ELF>@b+@8@$!L L P P)P))XV p p)p)$$Ptd9 9 9 QtdGNUJw}D) C P" #@Ar2)@AT% 2 J=F xJݼ(y aaף{ELumiAtt#H)M ,,qғ75kΑ?[ee@S YhQ{`]'ܪi  4 ^}   a^  e ^ a DU -hS6 8 M8 IrAD  1 *R"4 P /& y   `W   pO  0k2 Ч&  0y  > -  @` Q  `e 0l   @ "  n* +     B   ؼt   ~    K } Е   @ p$ д&   `N [ g   f ^ []    "?  N нWH+  TO Й,X  @_  6  з / кj+<  U `  d @ W PL-  (s J @ 3    W^H+  , P__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClasses_Py_NoneStructPyBaseObject_TypePyExc_ValueErrorPyErr_FormatPyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyExc_TypeErrorPyErr_OccurredPyErr_SetStringPyLong_AsLongPyThreadState_Get_Py_CheckRecursionLimit_Py_CheckRecursiveCallPyObject_CallPyExc_SystemErrorPyTuple_NewPyObject_GetAttrPyLong_FromSsize_tPyObject_GetItem_Py_TrueStruct_Py_FalseStructPyObject_IsTruePyTuple_PackPySlice_New_Py_EllipsisObjectPyCode_NewPyObject_GC_UnTrackPyObject_CallFinalizerFromDeallocPyErr_FetchPyBuffer_ReleasePyThread_free_lockPyErr_RestorememcpyPyErr_NormalizeExceptionPyException_SetTracebackrandom_interval_PyType_LookupPyExc_AttributeErrorPyErr_SetObjectrandom_bounded_uint64PyCapsule_NewPyDict_SetItemPyErr_ClearPyObject_RichCompareBoolPyDict_DelItemPyType_ModifiedPyExc_RuntimeErrorPyObject_GetAttrStringPyOS_snprintfPyErr_WarnExPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyModule_GetDictPyDict_NewPyImport_ImportModuleLevelObjectPyList_NewPyErr_ExceptionMatchesPyExc_OverflowErrorPyExc_NameError_PyDict_GetItem_KnownHashPyGILState_EnsurePyGILState_ReleasePyObject_SetItemPyDict_SetItemStringPyInterpreterState_GetIDPyModule_NewObjectPyLong_AsSsize_tPyNumber_IndexPyList_TypePyTuple_TypePyErr_GivenExceptionMatchesPyExc_IndexErrorPyDict_NextPyUnicode_AsUnicodePyUnicode_ComparevsnprintfPy_FatalError_PyThreadState_UncheckedGetPyExc_StopIterationPyObject_GC_TrackPyUnicode_TypePyObject_RichComparememcmp_PyUnicode_ReadyPyObject_FreefreePyFrame_NewPyTraceBack_HerePyUnicode_FromString_PyObject_GetDictPtrPyObject_NotPyUnicode_FromFormatPyObject_SetAttrPyMem_ReallocPyMem_MallocPyExc_BufferErrorPyNumber_InPlaceMultiplyPyNumber_MultiplyPyLong_FromLongPyList_AsTuplePyList_AppendPyUnicode_FormatPyDict_SizePyNumber_InPlaceAddPyObject_GenericGetAttrPyExc_NotImplementedErrorrandom_logseriesrandom_geometricrandom_zipfrandom_negative_binomialrandom_waldrandom_powerrandom_weibullrandom_paretorandom_vonmisesrandom_standard_trandom_standard_cauchyrandom_noncentral_chisquarerandom_chisquarerandom_noncentral_frandom_frandom_betaPyDict_TypePyDict_GetItemWithErrorPyExc_KeyErrorPyNumber_AddPy_GetVersionPyFrame_TypePyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyImport_AddModulePyObject_SetAttrStringPyUnicode_InternFromStringPyObject_HashPyUnicode_DecodePyFloat_FromDoublePyLong_FromString__pyx_module_is_main_numpy__random__generatorPyImport_GetModuleDictPyType_ReadyPyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyCFunction_NewEx_PyDict_NewPresizedPyThread_allocate_lockrandom_rayleighrandom_poissonrandom_exponentialrandom_gammarandom_normal_zigrandom_logisticrandom_gumbelrandom_laplacerandom_lognormalPyObject_GetBufferPyErr_NoMemoryPyUnicode_DecodeASCIIPyUnicode_FromUnicodePyLong_AsUnsignedLongPyEval_EvalCodeExPyEval_EvalFrameExPyBytes_FromStringPyBytes_TypePyMethod_TypePyFunction_TypePyCFunction_TypePySequence_TuplePySlice_TypePyObject_Size_PyList_ExtendPyFloat_TypePyNumber_RemainderPyObject_GetIterPyExc_ZeroDivisionErrorrandom_gauss_zig_fillrandom_gauss_zig_frandom_double_fillrandom_floatrandom_standard_gamma_zigrandom_standard_gamma_zig_frandom_standard_exponential_fillrandom_standard_exponential_frandom_standard_exponential_zig_fillrandom_standard_exponential_zig_fstrlenmemsetmallocPy_OptimizeFlagPyExc_AssertionErrorPyErr_SetNonePyExc_UnboundLocalErrorPyFloat_AsDoublerandom_uniformPyEval_SaveThreadPyEval_RestoreThreadPySequence_Containsrandom_hypergeometricrandom_triangularPyErr_PrintExPyErr_WriteUnraisablePyMem_FreePyObject_IsInstancePySequence_ListPyObject_Mallocrandom_binomialPyNumber_SubtractPyNumber_InPlaceTrueDividePyLong_FromUnsignedLongPyNumber_FloorDividerandom_multinomialPyInit_generatorPyModuleDef_Initlogfactoriallogexpexpflogfrandom_doublerandom_standard_exponentialrandom_standard_exponential_zigrandom_gauss_zigpowsqrtpowfsqrtfrandom_positive_int64random_positive_int32random_positive_intrandom_uintloggamrandom_gamma_floatfloorrandom_binomial_btperandom_binomial_inversion__isnanacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_filllibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.53 ui oMui oP).X)p.h)h)P+`+P++P++P++P+`+P+`+Q++Q+`+ Q+`+(Q++0Q++8Q++`Q+p+hQ++pQ+`+xQ++Q++Q++Q+`+Q+p+Q++Q+p+Q++Q+p+Q++Q+`+R+`+R++R++ R++(R++0R+`+@R++HR+`+PR++XR++R++R++R+`+R+@+R+P+R+`+R+@+R+P+R++R+`+R+`+R+`+ S+`+(S++0S+`+@S+`+PS+`+XS+`+S++S+p+S+`+S++S+`+S++S+`+S++S+`+T++T++T+`+ T++(T++0T+`+@T++HT++PT+`+`T+@+hT+p+pT+`+T++T+`+T+@+T++T+`+T+0+T++T+0+T+`+U++U++U+`+ U++(U++0U+`+@U+`+HU+`+`U++hU+`+U++U+`+U++U+P+U+0+U+`+U++U+`+V+@+V++V+`+V+p+ V++@V++HV++PV+`+`V++hV+`+V+ +V++V++V++V++V++V+`+V++V++V++W++ W+@+(W++0W+P+@W++HW+hW++pW+W++W+`'W++W+ 'W++W+&X++X+&0X++8X+`XX+p+`X+@&X+`+X+X+P+X+&X+@+X+%X+0+Y+% Y+ +(Y+HY++PY+pY++xY+Y++Y+`Y++Y+@Y++Y+Z++Z+8Z++@Z+`Z++hZ+@Z++Z+Z++Z+Z++Z+[+p+[+@%([+`+0[+`P[+P+X[+@x[+@+[+@[+0+[+[+ +[+`[++[+`\++ \+%@\++H\+$h\++p\+$\++\+@$\++\+\++\+]++]+ 0]++8]+ X]++`]+]+p+]+`]+`+]+ ]+P+]+]+@+^+$ ^+0+(^+#H^+ +P^+#p^++x^+@#^++^+^++^+^++^+_++_+8_++@_+ `_++h_+_++_+_++_+_++_+#`+p+`+(`+`+0`+"P`+P+X`+"x`+@+`+@"`+0+`+@`+ +`+`++`+a++ a+@a++Ha+"ha++pa+pa++a+!a++a+:a++a+b++b+0b++8b+ !Xb++`b+b+p+b+b+`+b+b+P+b+nb+@+c+ c+0+(c+ Hc+ +Pc+ pc++xc+`c++c+` c++c+`c++c+ d++d+|8d++@d+`d++hd+`d++d+^d++d+]d++d+le++e+l(e++0e+Pe+p+Xe+xe+`+e+ e+P+e+e+@+e+Ie+0+e+Ef+(+ f+@f+ +Hf+hf++pf+pf++f+ f++f+tf++f+Ag++g+*0g++8g+Xg++`g+lg++g+#g++g+ag++g+g+p+h+ h+`+(h+jHh+X+Ph+jph+P+xh+h+@+h+h+8+h+h+0+h+~i+ +i+,8i++@i+,`i++hi+i++i+i++i+i++i+j++j+(j++0j+}Pj++Xj+hxj++j+hj++j+Yj++j+Yj+p+j+k+`+ k+@k+X+Hk+hk+P+pk+tk+H+k+k+@+k+`hk+0+k+l+ +l+ 0l++8l+ Xl++`l+l++l+l++l+l++l+=l++m+` m++(m+ Hm++Pm+pm++xm+m++m+m+p+m+m+`+m+Zn+X+n+Z8n+P+@n+`n+H+hn+n+@+n+n+8+n+n+0+n+o+(+o+(o+ +0o+@Po++Xo+9xo++o+o++o+o++o+`o++o+p++ p+q@p++Hp+hp++pp+p++p+p++p+p+p+p+5q+`+q+0q+P+8q+Xq+@+`q+q+0+q+q+(+q+fq+ +q+@[q++r+ r++(r+Hr++Pr+Qpr++xr+Ir++r+Ir++r+r++r+s++s+A8s++@s+A`s++hs+s+x+s+s+p+s+ Ps+`+s+t+P+t+(t+H+0t+Pt+@+Xt+Ixt+0+t+t+ +t+t++t+9t++t+u++ u+7@u++Hu+hu++pu+u++u+@%u++u+Wu++u+v++v+0v++8v+Xv++`v+1v++v+v++v+v+p+v+v+`+w+ w+P+(w+Hw+@+Pw+pw+0+xw+1w+ +w+w++w+w++w+x++x+8x++@x+`x++hx+x++x+x++x+x++x+fy++y+(y++0y+{Py++Xy+xy+p+y+y+h+y+y+`+y+-y+P+y+-z+H+ z+)@z+@+Hz+hz+0+pz+z+ +z+z++z+Xz++z+{++{+M0{++8{+)X{++`{+){++{+{++{+B{++{+r{++|+  |++(|+H|++P|+ p|++x|+|++|+ |++|+|+p+|+%}+`+}+8}+P+@}+`}+@+h}+}+8+}+}+0+}+}+ +}+~++~+!(~++0~+P~++X~+x~++~+5~++~+T~++~+T~++~+++ +@++H+h++p+@+++d+++d+p+++`++0+P+8+~X+@+`+~+0+++ ++`Ѐ++؀+y+++` ++(+H++P+ p++x++++++ȁ+++++++8++@+t`++h+t+x+++p++@؂+h++~+`++(+X+0+P+P+X+@x+@++Q+0++ȃ+ +Ѓ++++++ +@++H+h++p+*+++++++++i+++0++8+bX++`+b++++p++oЅ+h+؅++`++ +P+(+H+H+P+p+@+x+ +8+++0+Ȇ+b+(+++ ++@8++@+@`++h+y+++ +++`؇+++ +++0(++0+jP++X+sx+++s+++ Ȉ++Ј+o+p+++`+ +@+P+H+h+@+p+W+0++@+ +++++m+++0++8+X++`+|+++g+++aЊ++؊+N+++s ++(+H++P+Cp++x+++++p+ȋ+ +`+++P++b8+@+@+:`+0+h+[+ ++[+++e،+++U+++U(++0+UP++X+`x+++-+++ȍ++Ѝ+O+++O++ +@++H+h++p++++[+p++I+h++I+`++V0+P+8+QX+@+`+L+8+++0++Џ+(+؏++ ++  ++(+H++P+@p++x++++++Ȑ+k++++++ ^8++@+C`++h+=+++G+++Bؑ+++ +++(+p+0+P+`+X+`x+P+++@++HȒ+0+В++ ++$++ +@++H+ h++p+=+++4+++++++++0++8+TX++`+M++++++Д+p+ؔ++`++ +P+(+H+@+P+7p+0+x++ ++ ++ȕ++++J+++8++@+J`++h+++++++ؖ+++>+++/(++0+P++X+*x+++*+++ȗ++З++++1+p+ +@+`+H+1h+P+p++H++%+@++'H+`++h+++u++X+F++0N+kȚ++ؚ++++,+`1+1+@+C+X+p+8+Pm++++Ȝ++Н++ B+0(++8+`+x+Н+s+/+ + R+/+6`+Wh+i+,+P1++~؞+Y+|+a+z(+l0+yP+qX+@yx+z+w+u+u++ +(+0@+H+`+h++1+`+C+++78+/+0+00ȡ++++ 4+1++C+++jH++P++p++p+ȣ+`+أ+++pYp+`+.+P+0+.+07++`+h++1++C+ ++P88+ h+++0/+/Ȧ++ئ+++`+p4++/+++0+A++ +(+@+!H+``+qh+ }x+I++"++@D++++=++Ȩ+ب+`7+++a+)++{++@(+ +(+8++@+?H+!X++`+ah+@qx+ ++j++@*+x++`*+ȩ+ة+@*+ ++ *+++* + (+p8+*@+H+X+*`+h+x+*+++ *+++ *+Ȫ+вت+ *+++ y*++p+@l* +(+8+_*@+H+X+@M*`+h+@x+A*++P+0*++0+'*+ȫ+ث+@*+d++*++@+* +(+8+)@+H+pX+)`+h+Сx+)+Z++`)+U++ )+Ȭ+ج+ )+{++)++ +@) +G(+<8+ )@+,H+p2X+)`+4h+`wx+@)++pm+oȭ+ح+)+P)X)`) h)p) x)) )))))))!)Ȇ)$І)؆))))1)6)7)8):); )()0)8)@)H)P)X)^`)`h)p)ax)b))f)h)))o)t))ȇ)Ї)z؇){)))))))) )()0)8)@)H)P)X)`)h)p)x))))))))))Ȉ)Ј)؈)))))) )()0) 8)@) H)P)X)`)h)p)x))))))))))ȉ)Љ) ؉)")#)%)&))')()))* )+() 0),8)-@)H).P)/X)0`)2h)3p)4x)5))9)<)=)>)?)@)A)BȊ)CЊ)D؊))E)F)G)H))I)J)K )L()M0)N8)O@)PH)QP)RX)S`)Th)Up)Vx)W))X))Y)Z))[)\)]ȋ)_Ћ)c؋))d)e)f)g)i))j)k )()l0)m8)n@)pH)qP)rX)s`)uh)p)vx)w)x)y)|)})~))))Ȍ)Ќ)،))))))))) )()0)8)@)H)P)X)`)h)p)x))))))))))ȍ)Ѝ)؍))))))))) )()0)8)@)H)P)X)`)HpH5(%(@%(h%(h%(h%(h%(h%(h%(h%(hp%(h`%(h P%(h @%(h 0%(h %(h %(h%(h%z(h%r(h%j(h%b(h%Z(h%R(h%J(h%B(hp%:(h`%2(hP%*(h@%"(h0%(h %(h% (h%(h%(h %(h!%(h"%(h#%(h$%(h%%(h&%(h'p%(h(`%(h)P%(h*@%(h+0%(h, %(h-%(h.%(h/%z(h0%r(h1%j(h2%b(h3%Z(h4%R(h5%J(h6%B(h7p%:(h8`%2(h9P%*(h:@%"(h;0%(h< %(h=% (h>%(h?