Inference Backend- Step-by-Step Implementation

1. We will start by uploading our model artifact to S3.

* Log in to your AWS account and navigate to the S3 homepage.
* On the top left corner, click .

* On the window that opens:

* Bucket name: you name your bucket whatever you wish, but if you include
“sagemaker” in the name it will save you a configuration step later on.

Region: Choose the region in which you wish to host your model.

» Leave the rest as is.

On the bottom left corner, click | @ |,

Create bucket

(2) configure options (3) set permissions

US West (Oregon) ~

Copy settings from an existing bucket

* Click on the name of the bucket you just created.
* On the top left corner, click .

« Name the folder “Model” and hit [

* Click on the folder that was just created.

* From the window that appeared, click , and select the model.tar.gz
provided in the .zip file.

* Lastly make note of the Target path display at the top of the window.

Upload

@ Set permissions @ Set properties

1Flles Size: 888.0B Target path: IR CICEI S EIS .

To upload a file larger than 160 GB, use the AWS CLI, AWS SDK, or Amazon S3 REST API. Learn more ('

model.tar.gz
-BBS0B

* On the bottom right corner, click .

2.Now that our model artifact has been uploaded to S3, we will turn it into an actual
model.

* First open your AWS and navigate to the Amazon SageMaker console.
* On the left side of the page, select the Models link under the Inference tab.
* In the Model settings cell, configure:

* Model name: Choose any name you wish, but make note of it as we will need it
later.

e TAM role: From the drop down menu select Create a new role.

* This option will create a role with permissions described by the
AmazonSageMakerFullAccess IAM policy.

o If the bucket in which you hosted the model artifact contains “sagemaker”
in its name, the just click . Otherwise make sure Specific S3 buckets is
selected from the radio menu, and enter your bucket’s name in the text

field

1eld.
Create an |IAM role X
Passing an IAM role gives Amazon SageMaker permission to perform actions in other AWS services on your behalf. Creating a role here will
grant permissions described by the AmazonSageMakerFullAccess [7 1AM policy to the role you create

The IAM role you create will provide access to:

© 53 buckets you specify - optional
© Specific S3 buckets

| your-buckets-namel

Comma delimited. ARNs, "*" and "/" are not supported.

Any S3 bucket

Allow users that have access to your natebook instance access to any bucket and its contents in your account

None

(@ Any 53 bucket with “sagemaker" in the name

© Any 53 object with "sagemaker” in the name

© Any 53 object with the tag "sagemaker” and value "true” See Object tagging [
(© 53 bucket with a Bucket Policy allowing access to SageMaker See 53 bucket policies [

+ Click [T

* Now configure the Container Definition cell:

* For the container input options select the first option on the list, Provide
model artifacts and inference image location.

* Now under the Provide model artifacts and inference image tab:

* Location of inference code image: 763104351884.dkr.ecr.us-west-
2.amazonaws.com/mxnet-inference:1.4.1-gpu-py2

* Location of model artifacts: Enter the path to the model.tar.gz file
you uploaded to your bucket. Make sure that the path ends with
/model.tar.gz

* Leave everything else as is, and click .

3. Next we will host the model we created using Amazon SageMaker.
* On the left hand side of the page, select the Endpoints link under the Inference tab.
* On the top right corner click .
* Configure the Cells as follows:
* For the endpoint name, you may choose any name for the endpoint, but make

sure you save it somewhere as we will need this name later to set up our lambda
function.

Endpoint

Endpoint name
Your application uses this name to access this endpoint.

Pick a name for your endpoint (e.g PuenteEndpoint)|

Maximum of 63 alphanumeric characters. Can include hyphens (-}, but not spaces. Must be unique within
your account in an AWS Region.

* In the next cell select Create a new endpoint configuration.

Attach endpoint configuration

Use an existing endpoint configuration © Create a new endpoint configuration
Use an existing endpoint configuration or clone an Add models and configure the instance and initial weight
endpoint configuration. for each model.

* For the new endpoint configuration:

* Endpoint configuration name: Choose any name you wish.

* Encryption key: Leave this on the default option of “No Custom
Encryption”.

