-07-27-03-15-18-550\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "......................\n", "\u001b[31mArguments: train\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Reading default configuration from /opt/amazon/lib/python2.7/site-packages/algorithm/default-input.json: {u'num_dynamic_feat': u'auto', u'dropout_rate': u'0.10', u'mini_batch_size': u'128', u'test_quantiles': u'[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]', u'_tuning_objective_metric': u'', u'_num_gpus': u'auto', u'num_eval_samples': u'100', u'learning_rate': u'0.001', u'num_cells': u'40', u'num_layers': u'2', u'embedding_dimension': u'10', u'_kvstore': u'auto', u'_num_kv_servers': u'auto', u'cardinality': u'auto', u'likelihood': u'student-t', u'early_stopping_patience': u''}\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Reading provided configuration from /opt/ml/input/config/hyperparameters.json: {u'dropout_rate': u'0.05', u'learning_rate': u'0.001', u'num_cells': u'40', u'prediction_length': u'60', u'epochs': u'20', u'time_freq': u'D', u'context_length': u'60', u'num_layers': u'3', u'mini_batch_size': u'32', u'likelihood': u'gaussian', u'early_stopping_patience': u'10'}\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Final configuration: {u'dropout_rate': u'0.05', u'test_quantiles': u'[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]', u'_tuning_objective_metric': u'', u'num_eval_samples': u'100', u'learning_rate': u'0.001', u'num_layers': u'3', u'epochs': u'20', u'embedding_dimension': u'10', u'num_cells': u'40', u'_num_kv_servers': u'auto', u'mini_batch_size': u'32', u'likelihood': u'gaussian', u'num_dynamic_feat': u'auto', u'cardinality': u'auto', u'_num_gpus': u'auto', u'prediction_length': u'60', u'time_freq': u'D', u'context_length': u'60', u'_kvstore': u'auto', u'early_stopping_patience': u'10'}\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Detected entry point for worker worker\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Using early stopping with patience 10\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] [cardinality=auto] `cat` field was NOT found in the file `/opt/ml/input/data/train/train.json` and will NOT be used for training.\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] [num_dynamic_feat=auto] `dynamic_feat` field was NOT found in the file `/opt/ml/input/data/train/train.json` and will NOT be used for training.\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Training set statistics:\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Real time series\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] number of time series: 1\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] number of observations: 1303\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] mean target length: 1303\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] min/mean/max target: 0.173818051815/1.10822587149/3.31485128403\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] mean abs(target): 1.10822587149\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] contains missing values: no\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Small number of time series. Doing 10 number of passes over dataset per epoch.\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Test set statistics:\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Real time series\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] number of time series: 1\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] number of observations: 139\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] mean target length: 139\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] min/mean/max target: 0.364406943321/0.94621287833/1.88464164734\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] mean abs(target): 0.94621287833\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] contains missing values: no\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] nvidia-smi took: 0.0251779556274 secs to identify 0 gpus\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Number of GPUs being used: 0\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Create Store: local\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"get_graph.time\": {\"count\": 1, \"max\": 469.3880081176758, \"sum\": 469.3880081176758, \"min\": 469.3880081176758}}, \"EndTime\": 1532661526.713893, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661526.242651}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:46 INFO 140074042410816] Number of GPUs being used: 0\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"initialize.time\": {\"count\": 1, \"max\": 971.4839458465576, \"sum\": 971.4839458465576, \"min\": 971.4839458465576}}, \"EndTime\": 1532661527.214226, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661526.71398}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:47 INFO 140074042410816] Epoch[0] Batch[0] avg_epoch_loss=1.272068\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] Epoch[0] Batch[5] avg_epoch_loss=0.845399\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] Epoch[0] Batch [5]#011Speed: 218.46 samples/sec#011loss=0.845399\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] processed a total of 319 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"epochs\": {\"count\": 1, \"max\": 20, \"sum\": 20.0, \"min\": 20}, \"update.time\": {\"count\": 1, \"max\": 1658.9720249176025, \"sum\": 1658.9720249176025, \"min\": 1658.9720249176025}}, \"EndTime\": 1532661528.873359, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661527.214291}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=192.268629997 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] #progress_metric: host=algo-1, completed 5 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:48 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_c0f18e48-f8ab-4af3-abf5-86b6b3a4b369-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 47.096967697143555, \"sum\": 47.096967697143555, \"min\": 47.096967697143555}}, \"EndTime\": 1532661528.921088, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661528.873479}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:49 INFO 140074042410816] Epoch[1] Batch[0] avg_epoch_loss=0.450175\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:49 INFO 140074042410816] Epoch[1] Batch[5] avg_epoch_loss=0.410062\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:49 INFO 140074042410816] Epoch[1] Batch [5]#011Speed: 230.24 samples/sec#011loss=0.410062\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] processed a total of 319 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1497.1671104431152, \"sum\": 1497.1671104431152, \"min\": 1497.1671104431152}}, \"EndTime\": 1532661530.41839, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661528.921164}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=213.052985582 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] #progress_metric: host=algo-1, completed 10 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_de513dee-4530-4948-b19a-39bb8395c93e-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 46.9210147857666, \"sum\": 46.9210147857666, \"min\": 46.9210147857666}}, \"EndTime\": 1532661530.465844, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661530.418465}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:50 INFO 140074042410816] Epoch[2] Batch[0] avg_epoch_loss=0.380706\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:51 INFO 140074042410816] Epoch[2] Batch[5] avg_epoch_loss=0.315473\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:51 INFO 140074042410816] Epoch[2] Batch [5]#011Speed: 221.60 samples/sec#011loss=0.315473\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] Epoch[2] Batch[10] avg_epoch_loss=0.326351\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] Epoch[2] Batch [10]#011Speed: 223.90 samples/sec#011loss=0.339405\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] processed a total of 338 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1643.8491344451904, \"sum\": 1643.8491344451904, \"min\": 1643.8491344451904}}, \"EndTime\": 1532661532.109826, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661530.465917}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=205.592850456 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] #progress_metric: host=algo-1, completed 15 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_1858a189-e242-4797-867e-ab3feb7b666d-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 56.439876556396484, \"sum\": 56.439876556396484, \"min\": 56.439876556396484}}, \"EndTime\": 1532661532.166809, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661532.109963}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:52 INFO 140074042410816] Epoch[3] Batch[0] avg_epoch_loss=0.309939\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] Epoch[3] Batch[5] avg_epoch_loss=0.259952\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] Epoch[3] Batch [5]#011Speed: 219.63 samples/sec#011loss=0.259952\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] Epoch[3] Batch[10] avg_epoch_loss=0.223093\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] Epoch[3] Batch [10]#011Speed: 227.20 samples/sec#011loss=0.178861\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] processed a total of 331 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1633.991003036499, \"sum\": 1633.991003036499, \"min\": 1633.991003036499}}, \"EndTime\": 1532661533.800934, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661532.166879}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=202.557603709 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] #progress_metric: host=algo-1, completed 20 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:53 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_0701de60-24fb-439e-945d-3dedfa47034d-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 48.83313179016113, \"sum\": 48.83313179016113, \"min\": 48.83313179016113}}, \"EndTime\": 1532661533.850233, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661533.801004}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:54 INFO 140074042410816] Epoch[4] Batch[0] avg_epoch_loss=0.124813\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:54 INFO 140074042410816] Epoch[4] Batch[5] avg_epoch_loss=0.172714\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:54 INFO 140074042410816] Epoch[4] Batch [5]#011Speed: 225.45 samples/sec#011loss=0.172714\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] processed a total of 310 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1531.6309928894043, \"sum\": 1531.6309928894043, \"min\": 1531.6309928894043}}, \"EndTime\": 1532661535.382007, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661533.850316}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=202.384097219 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] #progress_metric: host=algo-1, completed 25 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_36d3075b-c282-486d-871b-d399ee9f1e44-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 45.822858810424805, \"sum\": 45.822858810424805, \"min\": 45.822858810424805}}, \"EndTime\": 1532661535.428317, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661535.382078}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:55 INFO 140074042410816] Epoch[5] Batch[0] avg_epoch_loss=0.178906\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] Epoch[5] Batch[5] avg_epoch_loss=0.161604\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] Epoch[5] Batch [5]#011Speed: 221.68 samples/sec#011loss=0.161604\u001b[0m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] processed a total of 302 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1514.8308277130127, \"sum\": 1514.8308277130127, \"min\": 1514.8308277130127}}, \"EndTime\": 1532661536.943273, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661535.428385}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=199.347825875 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] #progress_metric: host=algo-1, completed 30 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:56 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_3f6d3df6-d554-4ddc-8d21-74d95b98ed84-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 45.50004005432129, \"sum\": 45.50004005432129, \"min\": 45.50004005432129}}, \"EndTime\": 1532661536.989284, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661536.943343}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:57 INFO 140074042410816] Epoch[6] Batch[0] avg_epoch_loss=0.135446\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:57 INFO 140074042410816] Epoch[6] Batch[5] avg_epoch_loss=0.114501\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:57 INFO 140074042410816] Epoch[6] Batch [5]#011Speed: 222.89 samples/sec#011loss=0.114501\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] processed a total of 316 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1476.783037185669, \"sum\": 1476.783037185669, \"min\": 1476.783037185669}}, \"EndTime\": 1532661538.466206, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661536.989359}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=213.962974431 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] #progress_metric: host=algo-1, completed 35 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_d13c9e29-891f-454b-95ff-d389dd213fef-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 44.64602470397949, \"sum\": 44.64602470397949, \"min\": 44.64602470397949}}, \"EndTime\": 1532661538.511351, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661538.466273}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:58 INFO 140074042410816] Epoch[7] Batch[0] avg_epoch_loss=0.189694\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:59 INFO 140074042410816] Epoch[7] Batch[5] avg_epoch_loss=0.141834\u001b[0m\n", "\u001b[31m[07/27/2018 03:18:59 INFO 140074042410816] Epoch[7] Batch [5]#011Speed: 223.07 samples/sec#011loss=0.141834\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] processed a total of 312 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1551.4729022979736, \"sum\": 1551.4729022979736, \"min\": 1551.4729022979736}}, \"EndTime\": 1532661540.06295, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661538.51142}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=201.084053695 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] #progress_metric: host=algo-1, completed 40 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_dd0f6ada-f55e-4089-b999-2c57c062ebe1-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 74.94807243347168, \"sum\": 74.94807243347168, \"min\": 74.94807243347168}}, \"EndTime\": 1532661540.138372, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661540.063028}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:00 INFO 140074042410816] Epoch[8] Batch[0] avg_epoch_loss=0.041331\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] Epoch[8] Batch[5] avg_epoch_loss=0.101388\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] Epoch[8] Batch [5]#011Speed: 221.49 samples/sec#011loss=0.101388\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] Epoch[8] Batch[10] avg_epoch_loss=0.103547\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] Epoch[8] Batch [10]#011Speed: 222.41 samples/sec#011loss=0.106138\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] processed a total of 333 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1634.108066558838, \"sum\": 1634.108066558838, \"min\": 1634.108066558838}}, \"EndTime\": 1532661541.772616, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661540.138446}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=203.765076203 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] #progress_metric: host=algo-1, completed 45 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:01 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_5186df37-c53f-4195-a4b6-d70c1b17804c-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 63.11511993408203, \"sum\": 63.11511993408203, \"min\": 63.11511993408203}}, \"EndTime\": 1532661541.836224, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661541.772702}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:02 INFO 140074042410816] Epoch[9] Batch[0] avg_epoch_loss=0.125514\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:02 INFO 140074042410816] Epoch[9] Batch[5] avg_epoch_loss=0.074293\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:02 INFO 140074042410816] Epoch[9] Batch [5]#011Speed: 226.06 samples/sec#011loss=0.074293\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] Epoch[9] Batch[10] avg_epoch_loss=0.035307\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] Epoch[9] Batch [10]#011Speed: 221.50 samples/sec#011loss=-0.011475\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] processed a total of 324 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1648.5710144042969, \"sum\": 1648.5710144042969, \"min\": 1648.5710144042969}}, \"EndTime\": 1532661543.48493, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661541.836296}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=196.518469233 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] #progress_metric: host=algo-1, completed 50 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_40df461c-4580-46f5-8987-d1d28505c79a-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 49.41511154174805, \"sum\": 49.41511154174805, \"min\": 49.41511154174805}}, \"EndTime\": 1532661543.534826, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661543.485018}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:03 INFO 140074042410816] Epoch[10] Batch[0] avg_epoch_loss=0.083117\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:04 INFO 140074042410816] Epoch[10] Batch[5] avg_epoch_loss=0.073549\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:04 INFO 140074042410816] Epoch[10] Batch [5]#011Speed: 224.92 samples/sec#011loss=0.073549\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] Epoch[10] Batch[10] avg_epoch_loss=0.068213\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] Epoch[10] Batch [10]#011Speed: 214.43 samples/sec#011loss=0.061811\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] processed a total of 349 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1659.013032913208, \"sum\": 1659.013032913208, \"min\": 1659.013032913208}}, \"EndTime\": 1532661545.193972, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661543.534898}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=210.350440248 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] #progress_metric: host=algo-1, completed 55 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] loss did not improve for 1 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:05 INFO 140074042410816] Epoch[11] Batch[0] avg_epoch_loss=0.033785\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] Epoch[11] Batch[5] avg_epoch_loss=0.054952\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] Epoch[11] Batch [5]#011Speed: 215.06 samples/sec#011loss=0.054952\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] processed a total of 309 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1523.3738422393799, \"sum\": 1523.3738422393799, \"min\": 1523.3738422393799}}, \"EndTime\": 1532661546.717783, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661545.194053}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=202.821246749 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] #progress_metric: host=algo-1, completed 60 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] loss did not improve for 2 epochs\u001b[0m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31m[07/27/2018 03:19:06 INFO 140074042410816] Epoch[12] Batch[0] avg_epoch_loss=0.125290\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:07 INFO 140074042410816] Epoch[12] Batch[5] avg_epoch_loss=0.090269\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:07 INFO 140074042410816] Epoch[12] Batch [5]#011Speed: 225.58 samples/sec#011loss=0.090269\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] Epoch[12] Batch[10] avg_epoch_loss=0.041725\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] Epoch[12] Batch [10]#011Speed: 222.48 samples/sec#011loss=-0.016528\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] processed a total of 326 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1660.499095916748, \"sum\": 1660.499095916748, \"min\": 1660.499095916748}}, \"EndTime\": 1532661548.378843, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661546.717875}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=196.311152772 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] #progress_metric: host=algo-1, completed 65 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] loss did not improve for 3 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:08 INFO 140074042410816] Epoch[13] Batch[0] avg_epoch_loss=0.038031\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:09 INFO 140074042410816] Epoch[13] Batch[5] avg_epoch_loss=0.054937\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:09 INFO 140074042410816] Epoch[13] Batch [5]#011Speed: 207.99 samples/sec#011loss=0.054937\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] Epoch[13] Batch[10] avg_epoch_loss=0.036359\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] Epoch[13] Batch [10]#011Speed: 221.30 samples/sec#011loss=0.014066\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] processed a total of 342 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1699.0950107574463, \"sum\": 1699.0950107574463, \"min\": 1699.0950107574463}}, \"EndTime\": 1532661550.078365, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661548.378929}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=201.272015504 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] #progress_metric: host=algo-1, completed 70 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] loss did not improve for 4 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:10 INFO 140074042410816] Epoch[14] Batch[0] avg_epoch_loss=0.075549\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] Epoch[14] Batch[5] avg_epoch_loss=0.037262\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] Epoch[14] Batch [5]#011Speed: 219.56 samples/sec#011loss=0.037262\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] Epoch[14] Batch[10] avg_epoch_loss=0.039390\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] Epoch[14] Batch [10]#011Speed: 224.12 samples/sec#011loss=0.041944\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] processed a total of 330 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1684.4029426574707, \"sum\": 1684.4029426574707, \"min\": 1684.4029426574707}}, \"EndTime\": 1532661551.76323, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661550.078429}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=195.900116044 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] #progress_metric: host=algo-1, completed 75 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:11 