%(h@%(hA%(hB%(hC%(hD%(hE%(hF%(hGp%(hH`%(hIP%(hJ@%(hK0%(hL %(hM%(hN%(hO%z(hP%r(hQ%j(hR%b(hS%Z(hT%R(hU%J(hV%B(hWp%:(hX`%2(hYP%*(hZ@%"(h[0%(h\ %(h]% (h^%(h_%(h`%(ha%(hb%(hc%(hd%(he%(hf%(hgp%(hh`%(hiP%(hj@%(hk0%(hl %(hm%(hn%(ho%z(hp%r(hq%j(hr%b(hs%Z(ht%R(hu%J(hv%B(hwp%:(hx`%2(hyP%*(hz@%"(h{0%(h| %(h}% (h~%(h%(h%(h%(h%(h%(h%(h%(h%(hp%(h`%(hP%(h@%(h0%(h %(h%(h%(h%z(h%r(h%j(h%b(h%Z(h%R(h%J(h%B(hp%:(h`%2(hP%*(h@%"(h0%(h %(h% (h%(h%(h%(h%(h%(h%(h%(h%(h%(hp%(h`%(hP%(h@%(h0%(h HWH .HHH5THEH (H81/SHGt HHH@`HHHHt|HPH;(HLBt&H(HLH81u$\H(H VH5vHH81H u3HCH1P0'HHuHB(H5+ H81H[ATIUHSHHHt:HE1HhHLlH HQHHuHSHD$HR0HD$1H[]A\SHHHt*H HQHHuHSHD$HR0HD$1H[S1HPH5 +HH*u*Hb q+iW+hH@+H5+1uHH;*u*H (++sH+H*H5*1%HH*u*H ++~H+H5+1HHr*u*H +^u+H^+=H5+1HH*u*H7 F+`,+H+H5f+1JHH*u*H +d+H+H5-*1HHg*u*H +s+H+bH5+1HH*u*H\ k+uQ+H:+H5*1oHH*u*H "+x+H +H5*1&HH\*u*H  +z +ːH +H5Y*1HH*u*H  +|v +֐H_ +>H5 +1HH*u*H8 G +- +H +H5*1KHHQ*u*H + +H +H5+1HH*u*H + +H +cH5(1HHHHH*u*HTc +I +H2 +H5c +1gHH=*u*H  + + H +H5J+1HH*u*H +B +H +H5*1HH*u*Hy +i n +#HW +6H5*1HH2*u*H0? +k % +.H + H5*1CHH*u*H +m  +9H + H5V*1HH*u*H +  +DH| +[ H5}*1HH'*u*HUd +x J +OH3 + H5*1hHH*u*H  +z  +ZH + H5*1HHu*u*H +|  +eH + HHHHH*u*H + t +pH] +< H5*1HH*u*H6E + + +{H + H5+H5*1BHHx*u*H+ +H+ H5U*1HH*u*H+ +H{+Z H5l*1HڿHH*u*HQ`+ F+H/+ H5 *1dHHj*u*H++H+ H5*1HH*u*H++H+| H&(H5w*1HH*u*Ho~+ d+HM+, H5^*1HH`*u*H45++ȑH+ H5*19HH*u*H++ӑH+ H5*1HH*u*H+2+ޑHr+Q H5+1HHm*u*HYZ+X@+H)+ H5*+1^HH*u*H+p+H+H5*1HH*u*H++H+vH5h*1HHz*u*H~+e+ HN+-H5+1HH)*u*HB6++H+H5f*1:HH*u*H++ H+H5*1HHw*u*H+++Hs+RH5*1HH*u*Hg[+A+6H*+ H5+1_HH*u*H++AH+H5b*1HHl*u*H++KH+wH5*1HH*u*H+f+THO+.H5*1HH*u*HC7++_H+H5*1;HHa*u*H++jH+H5.*1HH*u*H++uHt+SH5*1HH*u*Hh\+:B+H++ HH_*u*H(+A+H+Hl*HHP1H5W*HH*u*H++H+sH5*1HH*u*H|+b+HK+*H5*1HHF*u*H?3++H+H5*17HH*u*H++H+H5:*1HH*u*H++Hp+OH51*1HH;*u*HIX+>+ʒH'+H x*HQ+1L 8+D$8AHD$HL$0H $*HT$ HT$HT$H$HL$(LL$@1HHI*u*H**͒H*lH5*1HHP*u*Hu*[*֒HD*#H5*1yHH*u*H8,**H*H5<*10HH*u*H* *H*H5*1HHM*u*H*#*Hi*HH5J*1HH*u*H]Q*$7*H *L a*L*1H A*Hj*H5*9HH*u*H** H*H *H*1L *D$8AHD$HL$0H *HT$ HT$HT$H$HL$(LL$@1HH*1Hu%HYM*3*H*HP[U1HH1SHHHtOH5*HHHx!H1HHu,HSD$ HR0D$ HHHu HCHP0H[]UHSHH5*YHHu1Ht7HHBxH HQHHuHSD$ HR0D$ H[]AWIAVAUATU1SHH5<*GHH5w*H= (+HHH5X*LpXHHH9xH5T*H=ݩ(HHiH55*L-XHHZH9u&H5*LHL$XHIHL$u29H5*HHD$HL$u1E1E1E1OIH5*HHL$HL$IH5*AHL$H5*LoWHIHL$SHL$H5m*LHL$@WHHHL$t{IH5U*H=HL$x\IH5&*aAHL$x=LHL$xHL$g1E1E1111E1E111E1E11E1HL$~HHL$u!H(IWH5H81HL$AHtHHPHHu HAHP0HtHMu HEHP0MtIMu IELP0MtI $u ID$LP0HtIH uDHCHP08H5$*HHL$1HL$1E1E1E1rHD[]A\A]A^A_AVEAUIHATIUHSHHHH@u H(H5HLH81uLK M9rt(Eu#H(H5MHLH81BM9vPAuKLt$HL $IMLL1@11L4yH u HCHP01HH[]A\A]A^AWIAVIH5XAUIATIUSHHHLHHHu+L HHS(H5LH81LH?u9HLHHH(H5IMLH818LHHIt%HHP1HHu&HSD$ HR0D$ H u HCHP0H[]A\A]A^A_AWIAVIH5GAUIATIUSHHHLHHHu+LHHB(H5 LH81LH.u9HLHHH(H5IMLH818LHHIt%HHP1HHu&HSD$ HR0D$ H u HCHP0H[]A\A]A^A_HtHH9u1H;5(ATHUHSuH)(H51H89L'L^u#H(HMH5sIT$H81[]A\PH(H5gH87ZSHYHHH@tWHCHHw?H*HcHCH*$*sH *HI(1H@ HH*HH!*u'H**wH*H=1ZHH*u'H**xH|*SH=l1HH*u'H]l*R*yH;*HHH*HH*u'H'* *H*HH=HH8*u'H**H*HH=@HH*u'H**Hr*IHH*H5H=*H~b* ycHET*:*H#*C! C H{tc{"t4HEHH8H\oHNH(H+Hu*H HCHP0H=蚾HHuH!**̓H*H H*H5zHy'H**ΓH*eH WH*H5RHLy'H*w*ϓH`*H u HCHP0H=HHu'H8G*-*ߓH*H H3*H5Hy'H**H*H H*H5Hy'H**H*CH nH*H5|H;y'H`o*U*H>*H jH+*H5>Hy'H'* *H*H "H*H5Hy'H**H*kH "H*H5Hcy'H*}*Hf*#H H3*H5Hy'H@O*5*H*H H*H5?Hy'H**H*H H*H5Hy'H**H*KH H;*H5HCy'Hhw*]*HF*H u HCHP0H=覺HHu'H-**H*H XH*H5jHy'H**H*qH HQ*H5/Hiy'H**Hl*)H H*H5H!y'HFU*;*H$*H H*H5Hy'H **H*H 8Ha*H5}Hy'H**H*QH H*H5@HIy'Hn}*c*HL* H H*H5Hy'H&5**H*H `Hq*H5Hy'H**H*yH H!*H5Hqy'H**Ht*1H u HCHP0H= *114HHu'HHW*=*ΔH&*H5ʺ*H=*H軹y)H**Д1H*t!HMu HEHP0H=G*114HHu'H**ڔH*kH5*H=*H)y)Hu*j*ܔ1HQ* HMu HEHP0H=5*113HHu'H$3**H*H5&*H=_*H藸y)H**1H*P HMu HEHP0谯HHu'H**Hv*MHZ*HHHM*HEHH= *2HHu'H=L*2*H*HMu HEHP0H5*Hg=HHu'H**H*H5*H=**Hby'H**H*HMu HEHP0H u HCHP0nHHu'HVe* K*H4* H*HHH*HCHH=H*c1HHu'H * * H*H u HCHP0H5^*H&<HHu'H* *H*H5 *H=*H!y'Hm|* b*HK*H u HCHP0HMu HEHP0*-HHu'H$* *H*H*HHEH*HH*HHEH*HPH޿*HHEHп*HPHU*HHEHG*HPH̾*HHEH*HP H*HHEH*HP(Hj*HHEH\*HP0HY*HHEHK*HP8H8*HHEH**HP@Ho*HHEHa*HPHH&*HHEH*HPPHͺ*HHEH*HPXH*HHEH*HP`H*HHEH*HPhH¸*HHEH*HPpH*HHEH *HPxH*HHEH*HHķ*HHEH*HHȶ*HHEH*HH*HHEH*HH*HHEHҵ*HH4*HHEH&*HH*HHEH*HHܴ*HHEHδ*HHг*HHEH³*HH*HHEH*HHX*HHEHJ*HH*HHEH*HH*HHEH*HH*HHEH*HHX*HHEHJ*HHܯ*HHEHί*HH*HHEH*HH*HHEHv*HHH*HHEH:*HH*HHEH*HHЭ*HHEH­*H H*HHEH*H(H*HHEH*H0H*HHEH~*H8H0*HHEH"*H@Hԫ*HHEHƫ*HHHH5*H=*!y)Hm|*b*1HI*HMu HEHP0H$HD$HD$ ըIHHHtH;r(tHL`LhtHHPHtHMtI$MtIEH=M*3*<H*!H*H5I*H豝y'H **=H۱*H*H5X*Hpy'H˱**>H*H5^*H=*H/y'H{*p*?HY*^H u HCHP0H5H=10HHu'HC7**IH*HZ*H5S*HH蔜y'H*հ*KH*H u HCHP0H=*辙H5*H=*1 Hu'H*y*VHb*9H=v*Ho*HuHGP0H5*H=*1 Hu'HD8**dH*H= *H*HuHGP0H5*H=**1c Hu'Hݯ* ï*rH*H=*H*HuHGP0H5F*H=ϭ*1 Hu'H*#h*HQ*(H=5*H.*HuHGP0H5ې*H=t*1 Hu'H3'*$ *H*H=ʬ*Hì*HuHGP0H**!H*H* H*H*H*H*٘H*͘HH*H=*1H5H=H@HHu'HSG*%-*H*HJ*H5c*HH褙y'H *%*Hέ*H u HCHP0H=*ΖH5H=`G1虙HHu'H**ÖHo*FH*H5*HHy'HdX*>*ŖH'*,H u HCHP0H=<*'H*H=*1HHu'H*߬*ΖHȬ*H5ܗ*H=%*H]y'HĨ**ЖH*H HCHP0HMjHEHP0[H[]A\A]A^A_H=Hk*HHY(HtHfHH*H=:*UH)HHw]H\X(Ht]@H*H= *UH)HHHH?HHu]HOZ(Ht]H@=*u'H=GZ(UHt H=U(蝘h]*fffff.H=U(t&HY(HtUH=U(H]WKf.HG8HHGHHGGl~ HGxHÐ1ffff.ATIUHSHHHt HՅu!H1Ht[HL]A\[]A\ff.UHSHH@X(HHH]HHHt H/t3HHHHHHt H/uHGP0H1[]HGP0HGHHGHGHHGHHHt H1DHGHW(HHHWtHHQHHt 1fDHHPHR01Hff.UHSHH@W(HHH]HHHt H/HH} HH] HHt H/tZHH}(HH](HHtH/t-H}PHtHEPH/uHGP0H1[]fDHGP0HGP0fDHGP0lff.HGHHGHxHHxffff.UHSHHXHh`HXhHpXHP`HHhHtH/tLHtHmt0HtH+t H[]fDHCHH@0H[]DHEHP0@HGP0fffff.Ht+Ht&H9 HOHVH9t(\Ht1~\Ht Ð1D1H9HIH#FXL#GXI9uATUSGXH^H9_=H^ H9_ &~mH^(H9_(~ZH^0H9_0~GH^8H9_8~4H^@H9_@~!H^HH9_H~HFPH9GP\St[]A\f.0^`9_`uH_H|HnHtH;HtzHuHtHMH9KuE1HH0HtAH@H9Bu7vtAIcH@HHHH:Hu1H| W1P1H~A1f.HGE1LH@ uLGuLA1LAHHu!10HtHS(HHPHHS(1H5*8HHu910Ht'Hl*HPH1S(H2HPHHNH HHpS(1H5*8ffffff.HGthHGHPHwUH ^HcHDGHGWHH fG@GWHH H+SH袒HHt3HqH3HVHHtH[HSHD$HR0HD$HAVIAUIATUSHHHGHH"L%Q(p NA; $H oHLLHx A$OH B~!9'Ht-HH[]A\A]A^R9~豌@$&Ht)1H=!t1H[]A\A]A^鈏HO(H5کHD$H:=HD$fDHGHHtfUHHSH蟊HHtGHEHHH@pPH HQHHtH[]HSHD$HR0HD$H[]D1fff.UHHSH/HHtGHEHHH@pPH HQHHtH[]HSHD$HR0HD$H[]D1fff.H;=aP(H;=O(t@H;= P(tbfSHGHu@H觏H{HtHCH/tHCH[H@HGP0HtGut[Dffffff.SHGHuhH'H{HtHCH/t0HHtHǃH/t#HCH[H@fHGP0HGP0HtGuB{[SHH0HGqHHT$ Ht$H=HH=N(H9{HH{HH{0H*H=*H9tH,*H9~yH*H9~dH*H9q~OH*H9~:H*H9~%H*H9b~Hޝ*H9=HH+H<$HT$ Ht$聃H{HtHCH/H{ HtHC H/toH{(HtHC(H/tHHCH@H0[DH9{PH/HCPHGP0HGP0HGP0HGP0^@1fD9։*H *HcHHt$L$HDŽ$HH$~WqHzHHHHD$@I׉4$H|$8|$uGH$HHH$IH$H$H9$uH[]A\A]A^A_HD$H$HDŽ$H@Ht$hHH$~M|$u8HD$hHHH$IFHD$hH$H9$uMWHD$H|$hHDŽ$H@H|$pHH$~M|$u8HD$pHHH$IGHD$pH$H9$uMfHD$Ht$pHDŽ$H@Ht$xHH$~M:fDHD$xHHH$IFHD$xH$H9$|$tHD$H|$xHDŽ$H@ H$HH$~M:H$HHH$IG H$H$H9$|$tHD$H$HD$XH@(Ht$PHHD$`-HD$PHHHD$XIG(HD$PHD$`H9D$Xx|$tHD$Ht$PHD$0H@0Ht$(HHD$H~M3HD$(HHHD$0IE0HD$(HD$HH9D$0|$tHD$1Ld$(H@8HHD$fI$HMe8HH;l$t|$tHD$HX@H~܃|$ tME1Ld$Hl$ L|$@LMLt$8 $HLLIKIm@I9uLd$Hl$ fDL1H HHIU@H9ugMM@MPUHSHHGHHtHHtHH[]zHH<(H8ttH螛fff.ATUSHHH9H<(H9GH9Fu;t7 ~ HFH;C1H[]A\@L%;(L9uuL9uҐuH߉rHHH;;(H;:(H HQHHuHSD$HR0D$fDHKHVH9tHt HVDK DF DD9,A H{0HHA@HDA LN0HHA@LD΃7A 9Ht0LHQt111H[]A\L9HwvfH{HXLNHb7A m7A aHt$5oHt$)HHt$oHt$fATIUHSHHHt HՅuQH{ Ht LՅu?H{(Ht LՅu-H{PHt LՅuHx1Ht [HL]A\[]A\ff.AWAVAUMATMUSH8HH$Ht$(HT$0L$4Ic LA<@IUAE\L9PZH5kfDI\$(ID$(A}{ID$8HD$L%tPHAD$DID$0ID$8MuE1fDII9LLHIu1H[]A\A]A^A_IAD$Ef.A}:IEtDH8:uLhfDID$I|$(I]HHDpXLQxD1DA)@E7AHwHHuAPЀ SH{A0HJЀ w$f.GHFDBDJA vAlA9~IT$HcHHHTIcH9R),ƒHD<@H)$(H5:H8\1H[]A\A]A^A_fA|$Dt I|$L$KI|$HL[]A\A]A^A_DLI\$8HAD$DtIL$ 1HHHt HH)IL$ HIE[]A\A]A^A_LID$(ID$ IAD$EID$(ID$0AD$DAD$FfDAH5H"(H81 b1[I]LS1MH|$XHD$ID$8IA9uyEAD$GID$(Lk#H"(H5H8B[1[,HS"(H5tH81raH1fIT$H""(H5sHH81HRX8aH!(H5DH81aH!(H53H8Z1H!(H5>H8Z1!ffffff.AWHAVAUATUSHHt$ H6H$L$HDŽ$HH$~bHHIՃ EHD$@t$HrHH4$|$u_EH$t@HHH$IEH$H$H9$uH[]A\A]A^A_H8H/uHGP0HD$ H@HH$~H$HDŽ$H$|$uREH$t3HHH$IEH$H$H9$u*H9GH^>*H H .(H9H;(tHPEHt$PIXIW`IGhMw`IwXHt$XHIwhtH7HNHHtvHtH:HOHH tLHtH8HWHHt,AAfID$LP0iHPHR0HJHD$PHQ0HD$PHOHD$XHT$PQ0HD$XHT$PjHfH=gL1KIOH[h*AP1E1A9AAE9~IcHHD;jD;h*DA9}%HcփHD9HLH\H H\uMcI=g*LDhL I$11iI.aIFLH@0EwG1AKIFLP0OH#(H5\*1H=h*PAX@HHcHNHH.g*$g*=g* H:L"H/|HGP0pLRHI1H5G\*HL$`HVPHL$`HH;*HH@H;*)SH Hf*f*@yf*DhL I$H5[*H= g*EHHHD$`MHt$`t7H (HH.HFHL$hHHT$`P0HT$`HL$hHP(H (ffffff.ATHUSHL%(HI$Lft Gh1tHExHC01tHHC81tHHC@1uPHC(HEHHElC$HE`HCHEXHCEhC HEH{H/t*L9Hkt11[]A\f.HEpf.HGP0L9HkuHmHCH5G*H=b*1HHHHmH2a&e* e*>kHd*5d*H=sH aH{H8H/uHGP0HCf.HEHP0*H=!Y*1:HHtFHH+u HCHP0HW[*:[*ZmZm:H^[*HwWk[*:Q[*VmVm:H0[*`ff.AUATUSH1H>HHBHcClLcxM,M9rZDIM9vLI<$6BHHHEH;E }`HHUHHHEH+uHCIHP0M9wH+>HHHmu HEHP0HH[]A\A]HHBtHlV`Z*4FZ*mH/Z*HmtRHtH+tSH Z*0Z*5Z*H=j1H}H9H}PH:HH~H}HyH}XHzHH~H} HyH}`HzHH~H}(HyH}hHzHH~ H}0Hy H}pHz H~aH~(H}8Hy(H}xHz(H~AH~0H}@Hy0HHz0H~HF8HEHHA8HHB8H[H]A\HafDL;%Y(>I<$I$uID$LP0[H]A\HHUHHDžHUP~HVHUHQHDžHUXqHVHU HQHDžHU`MHVHU(HQHDžHUh)HV HU0HQ HDžHUpHV(HU8HQ(HDžHUxHV0HU@HQ0HDžHHF8HEHHA8HDžHI|$HT`H[RH=zf ~>V* $V*~HH V*1C@fffff.SHHH}HSlHHH$HH@`ZH$``H9$ RH$+H$h1H$(H9 H$H$pH$0H9H$HH$xH$8H9H$HH$H$@H9H$H~^H$yhH$HH9u[H$~8H$yBH9$Pu8H$~H$yH9$XuHF(HHĠ[ÐH(HHĠ[HGPH=dtp*T*tT*pHHS*11ffff.ff.SHHH]HSlHHH$HHH`BHH`H; HBHH`H H9vHOBHH`PH H9?HHBHH`H H9HHBHH`H H9HHBHH`H H9H~nBHH`ysH9 uiH~FBHH`yKH H9u>H~ HcH`yH9 uH'HHĠ[ÐH'HHĠ[HMH=6bnrpQ*nQ*rpHHvQ*1ffff.ff.USHHGH5G*HHHHHEH56F*HHHHHHmHCH5??*HHHHHH+txn9HHH=I*HhHo=HH HQHHuHSHD$HR0HD$H[]@HEHP0_fHCHP0yN*fff.AVAUATIUHSHH HHD$HFHuoH^HH}HHPHHuHWR0H]1H []A\A]A^H1H5 <*LIHVL7HHD$IVHCfDH$H'H5WL sKH KHKAH81y9HtIhM*NM**`*`H2M*H MIH=nKZ9LnM9Iu#HFHHD$<0HHH\$LBHT$L%KH5)LL^yHHL*L*``HL*R@AWAVAUIATUSH%5HHIEHIEH5f@*HCHFIELHHHIoL='L94HHvI$HL`H0HIHmH+HL*H c+*H9HSHB+*HeHH.+*He+4HHyIEHIEHEH0*HHE L}(I3HlHXHh LILp(H HQHH[Mt&I $HQHI$uIT$HD$LR0HD$H[]A\A]A^A_DHEHP0H+HCHP0X.HxXHH'H0`111HܡL=%'IMfDM9}HJ*H )*H9HH)*HHL5)*M2HHIEHIEHEH/*HHE HH](2HLpHh MH HQHHHSHD$HR0HD$L#6fHEI*sI*`E1HYI*1H PI*jI*H=[Z5MI*HD$sHD$H&H1 H6E*I*I*`HH*H1HuHVHHUuHUHD$HR0HD$HtH3HVHHt5M[I6HVHIHIVHD$LR0HD$/HSHD$HR0HD$HDH*eH*`HNH*HH=_3*H'*H5'*cTHH==3*THH+DH* H*aHG*LHDG* G*aHG*LE1HCG* G*#aHG*LE1H=2*H'*H5'*SIOH=2*VSI;HqCeG*KG*DaMH1G*HHDC8G*G*FaMHG*HAHC G*F*QaMHF*H1HBF*F*`HF*HLIff.HHGHtHHD$HBH=W]uF*HHKF*QF*]|HD$DATIUHS.HHt H[]A\ÐH'H8,t(.ID$H54*LHHt_IMHEID$HLHHHHt%I,$uID$LP0e2II,$HA~E*dE*O^HME*u ID$LP0H 9E*SE*H=V56E*1_HL1HiH"AE*D*M^HD*ATHUHSt`HGIH53*HHtmHHHLH'xWH1HPHHt []A\fHCHP0HGH5!VHPH'H81t00HH+HZ@ND*4D*^HD*u HCHP0H D*$D*H=U5D*/aH@C*C*^HC*fDUHSHHGH52*HHHHHCHHH@pHt:H@Ht1Ht1H HQHHuHSHD$HR0HD$H[]"SH+HQ?EC*+C*^HC*u HCHP0H C*C*H=T5B*)1H?B*B*^HB*\/H@AVAUATIUHSHH HHD$LHFH{HnHEH{H/ HkHEHH57*HHCIMH5@L*H5~@L>.HIgI$H51*HHC ID$HC(ID$HC0ID$HC8ID$ HC@HEHHHHHHQHHtOH1IEHPHIUtH []A\A]A^fDIELP0@HGP0HWHD$R0HD$H}$H567*LIHV*HHD$IVHEH$H'H5FKL >H "?H8?AH81,H<@*c@*H@*H <H=RcH<H=Rf~@*fd@*HHJ@*LnMIHFHHD$e#HH Hl$,IH;@*l?