{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "hMBwJT0r38tj"
},
"source": [
"# Lab 2: Train Hugging Face Transformers on Amazon SageMaker\n",
"\n",
"### Korean NLP Downstream task: Question Answering\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Amc52mb94Jzq"
},
"source": [
"\n",
"## Introduction\n",
"---\n",
"\n",
"바로 이전 모듈에서 기존에 온프레미스에서 개발했던 환경과 동일한 환경으로 모델을 빌드하고 훈련했습니다. 하지만 아래와 같은 상황들에서도 기존 환경을 사용하는 것이 바람직할까요?\n",
"\n",
"- 온프레미스의 GPU는 총 1장으로 훈련 시간이 너무 오래 소요됨\n",
"- 가용 서버 대수가 2대인데 10개의 딥러닝 모델을 동시에 훈련해야 함\n",
"- 필요한 상황에만 GPU를 활용\n",
"- 기타 등등\n",
"\n",
"Amazon SageMaker는 데이터 과학자들 및 머신 러닝 엔지니어들을 위한 완전 관리형 머신 러닝 서비스로 훈련 및 추론 수행 시 인프라 설정에 대한 추가 작업이 필요하지 않기에, 단일 GPU 기반의 딥러닝 훈련을 포함한 멀티 GPU 및 멀티 인스턴스 분산 훈련을 보다 쉽고 빠르게 수행할 수 있습니다. SageMaker는 다양한 유즈케이스들에 적합한 예제들을 지속적으로 업데이트하고 있으며, 한국어 세션 및 자료들도 제공되고 있습니다.\n",
"\n",
"### Notes\n",
"\n",
"이미 기본적인 Hugging Face 용법 및 자연어 처리에 익숙하신 분들은 앞 모듈을 생략하고 이 모듈부터 핸즈온을 시작하셔도 됩니다.\n",
"이 노트북은 SageMaker 기본 API를 참조하므로, SageMaker Studio, SageMaker 노트북 인스턴스 또는 AWS CLI가 설정된 로컬 시스템에서 실행해야 합니다. SageMaker Studio 또는 SageMaker 노트북 인스턴스를 사용하는 경우 PyTorch 기반 커널을 선택하세요.\n",
"훈련 job 수행 시 최소 `ml.g4dn.xlarge` 이상의 훈련 인스턴스가 필요하며, `ml.p3.8xlarge`나 `ml.p3.16xlarge` 인스턴스를 권장합니다. 만약 인스턴스 사용에 제한이 걸려 있다면 Request a service quota increase for SageMaker resources를 참조하여 인스턴스 제한을 해제해 주세요.\n",
"\n",
"### References\n",
"- Hugging Face Tutorial: https://huggingface.co/docs/transformers/training\n",
"- 네이버, 창원대가 함께하는 NLP Challenge GitHub: https://github.com/naver/nlp-challenge\n",
"- 네이버, 창원대가 함께하는 NLP Challenge 리더보드 및 라이센스: http://air.changwon.ac.kr/?page_id=10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## 1. Setup Environments\n",
"---\n",
"\n",
"### Import modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"sagemaker role arn: arn:aws:iam::143656149352:role/service-role/AmazonSageMaker-ExecutionRole-20220317T150353\n",
"sagemaker bucket: sagemaker-us-east-1-143656149352\n",
"sagemaker session region: us-east-1\n"
]
}
],
"source": [
"import boto3\n",
"import sagemaker\n",
"import sagemaker.huggingface\n",
"\n",
"sess = sagemaker.Session()\n",
"# sagemaker session bucket -> used for uploading data, models and logs\n",
"# sagemaker will automatically create this bucket if it not exists\n",
"sagemaker_session_bucket=None\n",
"if sagemaker_session_bucket is None and sess is not None:\n",
" # set to default bucket if a bucket name is not given\n",
" sagemaker_session_bucket = sess.default_bucket()\n",
"\n",
"role = sagemaker.get_execution_role()\n",
"region = boto3.Session().region_name\n",
"sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)\n",
"\n",
"print(f\"sagemaker role arn: {role}\")\n",
"print(f\"sagemaker bucket: {sess.default_bucket()}\")\n",
"print(f\"sagemaker session region: {sess.boto_region_name}\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"import logging\n",
"import argparse\n",
"import torch\n",
"from torch import nn\n",
"import numpy as np\n",
"import pandas as pd\n",
"from tqdm import tqdm\n",
"from sklearn.model_selection import train_test_split\n",
"from transformers import BertTokenizer, BertTokenizerFast, BertConfig, BertForTokenClassification\n",
"\n",
"logging.basicConfig(\n",
" level=logging.INFO, \n",
" format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s',\n",
" handlers=[\n",
" logging.StreamHandler(sys.stdout)\n",
" ]\n",
")\n",
"logger = logging.getLogger(__name__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load Feature set"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2022-07-06 04:57:21-- https://korquad.github.io/dataset/KorQuAD_v1.0_train.json\n",
"Resolving korquad.github.io (korquad.github.io)... 185.199.108.153, 185.199.111.153, 185.199.109.153, ...\n",
"Connecting to korquad.github.io (korquad.github.io)|185.199.108.153|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 38527475 (37M) [application/json]\n",
"Saving to: ‘qna_train/KorQuAD_v1.0_train.json’\n",
"\n",
"100%[======================================>] 38,527,475 --.-K/s in 0.1s \n",
"\n",
"2022-07-06 04:57:21 (269 MB/s) - ‘qna_train/KorQuAD_v1.0_train.json’ saved [38527475/38527475]\n",
"\n",
"--2022-07-06 04:57:21-- https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json\n",
"Resolving korquad.github.io (korquad.github.io)... 185.199.110.153, 185.199.109.153, 185.199.111.153, ...\n",
"Connecting to korquad.github.io (korquad.github.io)|185.199.110.153|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 3881058 (3.7M) [application/json]\n",
"Saving to: ‘qna_valid/KorQuAD_v1.0_dev.json’\n",
"\n",
"100%[======================================>] 3,881,058 --.-K/s in 0.02s \n",
"\n",
"2022-07-06 04:57:21 (164 MB/s) - ‘qna_valid/KorQuAD_v1.0_dev.json’ saved [3881058/3881058]\n",
"\n"
]
}
],
"source": [
"train_dir = 'qna_train'\n",
"valid_dir = 'qna_valid'\n",
"\n",
"!wget https://korquad.github.io/dataset/KorQuAD_v1.0_train.json -O {train_dir}/KorQuAD_v1.0_train.json\n",
"!wget https://korquad.github.io/dataset/KorQuAD_v1.0_dev.json -O {valid_dir}/KorQuAD_v1.0_dev.json"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Uploading data to Amazon S3 Bucket\n",
"\n",
"SageMaker 훈련을 위해 데이터셋을 S3로 업로드합니다."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"bucket = sess.default_bucket()\n",
"\n",
"# s3 key prefix for the data\n",
"s3_prefix = 'samples/datasets/korquad'\n",
"\n",
"# save train_dataset to s3\n",
"train_input_path = f's3://{bucket}/{s3_prefix}/train'\n",
"valid_input_path = f's3://{bucket}/{s3_prefix}/valid'"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 7.29 ms, sys: 42 ms, total: 49.3 ms\n",
"Wall time: 1.74 s\n"
]
}
],
"source": [
"%%time\n",
"!aws s3 cp {train_dir} {train_input_path} --recursive --quiet\n",
"!aws s3 cp {valid_dir} {valid_input_path} --recursive --quiet"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"\n",
"## 2. Training with Native Hugging Face (PyTorch Framework)\n",
"\n",
"---\n",
"\n",
"### Overview and Training Script\n",
"\n",
"SageMaker에 대한 대표적인 오해가 여전히 많은 분들이 SageMaker 훈련을 위해 소스 코드를 전면적으로 수정해야 한다고 생각합니다. 하지만, 실제로는 별도의 소스 코드 수정 없이 기존 여러분이 사용했던 파이썬 스크립트에 SageMaker 훈련에 필요한 SageMaker 전용 환경 변수들만 추가하면 됩니다. \n",
"\n",
"SageMaker 훈련은 훈련 작업을 호출할 때, 1) 훈련 EC2 인스턴스 프로비저닝 - 2) 컨테이너 구동을 위한 도커 이미지 및 훈련 데이터 다운로드 - 3) 컨테이너 구동 - 4) 컨테이너 환경에서 훈련 수행 - 5) 컨테이너 환경에서 S3의 특정 버킷에 저장 - 6) 훈련 인스턴스 종료로 구성됩니다. 따라서, 훈련 수행 로직은 아래 예시와 같이 기존 개발 환경과 동일합니다.\n",
"\n",
"```python\n",
"/opt/conda/bin/python train.py --epochs 5 --train_batch_size 32 ...\n",
"```\n",
"\n",
"이 과정에서 컨테이너 환경에 필요한 환경 변수(예: 모델 경로, 훈련 데이터 경로) 들은 사전에 지정되어 있으며, 이 환경 변수들이 설정되어 있어야 훈련에 필요한 파일들의 경로를 인식할 수 있습니다. 대표적인 환경 변수들에 대한 자세한 내용은 https://github.com/aws/sagemaker-containers#important-environment-variables 을 참조하세요."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{2571691105.py:15} INFO - learning_rate: 5e-05\n"
]
}
],
"source": [
"from sagemaker.huggingface import HuggingFace\n",
"import time\n",
"instance_type = 'ml.p3.8xlarge'\n",
"num_gpus = 4\n",
"instance_count = 1\n",
"train_batch_size = 16\n",
"eval_batch_size = 64\n",
"max_length = 384\n",
"stride = 64\n",
"model_id = 'salti/bert-base-multilingual-cased-finetuned-squad' \n",
"fp16 = True\n",
"tokenizer_id = model_id\n",
"logging_steps = 100\n",
"learning_rate = 5e-5\n",
"logger.info(f'learning_rate: {learning_rate}')\n",
"\n",
"# hyperparameters, which are passed into the training job\n",
"hyperparameters = {\n",
" 'n_gpus': num_gpus, # number of GPUs per instance\n",
" 'epochs': 3, # number of training epochs\n",
" 'seed': 42, # random seed\n",
" 'train_batch_size': train_batch_size, # batch size for training\n",
" 'eval_batch_size': eval_batch_size, # batch size for evaluation\n",
" 'max_length': max_length, # max sequence\n",
" 'stride': stride, # stride\n",
" 'logging_steps': logging_steps, # logging steps\n",
" 'learning_rate': learning_rate, # learning rate used during training\n",
" 'fp16': fp16, # use FP16\n",
" 'tokenizer_id': tokenizer_id, # pre-trained tokenizer\n",
" 'model_id': model_id # pre-trained model\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{581002583.py:23} INFO - training job name: kornlp-qna-training-2022-07-06-04-57-30\n"
]
}
],
"source": [
"# define Training Job Name \n",
"job_name = f'kornlp-qna-training-{time.strftime(\"%Y-%m-%d-%H-%M-%S\", time.localtime())}'\n",
"chkpt_s3_path = f's3://{bucket}/{s3_prefix}/native/checkpoints'\n",
"\n",
"# create the Estimator\n",
"sm_estimator = HuggingFace(\n",
" entry_point = 'train.py', # fine-tuning script used in training jon\n",
" source_dir = './scripts', # directory where fine-tuning script is stored\n",
" instance_type = instance_type, # instances type used for the training job\n",
" instance_count = instance_count, # the number of instances used for training\n",
" base_job_name = job_name, # the name of the training job\n",
" role = role, # IAM role used in training job to access AWS ressources, e.g. S3\n",
" transformers_version = '4.17.0', # the transformers version used in the training job\n",
" pytorch_version = '1.10.2', # the pytorch_version version used in the training job\n",
" py_version = 'py38', # the python version used in the training job\n",
" hyperparameters = hyperparameters, # the hyperparameter used for running the training job\n",
" disable_profiler = True,\n",
" debugger_hook_config = False, \n",
" checkpoint_s3_uri = chkpt_s3_path,\n",
" checkpoint_local_path ='/opt/ml/checkpoints', \n",
")\n",
"\n",
"logger.info(f'training job name: {job_name}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`fit()` 메소드를 호출하여 훈련 job을 시작합니다. `fit()` 메소드의 인자값 중 `wait=True`로 설정할 경우에는 동기(synchronous) 방식으로 동직하게 되며, `wait=False`일 경우에는 비동기(aynchronous) 방식으로 동작하여 여러 개의 훈련 job을 동시에 실행할 수 있습니다."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{session.py:590} INFO - Creating training-job with name: kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762\n"
]
}
],
"source": [
"# define a data input dictonary with our uploaded s3 uris\n",
"data = {\n",
" 'train': train_input_path,\n",
" 'valid': valid_input_path\n",
"}\n",
"\n",
"# starting the train job with our uploaded datasets as input\n",
"sm_estimator.fit(data, wait=False)\n",
"train_job_name = sm_estimator.latest_training_job.job_name"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### View Training Job\n",
"SageMaker 콘솔 창에서 훈련 내역을 직접 확인할 수도 있지만, 아래 코드 셀에서 생성되는 링크를 클릭하면 더 편리하게 훈련 내역을 확인할 수 있습니다."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" [Hugging Face Training - Native] Review Training Job"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
" [Hugging Face Training - Native] Review CloudWatch Logs"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.core.display import display, HTML\n",
"\n",
"def make_console_link(region, train_job_name, train_task='[Training]'):\n",
" train_job_link = f' {train_task} Review Training Job' \n",
" cloudwatch_link = f' {train_task} Review CloudWatch Logs'\n",
" return train_job_link, cloudwatch_link \n",
" \n",
"train_job_link, cloudwatch_link = make_console_link(region, train_job_name, '[Hugging Face Training - Native]')\n",
"\n",
"display(HTML(train_job_link))\n",
"display(HTML(cloudwatch_link))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Wait for the training jobs to complete\n",
"훈련이 완료될 때까지 기다립니다. `estimator.fit(...)`에서 `wait=False`로 설정한 경우, 아래 코드 셀의 주석을 해제 후 실행하여 동기 방식으로 변경할 수도 있습니다. 훈련 완료까지는 약 15-20분의 시간이 소요됩니다."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2022-07-06 05:01:19 Starting - Starting the training job......\n",
"2022-07-06 05:01:58 Starting - Preparing the instances for training.........\n",
"2022-07-06 05:03:25 Downloading - Downloading input data......\n",
"2022-07-06 05:04:36 Training - Downloading the training image.......................\u001b[34mbash: cannot set terminal process group (-1): Inappropriate ioctl for device\u001b[0m\n",
"\u001b[34mbash: no job control in this shell\u001b[0m\n",
"\u001b[34m/opt/conda/lib/python3.8/site-packages/paramiko/transport.py:236: CryptographyDeprecationWarning: Blowfish has been deprecated\n",
" \"class\": algorithms.Blowfish,\u001b[0m\n",
"\u001b[34m2022-07-06 05:08:30,777 sagemaker-training-toolkit INFO Imported framework sagemaker_pytorch_container.training\u001b[0m\n",
"\u001b[34m2022-07-06 05:08:30,816 sagemaker_pytorch_container.training INFO Block until all host DNS lookups succeed.\u001b[0m\n",
"\u001b[34m2022-07-06 05:08:30,824 sagemaker_pytorch_container.training INFO Invoking user training script.\u001b[0m\n",
"\n",
"2022-07-06 05:08:27 Training - Training image download completed. Training in progress.\u001b[34m2022-07-06 05:09:55,362 sagemaker-training-toolkit INFO Invoking user script\u001b[0m\n",
"\u001b[34mTraining Env:\u001b[0m\n",
"\u001b[34m{\n",
" \"additional_framework_parameters\": {},\n",
" \"channel_input_dirs\": {\n",
" \"train\": \"/opt/ml/input/data/train\",\n",
" \"valid\": \"/opt/ml/input/data/valid\"\n",
" },\n",
" \"current_host\": \"algo-1\",\n",
" \"framework_module\": \"sagemaker_pytorch_container.training:main\",\n",
" \"hosts\": [\n",
" \"algo-1\"\n",
" ],\n",
" \"hyperparameters\": {\n",
" \"epochs\": 3,\n",
" \"eval_batch_size\": 64,\n",
" \"fp16\": true,\n",
" \"learning_rate\": 5e-05,\n",
" \"logging_steps\": 100,\n",
" \"max_length\": 384,\n",
" \"model_id\": \"salti/bert-base-multilingual-cased-finetuned-squad\",\n",
" \"n_gpus\": 4,\n",
" \"seed\": 42,\n",
" \"stride\": 64,\n",
" \"tokenizer_id\": \"salti/bert-base-multilingual-cased-finetuned-squad\",\n",
" \"train_batch_size\": 16\n",
" },\n",
" \"input_config_dir\": \"/opt/ml/input/config\",\n",
" \"input_data_config\": {\n",
" \"train\": {\n",
" \"TrainingInputMode\": \"File\",\n",
" \"S3DistributionType\": \"FullyReplicated\",\n",
" \"RecordWrapperType\": \"None\"\n",
" },\n",
" \"valid\": {\n",
" \"TrainingInputMode\": \"File\",\n",
" \"S3DistributionType\": \"FullyReplicated\",\n",
" \"RecordWrapperType\": \"None\"\n",
" }\n",
" },\n",
" \"input_dir\": \"/opt/ml/input\",\n",
" \"is_master\": true,\n",
" \"job_name\": \"kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762\",\n",
" \"log_level\": 20,\n",
" \"master_hostname\": \"algo-1\",\n",
" \"model_dir\": \"/opt/ml/model\",\n",
" \"module_dir\": \"s3://sagemaker-us-east-1-143656149352/kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762/source/sourcedir.tar.gz\",\n",
" \"module_name\": \"train\",\n",
" \"network_interface_name\": \"eth0\",\n",
" \"num_cpus\": 32,\n",
" \"num_gpus\": 4,\n",
" \"output_data_dir\": \"/opt/ml/output/data\",\n",
" \"output_dir\": \"/opt/ml/output\",\n",
" \"output_intermediate_dir\": \"/opt/ml/output/intermediate\",\n",
" \"resource_config\": {\n",
" \"current_host\": \"algo-1\",\n",
" \"current_instance_type\": \"ml.p3.8xlarge\",\n",
" \"current_group_name\": \"homogeneousCluster\",\n",
" \"hosts\": [\n",
" \"algo-1\"\n",
" ],\n",
" \"instance_groups\": [\n",
" {\n",
" \"instance_group_name\": \"homogeneousCluster\",\n",
" \"instance_type\": \"ml.p3.8xlarge\",\n",
" \"hosts\": [\n",
" \"algo-1\"\n",
" ]\n",
" }\n",
" ],\n",
" \"network_interface_name\": \"eth0\"\n",
" },\n",
" \"user_entry_point\": \"train.py\"\u001b[0m\n",
"\u001b[34m}\u001b[0m\n",
"\u001b[34mEnvironment variables:\u001b[0m\n",
"\u001b[34mSM_HOSTS=[\"algo-1\"]\u001b[0m\n",
"\u001b[34mSM_NETWORK_INTERFACE_NAME=eth0\u001b[0m\n",
"\u001b[34mSM_HPS={\"epochs\":3,\"eval_batch_size\":64,\"fp16\":true,\"learning_rate\":5e-05,\"logging_steps\":100,\"max_length\":384,\"model_id\":\"salti/bert-base-multilingual-cased-finetuned-squad\",\"n_gpus\":4,\"seed\":42,\"stride\":64,\"tokenizer_id\":\"salti/bert-base-multilingual-cased-finetuned-squad\",\"train_batch_size\":16}\u001b[0m\n",
"\u001b[34mSM_USER_ENTRY_POINT=train.py\u001b[0m\n",
"\u001b[34mSM_FRAMEWORK_PARAMS={}\u001b[0m\n",