INFO 140074042410816] loss did not improve for 5 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:12 INFO 140074042410816] Epoch[15] Batch[0] avg_epoch_loss=0.021203\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:12 INFO 140074042410816] Epoch[15] Batch[5] avg_epoch_loss=0.019402\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:12 INFO 140074042410816] Epoch[15] Batch [5]#011Speed: 225.40 samples/sec#011loss=0.019402\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] Epoch[15] Batch[10] avg_epoch_loss=0.040792\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] Epoch[15] Batch [10]#011Speed: 217.36 samples/sec#011loss=0.066460\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] processed a total of 325 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1688.2209777832031, \"sum\": 1688.2209777832031, \"min\": 1688.2209777832031}}, \"EndTime\": 1532661553.451881, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661551.763318}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=192.498137011 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] #progress_metric: host=algo-1, completed 80 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] loss did not improve for 6 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:13 INFO 140074042410816] Epoch[16] Batch[0] avg_epoch_loss=-0.006675\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] Epoch[16] Batch[5] avg_epoch_loss=0.010563\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] Epoch[16] Batch [5]#011Speed: 219.53 samples/sec#011loss=0.010563\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] processed a total of 299 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1507.7879428863525, \"sum\": 1507.7879428863525, \"min\": 1507.7879428863525}}, \"EndTime\": 1532661554.9601, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661553.451944}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=198.287036097 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] #progress_metric: host=algo-1, completed 85 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:14 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:15 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_e27fd8e1-f54e-4ab5-ab91-87fec4f72123-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 55.8319091796875, \"sum\": 55.8319091796875, \"min\": 55.8319091796875}}, \"EndTime\": 1532661555.016606, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661554.960187}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:15 INFO 140074042410816] Epoch[17] Batch[0] avg_epoch_loss=-0.001955\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:15 INFO 140074042410816] Epoch[17] Batch[5] avg_epoch_loss=-0.004937\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:15 INFO 140074042410816] Epoch[17] Batch [5]#011Speed: 216.02 samples/sec#011loss=-0.004937\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] Epoch[17] Batch[10] avg_epoch_loss=0.002667\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] Epoch[17] Batch [10]#011Speed: 225.72 samples/sec#011loss=0.011793\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] processed a total of 329 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1667.4549579620361, \"sum\": 1667.4549579620361, \"min\": 1667.4549579620361}}, \"EndTime\": 1532661556.684201, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661555.016683}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=197.291643279 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] #progress_metric: host=algo-1, completed 90 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_cb82d8d0-d122-4842-80a4-8f69191b4d46-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 49.47805404663086, \"sum\": 49.47805404663086, \"min\": 49.47805404663086}}, \"EndTime\": 1532661556.734169, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661556.684287}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:16 INFO 140074042410816] Epoch[18] Batch[0] avg_epoch_loss=-0.043327\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:17 INFO 140074042410816] Epoch[18] Batch[5] avg_epoch_loss=0.008369\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:17 INFO 140074042410816] Epoch[18] Batch [5]#011Speed: 225.63 samples/sec#011loss=0.008369\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:18 INFO 140074042410816] processed a total of 292 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1511.1079216003418, \"sum\": 1511.1079216003418, \"min\": 1511.1079216003418}}, \"EndTime\": 1532661558.245413, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661556.734244}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:18 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=193.22237955 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:18 INFO 140074042410816] #progress_metric: host=algo-1, completed 95 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:18 INFO 140074042410816] loss did not improve for 1 epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:18 INFO 140074042410816] Epoch[19] Batch[0] avg_epoch_loss=0.002925\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Epoch[19] Batch[5] avg_epoch_loss=-0.027517\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Epoch[19] Batch [5]#011Speed: 218.34 samples/sec#011loss=-0.027517\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] processed a total of 320 examples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"update.time\": {\"count\": 1, \"max\": 1495.6309795379639, \"sum\": 1495.6309795379639, \"min\": 1495.6309795379639}}, \"EndTime\": 1532661559.741463, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661558.24548}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] #throughput_metric: host=algo-1, train throughput=213.939775141 records/second\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] #progress_metric: host=algo-1, completed 100 % of epochs\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] best epoch loss so far\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/state_bdd9a716-e304-4987-a6ad-8ff21edbd8dc-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.serialize.time\": {\"count\": 1, \"max\": 45.989990234375, \"sum\": 45.989990234375, \"min\": 45.989990234375}}, \"EndTime\": 1532661559.78796, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661559.741538}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Loading parameters from best epoch (19)\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"state.deserialize.time\": {\"count\": 1, \"max\": 18.826007843017578, \"sum\": 18.826007843017578, \"min\": 18.826007843017578}}, \"EndTime\": 1532661559.806988, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661559.788032}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Final loss: -0.0369148883969 (occurred at epoch 19)\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] #quality_metric: host=algo-1, train final_loss =-0.0369148883969\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] Worker algo-1 finished training.\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 WARNING 140074042410816] wait_for_all_workers will not sync workers since the kv store is not running distributed\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:19 INFO 140074042410816] All workers finished. Serializing model for prediction.\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"get_graph.time\": {\"count\": 1, \"max\": 2714.4081592559814, \"sum\": 2714.4081592559814, \"min\": 2714.4081592559814}}, \"EndTime\": 1532661562.522, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661559.807052}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:25 INFO 140074042410816] Number of GPUs being used: 0\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"finalize.time\": {\"count\": 1, \"max\": 5285.989046096802, \"sum\": 5285.989046096802, \"min\": 5285.989046096802}}, \"EndTime\": 1532661565.093545, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661562.522086}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:25 INFO 140074042410816] Serializing to /opt/ml/model/model_algo-1\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:25 INFO 140074042410816] Saved checkpoint to \"/opt/ml/model/model_algo-1-0000.params\"\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"model.serialize.time\": {\"count\": 1, \"max\": 420.93801498413086, \"sum\": 420.93801498413086, \"min\": 420.93801498413086}}, \"EndTime\": 1532661565.514611, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661565.093624}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:25 INFO 140074042410816] Successfully serialized the model for prediction.\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:25 INFO 140074042410816] Evaluating model accuracy on testset using 100 samples\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"model.bind.time\": {\"count\": 1, \"max\": 0.03886222839355469, \"sum\": 0.03886222839355469, \"min\": 0.03886222839355469}}, \"EndTime\": 1532661565.515471, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661565.514672}\n", "\u001b[0m\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31m#metrics {\"Metrics\": {\"model.score.time\": {\"count\": 1, \"max\": 3564.686059951782, \"sum\": 3564.686059951782, \"min\": 3564.686059951782}}, \"EndTime\": 1532661569.080128, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661565.515531}\n", "\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, RMSE): 0.38677016793\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, mean_wQuantileLoss): 0.203314\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.1]): 0.119702\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.2]): 0.186436\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.3]): 0.232395\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.4]): 0.260534\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.5]): 0.270927\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.6]): 0.259778\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.7]): 0.228279\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.8]): 0.17313\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #test_score (algo-1, wQuantileLoss[0.9]): 0.0986483\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #quality_metric: host=algo-1, test RMSE =0.38677016793\u001b[0m\n", "\u001b[31m[07/27/2018 03:19:29 INFO 140074042410816] #quality_metric: host=algo-1, test mean_wQuantileLoss =0.203314334154\u001b[0m\n", "\u001b[31m#metrics {\"Metrics\": {\"totaltime\": {\"count\": 1, \"max\": 43657.426834106445, \"sum\": 43657.426834106445, \"min\": 43657.426834106445}, \"setuptime\": {\"count\": 1, \"max\": 10.553836822509766, \"sum\": 10.553836822509766, \"min\": 10.553836822509766}}, \"EndTime\": 1532661569.716042, \"Dimensions\": {\"Host\": \"algo-1\", \"Operation\": \"training\", \"Algorithm\": \"AWS/DeepAR\"}, \"StartTime\": 1532661569.080218}\n", "\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/ec2-user/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/sagemaker/session.py:782: DeprecationWarning: generator 'multi_stream_iter' raised StopIteration\n", " for idx, event in sagemaker.logs.multi_stream_iter(client, log_group, stream_names, positions):\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "===== Job Complete =====\n", "Billable seconds: 168\n", "CPU times: user 468 ms, sys: 48 ms, total: 516 ms\n", "Wall time: 4min 42s\n" ] } ], "source": [ "%%time\n", "data_channels = {\n", " \"train\": \"{}/train/\".format(s3_data_path),\n", " \"test\": \"{}/test/\".format(s3_data_path)\n", "}\n", "\n", "estimator.fit(inputs=data_channels)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since you pass a test set in this example, accuracy metrics for the forecast are computed and logged (see bottom of the log).\n", "You can find the definition of these metrics from [our documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html). You can use these to optimize the parameters and tune your model or use SageMaker's [Automated Model Tuning service](https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/) to tune the model for you." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Create endpoint and predictor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have a trained model, we can use it to perform predictions by deploying it to an endpoint.\n", "\n", "**Note: Remember to delete the endpoint after running this experiment. A cell at the very bottom of this notebook will do that: make sure you run it at the end.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To query the endpoint and perform predictions, we can define the following utility class: this allows making requests using `pandas.Series` objects rather than raw JSON strings." ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [], "source": [ "class DeepARPredictor(sagemaker.predictor.RealTimePredictor):\n", " \n", " def __init__(self, *args, **kwargs):\n", " super().__init__(*args, content_type=sagemaker.content_types.CONTENT_TYPE_JSON, **kwargs)\n", " \n", " def predict(self, ts, cat=None, dynamic_feat=None, \n", " num_samples=100, return_samples=False, quantiles=[\"0.1\", \"0.5\", \"0.9\"]):\n", " \"\"\"Requests the prediction of for the time series listed in `ts`, each with the (optional)\n", " corresponding category listed in `cat`.\n", " \n", " ts -- `pandas.Series` object, the time series to predict\n", " cat -- integer, the group associated to the time series (default: None)\n", " num_samples -- integer, number of samples to compute at prediction time (default: 100)\n", " return_samples -- boolean indicating whether to include samples in the response (default: False)\n", " quantiles -- list of strings specifying the quantiles to compute (default: [\"0.1\", \"0.5\", \"0.9\"])\n", " \n", " Return value: list of `pandas.DataFrame` objects, each containing the predictions\n", " \"\"\"\n", " prediction_time = ts.index[-1] + 1\n", " quantiles = [str(q) for q in quantiles]\n", " req = self.__encode_request(ts, cat, dynamic_feat, num_samples, return_samples, quantiles)\n", " res = super(DeepARPredictor, self).predict(req)\n", " return self.__decode_response(res, ts.index.freq, prediction_time, return_samples)\n", " \n", " def __encode_request(self, ts, cat, dynamic_feat, num_samples, return_samples, quantiles):\n", " instance = series_to_dict(ts, cat if cat is not None else None, dynamic_feat if dynamic_feat else None)\n", "\n", " configuration = {\n", " \"num_samples\": num_samples,\n", " \"output_types\": [\"quantiles\", \"samples\"] if return_samples else [\"quantiles\"],\n", " \"quantiles\": quantiles\n", " }\n", " \n", " http_request_data = {\n", " \"instances\": [instance],\n", " \"configuration\": configuration\n", " }\n", " \n", " return json.dumps(http_request_data).encode('utf-8')\n", " \n", " def __decode_response(self, response, freq, prediction_time, return_samples):\n", " # we only sent one time series so we only receive one in return\n", " # however, if possible one will pass multiple time series as predictions will then be faster\n", " predictions = json.loads(response.decode('utf-8'))['predictions'][0]\n", " prediction_length = len(next(iter(predictions['quantiles'].values())))\n", " prediction_index = pd.DatetimeIndex(start=prediction_time, freq=freq, periods=prediction_length) \n", " if return_samples:\n", " dict_of_samples = {'sample_' + str(i): s for i, s in enumerate(predictions['samples'])}\n", " else:\n", " dict_of_samples = {}\n", " return pd.DataFrame(data={**predictions['quantiles'], **dict_of_samples}, index=prediction_index)\n", "\n", " def set_frequency(self, freq):\n", " self.freq = freq\n", " \n", "def encode_target(ts):\n", " return [x if np.isfinite(x) else \"NaN\" for x in ts] \n", "\n", "def series_to_dict(ts, cat=None, dynamic_feat=None):\n", " \"\"\"Given a pandas.Series object, returns a dictionary encoding the time series.\n", "\n", " ts -- a pands.Series object with the target time series\n", " cat -- an integer indicating the time series category\n", "\n", " Return value: a dictionary\n", " \"\"\"\n", " obj = {\"start\": str(ts.index[0]), \"target\": encode_target(ts)}\n", " if cat is not None:\n", " obj[\"cat\"] = cat\n", " if dynamic_feat is not None:\n", " obj[\"dynamic_feat\"] = dynamic_feat \n", " return obj" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can deploy the model and create and endpoint that can be queried using our custom DeepARPredictor class." ] }, { "cell_type": "code", "execution_count": 216, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "INFO:sagemaker:Creating model with name: forecasting-deepar-2018-07-27-03-22-49-329\n", "INFO:sagemaker:Creating endpoint with name deepar-home-electricity-demo-2018-07-27-03-15-18-550\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "--------------------------------------------------------------!" ] } ], "source": [ "predictor = estimator.deploy(\n", " initial_instance_count=1,\n", " instance_type='ml.m4.xlarge',\n", " predictor_cls=DeepARPredictor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Make predictions and plot results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can use the `predictor` object to generate predictions." ] }, { "cell_type": "code", "execution_count": 217, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0.10.50.9
2010-09-280.7900160.9685791.102380
2010-09-290.7443940.9255531.131745
2010-09-300.7807910.9999241.199642
2010-10-010.8536511.0138291.180801
2010-10-020.7928790.9949751.229360
2010-10-030.7753800.9586321.198079
2010-10-040.7622030.9608411.154595
2010-10-050.7706221.0055221.173487
2010-10-060.7738070.9820531.176765
2010-10-070.8998761.0721791.279244
2010-10-080.8151791.0306761.242005
2010-10-090.8467991.0754281.238595
2010-10-100.8257161.0659971.253097
2010-10-110.8846591.0778181.245890
2010-10-120.9207301.0730061.231640
2010-10-130.9012581.1099381.298712
2010-10-140.9217721.0645251.289613
2010-10-150.9208331.1112021.273061
2010-10-161.0292301.1881391.344286
2010-10-170.9115811.1118041.263128
2010-10-180.9008851.0734491.198113
2010-10-190.9812591.0934041.269331
2010-10-200.9369511.1044341.282887
2010-10-210.9365401.0889761.319242
2010-10-220.9420801.1229031.362140
2010-10-230.9320801.1192671.325692
2010-10-240.8957201.1408031.406739
2010-10-250.8973751.1125381.328852
2010-10-260.9246371.1680701.364797
2010-10-270.9572761.1753341.382472
2010-10-280.9222121.1577891.396143
2010-10-290.9670771.1993471.414492
2010-10-300.8300301.1951581.476995
2010-10-310.9516301.2707621.669064
2010-11-010.8095701.1128771.352301
2010-11-021.0018531.1685261.374803
2010-11-030.8858341.0847631.243589
2010-11-040.7822021.0719411.283330
2010-11-050.9332131.1492911.367097
2010-11-060.9517221.1900811.398906
2010-11-070.9674981.1617881.393864
2010-11-080.9155011.1557781.372192
2010-11-090.9712131.1984701.409445
2010-11-100.9043801.0752701.346587
2010-11-110.9628401.1473421.325590
2010-11-121.0910861.2835381.502536
2010-11-130.9854511.2072161.435151
2010-11-140.8738231.1553471.407026
2010-11-150.9075941.0951611.333333
2010-11-161.0215161.1784461.405428
2010-11-171.0059961.2000501.414176
2010-11-180.9726251.2083961.411030
2010-11-191.0368221.2171911.393905
2010-11-201.0325391.2408491.465980
2010-11-211.0465551.2290901.448083
2010-11-221.0136341.1888151.428163
2010-11-230.9977021.1778981.392498
2010-11-240.8593401.0731071.274164
2010-11-250.9388091.1461151.351901
2010-11-260.9968171.1788031.396186
\n", "
" ], "text/plain": [ " 0.1 0.5 0.9\n", "2010-09-28 0.790016 0.968579 1.102380\n", "2010-09-29 0.744394 0.925553 1.131745\n", "2010-09-30 0.780791 0.999924 1.199642\n", "2010-10-01 0.853651 1.013829 1.180801\n", "2010-10-02 0.792879 0.994975 1.229360\n", "2010-10-03 0.775380 0.958632 1.198079\n", "2010-10-04 0.762203 0.960841 1.154595\n", "2010-10-05 0.770622 1.005522 1.173487\n", "2010-10-06 0.773807 0.982053 1.176765\n", "2010-10-07 0.899876 1.072179 1.279244\n", "2010-10-08 0.815179 1.030676 1.242005\n", "2010-10-09 0.846799 1.075428 1.238595\n", "2010-10-10 0.825716 1.065997 1.253097\n", "2010-10-11 0.884659 1.077818 1.245890\n", "2010-10-12 0.920730 1.073006 1.231640\n", "2010-10-13 0.901258 1.109938 1.298712\n", "2010-10-14 0.921772 1.064525 1.289613\n", "2010-10-15 0.920833 1.111202 1.273061\n", "2010-10-16 1.029230 1.188139 1.344286\n", "2010-10-17 0.911581 1.111804 1.263128\n", "2010-10-18 0.900885 1.073449 1.198113\n", "2010-10-19 0.981259 1.093404 1.269331\n", "2010-10-20 0.936951 1.104434 1.282887\n", "2010-10-21 0.936540 1.088976 1.319242\n", "2010-10-22 0.942080 1.122903 1.362140\n", "2010-10-23 0.932080 1.119267 1.325692\n", "2010-10-24 0.895720 1.140803 1.406739\n", "2010-10-25 0.897375 1.112538 1.328852\n", "2010-10-26 0.924637 1.168070 1.364797\n", "2010-10-27 0.957276 1.175334 1.382472\n", "2010-10-28 0.922212 1.157789 1.396143\n", "2010-10-29 0.967077 1.199347 1.414492\n", "2010-10-30 0.830030 1.195158 1.476995\n", "2010-10-31 0.951630 1.270762 1.669064\n", "2010-11-01 0.809570 1.112877 1.352301\n", "2010-11-02 1.001853 1.168526 1.374803\n", "2010-11-03 0.885834 1.084763 1.243589\n", "2010-11-04 0.782202 1.071941 1.283330\n", "2010-11-05 0.933213 1.149291 1.367097\n", "2010-11-06 0.951722 1.190081 1.398906\n", "2010-11-07 0.967498 1.161788 1.393864\n", "2010-11-08 0.915501 1.155778 1.372192\n", "2010-11-09 0.971213 1.198470 1.409445\n", "2010-11-10 0.904380 1.075270 1.346587\n", "2010-11-11 0.962840 1.147342 1.325590\n", "2010-11-12 1.091086 1.283538 1.502536\n", "2010-11-13 0.985451 1.207216 1.435151\n", "2010-11-14 0.873823 1.155347 1.407026\n", "2010-11-15 0.907594 1.095161 1.333333\n", "2010-11-16 1.021516 1.178446 1.405428\n", "2010-11-17 1.005996 1.200050 1.414176\n", "2010-11-18 0.972625 1.208396 1.411030\n", "2010-11-19 1.036822 1.217191 1.393905\n", "2010-11-20 1.032539 1.240849 1.465980\n", "2010-11-21 1.046555 1.229090 1.448083\n", "2010-11-22 1.013634 1.188815 1.428163\n", "2010-11-23 0.997702 1.177898 1.392498\n", "2010-11-24 0.859340 1.073107 1.274164\n", "2010-11-25 0.938809 1.146115 1.351901\n", "2010-11-26 0.996817 1.178803 1.396186" ] }, "execution_count": 217, "metadata": {}, "output_type": "execute_result" } ], "source": [ "predictor.predict(timeseries[:-prediction_length], quantiles=[0.10, 0.5, 0.90])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we define a plotting function that queries the model and displays the forecast." ] }, { "cell_type": "code", "execution_count": 218, "metadata": {}, "outputs": [], "source": [ "def plot(\n", " predictor, \n", " target_ts, \n", " cat=None, \n", " dynamic_feat=None, \n", " forecast_date=end_training, \n", " show_samples=False, \n", " plot_history=7 * 12,\n", " confidence=80\n", "):\n", " print(\"calling served model to generate predictions starting from {}\".format(str(forecast_date)))\n", " assert(confidence > 50 and confidence < 100)\n", " low_quantile = 0.5 - confidence * 0.005\n", " up_quantile = confidence * 0.005 + 0.5\n", " \n", " # we first construct the argument to call our model\n", " args = {\n", " \"ts\": target_ts[:forecast_date],\n", " \"return_samples\": show_samples,\n", " \"quantiles\": [low_quantile, 0.5, up_quantile],\n", " \"num_samples\": 100\n", " }\n", "\n", "\n", " if dynamic_feat is not None:\n", " args[\"dynamic_feat\"] = dynamic_feat\n", " fig = plt.figure(figsize=(20, 6))\n", " ax = plt.subplot(2, 1, 1)\n", " else:\n", " fig = plt.figure(figsize=(20, 3))\n", " ax = plt.subplot(1,1,1)\n", " \n", " if cat is not None:\n", " args[\"cat\"] = cat\n", " ax.text(0.9, 0.9, 'cat = {}'.format(cat), transform=ax.transAxes)\n", "\n", " # call the end point to get the prediction\n", " prediction = predictor.predict(**args)\n", "\n", " # plot the samples\n", " if show_samples: \n", " for key in prediction.keys():\n", " if \"sample\" in key:\n", " prediction[key].plot(color='lightskyblue', alpha=0.2, label='_nolegend_')\n", " \n", " \n", " # plot the target\n", " target_section = target_ts[forecast_date-plot_history:forecast_date+prediction_length]\n", " target_section.plot(color=\"black\", label='target')\n", " \n", " # plot the confidence interval and the median predicted\n", " ax.fill_between(\n", " prediction[str(low_quantile)].index, \n", " prediction[str(low_quantile)].values, \n", " prediction[str(up_quantile)].values, \n", " color=\"b\", alpha=0.3, label='{}% confidence interval'.format(confidence)\n", " )\n", " prediction[\"0.5\"].plot(color=\"b\", label='P50')\n", " ax.legend(loc=2) \n", " \n", " # fix the scale as the samples may change it\n", " ax.set_ylim(target_section.min() * 0.5, target_section.max() * 1.5)\n", " \n", " if dynamic_feat is not None:\n", " for i, f in enumerate(dynamic_feat, start=1):\n", " ax = plt.subplot(len(dynamic_feat) * 2, 1, len(dynamic_feat) + i, sharex=ax)\n", " feat_ts = pd.Series(\n", " index=pd.DatetimeIndex(start=target_ts.index[0], freq=target_ts.index.freq, periods=len(f)),\n", " data=f\n", " )\n", " feat_ts[forecast_date-plot_history:forecast_date+prediction_length].plot(ax=ax, color='g')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can interact with the function previously defined, to look at the forecast of any customer at any point in (future) time. \n", "\n", "For each request, the predictions are obtained by calling our served model on the fly.\n", "\n", "Here we forecast the consumption of an office after week-end (note the lower week-end consumption). \n", "You can select any time series and any forecast date, just click on `Run Interact` to generate the predictions from our served endpoint and see the plot." ] }, { "cell_type": "code", "execution_count": 219, "metadata": {}, "outputs": [], "source": [ "style = {'description_width': 'initial'}" ] }, { "cell_type": "code", "execution_count": 241, "metadata": {}, "outputs": [], "source": [ "list_of_df = predictor.predict(timeseries[:-prediction_length])\n", "actual_data = timeseries[-prediction_length:]" ] }, { "cell_type": "code", "execution_count": 242, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "60" ] }, "execution_count": 242, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(actual_data)" ] }, { "cell_type": "code", "execution_count": 243, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0.10.50.9