*H?*?*5?*H ;H=QD,@(HH;?*k?*Hh?*H5$*H=<*1HHH-H+t/H7;F?*i,?*H?*@LHCHP0HT$LO=H5Y)LLPH:>*c>*H>*H:>*i>*H>*AVAUATIUHSHH`H $'HHD$PHL$XHFHHHV HKHH?$*Hu E1AHHD$0H=5*HD$Hv**H $HD$@H|$8H|$ D$(D$HD$H='<*HHHHPHHu HSHR0H`H[]A\A]A^H5**LIHV'HHD$PHCDHH$L h<H?;H":H :H5GLNH#'HOH8LBH;1$)H9=* <*<<H<*H 8H=O H`1[]A\A]A^fDHwLnIIML,LMIIu*M~.H5%*LHV%HHD$XIMHL$PHT$XH(87<* <*<H<*HHPHHu HSHR0H ;*<*H=N5;*3HF HD$XHCHD$P.HT$PL7:H5_)LLMUH7;* ;*<<He;*AVAUATIUHSHH`H 'HHD$PHL$XHFHHHV HKHH!*Hu E1AHHD$0H=r2*HD$HV'*H $HD$@H|$8H|$ D$(D$HD$H=I'{9*HHHHPHHu HSHR0H`H[]A\A]A^H5&*LIHV#HHD$PHCDHH$L H9H8H7H 6H5fDLNH'HOH8LBH5=1&H59* 9*99H9*H 5H=L H`1[]A\A]A^fDHwLnIIML,LMIIu*M~.H5"*LHV"HHD$XIMHL$PHT$XH59*" 8*9H8*HHPHHu HSHR0H 8*8*H=)K58*3HF HD$XHCHD$P.HT$PL;H5)LL}JUHl4{8* a8*w9w9HE8*AVAUATIUHSHH`H 'HHD$PHL$XHFHHHV HKHH*Hu E1AHHD$0H=R/*HD$H./*H $HD$@H|$8H|$ D$(D$HD$H=)'[6*HHHHPHHu HSHR0H`H[]A\A]A^H5.*LIHV HHD$PHCDHH$L (6H4H3H 3H5FALNH'HOH8LBHf51"H26* 6* 9 9H6*H 2H=/I H`1[]A\A]A^fDHwLnIIML,LMIIu*M~.H5n*LHVHHD$XIMHL$PHT$XH15* 5*/9H5*HHPHHu HSHR0H 5*5*H=9H55*3HF HD$XHCHD$P.HT$PL4H5)LL]GUHL1[5* A5*88H%5*AVAUATIUHSHHpH 'HHD$PHD$XHL$`HFHHHV(HK HCHHu E1AHHL$H=,,*H #*D$@D$(D$H|$8H=*HL$HH$H|$0H= *H|$ H=''3*HHHHPHHu HSHR0HpH[]A\A]A^H5"*LIHVHHD$PHCfHH$H0H'H 0H5>L 2HOH81LBH;2H/3* 3* 8 8Ho3*H o/H=)F Hp1[]A\A]A^HpLnIt(ItIHF(HD$`HC HD$XHCHD$PLEIIIMMHD$PHL$XHT$`H.2*W 2*/8H2*HHPHHu HSHR0H v2*2*H=1E5s2*7H5*LHVHHD$XtDIMcH5x*LHVHtgHD$`I4MLH=0mH-1* 1*7H1*51*AHT$PLD0H5)LLCH-1* 1*7Hh1*fDAWAVAUIATIUSHHxH-'HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH='HHD$H d(*H*Hl$@D$8D$ HL$0H *D$H$HL$(H |*HL$Hv/*HHHHPHHu HSHR0HxH[]A\A]A^A_H5x*LIHVHHD$PHCfDHH$H,H 'H ,H5T:L /HOH81LBH.H+/* /*00H/*H +H=B Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLIIIMMLL$PHD$XHT$`H*/* .*0H.*HHPHHu HSHR0H .*.*H=A5.*8H5*LHV&HHD$XtDIMcH5*LHVHtgHD$`I4MLH=,識H*,.* .*c0H-*5.*AHT$PL,H5m)LL?H)-* -*m0H-*fDAWAVAUIATIUSHHhH-B'HHD$PHl$XHFHHHV LKI$H\*It$ AH=R'HHD$(H $*HD$H$*Hl$@D$8HL$0HL$D$ HD$H$+*HHHHPHHu HSHR0HhH[]A\A]A^A_H5$*LIHV,HHD$PHCf.HH$L +HW*H:)H *)H56LNH;'HOH8LBH*1<H(+,*,*8-8-H+*H 'H=?Hh1[]A\A]A^A_@HqLvIIML,LMIIu*M~.H5*LHV HHD$XIMLL$PHT$XH@'O+*5+*^-H+*HHPHHu HSHR0H **+*H=>5**&,HF HD$XHCHD$P.HT$PLu)H5)LL<UH&****(-(-H}**AWAVAUIATIUSHHhH-'HHD$PHl$XHFHHHV LKI$H,*It$ AH=R'HHD$(H z!*HD$HV!*Hl$@D$8HL$0HL$D$ HD$H$(*HHHHPHHu HSHR0HhH[]A\A]A^A_H5 *LIHVHHD$PHCf.HH$L P(H''H &H %H5n3LNH 'HOH8LBH'1 H$(*?(*,,H(*H $H=<?Hh1[]A\A]A^A_@HqLvIIML,L MIIu*M~.H5*LHVHHD$XIMLL$PHT$XH$(*(*,H'*HHPHHu HSHR0H '*'*H=;5'*,HF HD$XHCHD$P.HT$PLK&H57)LL9UHt#'*?i'*,,HM'*AWAVAUIATIUSHHhH-'HHD$PHl$XHFHHHV LKI$H *It$ AH='HHD$(H J*HD$H&*Hl$@D$8HL$0HL$D$ HD$H$j%*HHHHPHHu HSHR0HhH[]A\A]A^A_H5*LIHVHHD$PHCf.HH$L %H#H"H "H5>0LNH'HOH8LBH$1H!%*%*<,<,H%*H !H=9轸Hh1[]A\A]A^A_@HqLvIIML,LMIIu*M~.H5f*LHVHHD$XIMLL$PHT$XH $*:$*b,H$*HHPHHu HSHR0H $*$*H=85$*Ʒ,HF HD$XHCHD$P.HT$PL##H5)LLU6UHD S$*9$*,,,,H$*AWAVAUIATIUSHHxH-'HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH=|'HHD$H *H-*Hl$@D$8D$ HL$0H | *D$H$HL$(H *HL$H&"*HHHHPHHu HSHR0HxH[]A\A]A^A_H5*LIHV HHD$PHCfDHH$HH'H H5-L !HOH81LBHW!H"*{"*++H_"*H _H=5臵Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PL5IIIMMLL$PHD$XHT$`H!*!*+H!*HHPHHu HSHR0H f!*!*H=55c!*莴8H5*LHV HHD$XtDIMcH5h *LHV HtgHD$`I4MLH=]H * *+H *5 *AHT$PL`H5)LL2Hz *o *+HX *fDAWAVAUIATIUSHHhH-'HHD$PHl$XHFHHHV LKI$H*It$ AH='HHD$(H Z*HD$H*Hl$@D$8HL$0HL$D$ HD$H$z*HHHHPHHu HSHR0HhH[]A\A]A^A_H5*LIHVHHD$PHCf.HH$L 0HHH H5N)LNH'HOH8LBH1 H*,*5+5+H*H H=o2,ͱHh1[]A\A]A^A_@HqLvIIML,LMIIu*M~.H5v*LHVHHD$XIMLL$PHT$XH**[+H*HHPHHu HSHR0H **H=y15*ְ,HF HD$XHCHD$P.HT$PLCH5)LLe/UHTc*,I*%+%+H-*AVAUATIUSHH`H-'HHl$PqHFH\HHVI$L *E1It$ H=X'HHHl$@H=*D$8LL$(D$ LL$HD$0HD$D$H$g*HHHHPHHu HSHR0H`H[]A\A]A^LHH HH$L :H5m&HHHHHLBHLIH'H81H****H*H H=/H`1[]A\A]A^HLnMI/HFHHD$PHHT$PoHM\*)B**H+*HHPHHu HSHR0H *%*H=/5*3H6HI~H5'*HHVkHtHD$PIFXHT$PLH5Փ)LH,;H****Hk*fDAWAVAUIATIUSHHxH-'HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH='HHD$H d*H*Hl$@D$8D$ HL$0H )D$H$HL$(H *HL$Hv*HHHHPHHu HSHR0HxH[]A\A]A^A_H5 *LIHVHHD$PHCfDHH$HH 'H H5T#L HOH81LBHH**B*B*H*H H=,׫Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLIIIMMLL$PHD$XHT$`H**h*H*HHPHHu HSHR0H **H=+5*ު8H5*LHV&HHD$XtDIMcH5*LHVHtgHD$`I4MLH=!譁H,**&*H*5*AHT$PLH5)LL(H**0*H*fDAWAVAUIATIUSHHhH-B'HHD$PHl$XHFHHHV LKI$H\)It$ AH=2'HHD$(H *HD$HV *Hl$@D$8HL$0HL$D$ HD$H$*HHHHPHHu HSHR0HhH[]A\A]A^A_H5 *LIHV,HHD$PHCf.HH$L HWH:H *H5LNH;'HOH8LBH1<H+*W*))H*H H=_)WHh1[]A\A]A^A_@HqLvIIML,LMIIu*M~.H5)LHV HHD$XIMLL$PHT$XH@O*5*)H*HHPHHu HSHR0H **H=i(5*&,HF HD$XHCHD$P.HT$PLH5)LL%UH*W*))H}*AWAVAUIATIUSHHxH-'HHD$PHD$XHD$`Hl$hHFHkHHV0HK(HC LKI$It$ AHHL$(H=N*H *HD$H*Hl$@H|$0HL$D$8HD$ D$H$H=ƿ'*HHHHPHHu HSHR0HxH[]A\A]A^A_HCDHH$H'H:'H H5L CHOH81LBH&H* *;);)H*H H=y& Hx1[]A\A]A^A_fDHL~IHPJcHHF0HD$hHC(HD$`HC HD$XHCHD$PLIIIIu*M~.H5)LHVH HD$hIMLL$PHD$XHL$`HT$hH *R*a)H*HHPHHu HSHR0H **H=H%5*գ%MvH5*LIHVHHD$P H5*LHVHHD$XIH5)LHVHHD$`tdILHT$PLH5)LL!H * *')H*5*H=1zH * *)H*H={yHb q* W*)H@*tff.AWAVAUIATIUSHHxH-Ҽ'HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH='HHD$H 4*H*Hl$@D$8D$ HL$0H )D$H$HL$(H *HL$HF *HHHHPHHu HSHR0HxH[]A\A]A^A_H5H*LIHVHHD$PHCfDHH$H Hں'H H5$L HOH81LBH H  * *((H *H  H=I"觠Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLUIIIMMLL$PHD$XHT$`H * *(H *HHPHHu HSHR0H * *H=Q!5 *讟8H5*LHVHHD$XtDIMcH5)LHVHtgHD$`I4MLH= }vH * *(H *5 *AHT$PL H5=)LLH * *(Hx *fDAWAVAUIATIUSHHxH-'HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH=L'HHD$H t*HU*Hl$@D$8D$ HL$0H )D$H$HL$(H *HL$H *HHHHPHHu HSHR0HxH[]A\A]A^A_H5*LIHVHHD$PHCfDHH$HH'H H5dL # HOH81LBHH * *;;H *H H=Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLIIIMMLL$PHD$XHT$`H **aH*HHPHHu HSHR0H **H=5*8H5)LHV6HHD$XtDIMcH5)LHV HtgHD$`I4MLH=SrH-<*"*H *5*AHT$PLH5~)LLH**)H*fDAVAUIATUSHHH)HHH)HEHH=)mHHuHmHCH-)HHHH<IMI<$H+IEH5 )LHHHHPHCH5)HHH%HH'H+EH'H9EL5)HL"HHvHH?HmHHHXIELH5F)HHHHgHCH5)HHH<IMH+HHI$L`Hh Lh(I,$u ID$LP0H[]A\A]A^DHEHP0>fHCHP0jID$LP0OHCHP0HEHP0HCHP0OH1@*&*H*Hmu HEHP0HtH+tCMtImtCH **H=5*1MHCHP0IELP03HH**Hi*E1cHpHŲ'H8tHH9H*~.*H*H$* *H*IH*~*E1E1H*H*~*E11H*H*}*Hf*1HIt#HH'H8KImu IELP0H*9**E1H*[HuIFLuH/'H8H5)HHLYIH**E1H*x"HYHz*o*HX*UHSHHGH5L)HHHHHCH5)HHHHЅx'H+u HCHP0H'HH[]fH+H*{*QH*t(H Q{H=˔1HCHP0H o**5s*\HWf*{L*OO{H+*HHfSHHGH5)HHHHHCH5)HHHHt)H HQHHuHSHD$HR0HD$H[H+H*x*Hn*u HCHP0H [*u*H=5X*胓1sH5D*x**H*H@ATH5)UHSHGHHHHHCH5%)HHH~IMH+:HEH5)HHHHHHEH5)HHHHHHmHCH5)HHH HHH+H=)HrHHHmH5t)HLHHH+HLHHHmI,$t}HIHHHHHu HCHP0[]LA\fHCHP0HEHP0 HCHP00HEHP0FHCHP0[ID$LP0sHEHP0]H)s)H)Hmu HEHP0H ))H=b5)ߐI$LE1H)r)Hn)H+u HCHP0H W)q)H=5T)M@IvH#2)r)H)IHH)s)H)H)s)H)3L HII?HPH8I1AH))H)H H=H`1[]A\A]A^ÐHV LNI$Hy)It$ AH='HHD$(H )HD$H)Hl$@D$8HL$0HL$D$ HD$H$)HHHHPHHu HSHR0H`H[]A\A]A^fHPHI6AHVHIIFLP0H58)LHVܾHHD$IMgH5)LHV设HtuHD$ I8MLH5)LIHVsHHD$vID$RH)])bH)5HT$LgH5QQ)LLH})Yc)2bHL)-H=>HG;)Y!)(bH )DAWHAVAUIATIUSH8a10HHH-'H)HCPHCHEHkHk Hk(HD$HMHD$HEHD$ xID$HHHH$H0HC'H H5L LHOH81LBH/H*)Y)HbHbH)H H=YfH+F1|ID$(HD$ AoD$I|$ Ml$fD$HG)HGHHHHcH@E1DH|$ HH;=;'H;='DIEH{HHPHH>HG)H9CLkDHsHDL購OH{P)PHS0HKA)HSp1:Ou 1zHS8HCH=Pb;HkPHE+Mt$It*ItIID$(HD$ ID$ HD$ID$HD$LIIIMM&Ll$H|$H|'1H5)8HIHI.H7I6AHVHIIFLP0H5)LHV謷HHD$IMgH5)LHV~HtuHD$ I8MLaH5s)LIHVCHHD$vID$2H)])bHi)5HT$L7H5!J)LLOHYM)Y3)2bH)-H=7H )Y)(bH)DAUATUHSHYHIyElH=y'HIJHHHEHhH-)Lh(L` HELMB-L%y'p VA;$P 1HHAHH QP A$=H~)9|/HtIH+u HCHP0HH[]A\A]f @9}豴@$L-y'IE#HHH))]H)tH+t&H u))H=85r)1^fHCHP0H=s讳HOC)))]H)1HHHHII,$H))]H)u ID$LP0Im7IELP0(Hv'H5H8NfAUATUSHH)L-)HCHH(/L%w'x WA;$P 1HLHA$H H B~k9|qHH4H+thH ))qqH)H H=\H1[]A\A]@R9}q@$HCHP0ײH@t]H})c)qqHG)yH=k覱1HLHHHRu'H5SH8軮fAUATUSHH/)L-x)HCHH(蟱L%v'x WA;$P 1HLHsA$H H B~k9|qHHV3H+thH{o)U)>_>_H9)H TH=Sa[H1[]A\A]@R9}@$HCHP0GH@t]H)):_:_H)yH=1HLHHHs'H5H8+fAUATUSHH)L-)HCHH(L%pt'x WA;$P 1HLHA$H H B~k9|qHH1H+thH)) _ _H)H H=YH1[]A\A]@R9}Q@$HCHP0路H@t]Hi])C)__H')yH=K膮1HLHHH2r'H53H8蛫fAUATUSHH)L-ȧ)HCHH(L%r'x WA;$P 1HLHSA$H H B~k9|qHH60H+thH[O)5)||H)H 4H=AXH1[]A\A]@R9}@$HCHP0'H@t]H))||H)yH=1HL_HHHp'H5H8 fAUATUSHH)L-()HCHH(L%Pq'x WA;$P 1HLHìA$H H B~k9|qHH.H+thH˿))"}"}H)H H=3VH1[]A\A]@R9}1@$HCHP0藬H@t]HI=)#)}}H)yH=+f1HLϮHHHo'H5H8{fAUATUSHH)L-ؤ)HCHH(_L%o'x WA;$P 1HLH3A$H H B~k9|qHH-H+thH;/))qqH)H H=!UH1[]A\A]@R9}衪@$HCHP0H@t]H))qqHw)yH=֩1HL?HHHm'H5H8fAVAUIATUHHcS訨HIH=Mn'HI蜩HHtHEHhH-)Lp(L` HELM-L%m'H QA;$P 1HHAHRp VP A$=H~;9|AHtnH+t\H}Lu HEHP0[H]A\A]A^ @9}@$L5m'IHCHP0?HHH)ȿ)(rH)tH+t&H ))H=5)1ROHCHP01HHZHH I,$Hrf)L)rH5)u ID$LP0I.uIFLP0fH*))rH)?H=LOHk'H5H8y@AWAVAUATUSHHH]L-Ol'HALnH5)LgPIEL9L5l'M9t$L9vA|$ ~ QID$H;FLePH5)L9M9t$L9vbZA|$ *~ aID$H;FzfDM9uuL9uuLHHH;k'AH;j'D/EH*u HBHP0ERE.DHEHHE HCE0C$HE8HC0HE@HC@HC8HEHC HC1Au/HC(HEH{H/t,L9Hkt31H[]A\A]A^A_fHE(f.HGP0L9HkuHmHCM9uL9u @L轡HIH;Rj'AH;i'D*EI.u IFLP0EEPIL$HVH9tHt HfEL$ DF DD@9A zI|$0IHA@IDA VLN0HHA@LD΃7A 9PHLE1HA@L9HHT$RHT$ADHEHP0lIL$HVH9tHt H%fEL$ DF DD@9A I|$0IHA@IDA LN0HHA@LD΃7A 9HLLE1HA&LNHI|$HHf'H5H88M9L(A7A y7A mLNHMI|$H)7A N7A BH5v)H=)18HHLH$Hm*H)~)=\Hg))5k)H=H oLH{HWH/tmHCALHt$5Ht$H#))[H)zHHt$Ht$HGP0LHt$ϛHt$H))\H)HHt$莛Ht$HEHP0Hk_)E)9\H.)fHIxH~<1Li1HHHHHyPHje'H5SH8蛝1Z11Οfffff.SHHGtWHGHtDHtHt)x~H[mDGWHH H[DH1[GH[CHHHtH~H