"\u001b[34mSM_RESOURCE_CONFIG={\"current_group_name\":\"homogeneousCluster\",\"current_host\":\"algo-1\",\"current_instance_type\":\"ml.p3.8xlarge\",\"hosts\":[\"algo-1\"],\"instance_groups\":[{\"hosts\":[\"algo-1\"],\"instance_group_name\":\"homogeneousCluster\",\"instance_type\":\"ml.p3.8xlarge\"}],\"network_interface_name\":\"eth0\"}\u001b[0m\n",
"\u001b[34mSM_INPUT_DATA_CONFIG={\"train\":{\"RecordWrapperType\":\"None\",\"S3DistributionType\":\"FullyReplicated\",\"TrainingInputMode\":\"File\"},\"valid\":{\"RecordWrapperType\":\"None\",\"S3DistributionType\":\"FullyReplicated\",\"TrainingInputMode\":\"File\"}}\u001b[0m\n",
"\u001b[34mSM_OUTPUT_DATA_DIR=/opt/ml/output/data\u001b[0m\n",
"\u001b[34mSM_CHANNELS=[\"train\",\"valid\"]\u001b[0m\n",
"\u001b[34mSM_CURRENT_HOST=algo-1\u001b[0m\n",
"\u001b[34mSM_MODULE_NAME=train\u001b[0m\n",
"\u001b[34mSM_LOG_LEVEL=20\u001b[0m\n",
"\u001b[34mSM_FRAMEWORK_MODULE=sagemaker_pytorch_container.training:main\u001b[0m\n",
"\u001b[34mSM_INPUT_DIR=/opt/ml/input\u001b[0m\n",
"\u001b[34mSM_INPUT_CONFIG_DIR=/opt/ml/input/config\u001b[0m\n",
"\u001b[34mSM_OUTPUT_DIR=/opt/ml/output\u001b[0m\n",
"\u001b[34mSM_NUM_CPUS=32\u001b[0m\n",
"\u001b[34mSM_NUM_GPUS=4\u001b[0m\n",
"\u001b[34mSM_MODEL_DIR=/opt/ml/model\u001b[0m\n",
"\u001b[34mSM_MODULE_DIR=s3://sagemaker-us-east-1-143656149352/kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762/source/sourcedir.tar.gz\u001b[0m\n",
"\u001b[34mSM_TRAINING_ENV={\"additional_framework_parameters\":{},\"channel_input_dirs\":{\"train\":\"/opt/ml/input/data/train\",\"valid\":\"/opt/ml/input/data/valid\"},\"current_host\":\"algo-1\",\"framework_module\":\"sagemaker_pytorch_container.training:main\",\"hosts\":[\"algo-1\"],\"hyperparameters\":{\"epochs\":3,\"eval_batch_size\":64,\"fp16\":true,\"learning_rate\":5e-05,\"logging_steps\":100,\"max_length\":384,\"model_id\":\"salti/bert-base-multilingual-cased-finetuned-squad\",\"n_gpus\":4,\"seed\":42,\"stride\":64,\"tokenizer_id\":\"salti/bert-base-multilingual-cased-finetuned-squad\",\"train_batch_size\":16},\"input_config_dir\":\"/opt/ml/input/config\",\"input_data_config\":{\"train\":{\"RecordWrapperType\":\"None\",\"S3DistributionType\":\"FullyReplicated\",\"TrainingInputMode\":\"File\"},\"valid\":{\"RecordWrapperType\":\"None\",\"S3DistributionType\":\"FullyReplicated\",\"TrainingInputMode\":\"File\"}},\"input_dir\":\"/opt/ml/input\",\"is_master\":true,\"job_name\":\"kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762\",\"log_level\":20,\"master_hostname\":\"algo-1\",\"model_dir\":\"/opt/ml/model\",\"module_dir\":\"s3://sagemaker-us-east-1-143656149352/kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762/source/sourcedir.tar.gz\",\"module_name\":\"train\",\"network_interface_name\":\"eth0\",\"num_cpus\":32,\"num_gpus\":4,\"output_data_dir\":\"/opt/ml/output/data\",\"output_dir\":\"/opt/ml/output\",\"output_intermediate_dir\":\"/opt/ml/output/intermediate\",\"resource_config\":{\"current_group_name\":\"homogeneousCluster\",\"current_host\":\"algo-1\",\"current_instance_type\":\"ml.p3.8xlarge\",\"hosts\":[\"algo-1\"],\"instance_groups\":[{\"hosts\":[\"algo-1\"],\"instance_group_name\":\"homogeneousCluster\",\"instance_type\":\"ml.p3.8xlarge\"}],\"network_interface_name\":\"eth0\"},\"user_entry_point\":\"train.py\"}\u001b[0m\n",
"\u001b[34mSM_USER_ARGS=[\"--epochs\",\"3\",\"--eval_batch_size\",\"64\",\"--fp16\",\"True\",\"--learning_rate\",\"5e-05\",\"--logging_steps\",\"100\",\"--max_length\",\"384\",\"--model_id\",\"salti/bert-base-multilingual-cased-finetuned-squad\",\"--n_gpus\",\"4\",\"--seed\",\"42\",\"--stride\",\"64\",\"--tokenizer_id\",\"salti/bert-base-multilingual-cased-finetuned-squad\",\"--train_batch_size\",\"16\"]\u001b[0m\n",
"\u001b[34mSM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate\u001b[0m\n",
"\u001b[34mSM_CHANNEL_TRAIN=/opt/ml/input/data/train\u001b[0m\n",
"\u001b[34mSM_CHANNEL_VALID=/opt/ml/input/data/valid\u001b[0m\n",
"\u001b[34mSM_HP_EPOCHS=3\u001b[0m\n",
"\u001b[34mSM_HP_EVAL_BATCH_SIZE=64\u001b[0m\n",
"\u001b[34mSM_HP_FP16=true\u001b[0m\n",
"\u001b[34mSM_HP_LEARNING_RATE=5e-05\u001b[0m\n",
"\u001b[34mSM_HP_LOGGING_STEPS=100\u001b[0m\n",
"\u001b[34mSM_HP_MAX_LENGTH=384\u001b[0m\n",
"\u001b[34mSM_HP_MODEL_ID=salti/bert-base-multilingual-cased-finetuned-squad\u001b[0m\n",
"\u001b[34mSM_HP_N_GPUS=4\u001b[0m\n",
"\u001b[34mSM_HP_SEED=42\u001b[0m\n",
"\u001b[34mSM_HP_STRIDE=64\u001b[0m\n",
"\u001b[34mSM_HP_TOKENIZER_ID=salti/bert-base-multilingual-cased-finetuned-squad\u001b[0m\n",
"\u001b[34mSM_HP_TRAIN_BATCH_SIZE=16\u001b[0m\n",
"\u001b[34mPYTHONPATH=/opt/ml/code:/opt/conda/bin:/opt/conda/lib/python38.zip:/opt/conda/lib/python3.8:/opt/conda/lib/python3.8/lib-dynload:/opt/conda/lib/python3.8/site-packages:/opt/conda/lib/python3.8/site-packages/smdebug-1.0.13b20220512-py3.8.egg:/opt/conda/lib/python3.8/site-packages/pyinstrument-3.4.2-py3.8.egg:/opt/conda/lib/python3.8/site-packages/pyinstrument_cext-0.2.4-py3.8-linux-x86_64.egg\u001b[0m\n",
"\u001b[34mInvoking script with the following command:\u001b[0m\n",
"\u001b[34m/opt/conda/bin/python3.8 train.py --epochs 3 --eval_batch_size 64 --fp16 True --learning_rate 5e-05 --logging_steps 100 --max_length 384 --model_id salti/bert-base-multilingual-cased-finetuned-squad --n_gpus 4 --seed 42 --stride 64 --tokenizer_id salti/bert-base-multilingual-cased-finetuned-squad --train_batch_size 16\u001b[0m\n",
"\u001b[34m[{train.py:164} INFO - ***** Arguments *****\u001b[0m\n",
"\u001b[34m[{train.py:165} INFO - epochs=3\u001b[0m\n",
"\u001b[34mseed=42\u001b[0m\n",
"\u001b[34mtrain_batch_size=16\u001b[0m\n",
"\u001b[34meval_batch_size=64\u001b[0m\n",
"\u001b[34mmax_length=384\u001b[0m\n",
"\u001b[34mstride=64\u001b[0m\n",
"\u001b[34mwarmup_steps=100\u001b[0m\n",
"\u001b[34mlogging_steps=100\u001b[0m\n",
"\u001b[34mlearning_rate=5e-05\u001b[0m\n",
"\u001b[34mdisable_tqdm=False\u001b[0m\n",
"\u001b[34mfp16=True\u001b[0m\n",
"\u001b[34mtokenizer_id=salti/bert-base-multilingual-cased-finetuned-squad\u001b[0m\n",
"\u001b[34mmodel_id=salti/bert-base-multilingual-cased-finetuned-squad\u001b[0m\n",
"\u001b[34moutput_data_dir=/opt/ml/output/data\u001b[0m\n",
"\u001b[34mmodel_dir=/opt/ml/model\u001b[0m\n",
"\u001b[34mn_gpus=4\u001b[0m\n",
"\u001b[34mtrain_dir=/opt/ml/input/data/train\u001b[0m\n",
"\u001b[34mvalid_dir=/opt/ml/input/data/valid\u001b[0m\n",
"\u001b[34mchkpt_dir=/opt/ml/checkpoints\u001b[0m\n",
"\u001b[34mDownloading: 0%| | 0.00/264 [00:00, ?B/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|██████████| 264/264 [00:00<00:00, 340kB/s]\u001b[0m\n",
"\u001b[34mDownloading: 0%| | 0.00/822 [00:00, ?B/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|██████████| 822/822 [00:00<00:00, 1.10MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 0%| | 0.00/972k [00:00, ?B/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|██████████| 972k/972k [00:00<00:00, 37.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 0%| | 0.00/112 [00:00, ?B/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|██████████| 112/112 [00:00<00:00, 154kB/s]\u001b[0m\n",
"\u001b[34m[{train.py:210} INFO - num_train samples=60407, num_valid samples=5774\u001b[0m\n",
"\u001b[34mDownloading: 0%| | 0.00/676M [00:00, ?B/s]\u001b[0m\n",
"\u001b[34mDownloading: 1%| | 4.84M/676M [00:00<00:13, 50.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 2%|▏ | 10.2M/676M [00:00<00:12, 53.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 2%|▏ | 15.6M/676M [00:00<00:12, 55.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 3%|▎ | 21.1M/676M [00:00<00:12, 56.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 4%|▍ | 26.6M/676M [00:00<00:12, 56.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 5%|▍ | 32.0M/676M [00:00<00:11, 56.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 6%|▌ | 37.5M/676M [00:00<00:11, 57.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 6%|▋ | 43.0M/676M [00:00<00:11, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 7%|▋ | 48.5M/676M [00:00<00:11, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 8%|▊ | 53.9M/676M [00:01<00:11, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 9%|▉ | 59.4M/676M [00:01<00:11, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 10%|▉ | 64.8M/676M [00:01<00:11, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 10%|█ | 70.3M/676M [00:01<00:11, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 11%|█ | 75.7M/676M [00:01<00:11, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 12%|█▏ | 81.2M/676M [00:01<00:10, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 13%|█▎ | 86.7M/676M [00:01<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 14%|█▎ | 92.1M/676M [00:01<00:10, 57.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 14%|█▍ | 97.6M/676M [00:01<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 15%|█▌ | 103M/676M [00:01<00:10, 57.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 16%|█▌ | 108M/676M [00:02<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 17%|█▋ | 114M/676M [00:02<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 18%|█▊ | 119M/676M [00:02<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 18%|█▊ | 125M/676M [00:02<00:10, 57.1MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 19%|█▉ | 130M/676M [00:02<00:10, 57.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 20%|██ | 136M/676M [00:02<00:09, 57.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 21%|██ | 141M/676M [00:02<00:09, 57.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 22%|██▏ | 147M/676M [00:02<00:09, 57.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 23%|██▎ | 153M/676M [00:02<00:09, 58.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 23%|██▎ | 158M/676M [00:02<00:09, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 24%|██▍ | 164M/676M [00:03<00:09, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 25%|██▌ | 169M/676M [00:03<00:09, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 26%|██▌ | 175M/676M [00:03<00:08, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 27%|██▋ | 181M/676M [00:03<00:08, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 28%|██▊ | 186M/676M [00:03<00:08, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 28%|██▊ | 192M/676M [00:03<00:08, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 29%|██▉ | 197M/676M [00:03<00:08, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 30%|███ | 203M/676M [00:03<00:08, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 31%|███ | 209M/676M [00:03<00:08, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 32%|███▏ | 214M/676M [00:03<00:08, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 33%|███▎ | 220M/676M [00:04<00:08, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 33%|███▎ | 226M/676M [00:04<00:08, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 34%|███▍ | 231M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 35%|███▌ | 237M/676M [00:04<00:07, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 36%|███▌ | 242M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 37%|███▋ | 248M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 37%|███▋ | 254M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 38%|███▊ | 259M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 39%|███▉ | 265M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 40%|███▉ | 270M/676M [00:04<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 41%|████ | 276M/676M [00:05<00:07, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 42%|████▏ | 282M/676M [00:05<00:07, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 42%|████▏ | 287M/676M [00:05<00:06, 58.4MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 43%|████▎ | 293M/676M [00:05<00:06, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 44%|████▍ | 298M/676M [00:05<00:06, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 45%|████▍ | 304M/676M [00:05<00:06, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 46%|████▌ | 310M/676M [00:05<00:06, 58.4MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 47%|████▋ | 315M/676M [00:05<00:06, 58.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 47%|████▋ | 321M/676M [00:05<00:06, 58.4MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 48%|████▊ | 326M/676M [00:05<00:06, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 49%|████▉ | 332M/676M [00:06<00:06, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 50%|████▉ | 338M/676M [00:06<00:06, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 51%|█████ | 343M/676M [00:06<00:05, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 52%|█████▏ | 349M/676M [00:06<00:05, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 52%|█████▏ | 354M/676M [00:06<00:05, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 53%|█████▎ | 360M/676M [00:06<00:05, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 54%|█████▍ | 366M/676M [00:06<00:05, 59.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 55%|█████▍ | 371M/676M [00:06<00:05, 59.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 56%|█████▌ | 377M/676M [00:06<00:05, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 57%|█████▋ | 383M/676M [00:06<00:05, 58.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 57%|█████▋ | 388M/676M [00:07<00:05, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 58%|█████▊ | 394M/676M [00:07<00:05, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 59%|█████▉ | 399M/676M [00:07<00:04, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 60%|█████▉ | 405M/676M [00:07<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 61%|██████ | 411M/676M [00:07<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 62%|██████▏ | 416M/676M [00:07<00:04, 58.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 62%|██████▏ | 422M/676M [00:07<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 63%|██████▎ | 427M/676M [00:07<00:04, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 64%|██████▍ | 433M/676M [00:07<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 65%|██████▍ | 439M/676M [00:07<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 66%|██████▌ | 444M/676M [00:08<00:04, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 67%|██████▋ | 450M/676M [00:08<00:04, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 67%|██████▋ | 456M/676M [00:08<00:03, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 68%|██████▊ | 461M/676M [00:08<00:03, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 69%|██████▉ | 467M/676M [00:08<00:03, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 70%|██████▉ | 472M/676M [00:08<00:03, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 71%|███████ | 478M/676M [00:08<00:03, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 72%|███████▏ | 484M/676M [00:08<00:03, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 72%|███████▏ | 489M/676M [00:08<00:03, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 73%|███████▎ | 495M/676M [00:08<00:03, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 74%|███████▍ | 500M/676M [00:09<00:03, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 75%|███████▍ | 506M/676M [00:09<00:03, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 76%|███████▌ | 512M/676M [00:09<00:02, 58.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 76%|███████▋ | 517M/676M [00:09<00:02, 59.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 77%|███████▋ | 523M/676M [00:09<00:02, 58.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 78%|███████▊ | 529M/676M [00:09<00:02, 57.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 79%|███████▉ | 534M/676M [00:09<00:02, 58.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 80%|███████▉ | 540M/676M [00:09<00:02, 58.4MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 81%|████████ | 546M/676M [00:09<00:02, 61.2MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 82%|████████▏ | 553M/676M [00:09<00:01, 65.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 83%|████████▎ | 561M/676M [00:10<00:01, 68.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 84%|████████▍ | 567M/676M [00:10<00:01, 68.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 85%|████████▍ | 574M/676M [00:10<00:01, 61.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 86%|████████▌ | 580M/676M [00:10<00:01, 60.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 87%|████████▋ | 586M/676M [00:10<00:01, 60.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 87%|████████▋ | 591M/676M [00:10<00:01, 59.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 88%|████████▊ | 597M/676M [00:10<00:01, 59.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 89%|████████▉ | 603M/676M [00:10<00:01, 59.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 90%|████████▉ | 608M/676M [00:10<00:01, 59.0MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 91%|█████████ | 614M/676M [00:10<00:01, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 92%|█████████▏| 620M/676M [00:11<00:01, 58.5MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 92%|█████████▏| 625M/676M [00:11<00:00, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 93%|█████████▎| 631M/676M [00:11<00:00, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 94%|█████████▍| 636M/676M [00:11<00:00, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 95%|█████████▍| 642M/676M [00:11<00:00, 58.6MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 96%|█████████▌| 648M/676M [00:11<00:00, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 97%|█████████▋| 653M/676M [00:11<00:00, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 97%|█████████▋| 659M/676M [00:11<00:00, 58.7MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 98%|█████████▊| 665M/676M [00:11<00:00, 58.8MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 99%|█████████▉| 670M/676M [00:11<00:00, 58.9MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|█████████▉| 676M/676M [00:12<00:00, 59.3MB/s]\u001b[0m\n",