2010-09-280.7900160.9685791.102380
2010-09-290.7443940.9255531.131745
2010-09-300.7807910.9999241.199642
2010-10-010.8536511.0138291.180801
2010-10-020.7928790.9949751.229360
2010-10-030.7753800.9586321.198079
2010-10-040.7622030.9608411.154595
2010-10-050.7706221.0055221.173487
2010-10-060.7738070.9820531.176765
2010-10-070.8998761.0721791.279244
2010-10-080.8151791.0306761.242005
2010-10-090.8467991.0754281.238595
2010-10-100.8257161.0659971.253097
2010-10-110.8846591.0778181.245890
2010-10-120.9207301.0730061.231640
2010-10-130.9012581.1099381.298712
2010-10-140.9217721.0645251.289613
2010-10-150.9208331.1112021.273061
2010-10-161.0292301.1881391.344286
2010-10-170.9115811.1118041.263128
2010-10-180.9008851.0734491.198113
2010-10-190.9812591.0934041.269331
2010-10-200.9369511.1044341.282887
2010-10-210.9365401.0889761.319242
2010-10-220.9420801.1229031.362140
2010-10-230.9320801.1192671.325692
2010-10-240.8957201.1408031.406739
2010-10-250.8973751.1125381.328852
2010-10-260.9246371.1680701.364797
2010-10-270.9572761.1753341.382472
2010-10-280.9222121.1577891.396143
2010-10-290.9670771.1993471.414492
2010-10-300.8300301.1951581.476995
2010-10-310.9516301.2707621.669064
2010-11-010.8095701.1128771.352301
2010-11-021.0018531.1685261.374803
2010-11-030.8858341.0847631.243589
2010-11-040.7822021.0719411.283330
2010-11-050.9332131.1492911.367097
2010-11-060.9517221.1900811.398906
2010-11-070.9674981.1617881.393864
2010-11-080.9155011.1557781.372192
2010-11-090.9712131.1984701.409445
2010-11-100.9043801.0752701.346587
2010-11-110.9628401.1473421.325590
2010-11-121.0910861.2835381.502536
2010-11-130.9854511.2072161.435151
2010-11-140.8738231.1553471.407026
2010-11-150.9075941.0951611.333333
2010-11-161.0215161.1784461.405428
2010-11-171.0059961.2000501.414176
2010-11-180.9726251.2083961.411030
2010-11-191.0368221.2171911.393905
2010-11-201.0325391.2408491.465980
2010-11-211.0465551.2290901.448083
2010-11-221.0136341.1888151.428163
2010-11-230.9977021.1778981.392498
2010-11-240.8593401.0731071.274164
2010-11-250.9388091.1461151.351901
2010-11-260.9968171.1788031.396186
\n", "
" ], "text/plain": [ " 0.1 0.5 0.9\n", "2010-09-28 0.790016 0.968579 1.102380\n", "2010-09-29 0.744394 0.925553 1.131745\n", "2010-09-30 0.780791 0.999924 1.199642\n", "2010-10-01 0.853651 1.013829 1.180801\n", "2010-10-02 0.792879 0.994975 1.229360\n", "2010-10-03 0.775380 0.958632 1.198079\n", "2010-10-04 0.762203 0.960841 1.154595\n", "2010-10-05 0.770622 1.005522 1.173487\n", "2010-10-06 0.773807 0.982053 1.176765\n", "2010-10-07 0.899876 1.072179 1.279244\n", "2010-10-08 0.815179 1.030676 1.242005\n", "2010-10-09 0.846799 1.075428 1.238595\n", "2010-10-10 0.825716 1.065997 1.253097\n", "2010-10-11 0.884659 1.077818 1.245890\n", "2010-10-12 0.920730 1.073006 1.231640\n", "2010-10-13 0.901258 1.109938 1.298712\n", "2010-10-14 0.921772 1.064525 1.289613\n", "2010-10-15 0.920833 1.111202 1.273061\n", "2010-10-16 1.029230 1.188139 1.344286\n", "2010-10-17 0.911581 1.111804 1.263128\n", "2010-10-18 0.900885 1.073449 1.198113\n", "2010-10-19 0.981259 1.093404 1.269331\n", "2010-10-20 0.936951 1.104434 1.282887\n", "2010-10-21 0.936540 1.088976 1.319242\n", "2010-10-22 0.942080 1.122903 1.362140\n", "2010-10-23 0.932080 1.119267 1.325692\n", "2010-10-24 0.895720 1.140803 1.406739\n", "2010-10-25 0.897375 1.112538 1.328852\n", "2010-10-26 0.924637 1.168070 1.364797\n", "2010-10-27 0.957276 1.175334 1.382472\n", "2010-10-28 0.922212 1.157789 1.396143\n", "2010-10-29 0.967077 1.199347 1.414492\n", "2010-10-30 0.830030 1.195158 1.476995\n", "2010-10-31 0.951630 1.270762 1.669064\n", "2010-11-01 0.809570 1.112877 1.352301\n", "2010-11-02 1.001853 1.168526 1.374803\n", "2010-11-03 0.885834 1.084763 1.243589\n", "2010-11-04 0.782202 1.071941 1.283330\n", "2010-11-05 0.933213 1.149291 1.367097\n", "2010-11-06 0.951722 1.190081 1.398906\n", "2010-11-07 0.967498 1.161788 1.393864\n", "2010-11-08 0.915501 1.155778 1.372192\n", "2010-11-09 0.971213 1.198470 1.409445\n", "2010-11-10 0.904380 1.075270 1.346587\n", "2010-11-11 0.962840 1.147342 1.325590\n", "2010-11-12 1.091086 1.283538 1.502536\n", "2010-11-13 0.985451 1.207216 1.435151\n", "2010-11-14 0.873823 1.155347 1.407026\n", "2010-11-15 0.907594 1.095161 1.333333\n", "2010-11-16 1.021516 1.178446 1.405428\n", "2010-11-17 1.005996 1.200050 1.414176\n", "2010-11-18 0.972625 1.208396 1.411030\n", "2010-11-19 1.036822 1.217191 1.393905\n", "2010-11-20 1.032539 1.240849 1.465980\n", "2010-11-21 1.046555 1.229090 1.448083\n", "2010-11-22 1.013634 1.188815 1.428163\n", "2010-11-23 0.997702 1.177898 1.392498\n", "2010-11-24 0.859340 1.073107 1.274164\n", "2010-11-25 0.938809 1.146115 1.351901\n", "2010-11-26 0.996817 1.178803 1.396186" ] }, "execution_count": 243, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list_of_df" ] }, { "cell_type": "code", "execution_count": 244, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Date_Time\n", "2010-11-22 1.417733\n", "2010-11-23 1.095511\n", "2010-11-24 1.247394\n", "2010-11-25 0.993864\n", "2010-11-26 1.178230\n", "Freq: D, Name: Global_active_power, dtype: float64" ] }, "execution_count": 244, "metadata": {}, "output_type": "execute_result" } ], "source": [ "timeseries.tail()" ] }, { "cell_type": "code", "execution_count": 264, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABIsAAAGDCAYAAACr5JCkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvVusLUme3vVF5Fp7n6quqr64amZ62j3uNrZARsIXtWyQJTAvZoyELCQePA/G4mUkZCSQEBLwgCXziMQDGGFZYjSyZMwDtsESgy9CCJu7q4eZvlVfqquqq6qrzqXqnLPPZV/Wyow/DxGRGREZuTJy7ZV77b3W95O6z661c2XGuuzMyC++//dXIgJCCCGEEEIIIYQQQgBA73sAhBBCCCGEEEIIIeT2QLGIEEIIIYQQQgghhLRQLCKEEEIIIYQQQgghLRSLCCGEEEIIIYQQQkgLxSJCCCGEEEIIIYQQ0kKxiBBCCCGEEEIIIYS0UCwihBBCCCGEEEIIIS0UiwghhBBCCCGEEEJIC8UiQgghhBBCCCGEENKy2PcAcrz55pvyjW98Y9/DIIQQQgghhBBCCDkYvv3tb38mIm+NbXcrxaJvfOMbePvtt/c9DEIIIYQQQgghhJCDQSn1s5LtWIZGCCGEEEIIIYQQQlooFhFCCCGEEEIIIYSQFopFhBBCCCGEEEIIIaSFYhEhhBBCCCGEEEIIaaFYRAghhBBCCCGEEEJaKBYRQgghhBBCCCGEkBaKRYQQQgghhBBCCCGkhWIRIYQQQgghhBBCCGmhWEQIIYQQQgghhBBCWigWEUIIIYQQQgghhJAWikWEEEIIIYQQQgghpIViESGEEEIIIYQQQghpoVhECCGEkINCRPDg0cN9D2PvrOv1vodACCGEkDvKqFiklPq6Uup/VUq9o5T6vlLq381so5RS/4VS6l2l1HeUUn8s+N1fUEr9xP3vL+z6BRBCCCGEhBhj8O777+57GHvl8vIS3/3B9/Y9DEIIIYTcURYF29QA/n0R+W2l1OsAvq2U+oci8oNgmz8D4A+6//0JAP81gD+hlPoKgL8E4FsAxD3374rIk52+CkIIIYQQh4hARPY9jL3SmAZN0+x7GIQQQgi5o4w6i0TkUxH5bffzcwDvAPhastmfBfDXxfJ/A/iSUuqrAP4VAP9QRB47gegfAvjVnb4CQgghhJAMxywYWcHM7HsYhBBCCLmjTMosUkp9A8AfBfD/JL/6GoCPgv/+2D029Hhu37+ulHpbKfX2o0ePpgyLEEIIIaTFi0THLhaZI379hBBCCLkexWKRUuo1AH8LwL8nIs/SX2eeIhse7z8o8tdE5Fsi8q233nqrdFiEEEIIIVkkP+U4CliKRwghhJDrUCQWKaWWsELR3xCRv53Z5GMAXw/++/cC+GTD44QQQgghs+BFomMWS0QEYo739RNCCCHkepR0Q1MA/hsA74jIfz6w2d8F8G+6rmj/PIAzEfkUwN8H8KeVUl9WSn0ZwJ92jxFCCCGEzEIrEh2xVmLL0JhZRAghhJDtKOmG9icB/HkA31VK/Y577D8G8CsAICJ/FcBvAfhXAbwL4BzAv+V+91gp9Z8C+CfueX9ZRB7vbviEEEIIIQlOJDoGseTxk8cwYvDmV96MHg9zm+y6HyGEEEJIOaNikYj878hnD4XbCIC/OPC73wDwG1uNjhBCCCFkIt5QdAxlaC9evoAxFIsIIYQQslsmdUMjhBBCCLn9eKFkz8O4AUQkG+TtxaJjcFcRQgghZPdQLCKEEELIQdFlFh2+WmS7nuUfB8CQa0IIIYRsBcUiQgghhBwkx+CqEUi23I4d4QghhBByHSgWEUIIIeSg6PJ69jyQG8C+1oxYZHwZ2hG8CYQQQgjZORSLCCGEEHJYtFVohy+UDJahtc6iw3dXEUIIIWT3jHZDI4QQQgi5S3SBz0csFjGziBBCCCHXgGIRIYQQQg6So3EWDTwOsAyNEEIIIdtBsYgQQgghB8UxCSVDgliX28QyNEIIIYRMh5lFhBBCCDlIDs1ZdLW6wkc//yh6bKgMzQi7oRFCCCFkeygWEUIIIeSgaAWSAxNKLi8v8fmTx9FjtgwtG1oE4DjcVYQQQgjZPRSLCCGEkAJevHyBdb3e9zDIBA7NVWNdRPFrMiJZUax1FpmbK0Nbr9cwN3g8QgghhMwHxaKZWK/X+Ozzz/Y9DEIIITvio59/jKdnZ/seBingUDOLcmLRaDe0G3wP3vvZe3j89PH4hoQQQgi59VAsmomr1RU++uTjfQ+DEELIjhDkHRzk9uE/pUNzFhmRfmB1RkCyD9+8YGaMobOIEEIIORAoFs2EUurgJqmEEHLUDGXDkNvHgWYWiUhP/DED38t9dEMbcjkRQgg5DMSsIc3lvodBbgiKRbNBsYgQQg4JwcFpDwfLoTqLhsrQcl/MXBnak7On+Pn9T2YdHyioEkLIwSJP/0+Yh39738MgNwTFoplQCuCEiRBCDgfeCN8hDjazyEzOLDKm++XFxQXOz1/OOD46iwgh5KAxF0Bzvu9RkBuCYtFM2DK0fY+CEELIzhjIhiG3j2NzFm0uQ5PgMTPr3MRQUCWEkMNGBACz6Y4FikUzwcwiQgg5LFiGdodoP6jD+sBEBGJyzqK8WGTnImZ02x0OkHMfQgg5aNjs45igWDQTiplFhBByULAM7e5wbM6iocwirXVUije384dlaIQQcujQWXRMUCyaCaUUu+YQQsiBwRvhO0KmBOsQsN3QTO+x3KsUEVS6SsrQ5nX+sAyNEEIOGwGAG+yySfYLxaK5UIc3SSWEkGNmKBuG3D7853RoAdcmI4JtKkPTWkNMWoY23/gEdBYRQshhIxSLjgiKRTOhlOLiGiGEHBID5T7kFtLVoe11GLsmG1qNDWJRpeNtjZlX8KSziBBCDhsGXB8VFItmgplFhBByWNiAa57X7wJeEDm0zysrFpn8a/RlaL3MopnL0A7tPSeEEBJiFwV4rj8OKBbNBDOLCCHksBjKhrlriAh+/NMf73sY8+I+qEObzE5yFsGVoaXd0GYe32G944QQQmIOs9soyUOxaCZsu1r+ERFCyEFxAOd1IwYPP3u072HMyqE7i0wqAOXEIuPFojDfyMz7nrBUkxBCDhx/jmcp2jFAsWgmKBYRQshhcTCuiQN13UQc6Gv0LqFewHXmmylwZWgm3nb2MrTZ9k4IIWTv+GsIQ66PAopFM3NoE1VCCDleymv0Hzx6iLNnZzOPZzuO4bp0151FTdPAmP5EPFuGJpKtBsgFXM8t5swtRhFCCNk3FIuOCYpFM6GU2vcQCCGE7BDb6KnsRvjZ82d4/uL5vAPakpzgcGi0C5931Ofy4c8/wv2HD3qPD4lFQ93QqjSzyMwbSjrkciKEEHJoUCw6BigWzQhL0Qgh5HCYUoYmENRNM+t4tqV13Rz0Tb17jQOdwm47xjSom7r3eCsWJaVl2TI0EeikG9rczh8rXM22e0IIIXunrfPe7zDIjUCxaEYUKBYRQsihICi/0RYRNHX/Zv82IJ3t5mC5684iEcmWoXnhxyQOoyFnkdY6EZYMy9AIIYRsT3uOp7PoGKBYNCNK3d2JKiGEkASZcE4XyTpDbgOtkHLQN/V3u9TOikV9Z1onDiVB1wOZRZXOZBa5/768vMT7H36w83HfzXecEEJIGcwsOiYoFs2JVYsIIYQcAILyEhuR21uGdgzOD5G7XQougqKA6/bfbBmacWVoJnp+KxatrvDk6eMdjpmlCYQQcvjQWXRMUCyakbs8USWEEJIwECSc31RQ77kMTUTQZASru94prAxXgnVHX6P97DJikRkQi7JlaOi9B9F2Ilivd/cd3SRcEUIIORToLDomKBbNCDOLCCHkcJhyNrc3+/sViz5/8jl++sF7vceP4ab+7juL8plFOZFIKZV184gIqioVi0z03HW93tl71O13J7vL8v6HH2TfF0IIITfEDWYWmZc/hHnx/dmPQ4ahWDQjSqmDnowTQsgxMdSiPL8tUNf7LUNrGpN3Fm1woxwOAq3utrNoU2ZRGHCtlc7ONGwZmo7EFWOkJxbuygHXvdfzvecPHj7Yu2OPEEKOm5srOZYXP4A8/87sxyHDjIpFSqnfUEo9VEp9b+D3/4FS6nfc/76nlGqUUl9xv/tAKfVd97u3dz34245d7LubE1VCCCEJ0v5fwab7D7i24tawO+WQ1zJEAKXvtrOoGXAWWcdUF3A9VG4nAlS6ypShxQ6gdb3ezZgxv7PI5obdzc+UEEIOixtYEBODg56s3AFKnEW/CeBXh34pIv+ZiPwREfkjAP4jAP+biISJif+y+/23rjfUOwgDrgkh5GCYcqPqy4j2WzKzebyH7Xz1zqJ9j2M7BENlaCYSh6xYlBfFTLKt3z7thre+Q84i223tjn6ohBByENxkMwNhNtKeGRWLROQfAShtl/FrAP7mtUZ0QDCziBBCDogJbcH9uT9XBnZTiEhbrpQ+bn+44QHdICLinEV3c5K5KbModAtZp5Fuf042tmVoUTc004ktbvt6vSNn0Q2VN3JeRQghe+QGM4vsROVuXscPhZ1lFimlXoV1IP2t4GEB8A+UUt9WSv36yPN/XSn1tlLq7UePHu1qWHuFmUWEEHI42Cq0cmcRgL2WookMdck6/IBrAHc+s6jJZBYZX3ZmQrFIZfdhEmHJP4bk899ZGdoNBFxPyQ0jhBAyBzfZDU3mvaiQUXYZcP2vAfg/khK0PykifwzAnwHwF5VS/+LQk0Xkr4nIt0TkW2+99dYOh7U/7nInFkIIITFhCU/JtsDuwoNTPvz5R6P7FgikoKPWISICaKVuRA6r6xrv/ez9ne5zk7PIuoU6wUcplZ1viAh01QlL/rFeGdr6jpWhHfD3lhBCbj836CwSOov2zS7Foj+HpARNRD5x/z4E8HcA/PEdHu/WQ7GIEEIOi1I3jm1bXs1Whvbw0UOs1quxQWwsQwt/1ZgG5+fnuxziXhEI1EDw8665vLrE548/3+k+N5ehxZlFSilb9o5YFALQzywyXebPzgOub8BZFB6HEELIPmBm0TGxE7FIKfVFAP8SgP8xeOwLSqnX/c8A/jSAbEe1Q4aTGkIIOQwkKOEpYblYzuYsKnFYDG0jmZ+ePXuGd37yzu4GuG9ErLPoBiaZ6/V659f6jc6iKs0sUkDSfdU/rlWaWSTRc4Hdi0VzOYuOwRFHCCG3nvYcfBOZjHQW7ZvF2AZKqb8J4E8BeFMp9TGAvwRgCQAi8lfdZv86gH8gIi+Dp/4igL/jaukXAP5bEfl7uxv67WcoR4AQQsjdYqprQkSwWCxmyyyyndnGtkFeLMncdBsxuLi8xOXlJe7du7fDke4HAZyzaP5j1XW98/wnL+oYYzuahY9bt5D9XI10ZWjhEAQChX55mhEDJard6mS5RL3jMjQGXBNCyBFwE+diMcws2jOjYpGI/FrBNr8J4DeTx94D8Ie3HdghwDI0Qgg5LKaUoS2XS9QzlaHZa8u4s2hjN7TwMZdr8+TsCb5676s7GeN+8c6i+a/B67reuZnGf8+GxaKkDC15rWIESnXzkOh9CDKLlsuTO1OGRmcRIYTcBnxmnsH8tgg6i/bNLjOLSEKJWPTBhx/gxcsXNzSi20nOak8IIbeJrt38BLFosUAzUxkaBjqdJYOIwo3DsYX/Al2XrSdnT3c6zH0hAqgb6oZW17svQ/Pfs/T6WJxZBIFSOhKS0i54IoKTGcQilqERQsghc9Pd0HifuE8oFs2Iwvik5uX5S1xdXd3MgG4p333nezi/OJxgVULI4dHeYJduL4LFYjlfGVpBZzZbqpbLLOrfdIsYfPGNL+Ls2dlhCPgi0PrmnEVzlKEBebFI66rrhuaymeyEI97Ol8J7schnF4UOoOXJEuv1HXEWTfwbJIQQMgPtSZ7d0I4BikVzUtC2V2TXU8y7R13X1sZPCCG3laTd+OjmIi7geqYyNJSUoSEKNw7HhuTZxghOT07wyr1X8PzF8x2OdD8IypxFnz/+HE+v6aaaw1lknVEKTSIWGTG9MjR4Z1Em4BqIS9GikjYIFtUCIoLGXP97mjqXds7Ev0FCCCFzcNPOIp7z9wnFohkpKUMr6Whz6IgIzEy5HoQQsgu6MrTC7SFYLmcMuC65dgx1Q5P0B+ssUkrj5OTkMMT7QmfR02dnePb82bUOta7rWbqhLaoFTCriDJWhqaQMLRCLfEe0NO8IbpvlYjch11P/Ribvv3XEcZWZEEL2xw06i5hZtHcoFs2I7U4yIhYBR6+Y2lVNnggIIbefKQHXi8USzYwB19suRgxlFuWCku8qpc4iY8y1Q8jra2T+3H/4IFv2JyKoqqr3O+PK0CQoKdO5gOucs8gItNLt7/02i+ViJ7lFN+csmmf3hBBCSrjBk7EYYKCkntwMFItmJLWF57BlaMf9ByBi+qunhBByi5garusDruuZXDol4/CZRf1t893QtCtnOoy7cdcNbeT6asRcW9C7jrPoZx//DC/PX/Ye92JRupAiItCVboPLrSNsJLNIK4hx4pBW8TYAlovlTtxkbZnbTN8fBlwTQsht4CadRR6aCvYFxaIZUWp8hY1laHal9CACVQkhB8tkUX/mgGt7iPHMotx2uZtuEQOlddF16y4gAiits93gou3M9cWi2gVEb3MtFyO4uLjoP46+s8jv35aVdWHS2W5oURmaghFj847C7miAK0NbXMsdlR5zrm9PLpidEELIDdOWst/EvZs7Bs/7e4Ni0YzYCdnmbUo62mxirlXrm0RE0DQUiwght5jJAdfAcrlAM8M5urjcZ8CJkXu+GShnurNImbOouaZYZIyJOpNNfr4YnF9mxKK2DK2JHktLBXOPhY8DXTmefUy3rmcfjq213smCjSDJRNo1DLgmhJBbwE13Q7uhY5EsFIvmpDDg+jppkL/zvd/F1dXV1s+/DYgIy9AIIbeaMBS4aHvXaWqOPLbSFuVDTozcSxFjnUUoWOS4Cwics2jsGmwMmmu4v+q6xmKxaIWZqYgILi7Os48vMs4ipZQVwdrvQFeGVtINrd3WdZixQpOGGXFgFb2WIBNpDugsIoSQ28Duu6EZMVjJ5Y0ci0yDYtGMlGQ/XLcMrTHNTlre7hNhGRoh5JYjyb8btw1vzLH7m1tBmXDlj2uSSVbu+a2zKA2/ubNIJKoMYUSuFXC9rtdYOrFo6ufsvyfnuTK0TGZR6yLSKgi47srQ0udHZWhGYEznQrJakc0ssm6g3TiLVEEHuq33z8wiQgi5BYzPiEQMzJN/DKlfFO3xUl7gafNgw7F4n7gvKBbNSNrKNsd1xaK7nnnkx89uaISQW80WN6qziUWFZWijmUXRY+awuqEVinXmmmVo67rGYrHcWiwCgMury96CiRWLFjBNRizKOIs2lqE5MUjEQOugDA2dU2knZWjinEV7LEN7/uL5PMcmhBBiaScXG64bq0eQZ9+GXH5YtksYGORcvtNc3WT3UCyaEaXGbxJst5rtjyHG3GlXTrvyfcfdUYSQw6YtgSlw3aQlQDMMxh1nbDM35rTEKFOHZnyeTcF1axvuP7yPx08e73y/Q9hXMC5+GWOu5c6tvbMI44tDvTGKzfg5PTnF5dVl9DgAVFoPZhaFOUnjmUX5MrTWlaS7wOzrYF/PDQRcDxxBRPC73//OQYidhBByeylw+9TPkm03Y2BgkLkWM7No71AsmpGilUa3urct5gCcRQAYcE0Iud1MqEOLbtSxe6dOcX7SUBlaxpkkxt7oz+EsqpsaH3z0M7zItIifDZvdXCYWNc3Wr7l2zqI0M6gE251M45VXXok6orXZREkZmgkyhsLcqlzxYFqGFopFYRka4DKQduQsCse2a4accuHxCSGEzM24s0jqM/dDac6j6c1VLL4bGu8T9wXFohmxNwmbtxGR4j+kuq57YZd3Pe+ncxbd3ddACDl8poTr2iwY5yiaxVhUWoY2FHDdf9wLF8DunSH3H9xHXdc3ejPvGsMXiUUiMjBJHWe9rtvMoqlvnLgMoVfvvRJ1RBPY70+VdCnzJWe9gGutvJU52DZ2FhkxndjUCphOlNqRs8g4p9R8bBZJmWlECCE3QYmz6Gx8mwAjTd5ZxMyivUOxaE6KMovKJzbvf/gBPnv8WWYfd3di5Cfodz2kmxBy2HTn2QKxCDfjLCo0FvXFouT3QCdcKDXemGEKxhj8/P4neOv3vHmz1yqRMmeRvwZtmVtU12sslsutPmcjNhDaOou6jmjixp62tLeZQElmkROWNpehaYgRm1mklNWVIO1xbDe0/kR8tVrh6dnT8hckZaHi2zImBlEsIoSQG6CdRBQ4i4rL0BqYnCA0Ye5F5oFi0YyUTLqnBFQb00TlWn5yt4sVwX1BZxEh5K6glS7SUcIb9VmcRQVBv8CwGyonfFmHir52Gdp7P3sPdd2FVK5WK2il8IVXv7CTUqdSnK+oyFm0XCy3FovWdecsmp5ZZN1cpyenWK3XyeCd46eXWRR/Rq3IB/TFIvfl0zosQ9POhYQ2s0gH3dVCzp6f4ZP7n054PQKlNeaa1FMsIoSQ20CBgOMziwrPx43UA/sbL3kj80KxaEaKAq6lfHqZ5hN1k8W7+wfEgGtCyF3AC0ClAddtFdocTovSlbYhMT7jTDLetYLr3Wx//vgxVutVcCgvcOym1KkY9xmMOX6MMVgutxeL6nqNhReLJr4+L/RU1SIS2NrMIh1nFsVh1vbx1sWm4vJBca4lwJehSSAsqc5ZBOWcRf2xGzMtE9F/h+b+mIfG5F1iFIsIIWRONgs4ImaLgOsGki01YxnavlnsewCHTFFmkV/eK8CuDIZhlwfgLHITVAZcE0JuM+3Nd5GzqOuCtk2XrNH9F+YndeVmJc6iQIi4xtiMmOg9MpHAcYOZRRI4iwZekTE2A2ixWKDeUixqjEGlq60DrpVWWCyqSKzyn0U/s6gLuM51Q+tlFiEoQxNjC9a0aheyvNCkFbLOIhGTfXwQ5yzaXxkaNv6eEELILhgRcJoXwe+2L0OLzuV0Fu0NikUzUrIKPaUMLd3WCy2TJnO3DB+IyTI0QshtpziPJS1D27mxqDSzaKAMLSM2GWNsOPE1O2N5EaL7byuI+FKom0OAEZHKuAyfqqrQNHV2m9GjSOfWmRxwLQKtNBbVAnWTcxblxSLbvSwUi3TPQWWC72D3vbXOH7iFLOuAU9BQg86iKYtR/vXMxZD42R2fziJCCJmTIgGndRVt2CbBOovSc7dEW5D9wDK0OSm4sUgn1hu3NfkytNwk764gYrCoKgZcE0JuNW1b8NKAa8wfcD2mTnhxIe301Tkw+tta0WP78eauU2ko801gM4s2lwGKsU6YRVVtXYYmTmTbJrPICzpVVaGp+84irXV0bWxdWoHw1oVUp9+GIOBaazSu65vPPIJzNStlf5/rBmfETC9Dm1MU9K954H2Wkd8TQgi5LsH1fUDA6cKt4+03YSRXhhb8NxcB9gbFohkZC7guXR3uto8nbl19/t1VW0UEVbWgs4gQcqsR+HN6wbaJs2jXU5ziIF/n3BwqQwtvqo2xYcu+U9a2pAJDHMp8g+d5n1m0yVnkhJ7qGmLRdcrsxFhnk9ZWhPTXQS82VrqKr42ZY7XfteT4xnTfQS+GpWP1pWp6wE0mZppY1AZoM+CaEEIOlBJn0RZiERogrbaJzuW8T9wXFItmZCwodOrEpleG5p1Fd3hiJCJYVHZCzAkeIeTWItMCrsPMorlWxMb2KgAqrduSpXB8Wut+xo2+vgMovU51AsXNBlxbZ1FJGZpGVS22dxaJcQLJdJHCdw/z7iJfihaVoYUdUCOxxwTb6t73TAJnkX19devy8s/zAqh1FmXK0CY6izpxctLbMBmKRYQQsi9k4OeA+hlQveY2KRWLjG28MLT/O2yMuOtQLJqRsRuLdkJT+ockcX7AIXRDM26yrBVziwghtxcvppTciEZi0RblSSX7dz+Mbqd11RMCvJAQTcm86HGNbla5m/W4g9cN3sRLQWZR4CzaNuDaGFt61TrJpjxXTOD+WbSlaMOZRaZ9L+OAa1+G1n/fAWCxqFDXDcR0z4+OM+As2robGp1FhBBymEQTh4EytOa8E4umOIuQlrbRWXQboFg0JyOT7qn19b0VW3MI3dDs5FVXFIsIIbcbrfSEMrTwgd2Oo/SmWNoMGZP+wr2W2AGkfVv1La8pebHIlVrdwswiLxZdK7PoOmVo0gVCLxYZZ1EVZxZ5Z5BWOnqvuzK/dN+ds6h2zqK0DA1elMqMPS19H309sIs/c0UGjXUBpFhECCFzUyDgiAFUldl+014bKCRlzNFFjfeI+4Ji0YyMTR5L2x+32w+Uod1lZ5GfLFcugJMQQm4j/ka7rAwNQdvy7ZwWm0pzu4WG0ZEMZhalLikb9qycyLXdzXaXuRMcywQCxU02YygQceLMou26oflStu0yi+x7DnhBJ3EWOVEozScqySyKnEVODGvL3tzvIeIEtfxizVRnkZi5nUX+X4pFhBCyH0oEHAMoDRvaOH5vZ69zAJBePwpK3sjsUCyakbGsiukB1xKtEN90ZtHZs7OdT8I6u30Fw45ohJBbis93KSpDC/JigPJzfMgPfvwOXp6/zO+/2FmEfBmaWJdUtD54DdFj07hC50uu49Zc+BGMikXXzixyIhumixTezQX4MrTYWZSWouXEojbHCK7DWTAub29bLBao67rdFq4E0X+nhzqYWcGy/DOTAXFyZ7AMjRBC9kyJs6gBUAGpU2gAE+xHBvZ/l5s53XUoFs3IWFeZa5ehBQGXN8H3fvh9nF9c7HSfQ9kMhBByqwhu7Mc37W7U2zblE2nqGut6xO1SUoamBpxFA06UtJxpChszi+YUEYbGMlJWZ8RAa3WtzCJxgpMXYKaNsQvHzpWhAciIRZ2g17qDlHWEpe97V4bWOYu0zyxyz/cOptz1V8RMWozy45uvDM0fZ/j44b+EEEJ2TYGzSJyzqHD+IzDoljzC/Ydb8R5xX1AsmpHRMrSxmU9v+3ji5i39NyGy+Inpk6ePd7rfcLK+7couIYTMjS/hKboRDW72oba7eTUigyXGk8vQkv14B0jo1OgEiu2dRbkFDNMKEjcccA2XWbQhlHwXmUVFmHrIAAAgAElEQVRhh7KpKpsxaa5QUIbmtrEl2nF5Wuxa65xF4eHjMjSfWeQCrhF/5krnXV+Ty9DEZWTNphb1Rc70+OG/hBBCdowM/kdAWIZWJha5KrQk4Dr4mc6ivUGxaEZGV2gnTmxMz1l0cxMjf4zHT5/sfL90FhFCbju+ZAcoKf8KuqGhzI3UP54Mlm2Vl6HZm/d+GZrPlonH2wkR1ytDCy98IsZlId1wwHUkogyJRVYA3HaxIhJctgq4Nm1m0aKqkjI0Oz2zJdpxGRqAtqwvLi3LZxb512f8fn0ZWuAsyuVJmakB1yLFIfDb0HXxGxGL5jk8IYSQImeRD6sum08YmLYpCDOLbh8Ui2alNOC6bG8iEk3ofP3mTeRA+Enly5cvUY+VRmyxX82Aa0LIbUakWPiJb+q3FPRFYAYCoXOizMAuoHXVP77Ada3yuTemdbhsPV50btdUtNBbiim7YJO4YIxBdY2A60hkw/T3LRSFqkXgLAoyr8KFFBN8r7QPDB9wNqWlbAoKTd1En4V/X2w3tEwZ2oaQ9cHXM6OzyIqfw+4+OosIIWRuSjKLXDe00jI0MfbyZVcxwl/E+yR7gWLRjIyt0F43s0hEUOnqRjrMGDGodIU3Xn8DT8+e7m6/xk6WK60ZcE0IubXYG/iykGuJhKXtMoCsk3TAWRSMaeM42sDhpAxNYoeGOIeNHe32mUW5MrS9BVwPZPmEGJcZVOIsevGyHzYeCjLbZBbFAdedYGX3a7cJF1JiEdKKJn4fucyisFytWlRY1+s2jBsiVjQMxaPkfUrdzGMMZWTtDMHGcsapHWYJIYRMpUTAmdgNDaadMQ07iygW7QuKRTMytkI7dRWsF3BtBFWVXxHcNb7F75e++EU8fXa2u/22zqKKZWiEkFuL2Dq0sm0RlwttY58WkcFzYnftGN1J1okh8Df19r9jZ9H2zpDcNa3LLLrZgGuP2nBccZlFla7QbHDR1E2N7/zgO73HfQc5e5zpmUViTCvSLaoF6tpnE3Ulj1UYcB1kHPkspqjcLtx3IhYtqgXW63UnDiEuocuJoMa9J1PmKP71zIFgc25Y62yjWEQIIfMgBQKOGFiJYVo3NGsuGhCL6CzaGxSLZmQss6grJSjbX99ZZKCrm3IW2ZuLxWLZhm3uAnE3KVWl0TQ8ERBCbivWLVTsLOryrbcvQxt6XnEZmrgypn5mURj8HJZD4RrlYjmxKMr02fG16snTJxtLksayhBonFo3l5omRVjhJH/eZQ5uykYYInUW2I1uuG1oFkylPi91Aqve59ZxFlXMW+cwiiR1wWqne65/acVWC1zOHYCOCjaJje5NBsYgQQmZioEwsoplWhgZjr2/u5+yxmFm0NygWzcjY5HGKs8hPCsNyAuPK0G4ms8hs3fFl837tSqF1FrEMjRByO2nvyTF+zk7Lk7ahrBtaSWZRxlnU3tSHZWhdZtG25/iu6UJwLGMXBDZ1JduWH/z4ndHFi9DhW9c1zi/Ok7GF5XfTsnD8Ikp7nIHPo65rfP7488x+TdexbLFoS+EisagKnEXB9r6sr8uEQvTG55xFdV3bbV2Hmkh8yn1PJjp10mPuHtn4PWJmESGEzI0/v2psziya1g3N/yRDbqIZ73Vl/Rjms7/XK9knFopFMzJm55+SWTS0YltVmfDSGRBju+rYCer48X78058UBWG3JQoMuCaE3GJaF0bBzXBYRrSts2hjGVphc4ShzCKIL+ex/xmVU23hkGl3a/pOlBKHz1bH8q6aQfNVfNyr1RW+84Pv4t33f9puY8RA684CNhiEPdBMIhVvhl7ey/OX+Ml77+adSSooQwucRf57FmUWmSTgOhB8bBla7DxOM4v8OFthSwQ+KEKrvrNqG2fRHJ91uP+NziKKRdfi6dlTvneEkBHcOULpYQGnLUNTKMkaKipDmzGzSC4/grz8IdCcj298hIyKRUqp31BKPVRKfW/g939KKXWmlPod97//JPjdryqlfqSUelcp9R/ucuB3gpEJ01RnEYBIqBFjQ6dvIuvHB4GWTgKfnD1pJ76b8JNLBlwTQm43EwOur+ks8uHFQ7+zIyooQ1O6tx+bWRQ4iyQpb9pqxPlxhQLCLl2w49dPawVTLpvp+z/6Ad54/Q1cXV22WxhXhgb4zKGRY6XlfG4Rxe1gcCzGGNRNjecvXsSPS/f8alG1Cyzh5xFlFkWfk24Fs06gCceMSCxaVJ1Y1JWhBaKm7n8+JiP+bSIc3xwd0Yacch5T+HdB8vzk/XdxGfx9EEJID396VRVyAo49P4dlaOM0Et4vDohFc7p+2n3TtJCjxFn0mwB+dWSbfywif8T97y8DgFKqAvBfAfgzAP4QgF9TSv2h6wz2rjFWstVlFl3HWXQzoaFTVwxLQzF9ZhEDrgkhtxl7Oiu7EW5zZLC9U0c2lqEVBir7m+teZlEc/GxMEnB97TI0iR5TWu884LoVMgY+C2/OUQq4Wl1itVrh9/++b2K1Xnet6I1EYtFYcHLOeaMCR9aQ2uSdQU/PniRj7J6/qGwZmh1DkCUUlGhbJ2483lagSb4PIiboyGf3b5+n2+9knFmU+Z44J9M2zqJ59JrN46Gz6HqUztsIIceMP0dUAwJOWKa2wX0UYKRpr0VxGdqQy2jHtGPk+S/HqFgkIv8IwOMt9v3HAbwrIu+JyArAfwfgz26xnzvLWPmBwE3kC/aVmwSZtgztBpxFbgV2U9vakHKxqHMWMeCaEHJ7Kb8Rjh0g200/xpxFeqSBgh1xvgxNnKOlW68IulhdK+Da+B+iY81Vhhb+m9kCgBVVzp49w+uvvQ6tNU6WJ7haXQEAjGk6sWiDqOc/h34ZWj9wOvt802C5XOLJ2dPefkORzl4Hm2i/UYl25njt+4vU0RU7i6rFwu3P5RshzizSut9Z1YhzL08Vi65Ryji2f5ahzQfFIkLIOEEZWs6J468jPrOoqBtag3YxLroO3ZCzCK6yhee/LLvKLPoXlFK/q5T6n5VS/6x77GsAPgq2+dg9lkUp9etKqbeVUm8/evRoR8PaL2N2fjthL1ttzTuLjFt1vH3OIpSKRS6zwYZ4sgyNEHI7aZ0qRTfCSRnals6iYbelyxwqKUMbCLhWqnt+JFrYDSaP1+83/LcdgxfZsLsb+fa9GSwdQytcvHj5Am+8/gYA4N7pKa6uvFhUFlDtJ6/ptTYuYxt+bcYYfOmNL+H8/DzK8guDxQGgCtxFuTI0I7FYZHplaImzaKAMredKQl7sMsY493LZJL1zORVtPhm7wDacBUmx6HpQLCKEjOPFompgrtB0vy/ohibNS6j1WessMpEANfTzZq7kHI/rT4q3p7NoM7sQi34bwO8TkT8M4L8E8D+4x3PThcFPQUT+moh8S0S+9dZbb+1gWPtnTFjpVocLVNfcJNz0nUWNafDxJx9fY9TDx9dt1kGJuFU2YfOZDZWuGHBNCLm1SJuBU1aGFgVcT5yAdDe9w93QdIEIJSJWbEjFIrisHH8cY1pn0XUyi0yme1Y/BHpHYpGMlKG5Ui4vxrzx2usAgNPTe20uiw24HndUDX0e4ecMDDu9msZgsVjg9ddfx9mzs+g1+LIyAFgsKtRN3XMW5TOLFMSYqAwtPL4v//NUbRma6sYaPCE8TviaSxe02vFhvoBriGS7toXHD/8l06BYRAgZxZ8jXGZR75zRXiets2h0vvT0/8Ibj//foAwt7ICW2+84taxwjmfF21Ms2sy1xSIReSYiL9zPvwVgqZR6E9ZJ9PVg098LYILMd/cpEYtKVofttib6F3BlaIlFfLVa4eNPf36NUQ8c39hJbXEZGqaVoaUTVUIIuVWIuPKdaWVo6U182aF8Rs7wTXHYzWwT2Zt9cZlF7