New endpoint configuration

To deploy models to Amazon SageMaker, first create an endpoint configuration. In the configuration, specify which
models to deploy, and the relative traffic weighting and hardware requirements for each.
Endpoint configuration name

Choose a name

Maximum of 63 alphanumeric character
Must be unique within your account in

egion.

Encryption key - optional

Encrypt your data. Choose an existing KMS key or enter a key's ARN

No Custom Encryption v
Production variants
a.p 5 . Initial -
Model Training Variant Instance Elastic . Initial R
R instance N Actions
name job name type Inference weight
count
There are currently no resources.
Add model
Create endpoint configuration
.
* Now click Add Model.
°

From the menu that popped up, select the model we created in the last step

and hit [E.

Once you have selected your model, under the actions column you can click
edit and choose the instance type you want to host your model on. For the
original PoC we used the ml.t2.medium instance.

Click R

Lastly you can use the Tags section to tag your endpoint. This will make it
easier to group together the resources that belong to this PoC so you can
tear down the application or keep track of its costs later on.

+ Click I

4.Now we need to create a lambda function to invoke the endpoint we just created.

* Navigate to the AWS Lambda console.

+ Click ITCTEREN

Author from scratch -] Use a blueprint Browse serverless app repository

Start with a simple Hello World example. Build a Lambda application from sample code and configuration presets for Deploy a sample Lambda application from the AWS Serverless Application
COMMOn use cases. Repository.
C & [asEN
= B

* From the radio menu at the top of the page, select Author from scratch.

* Configure:

Function name: Any name you wish.

Runtime: Python 2.7

Expand the choose or create permissions tab.

* From the drop down menu, ensure that Create a new role with basic
Lambda permissions is selected.

Click .

Scroll down to the Function code cell.

 Highlight everything in the editor and replace it with the code provided in
the .zip .

Function code info

Code entry type Runtime Handler info

Edit code inline v Python 2.7 v lambda_function lambda_handler
File Edt Find View Go Tools Window P o)
v [delete-me-plesse %+ B lambda_function <

4] lambda_function py fimport json

Environment

1
2

3 def lambda_handler(event, context):

4 # TODO implement

3 return {

6 ‘statusCode': 200,

7 *body": json.dumps('Hello from Lambda!l')
8 ¥

9

11 Python Spaces:4 §F

« Scroll to the top of the page, click [.
5. Lastly we will use API Gateway to create an API to be called from code.
» Navigate to the Amazon API Gateway console
* Choose :
* On the page that comes up, configure:

e Protocol: REST

Create new API: New API

API Name: choose a name

Description: Optional

Endpoint Type: Regional

- click [EXTE0.

* From the drop down menu labeled actions, select Create Method.

APIs Resources Actions~ @/ Methods
“
Documentation B RESOURCEACTIONS
Create Method
documentation2 Create Resource
| Resources Enable CORS
Edit Resource Documentation
Stages
Authorizers APtACTIONS
Deploy API

Gateway Responses Import API

Models Edit API Documentation
Delete API
Resource Policy
Documentation
Settings
Puente

Usage Plans

APl Keys

Custom Domain Names

Client Certificates

VPC Links

Settings

* A drop down menu will appear, from it select Post then click the checkmark button.

Resources Actions~ @/ Me

i
POST =

* The section to the right of Post will be populated with some options to configure:
* Integration type: Lambda Function
» Use Lambda Proxy Integration: Check
» Lambda Region: Choose the region which you created the lambda function in.
« Lambda Function: Start to type out the name of lambda function and a drop

down menu should appear. Select the lambda function you created in the last
section.

-+ Click (B2

« A window will appear stating that “You are about to give API Gateway permission to
invoke your lambda function”.

* Choose okay.

» From the actions menu, choose deploy API.

* On the window that comes up, configure:
 For deployment stage: choose “[New Stage]”
» For Stage Name: choose a name (e.g. Dev)

* For Stage description: Optional

* For Deployment description: Optional

. Click 22N .

 Once the deployment is done, you can navigate to the dashboard link on the left hand
side menu under the name of your API. This is the URL you will use to contact the
endpoint.