"\u001b[34mDownloading: 100%|██████████| 676M/676M [00:12<00:00, 58.6MB/s]\u001b[0m\n",
"\u001b[34mUsing amp half precision backend\u001b[0m\n",
"\u001b[34mUsing amp half precision backend\u001b[0m\n",
"\u001b[34m[{train.py:244} INFO - ***** Continue Training *****\u001b[0m\n",
"\u001b[34mLoading model from /opt/ml/checkpoints/checkpoint-708).\u001b[0m\n",
"\u001b[34mLoading model from /opt/ml/checkpoints/checkpoint-708).\u001b[0m\n",
"\u001b[34m/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\u001b[0m\n",
"\u001b[34m***** Running training *****\n",
" Num examples = 60407\u001b[0m\n",
"\u001b[34mNum Epochs = 3\n",
" Instantaneous batch size per device = 16\n",
" Total train batch size (w. parallel, distributed & accumulation) = 256\u001b[0m\n",
"\u001b[34m***** Running training *****\n",
" Num examples = 60407\n",
" Num Epochs = 3\n",
" Instantaneous batch size per device = 16\n",
" Total train batch size (w. parallel, distributed & accumulation) = 256\u001b[0m\n",
"\u001b[34mGradient Accumulation steps = 4\n",
" Total optimization steps = 708\u001b[0m\n",
"\u001b[34mGradient Accumulation steps = 4\n",
" Total optimization steps = 708\u001b[0m\n",
"\u001b[34mContinuing training from checkpoint, will skip to saved global_step\u001b[0m\n",
"\u001b[34mContinuing training from checkpoint, will skip to saved global_step\u001b[0m\n",
"\u001b[34mContinuing training from epoch 3\u001b[0m\n",
"\u001b[34mContinuing training from epoch 3\n",
" Continuing training from global step 708\u001b[0m\n",
"\u001b[34mContinuing training from global step 708\n",
" Will skip the first 3 epochs then the first 0 batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` flag to your launch command, but you will resume the training on data already seen by your model.\u001b[0m\n",
"\u001b[34mWill skip the first 3 epochs then the first 0 batches in the first epoch. If this takes a lot of time, you can add the `--ignore_data_skip` flag to your launch command, but you will resume the training on data already seen by your model.\u001b[0m\n",
"\u001b[34m0it [00:00, ?it/s]\u001b[0m\n",
"\u001b[34mSkipping the first batches: : 0it [00:00, ?it/s]\u001b[0m\n",
"\u001b[34m0%| | 0/708 [00:00, ?it/s]#033[A\u001b[0m\n",
"\u001b[34mTraining completed. Do not forget to share your model on huggingface.co/models =)\u001b[0m\n",
"\u001b[34mTraining completed. Do not forget to share your model on huggingface.co/models =)\u001b[0m\n",
"\u001b[34m#033[A\u001b[0m\n",
"\u001b[34m{'train_runtime': 1.1179, 'train_samples_per_second': 162105.978, 'train_steps_per_second': 633.321, 'train_loss': 0.0, 'epoch': 3.0}\u001b[0m\n",
"\u001b[34mSkipping the first batches: : 0it [00:01, ?it/s]\u001b[0m\n",
"\u001b[34m#015 0%| | 0/708 [00:01, ?it/s]#033[A\u001b[0m\n",
"\u001b[34m0%| | 0/708 [00:01, ?it/s]\u001b[0m\n",
"\u001b[34mSkipping the first batches: : 0it [00:01, ?it/s]\u001b[0m\n",
"\u001b[34m0%| | 0/140 [00:00, ?it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 11/140 [00:00<00:01, 109.40it/s]\u001b[0m\n",
"\u001b[34m19%|█▊ | 26/140 [00:00<00:01, 112.50it/s]\u001b[0m\n",
"\u001b[34m29%|██▊ | 40/140 [00:00<00:00, 123.89it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 55/140 [00:00<00:00, 105.81it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 67/140 [00:00<00:00, 88.40it/s]\u001b[0m\n",
"\u001b[34m55%|█████▌ | 77/140 [00:00<00:00, 83.26it/s]\u001b[0m\n",
"\u001b[34m61%|██████▏ | 86/140 [00:00<00:00, 82.90it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 97/140 [00:01<00:00, 89.76it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 115/140 [00:01<00:00, 113.87it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 127/140 [00:01<00:00, 88.54it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▊| 138/140 [00:01<00:00, 89.91it/s]\u001b[0m\n",
"\u001b[34m100%|██████████| 140/140 [00:01<00:00, 95.09it/s]\u001b[0m\n",
"\u001b[34m0%| | 0/5774 [00:00, ?it/s]\u001b[0m\n",
"\u001b[34m0%| | 1/5774 [00:05<9:06:43, 5.68s/it]\u001b[0m\n",
"\u001b[34m0%| | 7/5774 [00:05<58:39, 1.64it/s]\u001b[0m\n",
"\u001b[34m0%| | 13/5774 [00:05<26:41, 3.60it/s]\u001b[0m\n",
"\u001b[34m0%| | 19/5774 [00:06<15:34, 6.16it/s]\u001b[0m\n",
"\u001b[34m0%| | 25/5774 [00:06<10:11, 9.40it/s]\u001b[0m\n",
"\u001b[34m1%| | 31/5774 [00:06<07:10, 13.34it/s]\u001b[0m\n",
"\u001b[34m1%| | 37/5774 [00:06<05:20, 17.91it/s]\u001b[0m\n",
"\u001b[34m1%| | 43/5774 [00:06<04:09, 22.98it/s]\u001b[0m\n",
"\u001b[34m1%| | 49/5774 [00:06<03:22, 28.29it/s]\u001b[0m\n",
"\u001b[34m1%| | 55/5774 [00:06<02:51, 33.28it/s]\u001b[0m\n",
"\u001b[34m1%| | 61/5774 [00:06<02:30, 37.94it/s]\u001b[0m\n",
"\u001b[34m1%| | 67/5774 [00:06<02:15, 41.98it/s]\u001b[0m\n",
"\u001b[34m1%|▏ | 73/5774 [00:06<02:05, 45.30it/s]\u001b[0m\n",
"\u001b[34m1%|▏ | 79/5774 [00:07<01:59, 47.74it/s]\u001b[0m\n",
"\u001b[34m1%|▏ | 85/5774 [00:07<01:54, 49.65it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 91/5774 [00:07<01:51, 51.14it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 97/5774 [00:07<01:48, 52.10it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 103/5774 [00:07<01:47, 52.79it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 109/5774 [00:07<01:47, 52.90it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 115/5774 [00:07<01:46, 53.30it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 121/5774 [00:07<01:44, 54.13it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 127/5774 [00:07<01:43, 54.31it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 133/5774 [00:08<01:43, 54.42it/s]\u001b[0m\n",
"\u001b[34m2%|▏ | 139/5774 [00:08<01:43, 54.35it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 145/5774 [00:08<01:43, 54.45it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 151/5774 [00:08<01:42, 54.64it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 157/5774 [00:08<01:42, 54.93it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 163/5774 [00:08<01:42, 54.84it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 169/5774 [00:08<01:42, 54.65it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 175/5774 [00:08<01:42, 54.58it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 181/5774 [00:08<01:42, 54.52it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 187/5774 [00:09<01:42, 54.51it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 193/5774 [00:09<01:42, 54.55it/s]\u001b[0m\n",
"\u001b[34m3%|▎ | 199/5774 [00:09<01:42, 54.64it/s]\u001b[0m\n",
"\u001b[34m4%|▎ | 205/5774 [00:09<01:42, 54.50it/s]\u001b[0m\n",
"\u001b[34m4%|▎ | 211/5774 [00:09<01:42, 54.15it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 217/5774 [00:09<01:41, 54.48it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 223/5774 [00:09<01:41, 54.49it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 229/5774 [00:09<01:41, 54.58it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 235/5774 [00:09<01:41, 54.59it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 241/5774 [00:10<01:41, 54.58it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 247/5774 [00:10<01:41, 54.60it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 253/5774 [00:10<01:41, 54.53it/s]\u001b[0m\n",
"\u001b[34m4%|▍ | 259/5774 [00:10<01:41, 54.58it/s]\u001b[0m\n",
"\u001b[34m5%|▍ | 265/5774 [00:10<01:40, 54.74it/s]\u001b[0m\n",
"\u001b[34m5%|▍ | 271/5774 [00:10<01:39, 55.11it/s]\u001b[0m\n",
"\u001b[34m5%|▍ | 277/5774 [00:10<01:39, 55.22it/s]\u001b[0m\n",
"\u001b[34m5%|▍ | 283/5774 [00:10<01:39, 55.11it/s]\u001b[0m\n",
"\u001b[34m5%|▌ | 289/5774 [00:10<01:39, 55.01it/s]\u001b[0m\n",
"\u001b[34m5%|▌ | 295/5774 [00:11<01:39, 54.92it/s]\u001b[0m\n",
"\u001b[34m5%|▌ | 301/5774 [00:11<01:39, 54.90it/s]\u001b[0m\n",
"\u001b[34m5%|▌ | 307/5774 [00:11<01:39, 54.77it/s]\u001b[0m\n",
"\u001b[34m5%|▌ | 313/5774 [00:11<01:39, 54.69it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 319/5774 [00:11<01:39, 54.65it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 325/5774 [00:11<01:39, 54.61it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 331/5774 [00:11<01:39, 54.54it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 337/5774 [00:11<01:39, 54.53it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 343/5774 [00:11<01:39, 54.59it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 349/5774 [00:12<01:39, 54.59it/s]\u001b[0m\n",
"\u001b[34m6%|▌ | 355/5774 [00:12<01:39, 54.60it/s]\u001b[0m\n",
"\u001b[34m6%|▋ | 361/5774 [00:12<01:39, 54.58it/s]\u001b[0m\n",
"\u001b[34m6%|▋ | 367/5774 [00:12<01:38, 54.71it/s]\u001b[0m\n",
"\u001b[34m6%|▋ | 373/5774 [00:12<01:38, 55.01it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 379/5774 [00:12<01:38, 54.88it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 385/5774 [00:12<01:38, 54.85it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 391/5774 [00:12<01:37, 55.23it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 397/5774 [00:12<01:37, 55.41it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 403/5774 [00:13<01:37, 55.26it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 409/5774 [00:13<01:37, 55.03it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 415/5774 [00:13<01:37, 54.93it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 421/5774 [00:13<01:37, 54.87it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 427/5774 [00:13<01:37, 54.75it/s]\u001b[0m\n",
"\u001b[34m7%|▋ | 433/5774 [00:13<01:37, 54.62it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 439/5774 [00:13<01:37, 54.46it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 445/5774 [00:13<01:37, 54.40it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 451/5774 [00:13<01:37, 54.53it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 457/5774 [00:14<01:37, 54.61it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 463/5774 [00:14<01:37, 54.62it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 469/5774 [00:14<01:37, 54.64it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 475/5774 [00:14<01:37, 54.63it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 481/5774 [00:14<01:36, 54.62it/s]\u001b[0m\n",
"\u001b[34m8%|▊ | 487/5774 [00:14<01:37, 54.50it/s]\u001b[0m\n",
"\u001b[34m9%|▊ | 493/5774 [00:14<01:36, 54.48it/s]\u001b[0m\n",
"\u001b[34m9%|▊ | 499/5774 [00:14<01:37, 54.17it/s]\u001b[0m\n",
"\u001b[34m9%|▊ | 505/5774 [00:14<01:37, 54.24it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 511/5774 [00:15<01:36, 54.44it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 517/5774 [00:15<01:35, 55.02it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 523/5774 [00:15<01:35, 55.06it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 529/5774 [00:15<01:35, 55.17it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 535/5774 [00:15<01:34, 55.47it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 541/5774 [00:15<01:34, 55.26it/s]\u001b[0m\n",
"\u001b[34m9%|▉ | 547/5774 [00:15<01:34, 55.05it/s]\u001b[0m\n",
"\u001b[34m10%|▉ | 553/5774 [00:15<01:35, 54.76it/s]\u001b[0m\n",
"\u001b[34m10%|▉ | 559/5774 [00:15<01:35, 54.72it/s]\u001b[0m\n",
"\u001b[34m10%|▉ | 565/5774 [00:15<01:35, 54.68it/s]\u001b[0m\n",
"\u001b[34m10%|▉ | 571/5774 [00:16<01:34, 54.89it/s]\u001b[0m\n",
"\u001b[34m10%|▉ | 577/5774 [00:16<01:34, 54.99it/s]\u001b[0m\n",
"\u001b[34m10%|█ | 583/5774 [00:16<01:34, 54.76it/s]\u001b[0m\n",
"\u001b[34m10%|█ | 589/5774 [00:16<01:35, 54.51it/s]\u001b[0m\n",
"\u001b[34m10%|█ | 595/5774 [00:16<01:35, 54.48it/s]\u001b[0m\n",
"\u001b[34m10%|█ | 601/5774 [00:16<01:34, 54.86it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 607/5774 [00:16<01:33, 55.06it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 613/5774 [00:16<01:33, 55.20it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 619/5774 [00:16<01:33, 55.34it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 625/5774 [00:17<01:33, 55.16it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 631/5774 [00:17<01:33, 54.98it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 637/5774 [00:17<01:33, 54.81it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 643/5774 [00:17<01:33, 54.72it/s]\u001b[0m\n",
"\u001b[34m11%|█ | 649/5774 [00:17<01:33, 54.70it/s]\u001b[0m\n",
"\u001b[34m11%|█▏ | 655/5774 [00:17<01:33, 54.72it/s]\u001b[0m\n",
"\u001b[34m11%|█▏ | 661/5774 [00:17<01:33, 54.54it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 667/5774 [00:17<01:33, 54.52it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 673/5774 [00:17<01:33, 54.72it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 679/5774 [00:18<01:33, 54.62it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 685/5774 [00:18<01:33, 54.45it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 691/5774 [00:18<01:33, 54.58it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 697/5774 [00:18<01:33, 54.46it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 703/5774 [00:18<01:33, 54.31it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 709/5774 [00:18<01:33, 54.32it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 715/5774 [00:18<01:33, 54.28it/s]\u001b[0m\n",
"\u001b[34m12%|█▏ | 721/5774 [00:18<01:33, 54.24it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 727/5774 [00:18<01:33, 54.24it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 733/5774 [00:19<01:32, 54.39it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 739/5774 [00:19<01:32, 54.45it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 745/5774 [00:19<01:32, 54.49it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 751/5774 [00:19<01:31, 54.62it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 757/5774 [00:19<01:31, 54.66it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 763/5774 [00:19<01:31, 54.63it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 769/5774 [00:19<01:31, 54.45it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 775/5774 [00:19<01:31, 54.37it/s]\u001b[0m\n",