HQHHuHSHD$HR0HD$Hd'H5H8ÜHffff.AWAVAUATIUHSHHHHD$HD$ HD$0HXHH5)H}H9"HXHLBM~&H;r1@H;tHL9uIHHHHt H;c'HQHuHLqLytHMtIMtIA$@f@ϘHc蔝HHD$A$H/c'HHD$ |HIHD$0HEHhHD$H ֳ)HD$ID$ HD$ HD$ ID$(HALM(LD$H $3x H $LD$WP Hb';1LHAIx wp HWb'BR9MLd$ H|$0H/HmHD$0Ld$ HHD$ t H+Mt I.Mt I/I$LHSHHUHHHUuHUH$HR0H$HH[]A\A]A^A_LqLyH$b'HXHGP0@@$HEHP0)iFHL$HT$0Ht$ Lx~L%`'H|$I$H/uHGP0H|$ HD$H/uHGP0H|$0HD$ H/uHGP0ILLHHD$0HULH))fHn)ILLHH|$Ht H/uHGP0H|$ Ht H/uHGP0H|$0Ht H/uHGP0.)H )H=5 )5EHU1tͻ\t+HuH^'H5H8pHD$ H­H|$))fH)HH/HGP0H=LD$H $輙H $LD$ 1LHHHD$ w3H4())fH|$H)mffff.AWAVAUATUHcSH(H^'Ll$`Ht$HT$I9%L^'IMǿPHIHXHi)L%)HHIF M~(ID$LM,(H QP H]';1LLAIH QP HU]'=pM9SM\I.MI$Ht$`Ht IE@LuIEIEH5ݥ)LHHHI$xHHQHHI$xIHI$IIIM]XIu`EUhMEpI}xI$HD$hI$I$8I$I\$PI8I|$xM\$XI$It$`ET$hMD$pID$HAl$lAI\$xIDŽ$H9A$I$I$*I$8Hx@H8HH9wL,It$XL9E1%fDI.HM|$XI9IH;qHHMt I.6I|$XLHIRHHUHII/tcH['I9FIVHBHHHE~QIIDזHsI*fIGLP0@IFHLP0I9M|$XHD$I$HD$I$I$HPLI$HHI$Ht%HMHQHHUuHUHD$HR0HD$H([]A\A]A^A_ÐIFLP04@9}@$@I$.LtZ'IMIT$HD$LR0HD$\HWHD$R0HD$IFLP0OIEH(L[]A\A]A^A_H5)))x~x~H)I/ H H=?M1I$11HHE~AFII VH))v~v~Hb)yHxl)R)j~Lj~H.)EL豗HHHD$ےHT$IH HyHH:jHBHP0[E1IGLP0H Ȫ))5̪)LI!LַI1HuHV'H5ȰH80H)e)}1E1HI)I.u IFLP0H 2)L)56)D1LLHIt袖fsH )){~H٩)H)̩)u}u}1H)E1H))}}1Hs)0H=}16H=轑UHSHHH5Z)HH9tAHXHt,LBM~H;rt&1 fH;ttHL9u1E1̲tLHDDClHHHDLDHt H[]H$HH=M1)MHHh)n)1;H$ffffff.AWAVAUIATIUSHH8HoLwL p VP HPU';EMHK0HS(IGIHL$ HT$E1ɉD$L|$E$L1LH|H脐x WP HT'" I9|H8H[]A\A]A^A_fD29}<@$fD} CQMtaMuLLcEIGI9tlHK0HS(BfH=I脏 1D1E1fDHK0HS(Lc}M9HK0HS(E1LD$(Iu1LHHI蒊HILD$(H1H55)M~I HI H HI91L荌AD$ HImAl$ 1LHHHD$(HIH1H5)MLD$(~fILHILH HI91LLD$(LD$(HA@ I.tAh IELP0aIFLD$(LP0LD$(1ffff.AWIAVAUATUH1SH1H8H=~) HIHCH5)LID$H.HVH$H<$ IpSHI譍HILpHVQ'H9C@HHL=HI I/H+H$H@HH `L5Q'x WA;P F 1H<$LH4x WP A=H @9pHp H<$HHD$HHH;Im HCH;P'm L-Q'L9hHS HHHKHHH9{Hs0HH)H H9Hu@H9@@HI1E1ILHoD; ID=HM9rHH9 D5HBH9BD5HBH9BD5HBH9BD5HBH9BD5HBH9BD5HBH9BD5HBH9vBD5HBH9vnBD5HB H9v]B D5 HB H9vLB D5 HB H9v;B D5 HB H9v*B D5 HB H9vB D5 HBH9vBD5HHHHIEI,$HtH+u HCHP0H8L[]A\A]A^A_HrIM2Ip(HH$IFH; N'M~MMnIIEI.IEA1ҿD$H;vO'H;P'HH MtLxLc|$H$IJDHJ\IEHHH $L5RN'x H $WA;P 1HH $LH辉x H $WP A=p4@9HH)ImHCH;EM'L-@N'L9oHpM'H5mE11H8Hwk)Q)j1H8)LXHCHP0ID$LP0IFLP0kH)12HH9ΈD5ufIELP0HGP0@蛈@$fIELP0 HCHP0IGLP0IE@ H$L|$HtH\$ HD$IEPLP1 uIEHHAHHMt I/H<$HHD$HHHSHGP0Gf.H $跇H $@$f.HAHP0H$HtHLH\$ L|$HD$MHHMtI/t+H $HHD$HHHHAHP0IGLP0IGLP0H1HAHH7+))jE1H)H<$11HHD$HHHuH<$HGP0HMtI.uIFH $LP0H $MtI/uIGH $LP0H $MtImuIEH $LP0H $HtH)u HAHP0H Y)s)H=5V)E1~0MHK?)%)LjE1E1H) H))Jj1E11Hڜ)1ME1IHbH$HԘȜ))3j1E11H)1HDHHH)m)SjE1E1HP)THfZ)@)NjE1H&)*MAD$H))jE1Hܛ)H $.HH $uHH'H5H8oH $HƗ))jM1H)1IH<$1LRHH/Hqe)K)YjE1E1H.)2HD8))UjIH)MAD$E1_H)њ)uj11H)1Hʖ))sj11H)1L-;H'L9HHHgG'H˞H5BE1H81lHg[)A)]j1H()1IH=J腂HHHF'HaH5؛E1H81H)י)j1H)1HSHE'H5H8S81HLH $mHHH $H=H $ȁH $XHbV)<)jE1H")&ffff.HHHHtHHЅt6HF'HHÐ[Ht`HHQHHuHPHR0H֔ʘ))f|H))5)H H=+1H)k)z|HT)fHWH;EF'H;F'HOQATE1USH HitnHJE'p V;P |1LHƀp NH B~9|HtfHH[]A\R9}艀@$Lgf.11GH5)1 H=p1띐軀HuHC'H5HD$H:|HD$mAUATUSHHWH;E'Ht$H;E'HOQE1 Ld$HitzHD'p V;P LLHp NH B~9|%HtSHH[]A\A]R9}Q@$LofHt$Ht$Ht51H=^~\1늀tHt$qHEB'H5FH$H:{H$NAWAVAUATUSH8HGH|$t$,HD$H1xHIs H{)HD$HH@H;ID'/ HD$HD$E1HIHcD$,E1L$$LE1D$(E1MMHHD$ fL;=)`IwH;5 B'tHV`HfHXEADDID$ IT$HHH9H9|IID$L'HLHL$LD$L $=tHIL $LD$HL$*HL$LD$L $+yHL $LD$HL$LHHLp H\$H3HVH4$HHMtIHSHIMtIHSHIMt!IHSHIuIPH$LR0H$H8[]A\A]A^A_ÿxHIHD$LD$HI@HLD$L $vHHL $LD$H)m)tHV)cLD$L $HIIrHHL $LD$t1H~(DHt)HHQH5t)H4HH9uHLLD$LL$H $vHH $LL$LD$9H0HVHHH)HALD$HL $P0LD$L $HCLD$HL $P0LD$L $IFLD$LL $P0LD$L $XIWHD$LLD$L $R0HD$LD$L $HSHD$HLD$L $R0L $LD$HD$IQHD$LL$R0HD$L$HPHL$HLD$L $R0HL$L $LD$H)LD$HHD$HILD$Lt$L$IvHML$LL$\H ;'H1H9LD$L $buL $LD$-@H_HD{CHH HH;g9'HaqHH$H;EL|IH$MHӈIČ)L)"sMH)E1HyHAL$HP0L$IFL$LP0L$LLHL$tHL$|HGI8)L)sMH)E10ICLP0IH;s:'kH $tH $IfH@`HHCSHH H)HLD$L $-L $LD$;HH)m)sE1LHP)LXCrH7HI=)#)sH )>H"))sH)HM)Iϊ)NsLH)MLHL$sHL$D$(AHI)Ln)DsMHT)E1H;6'H|$uHIH@HHHD$toIH#)) tLLE1H݉)HI)Llj)lsMH)E1HH))rE11H{)1HH)f)rE11HJ)1zIH[IL)L/)EsMH)GH+))sH)LLBH)؈)rE1E1HD$H)H˄))sH)H))sLLE1Ha)E1Hth)N)tE1LLH.)`HD8))rE1E1H)fff.AWAVAUIATUSHHHT$HIGh3wlLHHH;a5'rHxHLpL` II$H(I/L=Y5'H4'M9I9FIEHt$LPHH}L9H9lIELLH@pHH@HHHIEHHLPHH HQHHcHHQHH1IHPHIHtHEHPHHUI$HPHI$t@H[]A\A]A^A_HT$LLP HHTH(1ID$LP0L;53'L pH)؅)f1H)H )҅)H=5)MDIGLP0fH@HP0HH@HsHHH;2'IEHT$HLPH^H/#) )DfH)H+)HCHP0fHEHP0`IFLP06HPHR0H;-Y2'HnzH)x)fHa)@H@H1P0HD$HSHR0HD$HGH5ԕHPHa0'H81'pH ))e1ME1HӃ)Hx{qHʃ))eM1E1H)H5f)H=΀)1HHHSHmHsg)M)eM1E1H.)jH"0'H5ӤM1E1H8hH&))eH)ŒH踒HH~ق))]fH)H~))fH)H~)q)AfHZ)HEHP0H5)H{BHI~=)#)CfH )H"~))(fH)!H.'H5H81mH}́))*fH)H}))eME1Ho)f.AWIAVAUIATUSH(HFH5 0'LgHH9IE1E1E11[HHIEXHHHHH9cHIHxI<$IIMHMrI9pM;pI@JIHHt HmH.'H9CHSHBHHHkAElIM`"IIExHJ IJHHJ<IUxJ, LL$QgHIL$H=x)HL$lHHL$I,$H=|)HL$pHIL$OHmLL$iI,$L$H{y)_)zzH>)H Y{H=L$gL$H>{2))ddH~)IH {HHI/H=NHE1 fDHHaHt$LD$L $hHL $LD$Ht$$H+DHEHt$HLD$L $P0Ht$LD$L $Ht$LLD$L $AHHL $LD$Ht$L$vgHL$t%H,'H2H9L$!fL$DI(t(HtHmu HEHP0H(L[]A\A]A^A_I@LP0HHikCHH 6LL$dHIL$H=%v)HL$9jHHL$~I,$H=z)HL$HIL$HmKLL$I,$L$Hy})|)zzH|)1kM;pK\IHHHt$LD$L $iHL $LD$Ht$HHt$LD$LL$H$)dH$HLL$LD$H2HNHt$HH sHBHt$HLD$L $P0Ht$LD$L $HHHHH?Hc)'H5 L$H8aHw{){))z)zL$H{)]HY)'H5L$H8>aHw{)s{)%z%zL$HN{) ID$L$LP0L$HHt$LD$L $bL $HLD$Ht$HHHt$LD$L $&L $HLD$Ht$ID$LP0L$HEL$HP0L$I@LP0H z)z)5z)Hvz)z)zHjz)HmtH \z)vz)5`z)HEL$HP0H 6z)Pz)5:z)L$HL$趏L$H$vz)y)dH뾣dHy)ID$LP0L$WHEL$HP0L$%H;#&'iLH4$eHIH4$H@LMt=I;Huty)Zy)ddH9y)=HOuCy))y)dd1Hy) Huy)x)dd1Hx)HHtx)x)zzHx)I$H tHHI$LL$ID$L2Htx)gx)zzHFx)H\tPx)6x)zHx)ID$L$LP0L$OHtx)w)zzHw)2Hsw)w)zzHw)bAUIATIUSHHHGH;%'lH;%&'%`HHI$L`IELh HCHLMY `L%k$'p VA;$P 1HHAI_A$H H B~E9|KMHEHPHHUHHPHHttHL[]A\A]fDR9}q_@$HWBፃ1 H4$Ll$LBuH{HAI@HCHP0HL[]A\A]HEHP0NH4$HT$HI>H=|V^E11HHaI_HIuH!'H5{H8^[E11ɺAIffffff.AWAVAUATUHSHHg[HHA[H{H@H9ZHDq8u)u) Ht)H qH=+w*HHPHHu HCHP0DIXH[]A\A]A^A_Dty@tp1Y]HId1HHp`ImHtaHDHM@tWHHeYHEHPHHUHEHP0H)!'H5*H8YIELP0H!'H5~HH81`1HHHHHH读HIKHH 'H9CLHHpII.tKMtjHmtWLsI/t=Hos)rs)HQs)OIFLP0IGLP0HEHP0HmH>o2s)s)Hs)tHEHP0H r)r)5r)LkMHkIEHEH+u HCHP0LLHImIIELP0Hnr)mr)HLr)JAWAVAUIATLgUHoPS1HH@lADpAAAE~kfDHt)HcHHTLH:H|H2H0II4HIݐx?H=(o)H5YHHtHD$ HHYH5`R)HHVHHtHD$(HH/H5J)HHVGHHD$0HH9H2GHHHt$-AHt$HHt$AHt$:HHt$@Ht$HT$ L`H5(LHoiHY])Y])%%Hp])ID$LP0HCHP0HKYZ])@])-&H)])3H$Y3])])+&IH\)H}AWIAVAUIATUSHHHL% 'H5KB)HLd$ Ht$(Ld$0I@He~+HIH_I@(HD$Ih Mp@H?HLd$MH=[)Hl$ HWH;M 'H; 'oHOQE1 HYuLDH QP HM ';LHHDx OH H% 'BR9bHHHCH5I)HHHHHH+H53N)H9TH 'H9]H9^} ~ HEH;FH5M)H9H9]H9^} ~ HEH;F'H=R)L9}HEcHGHH^ H=W)HcHI H+ LeI,$HjVyZ)_Z)IHEZ)HMLHH$IH'HVH VH5bdL !YHII?HU\H8I1AFHUY)Y)__HY)H UH=^}HH1[]A\A]A^A_L9u^L9uQH>HHBH;N'H;'H)uHAT$HP0T$IIu LD$LH='HHW)HIH+iHmu HEHP0HHL[]A\A]A^A_fDHMHVH9DM DF DD@9A uH}0LUHA@IDA RLN0HHA@LD΃WZ7A 9MHt&LH?1҅!IIu LD$LH='HHV)HIHSW)W)HW)H+u HCHP0IH W)@HCHP0HCHP0;@@$fLd$fDHLd$L9uLL9u?HYH57B)L9hL=&M9}L9~A} ~  IEH;FH5B)L9pM9}L9~A}  ~ l IEH;FH=F)H9> IE$ L;HH H=K)HeHHz H+a HgHm HlJ{N)aaN)'LHGN)HID$f.HH$L LH9MHJH JH5^XLOH&HNH8LDRHJP19HIM)M)0'0'HM)H IH=~q1HĈ[]A\A]A^A_I9uKH9u>L2HHH;>&H;&H)uHAT$XHP0T$XpHH3)Hu LL$HAH=&HHD$(HH_D)HD$H[6)Lt$@D$8HT$0HT$D$ D$H$HT$P}K)HHH+?Imu IELP0HfDIMHVH9EM DF DD@9FA UI}0M]HA@IDA 2LN0HHA@LD΃7:7A 9HtLHg31҅…LHu LD$HHT$PH=&ILLt$$L 5))HHyH;"?)Y?)LH>)I/7IGLP0(DIGLP0'@$fHMHVH9DU DF DD@9A H}0HHA@HDA LV0HHA@LDփ7A 9SHt&L1H%'I$It$ LD$HT$H=&HH<)HH H+/I.u IFLP0HHH[]A\A]A^A_DHMHVH9DU DF DD@9 A H}0HHA@HDA LV0HHA@LDփ7A 9Ht&LH$1҅I$It$ LD$HT$H=&HH;)HHH8<)W<)H<)H+u HCHP0H h<)<)H=c`5e<)1fI9uH9uLi!HHt?H;&H;`&%H)uHAT$HP0T$2H7;)U;)LH;)H ;);)H=_5;)HI1H9uH9u @H HHt8H;6&H;-&Hmu HEHP0 H 7;)Q;)LH:)6H9uH9u|H HHt@H;&H;&HmuHET$HP0T$Hq6:)Vf:)LHL:)Hx0H|$WLH7H 6HIH$H5aDHIH&I?IL 9H`<AH81%H59)(9)YYH9)H 5H=](HH1[]A\A]A^A_HCHP0fINHVH9tHt HEV DF DD@9A yI~0M^HA@IDA VLV0HHA@LDփO7A 9LHLHl 1҅HoHb`HHfDHHfDH9HHL$Z"HL$fDHt$ ُIH9H"H9RH!FH9HHL$!HL$LVHI~H7A LVHDH}H!LVHRH}H/LVHI~He7A q7A 7A *7A f7A 7A N7A L%ILpIHvJc HHP0HT$8HP(HT$0HP HT$(H@HD$ LIHPIIu*H~.H5#)LHV HHD$8HHHD$ Lt$(Hl$0HD$HD$8HD$iHH%246)O6)v1H6)O"IHt$ 跏IH15)O5)x1H5)H=; /hLHt$Ht$Hs15)Ph5)LHN5)MHH5)LHVHtHD$ HHH5()LHVHtHD$(HHH5#)LHVpHCHD$0H0HHt$Ht$HHt$Ht$nHHt$Ht$LHt$oHt$kHHt$PHt$H0-4)R4)H3)xL9LHHHt$Ht$lNHHt$Ht$C/H/3)T3)LH{3)HT$ L5H5s(LLaEHP/_3)(E3)BBH)3)pHe&H5f9H8HEHP0-HCHP0 H.2)[2),H2)EH.2)\2)"LH2)f.AWAVAUATUHSHHFH;&H'&H9ULnIIEHH/tHMl$HEHH?HHu HCHP0HHHHH[]A\A]A^A_ÐHGP0H5 &)HF-ID$LHHHHHQHHID$H5%)HHLIMFIEH5:)LHHOIMNImLu IID$H;&Il$HMl$HEIEI,$|LHLNHmII.t:M]ImtZI/IGLP0HPHR0IFLP0@IELP0CID$LP0tIELP0@HEHP0qH;J&L4$H;&IT$BE1 LjuM|$H-O&H Q;UP LLAIUH H BR9|MMf@$HLUIH+/) /)Hn/)5x/)H a/)H=St/)Hj+^/)D/)aaH(/)H C+H=SP1H&H5;SH8H+/) .)H.)^H;5&tHHH&H50H61H81H*.).)aaHy.)LH*M.)f.)ĊHO.)ImIELP0HJ*>.)$.)H .)IH* .)-)H-)LoIIbffD|H&H5RH8UH)-) -)Hs-)uLL5IHL'IH=h36E1i{HuHW&H5X3H8Aff.AWAVAUAATUHSHHHEHADH1HHIMIc4HHjHL]HII,$vH+THEHEH;&H;?&L,$H;&HUBE1 LbuL}HF&H Q;P LLAIH H BR9(MHImM0H+LvI,$H'+)p+)HY+)H R+)l+)H=-5O+)zHmu HEHP0DH[]A\A]A^A_DHCHP0fID$LP0zIELP00HCHP0L讕I,$8ID$LP0(LHnIk@$fHH0IH&w*)]*)HF*)fDHH+HCHP0H9&-*)*)H))I,$uID$LP011I2H%))))H))H,&H5JH8]H%))))H{))L}M#H]IHHmtJLLH許I/IIGLP0HHI]HEHP0[HtE1?H=/RH&H5/H8ffff.AWAVAUATUSHH$PT$HH@`HD$8HcH` GHH`GHH`GHH`GtuHH`Gt\HH`GtCHH`gGt*HH`NGtHH`51H$`$H$h$~sH$pp$~_H$xR$~KH$\$~7H$>$~#H$>$~H$#1H99D@CD$D$)؅HcH`HcH`H̠HHԠHKHcH`HcH`H̠HHԠHKHcH`HcH`H̠HHԠHKEHcH`HcH`H̠HHԠHKHcH`HcH`H̠HHԠHKHcH`HcH`H̠HHԠHKtzHcH`HcH`H̠HHԠHKt9HcH`HcH`H̠HHԠHHDŽ$`H$HDŽ$hH$HDŽ$pH$~xHDŽ$xH$~_HDŽ$H$~FHDŽ$H$~-HDŽ$H$~HDŽ$H$HH$H! 9L݅/!E1E1L$ J@JDŽAJxH= )H5=&!ID9J`OtDL9tHtJ IcA HID#L{ HI#Hg HH" HH!H=)HX(HLhLp HH3"HmH= )H\$PHWH;&FH;?& HOQI"E1 HiuLwD L-&p VA;UP !HLH p AUNH BR94HK!HP!H+HHmH!)!)OH!)H !)!)H=Z$5!)DH!)!)Hz!)H n!)!)H=F5k!)