{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# XGBoost simple example\n", "\n", "source : https://www.datacamp.com/community/tutorials/xgboost-in-python" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install xgboost" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 데이터 로드" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import load_boston\n", "import pandas as pd\n", "import numpy as np\n", "\n", "boston = load_boston()\n", "data = pd.DataFrame(boston.data)\n", "data.columns = boston.feature_names\n", "data.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(boston.DESCR)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 학습/테스트 데이터셋 분리\n", "\n", "_아래 힌트를 참고하여 다음 셀의 TO DO 를 완성하세요._\n", "\n", "
\n", " 힌트\n", " \n", " ```python\n", " X_train, X_test, y_train, y_test = train_test_split(data, boston.target, test_size=0.2, random_state=123)\n", " ```\n", " \n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "X_train, X_test, y_train, y_test = train_test_split()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y_train" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### XGBoost를 이용한 Regression 학습\n", "\n", "- 파라미터 참조 : https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters\n", "- 주요 파리미터\n", " + objective : determines the loss function to be used like `reg:linear` for regression problems, `reg:logistic` for classification problems with only decision, `binary:logistic` for classification problems with probability.\n", " + colsample_bytree : percentage of features used per tree. High value can lead to overfitting.\n", " + learning_rate : step size shrinkage used to prevent overfitting. Range is [0,1]\n", " + max_depth : determines how deeply each tree is allowed to grow during any boosting round.\n", " + alpha : L1 regularization on leaf weights. A large value leads to more regularization.\n", " + n_estimators : number of trees you want to build." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import xgboost as xgb\n", "\n", "xg_reg = xgb.XGBRegressor(objective ='reg:squarederror', colsample_bytree = 0.3, learning_rate = 0.1,\n", " max_depth = 5, alpha = 10, n_estimators = 10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_아래 힌트를 참고하여 다음 셀의 TO DO 를 완성하세요._\n", "\n", "
\n", " 힌트\n", " \n", " ```python\n", " model = xg_reg.fit(X_train,y_train)\n", " ```\n", " \n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = xg_reg.fit()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.get_booster().get_score(importance_type='weight')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 예측\n", "\n", "_아래 힌트를 참고하여 다음 셀의 TO DO 를 완성하세요._\n", "\n", "
\n", " 힌트\n", " \n", " ```python\n", " preds = xg_reg.predict(X_test)\n", " ```\n", " \n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "preds = xg_reg.predict()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import mean_squared_error\n", "\n", "rmse = np.sqrt(mean_squared_error(y_test, preds))\n", "print(\"RMSE: %f\" % (rmse))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "plt.plot(preds)\n", "plt.plot(y_test)\n", "plt.legend(['pred','real'])\n", "plt.title('Prediction vs Real price')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "conda_python3", "language": "python", "name": "conda_python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.13" } }, "nbformat": 4, "nbformat_minor": 4 }