"\u001b[34m14%|█▎ | 781/5774 [00:19<01:31, 54.51it/s]\u001b[0m\n",
"\u001b[34m14%|█▎ | 787/5774 [00:20<01:31, 54.77it/s]\u001b[0m\n",
"\u001b[34m14%|█▎ | 793/5774 [00:20<01:30, 54.92it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 799/5774 [00:20<01:30, 55.05it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 805/5774 [00:20<01:30, 54.80it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 811/5774 [00:20<01:30, 54.89it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 817/5774 [00:20<01:30, 54.77it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 823/5774 [00:20<01:30, 54.58it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 829/5774 [00:20<01:30, 54.45it/s]\u001b[0m\n",
"\u001b[34m14%|█▍ | 835/5774 [00:20<01:30, 54.65it/s]\u001b[0m\n",
"\u001b[34m15%|█▍ | 841/5774 [00:21<01:30, 54.70it/s]\u001b[0m\n",
"\u001b[34m15%|█▍ | 847/5774 [00:21<01:30, 54.71it/s]\u001b[0m\n",
"\u001b[34m15%|█▍ | 853/5774 [00:21<01:29, 54.87it/s]\u001b[0m\n",
"\u001b[34m15%|█▍ | 859/5774 [00:21<01:29, 54.71it/s]\u001b[0m\n",
"\u001b[34m15%|█▍ | 865/5774 [00:21<01:29, 54.65it/s]\u001b[0m\n",
"\u001b[34m15%|█▌ | 871/5774 [00:21<01:29, 54.79it/s]\u001b[0m\n",
"\u001b[34m15%|█▌ | 877/5774 [00:21<01:29, 54.95it/s]\u001b[0m\n",
"\u001b[34m15%|█▌ | 883/5774 [00:21<01:31, 53.50it/s]\u001b[0m\n",
"\u001b[34m15%|█▌ | 889/5774 [00:21<01:30, 53.93it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 895/5774 [00:22<01:30, 54.11it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 901/5774 [00:22<01:29, 54.59it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 907/5774 [00:22<01:29, 54.51it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 913/5774 [00:22<01:29, 54.58it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 919/5774 [00:22<01:28, 54.60it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 925/5774 [00:22<01:28, 54.61it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 931/5774 [00:22<01:28, 54.73it/s]\u001b[0m\n",
"\u001b[34m16%|█▌ | 937/5774 [00:22<01:28, 54.68it/s]\u001b[0m\n",
"\u001b[34m16%|█▋ | 943/5774 [00:22<01:27, 55.04it/s]\u001b[0m\n",
"\u001b[34m16%|█▋ | 949/5774 [00:23<01:27, 55.07it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 955/5774 [00:23<01:27, 54.92it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 961/5774 [00:23<01:27, 54.86it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 967/5774 [00:23<01:27, 54.76it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 973/5774 [00:23<01:27, 54.60it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 979/5774 [00:23<01:27, 54.71it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 985/5774 [00:23<01:27, 54.94it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 991/5774 [00:23<01:27, 54.72it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 997/5774 [00:23<01:27, 54.64it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 1003/5774 [00:23<01:27, 54.59it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 1009/5774 [00:24<01:26, 54.88it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1015/5774 [00:24<01:26, 54.76it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1021/5774 [00:24<01:27, 54.58it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1027/5774 [00:24<01:27, 54.56it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1033/5774 [00:24<01:26, 54.58it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1039/5774 [00:24<01:26, 54.55it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1045/5774 [00:24<01:27, 54.32it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1051/5774 [00:24<01:26, 54.34it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1057/5774 [00:24<01:26, 54.38it/s]\u001b[0m\n",
"\u001b[34m18%|█▊ | 1063/5774 [00:25<01:26, 54.41it/s]\u001b[0m\n",
"\u001b[34m19%|█▊ | 1069/5774 [00:25<01:26, 54.43it/s]\u001b[0m\n",
"\u001b[34m19%|█▊ | 1075/5774 [00:25<01:26, 54.50it/s]\u001b[0m\n",
"\u001b[34m19%|█▊ | 1081/5774 [00:25<01:26, 54.39it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1087/5774 [00:25<01:26, 54.43it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1093/5774 [00:25<01:27, 53.45it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1099/5774 [00:25<01:29, 52.20it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1105/5774 [00:25<01:30, 51.84it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1111/5774 [00:26<01:28, 52.77it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1117/5774 [00:26<01:26, 53.61it/s]\u001b[0m\n",
"\u001b[34m19%|█▉ | 1123/5774 [00:26<01:26, 54.07it/s]\u001b[0m\n",
"\u001b[34m20%|█▉ | 1129/5774 [00:26<01:25, 54.11it/s]\u001b[0m\n",
"\u001b[34m20%|█▉ | 1135/5774 [00:26<01:25, 54.21it/s]\u001b[0m\n",
"\u001b[34m20%|█▉ | 1141/5774 [00:26<01:24, 54.64it/s]\u001b[0m\n",
"\u001b[34m20%|█▉ | 1147/5774 [00:26<01:24, 54.71it/s]\u001b[0m\n",
"\u001b[34m20%|█▉ | 1153/5774 [00:26<01:24, 54.64it/s]\u001b[0m\n",
"\u001b[34m20%|██ | 1159/5774 [00:26<01:24, 54.91it/s]\u001b[0m\n",
"\u001b[34m20%|██ | 1165/5774 [00:26<01:23, 55.00it/s]\u001b[0m\n",
"\u001b[34m20%|██ | 1171/5774 [00:27<01:23, 54.99it/s]\u001b[0m\n",
"\u001b[34m20%|██ | 1177/5774 [00:27<01:23, 55.04it/s]\u001b[0m\n",
"\u001b[34m20%|██ | 1183/5774 [00:27<01:23, 55.09it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1189/5774 [00:27<01:22, 55.32it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1195/5774 [00:27<01:23, 55.08it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1201/5774 [00:27<01:23, 54.85it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1207/5774 [00:27<01:23, 54.78it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1213/5774 [00:27<01:23, 54.74it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1219/5774 [00:27<01:23, 54.77it/s]\u001b[0m\n",
"\u001b[34m21%|██ | 1225/5774 [00:28<01:23, 54.80it/s]\u001b[0m\n",
"\u001b[34m21%|██▏ | 1231/5774 [00:28<01:22, 54.86it/s]\u001b[0m\n",
"\u001b[34m21%|██▏ | 1237/5774 [00:28<01:22, 54.80it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1243/5774 [00:28<01:22, 54.78it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1249/5774 [00:28<01:22, 54.74it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1255/5774 [00:28<01:22, 54.66it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1261/5774 [00:28<01:22, 54.95it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1267/5774 [00:28<01:21, 55.14it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1273/5774 [00:28<01:21, 55.25it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1279/5774 [00:29<01:22, 54.68it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1285/5774 [00:29<01:22, 54.52it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1291/5774 [00:29<01:22, 54.55it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 1297/5774 [00:29<01:21, 54.65it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1303/5774 [00:29<01:21, 54.71it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1309/5774 [00:29<01:21, 54.86it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1315/5774 [00:29<01:21, 55.05it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1321/5774 [00:29<01:21, 54.94it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1327/5774 [00:29<01:20, 55.35it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1333/5774 [00:30<01:20, 55.03it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1339/5774 [00:30<01:20, 55.31it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1345/5774 [00:30<01:20, 55.17it/s]\u001b[0m\n",
"\u001b[34m23%|██▎ | 1351/5774 [00:30<01:20, 55.01it/s]\u001b[0m\n",
"\u001b[34m24%|██▎ | 1357/5774 [00:30<01:20, 54.96it/s]\u001b[0m\n",
"\u001b[34m24%|██▎ | 1363/5774 [00:30<01:20, 54.89it/s]\u001b[0m\n",
"\u001b[34m24%|██▎ | 1369/5774 [00:30<01:20, 54.80it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1375/5774 [00:30<01:20, 54.72it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1381/5774 [00:30<01:20, 54.69it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1387/5774 [00:31<01:20, 54.66it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1393/5774 [00:31<01:20, 54.60it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1399/5774 [00:31<01:20, 54.53it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1405/5774 [00:31<01:20, 54.53it/s]\u001b[0m\n",
"\u001b[34m24%|██▍ | 1411/5774 [00:31<01:19, 54.57it/s]\u001b[0m\n",
"\u001b[34m25%|██▍ | 1417/5774 [00:31<01:19, 54.62it/s]\u001b[0m\n",
"\u001b[34m25%|██▍ | 1423/5774 [00:31<01:19, 54.56it/s]\u001b[0m\n",
"\u001b[34m25%|██▍ | 1429/5774 [00:31<01:19, 54.51it/s]\u001b[0m\n",
"\u001b[34m25%|██▍ | 1435/5774 [00:31<01:19, 54.48it/s]\u001b[0m\n",
"\u001b[34m25%|██▍ | 1441/5774 [00:32<01:19, 54.55it/s]\u001b[0m\n",
"\u001b[34m25%|██▌ | 1447/5774 [00:32<01:19, 54.42it/s]\u001b[0m\n",
"\u001b[34m25%|██▌ | 1453/5774 [00:32<01:19, 54.44it/s]\u001b[0m\n",
"\u001b[34m25%|██▌ | 1459/5774 [00:32<01:19, 54.54it/s]\u001b[0m\n",
"\u001b[34m25%|██▌ | 1465/5774 [00:32<01:18, 54.92it/s]\u001b[0m\n",
"\u001b[34m25%|██▌ | 1471/5774 [00:32<01:18, 54.81it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1477/5774 [00:32<01:18, 54.89it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1483/5774 [00:32<01:18, 54.99it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1489/5774 [00:32<01:18, 54.91it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1495/5774 [00:33<01:18, 54.83it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1501/5774 [00:33<01:18, 54.61it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1507/5774 [00:33<01:18, 54.56it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 1513/5774 [00:33<01:18, 54.59it/s]\u001b[0m\n",
"\u001b[34m26%|██▋ | 1519/5774 [00:33<01:17, 54.71it/s]\u001b[0m\n",
"\u001b[34m26%|██▋ | 1525/5774 [00:33<01:17, 55.08it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1531/5774 [00:33<01:16, 55.46it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1537/5774 [00:33<01:16, 55.45it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1543/5774 [00:33<01:16, 55.26it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1549/5774 [00:33<01:16, 54.95it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1555/5774 [00:34<01:17, 54.76it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1561/5774 [00:34<01:16, 54.80it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1567/5774 [00:34<01:16, 55.06it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1573/5774 [00:34<01:16, 54.91it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1579/5774 [00:34<01:16, 54.77it/s]\u001b[0m\n",
"\u001b[34m27%|██▋ | 1585/5774 [00:34<01:16, 54.77it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1591/5774 [00:34<01:16, 54.85it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1597/5774 [00:34<01:15, 55.09it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1603/5774 [00:34<01:15, 55.32it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1609/5774 [00:35<01:15, 55.51it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1615/5774 [00:35<01:14, 55.62it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1621/5774 [00:35<01:14, 55.53it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1627/5774 [00:35<01:15, 55.21it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1633/5774 [00:35<01:15, 55.08it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1639/5774 [00:35<01:15, 54.87it/s]\u001b[0m\n",
"\u001b[34m28%|██▊ | 1645/5774 [00:35<01:15, 54.74it/s]\u001b[0m\n",
"\u001b[34m29%|██▊ | 1651/5774 [00:35<01:15, 54.73it/s]\u001b[0m\n",
"\u001b[34m29%|██▊ | 1657/5774 [00:35<01:15, 54.43it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1663/5774 [00:36<01:15, 54.43it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1669/5774 [00:36<01:15, 54.49it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1675/5774 [00:36<01:15, 54.55it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1681/5774 [00:36<01:14, 54.59it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1687/5774 [00:36<01:14, 54.67it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1693/5774 [00:36<01:14, 54.70it/s]\u001b[0m\n",
"\u001b[34m29%|██▉ | 1699/5774 [00:36<01:14, 54.67it/s]\u001b[0m\n",
"\u001b[34m30%|██▉ | 1705/5774 [00:36<01:14, 54.81it/s]\u001b[0m\n",
"\u001b[34m30%|██▉ | 1711/5774 [00:36<01:14, 54.89it/s]\u001b[0m\n",
"\u001b[34m30%|██▉ | 1717/5774 [00:37<01:13, 54.87it/s]\u001b[0m\n",
"\u001b[34m30%|██▉ | 1723/5774 [00:37<01:13, 54.83it/s]\u001b[0m\n",
"\u001b[34m30%|██▉ | 1729/5774 [00:37<01:13, 55.12it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 1735/5774 [00:37<01:13, 55.11it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 1741/5774 [00:37<01:13, 55.13it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 1747/5774 [00:37<01:12, 55.35it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 1753/5774 [00:37<01:12, 55.14it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 1759/5774 [00:37<01:13, 54.96it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1765/5774 [00:37<01:12, 54.93it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1771/5774 [00:38<01:12, 54.90it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1777/5774 [00:38<01:13, 54.74it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1783/5774 [00:38<01:13, 54.63it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1789/5774 [00:38<01:12, 54.65it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1795/5774 [00:38<01:12, 54.58it/s]\u001b[0m\n",
"\u001b[34m31%|███ | 1801/5774 [00:38<01:12, 54.49it/s]\u001b[0m\n",
"\u001b[34m31%|███▏ | 1807/5774 [00:38<01:12, 54.51it/s]\u001b[0m\n",
"\u001b[34m31%|███▏ | 1813/5774 [00:38<01:12, 54.52it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1819/5774 [00:38<01:12, 54.60it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1825/5774 [00:39<01:12, 54.53it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1831/5774 [00:39<01:12, 54.59it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1837/5774 [00:39<01:12, 54.64it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1843/5774 [00:39<01:11, 54.68it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1849/5774 [00:39<01:11, 54.89it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1855/5774 [00:39<01:11, 54.96it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1861/5774 [00:39<01:10, 55.18it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1867/5774 [00:39<01:10, 55.36it/s]\u001b[0m\n",
"\u001b[34m32%|███▏ | 1873/5774 [00:39<01:10, 55.54it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1879/5774 [00:40<01:10, 55.22it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1885/5774 [00:40<01:10, 55.31it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1891/5774 [00:40<01:10, 55.42it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1897/5774 [00:40<01:09, 55.52it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1903/5774 [00:40<01:09, 55.49it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1909/5774 [00:40<01:09, 55.29it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1915/5774 [00:40<01:09, 55.34it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1921/5774 [00:40<01:09, 55.10it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1927/5774 [00:40<01:09, 54.99it/s]\u001b[0m\n",
"\u001b[34m33%|███▎ | 1933/5774 [00:40<01:09, 55.08it/s]\u001b[0m\n",
"\u001b[34m34%|███▎ | 1939/5774 [00:41<01:09, 55.11it/s]\u001b[0m\n",
"\u001b[34m34%|███▎ | 1945/5774 [00:41<01:10, 54.39it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1951/5774 [00:41<01:10, 54.37it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1957/5774 [00:41<01:10, 54.48it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1963/5774 [00:41<01:10, 54.40it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1969/5774 [00:41<01:10, 54.29it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1975/5774 [00:41<01:10, 54.25it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1981/5774 [00:41<01:09, 54.71it/s]\u001b[0m\n",