蔴H[]A\A]A^A_fDHEHP0ffHCHP0HHmHEHP0@ @$fH$`DH$XH$HzHHuHHЃiH$hH$HDHHrHHȃ3H$pH$HHH0HHȃH$xH$HHHHHȃH$H$HHHHHȃH$H$HlHHHHȃ~_H$H$H:HHtHHȃ~-H$H$HHHHVHHt$8L0H$0H$(H$pHH(HFHHȃiH$8H$xHHHEHH3H$@H$HVHHHHH$HH$H HHHHH$PH$HHHHHH$XH$HHH=HH~_H$`H$HHHHH~-H$hH$HPHHHHHD$8H9XHD$@H$PH$H$PHHP`CHHĐH;PHHKHcH̐HPH9HHqKHcH̐HPH9vHH6KHcH̐LHPH9;HHKHcH̐HPH9HHKHcH̐HPH9HKHcH̐H9PH~WKHcH̐mHPH9\H~#KHcH̐9H9P+H$H$ HH$ H`HI`H; HCHH`H H9pHmCHH`JH H99H6CHH`H9 HHCHH`H H9HHCHH`H H9HHCHH`hH H9WHH~UCHH`2H H9!H~"CHH`H9 D$Ht?L$(LH$pH$0E1LmH$PHP`HcH$`H`H9H$hHL$aH)HD$HȹHI9L@HIFHH$x1H$p$H|$H$ H$1ZPF<2(?5+! 1H_HvH)v)H_)Hui)O)4H8)Imu IELP0MtI.t,HPH+FHCHP07f.IFLP0H))2H)HH))JH)oHmH){)GHd)HEHP0H=xfHt$PYHDH#)(01H(H((.H(H&H5H8b|$FzfH((YHi(tH ](w(H=H$5Z(胒HWK(1(RH(H0$(1 ( H(tH (2(H(MAW1AVAUATLcUSHHEL$H$H$L$D$LHHH$1HHx@HHD9uIcHH$HHAD$E1L,J|;NH'JD=IM9uH$H$LhpHILHH$yH$ HLH$1HHHzH$ HIH$HELx HhL=(H$IU0IE(IGLML$H L$QP H$&;/1LLAIp VP H&=p4@9M4ImI?u IGLP0H$L$H3;HIIHFE~{H$I~PHmIIuxHEI~IOH$L LL$)L$H$ILHMMHIE@L$L$H$L$LHHHޱHDD狔$L$HmuEHEL$HP0L$)1fDH&H5j E1H81-E1E1Mt I/uIGL$LP0L$L$L$LH$H$HHĨ[]A\A]A^A_H=L$L$HM(s(_H\(t ImCH H(b(H=5E(E1mE1E1H f@$kfIELP0nDIM`IExHcH H AT$HcH H AT$HcH H AT$trHcH H AT$tXHcH H AT$t>HcH H AT$t$HcH H AD$t HH EPEI~IOH HH$/H$IH#E1H(({_H(I/uIGH$LP0H$H$HtHH$HHHHH*HBHP01LL HI~IELP0fHt&H5]H8H((y_1H((HAH$HP0H$QIcHH$JHHE1iImu IELP0E1E1HH&H5H811(HH;/((w_1H(cH((u_H(USHHHOHDHWxHHH|$HL$OlADž5HH:H|$ H8H|$`H>H$HzH|$(HxH|$hH~H$HzH|$0HxH|$pH~H$HzH|$8HxH|$xH~H$Hz H|$@Hx H$H~ H$~mHz(H|$HHx(H$H~(H$~GHz0H|$PHx0H$H~0H$~!HR8HT$XH@8H$HF8H$LC`H$Ht$HAXH$lH|H$HHH$HKHHĈ[]H2Ht$ H0HDŽ$Ht$`bHrHt$(HpHDŽ$Ht$h;HrHt$0HpHDŽ$Ht$pHrHt$8HpHDŽ$Ht$xHr Ht$@Hp HDŽ$H$Hr(Ht$HHp(HDŽ$H$Hr0Ht$PHp0HDŽ$H$oHR8HT$XH@8HDŽ$H$IH((rqH((5(H H=衆1hHui(O(}qH8(fD[ff.ATUSHHHOHDHWxHHH|$HL$OlAᧅ5HH:H|$ H8H|$`H>H$HzH|$(HxH|$hH~H$HzH|$0HxH|$pH~H$HzH|$8HxH|$xH~H$Hz H|$@Hx H$H~ H$~mHz(H|$HHx(H$H~(H$~GHz0H|$PHx0H$H~0H$~!HR8HT$XH@8H$HF8H$LC`L$Hl$HA8L$HHoHLHHHHHHİ[]A\H2Ht$ H0HDŽ$Ht$`lHrHt$(HpHDŽ$Ht$hEHrHt$0HpHDŽ$Ht$pHrHt$8HpHDŽ$Ht$xHr Ht$@Hp HDŽ$H$Hr(Ht$HHp(HDŽ$H$Hr0Ht$PHp0HDŽ$H$yHR8HT$XH@8HDŽ$H$SH (|(qH((5(H H=1kH((!qH(fffff.[ff.AWIAVIAUATUHSHXH&H9H$L֕HIH9pH$H豕HI-IFH5(LHHHHHBHBHHH .HcHfDE1DH*HEH5(HHHHHVHBHBHHH .HcH1fDH*6AH$LHHLHD7'HHHX[]A\A]A^A_DBJHH HcAH9u{AH$AHH$H(i(}gHR(DBJHH HHcAH9tH$H$ApDrAd@DrWjH$/HH$H((gH(H*u HBHP0H ((5(H=j1fDBJHH HHcȉH9ZH$H$>fDj0BJHH HcȉH9 HBHP0SHBHP0HH$0HcAH$H9 HrHH$\@HH$HcȉH$H9rHHH$VHH$HH$~HH$H$\TH$AH$H9HwHH16HAH$HP0H$H((gH(H HH$jHH$HH$H$SH$H$H9HwHH1CHAH$HP0H$$H'((gH(PHmH((rgH(H5(H}xH((qgHw(H(g(hgHP(H5(HzGHNB(((ggH(wH'(({gH(PHAW1IAVAUATUSHH$(H$H$8HH3&8VH$(H(HxH9HXHHJH~(H;Z1fDH;\HH9uH$(LhHHpxHLH$@Hc@lL$HTL$H$@MH{L H{PLHHLLLH$(HDŽ$0QHsWH$(H;1&}H$(HHHHH$0H$IGH;&H$IHDŽ$E1IL$DŽ$DŽ$1MDŽ$$$IFHP`H.H H;ٔ&IFHPHbHHA^2IMePIEH9H$c Hc$IHĠHx*$[H$H(H$$IL$H$ H&I9Gp H$I;O1 IGL4IH$HH+HCHP0fL;59&[HH5%(LH HH H<&L%&H9L9Q^HEHDŽ$HHHEIFH5(LHHr HH H9L9-RHEHDŽ$HHHE}IFH5&(LHH HHZ H9L9 FHE1HHHEsIFH5(LHH HHb HmPIFH5}(LHH, IM I,$1IFH5V(LHH Hl HE1H;K&HQAHHIEEIMMPH$uH;-&E1fDII?HEus$H=(H5 L$ D$L$H$D$D$H$L$D$L$  H;-w&QH$H$H9$lE4H$HH$IL;%%&EuH$H+$HHHHHPHH9HE1Hc$IHHI$H HԠH`Hc$HĠHɋ$I$$$1I9HDŽ$HH$H$H$H9HNH$ DEH$HH$H$IL;%&uHDŽ$DHc$$HDŽ HDŽ`HDŽĠH;-&HH((uH(@H;-I&HH(h(vHQ(FH;-&HSHF:( (vH (I/Ht HmuH ((L5(H=E1 sDH&H9E? HEHPH H MHH$HmwHEHP0hDH&H9EHEHPHDHMHH$HmHEHP0tDH9&H9EHEHPHHH]HmHEHP0~DHEHP0fID$LP0HPD$HR0D$H${1HDŽ$DHHHIMePIEH$H=(H5H(@('wH(H$H=(H5趰H((yH{(H o((H=5l(1pHg[(A(uH*(DH$IL;%͊&oEHHD$H$IH$H$H$HIHH$IfDH$H$HIH$fH$H$HHDŽ$f.H$H$tH?HDŽ$f.HH>HHLH$HI HtH'&H2H9fDI/H$(H5(HxH9HXHHJH~!H;r1 H;ttyHH9uH$(H$8H狐H11ҋ$*HI:H;&eH$0tfDH$0? H$(H$8HDH$0LHHDLƋ$)HIH; &tH$0HH$HHHt9HtH+u HCHP0HL[]A\A]A^A_IGLP0pHAHP0-H{PLHHLLH$(HDŽ$0\LH$(HDŽ$0H$@8HEHP0|IGLP0\H$I;GMtIH$HMA('(uH(H&((vH(HiH((7v1H(IIH((*vH(qHaHH{o(U(uH>(0HHG;(!(Dv1H(XHHgEH$EH$H $HHHHH$oH$H$H9HWHHTHAHP0ED1HzIMePHIE$1iHDŽ$HHA^AFHH H (F(hw1H(׼H ((H=+5(iH((QvH}(oLHHH,HMHHQHHUHEHP0DHHf]EHH AHHI H贽I $HHQHI$ID$LP0@HDŽ$(HHuzEH$EH$H $HHHH$H$H$H9HWHHHAHP0HH$H7H$H((vH(H((vH(H((uH(uHFH$AHH$,LHLsHHH7HSH'HqH((vu1IH(H((u1H(H((vvH(H H5(HxsHzn(T(vI1H8(*H$(plH&1H8菹H*((ttHDŽ$0H(OH5 (HxtH( (vI1H(H;&`LHItPH@HHH$t I?Hh\(B([u1E1H&(H<0((YuYu1H(kHxHoH((tt1H(HDŽ$0H( (vv Ho(H#&H]H5H81kHfZ( @(vv H(f.AVH;5(AUATUSHH}sl ;HIL5~&L92HxHHhLh HEIEH(H;-~&H;-}&tOHLHH*HmMtImu IELP0H[]A\A]A^L9tHSyHJ>($(PeH ('(5(H H=1,czH@LP0*HCLHHHSHHR(HH5H((}eH(nHH[]A\A]A^HEHP0HlH=;+eO(5(+eHH(1TbHfDx蹼H((3eH(I,$u ID$LP0H ((H=5(1aSH{&H5IH8IH(~(BeHg(HN{&H5H81hJH^R(8([eH!(H7+((reH(DAWAVAUIATUSHHHGH5T(HHHH[HCH; z&HkHL{HEIH+H z{&IGHl$H9HL$CH; |&IWBE1 HZ`L5tz&H QA;P HLIH Aqp B9MHmsMI/H=9(H5R(HGHH*HHH=(Ll$ HWH;T$5H;{&HOQE1 HY@#L5y&H QA;P ZLLHH Aqp B9HIMHEH;7x&LmMLuIEIHm,LLLSImH@I/HI.HLHHI,$H+u HCHP0HHH[]A\A]A^A_R9#@$@LR9ų@$@MgIGLP0fHCHP0 IGLP0 IFLP0HEHP0ID$LP0HEHP0~IELP0Ht$ !I>fHt$L!I(H w&H9HL$H;x&HSBE1 HjuLc衲L5w&H QA;P 1LIyAH H BR9|MDI;@$11H !IH;D$L|$0H;w&HHUB5E1 HZuLmL5Ev&H QA;P LLH軱Ap p BR9|HIf{@$Ht$0HC HLLIHL9I}H[j(oP(@H9(1HtH+t2HtHmt2H (3(H=,5(1?[HCHP0HEHP0}HfLHt$ !IH(o(Q1H(I,$MID$LP0=HHgv(o\(eHE(螰HuHzs&H5{H8H#2(o(S1H(kH (o(bLH(AH=4H(o(NLH(WH=bE1fHt$L8 Ir諯HuHr&H5H8M膯HE1H=;vVH55(1H{!ItuoLH誴HH=01 HuHq&H5H8PHq&H5H85Ht$0H>HfDAWAVAUATUSHH(HF HFHHHHcH@E1HCH5(HHHIM@苯HHHHHg H5(HHIHmH(H (H9HT H(H HH-(HHEH5(HHHIMHm3H5(LH豯I,$IFL%(HHk 讬L=q&H QA;P  HLLI肬H QP A=H @9Mi I.H+ID$H5(LHH\ HHI,$HCH;~o&HkHLsHEIH+H}(HLBKHmIMI.AID$H5u(LHH(HH)I,$)HCH;n&HkHLcHEI$H+ID$H;Gp&Hl$H;p&IT$BE1 HZuMt$L=Ko&H QA;P DHLIH Aqp BR9M"HmM[I,$DIFL`pMI|$LϨHHH=o&HH葭HmH3HrHLAT$H+Hu HCHP0HKI.u IFLP0HH([]A\A]A^A_ÐHEHP0[HEHP0ID$LP0蛩@$4fHCHP0@IFLP0&ID$LP0WIFLP0HCHP0mID$LP0ID$LP0HCHP0HEHP0MHEHP0iHEHP0ۨ@$6fDnAMcIImLHHIHHDnFII Dnf.DnFII IDHIHx(m(E1HS(Mt I.Ht H+Ht HmMtI,$u ID$LP0H (!(H=J5(1-RH(վ(1H(dHt$L^IfDHEHP0\IFLP0-HCHP0,H;Zl&H-(H,$H;l&UHSBBE1 LbuLsL=Zk&H QA;P ,HLAIϦH Aqp BR9|M ID蓦@$HH]IH;k&H;4l&5HSB&E1 HjuLc;L=j&H QA;P 1LIH Aqp BR9|MIYۥ@$11HIHPHi&H5JH81I.HĸӼ((H(IFLP0HLXIHfHkz(`(HI($HDLP(6(E11H(HI蠨IH((E1Hӻ(Hηݻ(û(E11H(OH((E1H}(%IDHkz(`(HI(HDS(9(E1H(H=C(H<(H5E(7HSHHH='l(ɺ(lHH(M1H=̧(H HH I.6HCH;]&a H;>_&L|$pH;_&HSBHJE1 HL$`3ޙL?^&H QA;P LD$hLLHD$`I諙LD$hH AH B9SMdIM I(HD$HH@H;\&H H;g^&L$IH;_& HD$HHPBHJ1ۨ HL$`5La]&x WA;P ELD$hLHHD$`H͘LD$hH Aqp B9HLL$HI.H I)H;]&H;\&DHHPHHE HL$PHr(MAH=\&HHq H \&HHL$@HH(HT$(D$8D$ L|$HD$0HD$D$H$HT$Xҭ(HHD$P H+HCHP0I,$ID$LP0DH@LP0 H@HP0>H;9\&H苘AH`o(PU(%Ld$P1E1H4(E1Mt I.1Ht H+EHt H*YMt I(cH ((H=y5(AH|$PLd$PHD$PHi[&HD$XHQ[&HD$XIGLP0HEHP0IFLP0H@LP0HCHP0HBHP0YIFLP0IALP0gIFLL$HLP0LL$H:I@LP0MHCHP0ZHC@rL$H$E1L$HCHL@@ uLKHLAIMgMI.IFLP0IGLP0@$fL;=Y&LL|$HHHL$H(Aܫ(B$E1H«(1E1E1E1H1Ld$PHHHlH|$HLD$`HT$XHGP0LD$`HT$XGIFLP0IFLP0HCHP0IGLP09HAHP0IFLP0%HCHP0R(DHD$HHXfR*DLsHHHL$H$L$UHI/H(J~($1E1Ld$PH]($+@$f@$mfHt$pHI|fDH|$HH$H5IFLD$XLHT$HP0LD$XHT$HHCLD$XHHT$HP0LD$XHT$HHBLD$HHP0LD$HI@LP0LfIt.ItIHF(H$HF H$HFH$H臌IHIMHw H$H$L$HD$X!H(:(#1E1E1H¨(HD$P1E11yH(;(#E1H(Ld$P11E1E1@H]H5ė(HHVHtH$HH0H5(HHVˑHtH$HHH5Z(HHV螑H^H$HHKHLCHIH+uHCHL$hHLD$`P0LD$`HL$hHLLHL$hLD$`/HL$hILD$`H)HALD$`HP0LD$`H_n(PT($E1HL$HH5(y˓HH#2(P($E11HL$HH(;H=(޲IIH=(H(H5(I'H˦(P($Ld$P1E1H(W&HT$`HD$HHw(Pl($Ld$P1E1HK(H=o(2HH=[(H4(H5=(OHH(O($1Ld$P1H(E18H~Hϡޥ(Jĥ($L|$HH(E1E1E1E1HL$HH=LD$HLD$H1LHUHIHWf(JL($1E1Ld$PH+(H|$HLGMLOIIHHD$`HHHuHGLL$hLD$`P0LD$`LL$hLLLLD$`LL$H!-LD$`HLL$HI(I@LL$HLP0H(P(%1HL$HHm(H5(H=(1HHH/H+u HCHP0H/>(Q$()%Ld$P11H(E1H (P(%LL$HE1E1Hϣ(LHǟ֣(R(F%1Ld$PE1H(bLsMLkIIEH+u HCHP0IELD$H1ҿAHKZ(J@($Ld$P1E1H(E1貏HyH (J($H([H= (ϮIH=(H{(H5{(IH(D($E1E1E1H(HL$HLHCIH|$HL.HHP_(FE(y$E1E1E1H%(HL$HdH*(E(o$H(LH5 (H=&(1oHIH I/HС(B(R$H(Ld$P11E1E1E1TH(A}(?$1E1Ld$PH\(E1 LkMHKIEHH+HLLHL$H})IIEHL$HHHHIEIELP0H(A(0$Ld$P1E1H (E1Hɠ(A(-$Ld$P1E1H(E1R!HbˉHQHbq(>W($H@(H;J(A0(+$H(H==(IDH=)(HBy(H5Ky(I"D$H-HD$HH͟(?($H(H$LH5Q(LH`Hn}(c(##HG(&H=kLD$h衇LD$h?E1Ht$pHI`IGLP0*H(B(N$1E1Ld$PH(1E1D$HE1FHCHL$HHP0HL$HRH(Qw(%%Ld$P1E1HV(HJ&H5H8g葇HHiJ&H5jH8҃shHD17H(J($1E1Ld$PHǝ(H=LD$h!LD$h먨5H|$HH$cHH1LAIHI&H5H8ffff.AWAVAUATUHSHHL%J&HH|$HDŽ$L$HFH H Lv HkLt$HHD$`HD$pHDŽ$襆HH{H1( L(hE111AHHAHHD$`3"HD$pHH|$`H/p HD$pH5gz(HD$`HD$pHD$HH(H9pH(z(HHH=z(HH|$`HGH5(HHHH$H|$`H/~ H"(Hy(HD$`H9PHy(HHL5my(MIFH5I(LHH(HH!I. HEH;G&A1E1H;I&bH;I& T$ 赃HIŋT$ MtLpHt$HHcHHItH(HKDHELM~H G&P ;P O1HL$ LHAINHL$ P rp BR95M.L|$`ImGHm H$HrF&H9G_Ht$`HD$pH|$`H/ H|$pHD$`H$H/H H|$pH;=G&HDŽ$H;=G&[ HHPHHs HD$pL9d$HD$HHhT}IH HL(Mt M9 HPHuHpML`Ht$ tIEHD$ HtHMtI$H](H5v(H9pHv(HHH=v(HH|$pHGH5H(HHHHD$`H|$pH/ HD$`HD&HD$pH9P;HHt$H|$pH$HtH/ H$HHD$piH|$`H/n HHD$`HHD$`蟀HHD$0HD$pHH$MHDŽ$HD$pHBHD$`HD$`HB t ImF HT$ HtHHD$HHH Mt I,$ H(H5u(H9p6Ht(HHHH=t(HH|$`CHGH5X}(HHWHHD$pH|$`H/NHB(H5kt(HD$`H9pHAt(HHH=-t(HH|$`nHGH5T(HHIMH|$`H/HT$pHD$`HBH;B&~HAE1H;D& H;D&~HI HD$`Ht IFHD$`HT$0IcHHITOlLd$pID$LM~H B&P ;P 1HL$LLAIW~HL$p p BR9L ML$I.? H|$pH/yH$HD$pHHD$8H$HDŽ$HPpHx HD$PHo(HT$(HD$HD$L%(LLMuL~HHD$@!H@HHLLH|$@HHD$@HD$L%(LLMuL~~H=HHLM2LLHAHHD$p*HHH; l@&jLpM]H@IHH|$pHD$pH/H|$pL$HGH;A& H;dB&THWBE1 LjuLgk|H @&p V;P HL$ LLAI=|HL$ P rp BR9MLH$I.@H$HdH|$pH/+H$HD$pH/HDŽ$E1G~Ll$HD$XHLd$(HD$ I H|$7E1HfWBDLL$[zL$CII9XuLH&p V;P Y1HL$HH|$@HyHL$P rp BR9HHt$@HHD$HHHH]H+qHD$8HHHt$HHHD$HHHHT$PHtHHD$HHHHT$0HtHHD$HHHnHtH+u HCHP0HD$8HCHH$L "HH܌H ̌H5@LNH<&HOH8LBH1{H͏(?(EEEEH(H H=Q?"1Hĸ[]A\A]A^A_H1E1MiHPL`HT$ *L9MyH|$pHHPHHHGP0HHD$pHD$@HsHGP0HGP0HGP0@HGP0@HGP0@wHGP0@4HGP0@HGP0@HGP0@qHEHP0*IFLP0HGP0@rHE@HD$HL$H H$Hs(H$HEPL@1 uHEJHHAHHD$`RHō((EE1HD$0H(HD$8HD$PHA@UHD$`L$HH$HD$0H$HAPL@1 uHAHHAHH$H ((FH،(H|$`1E1HD$8HD$PHt H/G H|$pH\$8Ht H/1H$Ht H/Mt I.Ht HmMt ImH G(a(H=5D(oH|$HHD$8Dt@$t@$IFLP0IELP0IFLP0HBHP0HBHP0RHFHP0!HGP0HGP0@Vt@$f7HGP0.ID$LP0HBHP0IELP0HCHP0HFHP0^s@$*HrHHD$psHHD$0H$HHD$pHDŽ$HD$pHFUHD$HH HHL$H$Hop(H$2HHD$`M/I.