# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import sys from datetime import datetime, timezone import pyspark.sql.functions as f from awsglue.context import GlueContext from awsglue.dynamicframe import DynamicFrame from awsglue.job import Job from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from pyspark.sql.session import SparkSession from pyspark.sql.functions import * import boto3 from botocore.exceptions import ClientError def main(): ## @params: [JOB_NAME, db_name, entity_name, partition_column, output_bucket_name, datetime_column,date_column] args = getResolvedOptions(sys.argv, ['JOB_NAME', 'raw_db_name', 'clean_db_name', 'source_entity_name', 'target_entity_name', 'partition_column', 'output_bucket_name', 'primary_key', 'parallelism', 'date_column', 'datetime_column']) job_name = args['JOB_NAME'] raw_db_name = args['raw_db_name'] clean_db_name = args['clean_db_name'] source_entity_name = args['source_entity_name'] target_entity_name = args['target_entity_name'] partition_column = args['partition_column'] date_column = args['date_column'] datetime_column = args['datetime_column'] hudi_primary_key = args['primary_key'] output_bucket_name = args['output_bucket_name'] parallelism = args['parallelism'] # Constants derived from parameters raw_table_name = source_entity_name clean_table_name = target_entity_name processing_start_datetime = datetime.now(timezone.utc) # Initialization of contexts and job spark = SparkSession.builder.config('spark.serializer','org.apache.spark.serializer.KryoSerializer').getOrCreate() glue_context = GlueContext(SparkContext.getOrCreate()) job = Job(glue_context) job.init(job_name, args) logger = glue_context.get_logger() logger.info('Initialization.') # Initialization of Glue client to connect to Glue Catalog and retrieve table information glueClient = boto3.client('glue') ## @type: DataSource ## @args: [database = "", table_name = "raw_", transformation_ctx = "raw_data"] ## @return: raw_data ## @inputs: [] raw_data: DynamicFrame = glue_context.create_dynamic_frame.from_catalog(database=raw_db_name, table_name=raw_table_name, transformation_ctx="raw_data") # Terminate early if there is no data to process if raw_data.toDF().head() is None: job.commit() return ## @type: CleanDataset ## @args: [] ## @return: cleaned_data ## @inputs: [frame = raw_data] input_data = raw_data.toDF() cleaned_data = input_data.select(*[from_unixtime(c).alias(c) if c == 'processing_datetime' else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[to_timestamp(c).alias(c) if c.endswith('_datetime') else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[to_date(c).alias(c) if c.endswith('_date') else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[col(c).cast('string').alias(c) if c == 'zip' else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[col(c).cast('decimal(15,2)').alias(c) if dict (input_data.dtypes) [c] == 'double' else col(c) for c in input_data.columns]) ## @type: EnrichDataset ## @args: [] ## @return: enriched_data ## @inputs: [frame = cleaned_data] enriched_data = cleaned_data.withColumn('etl_processing_datetime', unix_timestamp(f.lit(processing_start_datetime), 'yyyy-MM-dd HH:mm:ss').cast("timestamp")) \ .withColumn(date_column, f.date_format(f.col(datetime_column), "yyyy-MM-dd").cast("date")) isTableExists = False try: glueClient.get_table(DatabaseName=clean_db_name,Name=target_entity_name) isTableExists = True logger.info(clean_db_name + '.' + target_entity_name + ' exists.') except ClientError as e: if e.response['Error']['Code'] == 'EntityNotFoundException': isTableExists = False logger.info(clean_db_name + '.' + target_entity_name + ' does not exist. Table will be created.') partition_path = '' if partition_column == 'None' else partition_column common_config = { 'className': 'org.apache.hudi', 'hoodie.datasource.hive_sync.use_jdbc': 'false', 'hoodie.index.type': 'GLOBAL_BLOOM', 'hoodie.datasource.write.precombine.field': datetime_column, 'hoodie.datasource.write.recordkey.field': hudi_primary_key, 'hoodie.table.name': target_entity_name, 'hoodie.consistency.check.enabled': 'true', 'hoodie.datasource.hive_sync.database': clean_db_name, 'hoodie.datasource.hive_sync.table': target_entity_name, 'hoodie.datasource.hive_sync.enable': 'true', 'hoodie.datasource.write.partitionpath.field': partition_path, 'hoodie.datasource.hive_sync.partition_fields': partition_path, 'hoodie.datasource.hive_sync.partition_extractor_class': 'org.apache.hudi.hive.NonPartitionedExtractor' if partition_column == 'None' else 'org.apache.hudi.MultiPartKeysValueExtractor', 'hoodie.datasource.write.hive_style_partitioning': 'false' if partition_column == 'None' else 'true', 'hoodie.datasource.write.keygenerator.class': 'org.apache.hudi.keygen.NonpartitionedKeyGenerator' if partition_column == 'None' else 'org.apache.hudi.keygen.SimpleKeyGenerator' } incremental_config = { 'hoodie.upsert.shuffle.parallelism': parallelism, 'hoodie.datasource.write.operation': 'upsert', 'hoodie.cleaner.policy': 'KEEP_LATEST_COMMITS', 'hoodie.cleaner.commits.retained': 10 } initLoad_config = { 'hoodie.bulkinsert.shuffle.parallelism': parallelism, 'hoodie.datasource.write.operation': 'upsert' } if (isTableExists): logger.info('Incremental upsert.') combinedConf = {**common_config, **incremental_config} enriched_data.write.format('org.apache.hudi').options(**combinedConf).mode('Append').save("s3://" + output_bucket_name + "/" + clean_table_name) else: logger.info('Inital load.') combinedConf = {**common_config, **initLoad_config} enriched_data.write.format('org.apache.hudi').options(**combinedConf).mode('Overwrite').save("s3://" + output_bucket_name + "/" + clean_table_name) job.commit() if __name__ == '__main__': main()