"\u001b[34m34%|███▍ | 1987/5774 [00:41<01:09, 54.81it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 1993/5774 [00:42<01:09, 54.66it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 1999/5774 [00:42<01:09, 54.61it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 2005/5774 [00:42<01:08, 54.62it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 2011/5774 [00:42<01:08, 54.97it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 2017/5774 [00:42<01:08, 54.99it/s]\u001b[0m\n",
"\u001b[34m35%|███▌ | 2023/5774 [00:42<01:08, 54.83it/s]\u001b[0m\n",
"\u001b[34m35%|███▌ | 2029/5774 [00:42<01:08, 54.67it/s]\u001b[0m\n",
"\u001b[34m35%|███▌ | 2035/5774 [00:42<01:08, 54.58it/s]\u001b[0m\n",
"\u001b[34m35%|███▌ | 2041/5774 [00:42<01:08, 54.29it/s]\u001b[0m\n",
"\u001b[34m35%|███▌ | 2047/5774 [00:43<01:08, 54.29it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2053/5774 [00:43<01:08, 54.29it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2059/5774 [00:43<01:08, 54.31it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2065/5774 [00:43<01:08, 54.38it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2071/5774 [00:43<01:07, 54.74it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2077/5774 [00:43<01:07, 54.77it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2083/5774 [00:43<01:07, 54.39it/s]\u001b[0m\n",
"\u001b[34m36%|███▌ | 2089/5774 [00:43<01:07, 54.35it/s]\u001b[0m\n",
"\u001b[34m36%|███▋ | 2095/5774 [00:43<01:07, 54.36it/s]\u001b[0m\n",
"\u001b[34m36%|███▋ | 2101/5774 [00:44<01:07, 54.40it/s]\u001b[0m\n",
"\u001b[34m36%|███▋ | 2107/5774 [00:44<01:07, 54.58it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2113/5774 [00:44<01:07, 54.55it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2119/5774 [00:44<01:07, 54.54it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2125/5774 [00:44<01:07, 54.45it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2131/5774 [00:44<01:06, 54.76it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2137/5774 [00:44<01:06, 54.71it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2143/5774 [00:44<01:06, 54.56it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2149/5774 [00:44<01:06, 54.56it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2155/5774 [00:45<01:06, 54.50it/s]\u001b[0m\n",
"\u001b[34m37%|███▋ | 2161/5774 [00:45<01:06, 54.57it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2167/5774 [00:45<01:05, 54.70it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2173/5774 [00:45<01:05, 54.73it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2179/5774 [00:45<01:05, 54.67it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2185/5774 [00:45<01:05, 54.75it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2191/5774 [00:45<01:05, 54.75it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2197/5774 [00:45<01:05, 54.72it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2203/5774 [00:45<01:05, 54.68it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2209/5774 [00:46<01:05, 54.57it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2215/5774 [00:46<01:05, 54.65it/s]\u001b[0m\n",
"\u001b[34m38%|███▊ | 2221/5774 [00:46<01:05, 54.47it/s]\u001b[0m\n",
"\u001b[34m39%|███▊ | 2227/5774 [00:46<01:05, 54.51it/s]\u001b[0m\n",
"\u001b[34m39%|███▊ | 2233/5774 [00:46<01:05, 54.47it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2239/5774 [00:46<01:04, 54.47it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2245/5774 [00:46<01:04, 54.48it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2251/5774 [00:46<01:05, 53.92it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2257/5774 [00:46<01:05, 54.10it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2263/5774 [00:47<01:04, 54.22it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2269/5774 [00:47<01:04, 54.29it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 2275/5774 [00:47<01:04, 53.90it/s]\u001b[0m\n",
"\u001b[34m40%|███▉ | 2281/5774 [00:47<01:04, 53.89it/s]\u001b[0m\n",
"\u001b[34m40%|███▉ | 2287/5774 [00:47<01:04, 54.02it/s]\u001b[0m\n",
"\u001b[34m40%|███▉ | 2293/5774 [00:47<01:03, 54.47it/s]\u001b[0m\n",
"\u001b[34m40%|███▉ | 2299/5774 [00:47<01:03, 54.57it/s]\u001b[0m\n",
"\u001b[34m40%|███▉ | 2305/5774 [00:47<01:03, 54.40it/s]\u001b[0m\n",
"\u001b[34m40%|████ | 2311/5774 [00:47<01:03, 54.40it/s]\u001b[0m\n",
"\u001b[34m40%|████ | 2317/5774 [00:48<01:03, 54.47it/s]\u001b[0m\n",
"\u001b[34m40%|████ | 2323/5774 [00:48<01:02, 54.86it/s]\u001b[0m\n",
"\u001b[34m40%|████ | 2329/5774 [00:48<01:02, 54.92it/s]\u001b[0m\n",
"\u001b[34m40%|████ | 2335/5774 [00:48<01:02, 54.90it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2341/5774 [00:48<01:02, 55.05it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2347/5774 [00:48<01:02, 54.93it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2353/5774 [00:48<01:02, 54.63it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2359/5774 [00:48<01:02, 54.41it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2365/5774 [00:48<01:02, 54.37it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2371/5774 [00:49<01:02, 54.52it/s]\u001b[0m\n",
"\u001b[34m41%|████ | 2377/5774 [00:49<01:02, 54.67it/s]\u001b[0m\n",
"\u001b[34m41%|████▏ | 2383/5774 [00:49<01:01, 54.77it/s]\u001b[0m\n",
"\u001b[34m41%|████▏ | 2389/5774 [00:49<01:01, 55.13it/s]\u001b[0m\n",
"\u001b[34m41%|████▏ | 2395/5774 [00:49<01:01, 54.92it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2401/5774 [00:49<01:01, 55.14it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2407/5774 [00:49<01:01, 55.13it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2413/5774 [00:49<01:00, 55.12it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2419/5774 [00:49<01:00, 55.11it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2425/5774 [00:49<01:00, 54.90it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2431/5774 [00:50<01:01, 54.57it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2437/5774 [00:50<01:01, 54.32it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2443/5774 [00:50<01:01, 54.45it/s]\u001b[0m\n",
"\u001b[34m42%|████▏ | 2449/5774 [00:50<01:01, 54.37it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2455/5774 [00:50<01:00, 54.51it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2461/5774 [00:50<01:00, 54.43it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2467/5774 [00:50<01:00, 54.37it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2473/5774 [00:50<01:00, 54.55it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2479/5774 [00:50<01:00, 54.76it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2485/5774 [00:51<01:00, 54.67it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2491/5774 [00:51<00:59, 54.89it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2497/5774 [00:51<00:59, 54.72it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2503/5774 [00:51<00:59, 54.65it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 2509/5774 [00:51<00:59, 54.63it/s]\u001b[0m\n",
"\u001b[34m44%|████▎ | 2515/5774 [00:51<00:59, 54.52it/s]\u001b[0m\n",
"\u001b[34m44%|████▎ | 2521/5774 [00:51<00:59, 54.39it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2527/5774 [00:51<00:59, 54.48it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2533/5774 [00:51<00:59, 54.47it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2539/5774 [00:52<00:59, 54.43it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2545/5774 [00:52<00:59, 54.51it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2551/5774 [00:52<00:59, 54.46it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2557/5774 [00:52<00:58, 54.76it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2563/5774 [00:52<00:58, 54.68it/s]\u001b[0m\n",
"\u001b[34m44%|████▍ | 2569/5774 [00:52<00:58, 54.72it/s]\u001b[0m\n",
"\u001b[34m45%|████▍ | 2575/5774 [00:52<00:58, 54.56it/s]\u001b[0m\n",
"\u001b[34m45%|████▍ | 2581/5774 [00:52<00:58, 54.30it/s]\u001b[0m\n",
"\u001b[34m45%|████▍ | 2587/5774 [00:52<00:58, 54.46it/s]\u001b[0m\n",
"\u001b[34m45%|████▍ | 2593/5774 [00:53<00:58, 54.50it/s]\u001b[0m\n",
"\u001b[34m45%|████▌ | 2599/5774 [00:53<00:58, 54.71it/s]\u001b[0m\n",
"\u001b[34m45%|████▌ | 2605/5774 [00:53<00:57, 54.91it/s]\u001b[0m\n",
"\u001b[34m45%|████▌ | 2611/5774 [00:53<00:57, 54.93it/s]\u001b[0m\n",
"\u001b[34m45%|████▌ | 2617/5774 [00:53<00:57, 54.78it/s]\u001b[0m\n",
"\u001b[34m45%|████▌ | 2623/5774 [00:53<00:57, 54.67it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2629/5774 [00:53<00:57, 54.83it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2635/5774 [00:53<00:57, 55.03it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2641/5774 [00:53<00:56, 55.17it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2647/5774 [00:54<00:59, 52.75it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2653/5774 [00:54<00:58, 53.19it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2659/5774 [00:54<00:57, 53.94it/s]\u001b[0m\n",
"\u001b[34m46%|████▌ | 2665/5774 [00:54<00:57, 53.98it/s]\u001b[0m\n",
"\u001b[34m46%|████▋ | 2671/5774 [00:54<00:57, 54.42it/s]\u001b[0m\n",
"\u001b[34m46%|████▋ | 2677/5774 [00:54<00:56, 54.75it/s]\u001b[0m\n",
"\u001b[34m46%|████▋ | 2683/5774 [00:54<00:56, 54.84it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2689/5774 [00:54<00:56, 54.72it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2695/5774 [00:54<00:56, 54.55it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2701/5774 [00:55<00:56, 54.80it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2707/5774 [00:55<00:56, 54.58it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2713/5774 [00:55<00:56, 54.63it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2719/5774 [00:55<00:55, 54.76it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2725/5774 [00:55<00:55, 55.11it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2731/5774 [00:55<00:55, 54.93it/s]\u001b[0m\n",
"\u001b[34m47%|████▋ | 2737/5774 [00:55<00:55, 54.82it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2743/5774 [00:55<00:55, 54.75it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2749/5774 [00:55<00:55, 54.53it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2755/5774 [00:56<00:55, 54.47it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2761/5774 [00:56<00:55, 54.48it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2767/5774 [00:56<00:55, 54.40it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2773/5774 [00:56<00:55, 54.43it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2779/5774 [00:56<00:55, 54.40it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2785/5774 [00:56<00:54, 54.43it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2791/5774 [00:56<00:54, 54.52it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 2797/5774 [00:56<00:54, 54.62it/s]\u001b[0m\n",
"\u001b[34m49%|████▊ | 2803/5774 [00:56<00:54, 54.62it/s]\u001b[0m\n",
"\u001b[34m49%|████▊ | 2809/5774 [00:57<00:54, 54.67it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2815/5774 [00:57<00:53, 55.04it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2821/5774 [00:57<00:53, 55.29it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2827/5774 [00:57<00:53, 55.33it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2833/5774 [00:57<00:53, 55.02it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2839/5774 [00:57<00:53, 54.94it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2845/5774 [00:57<00:53, 54.88it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2851/5774 [00:57<00:53, 55.03it/s]\u001b[0m\n",
"\u001b[34m49%|████▉ | 2857/5774 [00:57<00:52, 55.15it/s]\u001b[0m\n",
"\u001b[34m50%|████▉ | 2863/5774 [00:58<00:52, 55.00it/s]\u001b[0m\n",
"\u001b[34m50%|████▉ | 2869/5774 [00:58<00:53, 54.81it/s]\u001b[0m\n",
"\u001b[34m50%|████▉ | 2875/5774 [00:58<00:53, 54.55it/s]\u001b[0m\n",
"\u001b[34m50%|████▉ | 2881/5774 [00:58<00:53, 53.81it/s]\u001b[0m\n",
"\u001b[34m50%|█████ | 2887/5774 [00:58<00:53, 53.79it/s]\u001b[0m\n",
"\u001b[34m50%|█████ | 2893/5774 [00:58<00:53, 53.94it/s]\u001b[0m\n",
"\u001b[34m50%|█████ | 2899/5774 [00:58<00:53, 54.23it/s]\u001b[0m\n",
"\u001b[34m50%|█████ | 2905/5774 [00:58<00:52, 54.25it/s]\u001b[0m\n",
"\u001b[34m50%|█████ | 2911/5774 [00:58<00:52, 54.29it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2917/5774 [00:59<00:52, 54.40it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2923/5774 [00:59<00:52, 54.12it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2929/5774 [00:59<00:52, 54.24it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2935/5774 [00:59<00:52, 54.37it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2941/5774 [00:59<00:52, 54.46it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2947/5774 [00:59<00:51, 54.57it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2953/5774 [00:59<00:51, 54.74it/s]\u001b[0m\n",
"\u001b[34m51%|█████ | 2959/5774 [00:59<00:51, 54.76it/s]\u001b[0m\n",
"\u001b[34m51%|█████▏ | 2965/5774 [00:59<00:51, 54.61it/s]\u001b[0m\n",
"\u001b[34m51%|█████▏ | 2971/5774 [01:00<00:51, 54.67it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 2977/5774 [01:00<00:51, 54.63it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 2983/5774 [01:00<00:51, 54.32it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 2989/5774 [01:00<00:51, 54.40it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 2995/5774 [01:00<00:51, 54.44it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3001/5774 [01:00<00:50, 54.38it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3007/5774 [01:00<00:50, 54.32it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3013/5774 [01:00<00:50, 54.35it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3019/5774 [01:00<00:50, 54.84it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3025/5774 [01:00<00:50, 54.81it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 3031/5774 [01:01<00:49, 55.02it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3037/5774 [01:01<00:49, 55.20it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3043/5774 [01:01<00:49, 55.02it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3049/5774 [01:01<00:49, 54.95it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3055/5774 [01:01<00:49, 54.61it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3061/5774 [01:01<00:49, 54.47it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3067/5774 [01:01<00:49, 54.51it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3073/5774 [01:01<00:49, 54.34it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3079/5774 [01:01<00:49, 54.17it/s]\u001b[0m\n",
"\u001b[34m53%|█████▎ | 3085/5774 [01:02<00:49, 53.94it/s]\u001b[0m\n",
"\u001b[34m54%|█████▎ | 3091/5774 [01:02<00:49, 54.11it/s]\u001b[0m\n",
"\u001b[34m54%|█████▎ | 3097/5774 [01:02<00:49, 54.24it/s]\u001b[0m\n",
"\u001b[34m54%|█████▎ | 3103/5774 [01:02<00:49, 54.39it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3109/5774 [01:02<00:48, 54.51it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3115/5774 [01:02<00:48, 54.59it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3121/5774 [01:02<00:48, 54.58it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3127/5774 [01:02<00:48, 54.52it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3133/5774 [01:02<00:48, 54.54it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3139/5774 [01:03<00:48, 54.66it/s]\u001b[0m\n",
"\u001b[34m54%|█████▍ | 3145/5774 [01:03<00:48, 54.77it/s]\u001b[0m\n",
"\u001b[34m55%|█████▍ | 3151/5774 [01:03<00:47, 54.74it/s]\u001b[0m\n",
"\u001b[34m55%|█████▍ | 3157/5774 [01:03<00:47, 54.69it/s]\u001b[0m\n",
