from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.schedules import LinearSchedule from rl_coach.exploration_policies.categorical import CategoricalParameters from rl_coach.filters.filter import NoInputFilter, NoOutputFilter, InputFilter from rl_coach.filters.observation.observation_stacking_filter import ObservationStackingFilter from rl_coach.filters.observation.observation_rgb_to_y_filter import ObservationRGBToYFilter from rl_coach.filters.observation.observation_to_uint8_filter import ObservationToUInt8Filter from rl_coach.memories.memory import MemoryGranularity #################### # Graph Scheduling # #################### schedule_params = ScheduleParameters() schedule_params.improve_steps = TrainingSteps(10000000) schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(40) schedule_params.evaluation_steps = EnvironmentEpisodes(5) schedule_params.heatup_steps = EnvironmentSteps(0) ######### # Agent # ######### agent_params = ClippedPPOAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.0003 agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'relu' agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'relu' agent_params.network_wrappers['main'].batch_size = 64 agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5 agent_params.network_wrappers['main'].adam_optimizer_beta2 = 0.999 agent_params.algorithm.clip_likelihood_ratio_using_epsilon = 0.2 agent_params.algorithm.clipping_decay_schedule = LinearSchedule(1.0, 0, 1000000) agent_params.algorithm.beta_entropy = 0.01 # also try 0.001 agent_params.algorithm.gae_lambda = 0.95 agent_params.algorithm.discount = 0.999 agent_params.algorithm.optimization_epochs = 10 agent_params.algorithm.estimate_state_value_using_gae = True agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentEpisodes(20) agent_params.algorithm.num_consecutive_playing_steps = EnvironmentEpisodes(20) agent_params.exploration = CategoricalParameters() agent_params.memory.max_size = (MemoryGranularity.Transitions, 10**5) ############### # Environment # ############### DeepRacerInputFilter = InputFilter(is_a_reference_filter=True) DeepRacerInputFilter.add_observation_filter('observation', 'to_grayscale', ObservationRGBToYFilter()) DeepRacerInputFilter.add_observation_filter('observation', 'to_uint8', ObservationToUInt8Filter(0, 255)) DeepRacerInputFilter.add_observation_filter('observation', 'stacking', ObservationStackingFilter(1)) env_params = GymVectorEnvironment() env_params.default_input_filter = DeepRacerInputFilter env_params.level = 'RoboMaker-DeepRacer-v0' vis_params = VisualizationParameters() vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 400 preset_validation_params.max_episodes_to_achieve_reward = 1000 graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, preset_validation_params=preset_validation_params)