# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines legacy tf.layers-style layer to be compatible with TPUEstimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class DepthwiseConv2D(tf.keras.layers.DepthwiseConv2D, tf.layers.Layer): """DepthwiseConv2D layer in legacy tf.layers framework. Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial convolution (which acts on each input channel separately). The `depth_multiplier` argument controls how many output channels are generated per input channel in the depthwise step. Arguments: kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: one of `'valid'` or `'same'` (case-insensitive). depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be 'channels_last'. activation: Activation function to use. If you don't specify anything, no activation is applied (ie. 'linear' activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. depthwise_initializer: Initializer for the depthwise kernel matrix. bias_initializer: Initializer for the bias vector. depthwise_regularizer: Regularizer function applied to the depthwise kernel matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its 'activation'). depthwise_constraint: Constraint function applied to the depthwise kernel matrix. bias_constraint: Constraint function applied to the bias vector. Input shape: 4D tensor with shape: `[batch, channels, rows, cols]` if data_format='channels_first' or 4D tensor with shape: `[batch, rows, cols, channels]` if data_format='channels_last'. Output shape: 4D tensor with shape: `[batch, filters, new_rows, new_cols]` if data_format='channels_first' or 4D tensor with shape: `[batch, new_rows, new_cols, filters]` if data_format='channels_last'. `rows` and `cols` values might have changed due to padding. """ def __init__(self, kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1, data_format=None, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, bias_constraint=None, **kwargs): super(DepthwiseConv2D, self).__init__( kernel_size=kernel_size, strides=strides, padding=padding, depth_multiplier=depth_multiplier, data_format=data_format, activation=activation, use_bias=use_bias, depthwise_initializer=depthwise_initializer, bias_initializer=bias_initializer, depthwise_regularizer=depthwise_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, depthwise_constraint=depthwise_constraint, bias_constraint=bias_constraint, **kwargs)