"\u001b[34m55%|█████▍ | 3163/5774 [01:03<00:47, 54.60it/s]\u001b[0m\n",
"\u001b[34m55%|█████▍ | 3169/5774 [01:03<00:47, 54.58it/s]\u001b[0m\n",
"\u001b[34m55%|█████▍ | 3175/5774 [01:03<00:47, 54.58it/s]\u001b[0m\n",
"\u001b[34m55%|█████▌ | 3181/5774 [01:03<00:47, 54.56it/s]\u001b[0m\n",
"\u001b[34m55%|█████▌ | 3187/5774 [01:03<00:47, 54.82it/s]\u001b[0m\n",
"\u001b[34m55%|█████▌ | 3193/5774 [01:04<00:46, 55.03it/s]\u001b[0m\n",
"\u001b[34m55%|█████▌ | 3199/5774 [01:04<00:46, 54.95it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3205/5774 [01:04<00:46, 54.80it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3211/5774 [01:04<00:46, 54.72it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3217/5774 [01:04<00:46, 54.70it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3223/5774 [01:04<00:46, 54.60it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3229/5774 [01:04<00:46, 54.55it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3235/5774 [01:04<00:46, 54.44it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3241/5774 [01:04<00:46, 54.46it/s]\u001b[0m\n",
"\u001b[34m56%|█████▌ | 3247/5774 [01:05<00:46, 54.41it/s]\u001b[0m\n",
"\u001b[34m56%|█████▋ | 3253/5774 [01:05<00:46, 54.33it/s]\u001b[0m\n",
"\u001b[34m56%|█████▋ | 3259/5774 [01:05<00:46, 54.39it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3265/5774 [01:05<00:46, 54.41it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3271/5774 [01:05<00:45, 54.51it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3277/5774 [01:05<00:45, 54.50it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3283/5774 [01:05<00:45, 54.46it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3289/5774 [01:05<00:45, 54.50it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3295/5774 [01:05<00:45, 54.84it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3301/5774 [01:06<00:45, 54.77it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3307/5774 [01:06<00:45, 54.70it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3313/5774 [01:06<00:45, 54.55it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 3319/5774 [01:06<00:44, 54.70it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3325/5774 [01:06<00:44, 54.45it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3331/5774 [01:06<00:44, 54.44it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3337/5774 [01:06<00:44, 54.57it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3343/5774 [01:06<00:44, 54.65it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3349/5774 [01:06<00:44, 54.62it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3355/5774 [01:07<00:44, 54.56it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3361/5774 [01:07<00:44, 54.52it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3367/5774 [01:07<00:44, 54.52it/s]\u001b[0m\n",
"\u001b[34m58%|█████▊ | 3373/5774 [01:07<00:44, 54.49it/s]\u001b[0m\n",
"\u001b[34m59%|█████▊ | 3379/5774 [01:07<00:43, 54.46it/s]\u001b[0m\n",
"\u001b[34m59%|█████▊ | 3385/5774 [01:07<00:43, 54.47it/s]\u001b[0m\n",
"\u001b[34m59%|█████▊ | 3391/5774 [01:07<00:43, 54.48it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3397/5774 [01:07<00:43, 54.42it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3403/5774 [01:07<00:43, 54.37it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3409/5774 [01:08<00:43, 54.33it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3415/5774 [01:08<00:43, 54.41it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3421/5774 [01:08<00:43, 54.45it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3427/5774 [01:08<00:43, 54.35it/s]\u001b[0m\n",
"\u001b[34m59%|█████▉ | 3433/5774 [01:08<00:43, 54.34it/s]\u001b[0m\n",
"\u001b[34m60%|█████▉ | 3439/5774 [01:08<00:43, 54.25it/s]\u001b[0m\n",
"\u001b[34m60%|█████▉ | 3445/5774 [01:08<00:43, 54.00it/s]\u001b[0m\n",
"\u001b[34m60%|█████▉ | 3451/5774 [01:08<00:43, 53.77it/s]\u001b[0m\n",
"\u001b[34m60%|█████▉ | 3457/5774 [01:08<00:42, 54.00it/s]\u001b[0m\n",
"\u001b[34m60%|█████▉ | 3463/5774 [01:09<00:42, 54.19it/s]\u001b[0m\n",
"\u001b[34m60%|██████ | 3469/5774 [01:09<00:42, 54.13it/s]\u001b[0m\n",
"\u001b[34m60%|██████ | 3475/5774 [01:09<00:42, 54.19it/s]\u001b[0m\n",
"\u001b[34m60%|██████ | 3481/5774 [01:09<00:42, 54.27it/s]\u001b[0m\n",
"\u001b[34m60%|██████ | 3487/5774 [01:09<00:42, 54.16it/s]\u001b[0m\n",
"\u001b[34m60%|██████ | 3493/5774 [01:09<00:41, 54.32it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3499/5774 [01:09<00:41, 54.18it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3505/5774 [01:09<00:42, 53.96it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3511/5774 [01:09<00:42, 52.67it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3517/5774 [01:10<00:43, 51.64it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3523/5774 [01:10<00:43, 51.96it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3529/5774 [01:10<00:42, 52.62it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 3535/5774 [01:10<00:42, 52.42it/s]\u001b[0m\n",
"\u001b[34m61%|██████▏ | 3541/5774 [01:10<00:42, 52.13it/s]\u001b[0m\n",
"\u001b[34m61%|██████▏ | 3547/5774 [01:10<00:42, 52.36it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3553/5774 [01:10<00:42, 52.67it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3559/5774 [01:10<00:41, 53.28it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3565/5774 [01:10<00:41, 53.59it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3571/5774 [01:11<00:40, 53.89it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3577/5774 [01:11<00:40, 54.07it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3583/5774 [01:11<00:40, 54.03it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3589/5774 [01:11<00:40, 53.84it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3595/5774 [01:11<00:40, 53.70it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3601/5774 [01:11<00:40, 53.77it/s]\u001b[0m\n",
"\u001b[34m62%|██████▏ | 3607/5774 [01:11<00:40, 54.02it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3613/5774 [01:11<00:39, 54.17it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3619/5774 [01:11<00:39, 54.24it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3625/5774 [01:12<00:39, 54.26it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3631/5774 [01:12<00:39, 54.42it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3637/5774 [01:12<00:39, 54.65it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3643/5774 [01:12<00:39, 54.57it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3649/5774 [01:12<00:39, 54.34it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3655/5774 [01:12<00:38, 54.37it/s]\u001b[0m\n",
"\u001b[34m63%|██████▎ | 3661/5774 [01:12<00:38, 54.45it/s]\u001b[0m\n",
"\u001b[34m64%|██████▎ | 3667/5774 [01:12<00:38, 54.81it/s]\u001b[0m\n",
"\u001b[34m64%|██████▎ | 3673/5774 [01:12<00:38, 54.70it/s]\u001b[0m\n",
"\u001b[34m64%|██████▎ | 3679/5774 [01:13<00:38, 54.57it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3685/5774 [01:13<00:38, 54.37it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3691/5774 [01:13<00:38, 54.39it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3697/5774 [01:13<00:38, 54.34it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3703/5774 [01:13<00:38, 54.23it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3709/5774 [01:13<00:38, 54.28it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3715/5774 [01:13<00:37, 54.28it/s]\u001b[0m\n",
"\u001b[34m64%|██████▍ | 3721/5774 [01:13<00:37, 54.48it/s]\u001b[0m\n",
"\u001b[34m65%|██████▍ | 3727/5774 [01:13<00:37, 54.60it/s]\u001b[0m\n",
"\u001b[34m65%|██████▍ | 3733/5774 [01:14<00:37, 54.52it/s]\u001b[0m\n",
"\u001b[34m65%|██████▍ | 3739/5774 [01:14<00:37, 54.53it/s]\u001b[0m\n",
"\u001b[34m65%|██████▍ | 3745/5774 [01:14<00:37, 54.49it/s]\u001b[0m\n",
"\u001b[34m65%|██████▍ | 3751/5774 [01:14<00:36, 54.68it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 3757/5774 [01:14<00:36, 54.69it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 3763/5774 [01:14<00:36, 54.60it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 3769/5774 [01:14<00:36, 54.49it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 3775/5774 [01:14<00:36, 54.35it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 3781/5774 [01:14<00:36, 54.39it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3787/5774 [01:15<00:36, 54.41it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3793/5774 [01:15<00:36, 54.79it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3799/5774 [01:15<00:36, 54.82it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3805/5774 [01:15<00:35, 54.98it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3811/5774 [01:15<00:35, 54.91it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3817/5774 [01:15<00:35, 55.12it/s]\u001b[0m\n",
"\u001b[34m66%|██████▌ | 3823/5774 [01:15<00:35, 54.97it/s]\u001b[0m\n",
"\u001b[34m66%|██████▋ | 3829/5774 [01:15<00:35, 55.05it/s]\u001b[0m\n",
"\u001b[34m66%|██████▋ | 3835/5774 [01:15<00:35, 54.97it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3841/5774 [01:16<00:35, 55.19it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3847/5774 [01:16<00:34, 55.09it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3853/5774 [01:16<00:35, 54.80it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3859/5774 [01:16<00:35, 54.69it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3865/5774 [01:16<00:34, 54.65it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3871/5774 [01:16<00:34, 54.71it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3877/5774 [01:16<00:34, 54.62it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3883/5774 [01:16<00:34, 54.53it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3889/5774 [01:16<00:34, 54.51it/s]\u001b[0m\n",
"\u001b[34m67%|██████▋ | 3895/5774 [01:17<00:34, 54.37it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3901/5774 [01:17<00:34, 54.33it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3907/5774 [01:17<00:34, 54.58it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3913/5774 [01:17<00:33, 54.84it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3919/5774 [01:17<00:33, 54.90it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3925/5774 [01:17<00:33, 54.79it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3931/5774 [01:17<00:33, 54.70it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3937/5774 [01:17<00:33, 54.76it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3943/5774 [01:17<00:33, 54.67it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3949/5774 [01:17<00:33, 54.66it/s]\u001b[0m\n",
"\u001b[34m68%|██████▊ | 3955/5774 [01:18<00:33, 54.62it/s]\u001b[0m\n",
"\u001b[34m69%|██████▊ | 3961/5774 [01:18<00:33, 54.62it/s]\u001b[0m\n",
"\u001b[34m69%|██████▊ | 3967/5774 [01:18<00:33, 54.64it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 3973/5774 [01:18<00:32, 54.63it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 3979/5774 [01:18<00:32, 54.55it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 3985/5774 [01:18<00:32, 54.52it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 3991/5774 [01:18<00:32, 54.45it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 3997/5774 [01:18<00:32, 54.48it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 4003/5774 [01:18<00:32, 54.81it/s]\u001b[0m\n",
"\u001b[34m69%|██████▉ | 4009/5774 [01:19<00:32, 54.61it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 4015/5774 [01:19<00:32, 54.62it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 4021/5774 [01:19<00:32, 54.48it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 4027/5774 [01:19<00:32, 54.35it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 4033/5774 [01:19<00:32, 54.30it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 4039/5774 [01:19<00:31, 54.34it/s]\u001b[0m\n",
"\u001b[34m70%|███████ | 4045/5774 [01:19<00:31, 54.39it/s]\u001b[0m\n",
"\u001b[34m70%|███████ | 4051/5774 [01:19<00:31, 54.51it/s]\u001b[0m\n",
"\u001b[34m70%|███████ | 4057/5774 [01:19<00:31, 54.63it/s]\u001b[0m\n",
"\u001b[34m70%|███████ | 4063/5774 [01:20<00:31, 54.92it/s]\u001b[0m\n",
"\u001b[34m70%|███████ | 4069/5774 [01:20<00:31, 54.50it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4075/5774 [01:20<00:31, 54.52it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4081/5774 [01:20<00:31, 54.52it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4087/5774 [01:20<00:30, 54.62it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4093/5774 [01:20<00:30, 54.80it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4099/5774 [01:20<00:30, 54.71it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4105/5774 [01:20<00:30, 54.59it/s]\u001b[0m\n",
"\u001b[34m71%|███████ | 4111/5774 [01:20<00:30, 54.44it/s]\u001b[0m\n",
"\u001b[34m71%|███████▏ | 4117/5774 [01:21<00:30, 54.00it/s]\u001b[0m\n",
"\u001b[34m71%|███████▏ | 4123/5774 [01:21<00:30, 53.97it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4129/5774 [01:21<00:30, 54.13it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4135/5774 [01:21<00:30, 54.60it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4141/5774 [01:21<00:29, 55.05it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4147/5774 [01:21<00:29, 55.21it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4153/5774 [01:21<00:29, 54.91it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4159/5774 [01:21<00:29, 54.70it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4165/5774 [01:21<00:29, 54.50it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4171/5774 [01:22<00:29, 54.59it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4177/5774 [01:22<00:29, 54.66it/s]\u001b[0m\n",
"\u001b[34m72%|███████▏ | 4183/5774 [01:22<00:29, 54.66it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4189/5774 [01:22<00:29, 54.63it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4195/5774 [01:22<00:28, 54.51it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4201/5774 [01:22<00:28, 54.85it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4207/5774 [01:22<00:28, 54.87it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4213/5774 [01:22<00:28, 54.74it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4219/5774 [01:22<00:28, 54.58it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4225/5774 [01:23<00:28, 54.53it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4231/5774 [01:23<00:28, 54.36it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4237/5774 [01:23<00:28, 54.35it/s]\u001b[0m\n",
"\u001b[34m73%|███████▎ | 4243/5774 [01:23<00:28, 54.28it/s]\u001b[0m\n",
"\u001b[34m74%|███████▎ | 4249/5774 [01:23<00:28, 54.12it/s]\u001b[0m\n",
"\u001b[34m74%|███████▎ | 4255/5774 [01:23<00:28, 54.24it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4261/5774 [01:23<00:27, 54.38it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4267/5774 [01:23<00:27, 54.56it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4273/5774 [01:23<00:27, 54.81it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4279/5774 [01:24<00:27, 54.72it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4285/5774 [01:24<00:27, 54.74it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4291/5774 [01:24<00:27, 54.57it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 4297/5774 [01:24<00:27, 53.60it/s]\u001b[0m\n",
"\u001b[34m75%|███████▍ | 4303/5774 [01:24<00:27, 52.93it/s]\u001b[0m\n",
"\u001b[34m75%|███████▍ | 4309/5774 [01:24<00:27, 53.24it/s]\u001b[0m\n",
"\u001b[34m75%|███████▍ | 4315/5774 [01:24<00:27, 53.33it/s]\u001b[0m\n",
"\u001b[34m75%|███████▍ | 4321/5774 [01:24<00:27, 53.59it/s]\u001b[0m\n",
"\u001b[34m75%|███████▍ | 4327/5774 [01:24<00:26, 53.86it/s]\u001b[0m\n",
"\u001b[34m75%|███████▌ | 4333/5774 [01:25<00:26, 53.70it/s]\u001b[0m\n",
