# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import sys from datetime import datetime, timezone import pyspark.sql.functions as f from awsglue.context import GlueContext from awsglue.dynamicframe import DynamicFrame from awsglue.job import Job from awsglue.utils import getResolvedOptions from pyspark.context import SparkContext from pyspark.sql.functions import * def main(): ## @params: [JOB_NAME, db_name, entity_name, datetime_column, date_column, partition_column, output_bucket_name] args = getResolvedOptions(sys.argv, ['JOB_NAME', 'raw_db_name', 'clean_db_name', 'source_entity_name', 'target_entity_name', 'datetime_column', 'date_column', 'partition_column', 'output_bucket_name']) job_name = args['JOB_NAME'] raw_db_name = args['raw_db_name'] clean_db_name = args['clean_db_name'] source_entity_name = args['source_entity_name'] target_entity_name = args['target_entity_name'] partition_column = args['partition_column'] datetime_column = args['datetime_column'] date_column = args['date_column'] output_bucket_name = args['output_bucket_name'] # Constants derived from parameters raw_table_name = source_entity_name clean_table_name = target_entity_name processing_start_datetime = datetime.now(timezone.utc) # Initialization of contexts and job glue_context = GlueContext(SparkContext.getOrCreate()) job = Job(glue_context) job.init(job_name, args) ## @type: DataSource ## @args: [database = "", table_name = "raw_", transformation_ctx = "raw_data"] ## @return: raw_data ## @inputs: [] raw_data: DynamicFrame = glue_context.create_dynamic_frame.from_catalog(database=raw_db_name, table_name=raw_table_name, transformation_ctx="raw_data") # Terminate early if there is no data to process if raw_data.toDF().head() is None: job.commit() return ## @type: CleanDataset ## @args: [] ## @return: cleaned_data ## @inputs: [frame = raw_data] input_data = raw_data.toDF() cleaned_data = input_data.select(*[from_unixtime(c).alias(c) if c == 'processing_datetime' else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[to_timestamp(c).alias(c) if c.endswith('_datetime') else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[to_date(c).alias(c) if c.endswith('_date') else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[col(c).cast('string').alias(c) if c == 'zip' else col(c) for c in input_data.columns]) cleaned_data = cleaned_data.select(*[col(c).cast('decimal(15,2)').alias(c) if dict (input_data.dtypes) [c] == 'double' else col(c) for c in input_data.columns]) ## @type: EnrichDataset ## @args: [] ## @return: enriched_data ## @inputs: [frame = cleaned_data] enriched_data = cleaned_data.withColumn('etl_processing_datetime', unix_timestamp(f.lit(processing_start_datetime), 'yyyy-MM-dd HH:mm:ss').cast("timestamp")) \ .withColumn(date_column, f.date_format(f.col(datetime_column), "yyyy-MM-dd").cast("date")) ## @type: DataSink ## @args: [connection_type = "s3", connection_options = {"path": "s3:///clean/", "enableUpdateCatalog": "True", "updateBehavior": "UPDATE_IN_DATABASE", "partitionKeys" : "[]"}, format = "glueparquet"] ## @return: sink ## @inputs: [frame = enriched_data] sink = glue_context.getSink(connection_type="s3", path="s3://" + output_bucket_name + "/" + clean_table_name, enableUpdateCatalog=True, updateBehavior="UPDATE_IN_DATABASE", partitionKeys=[partition_column]) sink.setFormat("glueparquet") sink.setCatalogInfo(catalogDatabase=clean_db_name, catalogTableName=clean_table_name) sink.writeFrame(DynamicFrame.fromDF(enriched_data, glue_context, 'result')) job.commit() if __name__ == '__main__': main()