%IFLP0HD$`HHHL$H$HD$0H$HH$tSH|$`HtH/t:HD$`ImIELP0H${HGP0H((FH(HGP0IFLP0HEHP0IELP0HKZ(@(FH)(H|$`E11E1HD$8HD$PIH((FH(H|$`E11E1HD$8HD$0HD$PHň((EE1HD$0H(H1HAH1HAXHGP0H=u(HYf(H5bf(tH1H=^u(!HH!0((EE11E1H(HD$0atH=u(He(H5e(I@H=t(詓I,HoHHGHEHH$H$H/uHGP0HT$`H$HHD$pHmTHEHP0EH>M(3(EE11E1H(HD$0~H=/t(Hd(H5d(#HH= t(ВHHЂ߆(ņ(FE11E1H(FHd(H|$pHD$`Ht H/uHGP0H$HD$pHt H/uHGP0H (4(H=խ5(HDŽ$6H$HT$`Ht$pLHD$HH2&H9PHHRmHHD$0{ZnHIAHD$0H|$LIFiHHD$0Ht$HHD$(HHHu HFHP0I.u IFLP0H|$pHt H/uHGP0H|$`HD$pHt H/uHGP0H$HD$`Ht H/uHGP0IHT$ LLHDŽ$:aHĄ((FH(IHT$ LLLl$0H|$`Hl$HD$8HD$0HD$PHM\(B(FH+(H)8((FE1H(lHoHHD$/H(ރ(FHD$0E1H(#HŃ((zFHD$0HD$E1H(Hz(o(EH|$`E11HN(HD$8HD$0HD$ProHH!0((FE11E1H(joIvH~(ڂ(FHÂ(lHuH.&H5H8^hHDŽ$H~((FH|$`E11Hf(HD$8HD$PHO~^(D(GH|$`E11H#(E1_H~*((PFH(H}H|$`((RFH́(H`H/VHGP0JH}((MFH|$`H(1LHhmHHD$`3Hj}y(_(EE1HD$0H<(H=`HL$ iHL$ HD$`ijHuHE-&H5FH8fH|((FH|$`1HD$8H(HD$P1LLlHH$LH=HL$hHL$HGP0L(of#LnIIMLHocMItNIu)M~)H5Ui(HHViHtrH$IMaH$H$HD$H5v(HHVViHH$IHF H$HCH$[H$LH5'LHjvHY{h(?N(5E5EH2(H-{<("({EH|$`E11H(E1HD$8HD$0HD$PHD$HH=~k(H\(H5\(HhHHt61HtHz~(~(EHu~(H*&H5H8dHUzd~(J~(EH|$`HD$0H%~(HD$8HD$PRHz~(~(EH}(H50a(H=I{(1bHHD$ptJHH|$pH/uHGP0HyHD$p}(}(EH}(H~y}(s}(EH\}(tHWyf}(L}(FH5}(H=Yj(HZ(H5Z(MHqH=7j(H]H=i(H%Hx|(|(HuH&H5[H8:멀Ht$0IHQLl$U(T(E1E1HT(E1H|$lHPT(T(Ld$HT(HPT(T(E1Ld$HvT( AHH=ME(P`IH=9E(HR)(H5[)(m`IH.P=T(#T(Ld$HT(HPLt$ T(S(E1H|$HS(nHOS(S(Ld$HS(=@IBHOS(S(Ld$HnS(H=@(U_IHUOdS(JS(H|$H.S(H)O8S(S(H|$HS(?I HNR(R(E1H|$HR(aH=?(^IH=?(H'(H5'(^I{HNR(R(sE1Ld$HaR(aH;& HW;HD$>IH0N?R(%R(MLd$HR(IOHMOHII/HLLHL$ LL$&HL$ ILL$H)AHALL$HP0LL$(HO&HTH5AxH81=HwMQ(lQ(Ld$HPQ(_H=t>(H%(H5%(h]IMH5B(HHV:HtHD$XIM~zH5C:(HHV:HtHD$`IM~TH5D(HHVa:HtHD$hIM~.H57D(HHV;:HLHD$pIM:HD$`Hl$XHD$HD$pHD$ HD$hHD$HD$PHD$H=w=(H %(H5)%(k\IHHt$(?3Ht$(HHt$( 3Ht$(nHHt$(3Ht$(6LL$ E1HHHt$(0Ht$(HIM(M(Ld$E1HuM(D$ 6HDD$ HYIhM(NM(HLd$E1H/M(MD$ 6HDD$  HI"M(M(lLd$E1HL(HHL(L(bLd$E1HL(DDIuHH{H{LHHL(xL(Ld$E1HYL(wLl/HDHSL(9L(Ld$E1HL(8H-/jLL:IH=RHT$O4HT$1HD$guH|$L:HD$LH|$Ht$PuHD$.HAHP0H=8(H. (H57 (WI4HfxH%H5QH80]H/G>K($K(>Ld$E1HK(#HGK(J(E1H|$HJ(qH=7(VIK4HH%H5PH8Y0HHt$(-Ht$(HuFJ(jJ(Ld$E1HKJ(iHT$PLJH5'LH1\H F/J(^J(HI(sHEJ(I("E1E1H|$HI(bHt$@L舣I/2H5HEI(I(Ld$E1HhI(HcErI(XI(GLd$H%IT$BE1 HZLL$P?'H LL$PQH %P ;LHL$hLL$PLH'HL$hp LL$Pp Bd9f HMI)6HoIm2H;%H;!%DHHPHHEHD$XHT$`MH= %HHp HHD$0Hq*(Lt$ D$Hl$$HD$(Hl+(L *(HD$;(HHH+txI/Ht HmNMtI.uIFHT$PLP0HT$PHH@LP0 H@HP0>H@LP0sHT$PHCHP0I/HT$PtIGHT$PLP0HT$P[fH;%HHT$Pf&HT$PH78F<( ,<(S;1E1E1H <(H;%=H &A.H7;( ;(<1E1E1H;(pHEHT$PHP0HT$PHCHP0HCHT$PHP0HT$PIEHT$PLP0HT$PHBHP0HBHP0IBLP0iIALD$hLP0LD$hI@LT$hLP0LT$hHFLL$hHP0LL$hIALP0IELP0HCHP0I@@L$L$E1H$I@HLP@ uMXLD$pLL$h`HLALD$pLL$hIMMI)IALD$pLLT$hP0LT$hLD$pHD$PH@@HD$PL$E1L$L$HH@LH@ u HL$PLYLD$pLT$hzHLALD$pLT$hIM/Mt I( I*UIBLL$hLP0LL$h<DIELD$pLLT$hP0LD$pLT$hDLD$pLT$h!LD$p@$LT$hfDIELL$hLP0LL$hLL$hv!LL$h@$H;9%HHT$P"HT$PHW4f8( L8(p;1E1E1H-8(ID$LP0HBHP0THCHT$PHP0HT$PID$HT$PLP0HT$PfDIDMl$ufDRDMl$fD1fDID$nID$HHH wHcHE1DHCHCHHEH wHcHD1fDHɚ;sH=,(H;=%H5(HF#IMAH=4(LLT$PjHHLT$PI*HgH+Hm2|6( b6(:11E1HD6(E1E1E1E1Mt I*Mt I,$XHt H+wHt H*Mt I)Mt I(Mt Im5(H 5(H=]55(1MfDKHcHHL$hHT$PHHT$PHL$hlHd1s5( Y5(:11E1H;5(E1KCHH HfDKKCHH fDEl$AMcIHT$P9HHT$PH04( 4(:11E1H4(E1Yf.El$AD$II If.El$.fDEl$AD$II f.AUAUAEHH @AUHcHHT$P[HHT$PuH/3( 3(:11E1H3(E1{@AUAEHH H@$LL$PlLL$P@$fDIɚ;IDH9 HD$XHHL$hHHHD$PHIHL$h LHL$pHD$hHILT$hHL$p; HLT$hHHLT$h H(Ht$XE1L$LT$XAHT$`D$@HD$8H (H H\$0D$(Ld$D$HD$ H3 (HL$PH=%HD$L1(HHLT$X4 HL$PHHD$XHHHt2I*tLI,$ID$HT$PLP0HT$PHAHT$`HLT$XP0HT$`LT$XIBHT$PLP0HT$Pf.HHT$P3HT$PH&fDLHT$PHT$PIfDLHqHHH|$PL$LD$pL$LT$hL$ HILT$hLD$pH3-B1( (1(;E11H 1(HL$P1HHD$XHHHH|$PLD$pHT$hLL$`LT$XHGP0LD$pHT$hLL$`LT$X|@HHLL$LL$pLD$hL$H$;HILD$hLL$p_He,t0( Z0(;E11H>0(-fI@LL$pLLT$hP0LL$pLT$hDH$L資H$H$LLL$P莇LL$PHID$LD$`LHT$XLL$PP0LD$`HT$XLL$PzHCLD$`HHT$XLL$PP0LD$`HT$XLL$P\HBLD$XHLL$PP0LD$XLL$PHIALD$PLP0LD$P>I@LP0>IELP0>IBLD$`LHT$XLL$PP0LD$`HT$XLL$PLnIHYoJcHHF0H$HE(H$HE H$HEH$HIIB IZIu-M~1H5(HHVH H$IM H$L$L$H$HD$` H*.( -(o:11E1H-(E1H)-( -(`:E111H-(E1E1_H)-( -(Q:E111Hw-(E1E11)M)H5(HIHVHH$H5r(HHVHH$ IH5*(HHVHH$ ILL$hIH=(8IIH=(H(H5(8I'H(,( ,(;E1E11Hr,(E1^Hj(y,( _,(;11HD,(LT$hHD$PmH+(:,(  ,(;11H,(H=)(7IH=(H(H5( 8IH'+( +(;1E1H+(]9HT$PIPH'+( +(;E11E1Hb+(MHM IXIHI(HCID$h1ҿH')+( +(;E11E1H*(H&*( *(?;1E1H*(~H&*( *(P;M1E1H*(OH&*( *(;1E1Hi*(XHd&s*( Y*(=<E1E1H<*(H=`(#6HH=L(HE(H5N(@6HIL$HIMl$HIEI,$uID$HL$hLLL$PP0LL$PHL$hLHLLL$hHL$PHL$PHLL$hH)HALL$PHP0LL$PHHi%x)( ^)(;E1E11H?)(E1+H=`(H(H5(T5H-H%$)(  )(;E11H((H=/HL$hHHL$h]H|$P1LHI=Ht$PLFMH^IHHHD$hHHH!HCH\$P1D$hLD$XHLD$XH6$E(( +((;E11E1H ((H$(( '(=;1E1E1H'(H5 (H=:%(1SHHH蟒H+u HCHP0H#'( '( <11E1Hv'(E1-Hn#}'( c'(<M1E1HD'(H=h-HL$pLD$hLD$hHL$p1LLLD$hHILD$hH=(2HH"&( &(B;1E1H&(iIL$H%Ml$HIEI,$uID$HL$PLP0HL$PHHLHL$P迮HL$PHH)HAHT$PHP0HT$PpIkH'"6&( &(#;E1E1E1H%(H!&( %(;E1E1E1H%(H!%( %(;E1E1E1H%(1H!%( %(;E1E1E1Hj%(1E1TH59 (H="(1ۀHHhH'H+GH-!<%( "%(:11E1H%(E1H;%0 I+H $( $(_;1E1H$(uH $( $(\;1E1H$(I%H-H} $( r$(Z;11E1HT$(H|$PLD$xLT$pHGP0HCH\$P1D$hLT$pLD$xCLH/HH $( #(m;E1E1H#(LkMHKIEHH+{LHLHL$PHIEHL$PHHHIE|IEHT$PLP0HT$PcHHT$P.HT$PHI@LLL$pP0HCID$h1ҿLL$pH;% HLHT$P..HT$PIH=(.IMH=(H 'H5'.I+H"( "(<1E1E1H~"(8H=(HL$h HL$hG1uHLHvH$L|HYH /"( "(};E11E1H!(H"( !(;E11H!(H1LALL$hILD$pH='HL$hLL$P LL$PHL$h>1uLLLL$P;LL$PHeH$LLL$P{LL$PH>HCHL$PHP0HL$PlH'!(  !(;E11H (H1LALT$hILD$pD$h1LHCHP02 H6H%H5&H8;H%H5&H8 H%H5&H8LD$XH$Lq#H5'LH#2H! ('  (:H(5(H=##ZH(' (9H(D$h1H="Hr(' g(9HP([HKZ( @(;E1E1H#(LL$PtHLL$PHG%H5H%H8LL$PHCHP0H( (:1E1E1H(gIBLP0H( (:1E1Hr(,Hm|( b(:11E1HD(ffffff.AWAVAUATUHSHHH%HH|$XHDŽ$HDŽ$HDŽ$H$xHFH H HF0HD$`Lu(H] L}H4( H(hE111AHLHHD$PEH8 H( H(hE111AHHHHH8q H( L(hE111AHLAHI_H8< HL$PE;Au A;D$ H-(H 'H9HfH'HxHL5'MxIFH5M(LHHHHb!I.:H(H5D'H9pm!H#'H!HL'MICH5 (LL\$hHH!L\$hIM!I+ IEH;+%NAE1E1H;%H;K%L\$hKHIL\$hMtLXHD$PIHKDHEKlIELM LD$hL=x%p LD$hVA;P 1LLD$hLAIx LD$hWP A=H @9(MI(Im HCH;%H;%L$H;=%$HSB'HrE1 Ht$h?L=%H QA;P 'LLHD$hIAp p B9M$MII. M"Im L;=%L;=0%5 IHPHI wH(H y'H9H=HX'HHHD'HHCH50(HHHIMH+ H(H5'H9pH'HHL-'M_IEH5 (LHH-IMIm" I@H;%=A1E1H;%oH;8%r LD$h8HILD$hMtLhHEHIlI$OdI@HH%L\$pLD$hL=d%H LD$hL\$pQA;P 1LL\$pLLD$hHp LD$hL\$pVP A=H @9F H(I+ I( IFH;%~H;%H$cH;% IVB HJE1 HL$h L=%x WA;P !HLHD$hIAp p B 9 M_"MLH+d MH)q L;=%L;=%IHPHIO H(H='H9xH'HHL5'MQIFH5 (LHH&HHI.H~(H 'H9HHf'HHLR'MBI@H5 (LLD$hHH LD$hIMI(yICH;%AE1E1H;k% H;% L\$pLD$h HILD$hL\$pMtL@HD$PIHKDI$OdICLMAL\$hL=1%x L\$hWA;P  1LL\$hLAIH L\$hQP A=H @9i MzIm5 I+sHCH;%H;[%L$ H;%HSB HJE1 HL$h L=Y%x WA;P 6 LLHD$hIAp p B 9 M(MHI.MH)L;=%L;=%IHPHIWHD$XLD$PHT$`H=c%LHp ILD$0L (Ld$ D$Hl$$LL$(LL$(HIHSHIIWHD$XLR0HD$XHEHH$HH%H H5L HOH81LBHHv( k(11HO(H OH=: w1H[]A\A]A^A_Hٿ%HD$`XDHD$PHHLL$L\$hH$H$`HIL\$hH(s (a2H(MyE1E1IE1HHIMt ImHt H+MI.IFLD$XLP0LD$XHHLLD$hL$H$L$_HHLD$h@H(u (2E1H(BDHD$PHHLL$LD$pL\$hL$H$6_HIL\$hLD$poH`o(w U(13E1H;(fDH$H^IXH$L^IH$H^IIELD$XLP0LD$XWICLD$XLP0LD$X.HCLD$XHP0LD$X4I@LP0KIGLD$XLP0LD$X#LnI4HFJcHHF0H$HE(H$HE H$HEH$HZIIgIIu-M~1H5+'HHVoHZH$IMEH$L$H$L$HD$`H(a |(e1E1E1H_(HZi(` O(V1E1E1E1H/(H*9(_ (G1E1E1E1H(1HKHBLkHIEH+uHCHL$hHP0HL$hHLLHL$hHL$hIH)HAHP0MH5'HIHVHH$H58'HHVHH$a IH5P'HHVHH$'I#H5'H=l(1_HH HnH+u HCHP0H(x (n3E1E1H(XH(w (\3HE1E1Hy(MhMdIXIEHI(u I@LP0HCIA1ҿH,;(w !(?3E1H(yMCM MsIII+ IFMA1ҿANH(w (3E1E1H(0LCM$HKIHH+uHCLD$pHHL$hP0HL$hLD$pLHLLD$pHL$h螊LD$pIHL$hI(oI@HL$hLP0HL$hVL\$XdHL\$X H(w (J3E1E1H(@H=L\$h(L\$hDLD$hIH(w (3E1E1Ho(H='V ItH='H'H5's IRH4C(w )(3E1E1H (HH (w (3E1E1H(H=' Ie1LLL\$hHIL\$hH=LD$hLD$hZHs(s h(z2E1E1HK(H=o'HH'H5Q'c IH=M' IH(s (H2E1E1H'~HqLD$X,HLD$XKH%H5H8hLD$X+H's 'o2H|'M]MD MuIIIm#IFM1AAH4C's )'M2E1E1E1H 'H'z '3E1H'H'u '2E11H';II;IKH'u '2E1E1Hk'H='R HH={'H'H5'o HH59'H='1YHHLHhH+u HCHP0H't '2E1E1H'~H's '2LE1E1H'7H'u '2E1E1Hr'H='Y IWH='H'H5'v I5H7F'u ,'2E1E1H'MFMuINIHI.uIFHL$pLLD$hP0LD$hHL$pLHHLD$pHL$hLD$pIHL$hI(I@HL$hLP0HL$hL\$`LD$XHLD$XL\$`Hcr'u X'21E1H<'H=`L\$pLD$hLD$hL\$p1LLL\$pLD$hHHLD$hL\$p3xH'u '2E11H''iH''D$ D$D$ D$E1H''GiH|$0E1H'PH''hiH|$0H'ffffff.HHHtHHtUHÐ[HuHaU';'+|H$'>'5('H 3H="Eo1H''|H'ffff.AWIAVILAUATUSHH(Ht$PHD$ HD$0HD$@.HHI`E1L$ HAI$IHIcWlHH9sfDH8nHH9wHֈ%H;u HCHP0AM_`EvlH}HUPHuMMDuOL;HHH([]A\A]A^A_@HIAIą6IGHLLP0HHHQHHHPHR0fH}HEL\$L}PH$H|$AH4$H|$E1DLD$feD$苽L\$H}MH4$DLMNLeH4$DLL0GIH}%H!'L5ʻ'HCHHqL%҆%H QA;$P X1HLHEA$H H BR9HHDH+H?3''ztztH'H H=?%lH''fhH'~HHHD$ HD$0HD$@HT$0Ht$ HHLpHH@H $HHH@HL$HL$@W;y3HCXHCXHD$ HC`HC`HD$0HChHChHD$@L-7'D% 'L= 'HHT$LH4$l@HL$@HT$0HHt$ E/HD$ HD$0DHD$@-'D%'L='LH=j1HCHP0XW@$,HuH%H5H8 HfZ'@'vtvtH$'"H=H胿1HLHHtH ''ggH'H趻H''ggH'HH'w'OhH`'ff.AWAVIAUATUHSHHH%H5'H !'HHDŽ$HDŽ$H$H$H$U0HCH:!~0H!HHC8HD$PHC0HD$8HC(@HHW%HL$PHt$8HD$ HC LkHD$IEHxHH`0HE'HHH7'HCH1H=';HH1H+HEH'HHHH0HD$(H|$(1HD$(H8HmH7'H `'H9H1H?'Hk1HH+'H0HCH57'HHH2HH2H+lHEH;%2H;D%Ll$pA,H;%5JHUBSE1 HZuLeH J%p V;P GQHL$LLH輼HL$p p BR9&HRH\$IH|$*4I/ImH'H 'H9H3Hү'H3HL='M63IGH5'LHH 3HH2I/OHEH;d%2H;%HT$H$ +H;%ZDHUBYQE1 HZuLe蔻H QH %P ; QHL$0Ht$LIeHL$0p p BR9%M=PHM0H+HT$HHD$0HHHHD$ H;%"Hw'H `'H9H0H?'H^9HH-+'H8HEH5'HHH8HHN8Hm{HD$ H@uH|$ H1E@H+MHD$ HH|$H5'HGHH7HHw7HH>7H HQHHqH6ID$H5'LHH@HH4@H貺H?H+>HRH5]'H='1,HHLHk;H+"Hq'z f'x>HO'HD$(Ld$E1E1E1HD$PE1HD$@HD$HHD$8E1HD$0H51'HIHV葹HH$n@HC@HH$HH|%H H5 L HOH81LDRH譻H' 'A=A=Hf'H fH= b1H[]A\A]A^A_f.HCHP0H|$(HGP0Hm;HEHP0,f.HCHP0IELP0PIGLP05IGLP0HCHP0dHBHP0qHSHD$HR0HD$vHSHD$HR0HD$HID$H5'LHHCBHHAHCH;|%!H;z%W!H@h1HHDH@HDHH1DH+ID$H5d'LHHBHHAHCH;`|% H; z% H@hHHDH@HDIMFDH+[LH苲HHCHm$I/ H; {%@H;hz%@D@HHPHH9H|$H5q'HGHHK5HH4HCH;l{%H;y%H@h1HH&H@H&IM4H+ ID$H5'LHHQ4HH3HCH;z%H;x%OH@h1HH/&H@H"&HHe5H+HLHH4I/HmH;y%@H;x%@i@HHPHHjH4H|$ HWHBpHC%H@H6%H5@'HH=%HHHD$03H+"H|$H5'HGHH&HHY&HEH;y%SH;Lw%H@h1HH%H@H$HH.HmH|$0HW HGHHH9!,H9,HHWHHHGH+kIFH50'LHH+HH+Hxv%H9C#LkM#L{IEIH+JHT$0LL:RImHHQ/I/HEH5'HHH/HH.HmH|$H5'HGHH.HH-HEH;x%H;u%H@h1HH#H@Ht#IM-HmnHWu%H9C-HkHO6L{HEIH+Y1ҿAIGH;v%H;Ow%)LT$OHILT$5HtHhH'IHKDMTIGHH5LL$H u%P LL$;P 41HL$@LLL$LIH LL$QHL$@P =H @9MS3I)I/{ID$H5?'LHH3IM2H'H 'H9H2H'Hn2HL 'M32IAH57'LLL$HH1LL$IM1I) IGH;gs%I_HIoHHEI/ LHH/OH+HD$Im H|$'Hm I,$s HD$(Hr%HH9P0L|$(Ht$L7/HH/0I/a HCH;r%)H{H:)HCLk(HD$HHC HD$@HD$HHHD$@HIEH++ H5'HD$8H9hHot%H9PH9VHD$8x >#~ :HD$8H@H;FH5 'HD$8H9H t%H9HH9NHD$8x :~ =HD$8H@H;FH,'HD$8H9H5s%H9pH9sHL$8H; r%uH;r%uH|$8H޺HH >H;r%@H; r%@@H+u HCHP0=8H'H'H9P9Hm'Hd9HHY'Hf7HCH5E'HHH;7IM6H+:Hs'H'H9P6H۟'Hl6HLǟ'M6IBH5÷'LLL$`LT$XHH5LT$XLL$`IM5I*IEH5'LLL$XHH:LL$XIM:Ht$@LLL$`LT$XgHHLT$XLL$`8I*IGH;lo%8D$X1E1H;p%nH;q%LL$hLT$`膫HILT$`LL$ho4MtLPHHcD$X1IlIELLLL$`Ml HHLL$`?7I,$I/LL$XHILL$X6HXHD$LL$XHIG ܬHHLL$X5HT$PH5'HLL$X袭LL$XHT$PH5I'HLL$X|LL$X'LHLLL$X<HHD$PLL$X7I)/I/H+HL$PH; go%H; n%Hا'HD$8H9 H5o%H9pH9s_WHD$8x ?