"\u001b[34m75%|███████▌ | 4339/5774 [01:25<00:26, 53.95it/s]\u001b[0m\n",
"\u001b[34m75%|███████▌ | 4345/5774 [01:25<00:26, 54.09it/s]\u001b[0m\n",
"\u001b[34m75%|███████▌ | 4351/5774 [01:25<00:26, 54.17it/s]\u001b[0m\n",
"\u001b[34m75%|███████▌ | 4357/5774 [01:25<00:26, 54.19it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4363/5774 [01:25<00:26, 54.26it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4369/5774 [01:25<00:25, 54.08it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4375/5774 [01:25<00:25, 54.03it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4381/5774 [01:25<00:25, 54.17it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4387/5774 [01:26<00:25, 54.23it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4393/5774 [01:26<00:25, 54.54it/s]\u001b[0m\n",
"\u001b[34m76%|███████▌ | 4399/5774 [01:26<00:25, 54.41it/s]\u001b[0m\n",
"\u001b[34m76%|███████▋ | 4405/5774 [01:26<00:25, 54.16it/s]\u001b[0m\n",
"\u001b[34m76%|███████▋ | 4411/5774 [01:26<00:25, 54.19it/s]\u001b[0m\n",
"\u001b[34m76%|███████▋ | 4417/5774 [01:26<00:25, 54.22it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4423/5774 [01:26<00:24, 54.21it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4429/5774 [01:26<00:24, 54.15it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4435/5774 [01:26<00:24, 54.18it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4441/5774 [01:27<00:24, 54.26it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4447/5774 [01:27<00:24, 54.24it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4453/5774 [01:27<00:24, 54.17it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4459/5774 [01:27<00:24, 54.11it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4465/5774 [01:27<00:24, 54.22it/s]\u001b[0m\n",
"\u001b[34m77%|███████▋ | 4471/5774 [01:27<00:23, 54.54it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4477/5774 [01:27<00:23, 54.28it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4483/5774 [01:27<00:23, 54.32it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4489/5774 [01:27<00:23, 54.53it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4495/5774 [01:28<00:23, 54.55it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4501/5774 [01:28<00:23, 54.55it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4507/5774 [01:28<00:23, 54.81it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4513/5774 [01:28<00:23, 54.82it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4519/5774 [01:28<00:22, 54.61it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4525/5774 [01:28<00:22, 54.60it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 4531/5774 [01:28<00:22, 54.32it/s]\u001b[0m\n",
"\u001b[34m79%|███████▊ | 4537/5774 [01:28<00:22, 54.23it/s]\u001b[0m\n",
"\u001b[34m79%|███████▊ | 4543/5774 [01:28<00:22, 54.24it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4549/5774 [01:29<00:22, 54.23it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4555/5774 [01:29<00:22, 54.22it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4561/5774 [01:29<00:22, 54.17it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4567/5774 [01:29<00:22, 54.30it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4573/5774 [01:29<00:22, 54.34it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4579/5774 [01:29<00:21, 54.41it/s]\u001b[0m\n",
"\u001b[34m79%|███████▉ | 4585/5774 [01:29<00:21, 54.34it/s]\u001b[0m\n",
"\u001b[34m80%|███████▉ | 4591/5774 [01:29<00:21, 54.35it/s]\u001b[0m\n",
"\u001b[34m80%|███████▉ | 4597/5774 [01:29<00:21, 54.32it/s]\u001b[0m\n",
"\u001b[34m80%|███████▉ | 4603/5774 [01:30<00:21, 54.26it/s]\u001b[0m\n",
"\u001b[34m80%|███████▉ | 4609/5774 [01:30<00:21, 54.36it/s]\u001b[0m\n",
"\u001b[34m80%|███████▉ | 4615/5774 [01:30<00:21, 54.54it/s]\u001b[0m\n",
"\u001b[34m80%|████████ | 4621/5774 [01:30<00:21, 54.70it/s]\u001b[0m\n",
"\u001b[34m80%|████████ | 4627/5774 [01:30<00:20, 55.03it/s]\u001b[0m\n",
"\u001b[34m80%|████████ | 4633/5774 [01:30<00:20, 55.04it/s]\u001b[0m\n",
"\u001b[34m80%|████████ | 4639/5774 [01:30<00:20, 54.83it/s]\u001b[0m\n",
"\u001b[34m80%|████████ | 4645/5774 [01:30<00:20, 54.70it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4651/5774 [01:30<00:20, 54.63it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4657/5774 [01:31<00:20, 54.57it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4663/5774 [01:31<00:20, 54.31it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4669/5774 [01:31<00:20, 54.23it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4675/5774 [01:31<00:20, 54.25it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4681/5774 [01:31<00:20, 54.37it/s]\u001b[0m\n",
"\u001b[34m81%|████████ | 4687/5774 [01:31<00:19, 54.38it/s]\u001b[0m\n",
"\u001b[34m81%|████████▏ | 4693/5774 [01:31<00:19, 54.45it/s]\u001b[0m\n",
"\u001b[34m81%|████████▏ | 4699/5774 [01:31<00:19, 54.53it/s]\u001b[0m\n",
"\u001b[34m81%|████████▏ | 4705/5774 [01:31<00:19, 54.48it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4711/5774 [01:31<00:19, 54.44it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4717/5774 [01:32<00:19, 54.45it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4723/5774 [01:32<00:19, 54.43it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4729/5774 [01:32<00:19, 54.64it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4735/5774 [01:32<00:19, 54.64it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4741/5774 [01:32<00:18, 54.67it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4747/5774 [01:32<00:18, 54.68it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4753/5774 [01:32<00:18, 54.50it/s]\u001b[0m\n",
"\u001b[34m82%|████████▏ | 4759/5774 [01:32<00:18, 54.58it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4765/5774 [01:32<00:18, 54.65it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4771/5774 [01:33<00:18, 54.74it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4777/5774 [01:33<00:18, 54.61it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4783/5774 [01:33<00:18, 54.51it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4789/5774 [01:33<00:18, 54.44it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4795/5774 [01:33<00:17, 54.58it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4801/5774 [01:33<00:17, 54.77it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4807/5774 [01:33<00:17, 54.86it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4813/5774 [01:33<00:17, 54.95it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 4819/5774 [01:33<00:17, 54.98it/s]\u001b[0m\n",
"\u001b[34m84%|████████▎ | 4825/5774 [01:34<00:17, 54.79it/s]\u001b[0m\n",
"\u001b[34m84%|████████▎ | 4831/5774 [01:34<00:17, 54.73it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4837/5774 [01:34<00:17, 54.87it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4843/5774 [01:34<00:16, 54.83it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4849/5774 [01:34<00:16, 54.82it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4855/5774 [01:34<00:16, 54.83it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4861/5774 [01:34<00:16, 54.73it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4867/5774 [01:34<00:16, 54.73it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4873/5774 [01:34<00:16, 54.74it/s]\u001b[0m\n",
"\u001b[34m84%|████████▍ | 4879/5774 [01:35<00:16, 54.70it/s]\u001b[0m\n",
"\u001b[34m85%|████████▍ | 4885/5774 [01:35<00:16, 54.78it/s]\u001b[0m\n",
"\u001b[34m85%|████████▍ | 4891/5774 [01:35<00:16, 54.76it/s]\u001b[0m\n",
"\u001b[34m85%|████████▍ | 4897/5774 [01:35<00:16, 54.57it/s]\u001b[0m\n",
"\u001b[34m85%|████████▍ | 4903/5774 [01:35<00:15, 54.44it/s]\u001b[0m\n",
"\u001b[34m85%|████████▌ | 4909/5774 [01:35<00:15, 54.30it/s]\u001b[0m\n",
"\u001b[34m85%|████████▌ | 4915/5774 [01:35<00:15, 54.27it/s]\u001b[0m\n",
"\u001b[34m85%|████████▌ | 4921/5774 [01:35<00:15, 54.28it/s]\u001b[0m\n",
"\u001b[34m85%|████████▌ | 4927/5774 [01:35<00:15, 54.25it/s]\u001b[0m\n",
"\u001b[34m85%|████████▌ | 4933/5774 [01:36<00:15, 54.18it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4939/5774 [01:36<00:15, 54.30it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4945/5774 [01:36<00:15, 54.39it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4951/5774 [01:36<00:15, 54.65it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4957/5774 [01:36<00:14, 54.86it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4963/5774 [01:36<00:14, 54.63it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4969/5774 [01:36<00:14, 54.43it/s]\u001b[0m\n",
"\u001b[34m86%|████████▌ | 4975/5774 [01:36<00:14, 54.29it/s]\u001b[0m\n",
"\u001b[34m86%|████████▋ | 4981/5774 [01:36<00:14, 54.23it/s]\u001b[0m\n",
"\u001b[34m86%|████████▋ | 4987/5774 [01:37<00:14, 54.23it/s]\u001b[0m\n",
"\u001b[34m86%|████████▋ | 4993/5774 [01:37<00:14, 54.29it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 4999/5774 [01:37<00:14, 54.31it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5005/5774 [01:37<00:14, 54.48it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5011/5774 [01:37<00:13, 54.77it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5017/5774 [01:37<00:13, 54.94it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5023/5774 [01:37<00:13, 54.79it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5029/5774 [01:37<00:13, 54.67it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5035/5774 [01:37<00:13, 54.65it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5041/5774 [01:38<00:13, 54.49it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 5047/5774 [01:38<00:13, 54.86it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5053/5774 [01:38<00:13, 54.80it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5059/5774 [01:38<00:13, 54.69it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5065/5774 [01:38<00:12, 54.63it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5071/5774 [01:38<00:12, 54.59it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5077/5774 [01:38<00:12, 54.57it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5083/5774 [01:38<00:12, 54.43it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5089/5774 [01:38<00:12, 54.37it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5095/5774 [01:39<00:12, 54.41it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5101/5774 [01:39<00:12, 54.39it/s]\u001b[0m\n",
"\u001b[34m88%|████████▊ | 5107/5774 [01:39<00:12, 54.34it/s]\u001b[0m\n",
"\u001b[34m89%|████████▊ | 5113/5774 [01:39<00:12, 54.41it/s]\u001b[0m\n",
"\u001b[34m89%|████████▊ | 5119/5774 [01:39<00:12, 54.38it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5125/5774 [01:39<00:11, 54.42it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5131/5774 [01:39<00:11, 54.27it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5137/5774 [01:39<00:11, 53.43it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5143/5774 [01:39<00:11, 52.74it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5149/5774 [01:40<00:11, 53.16it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5155/5774 [01:40<00:11, 53.48it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5161/5774 [01:40<00:11, 53.68it/s]\u001b[0m\n",
"\u001b[34m89%|████████▉ | 5167/5774 [01:40<00:11, 53.92it/s]\u001b[0m\n",
"\u001b[34m90%|████████▉ | 5173/5774 [01:40<00:11, 53.93it/s]\u001b[0m\n",
"\u001b[34m90%|████████▉ | 5179/5774 [01:40<00:11, 54.03it/s]\u001b[0m\n",
"\u001b[34m90%|████████▉ | 5185/5774 [01:40<00:10, 53.97it/s]\u001b[0m\n",
"\u001b[34m90%|████████▉ | 5191/5774 [01:40<00:11, 52.64it/s]\u001b[0m\n",
"\u001b[34m90%|█████████ | 5197/5774 [01:40<00:11, 51.09it/s]\u001b[0m\n",
"\u001b[34m90%|█████████ | 5203/5774 [01:41<00:10, 51.99it/s]\u001b[0m\n",
"\u001b[34m90%|█████████ | 5209/5774 [01:41<00:10, 52.53it/s]\u001b[0m\n",
"\u001b[34m90%|█████████ | 5215/5774 [01:41<00:10, 52.94it/s]\u001b[0m\n",
"\u001b[34m90%|█████████ | 5221/5774 [01:41<00:10, 53.33it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5227/5774 [01:41<00:10, 53.72it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5233/5774 [01:41<00:10, 53.91it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5239/5774 [01:41<00:09, 54.00it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5245/5774 [01:41<00:09, 54.07it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5251/5774 [01:41<00:09, 54.20it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5257/5774 [01:42<00:09, 54.29it/s]\u001b[0m\n",
"\u001b[34m91%|█████████ | 5263/5774 [01:42<00:09, 54.36it/s]\u001b[0m\n",
"\u001b[34m91%|█████████▏| 5269/5774 [01:42<00:09, 54.54it/s]\u001b[0m\n",
"\u001b[34m91%|█████████▏| 5275/5774 [01:42<00:09, 54.44it/s]\u001b[0m\n",
"\u001b[34m91%|█████████▏| 5281/5774 [01:42<00:09, 54.61it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5287/5774 [01:42<00:08, 54.41it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5293/5774 [01:42<00:08, 54.41it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5299/5774 [01:42<00:08, 54.44it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5305/5774 [01:42<00:08, 54.35it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5311/5774 [01:43<00:08, 54.25it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5317/5774 [01:43<00:08, 54.20it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5323/5774 [01:43<00:08, 54.18it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5329/5774 [01:43<00:08, 54.15it/s]\u001b[0m\n",
"\u001b[34m92%|█████████▏| 5335/5774 [01:43<00:08, 54.16it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5341/5774 [01:43<00:07, 54.18it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5347/5774 [01:43<00:07, 54.25it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5353/5774 [01:43<00:07, 54.30it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5359/5774 [01:43<00:07, 54.39it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5365/5774 [01:44<00:07, 54.15it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5371/5774 [01:44<00:07, 54.22it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5377/5774 [01:44<00:07, 54.28it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5383/5774 [01:44<00:07, 54.31it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5389/5774 [01:44<00:07, 54.27it/s]\u001b[0m\n",
"\u001b[34m93%|█████████▎| 5395/5774 [01:44<00:06, 54.19it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▎| 5401/5774 [01:44<00:06, 54.16it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▎| 5407/5774 [01:44<00:06, 54.20it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▎| 5413/5774 [01:44<00:06, 54.28it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5419/5774 [01:45<00:06, 54.25it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5425/5774 [01:45<00:06, 54.25it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5431/5774 [01:45<00:06, 54.30it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5437/5774 [01:45<00:06, 54.34it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5443/5774 [01:45<00:06, 54.37it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5449/5774 [01:45<00:05, 54.43it/s]\u001b[0m\n",
"\u001b[34m94%|█████████▍| 5455/5774 [01:45<00:05, 54.40it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▍| 5461/5774 [01:45<00:05, 54.47it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▍| 5467/5774 [01:45<00:05, 54.46it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▍| 5473/5774 [01:46<00:05, 54.47it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▍| 5479/5774 [01:46<00:05, 54.39it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▍| 5485/5774 [01:46<00:05, 54.66it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▌| 5491/5774 [01:46<00:05, 54.70it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▌| 5497/5774 [01:46<00:05, 54.46it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▌| 5503/5774 [01:46<00:04, 54.46it/s]\u001b[0m\n",
