# make sure the server is running with the ml-context defined (Spark Context) # copy the jar onto the cluster aws s3 cp s3://dgraeberaws-blogs/ml/jobserver/jobserverEmr-1.0.jar jobserverEmr-1.0.jar # Load the jar onto the server with teh app name ml curl --data-binary @jobserverEmr-1.0.jar 'localhost:8090/jars/ml' #TEST curl -d "{s3DataLoc:\"s3://dgraeberaws-blogs/ml/data/movielens/small/\",s3ModelLoc:\"s3://dgraeberaws-blogs/ml/models/movielens/recommendations/\"}" \ 'localhost:8090/jobs?appName=ml&classPath=com.amazonaws.proserv.ml.TestParams&context=ml-context&sync=true' #Load the model and data curl -d "{s3DataLoc:\"s3://dgraeberaws-blogs/ml/data/movielens/small/\",s3ModelLoc:\"s3://dgraeberaws-blogs/ml/models/movielens/recommendations/\"}" \ 'localhost:8090/jobs?appName=ml&classPath=com.amazonaws.proserv.ml.LoadModelAndData&context=ml-context' #Get the 10 ten movies for userId=100 curl -d "{userId:100}" 'localhost:8090/jobs?appName=ml&classPath=com.amazonaws.proserv.ml.MoviesRec&context=ml-context&sync=true&timeout=150' #Get the top 5 movies in the Comedy Genre curl -d "{userId:100,genre:\"Comedy\"}" 'localhost:8090/jobs?appName=ml&classPath=com.amazonaws.proserv.ml.MoviesRecByGenre&context=ml-context&sync=true&timeout=150'