{ <HD$8H@H;CH5d'H=M'1fHH9H+H+u HCHP0H' 'd@H'HD$(E1E1E1HD$8DMt I*Mt I) Mt I,$ H C']'H=5@'kSH|$8HD$8HD$8HD$(H@HL$8H; m%uSH;5m%uBH|$8HHdH;m%H; m%Hmu HEHP0,HD$PH޿'H ''H9H+H'H+HH'H+HCH5.'HHH#,IM+H+Hl'H'H9P+Ht'Hq+HL `'M-IAH5'LLL$8HH-LL$8HHT-I)GHj%H9E,Ht$@H9'HH,Hm"HCH5'HH@pH'H@HHH+,H+BLH7HH+Hm0IGH;Ej% AD$81H;k%@H;al%+fHIk HtHhHcD$8IHMtK\IGHHLL$8Hߺ'HD$(Ld$E1E1E1E11HD$PE1HD$8HD$@E1HD$HHD$0HH+HCLL$XHLT$(P0LL$XLT$(f.HCHP0HCHP0YIGLP0HmtHEHP0e@HCHP0fHCHP0HCHP0HEHP03IGLP0HEHP0HCHP0HELT$HP0LT$yHCHLT$AP01ҿLT$DIGLP0vIALP0ID$LP0}HEHP0cIELP0IALP0HEHP0HEHP0vHH'Ht$ H\$ HHCH0HCHP0lHCHP0HEHP0ID$LP0IFLP0IGLP0IG@H$L$HH$IWE1HBR uMO)3HLIM-Ht Hmb H+HCHP0 ID$LP0IALP0 LL$覝LL$@$HL$PfDHL$PHt$8HBHP0.HAHP0HAHP0JHBHP0HAHP0LIFLP0KHAHP0]HBHP0oIELP0oIELP0%HCHP0!IALP0LL$8覜LL$8@$HCLIM9DHCH(HEHEHHHELIWHL$8H; a%uH;5a%uH|$8zHH(H;a%@H;l`%@ @H+u HCHP0F(`LCIM\HkHEfH]H LUIHT$8HJHVH9tHtHfDHL$8DF DI D@D9A RH\$8HLSHH0A@IDA 'LN0HHA@LD΃; > 7A 9IHXL1Hu5H;q_%HÛH'y 'g>Hw'fH; )_% H{HSb' H''@H1'@HCHP0IfIGLP0HEHP0HCHP0HCHP0HCLL$XHP0LL$XIBLL$XLP0LL$XIBLL$XLP0LL$X`IGLL$XLP0LL$XIG@hL$H$HL$IWE1HBR uM_LL$`LT$Xs+HLLL$`LT$XHH'Mt I*HmZHELL$XHP0LL$XAfID$LL$XLP0LL$X%fDHCHP0IGLP0IALP01YHHD$ H;J'q 0'=HD$PHD$HE1H'HD$0 fDHy'HHLL$LT$H$H$yHILT$n'Ht HmI*IBLP0mHD$8x '{ 'HD$8H@H;CsH5ݑ'H='1 HH7'H H+,H ' '?H'HD$(E1E1E1HD$PHD$8VfDH;-[%Hӗ HCHP0 ID$LP0fHCHP0 HHLH$L$H$ HI(HAP' 6'@E1E1H'HD$(HD$8zf.HCH(HEHCL@IM@諕@$f蛕@$VfHkHEfLC IM;H' '@E1E1Hh'HD$(HD$8fHL$8HVHIH9tHtHfDHL$8DF DI D@D9A WH\$8HLSHH0A@IDA ,LN0HHA@LD΃Fc7A 9mHL1H5@f.IBLL$(LP0LL$(IALP0ID$LP0HELL$XHLT$(P0LL$XLT$(}DH' '@H'HD$(E1E11HD$PHD$86fDHELT$HP0LT$HEHP0H' '@Hv'HHLLL$`L$LT$XH$L$HHLT$XLL$`TH)8' '?E1HD$PH'HD$(HD$8L@LNHH|$8HHHt$8HSHNH9tHt HkHt$8DC v D@9@@ EL\$8LMKHH0@@IDA Hs0HHA@HD+.DA9H1H@DHt$8HSHNH9tHt HHL$8DC q D@9@ L\$8LMKHH0@@IDA `Hs0HHA@HD6DA9lH"H@IBLL$XLP0LL$XQH;U% H"Ht$pHHD$7@H$HIh7A 7A LNHH|$8HHH;EU%H藑7A H;U%Ho7A HsHHt$8H~HHsHHt$8H~HHH;T%L$H;U%$IWBy1 HZuIo蟏H QH S%P ;!HL$LHHrHL$p p BR9|H H\$L+@$H$LHD$Ht$0HIHEH S%HRH5wH81H' '>Hӥ'HIFHILkI$H6JcHHC8H$HC0H$HC(H$HC H$HCH$H聈II]HJcHDDH 'k 'q=E1HD$PHD$HHŤ'E1HD$0HD$ HD$8Ll$E1E1E1HD$@H' '>HD$PHD$HE1HT'HD$(Ld$E1E1E1E1HD$@HD$8H|$H,贐HD$(H 'k 'v=E1E1HD$PH٣'HD$HE1HD$0HD$ HD$8Ll$E1E1E1HD$@H'n '=E1HD$PHD$HH_'HD$(E1HD$0HD$ HD$8H=d''HH=P'H'H5'DHjHvQ%H8膉tHJHLl$'k ڢ'y=E1E1H'HD$PE1HD$HHD$0E1HD$ HD$8E1E1HD$@H|$8Ht$X臅Ht$XHZi' O'?H8'DH]HL}HIHmu HEHP0LHL[*H+HD$JHCHP0;Hݝ'n ҡ'=E1E1HD$PH'HD$(E1HD$HHD$0HD$ HD$8HH='H}'H5}'菭HuHP_'o E'=E11HD$PH 'HD$HE1HD$0HD$ HD$(E1E1E1HD$@HD$8QLmMH]IEHHmu HEHP0HT$LH)ImIHIELP09H'o ~'=E1HD$PHD$HHR'E1HD$0HD$ HD$(E1E1E1HD$@HD$8跌HH'o '=E1HD$PHD$HH؟'HD$(E1HD$0HD$ E1E1E1HD$@HD$8*H=ˌ'莫I@H='H{'H5{'諫IHlLl$v'n \'=E1HD$PH9'HD$(E1HD$HHD$0E1HD$ E1E1HD$8HD$@jH ' 'HD$PHD$HE1Hc' H)H|$0H褆H;Ld$E' +'>E1E1H'HD$(E1E11HD$PE1HD$@HD$HHD$8E1FIoHMgHEI$I/u IGLP0ID$M1AD$81LLLL$8gHILL$8yHfu' ['@E1E1H>'HD$(HD$8H/>' $'@E1E1H'HD$(HD$8hHWHx褊H' ٜ'_?E1E1E1H'HD$(E11HD$PE1HD$@HD$HHD$8H;HK%HHH}H+u HCHP0HEHHHHD$H?HHHD$@"HHIHӾH舳HmHEHP0dH֗' ˛'>H'E1HD$PHD$HE1HD$(Ld$E1E1E1E1HD$@HD$8Hs' h'>IHD$PHD$HH<'E1qIߺE11aHLd$"' '>IHD$@H'HD$(E1E1HD$PE1HD$HE1HD$8H|$NHIH' '>H'HHr' g'>HD$PHD$HE1H;'sH5}'H='1HH#HH+u HCHP0H 'x '>>Hۙ'H֕'w ˙'.>H'H'w ',>HD$PHD$HE1Hx'HD$0H|$H)HXLd$b'r H'=E1E1H+'HD$(E1E1HD$PE1HD$@HD$HE1HD$8HD$0HD$ C~H'H֔'r ˘'=H'HD$PHD$HE1HD$0HD$ 4H='tHHt'{ i'>HD$PHD$HE1H='HD$0lH/>'{ $'>HD$PHD$HE1H'HD$0腄HHݓ'{ җ'>1HD$PHD$HH'E1HD$0HD$(Ld$E1E1E1E1HD$@HD$8H|$HH`o' U'>E11HD$PH0'HD$HE1H5z'H='1HHHH+u HCHP0H'| ޖ'>Hǖ'sH’і'{ '>HD$PHD$HE1H'HD$0H}'{ r'>HD$PHD$HE1HF'HD$0DH,;' !'V?E1HD$PHD$HH'HhHHgLxHEIHHD$@HHHu HFHP0HT$HLHmH3HEHP0$H' }',?Hf'HD$(Ld$E1E1HD$PHD$@HD$HHD$8́LL$IH.' '*?E1H'H=!'IH= 'Hq'H5q'IgHє' '(?HD$PHD$HH'5$ILL$}HLL$\HdLd$n' T'?E1E1H7'HD$(E1HD$PHD$@E1HD$HHD$8wH=0HL$@LL$a|LL$HL$@vH='H|o'H5o'HvHǓ' '@H'HD$(E1E1E1HD$8H='jH(H='VIH='Hn'H5n'sIdH4C' )'@E11E1H 'HD$(E1HD$8hIHLd$' ے'?E1E1H'HD$(E1HD$PHD$@HD$HHD$8IߺE11LLLL$U~HILL$HO^' D'@H-'HD$(E1E1E1HD$8uH$'  '@H'H' '@E1E1E1HƑ'HD$(HD$8'LeM4HMI$HHmuHEHL$8HP0HL$8HT$@HLHL$8HI$HL$8HHHI$ID$LP0H=L' 2'@E1E1H'HD$(HD$8v}LL$8HZH' '@E1E1H̐'HD$(HD$8-H̐'y 'R>H'H'y 'P>HD$PHD$HE1H_'HD$0|HqHDS' 9'@E1E1H'HD$(HD$8H ' '@MH'MLL$89yHLL$8eH <%H5 H8uuLL$8EH=ԕHL$XLL$8xLL$8HL$XDDH5+'HHVxHH$* IMH5x'HHVxHtH$IM~ZH5q'HHVxHtH$IM~1H5v'HHV|xHYH$IMDH$L$HD$8H$HD$PH$HD$ H$HD$Ht$HF}IHhw's ]'>HF'HAP' 6'?HD$PH'HD$(HD$8gH' '?E1HD$PHٍ'HD$(HD$8RezLL$`ILT$XH' '?E1HD$PH'HD$(HD$8H=z'LL$X]LL$XIH=z'H:i'H5Ci'LL$XpLL$XIUH,;' !'?E1E1E1H'HD$(1HD$PHD$8WyIHڈ' ό'?H'HD$(E1HD$PE1E1HD$8H9%H5їH81xHu' j'@E1HD$PE1HD'HD$(HD$8H5D'y *'Z>HD$PHD$HE1H'HD$0xH鵽H'y ؋'_>E1HD$PHD$HH'E1HD$06xHHHt$XnHt$XHo~' d' @E11HD$PH?'HD$(E1HD$8H-<' "'@HD$PE1H'HD$(HD$8`H=x'ܖHH=x'Hf'H5f'HqH|$8Ht$XmHt$XNH' '?H|'MWMVI_IHI/HCID$X1ҿEH4C' )'?E1HD$PH'HD$(HD$8gLHxHD$=H' ׉'@E11E1H'HD$(HD$8H'y '\>E1HD$PHD$HHr'E1HD$0褖HqHTc'y I'd>HD$PHD$HE1H'HD$0sH'y 'a>HD$PHD$HE1H؈'HD$0/ I_LLwHD$IH' '?E1HD$PHz'HD$(HD$8uLL$XItH$L HD$HHt$XIkHt$XyH&'  '?E1HD$PH'HD$(HD$8:Hڃ' χ'I@E1E1E1H'HD$(E1HD$8 H{HHCHLhHL$HHHHL$@UHq' f'@E1E1HI'HD$(HD$8H:I' /'>H'=H"' '`@H'VH' '?Hʆ' Hi^HĆ' '?H'H|$8iH$L։H5T'LHbHQ`' F')=H/'59'龶H=H ' '=H'H'| څ'>HD$PHD$HE1H'HD$0LH=ɋHL$mHL$HD$nHuH1%H5H8kIGLLL$hLT$`IP0HCD$X1ҿLT$`LL$h%D$X1 HhH' '2@HɄ'4HĀӄ' '>@E1E1H'HD$(HD$8(qHH1LLT$XHLL$`Hds'z Y't>HD$PHD$HE1H-'HD$0H1LLT$IHI0%H5JH8iLL$HMLT$@L|$H' E1H'HD$(E1'?HD$PHD$@HD$HHD$8Hmu HEHP0VuH"qHbLT$@L|$Hg' M'?E1H3'HD$(E1HD$PE1HD$@HD$HHD$8su1HD$@eH~' ނ'y?E1E1HD$PH'HD$HH=ӈHL$ kHL$HD$ٮH~~' s'<@E1E1HV'HD$(HD$8H=h'3I;AD$8QqkHt_E1鱯H1LIH}'x ':>HD$PHD$HE1H'HD$0YH-%H5H8Wg?H=HL$0iHL$0خcH$H2IHCHP0*H|$8Qd!9H=g'H\'H5\'AI Ht$pHHD$9L1jH'H .%IGH .%IGPHHD$H-%IGXHD$HD$PHD$XHD$`HD$pHMHHu'HD$h0HCHHHHH$H|H,%H |H5L ~HOH81LDHgkH{'zx' HHkuHHH;HGHHuHCHT$HP0HT$mIEHHIEHm'HD$(H9rL-)%L9hL9kHD$(x  { OHD$(H@H;CHpp'HD$(H9L9hL9kHD$(x | {  HD$(H@H;CH=s'H;=,(% HD$(H@ Ht$(&gI fDHL$(H; '%uKH;'%u:H|$(HO_HI H;'%H;B'%I.u IFLP0 H-l'HIPH/AO0Hl'1I@Iw8IGPHD$ ~HHH9IG D$4H5$r'H|$AGh^HI"H;+'%H;&%fIHPHID$4A_l!1HL$HHD$HHHu HAHP0LHĈ[]A\A]A^A_HL$(H; i&%u%H;X&%uH|$(H]HIfH;a&%H;%%/I.u IFLP0/Hm'HIPH/FAW0Hm'I@Iw8IGPHD$ HcʃHH΃uoMw LaHHIGLHH|$ HH5Y%%HHHW1H\7L;5"%L^H1E1HL$(HSHqH9tHt H(HL$(DK q D@DA9@ Hy0LYH@IDA Hs0HHA@HDA}ARDDE9H1H[DHT$N]HH;HHT$AAAAA|1Ic+[HHQHZHH!\HIH=nl'Hh HHX`HHcI.H=p'Hl$PHGH;!%uH;!%XHWBE1 LbuLw[H %H Q;P HLAI[H qp =P@9MLHHmHWH+Hxnlr'Rr'ZE111H4r'ImHt H+Ht HmMt I.H q'r'H=כ5q'H|$fDHHT$C^HHT$HHT$8HD$cYL\$HHT$8I HyHI;ICHT$LP0HT$HtHu_kCHH LHsHHL$(HyHL;5%L0[DDDDHHT$XHT$HRHHT$}HT$H8DDHsHcHL$(HyH;HCHP0+HEHP0 TY@$HCHP0BIFLP0f#IFLP0@IELP0HEHP0H3SsH%lp'o'ZE11Ho'1DDHko'o'yZ1Ho'rHt^HHt$PGHHko'to'qZH]o'$Hskgo'Mo'oZE1H3o'HIk=o'#o'mZE11Ho'HRH ko'n'ZE11Hn'Hjn'n'zYLL$E11Hn'H5Q'H=k'1LL$ HHLL$tXHLL$QH+LL$uHCHP0LL$HbjVn'm'VHL$H; %IHHH%H}qH5nLL$E11H81YLL$H im'l'YHl'LL$HO)L9XHt$(UIMH=i'LSHItUImu IELP0LRI.u IFLP0Hmhal'Gl'[E11H+l'CHAh5l'l'Z11Hl'Hh l'k'ZE11Hk'HSHgk'k'VZE11Hk'gHNfDTHuH%H5qH8 QH{gok'Uk'|ZE11H9k'H=]qS]뾨pHt$PH|H5x%H9H%HNH5]LBHXnH81VHfj'zj'BYHj']H%HnH5H81VHfj'zwj'DYH`j'HT%H5LL$E11H8OLL$HQfEj'+j'xYHj'LL$'H%H5\E11H8OH fi'i'ZHi'#SHHei'i'ZE11Hi'H5gL'H=f'1 HHtDHYH+u HCHP0Htehi'Ni':ZE11H2i'JHHe'H9HH>'HHL->'MIEH5V'LHHIMImL H %IFH9H $H;% %Hl$@H; %IVBE1 HZ GL+ %H QA;P "LD$HLHGLD$H AH Bl 9 H' MHBI( HCH5jL'HHH IMH5"D'1LCHI~I/ L; %L5t %M9DIHPHI ErHCH5K'HHHGIMH5C'L9I@H; %IxuAx@E1IL;5j %MAAIHPHI E IEHPHIUEH]'H <'H9HH;'HlHL;'M&I@H5$L'LLD$HHLD$IMI(IGH;$AD$E1H; % H;" % LD$"EHILD$BMtL@HcD$HHI\IcHEIlIGHHDLQ %H QA;P 1LD$LLIDH LD$QP A=p4@97 MI,$ I/L;- %M9aIEHPHIUH['H 3:'H9HH:'HpHL=9'MIGH5Q'LHHIMI/ ID$H;$H;%H\$Px H;w %>IT$BE1 HjuMt$|CL%H QA;P LD$HLHNCLD$H AH BR9> HqIMMI." H+HCHP0|fHCHP0HHE1?AI@LP0H%AHI<H Y8'H9HH88'H!HL-$8'MIEH5 P'LHHIMyImdHCH5B'HHHIMfIEH;%H;p%H@h1LH.H@H!IMImhAHILxSCHIYHX'H 7'H9H-H6'H HL6'MI@H5 I'LLD$HHLD$HH[I(;H5K'HLCHmID$HH@L %H QA;P LD$LLLI{@H LD$QP A=p4@9MI,$~ImcI/IH|$H5@'HGHHHH HEH;$< LeM/ L}I$IHmHLLL:I,$IlMI/ ImHCLHH@pH H@H HHIHHIIWH$LR0H$hfL; %@LLD$V@ALD$'H&R5V'|V'LE1E1E1HU'IE11HHIMt I/1MHtIMHQHIUMtI $HQHI$HtHMHQHHUH |U'U'H=75yU'H$HH$iHI1LfDLX?AH-QHPT'S'L1E1E1HS'fIELP0I@LP0IGLP0IELP0IH|$H5='HGHH`IM ID$H;$I\$HMt$HII,$t~LHLH+IMw I.tDImIELP0f.IELP0hI@LP0IFLP0@ID$LP0rIG@!LD$pH\$xE1H$IGHtpLP@ uM_LD$HLALD$IMMI(I@LP0tHEHP0IGLP0IELP0ID$LP0r:@$PfIELP0IGLP0HEHP0ID$LP0[:@$fHCHP0NID$LP0IGLP0RReDRDM~(L{IFLP0IELIM DMMIM 9@$f9@$HtpHLLD$pLD$H\$xH$;HILD$1HjLyP'_P'LHHP'MbE1E19@H0L?P'%P'rME1H P'#8@$I@LP0IUH$LR0H$IT$H$LR0H$HUH$HR0H$ IGLP0@Ht$@L>HfDHt$ HIHt$PLIH=e<'H.'H5.'Y[IHK)O'vO'KHN'1E1E1E11H=<'ZInHJN'vN'KE1E1E1HN'=;L$HaH;$L|$0H;($IUBw1 HZuIm07L$H QA;P L$LHH7L$H Aqp BR9|HMD6@$Ht$0L若HHIM'xM'5L1E1LHM'E1H;$L|$`H;+$IT$B1 HZuIl$16L$H QA;P L$LHH6L$H AH BR9|HpIM5@$Ht$`L莤IHHL'{L'fL1E11HL'LsM-LkIIEH+u HCHP0HLLI.IIFLP0HGHMSL'x9L'CLE1LHL'E1@H|$8IHHL'wK'(L1E11HK'E1H;$Lt$pH;h$ HUB E1 LbuLmo4L$H QA;P $ L$LLAIA4L$H AH BR9|M MI\4@$Ht$pHˢIZsHF K'wJ'LHJ'o7L$H7HFJ'{J'dL1E11HJ'E1-7I-M~MLMFIII.uIFLD$LP0LD$LHLLD$I/HLD$IGLD$LP0LD$H==7'H6)'H5?)'1VInH=7'UIZHEI'wI'LE1E1E1HI'HEI'|I'L1E1E1HI'E1H|EI'|qI'L1E1E1HRI'E1v5IH=ELI'{2I'uLE1E1E1HI'H;~$ LǺLD$>.LD$IM HDH'H'LE1E1HH'HDH'H'L1E1E1HH'E15IHH'H ''H9H_ Hb''H; HL=N''M H5D'L趤HI I/u IGLP0H$I9ES H5U.'LL躰IM Hmu HEHP0L赲I.u IFLP0HCG'}G'L1E1E1HG'E1H=4'H&'H5&'SIH=4'MSIHL6HHH6IkH'CM3G'G'M1E1HF'E1!LǾLD$SLD$ILL5HHBF'F'M1E1E1HF'/3LD$HdHBF'wF'mM1E1H[F'sH=3'BRIH=k3'H$'H5$'_RIH=ILLD$.LD$OHBF'E'tM1E1HE'LLL1HISHAE'E'oMHE'HAME'E';M1E1HiE'LH=2'HC$'H5L$'~QIGH?ANE'4E'-ML1E1HE'E19H|$1IH@ E'D'ME1E1HD'H@D'D'M1E1HD'H@D'D'aM1E1H{D'1IXH|$0H3-HGH$H5JH8),H.