"\u001b[34m95%|█████████▌| 5509/5774 [01:46<00:04, 54.45it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5515/5774 [01:46<00:04, 54.81it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5521/5774 [01:46<00:04, 55.06it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5527/5774 [01:47<00:04, 55.21it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5533/5774 [01:47<00:04, 54.98it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5539/5774 [01:47<00:04, 55.03it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5545/5774 [01:47<00:04, 54.84it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5551/5774 [01:47<00:04, 54.68it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 5557/5774 [01:47<00:03, 54.90it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▋| 5563/5774 [01:47<00:03, 54.82it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▋| 5569/5774 [01:47<00:03, 54.52it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5575/5774 [01:47<00:03, 54.32it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5581/5774 [01:48<00:03, 54.20it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5587/5774 [01:48<00:03, 54.20it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5593/5774 [01:48<00:03, 54.24it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5599/5774 [01:48<00:03, 54.01it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5605/5774 [01:48<00:03, 52.68it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5611/5774 [01:48<00:03, 52.90it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5617/5774 [01:48<00:02, 53.40it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5623/5774 [01:48<00:02, 53.89it/s]\u001b[0m\n",
"\u001b[34m97%|█████████▋| 5629/5774 [01:48<00:02, 54.23it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5635/5774 [01:49<00:02, 54.27it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5641/5774 [01:49<00:02, 54.30it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5647/5774 [01:49<00:02, 54.67it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5653/5774 [01:49<00:02, 54.94it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5659/5774 [01:49<00:02, 54.91it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5665/5774 [01:49<00:01, 54.93it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5671/5774 [01:49<00:01, 54.63it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5677/5774 [01:49<00:01, 53.71it/s]\u001b[0m\n",
"\u001b[34m98%|█████████▊| 5683/5774 [01:49<00:01, 53.30it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▊| 5689/5774 [01:50<00:01, 53.52it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▊| 5695/5774 [01:50<00:01, 53.64it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▊| 5701/5774 [01:50<00:01, 53.45it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5707/5774 [01:50<00:01, 53.18it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5713/5774 [01:50<00:01, 53.35it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5719/5774 [01:50<00:01, 53.47it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5725/5774 [01:50<00:00, 53.65it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5731/5774 [01:50<00:00, 53.71it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5737/5774 [01:50<00:00, 53.80it/s]\u001b[0m\n",
"\u001b[34m99%|█████████▉| 5743/5774 [01:51<00:00, 53.81it/s]\u001b[0m\n",
"\u001b[34m100%|█████████▉| 5749/5774 [01:51<00:00, 53.86it/s]\u001b[0m\n",
"\u001b[34m100%|█████████▉| 5755/5774 [01:51<00:00, 53.99it/s]\u001b[0m\n",
"\u001b[34m100%|█████████▉| 5761/5774 [01:51<00:00, 54.31it/s]\u001b[0m\n",
"\u001b[34m100%|█████████▉| 5767/5774 [01:51<00:00, 54.41it/s]\u001b[0m\n",
"\u001b[34m100%|█████████▉| 5773/5774 [01:51<00:00, 54.42it/s]\u001b[0m\n",
"\u001b[34m100%|██████████| 5774/5774 [01:51<00:00, 51.75it/s]\u001b[0m\n",
"\u001b[34m[{train.py:253} INFO - EM = 0.6527537235885001\u001b[0m\n",
"\u001b[34m[{train.py:254} INFO - F1 = 0.7232631736677864\u001b[0m\n",
"\u001b[34m***** Running Prediction *****\u001b[0m\n",
"\u001b[34m***** Running Prediction *****\n",
" Num examples = 5774\u001b[0m\n",
"\u001b[34mNum examples = 5774\n",
" Batch size = 256\u001b[0m\n",
"\u001b[34mBatch size = 256\u001b[0m\n",
"\u001b[34malgo-1:36:36 [0] ofi_init:1157 NCCL WARN NET/OFI Only EFA provider is supported\u001b[0m\n",
"\u001b[34malgo-1:36:36 [0] ofi_init:1208 NCCL WARN NET/OFI aws-ofi-nccl initialization failed\u001b[0m\n",
"\u001b[34mNCCL version 2.10.3+cuda11.3\u001b[0m\n",
"\u001b[34m/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.\n",
" warnings.warn('Was asked to gather along dimension 0, but all '\u001b[0m\n",
"\u001b[34m0%| | 0/23 [00:00, ?it/s]\u001b[0m\n",
"\u001b[34m9%|▊ | 2/23 [00:00<00:02, 8.27it/s]\u001b[0m\n",
"\u001b[34m13%|█▎ | 3/23 [00:00<00:03, 5.96it/s]\u001b[0m\n",
"\u001b[34m17%|█▋ | 4/23 [00:00<00:03, 5.21it/s]\u001b[0m\n",
"\u001b[34m22%|██▏ | 5/23 [00:00<00:03, 4.85it/s]\u001b[0m\n",
"\u001b[34m26%|██▌ | 6/23 [00:01<00:03, 4.74it/s]\u001b[0m\n",
"\u001b[34m30%|███ | 7/23 [00:01<00:03, 4.71it/s]\u001b[0m\n",
"\u001b[34m35%|███▍ | 8/23 [00:01<00:03, 4.69it/s]\u001b[0m\n",
"\u001b[34m39%|███▉ | 9/23 [00:01<00:02, 4.67it/s]\u001b[0m\n",
"\u001b[34m43%|████▎ | 10/23 [00:02<00:02, 4.65it/s]\u001b[0m\n",
"\u001b[34m48%|████▊ | 11/23 [00:02<00:02, 4.57it/s]\u001b[0m\n",
"\u001b[34m52%|█████▏ | 12/23 [00:02<00:02, 4.55it/s]\u001b[0m\n",
"\u001b[34m57%|█████▋ | 13/23 [00:02<00:02, 4.54it/s]\u001b[0m\n",
"\u001b[34m61%|██████ | 14/23 [00:02<00:01, 4.53it/s]\u001b[0m\n",
"\u001b[34m65%|██████▌ | 15/23 [00:03<00:01, 4.46it/s]\u001b[0m\n",
"\u001b[34m70%|██████▉ | 16/23 [00:03<00:01, 4.41it/s]\u001b[0m\n",
"\u001b[34m74%|███████▍ | 17/23 [00:03<00:01, 4.48it/s]\u001b[0m\n",
"\u001b[34m78%|███████▊ | 18/23 [00:03<00:01, 4.52it/s]\u001b[0m\n",
"\u001b[34m83%|████████▎ | 19/23 [00:04<00:00, 4.54it/s]\u001b[0m\n",
"\u001b[34m87%|████████▋ | 20/23 [00:04<00:00, 4.57it/s]\u001b[0m\n",
"\u001b[34m91%|█████████▏| 21/23 [00:04<00:00, 4.52it/s]\u001b[0m\n",
"\u001b[34m96%|█████████▌| 22/23 [00:04<00:00, 4.51it/s]\u001b[0m\n",
"\u001b[34m100%|██████████| 23/23 [00:04<00:00, 5.11it/s]\u001b[0m\n",
"\u001b[34m***** Evaluation results at /opt/ml/output/data *****\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - em = 0.6527537235885001\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - f1 = 0.7232631736677864\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - test_loss = 0.47103351354599\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - test_runtime = 14.2078\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - test_samples_per_second = 406.396\u001b[0m\n",
"\u001b[34m[{train.py:267} INFO - test_steps_per_second = 1.619\u001b[0m\n",
"\u001b[34mtokenizer config file saved in /opt/ml/model/tokenizer_config.json\u001b[0m\n",
"\u001b[34mtokenizer config file saved in /opt/ml/model/tokenizer_config.json\u001b[0m\n",
"\u001b[34mSpecial tokens file saved in /opt/ml/model/special_tokens_map.json\u001b[0m\n",
"\u001b[34mSpecial tokens file saved in /opt/ml/model/special_tokens_map.json\u001b[0m\n",
"\u001b[34mSaving model checkpoint to /opt/ml/model\u001b[0m\n",
"\u001b[34mSaving model checkpoint to /opt/ml/model\u001b[0m\n",
"\u001b[34mConfiguration saved in /opt/ml/model/config.json\u001b[0m\n",
"\u001b[34mConfiguration saved in /opt/ml/model/config.json\u001b[0m\n",
"\u001b[34mModel weights saved in /opt/ml/model/pytorch_model.bin\u001b[0m\n",
"\u001b[34mModel weights saved in /opt/ml/model/pytorch_model.bin\u001b[0m\n",
"\u001b[34m100%|██████████| 23/23 [00:06<00:00, 3.52it/s]\u001b[0m\n",
"\u001b[34m2022-07-06 05:13:25,914 sagemaker-training-toolkit INFO Reporting training SUCCESS\u001b[0m\n",
"\n",
"2022-07-06 05:14:29 Uploading - Uploading generated training model\n",
"2022-07-06 05:16:05 Completed - Training job completed\n",
"Training seconds: 760\n",
"Billable seconds: 760\n"
]
}
],
"source": [
"sess.logs_for_job(job_name=train_job_name, wait=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Copy model artifacts from S3 to local path\n",
"\n",
"훈련된 모델 파라메터는 `model.tar.gz`로 압축되어 S3에 저장됩니다. 만약 SageMaker 상에서 훈련한 모델을 곧바로 배포한다면, 아래 코드 셀을 실행할 필요는 없지만, 로컬/개발 환경에서 훈련된 모델을 간단히 테스트하거나 다른 환경에서 모델을 서빙할 때는 S3에 저장된 모델을 다운로드하셔야 합니다."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"local_model_dir = './model'\n",
"!rm -rf {local_model_dir}\n",
"s3_model_path = sm_estimator.model_data\n",
"os.makedirs(local_model_dir, exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"download: s3://sagemaker-us-east-1-143656149352/kornlp-qna-training-2022-07-06-04-57-30-2022-07-06-04-57-31-762/output/model.tar.gz to model/model.tar.gz\n",
"vocab.txt\n",
"training_args.bin\n",
"tokenizer_config.json\n",
"tokenizer.json\n",
"special_tokens_map.json\n",
"pytorch_model.bin\n",
"config.json\n"
]
}
],
"source": [
"%%bash -s \"$local_model_dir\" \"$s3_model_path\"\n",
"aws s3 cp $2 $1\n",
"cd $1\n",
"tar -xzvf model.tar.gz"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Stored 's3_model_path' (str)\n",
"Stored 'local_model_dir' (str)\n",
"Stored 'model_id' (str)\n",
"Stored 'tokenizer_id' (str)\n"
]
}
],
"source": [
"%store s3_model_path local_model_dir model_id tokenizer_id"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "emi8JP4I4lxX"
},
"source": [
"
\n",
"\n",
"## 3. Prediction\n",
"---\n",
"### Load fine-tuned model"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from transformers import BertForQuestionAnswering\n",
"tokenizer = BertTokenizerFast.from_pretrained(f'{local_model_dir}')\n",
"model = BertForQuestionAnswering.from_pretrained(f'{local_model_dir}')\n",
"model.load_state_dict(torch.load(f'{local_model_dir}/pytorch_model.bin'))\n",
"model = model.eval()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def predict_fn(example, model):\n",
" \n",
" from transformers import pipeline\n",
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
" device_id = -1 if device.type == \"cpu\" else 0\n",
" \n",
" context = example[0]\n",
" question = example[1]\n",
" \n",
" nlp = pipeline(\"question-answering\", model=model.to(device_id), device=device_id,\n",
" tokenizer=tokenizer)\n",
" results = nlp(question=question, context=context)\n",
" return results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example\n",
"여러분만의 샘플 문장을 만들어서 자유롭게 추론을 수행해 보세요."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"context = r\"\"\"\n",
"아마존웹서비스(AWS)는 카카오 게임 전문 계열사 카카오게임즈가 자사 머신러닝(ML), 데이터베이스(DB) 및 데이터 분석 등 서비스를 통해 사용자 경험을 제고했다고 7일 밝혔다.\n",
"AWS는 카카오게임즈가 AWS클라우드 역량을 활용해 게임 데이터 분석 솔루션을 실행하고, 대량의 게임 데이터와 설치 건수, 사용자 유지율과 같은 성과 지표를 분석하고 있다고 설명했다. \n",
"현재 카카오게임즈는 폭증하는 데이터를 저장·분석하기 위한 방법으로 클라우드 오브젝트 스토리지 서비스 '아마존 S3(Amazon Simple Storage Service)' 기반 데이터 레이크(Data Lake)를 구축했다. 또 데이터 분석을 용이하게 해주는 대화형 쿼리 서비스 '아마존 아테나(Amazon Athena)'를 도입해 데이터 레이크로부터 게임 데이터를 통합하고, 게임 사용자 행동과 관련된 인사이트를 확보 중이다. \n",
"이를 통해 카카오게임즈는 게임 봇을 탐지하고 제거하는 방식으로 사용자 경험을 제고했다. 또한 관계형 데이터베이스 서비스 '아마존 오로라(Amazon Aurora)'를 활용해 게임 내 구매와 같은 대규모 데이터베이스 거래를 처리하고 있다. 이밖에도 카카오게임즈는 ML 모델 구축, 교육 및 배포를 위한 완전 관리형 서비스 '아마존 세이지메이커(Amazon SageMaker)'를 활용할 예정이다.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'score': 0.998553991317749, 'start': 29, 'end': 36, 'answer': '카카오게임즈가'}\n",
"{'score': 0.8284631967544556, 'start': 263, 'end': 269, 'answer': '아마존 S3'}\n",
"{'score': 0.9286826252937317, 'start': 514, 'end': 521, 'answer': '아마존 오로라'}\n",
"{'score': 0.8117018938064575, 'start': 626, 'end': 636, 'answer': '아마존 세이지메이커'}\n"
]
}
],
"source": [
"question = \"카카오 게임 전문 계열사는?\"\n",
"print(predict_fn((context, question), model))\n",
"\n",
"question = \"AWS의 클라우드 오브젝트 스토리지 서비스는?\"\n",
"print(predict_fn((context, question), model))\n",
"\n",
"question = \"AWS의 관계형 데이터베이스 서비스는?\"\n",
"print(predict_fn((context, question), model))\n",
"\n",
"question = \"AWS의 ML 모델 완전 관리형 서비스는?\"\n",
"print(predict_fn((context, question), model))"
]
}
],
"metadata": {
"accelerator": "TPU",
"colab": {
"authorship_tag": "ABX9TyPT/32fR6YbrNgmG6aLi8U7",
"include_colab_link": true,
"machine_shape": "hm",
"name": "5_(BERT_실습)한국어 개체명 인식.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "conda_pytorch_p38",
"language": "python",
"name": "conda_pytorch_p38"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"1ac7cea5aaba45af9eddeaaee02e1e5a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2ef88e8c35374ca69203a64d209745ea": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"32c340873ce247e88df66c73309eecdc": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4a4ff12bb4604faf8c1cd79156713854": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"51eafe68808a4ffbac05605381c2d5a3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"598f160635264f138769ae94a127455c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_1ac7cea5aaba45af9eddeaaee02e1e5a",
"max": 1961828,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_b61fb58de9be4c84b7767bf69e32c5d9",
"value": 1961828
}
},
"5b0843766d3f4ac785c7dba85254d605": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_ca07bf481be7473ab1b22babaa76c3da",
"IPY_MODEL_ab60a81459a84ae19fa922aa4ce27e8a"
],
"layout": "IPY_MODEL_6356e0609f9f49d5996ef7f4f77fbd2d"
}
},
"6356e0609f9f49d5996ef7f4f77fbd2d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"693887ccba30416586e2085b7e36118b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_9169c98d7ee5423ba5b6eb3c4dbbeda7",
"placeholder": "",
"style": "IPY_MODEL_cc353722b52045efb9009ef79c7d56b7",
"value": " 1.96M/1.96M [00:00<00:00, 6.43MB/s]"
}
},
"6cb6badcbbd34359be9dad2c8af93098": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"88f28f34de9e41cc948c7aebb4035589": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"8d879e2bbea04536aaa1ee5d356bb7c3": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2ef88e8c35374ca69203a64d209745ea",
"placeholder": "",
"style": "IPY_MODEL_32c340873ce247e88df66c73309eecdc",
"value": " 29.0/29.0 [00:00<00:00, 50.2B/s]"
}
},
"9169c98d7ee5423ba5b6eb3c4dbbeda7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"93234e1bd6444d819b130d83402d2d7b": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e6e0a2274e7f420f91dc97a143315da0",
"IPY_MODEL_8d879e2bbea04536aaa1ee5d356bb7c3"
],
"layout": "IPY_MODEL_ad295e710380441588473f810a9210d7"
}
},
"a0dbf235f20c497186d319b5b1558dd9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"ab60a81459a84ae19fa922aa4ce27e8a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_51eafe68808a4ffbac05605381c2d5a3",
"placeholder": "",
"style": "IPY_MODEL_6cb6badcbbd34359be9dad2c8af93098",
"value": " 996k/996k [00:00<00:00, 1.67MB/s]"
}
},
"ad295e710380441588473f810a9210d7": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b61fb58de9be4c84b7767bf69e32c5d9": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": "initial"
}
},
"ca07bf481be7473ab1b22babaa76c3da": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_88f28f34de9e41cc948c7aebb4035589",
"max": 995526,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4a4ff12bb4604faf8c1cd79156713854",
"value": 995526
}
},
"cc353722b52045efb9009ef79c7d56b7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e4dcb08aab3748b18a10d0f5daaf3554": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_598f160635264f138769ae94a127455c",
"IPY_MODEL_693887ccba30416586e2085b7e36118b"
],
"layout": "IPY_MODEL_f1ed2fc28a3e499fa784d5aa1777a77b"
}
},
"e6e0a2274e7f420f91dc97a143315da0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "Downloading: 100%",
"description_tooltip": null,
"layout": "IPY_MODEL_ed834b7f997141479ab90216655e230a",
"max": 29,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_a0dbf235f20c497186d319b5b1558dd9",
"value": 29
}
},
"ed834b7f997141479ab90216655e230a": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f1ed2fc28a3e499fa784d5aa1777a77b": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}