FROM autoware/model-zoo-tvm-cli:1.0.0 RUN apt update && apt install git-lfs WORKDIR /app RUN GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/autowarefoundation/modelzoo && \ cd modelzoo && \ git checkout 0da13b81bac1bdca34f72c037033d605105fce49 && \ git lfs install && \ git lfs pull WORKDIR /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco RUN tvm_cli compile \ --config ./definition.yaml \ --output_path ./example_pipeline/build COPY main.cpp /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco/example_pipeline RUN cd example_pipeline && cmake . && make -j FROM autoware/model-zoo-tvm-cli:1.0.0 ENV LD_LIBRARY_PATH="/usr/local/lib/" WORKDIR /app # Copy the dataset images over and extract them COPY images/* ./images/ # Copy built binary and other supporting files from previous stage COPY --from=0 /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco/example_pipeline/build/ ./ COPY --from=0 /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco/example_pipeline/example_pipeline ./example_pipeline COPY --from=0 /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco/model_files/anchors.csv ./anchors.csv COPY --from=0 /app/modelzoo/perception/camera_obstacle_detection/yolo_v2_tiny/tensorflow_fp32_coco/model_files/labels.txt ./labels.txt # Create directory for prediction results to save to host system VOLUME ["/app/predictions/"] # copy python script for execuing the executable and uploading results to S3 COPY execute_pipeline.py ./execute_pipeline.py CMD ["execute_pipeline.py"] ENTRYPOINT ["python3"]