# Amazon SageMaker 실습 코드 본 폴더는 SageMaker를 다양한 기능을 실습할 수 있는 예제를 포함하고 잇습니다. --- ## 1. SageMaker 를 이용한 ML/DL 모델 개발과 추론 #### 1-1. 빌트인 알고리즘 활용하기 - [XGBoost 시작하기](xgboost/Readme.md) - SageMaker Built-in XGBoost 알고리즘을 마케팅응답을 예측하는 이진분류 문제에 적용해봅니다. [바로가기](xgboost/Readme.md) #### 1-2. BYOS (Bring Your Own Script) - [Tensorflow script mode 사용하기](byos-tensorflow/Readme.md) - SageMaker에서 제공하는 Tensorflow 컨테이너를 이용하여 보스톤지역의 집값을 예측하는 회귀모델을 만들고 활용해 봅니다. [바로가기](byos-tensorflow/Readme.md) #### 1-3. BYOC (Bring Your Own Container) - [BYOC Scikit-learn](byoc/scikit_bring_your_own/scikit_bring_your_own.ipynb) - SageMaker 커스텀 컨테이너로 생성하는 방법을 이해할 수 있습니다. 예제코드는 Scikit-learn을 이용한 붓꽃 품종을 분류하는 간단한 모델을 이용합니다.[바로가기](byoc/scikit_bring_your_own/scikit_bring_your_own.ipynb) #### 1-4. BYOM (Bring Your Own Model) - [Tensorflow deployment](tf-deploy/README.md) - Tensorflow Serving 실습 [바로가기](tf-deploy/README.md) #### 1-5. SageMaker Ground Truth - [Hello GroundTruth](hello-gt/README.md) - SageMaker GroundTruth 시작하기 [바로가기](hello-gt/README.md) #### 1-6. SageMaker Data Wrangler --- ## 2. SageMaker 고급 기능 활용하기 #### 2-1. SageMaker Debugger #### 2-2. SageMaker Distributed Training - [Amazon SageMaker Distributed Training (Image Classification for Oxford-IIIT Pet Dataset)](https://github.com/aws-samples/sagemaker-distributed-training-pytorch-kr) - [End-to-end ML Image Classification (Bengali.AI Handwritten Grapheme Classification)](https://github.com/daekeun-ml/end-to-end-pytorch-on-sagemaker) - [Amazon SageMaker Distributed Training Hands-on Lab - TensorFlow 2.x](https://github.com/daekeun-ml/sagemaker-distributed-training-tf2) #### 2-3. SageMaker Clarify #### 2-4. SageMaker Feature Store --- ## 3. SageMaker MLOps 적용하기 #### 3-1. SageMaker Pipeline #### 3-2. SageMaker Project - [SageMaker Pipeline](sm-pipeline/README.md) - SageMaker Pipeline & Project 실습 [바로가기](sm-pipeline/README.md) #### 3-3. SageMaker Model monitor - [SageMaker Model Monitor](model-monitor/SageMaker-ModelMonitoring.ipynb) SageMaker Model Monitor 기능 체험 [바로가기](model-monitor/SageMaker-ModelMonitoring.ipynb) --- ## 4. SageMaker 보안 & 거버넌스 #### 4-1. SageMaker ABAC #### 4-2. Sagemaker Multi account deployment --- ## 5. SageMaker를 이용한 머신러닝/딥러닝 문제 해결 #### 5-1. SageMaker Canvas (No code 머신러닝) - [SageMaker Canvas 공식 실습가이드(영문)](https://catalog.us-east-1.prod.workshops.aws/workshops/80ba0ea5-7cf9-4b8c-9d3f-1cd988b6c071/en-US/) - [AWS Glue DataBrew와 SageMaker Canvas를 이용한 No code 머신러닝 모델 개발/적용](canvas-and-glue-databrew/Readme.md) #### 5-2. AutoML - [AutoGluon Hello World!](autogluon/autogluon_helloworld.ipynb) - 오픈소스 AutoGluon의 Getting Started 예제입니다. [바로가기](autogluon/autogluon_helloworld.ipynb) - [Code Free Auto Gluon](autogluon/README.md) - 람다와 SageMaker 커스텀 컨테이너를 이용하여 AutoGluon 실행하기 [바로가기](autogluon/README.md) - [AutoGluon on AWS](https://github.com/aws-samples/autogluon-on-aws) - 정형 데이터 외에 이미지, 텍스트, 멀티모달, 코드프리 등의 다양한 심화 예제들을 제공하고 있습니다. #### 5-3. Computer Vision #### 5-4. NLP - [Korean NLP Hands-on labs)](https://github.com/aws-samples/sm-kornlp) - Amazon SageMaker 기반 한국어 자연어 처리 샘플 (Multiclass Classification, Named Entity Recognition, Question Answering, Chatbot and Semantic Search using Sentence-BERT, Natural Language Inference, Summarization, Translation, TrOCR 등) - [Multiclass Classification](https://github.com/aws-samples/sm-kornlp/tree/main/multiclass-classification) - [Named Entity Recognition (NER)](https://github.com/aws-samples/sm-kornlp/tree/main/named-entity-recognition) - [Question Answering](https://github.com/aws-samples/sm-kornlp/tree/main/question-answering) - [Chatbot and Semantic Search using Sentence-BERT (SBERT)](https://github.com/aws-samples/sm-kornlp/tree/main/sentence-bert-finetuning) - [Natural Language Inference (NLI)](https://github.com/aws-samples/sm-kornlp/tree/main/natural-language-inference) - [Summarization](https://github.com/aws-samples/sm-kornlp/tree/main/summarization) - [Translation](https://github.com/aws-samples/sm-kornlp/tree/main/translation) - [TrOCR](https://github.com/aws-samples/sm-kornlp/tree/main/trocr) #### 5-5. Time-series - [Time series on AWS Hands-on Lab](https://github.com/daekeun-ml/time-series-on-aws-hol) #### 5-6. AIoT - [End-to-end AIoT w/ SageMaker and Greengrass 2.0 on NVIDIA Jetson Nano](https://github.com/aws-samples/aiot-e2e-sagemaker-greengrass-v2-nvidia-jetson) - [AWS IoT Greengrass V2 for beginners (Korean)](https://catalog.us-east-1.prod.workshops.aws/workshops/0b21ceb7-2108-4a82-9e76-4c56d4b52db5) #### 5-7. Recommendation - [End-to-end Neural-Collaborative-Filtering including MLOps](recommendation/Neural-Collaborative-Filtering-On-SageMaker/README.md) #### 5-8. Business case별 문제해결