
Inference Backend– Step-by-Step Implementation

1. We will start by uploading our model artifact to S3.

• Log in to your AWS account and navigate to the S3 homepage.

• On the top left corner, click .

• On the window that opens:

• Bucket name: you name your bucket whatever you wish, but if you include

“sagemaker” in the name it will save you a configuration step later on.

• Region: Choose the region in which you wish to host your model.

• Leave the rest as is.

• On the bottom left corner, click .

• Click on the name of the bucket you just created.

• On the top left corner, click .

• Name the folder “Model” and hit .

• Click on the folder that was just created.

• From the window that appeared, click , and select the model.tar.gz

provided in the .zip file.

• Lastly make note of the Target path display at the top of the window.

• On the bottom right corner, click .

2. Now that our model artifact has been uploaded to S3, we will turn it into an actual

model.

• First open your AWS and navigate to the Amazon SageMaker console.

• On the left side of the page, select the Models link under the Inference tab.

• In the Model settings cell, configure:

• Model name: Choose any name you wish, but make note of it as we will need it

later.

• IAM role: From the drop down menu select Create a new role.

• This option will create a role with permissions described by the

AmazonSageMakerFullAccess IAM policy.

• If the bucket in which you hosted the model artifact contains “sagemaker”

in its name, the just click . Otherwise make sure Specific S3 buckets is

selected from the radio menu, and enter your bucket’s name in the text

field.

• Click .

• Now configure the Container Definition cell:

• For the container input options select the first option on the list, Provide

model artifacts and inference image location.

• Now under the Provide model artifacts and inference image tab:

• Location of inference code image: 763104351884.dkr.ecr.us-west-

2.amazonaws.com/mxnet-inference:1.4.1-gpu-py2

• Location of model artifacts: Enter the path to the model.tar.gz file

you uploaded to your bucket. Make sure that the path ends with

/model.tar.gz

• Leave everything else as is, and click .

3. Next we will host the model we created using Amazon SageMaker.

• On the left hand side of the page, select the Endpoints link under the Inference tab.

• On the top right corner click .

• Configure the Cells as follows:

• For the endpoint name, you may choose any name for the endpoint, but make

sure you save it somewhere as we will need this name later to set up our lambda

function.

• In the next cell select Create a new endpoint configuration.

• For the new endpoint configuration:

• Endpoint configuration name: Choose any name you wish.

• Encryption key: Leave this on the default option of “No Custom

Encryption”.

• Now click Add Model.

• From the menu that popped up, select the model we created in the last step

and hit .

• Once you have selected your model, under the actions column you can click

edit and choose the instance type you want to host your model on. For the

original PoC we used the ml.t2.medium instance.

• Click .

• Lastly you can use the Tags section to tag your endpoint. This will make it

easier to group together the resources that belong to this PoC so you can

tear down the application or keep track of its costs later on.

• Click .

4. Now we need to create a lambda function to invoke the endpoint we just created.

• Navigate to the AWS Lambda console.

• Click .

• From the radio menu at the top of the page, select Author from scratch.

• Configure:

• Function name: Any name you wish.

• Runtime: Python 2.7

• Expand the choose or create permissions tab.

• From the drop down menu, ensure that Create a new role with basic

Lambda permissions is selected.

• Click .

• Scroll down to the Function code cell.

• Highlight everything in the editor and replace it with the code provided in

the .zip .

• Scroll to the top of the page, click .

5. Lastly we will use API Gateway to create an API to be called from code.

• Navigate to the Amazon API Gateway console

• Choose .

• On the page that comes up, configure:

• Protocol: REST

• Create new API: New API

• API Name: choose a name

• Description: Optional

• Endpoint Type: Regional

• Click .

• From the drop down menu labeled actions, select Create Method.

• A drop down menu will appear, from it select Post then click the checkmark button.

• The section to the right of Post will be populated with some options to configure:

• Integration type: Lambda Function

• Use Lambda Proxy Integration: Check

• Lambda Region: Choose the region which you created the lambda function in.

• Lambda Function: Start to type out the name of lambda function and a drop

down menu should appear. Select the lambda function you created in the last

section.

• Click .

• A window will appear stating that “You are about to give API Gateway permission to

invoke your lambda function”.

• Choose okay.

• From the actions menu, choose deploy API.

• On the window that comes up, configure:

• For deployment stage: choose “[New Stage]”

• For Stage Name: choose a name (e.g. Dev)

• For Stage description: Optional

• For Deployment description: Optional

• Click .

• Once the deployment is done, you can navigate to the dashboard link on the left hand

side menu under the name of your API. This is the URL you will use to contact the

endpoint.