j9Tx8p1y9DCa1q4b61U0Xn+anWFi8uLjdvkhKl4MACcE0wphddeew2AdRZdts6iQCTb8LmG2U7RGJIyssFuaqZBpTXunZ5itV5F+9UqdhbVvTK0LrMo3L7thhaUfkXlf0EOFdA5i7RrVAFIVKqmVdzp1OZY6Sjbagxxre3Tzmy7QgQsQ5uTwkU+QshxIM0lRNKqD3+O0Ml/+/9MytDGRB6zgpIa7mqdlEMPlKSNYGCwkosJ5zOWoW3i2mKRUuqXlJttKKX+uNvn5wD+CYA/qJT6plLqBMCfA/B3r3u8u8bGL6qrvy/5/ktGGBIx1lmUrAZ2IZm7w96clK0Y+glsWbWaoVhEyJHy9u98+8783UeuiUnOoullaF152ICzCE4s2DAOf55WSveCslNnkm80ADdi/9ymadBMKA/ubtbjx9IOXmM8/OwRPrn/6cixNpehebVIKYXXXv0CKm3Fknun99qOaMYYVJGjarMIkX5X/SKKf/7Q52yMga4q66BtmuT5saDTZJxFTdZZlHZD64t0OnIWhWVo7jodlEsqHX9PjJjia374Pimo0piKyfjxjotFuz/2MVC6yEcIOXxEDMwnfx3y7LfT39h/VOX+O52npGVoI8eBAEFDBhkSiCY4iwQGtaxdFlLJE+gs2sRibAOl1N8E8KcAvKmU+hjAXwKwBAAR+asA/g0A/7ZSqgZwAeDPib3a1EqpfwfA3wdQAfgNEfn+LK/ilqJG/kh8nkTJzZKIQCedz2zAtU4EJHuxt1kDVW5XW2HczcSkiWNJqJnY7IzZbOuEkFuJiODy6hKXV5d49ZVX9z2cMlweS4lgHkUWTTyM70qVdqeK979ZeOnKiFS/DK19vv1vY+IuW37EH3/6c2il8PWvfR0lDJVL66SD1+h+TDN6XSzqhgbg9OQUX/nyV9rHT1NnUcHY2pK3zPuodVBuOPD8xhicLBZAFYtFqaDj5wPh96faVIYWiUVJGZpJS9ySMrRkf1rFAdfiOsVt1Q1tU1i4E8jG5kcDB9hYFieSD3QnZbAMjRDSsv4cMOdAc578IhGLxMTBM1EZ2kAIdrQ7A7QdQFWcWRSdj8rP60YaGNSosUI1LnUE++a1I8foOygivzby+78C4K8M/O63APzWdkO7+5RmFjWF5Vpa6144ZqWraMLoj1c39U7FIn9zUeosCv8d36+yE9U74jAghFwff364urq6E2KRdU1sLldqtw1an2MGZxG8SLHJuIpQRJDe78KgYNssIejeFjiL6gnn5fQ6FD4GAEqXCQ9NY8bFopHrjH/9v/DWL0SP3+tlFnlVb8O+zFAZWiI2DY3VOZgUFK5Wl91+g/cGcCVnjYm+P1prmKYrQ48Drk37c5oNEQpZALDwmUUDbiGtVVT2aBeIdBukXUKXnzT81Xznx+/g61/7ehs4PgXB5pzHVizi6vBWUCwihHjk6oH7IXHntKcIvxiRXqvDMjQUzH8MlHMWqZ4tdTtnUSM1jDSoZY3TknUJ/xp5+suyq25oJMNY1xwp7GgD+DI0nUzC+zbxdpJf77azmDHiWu6Wi0UlN0heMCu9iSCEHAb+793fuN92BEEnqdEyNAQ39WUuy/j5eXEi/H3YzWxowJ1YlAtm1tF1I3bYdNut6nX5uF13sEGxqNhZZEa7Y4rJu326DZBts3FycoK6rtGYph0vgEDcy+zKfx6597EVmza5aRpoXaGqKtSRsyh2//j29eH3R1dxZpE/XlVVuLi4GHxvfeaQJypDQ/f+xWVtJnp+O78oFAyH8pNCVut1tOg1CcFowLVWZVleJIZ5T4SQiNV998NAZlHoLIp+bbdXqnKC0djqWgMEc5C4dGxAOBrBoIEooJarsif4jqeyGtnwOKFYNCNjNxV+YlMys7F29apXhqYTt0/oLNol4ia1O3cWGb/6Tes4IcdEJxYVXsz3jb2Db3/cvGlZl6xNz7f/jmQWjThXFZxrc6h8KihD68qp4uvJej1BLPJlVemiRhSiPH6en1KGNjiWyN3VoZTC6ckprq6u3OsuKUPz4l38exOESG/KLGqcs2hRpZlFsftHa42mMdH3p0ozi9xr+r2//DV88uDTSJREND8w2cyicM4Qu5ri8HHjygfDIO2x0PGoJG5g7tM045/tpv1vdhb1xUpSxpxi0f2H93F5Ob4oQHc5IbcHuXJiUe+anYpFyTkj6YY2JvIYNPC+3F5zhHDfE+4RDRpo0VhJ6WKk3feZeVR8jGOCYtGcjGRb+Al7ybU5XLGNV4PjcGg/qd21WGRkuKShN9YJkw7jA64nWN0JIXcfPyG4ujPOIleGpsYnPxIISyXbZ5+P8W5omy4edgy+xXo6mYudSRI6XIIbfREzSSzyGTxD3dBKA64bY1qBZNOx7BinOYsA4N69e7i4vIjcN2XByXmHFrDZSWzc9btKxaJEsKmizKKgDC24vvvHX33lVfxTv+/3t8HdKhEl0/BsrTX+mT/4T7syMdVeez1KpfmHxmUW6VYo+sGPfpB9feF71O5z4GOxoelbikXudYTHi8cw0P2PjNL+zc9Qh/Hw0UO8PH+5cZuX5y/xvR8eVawpIbcWMWubWQT0y9CKA67LuqGJOLEoe50d+nkzDWpUaoGVbF7g6AZhx/zcfD5BYDoeKBbNiBpJNhVvqS4sQwvb4ALdZDDrLNpxGZoNKd0cXNlu2+ZtlL0upbUtQxu4MSKEHB53zVkktg4tyvQZ3jYQAaZHFg2WPYW/1xsycgB0mUWZEl/vTIJ05+rOIYNg0iZYTylDE5Mpl5auPX1pGVpBZtFYGdqQswgAvvj6G3h6dha5b9KA6rqu8eDRg/Z1AbnMovh9G7qWm6bJikU+F8hjhaFmUCwK30sAeOvNt/DH/rk/6o6veiJd6CwCgDe/8mZbhmZM/P5oHZebedeU/8yMMdHYU3rlhgPvRd3U13IWQQ0ogKCz6DrM6Sxa1etRR2HTNBu/X4SQG2T1EGgXjdLMIu8C8plEaRma/+8Kgys20e78/u0Kjxnohjal+sRIA40FVigTfvy+FRSeNvdHtj4+KBbNyGhmUVtfXyiqtGGT3Sqj1jrqYuK/8M0cZWhe1Cl0FpXcIfmbnrQTCyHksPE3l3clswhtCVCBGzQoF+oHNpYcSvKOoOj3I9cOQdc8IJu1o9tRhS6UNLOorstv7m1ZVVwuLZGgUhhwXVKG5q95g4MZfu6Xv/RlPHn6JBH14rGdX5zjk/uftq8B6ItFYkwn3qjh70XjupP2nEUmyDxC2g2tE4uaILMoXTRaLpft8UORL3Uthfgcq8h51HMWuYWcUCza8Jmkx8u9F/61jeVRDdO5+/LOos3d0sgGgr/5XbNerwddku3hRSbdDBJC5kNWLty6eg19R8+Is8j/HSvt3EVjJeOdWKTC/QPBhWTaPMqgQYUKtazKziti75mXcoJn5hHWpVlHRwLFohkZzSzyHWmKxSJbrtW2VZZg5Th4DMD2AZID+BXUImfRhBWqKOOAEzxC7jyl4o+I4GS5hDFm52Wzc+CMRWVlaAhdFtNvwEQEVVVtENB95tDmxQiFgW5oEme/hC6UMDPAiwel7qK2DC2a64Xt2cvKja0wsVlQaG8+NzmLBsSSL7z6BTTO7ROKZNHzRaL3J/y3HUPqpikqQ6uD56fOogqNSTOLqthZNCQAIb72bmxP7z+H4NdK64yzyC4QmcBZtKlUL34v+9t5oWx7ZxE2zhdYhrY9czmLuu/NWCmKjApKhJAbon4OqCWweH1DGdqAsygqQ8OoccA7i5R4Z1Em4FpVmeMMY3OQNBSAGuPzF39Mf8k8az4rPtYxQLFoRsYEkDbvoOD62E3+wg42NmcidhY5sWjHdl6/CrnzgOtkv5zkEXJ3qesav/Pd3y3a1p//7p3asOHbji+BScuVhrbt7tO3C7iugvKj/P71xkuHFUv616EoWya6lvRFD/9vaW5RztnR23fqzpF+cLLthlboLBp6c+28M4tSCl/64pcioSb3PrUiTfJvuI0OMouGPuhQLKo3ZBa1zqJg8KHbqK5rLKrF4GvyR087ofW2BfqZRioOHzdJt9X0/c4JkGPC2XXFIribiWGxyL7uOXJ3Dp25xCK/cFnmLOLnRsitQBpALQBUG8Qify3aVIa2uRuaiLTOIgXTC7iWUCyakFlkxR8FgSpzCTlnkYJggVOcyX00cvsXMW8KikUzUiIWaT3ehhlwK5hJ63rjc4SymUU7dhaZ2JK+iXYsha/Ld2ehu4iQu42RcUeIx99cnp7eK+qUs3+cRXokKwjoHBB28+3K0NJyrnT/Y67UVtwaEOJDccF2pfTlVP0bx3KxqJ8ZMxZw/eLlC/zwJz+KHispQ2sFnKHfb8gsAoAvf+lLUSey1DUblsVsLkMbzyxqTINKV6h0FblzUrGoqvqZRf7aaMRgtV51ZWcpkVPMROVt/U2tWyh8f5TW0Q297xSnXcma/50f/z/5/97uvV+DTiaHF8q2D7jOC6DdGOgs2pa5xKKVO3eMxQxMKUMTEXz+5PG1x0YIGaKxAo3SfbGorQwbcA5FZWib5z8N6u757b1jcB7wv9vKWWSvnS/Mk9Ht29wkAbSqYKQpet6xQLFobsbEokmZRX1hSGnVD8BUaobMokCYGu0E1D1ndL8mLVHInwwury7x2ee0BRJyq5HyFWJ/rrp3eorL1V1wFqEVX8Zt1eP5LWPPr6qqdZTk9x87KEQk7jgkaCdLvetG8piRroW7dci4XRjBYrGYVIZW6f64WvdNRuCqM8G2JQHXJplgTuXLX/oy3nrzF7oHErFH0JXFdGWB/TK0OI9pYKzOWdRmDLrPtecscr9DxnG0Xq1bd1IOZQfqjicbnUVw5eypsyi8WfcunTCzCLBCjzFWuBrq7DbsLPIuk7nK0FxgOcWiyXQdEHftLLLnjtSV1zu+SHFH3MurS7z3wU+vPTZCyADixaKco8f/neYzi1qxp6AbWi2rdn/KOWrje8zwWGXnh1B4XsgSV6uPYOrzkef4e2aBMg3eOnsf583DouMdAxSLZiRcuc0iLmS06MbKdSbR4aQ/3w1tsVjsvhuaK3krKRebVoYWTDC1Hgx0ffHiBR58xj9cQm4z2/ztn57ew9VdCLl2TowSn1BJfsvY8ze2CG8zi7rHVutV1Ho6zk3qi0V+K8A5UcIW8uiuMacnp607YHTcJlOGZuJxpDeEuS5I3l2zSVRIu6F9cv/TyAE15nRZLpb45q98o/3vVOwR05VeGREsqqrvLAreN2zI8/NiEYA25DoU7Ty6splFJhl7pStcXl3iZMhVhHi+0YomQ9tCuc88LYELnUUGWnel7/61G9N9XqGLsEQg9dtvXYaGsTK08hxIEnNdZ5GI4P0PP+g9vm6dRbsrQxMjW7vTyHEztABDEqQBoJ2jZ2JmUbu974Y2/H7XWKG9colxW4f788JTbhx5fAmaUgr3Vs/w1UffRn32v0fbNFLjSi66814Qsr1cP8Pr55/CXH1S7HY8dCgWzcjQhOadH7+D9XodrbiWlHaFdnSgK+FqVyPddsvFcueBsWHJ2zgTbxj15tVIwN7MDAlJQ/CiQMjNso1YtEg6RN1WfAkMSp1FbTe06Tdg9vkbSmq8s0jim/vwHGnfX/tzTyxqb7jdtibfsUxEcHJyMjGzqIren1BE0JlzfNM0PdGhcZk7m0SFNEPnwaMHePHyRfTYFNLMIYFEjSNygeO2VGtzu3j/GiKxyDQu3Dq+nua6ofnHL68usVyeDI8/KlE3UYldf1v3HoUB10nXPCNhB9bAWRSIe6YJnUhTAq63+3u3ziJ2Q5uD64pFTdPgk/uf9B5flzqLUC4WGZHR/RGS4yfv/QRPzp7uexi3HnHOIgWdcQYFpWEAxruhDf9dPzeft5ehzlk0UIY2sB+zPsPL9afB6Ozzq/oCX3nyu1AQNM3z9ve1rPFx/UP8bP1dfFh/z2Ya+ZBtSHscJQ2uEOcpHisUi2ZkaELz4uULrOt1JJSM4csOdDLBb7uhBfbz5XL3YpGIiUSdTfXnUyYdYTeYXIvndrtglbeUn37wU9a1E3KDtF20CibynQCui8sP9okdYmFHyLATV5HAnh7Ln+/zgokvCw7FCWNMdI7047VDUJG4YseWuFQTJ4ovCzlZlotFJptZZJIFgfj1NE0TCft+fJu7wXWBua2bBtIrlytb3PDbAmn5nBFfLmZQ6SoTcB2GdyMrIoauIiBwFoU5Uf53kVjUPa4rjcvLzc4iqNQ9tsFZpBSMMVFmkQ66qgL25l5nAq7DTnU9ZxH6gmNI0zRYLpbXKENzzqJeqUL3+9LSfhLTfXe2e373txLvYL1ej/4t++MXO4vE0FlEtsKWPTO4eJSwDG3IWeTL0Hp/251Y1EiNRvLzhyu5wAvzBKqzxLp/wnNBIBYN3R9+9j9BHv8v7dzCwDqUXr34FJVZo9YnaMxFu+9P6h9jjSuc4lWscIknzafdvEQQOJ0El+Zl5ojHB8WiGyC9AHpLtw/gLAl2bm3pwWTbT8J1cLMlECwXCzQ7LkMzweSzJLg7/HcTJTkHdrvpLqG6abBeryY9Z9fUTY3VnsdAyE3RitYFwm7oltznzd1P3nu3daRsxjuLkL1Rjbb0Fghs6SxCtxCQey9FbNluOIz+zVbo6Am6aNrZkBue/7xiZ1G4v9OTk+LMopyzIz7HdyVNvglDWtLkw6C11pFzJaV9X6Sb2JWKWjmGusaJWIeRzZCKP0fv7s09v90mIxbVvgwtWSxq8wcTZ1GlCpxFdrDZY+a27rmXUmeRc3d5N5gXypqoDC0QJxHvL/eNr5sGy+X2YpH/G1RKZZ3Gpv3+9Z959vwZr8Ub6P6Mtvts/N9Ger5a12ucnpwWd0MrnTfaY5ZdZx48ejC6HTkeplYpHCVRZlEacD3mLOrK0AwMZKB87EnzibuvdE4e+MWXcDEgPJY9zrPmM1yabs4mzQssVs9Qw7kYYSBKQZsVjFqgqV4FxBo0DBpcyTlOcA9KKZzIKzgzj6Da1yDt69MCnEvfhWYKy+EOCYpFMzK0qimCyGpetFLttg1t/H4VTWkV5Tf4MrRd3oD5LAD/usrEorL9tjc0WufvjOAAACAASURBVA1e/O37NW0SIyJ7L2959NkjfPjxR3sdAyE3xTZCsR648bspzi/O8ez5s9HtrP4Tl28Nb5uI4BPHZF0nTuTJvDcC6ZV0haHJ2TGY+PG0DC28XoWC0dQyNBtwHT+WCiqfPf4MP/3ZewCCHBsnDJmmC4MuyixCd73x2UqpEFJEmlkUvI9GBDrjjojymJD/Xnjxy2OdRfV4GVro+qkqXF5d4eRkpAzN/WyM2fj6W2dR+JlrHTmnbAdWn1PYBY6bxgRlaMMB17k3o2kanCyX23dDC7+7OWcRhsvQfv7Jz3H27Gyr4x4HgZi8zbO9czE5X63Xa5yenIzO36ZeO4CyRYmmafDu+wzDJhZ/PicdIg3Mi3eSvz3jBJpNZWgD3dACZ5GB6bYPuDQv8dw8xlJOowWf3jFCF5NY9/RD8wE+qt/BZ7W9t1LmCkuzQt34MnQDJYA2NYxeQHQFJQ0a1KixjruA+ngV8YJVV4ZWQeFcnkXnrpVc4n7zfu/1HDoUi2YmJ6zYLiud1Ty1v+fwZQd+Zdbv099stc4iYye1PsByV/hVxqHXlI4VKHtNuVXn7PFFRlemcvvft1hkzHhXH0IOhakrvp2zcn9/IyKCl+ebO2UA/nxWGHEdihUD5Uljx1JKWwE96yzqd0MLc+vabdzvIoeSF72CRQqTlKGFjQxOTk7Ly9BMvwwtWhBQCsYI6rpGvc47i4wx0JUVi5oN2TbGCTXh6/Xj9K7dKaSLNuF7I9J1pwuJyvc2ZBaFLp9FFHAdT8H8a+65flxm0WjAdbiQtCngWrmxh6VuKg4fF2O6DqhBGXhTEHA99BfSNDWWy5Pty9CAjW7sNmA99zmIKZ5DPPrsEZ49fz6+4QFx7TI0Lyb2nEU1TgqdReG/JduWfI/83y/nYQQAILLX+cat5PJDyOd/H1gFTYRKytAKMouMEuv0CRe2xOBB8x40KjcXCYUaf4REQHIOpCt5aecleAVPzH2szQWUG59ZP3SjcTmBZg2jlxBVQYtBgzUaWfWuDku5F4kh/rKo3Uut0ZUtruQCDY7PoUqxaGayYpFI5CxyatFG0s5nYdaPFVm6VVatFKpFtdNStHTCv4sytFDw8v8OTShkC2cRRFDvWSzynxUhx8A2zqJcO/WbRERwfjEuFkGCMrQSZ5H7WSHvLNpUctEtJOj8OdE7PZMJmH8u4C4puTI071pR4e4kcrl44cSXoa3Wq+LPNBSLeud491k3TdPm6rXCQxOXoVUjzqIuH6k7ditqWVVhEmkoc/sajL25WOiq9x7E5Xv57/1QZpExffdTpStXoh47kyutUdc1TjaUoQHdBNuYvmspeq3w19q0G1rsLNK664Dqv4dNE2QWJQHX7TE3OIuuVYYm4kooB8SiDc6iKXOIz58+xvMXxyoWbXcubsXqnrNohdOTk6LMotLjd2JRwbbt9/b4SkdIH8H23/FDRYy/bgYiiDQAhsQiz0BmUfvfGkYaKBHXoczy1NzHSi6xVKf+CdHzVBRy7YWnBSAG5+ZZ5wYC8HT9YbvfZvXI7c1dQ80aRlmxSEmDWtauVC3+/JVSUGFZu5+3iAEUYAKx6NK8QMMyNLJrciVmXkAQv8JbkNnRhlm3+QFd3oEt3/IXWisqLarFTkOuxSStlTeJRSi76Kern3aSN1CGtoV19FY4i4RdO8jx4P9EpwRch5lr+0BEcH7+suB85X1FBd3QENzsD9w4/3hDV5b2vRk4J9prR5zNYkx83u2VoQWOz56zKC1bcm5XEYOqsqt/m1w+4bh1IKqk7dm9i6zJZRY1gbNIa2jdd/JExzK25M1P/GzA9ap77aOjjUnFnjJnkbTOIvu96O+3aRo3TktVLZyzqJ8r1JahmX5bewBYjjiL/PFTp1juxUr2s4mdarYbmm67odn3oGkXYcKuZs9fPMe9e/fa9yLn7qldGdr2AdcjziIZFovCjm5j1Ot6645td5XuvHGd8PGMs2htnUWj3dAGnp/DtOetsnMSgKLzF4Br5Z6R2w/L0DJIHf8LANJABZlF0Tk1cvsAkjqL2tb11llkH7F/V7Ws8bj5FEvca7f2AdfdsppAILiSYBFPaQAGL+QxKrHXwSVO8bLp3FBqbRsaGTRQEGixziKjKmjToJYVVuYS+ZUkCf4NxCuRKKPoQo5rEcFDsWhuMiVmqbNoaGKVPseLRUZy5Vvdqo5SCovFop2M7wIjYWbR5m4jU5xFmyar0fGTttAlzC0WnT1/VvAaDS9M5GgoFYr9trch4NqLF1dXV2NbAkply4YvLi/w2ePPgn0mJTmZ11fX9eA52pcoaZXPcbMOivi6IWkZSOhuSkqUrENKRZ+XTsrQIF1jhWpEuAnHHTmLTOJYcteOJuhI0w+4Nqi0L0MbcxZV0etahTd6EzOL0syhUEhrM4uS8YQOnqEcHVtWl2YW9UvN/D6sMJeKRfb5m5xF4WdsTJcTld82aJrRHiN1FpnEWWSwXNi8oTTgWkTwyYNP8dVf/Ko7QF5Ptc6i65Sh+b/BLcSiCSXh63p9dN22dlaGFszTjDGomxonJ8vReVB4zigda2kZGlDuLHr7d7/NkrUDhwHXCa1YFPyN+DK0ViYI5hq+bKzNLMo5i6yrSJz4UruOaGfNQwhMcn1q7cHuvxXOzRke1B8EbqMKIgYruYR2jiatKijTuaH0+sztzTaQ0mYN0QvnLDJYyyXWuITOSB/Ku4mix3x3tcYNz+BSjrM7GsWimSkpQxuyr4f4bmRt2GQQjulzIIDuBmzhOq7silic2jzesCygdJ9AvxtLuu3Uci4BZm2R+c6P3xntriKGtfLkeJgyie9KrfYrFhkRvHLvHl5ebJ4EuAqYXhAyADx7/gyPPhsQi9SmMrTh851SLnR44KY4Fe1NsGCQjiEUAjpHK9qT9ZDLxJYWjYdNh2OokjK0MJfHL3bYMrROJDpZnrQlTaZpoHUFXY2Uoblso/BY67XteLJNZhGS72G439ZZlAZcD7i3euPMdEMLS9hCtNZomma6swihIGjaxZ3BbVNBKrn+irH7CEvfF4sFTGMzi/w4AeDx0ydYLpZ4/bXX2/3nVIemdRZtOTcZOWdsEoumOArq+pidRdudi03w3fPUdY3lYmm/W6POongcm7ftC1PD2zpnQ8F8uBOyj+uzPyY2XXePFicWSegsQtgNDbGQNJJZJNIASqNB7a7E4vKC1nhiYldRuD8V7OfMPMQKF8mx7BjC69apsWNYV69iWb+wi3/SAOIDrpcQXUHDYCUXkdgU03VDU8F4BJ1YtMJVVE53TFAsmpnQGg6EN1POHeR6GI9dH7uSjW4S35aFBaUKfruqWqDZqbMozUi6vrMo7QZju7rdHWeRLwfcBMvQyFHRlhKUTeK9AL5PQVVE8IUvvIbzkZDr1tWQie9tmia+0U5dI0M3rwOvOyrRyzmLvNMzKkMbzizyIk33exU5aVInSphZZMvhyj6jNGC4vyDQZRZ5p0fTNDg5WUZularSLrNo+PwtIqh01b21Epzz7UucROoM6t4b40reqt75Pmz84MeU4p1Snko7Z5HJl4pVLuQ6zSxaLpc9J1L8AroV3zFnEdz3IVpFTa6/8QJV31m0DESf+w8+xS//0lfD3Q8EXNvnNcaMzg9ydN/c2Cn34uWL9mc9MD/x5X0l1PX66BZ5prhCs89vnUXd+7au11gul4MCXu74JYuC3Tx6Shla+X5LS9bI3WSfi1O3Ei8SmbgMzYpF/jqSEYvazKL4/bwyzyFKoZE13IUJa1nhQl64XN342uRdPe1+FHAlF1Z0asOyq76DCUDlhZzTL6Mya9TNMxipocTY5CMXcA0AtXmJNa76zqLwWijSjsM6iwSNe39WctE7/rFAsWhmcplFgMtBCMowxtQif3OQzSxScTc0pTQWi2rHmUXd8Uq7oZW8pnDVOe3GEm9rpjuLZN6A6xK3E+ujyTHRlRKUZxaNic9zIyJ47dUvjHZE65xQ/cmmLyuKtx13Fg2f7zZ3Q4O/KQ727FfZozK0wFnUfSb99uM24yZxFiEUi7YsQ0vEIn/t8DdjdVMHpUldDo7W426mzrHTHWu5WFp30RbOotBpZffny/qcq2bIWRRcF/PjbNoyMiDthpZzFlVZZ9FYuPWUzCL/HS5xFmnnZhZjnUWNaXpusPOLC7zx2hvhEQacRTUWi8XWbkIRJ9gGofgvXr7Aj979Ufv7YWdR2RzCGOMEsSMTi67tLIrFasDm/ywXiyJn4pTjt2JRwbZmQsC1H+OxffbHBOfkGbxrKMksagOugVioaUWdvLOolksYwIVJ2yyitVzi3JwNXJel3c7u3n8+QdC1qoDMdV27cO7VyZcAAM3qIRo0WPj5hLKZRQDQyAWsizq9NqZ/7/4e1kBBtyV0l+bFdMfygUCxaGb6q5VdmUZ7szQps0i3bWx16Cwy3cRWqS4XYVeEZQqlYlHpa/KE2Usp3ok1ZSJzE86i8QlQeU4CIXedKZN4L77oW9AN7QuvfgHnl+Md0exEoe8E9U6RcJ/dpGK4ZGZIVAvL0HKlFn6hIVuGFgo17nehEBCdd4PSj2i1z4kJnVhUXoamdRXttydCSZd5U9e1K006SQKuq1agOnt2hh+9++PssaKSNwhOTk6wqtfbOYuSz6l1WphNAdfjjR8Gu6FJvmOZFzvSzKJNJWjp+H3b+03bukF3j6nEWeRcU16YMSJYLhcwjWk/MxOIfovFIthX/vpfNw0W1aKoLCmL+06Hr3W1WrU395vEImMk+7eUsq7XbvvjcpdI8De7Da1YHXyudR2Kg3N0QysRsMszi6Y4lsjdhGVoGQYCrq2raFMZWj+zyIryawiAWlYQd41ZyxXO5QwV+tcx1U0YAAAaGkucwhaCueM6Z5FKSsiUc0OtF68BAIx5DoMGlRtv6CyCqbNijwrOOSopQ1PQbTj3lbyExqL3/GOAYtHMpBPI6CLXCkDjF0gv1qQrvkDiLIK3jncdhj5//Dne//D93j6NMfjJe+8WvQ4T3EwUi0VjrylpHayCrm79408/ud9IGdrIazS8MJEjYrqzSI+eT+ZGjLgsloKbGe8EzZShpUJDmPE2tL/NziLlSmry3dDSTlr+PZfoWhB2zIzFoshZZDLOolAsKiwVtKVh3c16vxuaXezwZVZ17VwqJydtmUgacH1xeZnNhhMXHO3fQRHByfIE6/VqS2dR7ADzH03YDS39noa5Q0Pf414ZWlWhaerWBZziP9dw/IvFAvdOT3vb9sffibWbnUV9N1QqshgnvPgSRmMMFouldRa57KGmMe11tgpCvHOl9eF2Y3lUQwjQ++6u1qvWqdaKRbmg8cKFm7ZL37Et8lzTWRQ68Tx106CqvLNofPGw9PidMDWhDG2Ss4hi0SFz6AHX0lxCprR3T5xF9m/GJJlF1pn5af3uRmfRCpcADEQpvJSn8C7TK5xjLat+XlAk1Nj9LNU9aFXZBZ92/mNdxGkJmTZrCDSayl4fr+rHMKhRORHJuIBrAKjEZC0MYVYSJC5DU1CoYecf2RK2I+E4X/VNMtSONwq4Ls8s6vIDNndDCyeuq/Uaq1V/st00DR48elC2khMdb+zmTqKMjCFMsurs7e5DxwfKVpLa54i9KZnjRrR0ZUsKVzMJOQSmO4v8uWq/mUWV7gsBmQ3hmoj1zte1aaLXHDtDtnUW6cGsIL//6OY+yQwRQZBZ1N2stY6j4NqUOotC50ZpGZoXl9IytGi/qgu4Pj05xdqJQMvFonMWufDkyrmZfGh1inHCVHiTe3Jy4rbHZGcRegs73TU1fF3RNgXl2d4p5akqW8oVdhgNacWiQMj5hTffwjd/5Zsj44+vSxszi9qnxAJhuChjjEnmHAbLxaLNmVqenKAxjXWPVItYFMyUoXmH1RSnWo9WsO1e62q1ioTQwTI0U7Zws3ZiUak4+uP3foJPH3w65VXcSnLnlCm0n0Hwvtmyw8otXpY5i0qvHfaYBcKSF4sKhCU/RrrBD5djKEMzn/4NyNnb5U/odUML3DxBZlGNFS7lRVAatoifD5vro0Qg0PZnaCigbT/fL70OPoveCgOc6KUApa3rR5IyNFnD6AWMto6lunmOlVxBt2LREuLG6TOI+q8//31QrgytkRoitqObOlLZ5Dhf9Q2ikA+49tZ2v1X2CxwQhk0aN+nxk0odOHLCleBupdlkL6pTLowmOF6Js0gHk/jh7ZKA68ANNTTWqWVowDxhhcVi0RZZS4TcVbqQ1PJuaHrD3/1NYMR31Rr5W4af6PTLhlNnkb+pBfw/ebFos7No+JzoxST/s30dycq8dO4anTRBgCt/9qHQadmTDx33gkNp5kjq+uiXUznhoTE4PTnB1WplnSa6K5tunGNIu4Drdb3KHtuLMKGAc3KyxGq9BrZ0FoXXrNAd5Z292fbyYcB1ztFiGuiq3w0tn52A1oWUfh6Rcyc3/mCuMdoNLeN6849FQp/W8JlixmcWNT6zaNm2Rg9L0Px+w3fihz/5ES4uL9vXoJXeyrnjNcB4MWzVjs/vO50n2L+1UmfRGqcnp0XukgePHuDho4e4vLqa/FpuG1bYvYZYFPy9eDpn0XDzkvD4AApdqeVz1zaiYUIZGgOuD5t9OplvhOYFZPWwfPu0DE06sUgF3dAaWaOWNQzcdmoJoAJMd/67MM9tGZdSWMsK/v7WwGzMKwKCcrTgd1aYssVhdps0s8h2PIPSMKpCZWrUcgWdKUPT0mSdQSoZQ1cWZ8fcYN2Woh0rFItmppdZ5H5unB0udQENkTqLwkl4uDLvL/jhPv1EqbdPd/EeC8LOH29cLCp7TUHAtVbDK+1tJtMEZ5F/r2ewFJeugtluaAd+YSLEUSqi+m33XYbmj1vpavRvuXPaoCeE++5e4bb+RnzIORre4PZ+58SOoXOiLTGLH+t3Q+u2SR1KoajjS8VyYlEYkD1JLAquPdmA66bByckprlZXqHRlQ59Nl1nky9A2OYu6kqPuNS8X1lm0XWZRfBPhfzRG2jLs1H2TXhdzaz5NE5ehLRYV6rpGXdeZVVa0LqShwOzB8UdlhfkSt3Db3DHCbCsvFnoBwXdDM20Zms2Zsrk0qZAV/00/OXuC+w8/bcWiqtrc6W6InBt7tbKTeB8KnjufTHGt1HWN09PT0e97Xdd4/8MP8Mu/9FU0O2wmsi8EYsXXkYXLwee3zsbu+U1TY1FVvfD07PNTsbtg2yllaCXNThhwffjY+5nD/XzFu2fqpxOeMyAWoUKYWVRjhQZrmNZJpIDqNBaL5DmU2OfWuHLXIVs+tkC/SUOYF5TrdiZoAOWb2PfL+pWpYZxzyOglFtJghcu2DE3UEuKuqUupsFT3Mm9AeFxpL/5WONJoUKPGevI1+ZCgWDQzQ5lF3lk0RSzSqutMYoJJargy3+5T62ClJ1/u4C/epWLKJLGooMNR/0Zi+Dlht7eUJ2f5k6K/mZhTLBpbBRsS6gg5RDpTS9mEvz3/7UlQnXIOBpzIkikr63dDC2/E887RtKQp+p272R90XUl/oaG9yU8cRHbcmWuEX3hw7e5Twhyjwa5syevpjynvWDJicHJyYsWiqoKuqnbl33cP07pCYwxW63Vvcp8reVNK4WR5nW5oaWZR55LzZdi2q1z3PpYsoqQB14tqga986cv49MH94jK0shcQu6Fyn2m0cfSv+6/AAeI7qrVlaOKdRa4MbbmMytCi/SRuOjGCh589wsI7iwq766WEn7X/Tvg8q7qpB/+Wp7io1+sap67EbuN29RrLxRKvfeH1g8i4EZGoy9xUuvNO31mkBspp0+Pb/Ywf32yz7QRhiQHXh4tdIDngBVwv5NRn5X/LaTe0sF19EGK9lis0Uneh01CAOoU4schIg5VcWmFBabyCNwBXhnaKV2wOUf/g7U+5vrH2fNLl0KnkNWlZQ1wJmtFLVKbGK3gdlakh0BDnOLLPzf9dx4KVtGNSbiHNlqBdZReDjgWKRTMT1tYD8cp7O7lGb6G6R3+C35VwqWD1OSpDCwSN3MmxtKVoOtnN3SylYx1zFn3n+9/BOllZDYO6c2MA+s4iEcH3f/j97MRORFrb/K5Jb8yGsJlFFIvIcTDdWWTPX/sSVKcIVq0woPpTmmzAtbdNZzKO/P6GXrd3BYWdLrPjTjpg2X+9mNEJDjpzjfCkIdR2zKmzqCyzSCdOMTH9gOu6XqOqKiyqBVZXViyqdFeW5J04ldYwjXUWpWXUbacu90L9a1oulzbgOnB2FdNb2DHoyr67wPFcUDgwfF304lfIr3ztV3B5dZl1/7TX2slaUVCGZsbK0Py//c+9++wCl7IxUcC1MQbL5RKmGSpD65w//nu+XC5ROVFp625o6Iukq9UKWuvOqZWZULV/EyVikStDGxtf09h50cKVFd51Shf5hmhDp4PnN3XTOos2ieNA5wQvXWgozb3yf6eTAq45ZztcJL/ofDCEwk/zsvA5w2VoXYi1FYLswpMvQwNQ3QPMJQDgSs7hVi0gSqFSi9HrWF+oiX7rso4UjPK/i/82tVm3eUVGL6HNGpVaQEsNoxf2uj4iFqX7bJdS3PxMQWEll1u7Lg8BikUzo5I2yzmxCEmpWo7OMRSWobk8icFV425Sm7/hKHMWDZUSbNreikXDv3/24jnOnj3tZRZtCnwF+if5ocf97+YSi7rPcfPntk3WEiF3lSmrw/4cdp0blOvSigB6vEyisyajN6nxrdDT/cI9I19GZYLSjThPJRT9syXE4sQo1d1khbl1bqsusygVOdAJBcbEIdTAdmVooegUlpSE53itlHUb6AqLRdVmFvl28v690NXmMjTvgkjLsquqCm70JjqLkIpFvjzRtMcLHVYmydwLP4tP7n/S7ivthgYAr776Kt76PW/2Hge2dxalZWibAq5zmUUAou+bdycp1XVD80HkViRZdM6iRdpOuHPT+c/mF9/6xS6zaNtuaNH8Bm1m0r3Te0kZWvy87jWNn2d8Gdr4IlrT++7eZUT6HfGmPd+0wqKnbmpUVVXk3gydfOPHst0Jy8Qi/70t2y9Qlm9E7ia2m/QBi4FB2HRxKVrbBW1DwLU0WMslKizQiM/vUYDuytAu5AXsvMPmDMH9l9vB0MHbn1RPtFH9MrRkPzazyJehnUCbtXu8E5HCzKIcoWBl99+uurQjvJLzyW7lQ4Ji0dykQpD7Me2GNmYt8iu0bdikdJ1Uwom8v2CHZQdG8rZL/5yxVbE0xLOsDG14G3/cx0+fRCur1mEw8BwxdnKQnOTTDkDpOBbVYpZVv1IHxRSnBSF3nakT/vDiuw/BKBXCN698h1k/MU1T9xyk8Q15TizqBJ6PP/053v/w/eT52pYT54RwhNcO+1h6jgzdNWFZsn8dHut8yYhFEopFBWUkphNw/PHDRQ2/39ZZtFi0mUXhDXfTlqFpNKbBul5nz/utiwnd++2vhdZVtXG4PXqlUyI2+NyVzen28+gcXGF7ev9ZiAje+9n7sfiVEYX+wDf/AL721a/1Hm8Drrcpo2uv+SbqNJrZuhtztI+4k53/jrXh0W5slQsgbzOLMmVoEnwvlVL42i/9Mr75K99o97Ode0Oi17pe21IwHxreuu2Sv7cp3VTX9Rony5NRJ0zjRM+5xaJP7n+S7Wa7a0oc4Zswxgk4obOoaVohMc37ygzA/lPg+hAxVsgtac5ipHXEjW7rF1A5XztcpEw0vrMEgojUZ4XPyTuLbLi1zywyWOMSFZZB2LOCUp1YdG6eosLCdkNrr/vlYlF6H9yKRVBo/LkjcSIpqWFU7CwC8mJRmbNIgoVB7yzyYtHxSibH+8pviFQIClfe09KyTZhw4iaCsJNK6MjJlqFJvhSqXfkccxaZic4i2En0kFvKj+Xq6qpXhja0XzEm2956YxaBiFtR2n34ZOlNcTh5J+TQSV0uG7cV3/GrPDNo14ThziUieOsETc7pjTHRinokFqHvdPDH9uePuq7x8LNH7bnYvzda5UUaEbFxAYEbxiTnSLtJ5ywKrxFeSUkdRB4FL8j45/dvzLJun6Asy75GiUQLKxbVbRkaAFeGlg+49teI3Hlf6+6zaAPB2yBdwWRnUaYMzQefh2VoqZjSvWedy8m/DvtvX4zzr7vvyLlGZlE7bpdDtdFZ1I05elzH3yffDa1xr8G7t7xYpJTCar3OOovasiKXiVVVFV6590r7GrdzFiEShFbrFU5OTqIytNBt5snl6QxR1zUWy2UrVg7ROAecXZCaL+D6/qMHOL84n23/HhtwfQ2xyInVOWcRgCjvK3t8J1aVulLLnUXlDvNOVKSz6FAZE4HvPKGzaF3qLEozi+x/n5nPcS723GNkjUYaVFjAhM4iV4ZmxOBSXqLCEoAJHEVurjHwlvddPcHv4Lu4KjTKv65ge6ntXMU7i9QSWmpADB49b/Dn//sv4/PntTNtaKiBv+u4FK47hgquF43U2U5qx8LxvvIbojcBRTcRayfXGF9Vb1eaE9s94MNHOxEqzeAQZ6NP6To/FJShJRP+TRf0MTuzb7tbVVWy3+EJpJH+qlX4GvI3VNhpGVpjGvzo3R+7fZfdFLeT1EOukSbE0a1OF0zi0blORledZyIskxoSZlLSMrTGNL1zYiQkqOGA6y581YYGf/b48+j5g++lu2kOS5/EuJu1QMxAdI3oVuY615PKO19aEcmVOidOkIuLC3z3ne9FTwkdqLnrlH/cl2VVgVikK50EXGtUurJiwPKkV57sXT3e6N4Kj84BlR63hLR8ScR27QqbUYQiR9Zxi25hxgsNTWNG296H6Gr7bmgeH049um1yDFuuGN9MaaXa0jMALk+qEwBWq1Umswjt34h3gYVUW2YWeTei/36tVvb7UekKTRBwneK/4yUidl2vsVwsRp0rN+Usaupmq/dqKmOO8NHnm777u2maVhQeKqn1GBEndu++DK10Htg1feHi3qEiOHSxKPieuzI0MVcwj34LMpRhfDfbYgAAIABJREFUZPLOonO8xCPzkd1EVnZBBhoGPrPIl6GtsDIvO/e1SFe+1p6OS5xFw2VotXf5hNcm5yIKA64B/P/svWuwJMl5HXYyq6q7750775mdfWAXu8SaEGgDpEiQijAVciisEEUpGLR/2BYoSrZFShQJw5Il0ZTDQYdDoCMclhQWSYmgIAABkFbAMggSggGSBklhCYIECSwW2F1g8dhd7M7u7DzvzNyZvo/urqpM/8j8Mr/Myuquvrfv7J07/SEWM9Ndj6zqqnyc75zz4eVLO/gbHz2Fp17L8KEnNux32RRmkQ7+LhpgkYaGgkD3cfywxRIs2udo+iBoN0GnbChR6a9eu4rnv/U8RuNx4zg0kPsytmyRI9Omm9yzKDWo0kJlFvMmNSluf/Fn05mVnVScOHY89LOYUomD9okXDW3G14B5vRcKFtU1bmzcMMfuyBjilWWWsYxDH3bC351Z5EGL10+GxhiaHZhFsQyNpBYEjsTHaCtgwPtlpRVOnTiJK1cvB+2ixXuyLYhlaLSAIrlZVDGTeRo5820YhkRTjhR7FolgEVdWJcbROJX6PXXk60P32rBqMvf3zFY+I5ZWJg2ABAD9Xq+ZJNBMhqY5o3Y6e2F6hPIlM44xzyI7/gZjbZREMe33IBHgZXVdg65rV1fg5geRn1K8XasMjaqthow7DhZJyywCjKfTeDJuytBYjjgliTOeRfOPyxqWUUdgkWUWZZl0MjR+H9x+WiPvCC6U1oPJAJh++/MXXkFZlu7fsWfRfvVfVV11klDtNczzvDcZWp7lQX9VV7V7VkRHZlGX86s5fk+ttfPa6nINsxhly7jLQx9yWwhW9t7J0EYXoLe/CYwvt+yUBotqKEhb7r7SI7st71stWASNkboJvy7Ujlk0j2fR+qbGu953ybCBYJlF1v+oRpNZJC3IpQR5Fhmw6B//+g2cv1VAQ+A3n9rE9WEFLbIpnkX+eRDQ7BTes2g3FVYPUyzBon0OwTK/QJgR4bIGaI3h1ia2trfxpWe/lKT8h4aerKyx8OasjoHE6LxKpavuEPCSGkTXb6w7nXwqOzxtMWiArelgkZQZTp08jV7RC47bllVy960js4gWbdM8i+g36BpE76e/A2iAV6l9Uu1bxjIOY8zFLNLeU2dvi/zdRwBwzCgbbb4T5j/OLGLZc79dyN5ISXJjydLpU2ewtb2NsioZUyZtvO08i2IZWsYy8+z+8uNwEAlCQNUtnkVRNTTOLFJaN6Q3abAoHDvIZy+WoXHWjqq9wTUA9Pr9BginXLUve/0mpemMyvmz1TVSLGDDWGHASTCuRowZEQGAJKurFbKs+1Qry/YAFjEpXEr6xtsKtIFF2knH+DZ0rcSmobZOJuOmDE34dyRltr1bGRox6kJmkZWM1VUAgsXPS5bls5M7WqOqKuODxKSRAHDl6hXcvHXT/dswi/xzuh9gkdbamOffifmD1sgWIUNj1gAkbQPCeWrb+TvL0JTu9HuadtmkYQcASGtlAK8ls+jQxuFnFtlxuTgJlBumPy9v2O/smk9XGKlNv0/MLIIHnKQFYLbrm2zeQSEAOQAADKtLVoJmwZfIs6jp9Gi/tb/FcCzxjz5R4JnzY8cGMhU+CSxSjeNIK4dTEbPohSv+Xa9q4ENPbECLdmZRs20xs0iE86Z7MJZg0X5Hg9quHVXXy9B8NvDc2XMuk8cjZgzVFnAB7CJnhmdRaiHmKbfNF+ji5UvY3DKdiZ+Y0yVNr97WhVkkpcS5s/fh0UcedZ9Py6Jrmsg0mEXTwZhpzKKvPf91DDeHrdeRakdc3Wz25DOUhixjGYc56N3vziwKZUt3OgI57wx5LWDWwHECoK5N9pxXHAu9bNCgFsUgMgE9WW7AiaAfb2MWCRG0RelYhsY8ixpjBLVNNKt62TaHBtfh4l5b2VwTwPHmzG0yNCD06yFJEzE0yB/HgUVF0Vz8U1LEmlITWyps57wyLgS/k1bG4JpkhkDT+yn2LOJZay5Hy+ZhFsm9MIvgpHBCzJahxWehxXoMotJ3gJGh5c6HJkt6FvFbqXVT5pjywOoS2npR0fMwdp5FGaqqdm1NPS8pZnIc5KcVSw4Bw/DZuO0NY41nkbkP++Vb5Ezfp4AXX/n6VzEp926AvVdmkZOhKWKs1+5eAl4iOu38XZlFc8nQCCjskBw0ZtjdgKVl3KWh9wfYPTBB5tTFaUBPALUDWLBIWxBopLewri409omZRVoIEExQ6Z3EyQSE7AMAlNpGbo2mObPITTZm3PL/+TNn8eSFDBrAbz61hevDyqlYzK5Ulc0fSBCzSHpm0dWtcKxVGvitp7Zwdbtol6HxdZxuytAkhGU43bsxEywSQnxACHFVCPGVlu//mhDiGfvfHwkhvpN997IQ4lkhxJeFEE8usuF3S6To0KSFD2UN2k22ZULP76ucsSoghXkxJat8RnI1fl6ilcdBmdEU86Ysy+CYcUUbyupduPRaY18z6E+XlKWyniKSOrjt7bWnJhJtBtd0b6f5CYzHY5RVmfwuFQH4xrKm00Kx33sZyzjsoeHB8JnbzsHqWVRsbW9ja9vr9kM2zHRGlJNvRQkAtyiS7QBJI2/F+hLA94mZNPIc6nOJKZNsi0euzGdKGWkGHdvQMAAkZGgeLTLMmaRnEffFC8ekVKKhwSyCtseIJcxw1c6ojwbgmBxk1E0AS5H3muOoM18O7zkdP2XaPStiI3JiFikmb+K/B5eCh9fs781u/JP2AhbR8+AMwNs2myZDUypgTfFrB4wMTTKAD0CSWcT9GWMw0oBwu2EWeVN8zyzq2XG+nVkUvxttQawiwIBivKKdUgq3bt3y72xdM4bVdN8irTWeeuZLc/dxBEC1Sfa01rg9vL2QammOET5rVdcSJA1zpv3M3BrAVLY5nT+VEGzddg4ZGvWts/05jb/Rcr52eEMjrbQ4NEGAT/9+8+fkCnR53X5n+zNU2FFD1JqquNr3woIv2m0nXFUzqQUK9Okk5g8BlLZv7ys2zmvl5h6cq5sKmh198oVj7rNaac8u0sYuWye8j8izyDOLevjFJ081zqG0xi99Ya0Ts8jI0HTw9xw99LCS3PdeiS7Mog8C+EtTvn8JwH+itX4bgHcDeG/0/Z/XWn+X1vrtu2vi3R0ikizQgBiCRWYTXgWmUSo4YBYZsKhnJzWtnkXODyPtpaG0RlGkmTdV5UtBxxNvYi1tj3Zw9dqVxr6zMkR1C1jEQa/geJbGLhI0Zn+NLWCRNb5MRVWV800KXKaUGdN2oLV3ndQsYxl3e2g9u+qN35bL0O6MwfX69Wu4tn7N/ZsDIqKFxUPh/FIiHzqeQU+BRSnTohSzyLBpeCIBQT8e72sOzRflIXsiBOO4VDkEC1KLefN5nfTFA+DuE2dThGARkveCM4sAAzLwBfd4PHZgCf1XWGYRfz68j571LEI7sNU1komdzCww/bG5Z1EIstH+nlGkHGNsPrAo27U3QiAjm8Is8oVqWmRoWgcsHdMuZnDtAD7zWcOziD3zyjJWeGS7/I3cs0tzkO1trK6sIpORZ1HkP8VZd415kFIuaVTVlQO+JBu3CUTSWjmvLsMY8x5c04AIpRS2d7bnvmbHLGrZjwDJRfgyumpou5QD07POmUX8uZj1XmqYZ78bs0h1nlfR3DnLspmMISdZ20fD8mW8vpHqAw5TENAjBg8BkNCj1xyziBg0anIDldrBWG8jMMR2DCP7p5CWXQRkkJC2BL2fzwiUNIcLgBgNjVCG1kot0hqXhiEbqFaGDWS8i6jaqVXSsN9OKgOScxnaFy83QZ2yBr58aRqzKC1Do78LIZGJZuXSeylmgkVa688AuDHl+z/SWpOQ+48BvGFBbTsUEUsWNMwkxHVYAm7iozQtGFLMIg6YaJQVYxYlwCKu/Y6z2O6YSiHPiwaYorXxo+AG2bJlUlxWTSBGY3qGqpVZ1CJFIYNMQ2NuTvT4n/waaIKQYk5prVFW1VxVL7j0zN3TWZ5FailDW8a9E4452ZlZ1M1celERL6y4AbOQM2RodqEar/srWxWJPDlS8qT4sJz1Se3KWN+vNRr9eBw+0cBkaJKxJ7S3lpQMdOKMIwEDCsWLefO5/33amEVVVbPPPNNGCDKebje4BgzIkDPg4fK1Kzh54qTbXkppPGkiTyulYg+/ECxKmXbPDBECDGbcM15NvmJeC0OL7cM9i+aVoAHmPuzJswh+LtG6nQiBIAoCbXlRC/+nZ4X5cughwyhshwkdezuB7uPuZGgEIk4mYyit0O/3rQytip6/+HmRDdARAG7cvIEXX/oWAAMKOS8tVgHQgEgZjh87gY3bJuNd1yqQUPJ5xsatjQbrzuwzHwhR2fmVamNHW0bRQsAiSvJF78CNm63T/8b+3EeIJH0U5t5PZxbNI0PrbnBt3l/ZoWqdVgpFnu/KfH0Zd08c6urExCySK0DvLPTWN8DlZVpXOHLlt3B85xpGepNt3wdgpeUOLCpAMIFgMiyfzBCoaFxQfi3ImUUEFonW91rjn37+TONTpT27SEFDwvTL/fF1HL39IgAgU6Uxt7YglhYZfvkHLwXHedsb+/jMux/FR350G7LlvRZQuLqV4R0fewjrWzpI1bRXULu3YtGeRT8G4LfYvzWATwkhviiE+NsLPtddEQ0AhMAcO1kizyJoJkNrAYvaZGg04Yvp+B7QSLNgDLOoaGRbyIvCL0ISsgqtoVQdMJCCts6qhpaUoaUpyJQlNYym+Bqmg0VtWaLaSj3mmRT4EtVzytCWzKJl3COhtfF56SolEC2Lu/0KpVSwqAtAhkT/wsODLE1mUU4yNNUmQ2tjFnH2pnRAh9Yq4cHTbDMYEKUiYFojZIUEIBJjAKVKmxPjyDGBYrDIsQc4s4j55Fi6bHwvpDuemdwdP3YMg74xyJRZhvXr63jgvvv99lKiKArD6OGsH0XV0MyVhiy13VXaEvbe+OvRTrriQM1AhpaqEupZILXyZt3zxJ49i7SGngGW+Wp4MbNI2nExfDcBOEAxyxizKJPI87x5LqJLo+l5CFA1tN0ZXFO7h5tDrB1Zs0khKzFq6U+0Bb9SzJmqriNmkQfC6DkiEOn4sePOt6hWNfMsChnML73yMm4Nvb8RtWVeXyPavo1ZNJl4ltNew7BCw/s2Go/wwksvdto/rlibYhZNGxdo7OhicK0ImJpjnDEs8w7MoizfnURyGXdFUGL+8AYBPZlhF9XD8DtVQUChUApbasOBRcr6DWlVAs5MOrNJFBGAPRwsGguzP5lNAwYY0nwuMCUENL58edD4vKyBr7wyNmkHAQgLCK1tvYqjmy8BWkOqiWMV0bk2yn5wnKu3rLROthtcQ2v8/BdO4QuXVvCv/igHZxYJrbG2eR6yHqX3vUdiYWCREOLPw4BFP8M+/n6t9XcD+EEA7xRC/Lkp+/9tIcSTQognr1271rbZ3ReiaXAthPAUbzJrRDewiCRgZVk6bT0AlpFugkVOfhBNkkwWpWgwbyibxbPf8aSYMqg8k8oaa7KarWBRs/oO0G4wS1nSFPvAZ3GjazPdW+sEwWXs5pgUcIaWYwTM8DhxssMls2gZ90B4ZlG3CT/NIww4cQfAIq2ChdVc7CZN0jCATyZq5WVojlkUy4hSgDpjORCAHnoWpfsvfnyzSPcyY16NyDBXOSOmaXANCCsLjkGD0OBaREwQzdgD7jOlg3EtljP59sJVB3v8sccxGJiJYiYzDPoDHD923G1/5uRprAxWEPtJkSdPwCxyZt4yALq6hkiM1cRGCABFex9u3rqJI0eONK7NV0HbLbNoPtkaj6LoOb/Bbsyi6HMHePpnIpahPXDuQZw9dca1NZagAVZ5af+ekqFJuTtAjzOLxpMJjh5Zc8er6iaz6IWXXjT3wz7jKUaTUso9x4YNw5hFNfPfyXOsrqxgNDKLBlVzGVqYlCrLEuOx9xHaLbOorsgzKb0fGVsvjFkU9YF1XXdeWCsd+kJVdY0s555F06XG8zKLunrjEUPSyNBmFyShBOOSDX5441D/tsQUEhlE/8Hou9qxhnItMNJbUFbKNbFd9JXqeQsYAYIAJCHATaC9illggtokphQHwr3BdairSbVX4+9+3/Xgo5/8gZP4zLsfxQfe+ZBJOkF4OZwyAJJUE8h6glr2gn03JkXw72u3a9RKT62Gdmmjwr/92nFoCPza0xl+9N8UuLZtEyL1Do7f/iZWd5qWK/dSLAQsEkK8DcD7APyw1tr96lrri/bPqwB+A8D3tR1Da/1erfXbtdZvP3v27CKadSAi5YNAGWP6nrKB3uDagyYvv/IyRuNxAAKZ7HjlmEUAB4u8Efasyl1Kq6RnkTdV9EyaeMLPQaKqasrYppkZTpOhpY24SVrXBJMcWNTmWdRCPS5L0xnOk0HiTCsCgbowKKScXYVlGcs4DOHeiy4LDAbUzGL1LCqaMrTQm2WqTAIM3I8WVFQNTWvdKLFqkgHRsSyoxvvmwLPI7pfqvzjYE8uweCU6M9bY7SQfDxCATcnKWfQ5lbqPfPRc38/axhmoYbua7JtYtgQARVHggXMPBPfuTY+9yTFXGjI0IZ3EL2RRiV0xA2IGmGMWqabBdVmWuLa+jgfPPdA4BjdFrhmg0DUGgwHe8u1vmbv9ANDv9TEajRqMrkaw54cHzT1SvxsljI6srqLfN9lbyarahcdnyaoWGdpufiMDgPp2r1mwiEBVDoJprXFj4wZG45F7XpJ+kJYhDZjn2XsWeUCrqoyXUZEXbtvaMmmA0LNIa2MTQKwf127sQoZm53ltcvnJfsjQNH/PVGfJjq+GRsyiKgASxYwqmfOMHfPJ0EzBlVm+UoA1rWf+c8s4fMFVE4cynIQsBwgskqv2OwViHlGlr+v1K+YrW1FsW93AjrLOMm7skg0ZmoaZt5RiDCVyZzYNbauJxTK0VuN8jYvDEODZGrFzkfomSsBlaoJMTaCy6WBRrYDrw9qDRYnf/ud+Gw7cUhB49pJ0Rtnki3Svy9H2DBYJIR4B8OsA/rrW+pvs8yNCiKP0dwB/EUCyotphjtgMlU/qAQKLzISXGDc863Zj4yZuD28H25Zl2TDN9F4DBCr5QT+Wo1EopVHkRWMAJSDFs2cSVV+0dpO92LeIBue2/tiARc3FQuxL4Y/HmEWNrKCfkMZtEEIEEz4es7wAUsGZVpR1nra49AvAO2Peu4xlvN7hpASdDa73LkO7dv0abrGS1tMiBos4wMFZI23tNfOJlmpoEXAT7dw4VsakOJxVWtfKyYiMF0pT6sspITzREN7H0MeHexa59jkZWsQsQmh83TC4duyBUIYWMDugmxJmBz41+/83PfptePD+Bxqfu/Nrfn6bcLDn4SwqISRUreY3iU4kdhwIYdvd6/Wwfn0dL57/Fs6cPo1eL5yoCniwiCq7yQQwNr0ZAkdWV+dru41+v4+d0cjNFVrP4dGi6NxmsR4/E3zOwiOTspVZBDZeNmRou60Qqj1gCwBra5ZZZOWXcX9SV7VliVgmWqJ8OyXfAKBmnkXkVwUYb648y5HnuZOs1XXt5jE58ywiVso4ARbNL0Or0St67cyiyaQTCNIlnMH1rplFRhrmr7V2fmRAB5mvBau6sFK5wfWscYMSqFmWzZzvOX8jCxIv43BFqA44pICRAzUkRLYKFKeA3hkAMmAWSa3QwwCj2gBDWpgEQF8XGKnb7hjmu1ApQvBPiREqXULLApIYTWTXgUiG1nK/BTQuboZjyNbY9xNSC0DIxlgl65GVoYVj8K0ILAKAK7cqKJFbwCpsx/qwwudfjtsm8JGvHcO17QyZA4vu7TXcTLBICPFhAJ8D8GYhxAUhxI8JIf6OEOLv2E3+FwCnAfySEOLLQogn7efnAHxWCPE0gM8D+KTW+rf34RoOdMQacDNRh/Vb4Mir8QnwYJEHQbZ3toNJ0HgyDiRoAKzfD8sws0yskzo02De+TChvI01oODgSZxm11lBE0Y7Kz8+iE7dVQ2srn00T15RMbZbBdVuFNTfh27UMzcptpi0ulQfu7oTEZhnLeP1D24o2HavU2L9P8zibFbdu38Lm1manbZXSkc9OWDFsugyNFqr2HzZqWyJaCiOlC2VeaWaRYpW0ONjjKmXCJxXIODvZZpI+aeXGFC9DY2wb1g8GwEqbwbUIPYsaBtfEHqjie+mTIKafDEEHYpikmEXTAI4YTCRZkQMltI7aWjckVrNCIJQnUEKAt/vc2XN45A1vxM7ODh564KHkQWqlLMhEzKL5wKK9xKDfx85oZ3olNDAZWgSoScEAz6ioRVI6nmXO4yc+vpOhJSqzZbv0LOIytF5RoN8zCxxib3kQlBJatasYZnwP01J2Ani4Z1HGknZUJY1LlIz8tFkNjeYW48kiZGgVer1e6zxlXE6wurK6MGZRLMWt7dywS9+slArYPtQvUsRS1tT5DQu7q4S5yfJs31aad3JWNTTlt1URm+uVC69g49bGzLYt4+DHoWaO6QoQOW6rdQCAPPtDkKf/AowJtIKyDCCpjBdfD1ZqZplFpsaoZdoIkpKJgFlE85+x3oIAoKRnFjlQhe07vb0aFzcjZtE4PpdoHCerx5CqbMjQrqmTiOPqRgUtqJpa2Af8q0/dTHKeJkrgF588BVkvmUUAMLMWnNb6HTO+/3EAP574/FsAvnP3TTscwSfvQMgsirNgLjssw4zz9s42y9gaI8diNXy5uBY/HkR1C/uGwCma6BD9uixDsMhM9hIyNO0p2jy0xlSwSCmVpK7HiyK3vaZKJhIqysyZCkBtHk9NmQZFVVVzl+9tgEUzNPOBNOQeR6WXcW8ESQk6gaNsQTpLAjbrnF3BWGUXj37fkA0zXYamHSW6ySzKLdikoHWGkDLdnJhqDQuAmz7IMYsy8iwKJVscdDDysvTY0QCFaDvOqIjuO6/25VosvOk2kKqGZoxguQwtlAFNYVkhDRZNizhRYNiu0oES/DxkEj4vWhS3k55l/p0QAmdPn8HZ083qLfR9XdfIC1NRqVbzG1zvJfr9PtZvXJ/qVwTw64k+txVHVQLki9lBALDSH7Sw8ULPxBQYuRvZKR0zz3McO3rMty/+nSCYXKx2Hk4pP0jPHqqCamhSZlD12H3X6/UghDDPfVVB1VyGlmNSbgMw86csy1qYRfPK0Gr0e71WMHwysWDRIlgwlhFu/qrds8z/PX138kyz11rVGPR9GetZrKG5ZGhcVtiSfOTHlaK9Mm64rbKStSazaHtn28kvl3F3Bj3HhxssqqGFxHV1AUflacjCgifCMIs0JlbUZdeLRCawRtFCK2RaeINqu29czUxDYKS3zZFEwaqhRcwitkdLg/HaMGIWjZpMHxqslMggdY2i2oKAbjKLqgGAcfDZS1dL6DfZuYyqUNtrXR9W+N1nthBL3OicH/36Mfy3f26C4wBwj6/h7tws5h6NOFNDiwApJZvw04KnZtkvqqhSY3t7m03aLR2+iMAiRpsVQliWjvcsSpVvV5YxlEeDKDGF/KJDJTyLlGcW1fN7FqWroYm0DM0uZlKlrZVSyPK8MWGl++x9PMLvy6pCr9efa5LlwTPl7+kUsImy/bPkLctYxmEJyg53AUc56CH3MHlTunt1E6X1rquhOYRIhN42TRlauHhJrbG0LS0rpHCeOKavImkFq0QWyUwCZpH9N/nKhd4+YYUwDnZ7GVLaQ84AZ9zg2oM/gOmTi6Jwff/1mzfw2qWLOH3yVGP7QIZmr3Netk1cKVMrC0AkziNFU2rU6RzRM0h9PH3X9Rh1XRt5t1JQuzC43ksM+gPsjHaC8XpaxNdFMjRajPPtUmyl06dO4+GHHk4c1/9dJ8HIdpl6lzafOnESb378ze6z+HcSQjh5fF3Xrg2pZ8P7b1XWlNkaXGfeV6mqKyepIikaNy/nQERZlVhbPYLJZMIAM8ssquaVoVXoFb2pnkUrg5UFMoui4ijKg0Wz9o3Z1jVjaQHdZL7zGFyTXGzWu+4lvXKmDI1YcCmZpNKHWLp0j8XhBosqaEiM1TbGeot9kQG6Rq2JAWTXi4jBotrKtXx/b2Ro7H3QRpI/UptGBi5zCCtDi5lFXrTWIkPT02Vo0NqKx8xxyuIYlMiRl5tBuymGO83+4A++tu2YU3Td68MKf/3nX0PYtYZtrDXwr/9IBPvdq7EEi/Y54owoSQACZpF9jUie5TKjMBOZ0XjUkB0UMVhkJ6k0oYszzKny7VpRFiUs+0qU62Bx0ZCh+fY2PItI+97SObRlgtqZRWZhwEE0fqw8y1EnDK7B7ll83Kos0e/352MWwd+PLgwKN/laVkNbxj0Spq9JT/hffuVlbO9su3/H1dB2a3BN8tsuQSyesG/r5pukQWAHAv19ZVk/5BsXy2xTx3WLHSFRV6zftn0/b1cDLGIgEIQ3mpRCBlLe1LVprYP9yZuoCYaEnztJrysooI3xblWhqit884Vv4Dve/BacOH7C7m0TINHYQdczL7Movoej8Rh5lnuwTIeSRsVMqXd7Dlq8AmiAHa3HgAH/iryAIhnanWQW9fqoqqq7DC26LpqvULU5vv0stlJ8fM4saoCREK3zg7ag46Xa7plFnmFUMW8hYhalpKa8UEeDWWTBktoaXANAkecoqyqYx+RchlaW6PcHkEKyyrIEoOxOhpaap2htjLRXVgZzM5ZSwRNssWxu1jyJgGVupF9ZxiXFrHkQzRu7eRbpRp80dVtbPGCW7YCyidFkYYE5xpllHMzggGjXBJPWGs889+w+t2yBYZlFEMCW8x6CkaHpGpo8eIhcYEEQJQhMURBauepjdueEDE2g0qVJOMnCG1w7ZlHki9fy6pxfr7E5CecD2wws8mbZBBYdRZ31UVRD0+6sh/VhhXe97xKuDysMd5p94flrJa5thaDPz/zqFWyNEwwmFqWSePqidPflXo4lWLTPkZShIQSLwLJdBBZpphXnZtaUEU55FvGqLXxxYKRaKWaRyaI0y77/BdwqAAAgAElEQVSabNZ0g2uz6Or3eslqaDQpSw2uZOSdvlcpZhFle5rltcl3qZmxapZS5lFWFfq9/tRM063bt5KmrrQIkrNkaDbbv2QWLeNeCa3bzWtvDW9jNGbSDERl63fp60UyrC7hs95cXuHb0An8TcjQ8ixz1zBLFuGOBVPhsaort73zLIpkaDEbigPh0LEMrelZxBdWIYiU7o/Js0hGC3Iuj+4VBaq6xmg0Qr8/wNG1o/wAnvEUARLf/bY/na6gNSV42e3xeIybGzdx9vQZd/3ctJsAtzktiwCEDAoNzizqOFUScJLummRod5BZlOe5K6owKwSbgPPPPFMrBDxjKdns8DL2xr4R4NrpaFO2J4YPB585s4gklam5AAeL6siziEvUCETKiwKT8TiYw8WeRUVRoNfrOSkaNX03MrRe0UsyoMuyNKbbWbOi7W6C+iRelIWufyaziPw2WT9O/SLFoplFXSX+NH/twiYhVjxP2PrjzDbTXsbBDiro3lZMJxV1XeP28PaB++11vQU1fBpaR2xFXUEJoIcVbOobvt1CAlBQllkkiSmTkKEZsChkFnGwhEaNGhMILT1YpLWXq9n9+Ygax6e+vIn/8r3jxueboyYwpWQBDeDi5Bh+9NfP4sam2WazKvAPP3QFT58f44P/fgPDUbM/UBp4/2fJ2LvC+37vJp6/VDa2M9fm2/no8Qne+0PX7X1ZMouWsY8RL4J4RoRPbBQrsUsTGloArAxWfHln2cIsslV0Ulm3NmaRslT+OItSVaZcK5ccxGaXJJvr9fppg+spmdhWg+uWwZyynKnvY1NF3ga+eIgHhrIyzKK2TJPWGl97/usBE4JOnaJcp0KxicfSs2gZ90Lwdz9+V0kOwjb2/VVCYtr9nKozKykGi4JqaLIju0lEMjRlZWjS94tdmEXkw1bVfnsyZ27K0NiEUPukgWPwkN+dCJlFHAyg9nEQyTOIphtcu7Y5IEqhKEyiYDQeYTAYNPanNsRjQa8IPQa6BB9HX7t8EfedvQ9FUcB7FvlzerbBLphFCMdqx1iZQ9ZV1zWKwhSO4OP6nQghBPq9fmdwKylDU8r6GUbMoq6AGUKZWVu1vd287m1ssTSzyLwzFauGxkFHCmI+VXXlqp7RMSmZVDFPxzzPMZ6MA3khf0fLskSR5+j3+87k2jOLdiFD6/UaZssAMJ6M0ev1FloNzTGLCOhz/eRsRk4816mqKmAWdfEsMgbXHSXMsqMMzc25O5hhk2RNNiVrbcnPZdxFYejBrcV0UuEKBB20hO/kKvSNTwOjCwCAWteY6BG0LqEgkKOHUo9QwRrtE7MIkQytARbVgFaB55CGScoQg2d9yzKLUEIiY5XGlGMgMa6v/f/wfle1xj/9+HqScLQ9jtZzEFBZH1fu+4/xLz6b44uv5a60/S/+7g6+dcVc0ye/tImbm+m+8BNPT3BtO8Nwq8KvPtFePZcbab98q8Avf34luE/3aizBon2O5iIoZXAdlmGNTU9XBisdZGhN6j1lmbUiM+ZowWIncVQemKKqSluu1evtkwbX05hFUzI5xrOopYJKYkCmChXkp9A4Vp4nGEc6XDzEMjRiFrUMAOPJ2JhYRotbcz+YZ9HUyQ9Rs5fV0JZxbwSv4tU0kq0bJsXUrcz0C5p2Tt00uL589XKjXwJsf8EWV3PJ0ByzCAErgjyLaCHa9GRrAYuEYRbVVcXAIl8OmtqVT/Es8jK0VPY8rMpGvwkHkYSwBtcyXsxH50HMLNLOs2g0GmHQb4JFpi9XnYGWaSHtOFrVFa5eu4qH7n/QXz+NGQz0U/UuqqEJESQ/KSHgvutyDFtdzngWGWbRvJK7vcagP+gkGXOSSv6Zvc+pCqjzyNDAZGaxhxcdbzcytLh6GwXNp/i77GRoqmZeNM2xWNU1enYeQxJ8wAJAnFnEZGjj8Tj4XWPPoqIo0O/1MHHMolDW1TXqyjCLUqyWSTnxYNECDK5T8zbHLJoxfzGJRwE+h4s9i7pUQ8s6MotI9tYNLFJT56NxG2SLZE2rJbPobg/HnptDhubXQQcMLOg/DIgMeudlAMC23sDl6gUoVRomkO0LR863SELrGrUKq3sRCKIJLIKy0q/Q4Hp9S+MnfvkSnj4/xr/8bA5AQCJDhsyxkIRWbm7kmUlpGdqLlycYpck92BwFA7H76/PXC3zyqS1oCPzbrx3Hte0MH3tyx31f1cClm2lAvlLALz55Ch/8w1Fy5CmkxjveuoUP/hdD9qnAh79yFF+/3nMg2PVhjf/+fVdwdThKN/6QxhIs2udI+SAIYY2qmbSsVrWbsFN2hgwUVwaDoGIP0JShSSmCajTu3MqzYOKMDen4szyUOZRVhR5nFmnVPK7WqJVCr9dvehZ1AIvamEXpLDzLCsYTPWWq8ijVzAJxZhFNKDa3NqG1RlWV6PfS9G7ajtrKjwmA3VO++GpGmNE6YAPN6xCvvPbqcrJ1yGPau6/qkAFElH9gNlAzLWhxy+O1SxeTFYSUNvIpeu81q/QoRJj5Xr9xHRcuXnBtpSA2izumY/VIxvLhi6Rmm/2ktcksqhMytKZnUShDI/Yn7+saYI8DzUOvKCorzkOwe+L252AR3ce6xmg8wkqCWURy3a5Ay7SgRMFkMkFe5K4qEQF3HEgQYpfV0NAcq+f2LLLMopx5Ft1JGRpgKqJ1uee0aOIh2e8WJ4jm8yyCWxxQsif8fv73XRtKXWvEFWZLKx2rq9r5HqYACyOp7GFiWUAhyy8hQ8sLjCbjoModl4JVZYkiL9Dv9TEee7DIsJfmK6hB4FUKFJlMJugVC2QWJcGibswisgrg+5dVFcxTZzE36R519Szy4N8M1hNrW2dmka1KGXy3ZBYdjhBhwYdZoV2C5GDN4YXMgcHDDiwq9Rhb+hYqveP8hgQERsrOg0QGaAWlTZ/kwaLZnkVaSLz/yVVcu222/fhXM1zdzrAijpqxmZWl995GIviDBgRiJ/3+V7n5dhiTSqOstN3dJ4L+yb9bd9tUSuB//9zZxr5NHyITtQKeujzA//1k+vtSCXzpUg//4Tky+Pat/nu/cz+ErvHy1Qn+8Ueu49nzY/zC773Q2v7DGEuwaJ8jpr5yrTWf2NS1YpMUETKLVlYCejXQZBYJKZtgEckitEqWeSf5QZ4wuC56PdfueLJHFPO9MIvaJp7paiWWWZSQcynrWdRgTQXMIg8yffXrz2G4OTSeRVMMrjc3p4BFtDix19A26NCEO5XNvBfjwsULSbbHMg5PcJltklnE3wPGBomrRs57zhSzcDRuZn6UsvIpxyxSQT/B2zAa7WBrezvYXwjh2Cx0nri/i/u3GISg/UhG0fAsqlVQiSz2lAvYUO76VWNBpJlcDbCsEWVNlxmAoeqEwTUdn7GCAiBKaRR5gaqqsJNiFtlrriOT290Gv7dZAMTRtK6ZHJgXokondoQDArsdA6hrhaLI7fN+Zw2uAQMWdQJ2RPh8AB6Ui6XnNI51Df7MU7InPvfc73sgn2xGJpm3oxCu3H2tagcKpwCLWpt5zGg8Cry0MmkYOyYxVjsmkWMWNWRosWcRl6FpFPl83kI015FSurbwqKoKRZ4vFCxCNG9TjIE5q60u2WnvfQwwdvGE25VnUSeD610wixoytCWz6G4Pzizq+lt2Zde9HiFWHgOqDejyJsZ620jC9MSBNxlybGtrci0yALXzLBLQgAWGAEDxamEJGdqnv+Xl40oD//LJ4/77JLNIuH3pKOvDCv/1L7yGp8+P8ZHPMfPtRLx6vcS73ncJ17bMsdeHFb52YRJs8+++uTb1GH/1+4+5v//Inz2Gn/zuG6hauou3nJngN37kOrbGQDhcCTx/s4dvXJX4xJNDPPPyBBrAhz//yj3FLlqCRfscImKVUGclpfQTNUHMIitDs+ACLTqOHjmKo2vmpaAMcOz7IEVocE3n5sbZKXNoKUMZmmHdmIwQtTue7NGEUinl6Nvhcad3yNPAolS1EqKxpzTnXTyLOMhUqxrXrq/byVvRanC9ubXZ8BpyOn47aaAJdCuzSLVnM++1oIXecrJ1uIMWHDKS3/rf378HcTW03XsW6SSIPBqNGttprY35cJsMjb2ndV07ED0GaDxrwnsFkQF/w5OtjVlkF2ahDM32Oex8DWYRv0+CVUNznkXkGeDBOICkytr4sthFsXBjT7NaFX3v9o+YRVmWQUqJre2tpGcRgUX5AmRYdG8bQByTvVBTfTvn1aH5Pp7uMf1G3dlRrBqaMpXxUpLr/YyV/qDTOVPXRe9hzAgTHU2z/Q4AvSRJ5hpCyV+X0KxoRSqyLKwwa9jDfVsNzVeaTTKLej1XYY9CZga4JVaRk4UmPIu4z2RZVpZZxA2uNfLcyDa7Rs3eU2lBZB5VXSPLc+eduOexNcks6saq4L5nQkqMJ+Mk+72NWUTnmxss6lQNzcrQEqB94zq0ZxY1DK6X1dDu+qBKoCKhUmjdR/sx76CFGDwKANA7L6PUI/SwYsEfu5ZEjoneMW0XGaArKO0BF2ICaXB2kPUdYn32ta0MF26zBJMW+OjX1nB9aOdHnFlE9ymSodVK4e994DKGVmI2ntEV/rOPX8cz58d4z+dXoSHwoU9vIP7Jpv2C/ULgzQ/6dfJLV0u890un/LUL4D/7vjV85t2P4iv/wy38xjvWAQi8548HSA11P/2pE/idZ0I21L3ELlqCRfscsbRBA26Q44uPumFyShNNicFggMcfe9wezwAUsQ+CkaFFhqTCm5SmBmqi53LNuzElzAI6MG3nrgl+8dfv9RsTIGeUyHwLwvPOYBYlGFDOjyMx0cvzvAkWRZlm0psrpXBt/RqKvHCeBKms/3BrE8fWjk5hFs3WzPvsV3d99GENl6lcTrYOd7gFR+gvxkuu+019v9LFfLT9lKqR9dOqySyifoczKc076hc5vA21qj0DifVj3G+F92UcRO/ELAIxi2p/HyxDVDMWRR5VQ6M20LFhmVVGquv7bQ6g0LG1VoEvi4iO549v92mATaHELc9y5/8W769BzKK9gyV0b2lM5KHh2V3UZuPfN+85PIARy5i7gkUkQyM/u4oBgXcqTp86jccfe9PM7QS8FJ5CSitdj0ypV1dWGr/x1GMLZnCtdeMe8Heoc2jMkKGFzKKSmEWuGppozMcAL0OLmUVkNs/fF8BYAJjfOAQti7zApJw4ZlFRFC6RFoPUXaKqKwe0GvAi3NdXYTSGzHtlF5k+yb67BBaxQgCz9uWSzclk0qh4KKcwiwLwZ5bkjQG5nWRodpwRHQoYUFU3A8AtDa4PXZgFmBsLu4TqCJjuNYabw7mZ96I4DuQnoXdexgRjSEhIDYB77QmBCXZQa4Wx2kStffUxA+7UhhkkpIHjE9XQ3vMng0ZvrbTAh57YsAfi5eUd19d+Z/583++P8cp68/qkAL76t17As39/E3/qtG/bs6+MoQF89LlVrG9LPPtKs2paPCCcWvNzjaMDicfOebDoCy/s4LnrfgzTGvitp7Ys4EV18gSevpyjVPFAI/D8jQI3t1gyUWn82pOv3jPsoiVYtM9hyoV2kKGx7C4NmCrhd5BlGd7+nd/TmLxKYWVoEQOoVrUFWhKTJGs+yllHVW2yYqGcITQppUWVUibzRTTt+BrbmEWpTDZvc4M9pLX340hcg/EsSjCLQIuHsGS0lBJ5kbe2cTQeIcuyhkwtJT1JgVtBu+0E6CBSWO9k8CpKyzi8wUEQ/u54j6CIZdnC6pknlEozi3ZGCbBIyEDWpaxEgdrA+xfDLKLysiGgwjPvGVskKSeV4swiZuDi2uelEXUgQzMsAaWV679SzCJ/38w0J5ChUV8TydAoecDNemkil1rM8z9pGz5xllIit1WfkmCANp4riwCL3L2NxkQCeDi45spez4kWhdKpsEBCV1YNb0OWZSir8o4bXAshGjL19HYpkNACnjosd//4Y4/jyOqReVoRAKoiHu93IUPjY3oqsmhOZUDMngVfPbMolXDq9Xq2FD2TlskMgMD29nZg1OzZPuHvevLESVxbXwe0Bxg9O9vL0DrLX5iEk4zvw+/9u7UIk2tfDc3PwZRShmXegVnkvN+kxKScJK0S2uZKxBrrKhULJKcdwCXPLJq6KTPOzlDXzTEl1TYChZdx8GOe54ziToFFr7z2KjZut1fpao3iJFBvgooSGKYQ65u0xkTvYCLGEFqj0MxHzDKBCBjSQnoZGgOLvnzJ9IU8SiXwFQvgcBmaoPtKx7Tbf/SLaTfrIz1gkGtoIXG017zHVQ28548H+KkfOJXYO4wbrBLa0RWJh08XoK67Umgwk5TW+NATGwbkEtKAUz9yC3/1rTvI5ezno9b6nmEXLcGifY6UDwKEsPIk7lnUZBa1MXB6vWbpYSGtDI17VAgyvU5PksiUkDJoAFCW1lCRtZsyM+645Edh21fkeThY0jW2dMjTZWgiwRJgzKIE68h4FsVgEZ+4+ypFUkqcOnnKUaRTmanNrU2sHVlrfOcnUMynRLYDQdqWk502SbpXgu7RMjN3sOLa9WsNX569BKd5ByydRIba9IXm73v1LEoxdxrMIpLdtlRDi43o67p2rEnKupu2+j5WMeCbAC8VgeGGidlsMwHJVcX6/sz3OdNkaAHIRkxHSdnzJuABeJCfm/XyRVcQbWARo+QbZlHW8Cvy7SL2wwI8i6S5t7VSgbFwKENbgGcRmvduHhmaY2RJw84ty/KOy9A6h2hCLwSYmrFr3jsYHNqztFTzWNNAn7agvqUtZBYyiwCgRzI063tIgCnvMwxYZDLOnA0jhMB9Z+/DqxdfDZ7h3M4dYhDwzKnTuHz1MgqbiOIsP2UZjPMwgPh7KhP7VYy1twjfIpozBTK0uk7Or+Lg4KIUEpPJBEWDWdSeECAWZGr+1zgXe546eRYpnrzsZtSdOq6ROzfbdnPjJp58+ou4PRw2vlvGAQvLTqR+7ubGTWzc2pi6y50Ci3bLXBMih9aV7/sioEdAYqO+ghoawhSh998pAotMP6KFBLSthsb66H/+w6FXEAB86Scu4APvfMju1zS4ZjMmXN7McLuFgLM5Bq5tm4pqawmwSEHgY8/18IUXdhJ7t8egJ1DkAg+c4P1QBHjVMICXtswiYfQwX76co0qwi+Ioa42nzt+cq113a+x9FreMqRFTX2kSyrNggICqva4/AIs6mmPSZCKoYGINTYVMM2Ccjl9wZlGJPM+DDLVWIbOI/EjIbDS3RqdEU3cDfwIs0rppUhpcR4KGHDCLEkBSUobGJBhUup4YTefO3odbQ2OuRn5NfJI43NzE0SNHUdVlC7NIBYu9qTI0e+93y5poi6qqcGt4G6dPzkbbD0Jw+coyDk6sX7+OUycVjqyuLuR4tOCIJ9v+92+phiYFVLUHz6LE+w9Ys1m7uKMqZVmWoWbyEF4NjS9U6lqhrtgCLAJo+DHNNUgLFiV8ddDsB0miOp6UKIrmotCDRXlQgIADV4AvNuD6cuZZlGIGdZKhzfAscnKNPEc/lbwQwiUgFiHDIt83peqAtUWJC80mtx54nFeHFrJHQxla12uwv5mVspRl2XkMv9MxtRpaooLZvMf2Hn8tMrS5mUWYyhYLmUXmM6p4SkCxkBKqqnDh4gUIKfHQ/Q8aOb31gIzN2B+6/0E8+fQlnDl12n1GIEhsXH7i+AlUdeXAUw580FyAWI2xRCsVVV0hyz0Y1GQWeSB2MWARgSqcOVlj0B/MBHA086USUmBcThyoRjG10pn9bbszi8LqkdMi9HObuilj2zeBJa28eS+PsirRKwo8983n8LbveCtWVxYzli5j8UHMIkoMbdy+BSEkThw/0bqPT5Ds79yVkj5zh/UickCYDv2GMuTY0UOcQGYNqBlYxGVoMKCPiNhGAHDpdnMsuLSZgeylyQw7kKFZAGl9qPHffOSR9uuGKWn/0z8ocbTXBKUAwwj63Web1W2nxY0hJSjT33/8Hz2ME0fs3G39oh00zMDx6z+ygeFY4s/8sun3V3IFKTS2SrP9e/+axF986w/O1Z67PQ7mLOYQRcOzyA3Is5lFKX+GtpBCQNV1o4IJmV6LBNDi/YyYvKBWrqoI7yRDg8qw6k8eMYt8hqoJDnCJWvp+pU2sZctEQimNrE2GxmQE3Evk6NpRvOEBg4inMkjDzSGOrrUziwIZ2hTWkFJ8m8UONMPNIV679NpCj7mf4WVoS7DoIIWp2LQ4IJO/37GkC0DQBzVZPXsAiyIQSmuNlcFKYHJt3n9j6F8lmEWNNlu/kpi5Yndkx2zK0BoG1w1mke3TCORnxQ2qugrOxdsL0LqKgznm+uM+Mr6fySpFrI/k4YB29nlscC2FRJ7lSWYRYDxjFiXBosk9B+fsaZqeRbIJdHWJ+N5xwKw7s8gDTAQSHVRmUeq6CPA0HjS7ZxZx4I2bH8cx3zs/XYYWexYBvmpsbdl7lNzZ2tnGZDJ2zw2BNzGIMxgMcPrU6QBE8ob2sW+kxOmTp9w54+dJCsNqrOoaW9tbM6+djLIBA4TFoAj3A+NFSnYbKbmW6sws4tXQ0syiaYU+nPyro2eRA9JnMIv4Pe7ELLJz3ZS/Ehm/x1HXCsePHseJY8extd1eDnwZr3/4RLZJDFV1japKy6MofIJk/5lFu6qaLDJoXUNbRg8HfwBAIkOOwoBK0N6A2m7LJWcaMulZdHkzARYN/fvtZWg1pLZzK5FhfVjhf/q1Ia6Ppo+BH/36MVzbyrBWpO9xWQtcH853/6/drvH8pTEubzQlokUGHF+VWN2+iFM3vmyZRdKyoYyu/UgPKKwUbaeSDigCNB44fu9BJ/feFd/haC6CWDU0lgWj7If5t/UsmuLt0ziPnUzwqZQQErVlLMUSC2pTDHiQtIybvWoVGmcLDkLZidZrly/ihZdedMf2tN+wndMkaHS/0lXbZHIiQdXQYgpnSpbQ8BJBU+uvlMLW9hbW1tYarCE3gdJULUYm2xu02wKDi6awtunnD2qopQztQAaZvy4qOOMuqCwWMYvi56DLRL4tVGRwTW0Y9AeBFC00uE7I0GTYV3uASyUMrsNj8muoI0AjZfSvrZ+QFAJVXbmFFgELnCGaJ2RoYGMHTTJ99jxsK4W0XiJcUuMAkQgYiBfdtD+fOAsp8NADD+Ls6bOIw3jGlAuRoJn2ETs07MOFMJ5FiPp7c21znoNV6IrHj66SLL4P/ZZ32rOocwj3fy4I8CT/i90fmkk1o2qqwPxAHkDPffv3RZG7e84lnOQdRd5TWiuMx2NUtu/jBUNSlfsee+QxPHT/g0HbqWR9HA+ce8CxfQOWnwUfjVl9hWeeexY7o+myCjLKBsizKJahVQuWoTFpvZ1f1Mp4QlKfcv7C+eR4wZloUkprcJ2qhtY2V5ruc5nals7VVtE2Pu6sY09LAtJ3KVN2Au2KoodJOR14WMbrHBoAhJNr11WNcobfFE+Q7GvT9O5kaBA5oGsISDMOQgdl74UQKMQAENJXOqPvdFOGZr5XwTEuDVNgke//nAwNygBQABQkfuZXr+ArF2rwjvuNZ3MUUddZa+C9n5M42m/e48dOlPjtH9sdCPvuX7uW/LzITH+wsnMFK6NrkKr0GTJ7D4UUOL3a7FsEgA/+yb23jlmCRfsc8QDFB6OY6u9NTrlnUbeJpiCDaxF2EsqCOrGEixuipoxLG55FMWOJMaHOnjqDlcEKrly74q/R6j+TLKEpYBFNVIJ9LDDDpXH+O08xjgd3vghs84CK2UNUBjrP8uaEgflZeI39FNNGApQ6VOGYN+62Mq6+/Ojd0+Z7IfaNWSTTzKJAlsGYDXE/eenKJWxudaMdp5hFQggMBoMms4iqPzqwSEVtCD2LALMo4wbXgaeHCkF+PaW8e9hmZQ2upWM90LbCpD7dto2FYMBy8jI0wcCiFBtKCIlJWUa+LObPJrPIM74oQmaRycCvHVlDv9+skmXAosVUQqN2aE0G1wkZmtbNa9kNs8hVcglZb52ZRfC/IY1LuwFG7kQYGVr0Gd1npTsDZOmDM1aNipnJ4bk6hw5BqDgeffhRnDt7nzs2AOSZB3UEVQu0lRLrqnLSdEp6peRhg34fq5FMN8+LJOv76NpRPHDugcb1ORlanuP27dudQPqynKBXMGZRZLjckKEtwuDa3mFijgthyshTWy9cfA2TSVMqohkgKISwBtepamhtcyX/3nQCi4jFJLOpMjTV6N+ng0UOWGpjlScSg7Uy/VyvKFAm7s3rHRu3NpYG3Da8ibuZn9R1NfPe3FnPot3J0ISuIZEB5BeU6G+NeXWTWSQ4MORkaDqQsl263ex3L26mmEUK68Ma7/jYQ/iDb07w/KUmeLo10iijrqpUEk9fFElm0ZWtDL/wh02p+6xQGjh/tUKduKX0Ghel8RnL621bEY5GGKPpO73S3FlD4BNP1/dMFTSKJVi0z2EAjnghY7T0KysrZhuEYBFRwesZwAoPwyyKq6EJwzZynSPzEGEVzlJgER9Y+YDrjlt774izZ87isUcedfu7Djmhv5gJFgnRABS0Ir+BJiDEwbdwIA9laF4e0qSO88nGcHOIY2tHG/eFzke/pwOCLIMiNSDzami7opdOCTLpvFviTlF5lzFfqFotNGNG737MLKLsb+CngxDI4O/Ixq2NucAi/u6TRKrBLNLG+4wvrEIZWigXpUVAXdWBLInaDyBgK4ZeblEf15Ch+X6rqitI4fslzjoFWgyug0QDGRLLYMEVg0VSCpRlVNI6SlSwL9jxfbv4OBGzkYK9LbNoUWARVekyBtctMjS0XUvXc6TNwcU8nkXCS/wymR1YCRrQIkOzgKnSiQpm8xwbcM88Z003z9V9DIs9uOII2NrkHWWZRQBVtTPvW1mWAbMIMMBSVyZcnuczf1vJ2dmagJcMNzZuAMDMOUFZMmZRFjKLtNahDG1BzCJQ/wHbt2UZyAOM5hyjSbOENQHxAKxpv5fQUcTzt+jkjb6rLfh8lANZybdBpn8AACAASURBVMMyoHLW8xZeQ6IwDXy/zyNgFs2QNL0ecf7CK53H0sMe2vr6kNKimwzNj/X727a0zHFmiByAgtTSAUFJsAgSgLKSKztWNjyLWmRow2a/eykAi7zB9S99RuELl1bwf3zsRrK5P/WXTuIz737U/feln67wwk8+jw//zSzJLNouJZ6+mO5rH7+/wGfe/Sj+zH+wkvw+z4C/8j1rjc//7J9ahVQTZMr0ZYL9v5GhmeHrZAIsAgzYdK9UQaNYgkX7HDH4QZPQo2tH8aZHv402AuAnuYYJ07LoaAkpbeUztqCRwlB0/eKNtYMNovEiIHNgUWhmyq/JeBqEL3AmzSJsGqW4jgxKG9chEqVttdeR8+NxYIvAMnd9fEEVMLUiGVpEYzZ+RWmwCJZhFYJUZgL00isvY7gZVsNoA7m2trf2nOkhmvjdEkuD64MZVCloUUHvnYye+VrVQXUgU6HG7xdPzo0Rc7fFT4NZpEzmedDvYzT2CxsuOSHDaGItujYEBtc1+r2+8S0C3FzCSZ8Qgt+eldHR4NrK0ADvswOYPomzOgjc4gsW4drCZWhhBj1+15w8JAslcu6aWMyUoek0W4TvX1ZVUtazmyC5bzwm0m8R+Dix32PeSIFFBMJ1CRqLALOQjU2QD1I8/OAbsDIIJ9nEQDa/7+6ZRfyZbwMWicHSNTh7rMv56bfImR+YkAI7O0b+VVUVeLGNvEValoqja2sYDFJeXc02u/mClaHRPGEWSD8py6BqK09q0X3zz9rewSIQW1pQtdsamcxcBTl69yfjBFikfTU0+q1jllZuzb3Tp55PLhZWQ5shQ2P94rTFeMhYmoNZVHNm0cEDi2rru7cMAMSes2uJuq5my9BIVrXghG+jZVHSq2soWEYrxFSwCEI4GZqS1lfNytCIRaRkjqweA1C4uinwrvddwvVhhQsbzY73d18c4PqwCs539ZbCx581Ndc2dtLX8iffDOW3VHlNI80sAoAfeLN/x//Ttx5xQBNVYzu2kh5nyxr4xmtjnFoLvz97TCIvQwBVC+9ZJAyVHKdW09dQ1rhnqqBRLKuh7XPw7BLg6bY86J8uQy3awY3W89jOr8EAYh5EMbOIGxJ6eYGnZfuyrypYGMSyOYosM1TpaWDRbBlac0B3EouorCpvV8wsoiwZfWco5wkZWlRlZLi5iYcfetjtF08YMimtp4PX9yulMZ6Mw6y7vXZiH/HjvHLhFZw+dQb3nWl6fXQNk+W7e1g6S4Prgxn7Z3Ad9nu1MlULCQg2gEe7VEsp5SqWzQoVebXRYiLPw8VJCBalDa45WKCUQq8ozLYBs4hXQ/Pm1MR+SfZxKWaRlaEBYV8qZRa820IIa3BbO/+QlAxN8vHD7p+SoR1lsjH6ulmtyp/btcv2YynWUhwCZjGeNr+eP6iqqFJI+kGF4E6YJ+x8DrtffH3SVkfqegyf9Mk6y8hfjzibGH844LlX+dwsGVpn5CfcqdtWQjCJVu4+k0JiNB5h0B84KRj9Xo+98TGsrR7pdPzHHnmsUxsClp+thgYAq6urM1m2ZVmiR1XapETJ/HCqugpYUIsxuOZtVhYE8f6V1KeME8wiHfU/ABrMoizLUFVVsu+I2ZKz5WKevTddhhb17wlmkNuWMYtin0nOiI3DsOwzFEWBSXnwZGhVVS/nXTYIcBY2+WCYRelnksIxi+aYbw83h9jc2sID5+6fq227mdOXqNADjD0z7S+a446GNJCMVgYUUhNWDc1sP+6dwsrI+Pz8689leOaVMT70xAZe20hc40TgQ09s4O//0Bmsbyr8g4+9AYMVONZSW7x4JXpHiO4lBHpZ+jl9+pIfP+473ry2Y6vN8eVTP/sIBj3z+bvefwk3Nn2/dfaocBK0WvaQqYlrg2kPydCa7fl//vNX8cB3fg8eHnzv1Os8bHFw016HJOKBL5Yz0DYAZxZxg+uOnkVRVof+7jyLRCiHIwCGn48+JzNpPtmLQSjeXgopfcZ+OljUfk2xETfgF3+xwTVVNzL7pSVj7rsWw3BahNE+o/HIZVtT2TyzkNNBm6rK6J6pbS+/eh6Xr172MjQZM6L01GxYl1BKLcT/57VLF40nyz7H0uD64AUtCvfF4Nr6hFH4qjpN5gbQlCh0ZRZ5qWwIIgsrOVFRn0eeRbwamgMXWD9IC4Aszy2ziC86ADDWRFANzb7bnZhFQrIMeShDixfSGcvKm7lVuAAKFzrtMrRJiwytkcBwC7eoGpoOkwFtYWRoi6uGRhLBum4yixyLKh6X5gQj+PXwe5dlWeekjQBL+siDzSxKBb+fu5Xz0XEAz/pbiAxtBkAZHZxJtGQwtwKAI6tHUNVV8P4eP3ps4WbkxjBcuXlflmVYGQww6A+Cvqmua3zr/LeCfbnBtWEXhtvzti7EsyhI8vm5Gl2DqtvBIqrGCHiWZMwskrLZJ7tzIw3aT2snHXN6NbQQAJrG3AiZRVFBmCnzF88s6gWA3kGJul6CRWEI9/vSmDoNaCU55jzzpOHmELdu35qrVbPkl20xhpHak3wMaJGhsYplGpkBj1SNrB6jlgaUHg1MAuHV2zl+7cumH/h/n9xElbx0gd96agvXhxU++O838IVLA3z2W7P753/yN85FR9HQwjCLbuyk+9+nL/rrOXeiyXE5thLud/KIdEARADx8OgSu77NgUS17mPROAAC0IH4WQEYJKWbRQ2sllLj3eDZ310zmLowGWJTQ3Tc8i+w+VT1HNTSXTRXBZ3WtHGARy+HaZGjOs4gh6vHih7eXgjL20wb9WcyiPM+b3j+sTdR2gOQmTcCLtuGZ4bZqaKbKiNmvqky2joNMgd8USIbmF0xSClfVhB9nUpYeUIoXrVo1zCrnDaW1XTXuLS5evojRqDn5W3Q4Rsly0nJgghYX+8Usiv1/8txX1YklJTETSWndSapJ5+MTLf9uJsAiKQM5RMxIoWMYvyJWOY09trSY4sf0n6eZRfFzT4tH33+1y9AANNlQDswBoLWpjGQXZ8TAjBMT0hZBCKuhpT1+RLTwM20wzFEOTLWFEMKyHxZscB3fW5FiAkn6au5IAW2PPfIYzpw603l/Lg06yMyiVFBihRu/7ybidzJ1rFSVwGkxz9ghhECeez8fPyexYNGRIw1m0X4EsXIIHO4VPZw4frKR+CrLEpevXnH/dvOVzEvoeIIpCRYtohoafJKPzsGN+wFgnJKhsbkYAfUp4C3PmvM7d+4ouTe1nQxk71INzbQrzQxy18CZ6pGH3jRmNHnbFUWBsioP1ByH5IQHqU2vZ/D5SW3fsV7RC57JjVsbDUYyZ0V3ibIs5/aCNMD6fL+T0jVGoPfRVzrTqaU9vQeqAoSEkhnyehsCGnVuEuR1voIyP4J/+Hvn3JsSL1U4ybZWGv/s4+v4+JObIClZy9W5fT/0RExTImaRxFfXm8UyAKBS/rj3HUuARRGz6P6T4TYPn4nBIo2iHKIsjqLKV20r6BjaGnwLnIzAokJq3HfEM7HupViCRfscQjRBjEbGM57k2glnVVVzeBYlmEXCTDDIc6G5cGpmZxwww8qctjGLYoPHzLZ5Glg0y7S73x8EPiNAaGgYSOa4IWFCMhbuk1hoIGQPmQVXmOGPj8k9HYjWHoNFShG11ZuL0/603UFhFhkZ0h69DjqEY67dRdK5wx6UKV7ob6I1IGxmNsiEmwkX97wJWCtRX6FU3YnxlpK8Uhn52MeMQG96r2NQgB+DFkqZXdwEmW+2yOWl3GlhGPdxqYWysllsGfX99Pd4n3AxGLVFh7IUt+A35aN8O+w5wmpoLQyhBOOIvJ54cYS2oHuZdTQMnhW+6EMdGFy7cvcBgLY7ZhFFLGvL87w7oCCEA4iylgXzQQ4CGukd2mu0sYoAYvzPN4Z1BbCE8JIvzgyjOc/KYAVCCJRVub9gkWDArRS4/75z+LY3PpZMICnlmQ4Ta27N51o8wRSz9hYCFiHsS6lSHPnP1ZalnpShBcwiiSJRVQ4A8jxL9utt/XAquLQsy+R0GZoK54FTj8u2TRVT4X/yoLGCALKDVHnMJRjmAGUPc1hYwjJfS2Nqn+comcl17D+qlEKe5XPNkyhZPFfb9PwytJHecgCN0Aqw/krtBtfG1FoLAS0yFNa3p8q8d92r1Vk8dTltGA34SmIAUCngs1/vUhVMuH2JjeQbZphF1zaBjz9/dOaRzp1IyNAiz6L7I/bRGyJm0f1rNYpqC2VxFGVupcciBruazKIHjhqgbbdzi7s5lmDRPkeqqkKDWdSyYKiqqjuziEkh+HGpGlpDCsUWa23MIr7A78IskpmZCEzTns8y7TamtGHnww22OYjF2zUVLHKyvukG13HWPS1DCw2uhZSuPDe/h8Y8M2I+se85QLUbGdiiqqHVdT11srWoWBpcd4/16+vYuJUQiS849odZBAeiKqXcu1yrGkWDWRT2VbFUs8vix4O2gj1jtvKQDKnjmvVttLjSKiytTNvXtZEAE7MoYEIJOKZRQ4aWYr+wtgbtRuhvQyGzLCFDi32W3I2DhkZd1Y5J4e5l5I9HwHpY8Um0ljXnf9J+VV23e9Ak9l8UWMLvbUOGZv9HTXVG37s4T5uEr/P+wW8qOyd7DkrQuL8wZtE00EmIhpfXtJjnN6F3HDASTp5UAsw8I88yTMr9BYvcc8tYO0mZLmMlA0BZTgLPHxlV/YrnKpl9N/cSMfBuJJ8hs2hlsILxeJyY1+mgH8wjv6JZ7ZwHLOLS4U4yNAK2Zx63fT45bf5CkmXA+DQdJN8iLrdeBmiCAikEytIkh4tIzVDXYaJKaUp0db+HZVXOXfnXMGfn+53GejsoW99dhiahRYasNonumoFF7/n8EeznikBpHbCLyOD6/Z8t0eXyzx1vAtHHV8N5RgwWrfbCcSMvNyGgUeZrqCxYpGFAIKHJswg4tRru99BaBX2XsYUXFfee8O4OR0OGFskvAD+plUGmfT6wiICfcHFgKqQVRdEEUxryCc2y4lnwWWphByRkaDJDVTEZGtJg0bRrGvQHDnxx+8T04MhfidoSXB8z0BV2YkbXxkNmGSYTM7jH2TqSnLljamNwrdlkWkrpFsQcDNLaHEuyCZDSChmygFl08dJFQAg8Yk21u4ZeAFhEgFOKxv3a5Yvo9/o4c+r0ns7hz7X0LOoatzdvW7nCiX09jwMfFgkWgUCQDOcvnMcrr72K7/2ut0PVCr1+P5Aj8n7QZOAjz6IOGVrHOmT9bJsMjTN+CHwJDVA9oF5bCUiW5xiNRlZ21uzXuD8RXQOvsESfN+4To8MDIcgvW2RoVd2UzgmSoVWeWRQAHlyGlvASoYVrHIJ9z9tAzKKZ4xKxchbmWTSl0lwsQ9sDs0hYAGPXYJHwYFGeFw3floMexL6gCqR7CXMc1XiWKVLzg6nHm+PcpvKYZxY5LxpBYNEAWZZjMpnsK6BHpvfNOVQkc7L9VFmV6Pf7gbk1YP0gGUuyimRovaLYs19ODBZprazfk3DJtl7Rw3g8dmMHSfyMIbpnWLYzi/Jk4YKgT4sKmTS39eeK2aPp4/o+titjKWYhTWUWKf9b9HoHy7eIPEQP47zrq19/rpFYXjuyhjc//u2t+5gxEY5VaJhFRVARrbam1xSGWTSfZ1FZlnOPH8RonRaj8QjPfeNr0FrjjQ8/AnlcJ8EipPpuer+0YcdokblxvspNIYr1YYVPPmPNnvcQAhq//j8+jJ/+lSt44XL4PpQ18JVXODvRgEXPvqZRqul98aAQOJqofBZ/dv8Jk5jUMOPYp7+yFbTtV/5wjP/t+4GyOIo6s0U43O9lLD40BFZOnwHgq7e94egE6h6UoAFLsGjfI14Exdle2gZoMovKsuycmeVlk91xrcG1FD07AYiqoTEgg8CM2OCaTyCmtRcgT4vpMrSUyTSPQX/Q0MTH2X/npRRk9WNmkV+ASZYZiyfvGVtQVtaEl6LJLLIaea28ebW9Rm5YaUCYGr1eEdwr7gFFlPKqrnY1KSfTzL0ETbLiydbt4W28dP4lvOHBNywOLFpWQ+sc3OtjP4Mm/PvhWfTA/ffjvjNn8fUXvoHRZOw8i0KD63DRH5hUK+UmurPOR+95ACIHix7t+mGSpuSWBRksJhhrkaQFeUam/Wyxx7wvuGE/9RcpaRe1hUtS5TQZWjRZywNmETx7E+a+8QULsRY0QsmzYxYFYBGC34G3l/9p2pCjqupArtEW1D4u691LEPBH5bzjiJmkpg3zBwEYMdDWeX/hz3/29JmF9Z93KjwjaLbUcNZxAAS+gslzzUct6rwAO7K66j2LZOaTTZlEJjPkuZWfxIbvCw4uQ+OgbOyx6MEiyyxi5tbmGkxSauPWBo4fO26ZRf496Pf6SXlY1+DjjQdma5s4NMBWrRRkJtG37O+vffPrePPj345jR49hUk7Q6xlwSwqBvEgzi6jfTZ3fAzUzStyz/idmj8bRqIY29bhTmEU0hrQxi+xvcdAqoh1mZtGt4S287Tve6n4zpRSeee7Z2UC/MIoAAosMsyisNMjZb0opFP3+3GBR0fIOtEUXGdrOzg7yLMPj3/Y4ekUPt3HNGjN3YBaRDE1VuLqV4ad/8yT+xV/YQiV6eNf7r+J//a/O4uc/cQPjKVjnb/+D4+gdPYG//HMvY1S132MN4030gXc+BKFKPHj5CWwcezO21h5JbqyFwK/+rSM4c/0pXDv9dkz6J/HNi2P8+HsuBZuePpolf9vjkWfRkYFAhQkqjLE1XMVvf9mDRRoCH/tqD3/3T+fGr0hI3Dz+HZj0T+Do8CW7hZk7rZ46C+AVf55+DX0PmlsDSxnavkfKWHpWNTT6ez0DWAnOk2AWCUEG11S+PZR5iOh8BKg4g2ubGUy9nIbm3TS4rurarU8EW1T58842uNY6ZBXQJAUIteQhs6ipMad2TJOhcePIOjJkbfMsMhIPL0MDjAeCk7AohbKuQqlf5LXkz6l25RmzCBkaAVYx3fqbLz7vJqSLCgJMF+GzdNjjjoFFFjxdlGcRtVkIk9Xv9/vo93qYTMauGppmoGHAgmzIZBWqKnz+vvqN5xpsIwJ7BANjjT+IdCwPD4pyZlHu5GUx+w+IPIuiajJ80RAbXFd1OxuU94Vmf25wzfxHkp5FniqvuWeQEA1jfhEA/f4YKc8iMNkUjxRYRMwi3YFZ5GVoC/IsovGoTkui40Wh/cvuzkOeRbsBS0QkQ7vbPIvcuL83ZlHABGs7jphvEUusgC5x4vgJnDtrqu7kzLOoV/TwXf/Rd4JkavsuQ7PzP3rfg88jMAIAKstKmUSLzbUja3jw/gfx/Esv4Or6VdR1yILO89xKync3ZvOkIAGmxK6kylEkAe33+rhy7QrGkzF2LAt8PB5h0O+7a2tlFlnAOXl+8P6rq8H1LBnafF5IMupDHKPI9vMppjy1A1gMw2uRcViZRdS3HFk9gtWVVayurGLtyBp6Rc95iLbtJ2CSNFVp3qG8yB1IS/NqPs/Q5Fk0F1g0mTsJR/3u9OOW6PcHWF1ZdeO4N2aebnBNAFJVa/zs76zgi68V+LnPnsFf/vCDePr8GO/4Py/g95/bbj33faslTqwK5JnAW87OSuSJpjdRS2KAZGi+dzfbffwLw8a2kyp9jGORDO1z39iBhoJAhg99eqPx/Nca+IWn7nMMrO0jD6HKjzQMuvtFeB+/dGXlnmUWLcGifY6GDC1RDQ0iBRal2Ttt4RcsfCItLT1YWK8fDnyE9HBaVNGEwE3CWyZ7ZiEWG1xnkcF1enCdViFGCGFNrkfRPh50cQs1Lk+b5VlkAZqYcs6NIw21O2QWxdI2mjB4ZpEFi1YGAYhVVZX1a6A2hCAXMZZq6wEyK25u3Az+TSbbe5kEcK8mirIsoZTC2dNnFmp8vfQs6h5En503bg1v44WXXui8vaprFHkxt06+LVIZvV6vj/FkYoEpf66kDI2xjrRuVnG5PbzdyJ5TlpnLU3k7eOaZ+1fkFtjmoADvr5RlsORZ5mQTdMycAU11BBbVLRUsSd7E75UUnFnE++Jm9oxnPwPJGSydPpKWGUC7KUum9vtt0zI5Nyaxvp/KdxN7alrQ14uVoZk+XEZJCmJvcK88s+jdzYn887crZhEEsj3Kt17PoHvHq5ruJaYaXEO0rR+SYZSg87eJy8EBYGXF+HPkVoa27wbXlgUczLeiSqtchgY0mQlCCLzhgYfw4LkHsLm1ZcHs8J3v9XpOUs8jlvWngo835Aup6trOBaX1CzN9W7/fw+WrV9Dv9TAaj6C1xng8Qb9nwKKzp8/iwfsfTJ4ny/MkYzTshzvIxaL5cdvCXLP5axdmUVB0gc3/tNbIZNZcdEZywKLoYXKQwKLKs1EPU6QUDwCwurqK7e12wEPDj3lchkbgEM2F6yhZbaqhdbuJ5AM671zXMDpngEVViaIIgVjuReSZRalx19yrn/3MWXz25QIaAp988Shuj83+oxmPbSE1YI//2KkuFgHkTUQs6LZrs58zOd36sArYQBTXh3UEQJk40g+fgz/42g6uD41/7ldfHaOMljKlknjq8qDZFAHnWZRKTTxzdYBrO0tm0TL2IRoZisSCiv4VgEWRIePM87iBNjx3rWq7KJmPWUT7qzpNR+feDP4YVrIxJZPTpVTtgFVEo4m7G/ClcNfRVtGN9uOg1XRmkQVuqspR19uOae6Tcm2i8w/6nlnkDK4ZK0vwiYfSrhJVreqZzA6lFL76jecazIu9Bmdc8OOaCijTq4zMivF4HGVOlVvULWN6mEz0/PtNJhOMRt2lCGQ6vSgZWqpvI2ZRXZPBdboaWoqtE1f4UUo1srYE2pIvGX2WApE5UO1ZMqH8gZ5P8gTJc88s4v00+XRww+VpPnMCIVBKiyPOQqFIMYtMWWaSqFRuISlEwmvNyjjIP8p9nmAWcUPmuL3m+CFTNcsyVB3YGJ5ZtCiDay+FScnQYgaslHJ3zCILYMyUMrTtnxgX77agd3Ev1+GZRe33cT9laDxWV1dx6uSpxud5nmFSTiD3MVMcSGEDQDhiQscytLJEL2ESvbKyip2dbSuZD9vd7/UbYNH29jaefPqLs/3fGLBM1R4ds0gINjfM0O/1IYTAQw88hNF45OwS6F3v9/tYGaSrKU2VoaGjDC3BSm0bwziwlJqP8nmK4mbYiNjgOs0s4ubWADGLFiNDq+oKFy5e2PMxgMOXpGtLYh9ZXcXWThNkcKGNvIgSQ1mWhYkYe7/4M6q19SzqOOcmwHfeOTopOaYeuyxR5L3gMw8WeTBnmsH1R77uvTC7czWBK1sFbgzNfGx7IkAgjxTN0vUA9yYSdLJ0aOO7pBmolGIDAaaaGjfHphBC4C0P+fuitcb/9YR5Dt7/Uw/iM+9+1P33/E+9hBd/8nl8+G+2AWra3Evbx7zxLAeHNN7zJ0daLuRwx909q7lLIs6ap/wsgKgiDsklOjqv++wJB5w82BNr5LUOO1spDDgQV/cxYFMbs6jpWRQYXCdo5mVVzcw2Dwb9wDRassWTZBTlsALHNGaRsGWX02ARgSYNZhGTc9AxM04rt4NOURTI8yxYlAKwLCv/OzpDaVuGFjCTDQK/Nre2cPFyqNGl4wCht9AimDrOsyZakEtpK0ntQYb24vlvBWwopczAPG9p0HsydskYU2o+SWNd18iLYrFgUTT56PX6GI8nLZ5FHIhoGtfngfTK3JPYD4IkWZxxyCs5SSkdMMvB5czKIXQA6DLAysnQbDU000h3XmpbAK7TsVOL7KjPp3vFGVAUMgEW5WxCa5hEhTtuWUbMIsekjCRbFgQO+sBEdtZ83JSh0XWXVdlqWhzvny9KhiaFK92dGj+1UsE9Nr5PuzgPLe5ZdbX59u+e4Dmo0fbbzxsaeroZ+rwytLmWNj4G/QHe8OAbGp+TFHVfZWgWVI77RgNwNJM/BIaX5STpebI6WMH2aKfBaAEMMB8zL89fOB8cvy1Scq3aehbFMv61taN48NwDOLJ6BOPRCKPxCH0rQZsVph9LyNAQnX+qtKzJim9lFs2QoX3zW8/j1u1bZlsVJTAYoKfd/CUCi9T+MYvG4zEuXb28p2M4n7tdMJUPcrT1K0dWjmBrKrPI9CGeZZsFBtd0v/gzqpSeS4ZG4/E8iVG+xpgWk6rpheQ9i+qpnkUQAle3dg+MawDv/+wY68MKn/5WHwQCKQ2MJxqf/olNfOO/u4AXfvJ5fOmnK3zm3Y/iA+98yLVvugwNfvzWOskGomjK24wx94tX/HtX1sD/96WRBbciwoJNDpT5WuIaeVsF1ocVLt305yqVxMee6+H6cHGqi7sl7u5ZzV0SYVnndrAoiyb2wBzMosQEjzw4hJANVgdfONF5HM2fVbWo67qVWdSQdNmsEZcDxJ3faDzCoJ+g/7EwJtchWMTPGzAQOIMgztzzBSPLjMVt9gbXIZBFCxMub6HskpORSIlBr99gMGRZhrKcNEq88rYDVoZmj7+9s4Wbt0K5GbWL78P/vheGkaPcNkA2CWklJ7sNA1yEk+EUjXsZzditvFApNVdls7pWRoa2h2fo0pVLHtBJSGy9ZxGVn2X9INtOJt5rw+qxz360mKJwDD/WxxrWJHvvAuNrYtdQZa9wMRF4FhFgVVcNVkOeG5+DmIlJ54wjrvzEqykCiFgHCWYRm9BWZek8QQREIEujduyMdlDkRYNxFIM3beBGG2Bg+rWy1bSYXy9tv4iYytqyTATeVCl2ySwSzLNoF3KylDz7bgtp5wt7AYtIdsllQI1t5oR+NGlIFhQ01sfei4sM4eYLTeZbPJ5nWeYA4dSiEDCsnaqqMJmMG+9WLEMbbg4x3NzsJDVOgSoGMPf+lbVlUZ48fgKPPvKotQsYYzweO7+iWeH60+T5zd/pnnVpK2CtBFok8xxYiln+gBlPXNIswSzyRUmYXyWLGLTrLdDget7xPBWH1eBaqdAwnmKmDM32IYIljUJmkUlI8GdUKYVsDgZ2WZbo9/pznNatzQAAIABJREFUJUa7gkVGnhrJ0OwyXkBBaHoPEswiSPzzz+++4EKtBT7xdIX3fupmo8S90hq//Md9SFUabk6CrTlNhmYspf11fOCdD+Ez734UP/y9ayhkeB+9vM1HiomkNPBvnthuAKVamvtXFk2wiNpDbTLHja8V+JUnbrXse3hjCRbdgRBB1jv1wjQXGbRg6DphI9+OACxiDCFaNPEFWUqfHZhJC+vB0ZVZZGVo4aQj3G80HmEwmA4W9ZkMLWYDBYtCrQJQLfYX4mykTgbXVd1YTAXHjcAiIQQG/QFOHD8RgkVaGUo4K59Jsi5vgk2VqGoHqiilk6bSVdUOFu2JWcTawI8rpTQMKjbRmFt/rVQwWGo7GT5sk5b9CMXu93BziCvXrnbbLwLoZkVXGVpVVXjlwivJ7y5evuQMJad7Fpl3K2RYtoDA2svQaLLrPD0SYJGRoYXMIlogZBbwpmOkDa6bfmiUMSZm0Wg8DoBkYvrw6o4euE6ABVE3rjWB0eG+tH+KWeT8TCIZWuxZJIXA5uYQR1ZXg2NkWdZYgJLZZ6O5bcyiPDemwDOAFBq7FsXaSDGw3Heg0t2hzGdXsIJA0L/PGyeOncDxY8d2c+YDE3sFigAvZVK6varaLA+ZRiSYi3sJemf2YuQ9K7wMLQKERcj0VsrMGbgMLQUWCSGwMljB5tZmwzye+lqK9RvXcf995zoxelNgEUlxvedjOH/q93ooqxLbox30ZyQAKbI8D/xgpp1/elvT3kJxqJgtFB27qiqXFEse1yUKDVA2Cywa9AcYj0YLmeeYe76345AR+mGbd+nEXB4whWYm5SQJSJodidHrk0aU+AGMFUW/1w9km0pZGVpHsGhSluj1enPNxdzchc1zUtLRaTI0aGZw3SJDe/L/Z+/dYiVJ0vOw74/IzKo6tz59n+npntmZ3dmdnVlxZZIgDdmy+WAIvjzYfjFsGDAfLMsyBUNPhgH7QYBsAX6mDQi2YNK2bPBBsARKBg2DIGHTgiVKy+VquReRSy13d2673TM9fU6fW1VmRvgh4o9LZmRWVp069/qA3Z5Tl8ysrKyMiO//vu//ybDfaReUBv6/PzpGqeL7cFkD3/hIQmhbOIzIojnKIrZ8Bcoixrffn6JU8Wfx9jbEr2ssnaoa+Pb7JRTi701ThlrkUCJBcBOBtAZZUjGZd1QTvv2j5TtPXlXczKSmc0Zob0hV31MVaZOHs9gkhkQ8yQsrKmFVhSuxTXKqOSEgos4w09RCQFgbWlFI95ooZ0cpzGY+CLEL49HIhTI2Q6lDxUs4YJAQUGEHg2BiGX62phoqz3KUpfcpy0YXD9kIORRCOtKNiLCzvY2d7W282HvhQu201sjzHEfHR47MkpaUcioHziyqVdDFSSUHueaCmV/Lx7Qs6tqcj7pBQglbHefHP/3sOT578Rxvv/X24G03c3fYhrbuhjYfITl3eHSIvf09PLz/YO77VIOgm4e6rjGyLWH7FsfT2Qw/fvYTvP749eSxxqrJ+HmutPL9rMuOG1oPQhta3SBKmxL/MGheJSb9MYnr73mZlDguy+QiRWvtFgH8+g8+eh9vvvGW2y9nGYVqxZCcbqJbWUStxXkysyjLUfF9KiKHzHbD/BIigf2DfTy4ez/axsZkA++9827jwAhpBU2Psqgqk1XdeLO00k5gTimWUoFQ2wJJiXM4aD8wBY7UtTwEqWycqwYSBFKnJGUIVlnU3VVtUbJoWWtgF/j6PHMbGiuLGtdnXPzR1kY2MwRGXaPIi9QmMRlPcHh02LLzj4oC+/u+4q1UjVFR9JIpjPD3Q7YgN51OrUJC2/t8DREssIgIo2KEvf093L97b9D5yIICQGv/kcKz+7pQuqksEq5JSd92edvhGFRawh9oq+3DHDye+yXJIhEXEYSUZp47UG3V9zlPm01ZuS6k12veVSuVVLcymXp0dIyd7e3W8yxOdMUkKaOxledER8denaT0Yl1jWVm0r/YHfx5fKDP/fvDxhwCAN1//XLztqkTRsqH5YGjSylipUjdKEvhr/9JT/Lu//mTu8XzhFbOPP/5xPN8qa+CNHYnf/fM/hhISn979Gffczv73gAM+puDe5Eigrr0Zy1eYWcT41f/kFTz68W9jb/sLONh+s/N4f+UvvdZ6bKaPUdAEpY6JnVm+DZFtdKhU7cBljyHc7oOn/wB5dYAX22/h5XZ7LnzdsSaLzgHR4JdYlBlStUH0WHXHIhBCRFViP/j6hVPIYKe6oTUr7aqnu0+yG1pdYURmkOTqImM6m6Kwk5c+hEGNTetYZoNp/XPpzKLwPHdVxgATHFvVxk5S1+08JWqRRbGyKDx/JhfJnK/cVS35GGRAWMk4syjskjZYWTRMttqHWtXI8yLOLNIm+FxK/7nLcjY/ILOB0HJntru2oQ1GQBYxcTEERj03/Pwqq/bhCXTX4lrr9HVptuHVTKyWCSGEQJHnboLPv53mYtzkQwQ2NCGQZT4MlQlVVtf4YwsCroMJlw++j7PEQmVR1Qi4Dgn1cBGQyQxCSNy+5YMhWbrO1gz+DECa0DCunPD34Emu5j1pd3fXdWxisLLILHAq5JlXFvEx+n0RptMpNjfiIEYiai1ACUgSP2ZC3f4cmcwwK+cT/qC25e004GNJKosooSwigZacawDMNpa3oV0HLFOoaoLJ0eYCPH7NguPXym1odow+Q7KI28A3CQ6eLzCUViiKEQ6PDnF0fISNyUbn/XjD3hvamUWxsqi2cyf+ffShlRmkNaazKUajEWbTWef8aTweY29/D48ftRdrKRhFZr+yyFiS+zKLGp3lpERX59awA2b42QA/R+lUFkXdMTWkTCiLVDs7amOygaPjo9OTRfacL6tyBIxaPs/yazfvamauhtjY2MDxyVGSLDIVzCArUGa2iGnOdVXXhuh5uW9frq2yKBtsCSyrGUZF0Usu7e3voaoq3L1z1+0n/FcphcOjdlB3SnHoM4uMDS3dCc3k8Tw9So/J//1//Cq+/Lj7epXVMV55+vfx2e57ONp4BDz7AM3xVQdGpaaySQf/3z4wmyQVKKSa71z2vl/QGDN9HD22t/vlztcH5bzW0fJnUmfYEOEy42bOhs4ZYShzakHFi4boPUIsnH3QsqFRvIgJMzlayiIyqqBwG0ZZlG6hS0hnFvXJiU9OTjAZIFc2LZrrYLIpguey2FbSIIQYqeOoVZv44gXUbDZDlbChRcoimHwDrdJkUa09GcSV/8iGVpvnszwLJiq1V1R0EAN1T2bR6ZRFNfI8jzOLbMZEm9Ba0IZmq6nh8a4DroeBO1nxfw/Njlom4FpKm/fT8z7O+0ofq7dWguXEDRTFCNIuWhxhhL6JOdvQfBgqn4NmpxmeNIYLjLAFspCigyySqKs6Tfpq3wkIMAucJ689jl7Hi54mYc3baIPiuZLdb5Zlrap8kRfY3oonulKa81eWpbMVA/7+EtnQ7P1+c3N+1w628CUfT3yXmc0sOndlUUJ9655Dm+w0Nu7l9nMaG9p1gJmPnNKGRt6G1h1w3Z1ikcKyAdddYBXxmZJF3L1VN7rPNggcpRSKokBZVTg8OsJGw0Iagonk5lzFzGN8FV1Z5XAqa6eJ6Honwmw2c+pOVsaHxDhjPDLKo3ExzN7Sn1nki5t94cCp3/qQgGuzbT8nLRtFuHA+2dyuIZ3a85dU0DiTRaeFXsEcr6qra6ksShGXDBOH0XE9WHUi/xYzO65yMaauK6fcCYm6ZiZqH8qyRBEo8lJ4sfciyicNLfRm3zUODg+i99d1Dej2/SrKLFJ1J5mhSeDpYZos2t3svwe6kOo+EjeYz+nW2pU6M4vItGJMKov8pGnxO7+GRoHJoHB3pRWm+hAK9l4NJOxrMvr3pmFNFp0DmtLXFlmUaF/c6lozAKJhQwsrNbxNF9in2plFzQBRIursFhK2fWbIhh2jSRYdn8zPK+L3sVKoTRbJaAHpWmEnyCIEx9H3WQrbRaSua8hGO9p4wqBd1kDXhMWrIrjy37ChBdk9PljRfyeDlUX69BlAqq6N6iNSFplKnAgyi+q6XrjlvTlH/u91ZtFwhJMMrfXgrnQmEHORzCJDbJKYNzlXjrhN75PJ1PQCe1QULkSWf9ctZVGg6gmVRbVr/atcXk50bMpnFoVqu/CeV6s2WRS2cE4tJsJFwJ/68ldw93YcDJnshtZHaFCsslS2ii2lxBfe/ELr9SnkWYaj4yNkUWWR3PH4fZmxY14jAfviTttcKmtGZpkJuB6QWbRKsgjoVtsS8XjWVBYtDiL/+7uhXJEdL085NbRq/mZmTHM/WGA8WDWBlzkb2tlN/jm4X+lEN7RQeWvVC4IILw/2sTnpJos27HOpgGsO3TfbrJ3afJANjfwxn0xPnHqway4GwN1jhqpoXHfJxvceFlFlh1XNvzb+rTet9CH4PssI56QcahxmM7YIvUCtapRF8fbTZNEER8exmmEZ+MLu6ZqY5DeMLGqOtSHMafBkOOd+uYJxXUNmWWt8H2LlZJSlsYr12WwNMeWv8VDBxv8qpSLSkVVFrXugJVpIK3z6ssa//3cetrqF2Rfi6VH6Xvdrf39eYLMnpGpdga1jIUISpU2o9N237bYcIdU+Z4uWCXisyETayttEjRIj2jSHwYXaZjD2Wlm0xlmjRRY1Lvw8z/HgfpwvIRJkzNz9NHIaml0gwlDFpjxXCIGqTpBFKp1ZdPf23RbxEwZj2/+IlUUDOqGF23KB28ExhTa0qqp8SKXwQdXm87XJnK5uOqOCB4qqHXDdyEIRQdBdvH0JHZFFDRua5AmXhrTKHQ7rVYEiIrUo54lTM1toqK3rZHqCb/3Tb7ceZxtavF22oUmXwVQFVrmhYPWV265Wxtp2zSYtZwKt/YB55soiGREqXdsFfCB6fKiNzKLEoF4UI5/rI7qVG3yfVFbdFlaha2UDYG3OULh/Jpd1oJp0Cw/RUBa5YEsmPdrHoKztjhcBRVG0XmeIq1lLgUNEkMm2tYiURcbSutgEKMty1+Us3B+AKGuNiLC5sTloYW1aByeqjX3KogGZRTtb28mMq9MgZX22T9iun8H3INLHP2Av9ud3c5VFqW58C2+DjK39ZHqyMhsaL/RWhfO0oTV/720ltJmPZXmOvf29loU0xGQ8wc72TlIlbTIY7bxCKQgOqJ6rLIqLfCcnJ44A4nu2qtNkUbPrYh/42mrOccLfW57nKKvujmLNFvfGatxhQ2uohSgggFyosfKkTPTasFBoC5PN8bWZWQQMUxbtv9zHdNYfkuv3fTr1eHYNbWhzyaLOz6ujMTsLxviZ7YzHY2JVV/aa8GTRkPPInQx7yaKySpJFobpaCoGXBy/9ezo6JAKGyCCt8Nf/YYHf+6hodQvj13TZ0FLt6OP32t+FUjjCnrWOtbfv/1s2nkN3YUBzNzQ7R9T+vBC/Z8HbvoaCRAaJbNBbFWpsiTu4JR4GyqZGzuRaWTQfRPQrRPSUiL7V8TwR0S8T0R8T0TeJ6KeD536RiL5n//eLqzrwq4R5yiIpJd58/c3oMWMFWlBZ1LKheVkvgCiwr1nxS5EpgshkFiUWP288fr2Vf+GURWE4asOGNh7HWRxdMFLSGs2Aa5M1Ym4mLLHl448nXw0ypyfzoihGOJ6euO2EaCmL7N/N71AIct3OWL4NeAugyyyyHdyEFK7FatieFUBLXdTVDW2oUmc2m7mOVSHqWqHI84gEYFsPD6i8cF50smGURTEJJeX1q3CdBcJuaGxVHPS+RZVFAVnU58d3E5i6PcE3VfMw86FLWWSr+JEyr/Fbs4sIVreFNjStjLJIkIh+HyZji6LqeWRDC0jk0BJjFIpVy27DSoDUIiBEluXOqhG/P60Ibea3mXO6KFmUWbIoJIbsczLuhta32Azx8P5DvJEgdUZFgbcaYxKA6Hucd6y7O7cGHcNQCBLpPCi0J+XmO1icWOCq9E3OLGLbxWmQZRlef+0JPvrxR/0B1wttdbUEHquIF51nLQImJ+ZZp3jekGc5prNZrw1NCIGfevdPJZ8bWZU04DvJNsO0UwjvR0SEsioxHgXKIq2MUqlBCm1ubuLWrcV+5ykrmlkumv0Xed7qetk8Vuoh3lqvbc6Jm8oiHh8aZJggEVnB+LmmNajLhtY31/nw44/w/LPnnc+b4/LEwbJwc+RrNu9iEicF0UPS8GXuiyyWLLLKIu4el9n5Af8uQ+XzPIQKoMHKIti1RaAm29newcuDg9Z2k5+LBP7ZM4W/9QcjaBD+j987aJE/zw40fvsH6XlBqh19DHvto4bQ9rw37sUhWdRW37RtaJuH72Ny9LG3oQmJWhTI6nCtspwNTUNDIINA1nqv1hpHeh9Kx/PqgsbxmpgkFILviJVFZ6hEvcwYOkr+TwD+1Z7n/zUAb9v//QUAfx0AiOgOgL8C4OcB/ByAv0JEt5c92KuKaCEzcMIjhGgNzEPeE1dXG/aIKBekdtYQfm/LhiaEzfkZ9kPlQbNpQ6sqEyS7iLKIc4vSAdeWLKqqQErenVlkno9VViFGRYGjo6NkIGuTLJKNc9p8nZ/0xZlFLJXmDm6sLJLBAMETkxZZVFdRNY6/wyFZBLy9dBaSySwKSYAwkFQKCVWb4O9FJyxGWeT/dkqoU7aCvQkIbWjKVnSHgImWoYSctymIXkUSP9ckrULFDh938vc1Gvl7g6Ag8yt+Hdn7E//mubrH+xBCILfd1RhsOaOgeq6CxUR3wLVRyDQJAc7LSAWXhsiyDNPZrLXQJEHdAdcNRdSiuTB5luP4+MRZXAFPzIfd0O7dvYdXH74yaJtNZVT4+P1791uPexL8/IkUonZOHj+esqEtwyvwYnJtQzv9h3/86DG+8ObnsdNFGi5sQ8MqhUWODD7TbmiCnGI4sqE17rnhvCHP8s5OaPOQ54Wz6rI6YV5gtEF47zb/jmwOERHZe2I7s2gynuCdL3xpoWPMMh8l4PYeKYuKlt04RLobWkcDhoa1jAtggFF3sIIaaIdVC9HI+EwQBlVinMjzHIJEL+GllMLJdI6y6JQ2NC565Fk2KLflKuFUyiJQq3hslEXWhiYzrywK9hOSOV22fF7v5FneO68qyzKyWmqlo/m8Ugo7O7fw8tAri2ZlGamK408l8J/+ncLZtaoa+NXf9uTP938yw3/2Nz/B/iw9p0m1o4+2z2s6rSAow3I2tDZZtHH8cbStSk6QVaEqzxZNlyCLJDLIpArIPFci/LyEDDnCz1TQJir43zCTRZpuZl+wQZ9aa/07RPS5npf8mwD+F22u9H9IRLtE9CqAXwDwm1rr5wBARL8JQzr92mkO+qqBRHfL6C7wIm4RiMYkz+d2+H+9pURFlXMhKG1Dq1VrQdUFtoN4F5q5aX/nj76LPMsMWTQe5m0PA6GjzKKgQ1IdKIvCQR/gSlVwbNZ3nDr3RTHC0fHTVl4RH0esnEiTRTLodhbb0GKFQ+iBnpWlkQg7ZZHZT7PqVlcViqJA3OJVzBkUPaoussjZ0AKlRmDVEdKQhUsri6KMFpXsJrJGG1Ew4iLKojkKnybqWjllUR8ZyBXO5jUUdvHr2+/d23exvbUDgHMg0h1eIhuaoIgY5usy56qzFSi6FvREcRXY3fuEI6vjzKKYzHXHINo2tBTyLMNsNmtV+gQRRHKCQi0bWioTqA95luHl4UvcDduzOzm9H8q3NrcW2u4i4HvkaQOQl4HJyUt1Q2tfe49eeRVFsfiCm61RN9qGRgJarOY+/cqDbtIypQjrR9rmuiyICOPReOXZWvE+gu6pHW3ZAXOPFWSyDvtURfMgg85gXAwI89y6EF7v/NtmGxrPgfoW6IsdY+aiBFL7H6IsandDG6gssjZTwCiLRsXIFWOa9/zwvCmlXMxDOK/pGicmkwmOjo8670G1qjG1avYuNIsxi4LHZ3ENu9AuSxZxEYAzV3kbRZ7j4PDQ2dBkZlTNKo/JIq00IIFnnz7Ds08+wXvvvBttvyxL2z1VuMJYCmVVRvZvDW26SQcugu3NLbz/4fuGxBSy14b29/5oEx/ux9fh3/3aAf6tn9vG518p8F/8bz/BR5/F87df/8+f4PbW0Hsf/4YUBCSaxA/QtKE1vxtqvUWoEoqM6o3JqDrbQDH7DKeFhoIkoyxqEqUaGhkVIACVLpFRDgKQUYGQLBqJTQB+rsoE2Dqz6HR4DcD7wd8f2Me6Hr9RaNrQhsx3sixLZ0n04P69+5H9IFT4AGbQ4MVXXceSYkEyHXC9gLIIMASD2y+MBPvw6NDZOoa2U+ZJTzuzKAuURb57WZgtBCSURT3tgEdFgeOT4/nKImhHyDWJPN5XZUO0293QvA1N2GDbspohy7Jg0d1hQ6trFHnRUkiwxL2qKnz9m7/feS6Z7GlOOmoOuA682GEljgmwpTKLdNwNTSu9DrgeCHPu/H8P9co3lWfzwJOQeWSR1p5gTu1P6X4i3IQt2/yLcPHU/A0Jcz2HhGs4eRJCtBYSvJ1QWWQIpDBY3g/4FJBIKQWFINN2PhkkGSCTWUd3xQ4bGrVtaIsufLM8x3Q6jZVFbENbcKxYFhepLOq2ZrdVo9tb2y6gdyEQdV6fNwXL5z0tuB/CQoqHs1B7/cxXf/pMfzsckjzXhqZZOZlh81RkkYgJdiGjPLcuhMfH//p7tl3IdTQIWRQcHtzcP3+5+RAbWlNZ1EkWNXOIvMqqrCqMRqOo62tUQI26GGtbCIgJANVBFs0LuR6iLNKnJItqOz8eWlS8SggV8E30k0UAQMhkFoXIe2UR29A44NrbD8PmHB9+/FEyc2pW+gJSl7KI1UfNzKLIhmZt92yPA/ptaH/td3aTj//Vv/UMT/frFlEEALc2Fvgtk+1Wpi1ZpNtqnz5lkSagyRYJVUHo2vVAA4Aqm0DWJ4A2a5ZKTd3+F4GGRoYc0uYghdeDgkKGHHfFE9Qo3ZpcIgeCMT+jMXbEfZR0YrfJyqI1WXQapL7JLtFw8ldMRH+BiL5GRF979uzZig7rciAM1cPARcK9O/fw+c+9tdB+Ht5/GNm8mplFbO0C4Bh0hhDU2Q1tkUkzt8jm989mUwgSePdL7+IrX35voe2YzCLVyCzy3TT6M4vak7OuiQ63ucwSg37ThsYLzNS9SwqBqjLWMkcWOUuXiDKNhDAy5TyhLEplFrXIIpsrpC2Z01elqut25pH522bWhCHeQSCksPLuRbuh8WKrZUOT7daza7TBmSlA3ClvHhapRLpcnsb3n94uZxY1rAONTIUhagxWN6ZtaGYiz9e3DDqW+cVUbFFgS0KoLFLah8lGir7GfYzbQsfHIHB0cjzXLhved5qfoes+E/4ellGusLU1yiyykvqztNKE8JlFF6As6ji3zUXuafehwXbxU2/uSkIkiiFnAiIssoY1c/rVfilnTYrxwjVlQ4tIB6tcefXhq3j0yqOl9ydFaKuyNjQxtBta/DsKydZUA5RlkQXq8NT+m1bjvmPlY+v6fEqllEWcWVQZZVFg/2/Z0NzYZgsQKWVR4pyERc30cSmcDFQWLUv08Odh5eV1AivxUphrQyNClmX46le+6h71mUWGYMuyzMYv1NF8WGmFvf09lGWZJDTLsnRqMm/frPFpkE9VVZVbW7mj0rENja8306k5IIsSNjStNT6bps/FD55V+H++dZh87rPDYYp1tx8SgFXsJJfxPQHXrcwiXYOgQLazmrPPyQ2j8qmOoVCjxLF7/0LHCgVJuSneUayEMs8V2BDbAEy4dY5RYiwg3JGPDDGmtQ+4XmcWnQofAHgS/P0YwEc9j7egtf4ftNY/q7X+2fv321kJVxmhZ1zrYROUVYRMekacrQqhrSOuEvUGXC+gLJJSOhaYCDg8OsJkMoEQYnDoqtmOCDKLYmURe4kJ/hydiiyybL2coyyyX54li9rbEsKrs5I2NGerM9kbs7JElntlEecZpTKLjA0t6NrhJNFmYOHOZSmEarL4cWtDkqK1bXM+jLKoXlBZFNqhwsekkOtuaAOgtXYTUj6HQ6xo4Xc497VBkPlwZdEcGxrmD+mxsqit6tFau2swkxnqKrZemk45sbKomVmkgwUCf7Za1a0sITORblvhjo/nk0WONGncU/i33f7csWd/GbIoc2RRMGEkivKKzhrn0UGqC0JQMsePT+MqiIQ4s+hmskVEtLBFcqn9gGIGdS68+uSqgITwmUXNUOYgX05bMnsyngzOdUxBNK27LpNuuA0NRFHByzxEK7WhffDRh/jd3/tHbkwJ9y+FUS50kS1sPWb0dkNrKATD8GNjQ/PzqmZmEQXnzZAT3HUzIIs6su3M99tPFjXVJa3X6OHFnxRMMVVeT2WRnmdD61KapbdXFAXKcoa6qn3AdV3ZwlO8xvjwxx/hyWuPUdVV67zOyplbT/Bv/OjoCD98/4fuNWVpwuNDxbjWcYB6bdcJRVFgZhVMXTa0Hzyt0TXzEgT8zd/ZSz7XH2idAoG0BkG6UOoQLtMHFBFH/N5w/iOUIYtJ16bjmd1UlZl8ARNy7bVLi1+9GpLsug45FOKIkgw5JOUY0QZKTFEQN14KjpsIOY2QUQGFGseTh9jb/jwUcb7RzcKqZnx/F8B/QAb/PIA9rfXHAP4vAH+OiG6TCbb+c/axGwUKqkhDA65Xs98+G5pqVFFM5Shc6Bgb2vDMIsAoaMJuaCfTk0juORTOttUgtaSUqKvaDYTh8YcThpZXnaizuxEvQlOLrkh1Y9UQza5zfjtenSWFxBffert1fG4CJ03AdW47hBm7kUaeNbuT6cguBoSTQK/E4Nem4L5z1SSLjOzaVCN5ghna0JbLLHLXejAQaq0h1ja0QWhmFgHtTmQpeHXYAMtarRx5EgZ59m23bhxDS8k0RFlEobKobeEyv3kzcQqVkEyyGhtaEHCtOLMo7FwTdkMzlfZUVc6oqtqE1fHJ8dxsNa5OtgKue1Q+4bW/nLLIHH+Wxza0FMl9VvBNDC4i4Hq4DW3pfSD8ruG3AAAgAElEQVS0oV0tYmJVMNXYm2FDO2uwDU01CA5WKIcK0kWKcl2QQkAFtvNFuqHx3gURRqNxTMj0dJNdFHdv38H9e/fd3MbtP5iv9lnRVGPs6LKhaa1xcHjg7HS8bT7npVUWhcW05pw4GlMEtVQ6VYcNjYuDXWCSqc+KdtrMotqGNdOCCr6rgPmZRen3da2/irxAWVXehpZlUTc03q5SCvsv93Hvzj3XJCPEbFa6cHq+1kwh13+HhvQpomD20LWgtG+EMwpsaLOZJ6IA4On+Cf783/gj/I+/eYAuKA3sHaWvn2/8Sb+yrQlNAgSNnNI5XJotXwmblqY4s4jJIvOvBlMRtTRrRVkdNXJnF703ks1WAjLkcQQAFDJLJG2J2yhxghFtuPeF2wAACaOkqvItHGy/BYUaY1reKnxVMWjGR0S/BuAfAPgSEX1ARP8hEf1FIvqL9iW/AeD7AP4YwN8A8EsAoE2w9X8F4B/b//1V+9iNQjOz6NzJokApEnV+EI2BMWC3zfttN7QFjlfI2IYGYKnARvbetwKuLeNfVVVU+RJ2wtB1nvuURYCRXM9TFrEqLJV1wq8NpdoP7j/w1TJ77lk+a5RFM6duYEWF6cIQB04TkVP58GNCkJFEq8Cy1DGpCK2HzcddwHHtJ0VedmvIxVrVva3Vm2gqi3ii3NfSNIW9l/v47h/908Gvvy4IySKubA5SFtnzPERZFE6MzTXe/b346mqzG1psnxxyb+Ow/9TCj6/9MJPL7CfoMtiwoXHFvqtzDWcWpfz+WZa1CSshBimLALggy+j9c6xS0XEvrSyKbWjnlVcEXAYbWkpZ5KRFK9iHt4HeVLJIiLRyduVY1IZm3nRGB3M2cCqHRPxAWIhanWrHzjNC5SjR3PE7XESPRiPc3o0zUDjHahW/idu7t/Hk0WNr9WmTRUC/FS1pQ0sQM88/ew4iwq2gG184F69sZhF/B03iJ+xizAQVUdyxqizLZOe6sAtnCkopbEw2euMDmuPropjOpmaMWzhI/vJjPlnUcc46CGcu/vA6wWQWxesPjo6A1jZPqE1omswicz04otjO+xmmcJW5SA1zWGynN8ICLpixDU1r20167Oclv/xb38Pv/+AAv//9bstmFwQBf/rNxRSM2ipBCxoj1JHXusJUHwXdwtKEcmhDI126x0jX7hklcijKkFXHJiNW2+94wfsOhWQR5dCIrwcmiya0DYkcOY0T+7HrZmqSTRqFuHlk0dBuaP/enOc1gL/U8dyvAPiVxQ/t+oCDW/mGfd5kkVs4BXk/rSpKYJcKj7uu64XCTJuZRQCwsYSyiL33da2iBYLrJDabReROKOHkCUGzMtY3GSuKojOziKsHjv3vCAAVQqKsKkzGk8RzwgdcC2FeW5YRWaSVQp7nEalTVZVblNbRYtgqi6AxrwJVJWxo/FomomIFB5OLZnAkorky9hAtZZEd+BaVQ0+nJ63KzU1ASBbxIDU0s2hoiHhIFg+2oXV0Qwu7kM0b1Pu6oeVZhqosI7Ioyi6TEqOiwDSoxhqySFhVUmBDizKLFMqqjKpyAKLJGoOIMCtnw8iirE0WsWqwiea1v5SyyB5/qJDa2tzC40ePF9rOacD3i8sUcL3KzCImMG4yWWTUcWe/uFzYHnMFvxMmF1TDhgZ4mwqwQrKI75eRclSgbARKN6E13L17c2MTb77+ZnysZ5CLJqTwatUGmdbXEY2tx347bRua1ho/+vB9PHntSUvR5ZVFphtarYI5cTDXJCGg7Hlzdufg/ccnJxiPRsnzwsXLLhiyaNKvLOLizxLKIq01Pvrxx3j98RObFnPTyKKOgGvziuRzRV5gBkO8mMJV5bLEAPOdHh0fOdVdnrWv0bKcYWfbZOGwBVWpOMaB7WTSNskA4rWFs+KTQFGMsP/ypSksBw2C/t/vPcP/+rs/AgDMgp/27VGFz6bzl/VKA//n1w/xi7+wi7vbA4tNJCCgQDBkGJ/hGiU0FLRVHLU7oQFdNjT3367gQ6iyCbL6CICG4FDpAUWC1povUhb5808AhKU+RrSJEU0CW1mwH143I2uRTTmWaJ5xxXEz232cM9gudN4T0Gabd14chQHJ7hhFmywymUVqoSqyDLuhnYIsEjIdcM2fg6sm0eNBNacpNxWiPwNqc2MzuUBsBVyD3KSh9Vpqh4Q3t8ODHCsewtblSlsbWhD+yCHe0XGooI2rnYgCPcqihA2NOzmxEqJ2hJMOiEOJma2CRNaoOWgpi4LF/yIB16WVAd80RGQRK4t6sg0YSilkMht0zkKymKifLFJKJ6X+zW4tg5RFtnKWsqFlWe6+85CwrO1kSwiBUTFysmzAq4hE0OWGJ1qAt3+WZRl1EQNMhlvzePnvIWRRnmUtpcsX33obt7Z35r63aUsZAr7fhfe9PM9x9/adhbZzWmQyuxBl0dbmZlRZbWIlNjQm7q8gMbEqGAXJ2U8NqbGAmIfQKnVVYNQp1oZNTWI5VK60A/iX2p8t/ISB/vPu78D8e7ch7ld7Tcgga6g5X8vzIioUhWHQs9ksUommxibuwNu8Nzryzs7FOAvSqZ+j+W9gQ2vMuQDg+OQYk3F6bitl9znnxyfjCaazPmWRsoryxYmeF3svoLXGnd07i5OyVwB9v5fez9tznYcF4yzLUJYltFaQwVziOGh+kedFQlnUtqHxtcZgS3xaWUTROmFkM4tOTmJV0d/7J8noX/xH/9wL/O5/uYV/++e3058/gNJ6odwiYyXTyGkE0gATKxoaAhI8Q023lm+SRWXwjIpGgUpuIHM2tO57ktYatVUoKa1wiM/8906wwdaApKJBlnrVkSCBO+K1ILMobUNrvj/rsOJdZ6zJonNAFOp6jtMd0SBtZGAraoa9erIoDPgjO4guoCwKbWgw7HtXu8fe7QgJlbChAWaRdzKdtlrdp4id8Lk+suiNx6/jwf0HrcejbUK7iXSnDa2DLOJcIK5UCGcBku48qy5lkV2UNiXrbuHtrIXdZFGRF1HmTNgNj881YBexQWYRK7gWmXA0lUWhJH4RhVJVlddukjMESbJoYMC1lMNCxLlTDhBXuNPHo5BleVtZFBCMfKzz7m9sF0vZ0PIsQ1WV0ULHE9zaZYtVdRVU5JT7TargnDlVpf3dlFWVUBZlrd8xX6fc0aQPKWXReDxO3huaVmR+bBFkMsN777y38gr/omCC+7zxudc/h63Nrdbj4XhzWnDo8k0mi5h8PWtQI/9lHoz45Wp9J9STBxdmCa1OWWQyi8I5Xkikd2LO9c5q6FUitVhmFHke2Y2/+Z0/wOHRIbTWOD45jgqQKWVsVdcoiiJRDDD7quoqaitfVVUreyhlbY7IomPTvCUFYzFMj9mOCBiNcDKd4uOffIynnzxtvU7b4s8yHWQ/+PhDPH70mrMOXrd51GmURV1XeWHVPgCsRXCK6WzmlUUkcHTs8wzzPMeslVnkiUy2mSqlohzJsqqQNcgi7urK0R/8vRVFgWk5w/HJCSaWLHq6f4Jf/0aaLHq0VUJThs8/nL/mKmvgWz/qVra1QSCtkNEIgA+lJgCSMlRk5zdDMot0rHSsA+VOnU0g6xMbicHfcftbm+EYJczxK9QQIamjEdnQGh/DEUkAcEvetx3eMNeGxvPWDDePLDq/sIMbDF4kn3c7Xm9DCzOLjES5PTAmbGhuwbVAZpHwbQqFEEvlFZlj5VbzdWtQkDLDdNpWFjU7l7VtaIsPmC0CivoyiySq6TRZgePtuBugPRZuXc7S0zzLXfcDwPvoZXNiGZAvXsqenpzUduIULvZDe5+QvjKnOQ8JpkpZHh85AlBp5WShfUgri9qdROahKtfKIncO5wRc83syKQflS9V1HRCW85VFWZa1M4usd9993wPC+x1xnnhtlueYzWZRpxOTm6UCgpSMumg6w2Qy8RU5QZEdjglurjqX5Qzjrbja1qUsGo/ShE8TKbKoD6cliwDg9q3d+S86Yzy4/yBptb0orNKGRuvMImOzVuejLFpoDat190rvkoJVPak5QzgerjyzSKmGzbj/RM8j+ruy2E51rKK9WGbkeY7jk2N3bGVZ4uDwwCyg8yKav4YNOhi643zy+FOVlc2sM1ZnjgQIIUJrczD3C5VFO9u3WvsA2BrXrSwSQmA8GmNvbw8v9l6gyAvcv3s/OgdufF1iDnRweIAvv/2O/czXkyzqskL3kkU9VvmiKJwtUAiBnZ0dPP/sOe5YdZoQhKPjI9y7ew8AkiHsZTnzyiLhA65D631Zldje2oIU0ueTBtdXXfs1T2HVSycnxxjbMfeXf+t7nQXB17YrKCHx7ffbijUpgH/nvUP81//iR/j44b8MJRcjPDSEIYaQWRURn0fCmLZwID6DBg3KLNKqeXz+O6nFCAQNoUsI7e1pIZSuzf3T5nEpVMhgupaRNiomaekNARnd2bSGey51lP4/rciC/GsVauQYNj+8blgri84B7uYV+MLPZb+ioSySXlnU7GqRJotE9O8QhDa03Vu7+NIXvrjUsXsVVJxZxJ9jOpu2MoZCO1Vzsk+iq5NOP1JkUacNTQhUVdlrQ6sVZxZ5Ao+sHF0rjTyPA67rILMokqy73CTtqhZ9NrQij7usqaDlaygH5zwk87jAzE6iTGeQgcqiJtGhtJdwLyCpLqty6XDHqwwmU/i/s8Db3gUmEOephNzr6zizqI9g0jZ4PdUNLbS9DVlgG+uFtiRoPGBHyiLRILiDx0ZFgaklVMNgSKVjcpI/mwkirQZ1QyNBg1tXj4pRS63UhfC8pCwpVwmPX31tkPLqvBB23zz1ttY2NIyKEUbFOWQy0GJZKuetzF4FjJW/7pwvcGfIVV1vUdSACGxoc8aEefufp8xe7liFH9caStM8UBbxOTo4PMDR0VGrAJkKuO4i35gMLqvSNQoQNpuxOSemRKZUrCw6xkaXsqgns4jn3+PRGForvPeld93na34G2UM6dYHzl8IuXteNLOoiAwFPCHa8s0dZFOeW3r51G0fHR9HaqK5r112v2Zm1rk1Qc9gEgh0DgJ8P99rQbE5saKPPZIb9g5duXvL1H71AWXeRRSWeHRB+6w+OWs/VCvjb39nAsyPZkSvUD01k836MIICPQAPYoB2QJmgS0EkFYmxDI9XII7M/fqVrlPYLEqp2FsDmpy0xxT3xBAUmUKigoZFRDoUaCjUyGvlzCImQBCJrm0sjWP/a94QFcoUaI7o8hbLzxNWdsV4hCKIgp+M8bWh2sBBsQzM3u2a4NeBJopBQ8V2xhh/zztYOtrd23DZTnSIGHbsNLUzb0DJMpycdyiK++SIiiZed7IQTOgaJdGthIciRQU3wgrauKghBbmIihWgpi1y1TalkZlE4cVFKRxMaANjb34uOl5VFKlIWhWSRD5qMA/0kZuXMKTAGZxY1BkdWU3GlZSjKqlqoC9t1QJNo01pDZrJz4slgNQ4NJPXqgCwUcxYTSmnkWZuw0jqezA7OLNLd3cnamUV28RNIkkejkSOLlOIuNZQ8Dl5IcKhkc3/taj85mfk8PH70GK+9+tqg1xLi7/SG8hBnA1d8XMVJDQKurxgxsSq88uAVPHrl1TPfj6l1LEgWXbAFc1EQmTlB6loK5xZdauVFEdrd/SJ3sW5oKZydsig9doR5MJXNcDw4OMDh8RE2GxmYIpEP1JVpw9b9qq4gmSwSvjNttF1qqlW9skhrjaOT406FZagEb8J39szx8z/z89jZ3sGDe/fx9JNnrddlMlu4YOaJh+tLFvXb0NCpvNE9Bfvbu7fx6sNXg7+NijckXQGfZ9gMuDad0PJA6erzsQCvuPcB1w1lHYwNrapjN0VRFHh58NLZ0H7jL/9Z/OC/+Tfwt3/pz0THnwuN+xs1fvV3jjq/b6WB//Zrd5Ymi4S2Vn3zCe1+NCZix75GpG1o1t5tjqGG0HX7eZiw7NIemlQVhOY1XqA80hUyyrEt7mFEm6hRgwCMaAOaFBTqIIMIEIEyyBRi0U0WhddGQDbx/VtRjRFtdp6j64yrNfJeUZC4qIDrDmVRnVAW8Q8juIk0bWxDcHv3Nu7duXuq4wa8fcRUVxo2tExi2uiGxu/pWrhKKVuvHwJB5jiaFrSuSiG/J7ktYQcC8plFRrXjQ+04s+jw6BD/6Ov/GC/295AFIdiAD6H2AXqca2Oe/84ffjcaxKq6splFDbKIjzfoJmIUKny9CCfPnkcohFANwiNVlRuCqqoWyji6DnDnJziHmcwioi8Fb/XrzsgIYchCv5jotaHZzKLmMSilIpl8j8LbgdvJmpbDMXmTZ3nUDQ0IuvtEyqKR64imNQdcC4TkZEQWdZJTeYI0l07uvVI0lEXn0pr8hmCVY6pTa2q0uletsVos2tKbc2OuEjiXKHUthZkmqyJihDTkeB3Y90PVZRfmEdimKccZZBZF3aCCBXKg2qiqCqNihMPjIxweHbaURSkbWreyyHeQ9QW7DhuaCHPwVEQWlZXpEtuVx9ln7Y6JPPPvg3sP8OzTZ9F7zPi6eMB1sxh8Lcki3d14p1dZ1FMEGI/G2A1s3pPxBOPRuNUp2gdcN8miMiqOs4raFbDt91iFyqLw+hdtGxpgyCKtdau5w7uvxo00JpmCIOBbH5QoO6aLpSJ8/cdjLOPn1bavnv/bEEWCJHKMIEhimt/CLNvCVB9ipo/9m8nvsUKJQpu+atELAChoaGEzn3SNzBFP/rUVZrgjXoMggTFtmk5sACa0DWir/oG/R0hIr9SHhqR2kbB5HCEiYkkDBQ1Tnl83rDOLzgFkuyqcd7WyK7OoThAwfZlFFzFpbnZuCxF2LAgRhkA3z/Wjh8tVSnmbYTJ/X2aR+beHLGrY1EwekA9AZ2XRy4OXKIoCn734DLe2d1o2NK6wmnwNrwoyHuk6UiFpra2sO5DMqoayKBi0woW6OcbMEJ5DbWj8HQRt3z25NbxKxpakm4SkskgOUBZZu2bYQr4PdSvToseGZkmh5jGYyqfEiV5AWWQtbyzFDsHKorAqKhMKw9FohJcHL+0+lZ1khb8P3ZrgzcpZa393b99pZQC98fj1lVfQgXhhfJMtTmeBM7Oh3VBl0XnBLNyHQy/YbOMyQBC5wNrWc8LbVFZ1zwmVRVwMojn3d2D+PWlVyqcQQvrGGk2yKrShVVWFkW1R/+LFC7zx+I3WsTWtfKEVOfXaulZBALi320evFe0xhd9/fNytKuJt9sUCNCMRxuMxpJCYzWaOFFBaQQ7sbhptvxEzcS3JIqU7fzNzA64XuIxfefiKsxoKIZBlmbtOmgHX5WwWkUWsom7OxcuqaimLmIoxVre4Sc6oKJDJrDV/Gefx9bo/k9Ag/MovPer8kHc//TpG0+f4iN4ZfhL4CIkg7KVIXAiGQgYTJL9Ju/jxnS9BkMQD8QT76hmmOEKBCUIbmoZCrjSUnEDUR3bbbi9QNpBaqMoV1bX9PLWuICnDtjA5UgWNTTc2khjTpqWzNAoRKIsCmkND9eQVATFZxIoyGcQz3cxOaMCaLDoXCCKUOh3qetbI87xl6QjDbd0xpsiiOUqZs4SwBEaqcxsrhFKZRc3OZf49y1XFuAVqOJkxmUWpXCKvZkh+JilQNrqlSSFdu0yttc2GqXFweIhXHjzE5sYmRsUIJMgTOjy51CavSAWkDH9+fi1Xmcx3H3dDczYkKV078pCc4/O+jLIozDhSdkE/pMIZoqyqazfJmQdPKPi/+Zrog1MWDel8A29NBAYEXHccg9IaMstaUv0+OGVRwhaWZ7npSpPJgOAWSWXRJ9NPo32Gn1srHRHcfO22FgNErceaBPTKQN53vyaLVgui1amLiDgsXq2/o7MGeWvCEBjL6dX6TogIqk5fSxw83dcGfFG4bMS69sWrAWSB1uglR5koWSWkkJjaxbZRpfrtcxaeUsp0hJUSo2KEk6nvCsUwodc5prOpU310kQkhscR5KFIIlPNsaMorP7TW5jg68or4s3XlDCqlWvNvwIw9bLnj12VZFjU8GYKWsmhBBd9VwNLd0IbInwM8DmzmguI8wyKwSgKmIBWqpXmuUytf5FXWkiqEgJTSvZ/vbURk3Qf+GIti1FIVMW5NJPaOPeH09Ljo/XzGJrbcvcYke+jobwWFERkVz8PsTTzQnwNgVIKbYhc/rL5p1w2s2LXNj3SNOtsCas5WCpTXwszBpKogG3axGiV26aHrZpbTCBoKI2w5EodAyOGjBIy9z/7uoSHRkzMZ2dCCzCIba0Ia/e+/xrhaZZorClZUXMQi4We/+jMJS8fQgOvVVWwXhbRVp3RmUZeyqNuGtizcNoOShMlISb82/LcJKSQqSxY5VY+UIJslxYvXqq5wcHiAzc0t3Nq5hfF43JlZZK4r3w2tDuxkgCGNMplFnUcAoKp8wLCMsp68ZJ4nm4tmFjGZ5ZVFemEbWhj8ed0mOn1IKYuywCbYBb4mxEBlUXgPmPcerRTyRDc0bZVFrmPMwG5oVWUmxCmipqqrSIYd2tCYoB0VQWaRtS80O9eEiy8hBfIsv5D7GINbsgNrsmjlWKnqgay4/mLGvZsEJuaGwqher9Z3wjmKKXU2qyFXqSwy3b3iotS8YgAwfxFtChFnEHAdKovCEFoilwljchtzbG1uYjKeJI9jY2MTR0c+1Lc7s8h2kA1telIaZVFiTuyaJmgVKYumsxlGPSH/Q21o8fmQUXMTP74uqCyqVaRcYuvddcKyZFFfwPU8CCFcuDX/DcBdw7PZDHlwTbCKOoyPMESheV8WBlwj3Q0NACajMTYm6a7SX3ni83MkAf/d1273fgaNYWRROO/WWqPSMxNwHZxXTYBGHRMzQSE9oxwbtIsapVEGaUChQkETkJpByG1fQLPfGYFQW7JI6JAsIneeJHmyRiKHpBwFbRgSh4x6KFT/EBEkcmtXU8ioj+xpW+NcoLcjm26mxmZNFp0DQpvRec8/oxajduCp6nbANd+owpuUD7g+/8uE20qmOgfJHrKoqxvasuDJXrg9tr20XkveA9+1LfbmhxM5wdUEIRypcnh0iM3Am9+0oXFHNhOM7ZVFPPiE/zplUbDYL6uZU3YI4W1OYUWOJxzcDW3opEVZ65QbbAIbGjBsgcDdSjjX4abASGpFNFBL2baANeGsfmKYAizOLJoTcK01sixv29B0HMA5xLpDgjCdTZNZD0RkCKNgoeO6oWk/AS5Gphsa31MFkcuF4+MKf/scJnqRoFBZdAEK0+sMrhyuZFsJS8saZwO2DAzFVVR7uYDrDmWRXrENDTDkh+nu5YN555NF/eeWSLSiC06LUO2cuieydb6qKmSZxJ3bd/DolUfJbW1ubOLw6ND93dVa3ec8+kW7URaVbaV6cN50oPzQlmzqy3BKNUZh1Eq1bGiAmc/WVaAssmP/oplFSsXOgWtpQ+tR4/Up6fSiPrQA29s7uHf3vvs7JDQBGLVZoDzyxCTPj3w3ZABRAdcppIlaNrR7d+/h7be+0Dqep/sn+Nr3X7q/a03437+7hU9fVq3XBgeFIcv+EieYwvyeKppCUgZBhVMW8Z1bQyPvyfDZoB0o1O49NUpsi7uAmkKIDcASNwRfXNYkoCAiZVH4bYat7IkIY2xiRBtm/mizk5qEThaQRX3KoHj+6gOuzWc1RNNVG4NWhTVZdA4gMkFnFz0BZTKoLGfJwUpQ3DHswpVFgYImROZsaOmAax4oVnHc0hIpEVnUUcmea0MLSBgpJKT9bMQ+ZWbkZYbxaBR9PhEQjk2lDkul64AscsqiyIYWkEVBK3EpfevZcBD2mUULKou0ycNxAdfa5wcM3U5Zmmrioh3UrjpY7u4GTq1NyOUgG5qIpPN9MNXHYZlFyiqLWjY0xZNZ+5sbIPEWJDCbTVv+e0YWdKgBvHVWB5P/TJqAwsraFM0kKwwjjW1o8hKQRaHlRl9BO81lxirzVMh+T1eRmLhyIFrEheZUhFcJbs7Q0w3NNKxY3bXGgc0iaGAwz5pc13WLLImPlZzSeJXHGQdcx+egsAHChizKMRlP8MqDh8ltbW5sRGRRV2v1iCwiHv9kshsaCd8swnUbRZB51HM+QmKpCaNqStjQpLehOauclAt3Q2t1O17Q7nkVcDpl0XK/tVvbO63mPWG21vHJSWQXY9JKBZ2GQ0VbOCf3DXSsy6CxDkuNRb/8W99Dk0dUGvif/+8XnZ9hOrqL48mDuZ+VFTy1LqG0wkP5FjbF7UhZxBROn1JnLLb4U4BTTDfpFqCmIDEGiZF91qh3TBC2gBIZhKqS3xU1aIsdcR8Tu5+CxigwaZ0vSbnJd4XuzxwKx5dgvSdIQDVUVDcNV2vkvaIIq5XnLi1qQNp8mlSGDytbGDwxuwhlUUrpxAgtXCFSKqDTIqwQ8TZFx817vg3NB07meY4nrz1x2zPSU3Kfa3NzK3qvu2EFsnWvLPJdqeqAOALgVGRNG1pZ+W5U4aQt7NzSyiwaqixiG5pTPHm1kqm2zN9OVZXIbqiySIollEU29JwC6XwfwoDzuQHXgVKs2a1FShHd3+ZmFgnCdDbrJG+YROLtcHvluhFYOhqNnLqIrLIosmmGNjQhOsmp84KfKvGid01ErApE/XkrC20L5nqfTmcu02uNs0FozTw6PprzaraXXq3fDd+Hkt3QuAuqTqtgloWUEmVVBplF863JxurVba+gRiFxFRCJxXKIPC8wY7JoTidboywaZkPTNkcmVBYZNWtbWaSVjsY2Ll6luvS2Pl/HuFp3EB1ZJlFVQVdaIaIOv0PR7Ha8qN3zssORfUtlFq12CVbkBWblzORYncSh586GpkOySDXIIk8OskK6atjQuvD1H71AWcefs1SEb/2oO+PqaOMR9m71h1vzubsjXsUURxiTUe4YIsVeixoAhFHb9Ch1CowhyCpztEZOI+Q6M9sRI0DYnCGS0DBxH4IklMghVAnh7GcGBGq1vd+Rd11uUoGJ++8QEjmUPfZQmdSPQJ2ODDWqXhXVdcfNNNIdugMAACAASURBVN+dM0SgjrjoDitSyGTnB8BUZ8JFlSdHLoZTZPtT+/HMqQtCpIid0yIkZLyyqEs5NK8bGj9vSLDHjx6b7bnMIj+IbG1sJt4fkEXW1qW0BrQPhPTKotiGJhq5N2ErcafecLaehrJIyIUUPmxD42waFXSxGaosqiqjfJqK6cKVtasMo4qJyaJMDgu4llZZNO+1QFx9nGdT4Gs/VPv5x4Uj9Ib87ogIZVlGQZAhmCB0ZJG1oTUrxaN8hNls5rKMQuVdE0LIC1cWUaSiWJNFqwWtbAFARCirCrWqo842a6wexpppfrNf/+bv41/4uT/T+7toBtdfBbjCS6q4xPfNFdvQ2Fbli1PzCzRVVfcSMndv31l9ZpEIM4vaSj5uTT6PyAJMm/PpbOo6gc3rhhZ2iwuLYiGa9mwiAoFDi9PqoNbnUzWyxjIr3Hf0+kBZ5DKSliGLVB0RWfHYc/XhVTjpe0FfoLd5fHX3EFa07WxtQwgZXacccK1UbYq57rrzxe5QWQdrQ5vV9aD5ym/85T+L5/XH+LT+ADvTQ9x7/g0cjx/g+Z2vzn2v1go16qQqSKFGTmPcEg/wQj3DbfmquYYgAft7IGhsitt4YTODukBE2KBt201aYUfcA+mp5ZpG3oZG0il/chRQlEHoyrFEivz3KXo0LpviVvJel1MBDQUCUFB3MH2snwkaESHDDEc3mixaK4vOARcZcN2ElFZymxjovvLlr0Q3KeHIkYs5ZinSZFGeZ8jz9uTBtbkfkJ0yFBwYWdd11KJ5GWWRe75BNoWZRYBRTexs7yTfH1YiiYSzTGSZbTHesqFV1oYmom5oYevyTGaRpceRhBzEl2Vu4BsCF3AdZCmFn31wZlGeRYqRm4CQrONAPfPdzsss0gspi0IpvJyTWaStMqypTtOuA5t5/5AsHv5sXUqfPMuj3w9Xn5WOs8vyPENZleDQ23AR0Px9XobMIgQqiqvY1ekyY5U2NBC5ttjr7+iMYRexoV25D2HR4apgrg1tjkpiGXBmUTjmzhs/5hEyt3ZuYXtre2XHCHDUgBlPyqq9/yLPUVaz5HNNCCEwGU9wfHwMYH43tGhOItJKdRLkAopFQLyxtShF+MTHlB63VYdyJAuUJq676UBbeYi2suh6WfmbyuEm+gubq82N3dzcwsHhAY5Pjlsdy3jdV9cm27F5LfXZ0BYu0NvXKxpmFa1QosRx8rkaJbZoF4IknmTvYJN2/T6077xW0ARP8i8jQ39RZYN2oclQdFviNqCmdnNeWSSQGeUPARkV3oamzDFWNvQa5LNhU5iIbWzKW63HjQ3NjB8jpMPC3Q7cfwZRBvb48j4L2zXH1Rp5ryjI5mlcFrKonM2SrTubcKTBBdjQeL8pUmsynuCn3v2p5OtrNWzRuthxSNetzPzdn1nUtW/ZQSa5AcK+/90vfrmfLLITCR+g57NjuJuGs6PZLAK2mrH6Imxdzl2ozCAcLLIDpRNLaodA6YaVKtguEUEPCGzknIKh5NJ1QUjY8XeVyayzDS/DBG5ahc3QzCLpbZF97+Eqp5QiOg6TtSECRd985SRX2rvImyzLooqwFAJVXbXunVx1Ds9XnuWYzWZtMvYy2NDCgGutkkqDNZYDEbCqFQCBcHR8FNkJ1jgbhKpdAHPHhattQ0sQF0HxZ5XqbSnYhubnG/PG0KqqIOcQMqsGW4y11lZtGi/EOA/GqIznH9vGxgYODk1uURcBJxJkEc/LkgHXjXm7yyxS861C/Ta0RGZRljkbmrbFn7Aj21DUSkXEV5/S5iqC86O60K8sMq9YFbY2Ny1ZdNIaM8z3H8RENAOug+53fG/zkRSL3Q+0Xcpz2/n5r1et7B//nMZEGGI4o8LPu0jC2dBglFAFzS+qbIs7GNMORjQxqh5LFkGMG8qiGhKZsXwJCalroNqHBqESdv6mdedx90FCokKJDbrVf7zRc+FaKIMGesOxrzvWNrRzgKDhmR5nDSN9nF8VAfzC7sKURTZYOYXUYvMsbGi83Sogi4iE6woQv04mA7nd87w4T9jn6rqaWzV1ZFhgQ9OsLLK5NlypY4URV5l48PHhjj4PijtQNbMTjKpK2syiBZVFMgy41sjZ8jTQzlZWFYqicLkONwURWYQg5LKerywymWPDMqHqoJuLENSbicSBzM1KKU/a+Dsyx96/X77G+zKLwom0lBKVrZJHZFEWk0UAkBc5prNpy6ry6OGrl2Dx76/7y5Bdd71AK1SSArNyhsnkoq+X6w/iJK/wd9GDyzB/WhR9TUKaGYSrgpTCKi6HZdIBRoHcF3B9FmAbDqsrmsqePC98wPWczCLA5BYdHVuyqIuAc2RRHZBpHcqikFji/M7g/akohxBd570r7yiyodl9LtKFllHXdZS3xnOJ64J5v5e5AdcrvIeMihG01th/udeaY7CySCnbNVZpAO1uaGGercksqhYni1iNPlBZpG3Qd/OeyudtRO0YDMAoixYlHgVJaMp8yLoji0YgUUCDlUU1CkyQWbJIqAqo9qHkBrSzobUziwYdAzIQhFdJdSJNFmXIIEAL5B1dP6yVRecAVlNchsmO7BgYU7jIgGugO7Oo8/URWbS64xAuU8grrVKVwi4llH8+TSYNrSZ4G1rcDU0pb1WqE8qiMBC8rmurKiqi7fJrmxOs9955F3mWg8i0+R0CoywKyCK1eGZRWZVuvzeSLEKgLMqGKIuYQJwfZgrE18XcbmiWFGp21OP2xGQraIMCrpnY6bKh5Q1lkZQoq/bkKc9zzKoyyhIr8gIn02lLfbB7axej0cV2sTCHZL6Xqu7PB1ljMay8GxqAyfjmZhOcF8g6M1lRNNeGtmJS5Tww34bmlcKrggzsxeEx9I271QCr16rh5iMJVREQdEMbkFkUvh6YrywK1T1S+sV7CL6v1MrP/WCJl3nd0AA/b2xCdaiSskbOo7BK4UUzG5W6ATa0nt/L3IDrFR4LEWFrYwuffvYc46ayyCrTVG1iIrSOiWGew4cFbu8yWI4sUguQGWG7ercdaEjKWq3nzRsEYJvI8xaGg9z7tCOLCsDaugRlUNCQNgOpJgGha+jqBZD5Zj8aujezqAuCJHKMgu5sfcfJ/xnMQym3NNXNVRZdrZH3iiLKLLrogOuOTmIp9FXFzgPN7mxDXu/sMCs8ZpP3U7l7x6OHr+LRK6+290/p7m1uO3bwb4KscmmeFJ27vUVt0q2MPwy4zvPcLf6rkCyyVjSTVxQPBlmWGQtP4/h3tnesqoQGkRCAURY1O3qJIOhziEKJpedDJPTXCVFulPadyFx7+g4oXTuVj9YKtarx8U8+Tr/WXhthx7Hm9mflDHv7e+71rDILSStWuAlLJA4KuBb9yqLMfucMJh2bv408z1E5ZZF5rsgLoyy6lLkmPmQ0DJdf4/QgWuH93pFFa2XRWcPb0HgRcT2VRdxFqwnhMnHS+TrLQgRFAL8vMzd6sb+XLDxcBIFNZDq8nkxPkvdDY0ObGSv9ALKIbW2AL2Sk9tkKuA5sQU24QmEwf/HKov7vTIp02/s+G5pvUKLc/HepbmitgOvrM4fifMYuzFMWrVrVu7W5ibquWwUGFgmE3Yo5LoDBEQOhDW0pu+2CyiICk0XxtWXUPeP0fZa37XKLFjhGIvhOajPzrygAEdrQFCRlECRRs52u/AQ623ZdSkFY0oaWY0ybyDGnaBh97uD+iQySZJpEuyG4jLPqawcOndUrDldbBiFxMA/cIv4ibWhD7HIMN7Cu2ObhMovszTHLsqQyIs/y3kkNL+Zbj1tl0bxOLxxEzBMJZ0NT2g1GtVIo8sJNCE1nDHNMYSWvOTnLZIayLDu/60WVRbENLVQWpbejtcZnLz5zf1dl6Tpj3UhlUWBdHSJH5wUH56MdH5/g/Q8/6Hitv34AO2lvbP/9D9/H+x994L5DIoJohKQrSwIuYv90yqIOsmRUjJAFvy2ZWPgA5rc2s2QRb7PIc0yn00u5oDTHZM5lmBe2xulBWKGyCGuy6PzAVlu7wJ8zvlxFsgjoVr6FDStWmlmUuGeyguH7P/w+Dg4OotfzvfsiVFtCGrIopSzKs9y0tKdua3+IqLtURwhyaA2aZ0MDjDokVFzzuFwHXa06P5sQSft4Vze0rGVDo6UafNS1aimLgPk2z6sCPef30q8sWv0abGvTqFVaAddCOCKIC3JNxVvYiThqLrPgb7EWBRRJVFlfeHN0dKZFfYssqjosaICjC5gsWuBEUtDgA6qyD+ZOWQRIQGtkKCAgoURATMkdsDJJoDuapA85FXiUvT3gvWkbmiSJvItEuyFYk0XngDCz6KLZItnRJjSFiySKAKvEWZAs4pvzqjOLQhtaF8bjMb76Xjt4229HdlS7hnVA4MnHdDZFkRd+4qOVC7iu6xp5lrtJSmRDE2axn1qsZlmGWdlWFrl903BlkdINZZHyyqKugfz5i+f49h9+xz1XWum5afvrX398coyT6XTQcVxF+EkDgnsGWqqeJnwl0lSrq6rsnGSG1wQj3H5ZlvjJs6e2C5nvLmYmPLENLax+DiKLWFnUYUPb3trGu1/8svubiayUDa2qmplFBabTk5VaOlYFCuZKa2XRasG/l9Vsy1xb523JuYkw/OnwzKJVkyrnBbYVNyGsZbhLBbMsmIgICQO2vFVl1VL2VrXJBLqIuZ6UEscnaWURNy0Y+ls08yOrzAnUzM1tah3b1Nz5SiqLqJFX6buhLRtw3WWR4+xIf/ys2l004Lo9vl8ndVHdcf4Y821oq73Ot7e2MRmPW8o8LgLzOsZ3Pmz8Lp2qm9x9YGEbmsjx8Su/gOno7uD35BhBI55TatvlLAmnLKr4gQWO0BfLoEv7UOaURYKksXlRDgGJOlBIUX4LIGuRWyKviNHXRS0+Tv7PIOAasvu83BBcvZH3CsKrBC7O0sXwobYDAq6tTPiiYDKLht8cRGCnWeWAwAHXQ1Yky9jQhODMovkL7cPjI2QyQ57nbuKjlfFEc1iksaEFAddcabStao0NLUUWlZ3HT2K4skjbATGtLGoP5Fpr/PCDH7n/BmBb08qWsuijH3+Mp588HXQcVxGO/Ggqi2S6Ssnw1kQzKanqqpNcqhuZBgCi7X/89MfYnGygritL9PnJ9N7+vtsuL974OzL+9zk2NCJkMuv9nTSfCwPaGU5ZpOLMoulsdmltaE5ZlPj9rXEKdCzGl9sUrVVF5wQCL9x9tl0fOGj/qkGQSKqGi6LAyfTEjpdnoCwKrEimS6bpgqoa44LphHa+4dYMKaRVFnVl2A0ni7h5C9BNyHhlURxw3dWYpNmp1liL1NyOXGa7Itk4oiuTJlSZMIEYkwnDkCoGXSeyaN7vpT/Qe/UF+9FohJ/+qZ9uH4cQNqzadxNuEl3CFnBZIb2sssjuECCCGhhCPaKN1nkiADl1WLV4XrWUDY3zjmDIIpJmnmaVRUQZiAQyyiAgUAfZS0LumnUONMRZ28A6bGgFTbAthhNx1xGXcVZ97cADFC6BjJo7jA0ji9KTnPOCSCwS+1/vF60rzSwaqCyah64MJrIhhkO6oe2/3MfW1pZ9HyuLtM8sUjWKPHeTlLCTCLfqTCqLpERZzjo/4yLd0JTWpiOLC7TzVqHUpOXT55+a1uxBty3faSsmqWaz6bW2paVsaKm8oCZcwLX9DVRV5ZVJDcxTFj199hSPX3uCqqqjav7jV19DXdf4/W9+w9ofFUjYPKuBmUV5nmNnZ2ehc5IKuuf7WG2PAbA2tNlltaF5IrSsys7F0RqLg7C6IsxkPMHd2zd7Unhe4EUd398HdUO7hKrBeSCRVmhvbmyiqiscHh+ttCgnEgVBIQilVWI2x8+qurjAfSklTk5OooYbIRYii4IxrJ8sim1kUnY3JhFC4Afv/wAbkw33/sqSPfPuOVL2dENL7M+N83XtCJFwLjAUhoxqkEU97eSvGoZ2Q0t93lUHXIf7bEIQoa5qly+qdMKGZnNIee7E8+TT3A9OcIAaZe9rjILI2+acuhOEjNK/RThVzxJkUWhD05WxoAEmtwgAQULw/0hCBfcjynbtEatzyAwKz7v/fDmNsCVun/G+LzfWZNE5gKv9lyXgeogFDTATjItUFm1tbmFrs8s/20bcDe0MMovOiCxy4c9zK1USLw9eYnvTk0XmuvIBeq2A66DLiRQSqiuzaIiyaCBJY9QoDWWRSCuLWFX0xuPXI9l2aKsKJ1yz2exmkEWgKMNjfmZRGHqunJw91Y2FpdEhmBAFgLKcYWtj005a/W9pNBrhy198B7WqMStnLifJHJu2E9z+30iRF5HNbAiklMn7EF/D/FxRFBeWvTEf5Gp4axvaasFKvFXg1s4tvPbqo5Vsa405sN7MsGtmH660DS2pWiHc2b2NF3svVmqd5aiBOLNIYFaaYNmmnbwe2G3sLCCF6FUWFXk+mMgK1bFd10oYcO0s0XnuCnBNPHrlEd5+8wt4+6233furuhqY+SlaKi7AjtUd4dhZJlHVVXT8qdzGH37wQ9f5rb39dvj2dVIWzbsP9M3T9Rkoi/qOwyiL/BypmVclguYl3A0NWL4DtVljSij0d88FDAFCAGpd4Rj70FqBoJGjgyxyyiLOHFrShqZKRxZRYEMzZFEGAQnNZBIERLYDIhPGPcxKdhqkbWhrrMmicwGn4l+GgEYp5KCBDgDGozG+8Obnz/iIunHvzl08uPdg8OsXyU5ZBEYqWp16m1ubW8kuan6AmG9DU0q5QD0/8dE+s0jVyIOAa9N21nzfRVHg6OQ4bUOTthtaxyC8mLLIZxZ5K5XvJhKSIM8+eYY8y7B7azf6/nwIs4j2Oy1PTxYppfDhxx+eahtnBSaUyWZE8UJjaHt7npS47IOUDF4p1zGHIayEn6uuRWGuoVQVr8gLlGXpbWj22KazWTKo9LToyi5rXsO874u+x6ZAQWjR2oa2Ylxwtt4ay4F/EkMziy7D/GkZGKtu+rjv7N5ZOcHtFDONbJTZjMmihg2trpANLCCuGrxY7lYWFatVFoF84TawL7/3pXeT23zlwUPc3r0dZRbVVd1J9qQ+WxN9yhgpM6PoDV5Dok30PPv0ExweHSa30Qy45uPutmZdLcxTFgFcSE3Ml85IWZQC502FuY6h/RHwVkV2QwwtHHeBc336vmu+9o2CiFBTiQIbmOIYGY26HQ4tG9oCIILvhlaavCIAsJY3Qg4BYQKsIaEsiYTMdGPOkKNGfWE2tDXWZ+Nc4GSRK7ZHLYNFlEVEhNu7V0d6d1ZkkbOhnXKYyfMc9+/ebz0+VHrKA4gni8xgZAKujZKnrowNTdXKnQueODy8/wA/efoTTGfTlrJBZqYbWhdh5ayUA9Cc/IYBnkyc8uM/+vB9vP7kDU+I6LDKQi6wmbcbKou01knlzDycTE8uN1kkyJ1vvuZMwPh8ZRG/j7uqpKxrKmVDk0Z1ZlRHxuIlpURZtTvkFXnhvgdH6CmF6fQE41HcEWQVMDa09nXJuV18fGxXu+h7bAo2yxdam9yQdYDy6rBKG9oa5we2xnAxYF4x4qqSRX2NQnZv7Q6OBRgKtuiG+xREmM7SyqJQfXze4LlJUaTJ843JBjYmwzLEUsWmJojIZQYtcy0tpCzqyixKZAYysixDXVf2+D1x0Bz7tVJOKQaY38aLvRd++9c4s2goWZS0oZ3jGoyC74+jJto2NBnZ0E6VWQRAowZB9K5V2M4lkRtSSWvsyge2E1r3b43YhnbKgGutKxdsjdGroDv/CmjyBBnlVmEkQJRBUwZkJrJAIodCfQ42tHQ3tDXWZNG5gCsDZ9G2cVGMxxPc2rl1sQdxRuBuaCcnJyiK1SkceLtnNcj4CtJ8smg8HruJHeegcLcxIYTLI1LKEAY8cQTMxGt7a8t0H0kpi8pZ5zGwYmUIYuLC2OR8ZpHv7nF4dAghBHbt9eirL0Fb20CCzbJrrhh98vwT/LMffH/QMYUwXb4u58QpVhYpd78gS6R1IQq4Vhqls6ENm6xKe41H3fOktARiI1y6MNlAANxCp6orlFW10t8dQyQyiwBPFoUo8qKzin+hIDNZ4oXZ5bTKXU10dZta45KDM4sc+d99fwvz264aREdmEWDusXfv3O1U1iy3v/b9kiJl0eXKLALQact95cFDvPbqa4O2xWNR2Io89ZqugOmh+xj6fpkieXqILMBkR1ZVZSzeoQ2t8duolcIssKHtH7zEt//wO6541vr+rx1ZNL+RRvLz6vO0oflue1z0TAVcr9KGpqBQiEmvhsyoj7KgDT1hVzzEhLYxop7Yj9MEXIeZRcori4gIYvsrIJKY0C1ImDmdpAw62wEVxlmSUQ6la2R01orstQ2tC+vy5jmAb/aXYbIzHo3w+c+9daHHcFYQ1vq093IPt7ZXR4gJGwx9Vl+dqybMC0wU0uUVmfd5ZRHbgaqqQp7nqFWdrBi+9upreP7is2RmkTmGjsyiBZRFYbt1tsmluqFVDXIhRRZRMOHymQs+j6kMqmtDwVk8lxEqqDAZsshPHvqO2RF0Nmza29A6MosaMnruxBJWJTOZdSqLptOpJ/SEwPHJMUbF6EzubyazKNFNKEuQRUXRLaO+QBhlkV5b0M4A5vdy0UexxqIgK7dzNrSe+1uz8n6VQNSvYnnnC19a6f6yTLbG/ciGphM2tItSFklh1O4LdL3t3Z4wmT99OVFGGbQ8WVTV1SAFbVIRNOc6llmGqq6jnMfUdpRS7vsEgE8+/QRaaxweHXWGZw8li7TWmE6nGI9XrxJeBbiZRx+6lUXnaUPzKiEu4inbKZgh2YbWCLhedg6jUGMD25jioHO9aZRFY2vvKlCIMQRJ3BdvQIqe+wDnBfH9Y5F7cdQNrQJEu+Pa/eyJ+2+JHNOH/zo2xR0AQIYCms45s2hdgIpw+WbV1xBsvVHq4gOurzPMzVbgsxcvcGvBjkt9ELSabmid2xfDqgkP7t3Hm6+/GRwXOWURCXIToDzLXUesZsVwZ3sHX3nnvda+OLOgq2LDIe1DoG1VLFIWcetZ4bOPygaZlVYWeRuaaYvu7VhGPbW4DY0nY5cTTbLIWxTn2tBsG3ttM4tkR2YCW81CCGEyi9rKoiqRWZTjJCSLSOD4+BjjUUfL1VNCdnRFzPK8NWks8nylYbErA5mA61miE+Eap8XVJBFuOowNDYENrV9ZdFW/41AxcB4YFSP86fe+Gj0miDArZ0mFcGqecF6QQq70fiitMqezUYdTBi236HSZRQPIJiHaAdd9FjTAFGgqZ0ObQxbZQpnWGp8+/xTj0RgHhwetQpA57vmZYLytP/6TP8Y3vv1P5r72olDXdStzsQnRRRado7Io/P44YqEdcC2gAiUcW9eWJTMBoBATZDTqDLnW0JBW2VPQGJtkokY25A5GtNH3icz7l1UWObIoyCzqQEY5iHJ338yoADQgzpqyCK+NKzrenBXWZNE5QAiBW7du4f2P3l9fgGcMvilzq9NVQMqzJYtoYDUhy7JIicP2Rq8sks521pWNQkTYvbWb3DbQoyyyMtqTkxN867vf7j1OUxULlEU6lFTHyqJctsmiOhhQzfdpXj+bTTEajWKyqKqwKFimfhll2WHl0Si0zOPcnr4LvnuccMqiUTFKd0NTKpFZJHxmkVMWSZTVrKXqMcqiE/+dCjLKojPIKzLHlu6GllIW5fnlVRZhrSw6Exgl/XpcvWrg0F1WrPbdj68yWSQuQPnWJGBICExnU4yKokU81EETjPOGlHKlTRGEEEnrNGMVNrShyqRUZpGq+/N2MilRV5W17vs5U1ioc0prqyx6efASWZbhzu3bODg8SBJhZi42//P9yY9+gOl0iqqqLuX8CABe7O9hZ2u79zV9Sqrz+in6/CE7J1ftzCIh4m5o/J3TkgUvAkEiR0ETKKTni0ZZZO4Pt8Wj4S3h6ZSZRTx/1ZXrgtYFaQOvGRnlLvz6bLEOuO7C+mycA4gIX377HWxtbq2DTc8YQgjsbO+sdGLpLFFnrixabPsErz5hv74LJxYSs9ls8PXmcpC6MoussuhkeoK9l3v9E/umskgpN/iFdraqQWaxekapOrCtxTa0yWji/q6XJosWf895wdnQgJYNrS8ziruhsSKJyaIuZVFzQimtsqiqa6cyY2VR85rIiwIns2mr8nlWyqK7t+/g7p27rcfzPG9Nqoq8uJSLSrLKorJcK4tWjatqT7rxIIpI+7n3t0tIAg8B2YDbiwSro4vEmHChyiK5emVRWVVz7PTLd59zBMCAJjFStJW9SqneTmrOhqZCNbZw6mreBuDJok+ef4q7d+5iMp5YZVHi2Aba0F4evMSTx69HCu7LhNlshuOTY+xs9zsHwmzMEOdJOodh1Vz0bHZDa9rQTh9wbYiVETbmKIvMb24itpzKaP4HOkVmEeWAtgSkmq8s2hUPUAQqJ4HMhV+fLcLtr+cUIdbMxTlBCNHZnnON1UEIgVtzBpLFt2kG37NWFi06QBBRFLwthHASZCEFprPZ4Ekgv64rN4knWVxxOjk5waSjS0mfsigcxMsq9v5zJU61lEV+cjQejzHdN+HKHOK96ASA1TYqobC5aETKosCGxt00uhCGigNG7p4XebIbWqpbihASdT1FbUPRAdPGdzqbtqqoRZ6jLEtkY3vN2OfPSlm03VFFzPO8db3euX07ynK4NDA+ABdAv8YqsQ64vorgb4xJot6Aa2u1voq4DGQmEw8pZVFV1xdWxLyze8d1d10FpBCoqn5lEbD8YtyHFg/rhtZScQ2woR3VR8Zy02FDY+J0Vs6gtcbLg5f43JM3oAEcHR8lG9hQaAPqwcn0BOPRyGQYJuYJF43nLz7D7Vu7A7qhdSgV9fmlFrXIoqSySKy0GxqgjbJIjIEe8n25oOhTZBaJAoA2FjRdGfKoB2MR3xMkJATk2WcWrW1onbiapZorisswabjumEwm2L01UFY5ELxYPqsFSUikLAISVlIdqE/cQn9BZZF0Wv+tBwAAIABJREFUmUV93dCU67J1dHzUua2kssiRHrENrZlZpLUy5FKgttJBJW08GjvShAfZRStgnHN0GWXWbbLIPC4a1cUmQrKIiJBlmVMLAcDe/p5/bVfAteuGZr6TzHZDayqL2DbQzNo6K2VRFzY3NvHFz3+x9djt3dX+/lcBnqqXZYliTRatFNtb20nl2RqXGz7TjjOL+pVFV3XuJC7BvI/nFpdNWVQUxUrJIsHKok6y6HTdpvhrHGpDSyqLet5b5DmOj44iBUozr1AphTzPQDCFr8OjQ2xubGJjPOk8tiEB17WqUVc1irxwDS8uG56/eI47t+/MfV2nsgjnxwHwXExaZSFHLPTa0ILvfFGwdVFAIsMIfaSYWMbO1VIWLQAOtFZTm1m02BxIkO3eduaUxdqG1oX12VjjWuG9L72LzY3V5RUBwcTirJRFgqsJi9vQ4vcLp4Iy3U+mg8kiIkIms04bmlcWmXatfWRRUlkUWPkcWVRXyBtkUW1taP71PrNoapVFYWYRb2cROGXRJQy51lobtQxR1EVO9MjCm22lhRDIs8y07q3NROQPvvst97nrWrWqmyazqBFwnWUm/4HaxJK01TJzbEwWnW/3FCLqVB1dOnCO2DqzaOXY3NjAvTVZdOUQNkAAkCTD/+j738PzF8/tffFqTlfndUM7Dzj1Z1G0xr2L7Ia2akghUZVlj0KaX3c6ZdEQG1oq4DqVIxni9u5tKK3x2d6LqAgYfmdMOOVFgf2X+8izHFmWIc9zSJtb2T7u+WTRdDrFaGRs3CFZ9P5HH1wKS5pSCnv7e7g9oBjc2Q3tnLPPhCWABOeLNsiilA1tEVFBaMtSUMhgOtKOaAJJErVOzY3plGTREplFTBbVxzCyucXuN9LZ0Nbd0C4KV3P0XWONc8SZZxbRctWEsFMWYAaeUCG0iA0NAGSWblFu9uWDkzcmGzg6Pk6+7v9n78yjpCjP/f993qqu7tmHYQZkdQBBEBgWWQUXJGIS0WguiEtUrlGiRs01RxNjrpGj5p4Yc41iTDRqFA1xicYlucm9/giggmhARUTcZVBEkZ3Zu6vq/f1RS1d3V/d098z0Mjyfczgw3VXVb/cU1W993+/zfRzhQpCwMpXihQxPWKOfsyihG5qIiiRWZlFULHJcM5nmFjmZRalaNecLp1uHFXAdW2KYTNyKL0ETJKCqAQhFgWkarpgW/dwS7eWWC8mAHt8NTY/4ipiBgJbQGpbLq5JjfVJchsYwXpzFBMDfWRSJRBCJRIo64JoEJf1ezRXO68fn2Dml5YVWbpQtiiIQ0RNz9hyiAkz23dCAdJ1FSkLAdSSip1wsICIcNWyE1VAlZg4UG3AthBUMvv/gfndxlIhQUlKSIuA69XynvaPdLSVXhUcs+vwzt/NaPmlpbUEwGEzr+zOd95sLyF5Ui+Zxxi7UCc+Cnjd7NF0CFF2gM2FAs38WpKCvGAQd/r+37EQXZ5/MM4tI2CH2RrP9QIbOIihuKVqP4rlOF+v3TU/BYhHDdILS05lFHmdQdvtFuy54b/TDkXBGXU5URU1RhkaQpkRE11FZUZHUWRS/QmLamUr+ZWiRzsUiEm4XCSugU0t0FmUoFukF7iyKfnYypgwtWQCsacaGv5KwXGLWqpXhfj5esSj+9ywUxe2G5gRcq4pij8enE5mmRUVUIRAMBvnLNQVEhL379qGlpaXHsp0YpphwrhfONc8vs0ia0v1OKNbrS1VFFcpKy/I6BuemVVXVGLHoqz1foSQU6kJGSmEhhLPAkeT9dDmzKP39FZ8yNGuxIPUCXkV5BUYOH4kKuzzPrwxNEEHTNOw/cCDm3CoJlWTtLGpv73DdwY6zyPTMvfJNa1srykrS+39UWM4ixXLNG3qCa8hZ0JNSgkB2V+P0z01LHLKOZ5KBIEU/nwpRC4XUBHcRAdll/8SXoWWUWRS0d22x981MLCIiHKEelQN3KcX9zTj0Du8pw/QguXIWZXp8twzNY1cmGZ3MWDf+6f8XV1U16cVYeJxFtTV98dWe3YhEImj8rBEjh490t/NmS8SHNLuP2ROPSJyzSBHWqmCss8gqQwtHwtACASiKEiMWCSFc8SddjALPLBLkzSxK7AoXj9MJzcFyFqn2ORDtGBfNekrMTXDs0IYRDeBUUoSea4GA6wQoLy3D0MFDu/K2ez3VVdWQAGr79EUwx9lODFOIeDPtrOt64vXYlKZbplGsgkb/un75HgIEEQL2d4LzPXLg4AE0frod448Zl+fRdR+KIqxOoEmusaKbxKJsA671NLthes+ZQCCAiMfZ43x/awEN7R3tMWJRdVUV/KY16ZWhtbu5g94MQwAFIRa1tLamHTGR/P3mds5HtvhDgmD4NFSJL0NTAyoG9h+Q9vFVaO7cnEAooWj+lyCBOjEUXxgfQ0gFOiIwoSNIJVCRhbu5W8rQbLEowzI0AK5rqmdx3lNxftf0JGl9IkT0dSJ6n4g+IqLrfZ7/NRFtsv98QEQHPM8Znuee787BM0wucFqd9tSCRFe6oVn7ebuhOQHX1rEyySKoqqhEKOR/QSaynEW6HrGswKqK9z56H7t2f+VOiCKRiBtu7ewT72LxhprGB2uSj7PIEU2cluPe8GfTsMIYMy9Dc7qhFaZYBLK6O3mFtnTK0ByEiAZcWx3jot3fotvHZxZZK4nezCLHYeRn6bfK0KLnWF3f2q687V5PaUkpBh0xkIUihnGJZtopQvG9uXO+D4q5DK0QsFxFgRgBY9furzB08BCUlnRvxmM+UYRidUNLsuiVSRmZ7/72zWT6mUUm3nl/Kz7/4nMAyKoMORgMoiPc4f7slqFpVmlPqUdA6V/XH0f065847rTK0Dpc16szH3BK2AtBLGptbYl5r6lI7izKbXkRCSvg2ps/5cU5R5zrmyIUDBk0JP3jEyFEZTCgQ0IiSLGfT7moQYWoQTuaIYgwWB2DIerYLLuKxXVDy0QsIkcsarbHXaCl+M65wd81CXR6J0lECoB7AJwCYAeADUT0vJRyq7ONlPIaz/ZXAZjkOUSblHJi9w2ZYXKLK1z0kDXRrVXOIrPI+mPftCveWmj7hj8DsSiVO8QRKyw3UAAlJaVobWu1sm4MSxDavPVt1A+td8vjLBdRvLPIcgo5Dpb4sL+oWBTNXooPBrZyj0wY0oSmaVkFXKuKmrJVc75I6IZmP+7tChdPvFhEjrPIXh2ML0Oz6ubjnUXOSqIeU8oIJHMWaW72E8MwTKZYlxVr4UBR/MVwKSVMw7CaJPAEPmuIRIKzyLAXW3oTVhlaqm5oXXMWOQtz6YhNRIQjBw9FRI/gwKGDGDRgUKeZRX4EtSDaO+LFIstZJIRAid0FLeVYkF5mUYyzyIjOHQpBLGrpjjI0yB6bx/vhlJUlO++sBT3DGleW17cSqkAz9qGUqhJEICJCnWLN62uVIQhQFxar4srQMvoc7cwiadjxFVSoRU1chpaMdK6Y0wB8JKX8REoZBvA4gG+l2P5cAI91x+AYphDItkwss9egpKGMqfAG4g0cMBCDBgwC4HEWdVNL3Gg3NKuD2RH9jsDRI0ZBVVV3IhHRIzjg6eLhOoso0Vmk6zrUuNp9bwhgTBmaaVpdROwVOafdqGnYYlHGmUXWaxd8GZqnpM/6bKzxHjh4AO0d7e4+1uflqYMnx1lkhSf6iUW+K1xGbMC1c+74nZdVlZWoqqzurrfNMMxhhvVdYLd8FopvwwGn3bSU0ZJcJnNURXHdoFGxqPcEWzs4ZerJOst2VSxCBs4iABgyaAj61fZDOGyVkXWLs0ha7y8UDKG8rDyteWm6AdduZpGIOo0BZFzq391EIhGYpum6qToj6fuVyKkO4MzPncXgeJHR6QDcFedkkEphwECZ8J+PqaRhgHpU14QiAHCEKN8Oa53tqwIQWQdc5w7n98NiUTzpXDEHAfjM8/MO+7EEiOhIAMMArPI8HCKijUT0KhGdmexFiGiJvd3G3bt3pzEshskN3gt+T6GqKhQlC7EI0U4rqqJG3SD2sbprMuiINk6b3dqavqiqrHJr2wFr9engoYMxziLDMN2frePYYpGhJwhZfgHXThe2GGeR3R3ENM2sHC6GYSCgBgqiHawjnHl/jnEW+bTP/fKrL7H/gFvpm1BWRkIgoDiryLHd0PzatwJORoEZk3OVyllUWVFZEFkcDMMUJwSCdJ1Fiq/T05R2GZopY75HmMzoW9MXI+qHx3yP6IaRkfO4GFA8i0x+RMWi7OZFzndhJmVsmqa5Yo93HpMuQS2IcDjsih/O93dFeTnGjR6b1jGILFdNMnRdB6R0z4cEZ5GZX7GopbUFZSWlac/BrcW2JAHXORQCSkIhV+AiQQnnnVBiy9CyQaMSBBBEyJNX1DNY57zMIuCaiCx3URcyi3KDU4bGCxPxpPOJ+J0Rya465wB4SrpnEwBgqJRyCoDzANxJRCP8dpRS/l5KOUVKOaWuri6NYTFM7uhpsWjS+EkZTyIA6wvIb8VVCAWqqnbbmJ2VGhHX2tPbNUNKida21hhnkZnEWRSxHUqxYxbuzUG0xjvahU1znUWWCOKsNGXiLHIEIkXxz8jINXv378P7H3/g/pwoFlmPO3lOAGDYop2D0x3FQVUUBDTNFYC8ziLv8b04K1+RSCRahqZGSwEZhmG6Ffu7wDStzCLfmzt78YDL0LqG0wktvgytNzqLAHSaWZSLgGuHgBpw50iWQzqzG2Xnd+e0r3cWhzJps96Zs6i9ox3BYCj6/pwS9gLJLGpta0VpBh0FCQTfpG/InJpGRo8c7WaCCZHY6czrps92rq5CQylVJeQVdTfW+ER2mUWAFXLtlqEVqLPI/R3wd0086VxpdgDwJm4NBrAzybbnIK4ETUq50/77EwBrEJtnxDBFgZIDZ1E2WBOGxHEpQnRbCZrzOgCgxgla3mBkVVUR1KIt1K0ytNgvQadLm65HEt6zM5E1PN29hMdZ5Lw22W3kTdNEMEOxyJkgO2Ve+aalpRkdnpIyZ+WLyLpRipahRTOLDMOAoceJRZ5JyKijRqG6ssq2OBsx3dD8XEUOQrG29064vZlYDMMw3QURACkhpQlFEf5laFLaraWzv5liongbTPRGsch1JHfiLMo64DoLsYnIanPf1t5mueiycDWFtCA67NyiVN/hqcaQSiyKRCIx+VXRgOvC6IaWSSc0wFpE9XcW9Vz2aGc4+UVevIJfttc3IsKgwCgoucgBIpFdNzTA7ohm/04KVSxynUX8XRNPOlecDQBGEtEwItJgCUIJXc2I6GgAfQCs9zzWh8gqlCSiWgCzAGyN35dhCh1nJafQsISF5M6i7sRZ4fLirW1XFAWVFRVxncxiu6FVlFXgUPMhRCJ6gvDkV4bmzSxyav0Vsp1F0ipDy6Se3il/E+R/c5Jrmltb0BGOtsWNcRbJ+G5oURt6jLNIxk4eVUV1O2s4mUUxn20S8ccViTy/P0VReEWfYZhuxwrdtXPahOIr3kcziySL1t2Ac3Nq2iXHvU0siv8O8yMTR47fvt7XSZegFkRLS4vb0TVTgsF4sSizY3QmFlnxAtH35M7rbEd3vsWieDGrM5IFenclSLqrCOF/3nVVLMotXXAWkef3V+hlaOwsSqDTK6aUUgdwJYD/A/AugCellO8Q0c1EdIZn03MBPC5j/4eOAbCRiN4CsBrAL7xd1BimWOjpMrRsseqgE8clutlZBFhfZvGlY4qiQLdbrKqKisqKSldccDOLPJ9bKBSCEAKHmg4ldRbFZhZRQjc0EsIVQFRVzcpZJJKsPOWa1tbWmCBJVyyClcsUIxZ5nEV6CmeRg+MU0g0dWkBL+GzjUYTiuq4cVEXNKnidYRgmFURWZpHpZhb5B1xbf2TGN8iMP467V0Jm3IG10HFcO6neV3eIRZnur2kamltbsooaAGJDrq0Fn8zEqk7FIj02v8rrLNK0YN47n5rSzGgeQqIwAq69kEgMuAasc7YQ7y18IQWI7LP+raZfFgjAdhY5xylMZ1H099C7rovdQVp3k1LKvwP4e9xjP4v7eanPfq8AGN+F8TFMQWBd5Avvgp6sTCgUDKK0tPOWqpkgyMdZpMQ6i2praqFpQXds8c4iAKiurMbuvbsxdPDQ2ON7xCLFIxYREcLhMAJ2rb/iFYuU7MQiIuEbqNrS2orSkpKcfHnrug5djyAYtAIsS0pK3JWvaGaRpxuajHYz0/XoSl8yAUixu8bpug5N09xV+uRikYAat2LKziKGYXoCtyTKlFCUqBju4A305W5o3YcggbCdTVc0N6lp4jT2SCUsWmJRdo4q57s5U7EoqGlobm7OXizSgmhtawNgZRYGAtmUoSV/3uqMFycW2SXsQS2Yd2eRzDCzLKWzqIDK0IDCXYj2hQRgtgGiFAhkli1MQrOL0AQoQ7EztxAK8V4v3/C3L8OkQSGXoflNjKqrqjH8yOHd+lpCkH9mkRkViwKBAPr2qbHG5uMsssZWBdM0/QOunbA/z5eqIEI4Eo5xFkUMj7Mog1Uv3ZNZ5DeZ+PCTD9DU3Jz28bpCS2sLSkvLENSiq4aJAde2S0t4Mos8wZNAcrHI68rSAgH3pit5ZpESM2EErLBsDrhmGKZHkLAyi0Sis8gRj6zMovyVj/Q2hBCIRMK9rgQN8DiLeqgMTVEUVFdWZbyfpgUtZ1GG4dYOCc6ibs4s0nU9ZqEo6izSEQxmVurfE8TPCTtDJHm/UuY24NqLFXCd+H+uqMQiWOOn0JDMx+w4i3KRrdQlBGcW+cB3AQyTBtYFPd+jSIQE5cxKTiR8y9C8zqLY7ck3I6e6shpAYqi3n7MIsMQhJz8HiDqLFLu7hNMOPh0MQ7cFEKvMK/F5I2fB1y2tLSgrLYWmaW6nk6SZRSTc8SaWofmXEzi5ReFI2HIWyc6cRUrC73B4/QhUZTE5ZhiGSYW3DE0IJcHp6VyHDe6G1q1YYlGkd4pFaWYWKUp2cyYhBMam2a7eS1DTYBiGm7uY+f6ezKIUCz7JIFj/15KhG/5laIZhFIizyMzs/38ycSyvAdf+ImVROfyceWbJkZnv64hFojBL0FwIYGkkEf5EGCYNqquq3BaYhYQgylmmDBElCDyqp7Y9voSJQDBMI8H5FAgEUF5WnhBY6G0jKmKcRSImGDKaWaS4IlK67iJL1FKTlqEZhuk6eHoaq8NHGYIBDeGwj1hkxgdcm24nm9iA68RSPwfHlh9IJ7NIEQk3EGWlpewsYhim2/F25lIUJUG8dxoQmPY1mTizqFsQQiCsR7o907AQcMvEUiygVVdWZV0Oli1BuzQ/29cNBUM96yyKL0OzA67dMjQz386izALuLWdR4jwunwHXJHpDGZrjLBrayYY+sLOoqCn03xrDFAQDjxiY7yH4QiRytuJqlX3FlaG53dD0BKFB2JlFfl/yDceMT/iCdASRBLFIxIoYCgnoesTdxgm5TqdbhptZBPgGXBumkbZLqau0tLagf10/mKaJ9o7YMjT4iUV2BxurvC9ammGV9PlPQhWhwFQsp1bYlL4ZUg5CKFCU/Id+MwxzeGCJRaYdcB3nLDJNqIpql89KDtrvJnqzswiwc/ZSnCtHH3V0DkdjoWnW3CRbZ5ETAG8YRo+IRYYe1w1NUWC4eYcF4izKQCxOmtGUx+mNIP+AayFE3txOGUMKEOgLUsuz2NeenxdouHUUzizyg8UihiliKMfOopRlaPH12HZmUbJubX7Hl1JabiSPwEREMZMsEgJ6hx4VixQ17cmM44AyZaKDyClny1WXtHA4bNnLtTAONTW5Y3BWRwEk/G3YdnFn0uisyCcXgKxcJ0tsMhJK/LwoipLSqs4wDNNdONc005RQhEi47prShKqqaO9ohyklArza2y30erFIKAUnLDoLWfGLbeniuLojup6VWJS0LMvGmhepns2tkqlwJIxgUMu7WGSVoWbQDa0AnUVCJClDKyJnkaiamXXbexJBa3ZZ6M4iYrHIj8K6ojIMkxGW5To3F7bqysRSPDfg2jQSwpEphbPID2eC4nQ6cxBCxDhnFCEQ8WzjbSvfGd5uaPE3J05JRK7K0JzsgaBfZpH9ZeVdcRJCIKJHoAglpgtcKreQoljbWp+R7LQMLb6UkGEYpidwbpBcZ5EZH3At3RIN03ZUMl3HCbjurdd6IUTOchzThYigaVrWziLAKmHT9UjWzqJU7dCsgOvEhUDAErocd1++yLQM1clDc+jo6HDnd/kiEAj4/v4LtXmOH1Q6DBQakt3OxZJZBIpmMzEu/IkwTBHTlc4emVI/tB6hUCjmMcWTWeRXhmaYmQUTOoHVCWKRp4uIk1nkOGSEXYqVDk6LWL+adqcuP5OAa8Mw8Nnnn6W9vRdpl5lpmoawTzc0ADETJFdIU2K7wCULuHb2UVU1aR6Ul8qKKg6zZhgmp1jXJCXhuut0bhRCQDfSX3RgUiNIINyLnUX9+/VHSdw8pRAYOmgIyrqQe+l1FiVzByej0zI0Q4eixp4PiqK44cvOPC9fZOUs8ojPW97bgrb2Nve5fDD8yOGo65vYbl5RisdZ1CUEl6EVMwXuB2MYJhWWsJC/SbQ1idBh6D4B13a2TkYtTz1uIe9xAqoWs41u6G4bUvIpYUiGI2rpRrS7mINpOK2a0199au9ox85dX2DIoMxXW0xbFNOEhnAk4q58xYhFXmcRWY4qRViZS1FnUaoOZ8INVvTLg/LSp6o64/fAMAyTLZb7VEJRRMLNrHOtil7veQLfHUTL0Hrn9H/wgEH5HoIvR/Q7okv7B1Q16izKcM7XecC1kegsEgqkau3jiEXxDU5yhfTkN6ZDvLNI12M7yBYSxeQs6hK2s4i4DK0oKfDfGsMwqbCcRfm7sEUDrhOdRU6dfKbOIq9Y4jzmdRYJii1VEyTSLh0z7MyiiM/kyXEW+dW6J0PX9axW3OKFIVVREbEFI+sxa7v4z0HXI64A5IpFKVrpCkWBagd+Rp1FvXNFmWGY4sIpVVaEEnNNBCwx3XHOGlyG1m245cy91FnUW1HVACIRPeX3fTIIlHRBzSkxiz9mTFMRoUA3DAQzH3a3YPqMLxXx4pjT2c15rpAoqm5oXaGYnEWHw+8jQ9jXyzBFTL++dSgvy6IzQTcRDbjWE1YqHZEoU2dR/KSgJFSCklBJzDaxf1PapWPezKKEMjRb9MnEWeTYwjOthY93EGl2blGygGvAep8RXbcEIFWF7o43tbMomlmU2lnEMAyTSwhWqbJzzfNeR6V9rVKEAl3XuQytm3BKvXtrZlFvJcZZ1I2ZRbrdyTZesHDK0Jx/G4aBxs+2o62tLbs3kCXxInI6eK8lUkqY0rSvIYUnAhRTwHWXKJrMIgGWRhJhZxHDFDG1fWvz+vpui1UfZ5Hb9j0TZxElikUj6ofHbmM/79TtEyWWlCXDsCdGwi5/iHnOdidlklnkrFYZZqKNOxXxVnJN09AR7kgpFhE5zqL4gOtUodUK1EDAFYsM04SWJys5wzBMDI6DUliNGkxpQtgTdeca6ZRN5aqRQ2/H/f5ksaioUAMBtLe3ZykWIWmnUytCIHFO4BWQVDtuYNdXu6zFu5KShO17ivg5UTp4xSJnEdDJeCw0DhdnEZEKiFJAKcv3UNKg9/8+MoXvGhiGyRpvi9WElUpX8Oias8hvG+tvxf7bv02qH05tPvnsY9qTiky6oel6BIBT3paBWCRju3sENQ3hsMdZBD9nkZ1ZlBBwnXzyOGTgEBARwpFw1FnEK/QMwxQA0QUFq7RWmhLbPm/E4AGD7HIbcjOLDocbqlwQXWxhsaiYCKgqmrvgLErmftYN3TeLSBGKO1dQFAVt7e2I6BG0t+fWWWTKzPKKAH+xKFKgzqLDJrMIgBh4ftRhVKiQ4DI0H4pGLIpEItixYwfa29vzPRTmMCAUCmHw4MFdanV6uKAoih2YmdgNDUBGmUpKGm1v48vQiNIPuPaWocXvE3UWpV9S5rp7jPQFJgCQcR3MtECcWORbhmblFAVCJVAVBe0dVge1VJNH5/zVDZ3L0BiGKSi8ojjZzqLde3ajtqYvTFOChIDiZBbxdatbiDqLimb6z8DJLIpkXJIFdCYWJTYnARznWTTg+mDTQQBwu4rlCmlmllcExM4JXWeRrhekX+SwKUMDQEXjKjo8fh+ZUDTfFjt27EBFRQXq6+sPm/9YTH6QUmLv3r3YsWMHhg0blu/hFDyKUBBBolhEPewsUpRoZlE6biApZbTDjl/AdTbOIiNahpYJ8SGVmhbEoaZD1kQQScQiIui6buUQqSqM1hbrWGm4hQRxZhHDMIWFN8jfalQgEdEjMAwDUjplaLaDlOd93YLzXcGZRcVFQFXREQ5nVbaUSiwydB2Kj7PIyol0xCIV+w/sQWVFJdpyvGBvSjPj//tEcDOanLmZbugF6RhRVJXnZAUFgTOLEimaT6S9vR19+/ZloYjpcYgIffv2ZRdbmiiK4rs6Qlk4i4S9kpxyGxIJf3vdQFJKfPjJhwn7RV1FBLIzfLyYpuGubqdLxMksyrAjmmnGrg4mlKH5ZRbZXWysDmfpZRY5CCFgSjOrTioMwzA9gSMSAVZukW7okFLCMAz7ukYeBynP/boDziwqTgJqAOFwR1bf352WofmcCwP6H4EB/QcAsN3jegS1NbVob2/PuKFHV5CmzDjcPqmzqACvIdWVVRg1fGS+h8E4EHdD86Oo7hoK8T860zvhcy19vF0zYunhzCLFuckQMW4gwzCwa/dXCWKQNSmyVtB8nUWmiYCqpgzL/rjxE7z7wbv48qtd1jHtCUimYpFMcBZpCEc6IJGiDI1EjLPI7YaWhgDk7YbWmRjHMAyTE4jc7DZBAuFwGIB1DTeljGl4wN3QugcWi4oTVVVhZJk5SKBkzdCg63qneYvOuVJdVQUShIid1ZgLnOyyTPCKY7pHLCpEiIjjLgoKLkPzg799GYbpEpZYlDjZyCazKD2xiNxtndfxuoGcf8d3vzBTG0NEAAAgAElEQVQ8HduIREK5mWkYUNVAyrDs3Xt3o7SkFF9+9aX1GrqOoBbMvAzNjLVWW93Qos4i+IlFdmaRoiiWWJSBs8iZPJmGwc4ihmEKgviS23DEFotMy1lEQsSUGzNdh8Wi4sRxRXe/s8jwLUOLeW2hQAhhdUILleS0FM2aE2Uf6G0YBrRAoGCdRUxhQRUNEGWj8z2MgoPvGhiG6RJqEmeRt9NNuqQnFikxf1slZdGJkPPv+JUkr1gkBPkEXBtQUziLnPKI/nX90RHucF8jGAzCyDDg2pQyJrBVVVRIU3YScO2IZJY455RspBN46UwydUNnsYhhmIKAyLOoQBTjLJK2oO5e5/lGr1uwSr0Pnw5MvQUigpplvg0RQSJ5ZlE6zqKyklIQEULBUE47ojnlqJngFYtM04CmBa2Oij0xQKZXISomgMpG5XsYBQffNWTArl27cN5552H48OE49thjMXPmTDzzzDNYs2YN5s+fn3LfpUuX4le/+lVGr1deXt6V4cbw7LPPYuvWre7PP/vZz7By5cpuOz5z+JKsDM1P8OgMb9lB0m3siYPicRZ53UCOYyheLPJ2/fBbaTMM0xKLkjiLTNMEgRAMBqHrVncxXY9YzqJMy9Di7OREBE3T3H+7XYI80xtndU0RAgHbWeS4itL5jIUQiOgsFjEMUyiQe10jIaLOIqcMTXjL0PhWrzsQQrCrqEgJdEUsSpVZpKY+H6oqqzBk0BAAQEkoVPDOIhHnLApqmjUf5GsIw2QF3zWkiZQSZ555Jk444QR88skneP311/H4449jx44d+R5aWsSLRTfffDO+9rWv5XFEXadQa5APNxSh+AYkRgOueyizyJNlEeMsSlqGpkedRSQSRCHTNBBQ1aTd0HRDh6IqrrDT3tEOU0pompZVNzSKWy3TNM0jsFmPebeJZjVZ4pwggY4MAi+dzCMWixiGKQS8LkpBhA7bWaTbAdfkWTzIJquFSUQQi0XFiqoGeqQMrTNnUSgYRE2fGgBWl7ScO4syFXniy9C0oNtplmGYzOFv3zRZtWoVNE3DZZdd5j525JFH4qqrrorZbt++fTjzzDPR0NCAGTNmYPPmze5zb731Fk4++WSMHDkS999/PwCgubkZc+fOxeTJkzF+/Hg899xzaY0n1X6PPPIIGhoaMGHCBFxwwQV45ZVX8Pzzz+O6667DxIkT8fHHH2Px4sV46qmn8I9//ANnn322u++aNWtw+umnAwBeeOEFzJw5E5MnT8bChQvR3NycdDz19fX48Y9/jGnTpmHatGn46KOPAADbt2/H3Llz0dDQgLlz5+LTTz+FYRgYPnw4pJQ4cOAAhBB46aWXAADHH388PvroI7S0tODiiy/G1KlTMWnSJPf9Pfzww1i4cCFOP/10zJs3L63PiulZutNZpGlBaFow5TZuFzRXNIp1FplJnEVWGZo1KSJBkKafsyiQUJ7m3d+ZVAW1IFpaWqAqKhRFgZmxs0gm3PwEY8SiRGeRmzVh/x0MBtHW1pb2TZQQAtJerWcYhsk3Vnmsfa0TVsC1I75LO9jWud7Fi+tMdpSWlrguEaa4yNZZhBRikaHrGYmHoRw7i+JL9tPB6yzSbWcRAM4tZpgsSS0nFzBrX1vX7cecPX1W0ufeeecdTJ48udNj3HTTTZg0aRKeffZZrFq1ChdeeCE2bdoEANi8eTNeffVVtLS0YNKkSTjttNPQr18/PPPMM6isrMSePXswY8YMnHHGGZ3eYIdCId/9tm7dip///OdYt24damtrsW/fPtTU1OCMM87A/PnzsWDBgpjjnHLKKfje976HlpYWlJWV4YknnsCiRYuwZ88e3HrrrVi5ciXKyspw22234Y477sDPfvazpGOqrKzEv/71LzzyyCP4j//4D/ztb3/DlVdeiQsvvBAXXXQR/vCHP+Dqq6/Gs88+i1GjRmHr1q3Ytm0bjj32WLz88suYPn06duzYgaOOOgo33HADTj75ZPzhD3/AgQMHMG3aNNcJtX79emzevBk1NTWd/j6YnicQCPg6a7LJLOpf16/TbeKdRSLeWeSKRbFj0mMCrikhyDqaWZTEWeSZVAWDQTS3tkBVVShCQdjoSOftRcfo0+FD8xOLYrqh2eV3njG0tbel7yyK+9wYhmHyjVuGRoRIJIxQqASGYbglyc49LpehdQ+qoqJfbV2+h8FkgaoGILPoRObX/dUhHIkgoKbfjcvqxJo7V7/MwlkUE3BtWo1LvOX9DMNkRtGKRamEnVzw/e9/H2vXroWmabj99tvdx9euXYunn34aAHDyySdj7969OHjwIADgW9/6FkpKSlBSUoI5c+bgX//6F0477TTccMMNeOmllyCEwOeff45du3bhiCOOSPn6Ukrf/VatWoUFCxagtrYWADoVVFRVxde//nX89a9/xYIFC/A///M/+OUvf4kXX3wRW7duxaxZ1uccDocxc+bMlMc699xz3b+vueYaAJaw85e//AUAcMEFF+BHP/oRAMtB9NJLL2Hbtm34yU9+gvvvvx8nnngipk6dCsByNT3//PNuzlN7ezs+/fRTAJbAxUJR4XBEvyN8JyKu4NEDK8KOSGMdP7akzBWLfLqhqTFlaLFjNg27DC2Vs8juGhLSgmhqabbGoShZdENLXC3TAsHUYpEr9ljvIRQMorWNxSKGYYqTWDFcIByJoLqqGuFIBBD2QgNFn2eYw5mAqmY81wCSl6FFIhFE9AhKSkrSPpYiFJgZNvToCtk4i2ICru1FQlVRObKIYbKkaMWiXDN27FhXBAKAe+65B3v27MGUKVNitkt50xx3pSIirFixArt378brr7+OQCCA+vp6tKdh8Uy2XzqdkeJZtGgR7rnnHtTU1GDq1KmoqKiAlBKnnHIKHnvssbSP433dZGNwHj/++ONx7733YufOnbj55ptx++23Y82aNTjhhBMAWJ/j008/jaOPPjpm/9deew1lZWUZvT+mZ/HmTsQ/DvTMJH9ywyRXuBFEMTlDbmZR3AqcYVht7p2xxWcTGaaZ2llk6K7YFAwG8eVXu1BeXg5FERl3Q5PSTK8MzUcscsvQtCCamvdmLhbxTRfDMAWAtdpv/9teVAgGrTIXIgIJT9g/3+kxhzmqqkJk4SxKJhYdaj6EivKKzJqQCAEzC8EqW6y5UhecRYYBRXFyuvgawjDZwHcNaXLyySejvb0dv/vd79zHWltbE7Y74YQTsGLFCgBW/k9tbS0qKysBAM899xza29uxd+9erFmzBlOnTsXBgwfRr18/BAIBrF69Gtu3b09rPMn2mzt3Lp588kns3bsXgJWhBAAVFRVoamryPdZJJ52EN954A/fffz8WLVoEAJgxYwbWrVvnZg+1trbigw8+SDmmJ554wv3bcSEdd9xxePzxxwFYAtfs2bMBANOnT8crr7wCIQRCoRAmTpyI++67D8cffzwA4NRTT8Xdd9/tXvDffPPNtD4XpnDoSWeRFtDcfwsR6xJyStLiy9C8mUXx+wC2XVlRE8rTHHQ9un9QCyKiR1yHU6bd0PzawXZWhuZ2Q3MFqxBa21ozCrgWlF7nNIZhmJ7GEoSiXS0ByzFpGIab68bd0BjGok91H9TW1GaxZxKxqOkQKisqMzqS5aQ2kzqwuxs/F3ZnJIhFQoFqNydhGCZzWCxKEyLCs88+ixdffBHDhg3DtGnTcNFFF+G2226L2W7p0qXYuHEjGhoacP3112P58uXuc9OmTcNpp52GGTNm4MYbb8TAgQNx/vnnY+PGjZgyZQpWrFiB0aNHpzWeZPuNHTsWP/3pT3HiiSdiwoQJ+OEPfwgAOOecc3D77bdj0qRJ+Pjjj2OOpSgK5s+fj3/84x+YP38+AKCurg4PP/wwzj33XDes+7333ks5po6ODkyfPh133XUXfv3rXwMAli1bhoceeggNDQ149NFHcddddwGwnBlDhgzBjBkzAFhOo6amJowfPx4AcOONNyISiaChoQHjxo3DjTfemNbnwhQOPeksin0dEeMGMk0TihAJAde6pwzNmUx4JzymYSIQCMTkH3kxPC1mg0HLoRTItgzNpx1sSagEleUV1vh8VtPdINi4m6pMAq65BI1hmEIiKow7wf0hGIZh57oJt+yWb/SYw52y0jLUVPfJeD8iskPjY+c2h5qa3DlHJsdK1V2tu/FzYXeGd3y6adhNWFQ2FjFMlnAZWgYMGDDAdcnEc9JJJwGwMoL8OpotXbrUd7/a2lqsX7/e97lU3cdS7XfRRRfhoosuinls1qxZ2Lp1q/vzww8/HPP8b37zG/zmN7+Jeezkk0/Ghg0bko4hnu9///u46aabYh6rr6/HqlWrfLd/+eWX3X+fd955OO+889yfS0pKcN999yXss3jxYixevDjtMTH5oyedRV6sbmjRiYuUJgKa5ptZ5A24diYUH37yEY4aNiIacJ3MWWTEOosAuN3QMnUWSR9nUSAQwOiRo93xef+23qeAIqKrY84Y4o+TDCGIxSKGYQoGbwmzcx0LBYMwTAOmaYJsZ1GyUmeGYTqnJBSCFtDwyfZt6F/XD/sP7Ee/un5oaW1BRYZiEQDXTZ2L+YRpZh6tkViGZnXsjV9AZBgmPfjOgWGYHiGfziItoCVMDLxikTM+wzTw1Z6v0NLaAtM0oSrJM4sMPZpZpCgKVFWFqgasiVMWzqJUn4t/NzQBRYnuY5XApe8WEkJhsYhhmIKBQG75GdllslpAs8rQpIQQBEXh0lmG6QpCCIw9+hgcajqErR+8i+aWZrz59iaUlZTGzIkyOZ6RZJ7U3UjbYZgJhESxiAOuGSZ72FlU4Lz99tu44IILYh4LBoN47bXX8jKes846C9u2bYt57LbbbkNjY2NexsMULsmC3bubeGeRaZrQNC0hKN4w9ASxKBwOAwCaW5rdMi2nPC1+3FYZW/SSGdSCVuCkIrLKLHICuv1I5ixySjKc54LBUMxjqWBnEcMwhQRRtPxMEEFVVfeapxu6e03mUH6G6RqqqmLiuAkArLnDl199mVAKny6KkruQa2thLUNnkfB2QzNdZxHXoTFMdrBYVOCMHz8emzZtyvcwXJ555pl8D4EpEohyI06IZM4iIzGzSPGIPYKEKxYdam5yS7wcC3OiWKRDUaPCTE2fGpSVWitzmbaS7azDh3/ANSWsAgaDwQzK0DiziGGYAsLueAYAJAQCgYB1nRMK9IjuOo2G1w/L80AZpvjxzieO6HdE1scRQknqwO5upGlmHnCNaCalaWceccA1w2QPi0UMw/QIhNzkTJCgmJwhU0oEVNWaKJhRC7PhCbh29usId4CI0NTcBKFEu+6Y0oSIq9I14pxFRw4eCgDuhMRPYEqGacqUwo2fWFRaWooB/QfEbBfSgmlnQnk7CzEMw+QbomgZmuMsAqwy345wB0hY3yH9avvlc5gMw3hQROZu6mwxpUQgq8wi0y1BsxbaVPYVMUyW8J0DwzA9Qi6dRdKMLUMTQkBVVNddJKVMyCwSJNARDqO8rBzt7e1Q7HIuIWKP56DreowzycFx/GQyeTKlmdIC7icWBdQAjujXP2a7yspKlJaUpfWa7CxiGKaQsBYUoiJ9wCMWAT2fd8cwTObk0lnkBN1ngiUWOW5y61qiKgo4tIhhsoOdRQzD9AiapmH0UUf3+OsIIWKdRY5YpFrdL7SABsM03K46DlZmUQcqysvR2toCRUSzM/w6ohmGDlX1zwdyuoOkyiHy4tcNzY/OnEp1fevSej2AxSKGYQoLK7PI7u4YDLk3oK5YxNcrhik4hJLLgGuZdqm9gxACEhK6HnEXAdlZxDDZw9/EaXLgwAH89re/7fHXWbNmDV555ZUefx2G6WmICFWVVTl5Hac+HYi6dlRFdTuixZegAU4ZWhiBgIbSklII+3lK5iyKK0PzoiiZdUQzpUzPWdSN0xsWixiGKSg8ZWi1NX0xZNAQAFGxiDNGGKbwUIQCM2dlaNk5i8rLyrFv/z73WqIFAu4cj2GYzOA7hzTJVCxy8lIyhcUihskMbyg14Lh2BFQ1WoZmxIVbA9GA64AaQGlpWbQMjUSCs8ivjM2LkmFHtHScRaqqdqu4o6oBBNRAtx2PYRimKxDIN7zWuRazWMQwhYcQOXQWpenCjqemTw12793jztkqKypz4nRnmN5IWnciRPR1InqfiD4iout9nl9MRLuJaJP95xLPcxcR0Yf2n4u6c/C55Prrr8fHH3+MiRMn4pprrsHcuXMxefJkjB8/Hs899xwAoLGxEWPGjMEVV1yByZMn47PPPsODDz6IUaNG4aSTTsKll16KK6+8EgCwe/du/Nu//RumTp2KqVOnYt26dWhsbMS9996LX//615g4cSJefvnlfL5lhikayFM6ZoVHW2GpXmdRvNAjyAq4DgQCblczwA7MjpsIeYMS/RAi08wi2Wkex7ENk7tVLKrrW4vhR3JXIYZhCgNvGZoXRVESyoYZhikMFEXAzMBJ3RU6c2Eno291Ddra22JciskW+xiGSU2nARtEpAC4B8ApAHYA2EBEz0spt8Zt+oSU8sq4fWsA3ARgCgAJ4HV73/1dGbS5bw1keHdXDpEAaXUQNSclff4Xv/gFtmzZgk2bNkHXdbS2tqKyshJ79uzBjBkzcMYZZwAA3n//fTz00EP47W9/i507d+KWW27BG2+8gYqKCpx88smYMGECAOAHP/gBrrnmGsyePRuffvopTj31VLz77ru47LLLUF5ejmuvvbZb3x/D9GbcUGoF0VapigpdtyY0Vjh1fBma5QbSAgFUVVaipk9f61gkXJeSg27oCWVsXqwytPRX2sw02sEGAt3rAuIbL4ZhCgpPGZqXVMI8wzD5RYjM5jtdQZqm7zWiM0pKShAKhlyXIsMw2ZNOGus0AB9JKT8BACJ6HMC3AMSLRX6cCuD/SSn32fv+PwBfB/BYdsMtDKSUuOGGG/DSSy9BCIHPP/8cu3btAgAceeSRmDFjBgDgX//6F0488UTU1NQAABYuXIgPPvgAALBy5Ups3Rr9CA8dOoSmpqYcvxOG6R2IGGeRpwxNjwAAInoEWpz44tyMBNQAVEV184iEEAnOIl1PLGPzkmk3NCmzmwAxDMP0FqxuaMmdRQzDFB6KyKzsviuYUmZ1LSAi1PTp45s/yTBMZqQjFg0C8Jnn5x0Apvts929EdAKADwBcI6X8LMm+g/xehIiWAFgCAEOHDk05oFQOoFywYsUK7N69G6+//joCgQDq6+vR3t4OACgri7axjncneDFNE+vXr0dJSUmPj5dhejveUGqvWNTe0QEAVjZRQIvZxxFr4h08Vklb7P9dqxNaCrFIKBnZsq1SOb4ZYhjm8MXKm/PJLFKUTst0GYbJD0IoCEciOXktaZpZuwyHDBySMwcUw/Rm0vk29vtfGq+C/BVAvZSyAcBKAMsz2Nd6UMrfSymnSCmn1NWl3w46V1RUVLjOn4MHD6Jfv34IBAJYvXo1tm/f7rvPtGnT8OKLL2L//v3QdR1PP/20+9y8efPwm9/8xv1506ZNCa/DMEx6eEOpHbFI04IIR8IAgHAkAk2LFYuIrO5gCVlGQkDGO4uMxDI2L4oioGeUWZT9BIhhGKY3UF1ZhYry8oTHFaFkFWrLMEzPk+vMomwX1gKBAELBYDePiGEOP9L5H7gDwBDPz4MB7PRuIKXcK6XssH+8H8Cx6e5bLPTt2xezZs3CuHHjsGnTJmzcuBFTpkzBihUrMHr0aN99Bg0ahBtuuAHTp0/H1772NRxzzDGoqrJaiS9btgwbN25EQ0MDjjnmGNx7770AgNNPPx3PPPMMB1wzTAZ4Q6ml3Wo1qGkIhx2xKJxQhiYE+XYH85a0ORi60UlmkZphNzR2FjEMc3hT27cWlRWVCY9bmUV8fWSYQsSvVL+nkLywxjB5J50ytA0ARhLRMACfAzgHwHneDYhogJTyC/vHMwC8a//7/wD8FxH1sX+eB+AnXR51nvjTn/7U6TZbtmyJ+fm8887DkiVLoOs6zjrrLMybNw8AUFtbiyeeeCJh/1GjRmHz5s3dM2CGOUzwhlI73dAURUNHOFqGpgUSnUV+IdIkBEzTL+A6+eVSVRT3tdLBCeFmGIZhYuHMIoYpXBShwDByIxZxyT7D5J9OxSIppU5EV8ISfhQAf5BSvkNENwPYKKV8HsDVRHQGAB3APgCL7X33EdEtsAQnALjZCbs+XFi6dClWrlyJ9vZ2zJs3D2eeeWa+h8QwvQ5BUWeRU4YWUAOIRCKQUiISCfuUoZGvWGQJT/EB151kFikqdL017fFa3dB4tYxhGCYeVVX5BpFhChTLWZSbMjR2FjFM/knHWQQp5d8B/D3usZ95/v0TJHEMSSn/AOAPXRhjUfOrX/0q30NgmF4PCY+zyHbtOCHX4UgY4XAkwVkkhL+zSHhK2hzCkQhKS0qTvr6qKjAMPe3xSinZWcQwDONDVUUljh4xKt/DYBjGB0VRchYcbZo8V2KYfMP/AxmGKXoEiQRnEQAEtSDa2togpUwIqCYiaD6ZRUQioRtaJBJJyDzyoipqZgHXnjEyDMMwUYgIQQ6mZZiCJOeZRezCZpi8kpaziGEYppAhYbW7l1LGCDGapqG5pRkBLZBgZa6sqIAiEkOrhaCEbmgRPeLrQnJQFAW6np6zyHFAsbWaYRiGYZhiwsosymE3NHYWMUxeYbGIYZiiR5DV7l5KCSJyhZigFkRTS3NCCRoA1NbUJj1WvLMoHAmnFIvUDLqhsauIYRiGYZhiJJfOIs53ZJj8w3csDMMUPUJY7e6tvKLoxCKoaWhu9heLkkE+EyGrDC35MRRVgZ5mZpHJgY0MwzAMwxQhVmZRrgKu2VnEMPmG/wfmkfLycgDAzp07sWDBgpTb3nnnnWhtjXZb+uY3v4kDBw706PgyZc2aNZg/fz4A4Pnnn8cvfvGLPI+IOVwgstrdS1OCPK4dTdPQEe5I6ISWCkGxZWimacI0zYTMIy+Os0jGOZL8kNwKlmEYhmGYIiRXziJpRwvw4hrD5Jdefcfy1aF2nH3fenzV1J6z18ymjnfgwIF46qmnUm4TLxb9/e9/R3V1dcavlSvOOOMMXH/99fkeBnOYIARBSjOhxCuoWSGpqcKpE48VW4YWjkQQUBMzj+L3AZDWBMrp1sYwDMMwDFNMEJGbD9mTxMcKMAyTH3r1Hcuyf36IDY37sOyfH3X5WI2NjRg9ejQuuugiNDQ0YMGCBa54U19fj5tvvhmzZ8/Gn//8Z3z88cf4+te/jmOPPRbHH3883nvvPQDAtm3bMHPmTEydOhU33nhjzLHHjRsHwBKbrr32WowfPx4NDQ24++67sWzZMuzcuRNz5szBnDlz3Nfcs2cPAOCOO+7AuHHjMG7cONx5553uMceMGYNLL70UY8eOxbx589DW1pbwvhYvXozLL78cc+bMwfDhw/Hiiy/i4osvxpgxY7B48WJ3uxdeeAEzZ87E5MmTsXDhQjQ3NwMA/vd//xejR4/G7Nmz8Ze//MXd/uGHH8aVV14JAPjrX/+K6dOnY9KkSfja176GXbt2AQCWLl2Kiy++GCeddBKGDx+OZcuWdfn3xByeOB3M4oUYx1GUibOIKHbVLNJJXpFDurlFXIPPMAzDMEwxQkRQFCWlWNTU3IRIJNKl1zHN2FgBhmHyQ1EGXNdf/z8Zbf/HV7fjj69uT2vbxl+clvS5999/Hw8++CBmzZqFiy++GL/97W9x7bXXAgBCoRDWrl0LAJg7dy7uvfdejBw5Eq+99hquuOIKrFq1Cj/4wQ9w+eWX48ILL8Q999zj+xq///3vsW3bNrz55ptQVRX79u1DTU0N7rjjDqxevRq1tbGhvK+//joeeughvPbaa5BSYvr06TjxxBPRp08ffPjhh3jsscdw//334+yzz8bTTz+N73znOwmvuX//fqxatQrPP/88Tj/9dKxbtw4PPPAApk6dik2bNmHw4MG49dZbsXLlSpSVleG2227DHXfcgR/96Ee49NJLsWrVKhx11FFYtGiR73uaPXs2Xn31VRARHnjgAfzyl7/Ef//3fwMA3nvvPaxevRpNTU04+uijcfnll6d1Y84wXoSwAq7jnUWuWJRBZpHjUnLoLK/Iwckt0pB6W67BZxiGYRimWBFCwDANqEluI7dt34a62joM6D8g69eQMjZWgGGY/MD/CzNgyJAhmDVrFgDgO9/5jisOAXCFkubmZrzyyitYuHAhJk6ciO9973v44osvAADr1q3DueeeCwC44IILfF9j5cqVuOyyy6Cq1gW4pqYm5ZjWrl2Ls846C2VlZSgvL8e3v/1tvPzyywCAYcOGYeLEiQCAY489Fo2Njb7HOP3000FEGD9+PPr374/x48dDCIGxY8eisbERr776KrZu3YpZs2Zh4sSJWL58ObZv34733nsPw4YNw8iRI0FEvkIUAOzYsQOnnnoqxo8fj9tvvx3vvPOO+9xpp52GYDCI2tpa9OvXz3UdMUwmCLIDruPEIkUoUFUVgUzEIjv/yCEciXS7s0iws4hhGIZhmCJEEcmdRVJKNLe2oKW1pUuvEd+whGGY/FCUzqJ8EV836/25rKwMgHUjWF1djU2bNqV1jHgyDXNLFagbDAbdfyuK4luG5t1OCBGzjxACuq5DURSccsopeOyxx2L227RpU1pjveqqq/DDH/4QZ5xxBtasWYOlS5cmHaOup9dRimG8kBAwdN23Lf3IYUehtKQko2OZcc6i9MSi9M5fU0oQO4sYhmEYhilChBAwDH+xqK29DaZposWTs5oN8Q1LGIbJD0UpFqUqFQOA/3zmbTyx8TNEjKiQElAIi6YOxa1njsv6dT/99FOsX78eM2fOxGOPPYbZs2cnbFNZWYlhw4bhz3/+MxYuXAgpJTZv3owJEyZg1qxZePzxx/Gd73wHK1as8H2NefPm4d5778VJJ50UU4ZWUVGBpqamhDK0E044AYsXL8b1118PKSWeeeYZPLwc7s0AABf/SURBVProo1m/Rz9mzJiB73//+/joo49w1FFHobW1FTt27MDo0aOxbds2fPzxxxgxYkSCmORw8OBBDBo0CACwfPnybh0bwwB2BzNpwpQyYSWqb03fzI/lcRZF9LAblJ0KJU1nkfQRtBiGYRiGYYoBK7PIf77T3NKM6soqNDU3dambGTuLGKYw6JV3LG98eiBGKAKAiCHxxvb9XTrumDFjsHz5cjQ0NGDfvn24/PLLfbdbsWIFHnzwQUyYMAFjx47Fc889BwC46667cM8992Dq1Kk4ePCg776XXHIJhg4dioaGBkyYMAF/+tOfAABLlizBN77xDTfg2mHy5MlYvHgxpk2bhunTp+OSSy7BpEmTuvQ+46mrq8PDDz+Mc889Fw0NDZgxYwbee+89hEIh/P73v8dpp52G2bNn48gjj/Tdf+nSpVi4cCGOP/74BLGLYboDq5WrtMOju3ZZE9k6i+zMos7gCRDDMAzDMMWKNefydxY1t7Sgqqoaqqqio6Mj69cwTXZhM0whQKnKmPLFlClT5MaNG2Mee/fddzFmzJg8jcjqLjZ//nxs2bIlb2Ngcku+zzkmfb78ahcONR9CTVUf7N63B2NGjs76WAcPHcT2z7ajYWwDAODtd7dg8MDB6FNVnXK/T7Zvg6ZpGDxgUMrt9uzbi6/2fIVjRvG5xTAMwzBMcbH1/a3oX9ff17n99ta3MXjgYOzc9QWOSLJNOjQ1N+Hjxk8wcdyErg6XYRgfiOh1KeWUzrZjyZZhmKLHKh2zA667uBKlKArCesTNA7O6oaWXWWSkkVkk2VnEMAzDMEyRIuICrk3TRDgcdsOty8vKUVZa1qWQa7MLJWwMw3QfRZlZlA/q6+vZVcQwBYoVSi2tEq8ulqGVlZZBEQr2HdiHvn36pl2Gpqgq2tvbO93O5NBGhmEYhmGKFEUR2LN/Lw4cOoCDhw6hI9wBIQRCwRBURUUgEEBZaSn27N2b9Wu0t7dBVfg2lWHyDf8vZBim6IlxFnVRiCEiDB08FNt3bEcoGIJu6AioaTqLOsksklLaziIWixiGYRiGKT76VPfBgYMHUFpShoFHDERpSSkAYO++vW52Y1lJGRpbGqHrOlTV/3bTMA1s/2w7OjrCqKqsxID+A0BEiOgRbP9sO0Z3IVKAYZjugcUihmGKHuE4i0wTQnTdtlxT3Qefff4Ztrz7DoYNHZaWFVpRVOi6f3eQ1rZWNH62HfsP7Ed1VTVCwc67qzEMwzAMwxQatTW1qK1JbFhT2zf6WElJCWr61GDTlrcweuTRKC8rj9n24KGD+Hj7JygrKUXfmr748qsvcbDpEOoHH4nGzxrRt6YWlRWVPf5eGIZJDYtFDMMUPUQE0zRhStktrh0iwrjRY0FEUBQlrX1Uxb8bWmtrK95+bwsGDRiEQQMGYev7W1ES6t/lMTIMwzAMwxQiRIQR9SOwe89uvPPeVvSr6wcAaGtrRUc4DN3QceTgoajrWwciQm1NX7z/0ft4a+tm1PWtRf0Q/w7LDMPkFhaLGIYpeoQQkLazSOmmPKBktulU2xtGrLOota0V77z/DoYNrUe/WmuiNMHussYwDMMwDNObqautQ2VFJXbs3IGApqFfXX8EAgFUlJXHxAYIITBm1BhIDrZmmIKiaMWiTyNb0CFbu+14QSrF0MC4lNv8+te/xgMPPAAiwvjx4/HQQw8hFAph27ZtOOecc7Bv3z5MnjwZjz76KDRNw91334377rsPQ4cOxbPPPgtN07B27Vr85S9/wR133NFtY/fjuuuuw9///nd885vfxIgRI1BaWooLL7wwZpvGxkbMnz8/L8Hdxx13HF555ZWU29x5551YsmQJSktLe3Qsixcvxvz587FgwYIefR2m51AVFR0d7YhESqGWlORlDIrHWSSlxFd7dmPbp9swbOgwVygC4Nb2MwzDMAzD9HaCwSBGDBuR1rYsFDFMYVG0KasdshVBKuu2P50JT59//jmWLVuGjRs3YsuWLTAMA48//jgA4Mc//jGuueYafPjhh+jTpw8efPBBAMADDzyAzZs3Y9KkSfi///s/SClxyy234MYbb+zxz+e+++7DG2+8gdtvvx2XXXZZglCUbzoTigBLLGptzUwQjHd2MIcHpaWlqOlTg127d+UtPFpVLGdROBLGux++h8+/2IFxo8ehf12/zndmGIZhGIZhGIYpIIpWLMoHuq6jra0Nuq6jtbUVAwcOhJQSq1atcl0pF110EZ599ll3n0gkgtbWVgQCATz66KP45je/iT59+iR9jUceeQQNDQ2YMGECLrjgAgDA9u3bMXfuXDQ0NGDu3Ln49NNPAViOmKuvvhrHHXcchg8fjqeeegoAcMYZZ6ClpQXTp0/HE088gaVLl+JXv/oVAOD111/HhAkTMHPmTNxzzz3u6xqGgeuuuw5Tp05FQ0MD7rvvPgDAmjVrcNJJJ2HBggUYPXo0zj//fEgpAQAbNmzAcccdhwkTJmDatGloampKepx4ysvLUx5/2bJl2LlzJ+bMmYM5c+YAAF544QXMnDkTkydPxsKFC9Hc3AwAqK+vx80334zZs2fjl7/8JaZNm+a+TmNjIxoarLKfm2++GVOnTsW4ceOwZMkS930wvYPhRw5HeVk5AoH8GCYVRYGu63hry2aUhEowcdxElJeV5WUsDMMwDMMwDMMwXYHFojQZNGgQrr32WgwdOhQDBgxAVVUV5s2bh71796K6utrNNxk8eDA+//xzAMC1116LGTNmYPfu3Zg1axaWL1+OK664IulrvPPOO/j5z3+OVatW4a233sJdd90FALjyyitx4YUXYvPmzTj//PNx9dVXu/t88cUXWLt2Lf72t7/h+uuvBwA8//zzKCkpwaZNm7Bo0aKY1/j3f/93LFu2DOvXr495/MEHH0RVVRU2bNiADRs24P7778e2bdsAAG+++SbuvPNObN26FZ988gnWrVuHcDiMRYsW4a677sJbb72FlStXoqSkJOVxkuF3/KuvvhoDBw7E6tWrsXr1auzZswe33norVq5ciTfeeANTpkyJKeULhUJYu3YtfvKTnyAcDuOTTz4BADzxxBM4++yz3c9xw4YN2LJlC9ra2vC3v/0t5biY4kIIgQljG3w7dOTq9cvLylE/tB7DhtbH1OIzDMMwDMMwDMMUE3w3kyb79+/Hc889h23btmHnzp1oaWnBH//4R193ilNve8EFF+DNN9/EH//4R9xxxx24+uqr8Y9//AMLFizANddcA9M0Y/ZzHEq1tdbNbk1NDQBg/fr1OO+889xjrl271t3nzDPPhBACxxxzDHbt2pXyPRw8eBAHDhzAiSee6B7L4YUXXsAjjzyCiRMnYvr06di7dy8+/PBDAMC0adMwePBgCCEwceJENDY24v3338eAAQMwdepUAEBlZSVUVU15nGT4HT+eV199FVu3bsWsWbMwceJELF++HNu3b3ef94piZ599Np588kkAlljkPLd69WpMnz4d48ePx6pVq/DOO++kHBdTfBBRXuvdJ46bgLq++RGrGIZhGIZhGIZhuouiDbjONStXrsSwYcNQV1cHAPj2t7+NV155Beeffz4OHDgAXdehqip27NiBgQMHxuy7c+dObNiwATfddBOmTZuG9evX46c//Sn++c9/4pRTTnG3S7cDgHebYDAYs38qUh1fSom7774bp556aszja9asiXkNp9Qm2bGSHScVfsf3O+4pp5yCxx57zPcYZZ5yn0WLFmHhwoX49re/DSLCyJEj0d7ejiuuuAIbN27EkCFDsHTpUrS3t6c9RoZhGIZhGIZhGIY5XGBnUZoMHToUr776KlpbWyGlxD//+U+MGTMGRIQ5c+a4eUHLly/Ht771rZh9b7zxRtxyyy0AgLa2NhARhBAJ4c1z587Fk08+ib179wIA9u3bB8DqHOaEaa9YsQKzZ8/O6j1UV1ejqqrKdSatWLHCfe7UU0/F7373O0QiEQDABx98gJaWlqTHGj16tCuCAUBTUxN0Xc/4OKmoqKhAU1MTAGDGjBlYt24dPvroIwBAa2srPvjgA9/9RowYAUVRcMstt7iuIkcYqq2tRXNzs/v7YhiGYRiGYRiGYRgmlqJ1FgWpFB0yOxEi2fFSMX36dCxYsACTJ0+GqqqYNGkSlixZAgC47bbbcM455+A///M/MWnSJHz3u99193vzzTcBAJMmTQIAfPe738X48eMxZMgQ3HTTTTGvMXbsWPz0pz/FiSeeCEVRMGnSJDz88MNYtmwZLr74Ytx+++2oq6vDQw89lPX7fOihh3DxxRejtLQ0xv1zySWXoLGxEZMnT4aUEnV1dTFB3fFomoYnnngCV111Fdra2lBSUoKVK1dmfJxULFmyBN/4xjcwYMAArF69Gg8//DDOPfdcdHR0AABuvfVWjBo1ynffRYsW4brrrnPzkqqrq3HppZdi/PjxqK+vd8vnGIZhGIZhGIZhGIaJhQqxI9SUKVPkxo0bYx579913MWbMmDyNiDkc4XOOYRiGYRiGYRiG6U0Q0etSyimdbcdlaAzDMAzDMAzDMAzDMIwLi0UMwzAMwzAMwzAMwzCMS1GJRYVYMsf0TvhcYxiGYRiGYRiGYQ5XikYsCoVC2Lt3L9/EMz2OlBJ79+5FKBTK91AYhmEYhmEYhmEYJucUTTe0wYMHY8eOHdi9e3e+h8IcBoRCIQwePDjfw2AYhmEYhmEYhmGYnFM0YlEgEMCwYcPyPQyGYRiGYRiGYRiGYZheTdGUoTEMwzAMwzAMwzAMwzA9D4tFDMMwDMMwDMMwDMMwjAuLRQzDMAzDMAzDMAzDMIwLFWJ3MSLaDWB7lrtXATjYjcPJBcU45niGAvg034PIkt7w+Rf7eyjm88eh2H8HQPG/Bz6P8ksxj92Bz6H8UIxjjqeYz53e8PkX+3so5vPHodh/B0Bxvwc+h/JPsYy/FkCZlLKusw0LUizqCkT0eynlknyPIxOKcczxENHudE64QqSXfP5F/R6K+fxxKPbfAVD874HPo/xSzGN34HMoPxTjmOMp5nOnl3z+Rf0eivn8cSj23wFQ3O+Bz6H8UyzjJ6KNUsop6WzbG8vQ/prvAWRBMY45ngP5HkAX6A2ff7G/h2I+fxyK/XcAFP974PMovxTz2B34HMoPxTjmeIr53OkNn3+xv4diPn8civ13ABT3e+BzKP8U+/gT6HXOIiY/ZKJQMkw8fP4w3QGfR0xX4XOIyRY+d5iuwOcP01X4HGLS5XB3FjH54ff5HgBT1PD5w3QHfB4xXYXPISZb+NxhugKfP0xX4XOISZe0zxV2FjEMwzAMwzAMwzAMwzAu7CxiGIZhGIZhGIZhGIZhXFgsYhiGYRiGYRiGYRiGYVxYLGLShojOIiJJRKPzPRameCGi5k6eX0NEHNDHJEBEg4noOSL6kIg+JqK7iEhLsf1/EFFpLsfIFAedXYcYxg+eBzHdAc+DmGzheRCTa1gsYjLhXABrAZyTyU5EpPTMcBiGOVwgIgLwFwDPSilHAhgFoBzAz1Ps9h8AeJLEMEx3wfMghmHyAs+DmHzAYhGTFkRUDmAWgO/CniQR0UlE9BIRPUNEW4noXiIS9nPNRHQzEb0GYGb+Rs4UIva58zfPz78hosV5HBJT+JwMoF1K+RAASCkNANcAuJiIyojoV0T0NhFtJqKriOhqAAMBrCai1XkcN1OgEFE5Ef2TiN6wz51v2Y/XE9G7RHQ/Eb1DRC8QUUm+x8vkF54HMd0Jz4OYLOB5EJNz1HwPgCkazgTwv1LKD4hoHxFNth+fBuAYANsB/C+AbwN4CkAZgC1Syp/lZbQMw/Q2xgJ43fuAlPIQEX0K4BIAwwBMklLqRFQjpdxHRD8EMEdKuScP42UKn3YAZ9nnUS2AV4noefu5kQDOlVJeSkRPAvg3AH/M10CZgoDnQQzD5BOeBzE5h51FTLqcC+Bx+9+P2z8DwL+klJ/Y6vZjAGbbjxsAns7tEBmG6cUQAJnk8RMA3Cul1AFASrkvlwNjihYC8F9EtBnASgCDAPS3n/v/7d1/qN9VHcfx56u57MfmcOHKbHlXKCLaZuYCKTDCiBBa4DAnqRCVgdEPBokI/iUMKvuBWNgPZmGItX5oVPaD/SGxYm5u07VK2UpHwxus3Cxcbnv3x+fs27c1d3e3u+/33u+eD7jcz+d8z+ec9/dyOffwvuec746q2tSuNwBjgw9P04zzIEnD5DxIA+fKIk0oyWvolj5elKSAWXSD1U/5/0Hr0P0LbeIkHcl+/jdZ/YphBaIZYyvd6o6eJGcAC4HtHHkCJR3NdcBZwKVV9WKSP/PfsWhfX70DgNvQTmHOg3QSOA/SZDkP0sC5skjH4mrg21V1blWNVdVCYAfdf8+WJlnU9uhfQ3fwozSRvwAXJjk9yTzg3cMOSNPer4FXJbkeegfGfgFYDfwCuCnJae21+e2ZvcDcwYeqGWIeMN4SRe8Czh12QJq2nAdpqjkP0mQ5D9LAmSzSsbgW+OFhZWuAFcA6YBXwBN3E6fB6Uk/7I7avqp4BHgC2APcBjw01ME17VVXAB4DlSZ4E/kR35sytwDeAp4EtSTbTjU0A9wA/82BH9Ts0DtGNPW9L8ijdKqM/DDUwTWfOgzQlnAfpeDkP0jCk+72TJi/JFcDKqrpq2LFoZkiyGPh6VS0ddiySTk2OQ5oqzoM0WY4/kmYSVxZJGogkN9Ed/nnbsGORdGpyHJI0LI4/kmYaVxZJkiRJkiSpx5VFkiRpJCVZmGRtkm1Jtib5ZCufn+SXSZ5s389s5RckWZdkX5KVh7X13iR/TPJUkluG8X4kSZIGxZVFkiRpJCU5Gzi7qjYmmQtsAJYBNwK7q2pVS/ycWVWfTbKA7lPRlgF/r6rPt3Zm0R0meiWwE1gPXFtVvx/4m5IkSRoAVxZJkqSRVFW7qmpju94LbAPOAd4P3Nuq3UuXHKKqxqtqPfDiYU0tBZ6qqu1V9W/g/taGJEnSSDJZJEmSRl6SMeAS4HfAa6tqF3QJJWDBBI+fAzzTd7+zlUmSJI0kk0WSJGmkJZkDrAE+VVV7jqeJI5S5j1+SJI0sk0WSJGlkJZlNlyi6r6p+0IqfbecZHTrXaHyCZnYCC/vu3wD8dapjlSRJmi5MFkmSpJGUJMA3gW1VdWffSw8CN7TrG4AfT9DUeuC8JIuSvBz4YGtDkiRpJPlpaJIkaSQleQfwCPA4cLAV30p3btEDwBuBp4HlVbU7yeuAR4EzWv3ngQurak+S9wFfAmYB36qqOwb6ZiRJkgbIZJEkSZIkSZJ63IYmSZIkSZKkHpNFkiRJkiRJ6jFZJEmSJEmSpB6TRZIkSZIkSeoxWSRJkiRJkqQek0WSJEmSJEnqMVkkSZJGUpIDSTYl2Zpkc5LPJDnq3CfJWJIVx9HXxa2vTUl2J9nRrn+V5PVJvn/870SSJGmwUlXDjkGSJGnKJXm+qua06wXAd4HfVNXtR3nmCmBlVV11Av2uBn5SVSaIJEnSjOTKIkmSNPKqahz4KHBzOmNJHkmysX1d3qquAt7ZVgV9OsmsJJ9Lsj7JliQfm2zfra8n2vWNSX6U5KG2+ujmtuLpsSS/TTK/1Xtzkp8n2dDivGCqfhaSJEkTMVkkSZJOCVW1nW7uswAYB66sqrcC1wBfadVuAR6pqiVV9UXgw8BzVXUZcBnwkSSLTjCUi4AVwFLgDuBfVXUJsA64vtW5B/hEVV0KrATuPsE+JUmSjtlpww5AkiRpgNK+zwbuSrIEOACc/xL13wO8JcnV7X4ecB6w4wRiWFtVe4G9SZ4DHmrlj7e+5gCXA99LDoXL6SfQnyRJ0qSYLJIkSaeEJG+iSwyNA7cDzwKL6VYbvfBSj9Gt8Hl4CkPZ13d9sO/+IN3c7GXAP6pqyRT2KUmSdMzchiZJkkZekrOArwF3VffpHvOAXVV1EPgQMKtV3QvM7Xv0YeDjSWa3ds5P8uqTGWtV7QF2JFne+kySxSezT0mSpH6uLJIkSaPqlUk20W052w98B7izvXY3sKYlZNYC/2zlW4D9STYDq4EvA2PAxnR7wv4GLBtA7NcBX01yW4v/fmDzAPqVJEki3T/XJEmSJEmSJLehSZIkSZIkqY/b0CRJkiYhycV0W9r67auqtw8jHkmSpKnmNjRJkiRJkiT1uA1NkiRJkiRJPSaLJEmSJEmS1GOySJIkSZIkST0miyRJkiRJktRjskiSJEmSJEk9/wEfB6OJHI8JYQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(20,6))\n", "timeseries[800:-len(list_of_df)].plot(color='#C3C8C4', linewidth=1.0)\n", "p10 = list_of_df['0.1']\n", "p90 = list_of_df['0.9']\n", "plt.fill_between(p10.index, p10, p90, color='#C5F7AB', alpha=0.5, label='80% confidence interval')\n", "actual_data.plot(color='#FCE08F', label='target')\n", "list_of_df['0.5'].plot(marker='^', linewidth=3.0, label='prediction median')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Additional features\n", "\n", "DeepAR has additional features such as handling the missing values as below:\n", "\n", "* missing values: DeepAR can handle missing values in the time series during training as well as for inference.\n", "* Additional time features: DeepAR provides a set default time series features such as hour of day etc. However, you can provide additional feature time series via the `dynamic_feat` field. \n", "* generalize frequencies: any integer multiple of the previously supported base frequencies (minutes `min`, hours `H`, days `D`, weeks `W`, month `M`) are now allowed; e.g., `15min`. We already demonstrated this above by using `2H` frequency.\n", "* categories: If your time series belong to different groups (e.g. types of product, regions, etc), this information can be encoded as one or more categorical features using the `cat` field.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Based on the previous results, we will be able to impelement the advanced models to support the above features." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delete endpoints" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "predictor.delete_endpoint()" ] } ], "metadata": { "kernelspec": { "display_name": "conda_mxnet_p36", "language": "python", "name": "conda_mxnet_p36" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" }, "notice": "Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the \"License\"). You may not use this file except in compliance with the License. A copy of the License is located at http://aws.amazon.com/apache2.0/ or in the \"license\" file accompanying this file. This file is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License." }, "nbformat": 4, "nbformat_minor": 2 }