@=D'#D'kM1E1HD'.H@D'C'fM1E1HC'H?C'C'cM1E1HC'PIMGM!MgII$I/ID$MA1ҿD$1LL:/HIH>?MC'3C'L1E1E1HC',H?C'C'LHB'H=0'H!'H5!'OIRH>B'B'^M1E1HB'5/IEH>B'B'\M1E1E1HcB'H=/'JNIIl$H\Mt$HEII,$HHLuHmIHEHP0H=B'A'M1E1E1HA'H=.'MIH=.'Hw 'H5 'MIe*HGH$H5GH8/',H=GLD$)LD$U -I8H:=IA'/A'M1E1E1HA'E14H=A'@'LE1E1H@'v-LD$IH<@'@'L1E1E1H@'E1H=-'LIHLN/I8ID$LP0=H`<o@'U@'LH>@'H1LALD$IHt$@LHtHt$ HřI!1E1E1E1()HuH$H5FH8m%E1IGLLD$MAP0ID$1ҿD$LD$AD$H={EL$'L$E1(HuHe$H5fEH8$֨uLH-IHt$pHØIuLL-IHt$`L蒘IH=DL$ 'L$VE1'HuH$H5DH8&$'Ht11L;-D$M9ADA L;-$A Hj$H5kDH8#H=7+'IIH=#+'H'H5'JIH9I='}='L1E1H='MeMImI$HEImu IELP0H#'LHI,$IvID$LP0fHM9\='}B='L1E1E1H#=';H9-='}='L1E1E1H<'E1Ht$0L貖H%&HfuH$H5CH8h"E1hHt$PLfIFH=BLD$$LD$H=BLD$$LD$:H=dBLD$$LD$LH=ABL$x$L$1P%HuH,$H5-BH8!AWAVAUATIUSHHHr$HH|$(HDŽ$HDŽ$H$&HFHH1Hn(I\$ Md$H;' HD$PHD$`HD$pL(hE111AHHAHHD$*H8`DhH;'L(hE111AHLAHHD$ *H8EHD$ PH$f.KD$*ID$*ID$HPH}H`{HcHH%HHH$H7H%$H 6H5oDL .9HOH81LBH8&H5:' 9'33H9'H 5H=d 1HĨ[]A\A]A^A_H-W$*H5&'H|$8'&H5''H|$ {8'&H;- $EH9'H'H9X'H'H'HL-'M'IEH5,'LHH&HHD$P&Im7 H99'H'H9X&Ha'H'HL-M'M'IEH5)'LHH (IM (Im HD$PH$HxH\$0H9W&E1E1H #$H9HL$8H;=$ H HHD$`z(MtLhHEIcHH|$PHHlLd1THHl(H|$`H/^ HD$`H|$PH/: H\$PH;I HD$P1H7'AvI~ L7'IHL$ 1HT$LAH&H;$HD$`(H$Ht Hm HD$(L%,*'HD$`HLL}L !HHD$!H@HH^ LHH|$HHD$!HD$(L%*'HLL}L Hj!HHLMLHHAHHD$PW!HHH;L$0HD$p.'HPHHT$p'H@HHH|$PHD$PH/s Ht$pH|$PH? 赞H|$pHD$`HtH/ HD$`HHD$p"H|$PH/ H|$`HD$PH/c HD$`E1 HD$0HD$(HhHH MLt$(If.H0HLL0H@H0H8H0H6 ICE1HC &rH(H0H0H@(AD;C}NIcH4H0H@H0Pt8H(AHR8HcR H0D;C|IM91Lt$(H|$0RL|$H5'1LHIHD$(HHIV HF!HmIHILHHHHt H+yH|$tH\$HHD$HHHEH\$ HtHHD$HHHu HCHP0L@HcHHD$`E1HD$0HD$(HxHH M~AHl$(Lt$8HIHfD$HLHKDIM9uHl$(Lt$8H|$0H5S'1H虉HmH@HH+I1HIA\$AD$HH HOA\$OA\$AD$HH 912HCHP0HCHP0xHGP0f[HHD$PHD$HHGP0HGP0Hx獃ǀL$H$1L$HHH4LAI uHxAHHaMt ImI,$ID$LP0 IELP0'HHVRHH$IH5&'HHV*HH$t:IM=H5&HHVH>H$I H=}H(7' '33H'2ID$H' '5E1H'5H' '5H'H' '4E11E1Hw'Hr' g'4E11E1HH'PH9H' .'4E11E1H'aH=3&H&H5&'IKLhMtDH@IEHH|$PHD$PH/uHGP0HD$P1AHxqE1ZH=&pI^Hp ' e'4E11E1HF'H=j&H&H5 &^I H- H=<R'<'RHH'H!H HD$`' 'k5E1H'H=&IH ' '4E11E1Hp'IH^ m' S'41E1H7'H2 A' ''F4E1HD$ 1H'E1gH  ' 'g4E11E1H'8I H;H ' '6E11E1H'LH Hx ' m'41E1HQ'HL [' A'4E1E1H$'H5'HxtH\$`HRH ' 'm5HE1H'9fff.AW1IϹAVAUATIUSHHH|$pH$HIHT$8HH$HZ&LD$L$HDŽ$HDŽ$HDŽ$HH'H9X H&HHH=&HH$HGH5'HHږHHH$H/HDŽ$nHH$I$L`OHH$VH׺$H5P'HLHCL$H$LM|H QH r$P ;8HL$LHHAIHL$p p B9 ML$H+H$H/H$HDŽ$H/I,$H$HDŽ$HD$X`H|$XHDŽ$H5X&HGHH"HH$DH5&H9tHPH;Z$HxIH$HH\$HH$HHSHHH$H;|$HDŽ$H;=$mHHPHHHDŽ$-LL$(H $p LL$(;1p HL$0LL$(LLHD$ IxH LL$(qHL$0p B,9,M.LH$I.;H$HH I)C9H$HD$H9GH$qH$H$H/%9H$HDŽ$H$H/8H$HHDŽ$HDŽ$HD$ht Hm:Mt I,$:Ht H+:H5]&H|$hHH$QH;D$HH;$6HӃHPHH7HDŽ$Hm'H5&H9pH&H"HH=q&HH$"HGH5e&HHHH$H$H/`+H$HD$HDŽ$H9GHt$8#pH$H$HtH/LH$HHDŽ$H$H/*H5&H$HDŽ$H9tHGH;$6HF*H$HH$H/KH$H;|$HDŽ$H;=$[HÃHHPHHKHDŽ$eHD$H;$UH%HIH'H5&H9pHi&HHH=U&HH$HGH5 &HH?HH$6H$H/2H 'H5&HDŽ$H9p H&HHH&HHCH5Q&HHHIMH+v2H'HH&H9X#H'&H_HH&HHCH5&HL\$HHFL\$IMEH+j2H$ICH9H\$XH;$L$rH;%$GISB4E1 HZ;JL\$ 'H $p L\$ V;P HL$(L\$ LLHH L\$ qHL$(p BI9\HHH$LI,$r1H$H+I1H$H5&HGHHrIMH$H/0H$HDŽ$HGH;D$ H;<$L$-rH;ױ$VHWBCE1 HZHH ?$p V;P HL$ LLHH qHL$ p B}H9B[HlHfDH$H$Ht H/1HDŽ$I,$/H$fH$H//H$H5'HDŽ$HDŽ$HD$`HD$HxH9#&HXH&HJH~&H;r&1@H;t%HH9uHM' H(hE111AHH|$HH$/H$HH$H/e/H$H\$HDŽ$HD$PHHD$ HHH/HD$PH;$HDŽ$H|$PH5&HGH_HH¾HH$ǽH5&H9$HPH;$nHxux$Ht$HHH$HHQHHY.H$H;|$HDŽ$H;=$+HHPHH+HDŽ${H|$PH5c&HGHHHH$Ht$hH*HH$H$H/-H$H;|$HDŽ$H;=$!+HHPHH@+HDŽ$LHa&H&H5&D$H9pH&HHH=&HH$BHGH5&HHHHZH$H/,D$HDŽ$%HIH$HCH;D$IH;$L$0mH;&$RHSB=E1 HjD-H $p V;P ? HL$ LLHH qHL$ p BC9VHHH$HH$HHPHH,H$HDŽ$Hm+H$H;|$H;=$_)HHPHH~)HDŽ$H&H&H9XtH&HPHH&HHCH5&HHHgHH$&H+l+H$H5m&HGHHHH1H$H/+H5&H|$P1HDŽ$HIH$JHCH;D$HkHLcHEI$H+*H$HLH$Hml+H$H/Z*H$HDŽ$ϦI,$$*H$H;|$H;=$(HHPHH(HDŽ$ɤD$ ( \ fTHH$Ht$`HHH`H$H/)H;\$HDŽ$H;k$('HHPHH)H5[&H=D&1]VHHD$(AH\$(HeHHD$HHHu H|$(HGP0H\$8H&|&HDŽ$1H]&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8 :R9@$@H $H$HHH\$H|$XH54&HGHHSHH$OHPH$HHRpHkHRH^HH$]H$H/(H$H5&HDŽ$HDŽ$H9HD$hzHH@H;$Hy[H$$1H=$HHD$H9 $H$HHPHH](HDŽ$*H&H&H9XH&HHH=&HH$HGH5&HHcHH$H$H/H$HF$HDŽ$H9G"Ht$8`fDH$H$HtH/@=H$HHDŽ${H$H/bH5[&H$HDŽ$H9tHGH;$W HH$HH$H/i<H$H;|$HDŽ$H;=V$8ÃHHPHH3<HDŽ$pH5&H=!&1:RHH$HaH$H/uHGP0H|HDŽ$&de&HN&~fH;=$NsH$HHPHHtHGP0hDHGP0'H$HD$`HD$PHD$8HH;$M%H&&H&H9XH&HIHH&HVHCH5&&HHHHH$H+HHWHD$8HHCHH$Hv&H5?&H9p H&H2HL &M ICH5&LL\$HH^ L\$HH] I+QH5j&H$H*bKHmgH$H$HOHHD$HH$H/OHDŽ$H+)H$H/H\$8HDŽ$HHD$HHHL;|$L;=/$H|$PH;=m$&HGH5&HHXHH$THҟ$H9XH\$WHhHJH@HEHH$H$H/"H$H$PHWH;$sMH;$UHOQ@E1 HYuLgH $p V;P C HL$HLHHL$p p BR9&$H" IHm#MH$H/!IEH;$HDŽ$BH;$HHXhHH{HH8LHKHp%L;=$L H&&HDŽ$11H&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(X1HPHR0>fID$LP0HGP0`@HGP02@HCHP0 Ht$hH|$H HH$ H;D$HH;$ӃHHPHHv5HDŽ$MH5K&H|$H1HH$H;D$HH;$Q"ӃHHPHH5HDŽ$HD$PH;$KHL&H&H9X\Ht&H HH=`&HH$RHGH5d&HHxHHH$H/4H5M&H|$PHDŽ$HIH$H$HEH9H\$xH;$L$p,kH;$[HUBH1ۨ LjuH]H $p V;P HL$LHAHH qHL$p BR9_UHvHH$HH$HHPHH;H$HDŽ$H+:Ht$HH$1_HH>H$H/:H;l$HDŽ$H;-6$8HEHPHHUC:H&H|$PHHD$HGH5k&HHHH$`H\$H9XHDŽ$CHPHH$CH@HHH$H$H/":L$M\CH$L$HWH;$SH;$HOQ̤1 HYuHoH QH $P ;HL$ LHHbHL$ p p BR9;HXH\$xH$Ht H/:H|$xHDŽ$։H$H/8Ht$PHDŽ$HHD$ HHH8HJ&H5s&H9pHR&HHH->&H@HEH5&HHHHH$HmY8HHHD$8HHEHH$H&H&H9XH&HHLm&M.ICH5I&LL\$ HHL\$ HHPI+7H5&H$HMQH+7H$H$HFHH$~H$H/7HDŽ$Hm7H$H/7H$HDŽ$H5&HGHH+HH$HL$H9Hx}HXHk}H@HHH$H$H/6H$HcRH+HD$0\8H|$0H$H/6H$E1HDŽ$HD$@E1E1H$H$HD$(LH$H$H$ DHHPHH/E7H|$pH5&HGHHbHH$bHt$H|$HHIaHHIH$ aH$LxHGH;D$(]H_H]HGHHH$H$H/6/H$H$HnpH+HD$ 1H$H/.H|$ HDŽ$aH$H/.MHDŽ$t I,$W1H5&H|$HH$gH;D$H;֔$-DHHPHH4/Ek.H&H &H9HfH|&HfHH=h&HH$gHGH5|&HH`gHH$dH$H/.H$HD$HDŽ$H9GUaHt$xjOIH$Ht H/90MHDŽ$EeH$H/B.HL$(HDŽ$HtHHD$PHHH0I@H;$0H;$0HXhHDeH{9eHHGLLD$(HLD$(HpLLD$(SLD$(H6lHLHLD$(HH$LD$(aH+-H$I(HD$(-H|$(HDŽ$H5+&HGHHdcHH$cHHEcHD$ HHCHH$4_H&H5M&H3L$L$ID$LM#fL $H A; H eLL$PLLHAIQLL$PH AH BR9,MfH$H/,HDŽ$H+v,H$H/T,MHDŽ$t I. .HR&H &H9HjH&HjHL=&MiIGH5&LHHiHH$iI/,(HIfI$L`HHfHT$H5v&H2L$IELMzhL F$H QA;P )eLL$PHLLAILL$PH Aqp BR9y+MjL$H$H/F+HDŽ$I/ +H++H$HPH;ӎ${iHxH"HXLh HIEH$H/*HDŽ$HL$@HtHHD$PHHH>,Ht Hm,IEH5&LHHcIMkI@H;D$w^MpMj^MxIII(p*H y$L$IGH$H9,H;$f\IWBdHJ1 HL$@uIoL i$H QA;P bLL$PLHHD$@HLL$PH Aqp BR9;+HbHH$I.*H$HqI/)H$H/)ID$HDŽ$LH5E&HHeIMdI@H;D$VIhHVMxHEII(t)LHLfhH$HmS*H$HdI/(L$I,$(IFHDŽ$LH5&HH8pHH$pH|$HHIpH$H/(HD$0HDŽ$H@L`pM[I|$u[H$H|$L[HH /LHH|$0AT$AHEHPHHUu HEHP0E.I/>(IFH5&LHH_IMElH|$LHH$kI/ (HL$H$HHD$@HHH'Ld$ Hl$LHDŽ$H\$@Ht$HH|$1vHH!^H;D$H;k$H;$H AHt$xHILd$ &1H&&CE1H$Ht$PE1HDŽ$HD$E1HD$xE1HD$HHf.HCHP0ICLP0L`HXHCHP03HGP0@HEHP0HCHP0HGP0@R9VLL$ LL$ @$>f.MiHD$HWfHD$HfH;)$~mH$HGP02@HGP0/@HGP0@HGP0@H5Y$HHYHI&H5&H9p(|H&H HH=&HH$4~HGH51&HH ~IMH}H$H/ H|$HDŽ$H5)&L\$ HGHHaL\$ HH$H&H&H9XOHٲ&H!HH=Ų&HH$OHGH5y&L\$ HHL\$ HHV~H$H/ ICH;D$HDŽ$}AE1HZ$H9H\$(1H;$ L\$ HHL\$ H$HtHCHDŽ$H$I1LHL\$ HDŽ$JDJlc5HH$L\$ UH+c I+9 H$H;|$H;=$HHPHHHDŽ$H&H5&H9pH&HHL&MҼICH5D&LL\$ HHL\$ HHֻI+oHH&H5&H9p H`&HHH-L&HHEH5&HHHHH$-HmH|$H5;&HGHHIMH$HDŽ$HGH;D$H;D$(L$4H;$AsHWBuE1 HjuLgH $p V;P -uHL$ LLIH qHL$ p BR9p>M.MH$Ht H/@&HDŽ$Im%M?H$H/$ICHDŽ$LH5m&L\$ HHkL\$ HH$#kI+f$HCH;D$mH;D$(H$H$ qNH;U$iHSBjE1 LjuLc\H $p V;P iHL$ HLAI.HL$ p p BR9=MTuLH$IH$HHPHH#H$HDŽ$JI,$#HD$`HHH$HI\H;D$L;$1!IHPHIS# H$H\$`HH$H$HHD$ HHHb"H$H/@#H$H$HH$H/ #HL$`HDŽ$H$HHD$ HHH"HDŽ$H\$`H;=i$X达vH$HHPHHFHGP0:DH;=!$vH$HHPHHHGP0DH;=ف$.8H$HHPHHHGP0vDH;$HHt$8H&{&HDŽ$1H&HD$E1H$Ht$HE1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HD$85@H;=$IqH$HHPHH7HGP0+DHGP0@HCL\$HP0L\$qHGP0C@ID$LP0HGP0@HCHP0ID$LP0~HCL\$HP0L\$}HPHR0HCHP0HGP0@HGP0@HGP0@HEHP0 HWR0@ID$LP0HGP0@HCHP0OHGP0@HCHP0HGP0.@HCHP0WH;~$NH$HHPHHHGP0DH;=~$dH$HHPHHRHGP0FDHGP0+@HEHP0HGP00@HGP0E@HHF&HHD$HHHD$HHHgHAHP0XfDHGP0@HGP0@IELL$ LP0LL$ IALP0HGP0 @HGP0@HGP0@HGL\$ P0L\$ 9f.HGL\$ P0L\$ f.ICLP0HEHP0IC@H$H$HH$H$H$ICPLH1 uICL\$ DjHHAL\$ HH$oH$Ht H/5H$HDŽ$H/N5HDŽ$HmHEL\$ HP0L\$ D;@$fHCL\$ HP0L\$ IFLL$ LP0H$LL$ HEHP0ffHCHP0mID$LP0MH;{$޷~H$H5&H|$p*HI?HD$4HHL\$HL&L\$HHEHD$hHHE HH$L\$YHT$8H5k&HL\$辸L\$i;Hj&Hӣ&H9XH&HHH&HٙH5&HL\$A)HH$L\$"H+]%H$H5b&H$L\$ L\$<H$H/E%H$LHL\$HDŽ$'HH$L\$(I+2%Hm%H$H/$L$HDŽ$E1HDŽ$HD$E1HD$@HD$ E1HD$0HDŽ$HD$(fDHD$8H;DH$HJH$HHHJH$HBH@Hx\StHupL\$ !HL\$ ttH$HHP`L Ip&L9HuH LILp&L\$HHBHHMHI$H4$H5H815L\$Ht HmH&&!HDŽ$11HΛ&HD$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$H@HHD$H|$X豄HJHHW&=&HDŽ$11H&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(@HD$HX@H\$Hd$H D$H\$!HD$H@HD$sHD$HX@H\$Hd$H D$SHD$hDpAMcIz蓃HlH*9&&HDŽ$11H&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(fDHD$hDp@II I+HD$hDpHD$hDp@II L\$ HGP0L\$ L\$ HGP0L\$ h@$铪@$H$HD$x阬Ht$xHޔ&Ә&HDŽ$E1H&E1H$Ht$PHD$E1HD$xHD$@E1HD$ HD$0E1HDŽ$E1HD$(s%@$H<K&1&"1HD$H&H$+H}&HD$xHNH&&)#11E1Hė&HD$H$\HH,H1SH|$)HH$iLHHZiHt$xHHHjHm:H$H{|HH][H$H/HDŽ$H+H;l$H;-HD$ Hm5I*HK&fWHHD$(hHhHD$pL%&HLL{L蠀HI)gH@HHhLLHHIgHD$pH5&HHHxiHnB$H9CHDŽ$HD$"HCHH$"LcHI$H+ H$H"L~HH$Ht H/uHGP0HHDŽ$IZI,$ H+ LH+\$IIH L99Ld$pI 1LE11L{HDJLHHJTIL9~LxH5=y&1LImH1 H kH+u HCHP0Ht$HH|$hHHNjLt$(IFL`pMhI|$hHHB$HH轀HHhHLAT$HmIu HEHP0ML$hH+t H$H5&HGHHiH$H$hH$H/ H$H\$HDŽ$H9Y$%HAHH$%HYHHHHD$HHHB H$H$HDIH$Ht H/uHGP0MHDŽ$-H+ H\$(HDŽ$HHD$HHH HT$8H;@$toIEH5|&HH<\LЅO$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(1L$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$({L\$ !L\$ XIH=e&L\$ L\$ 3AKl1uL$Lx@H>$H5ZL\$H81}L\$H$LߺL\$ bL\$ H&&3HDŽ$1HD$H_&E1H$HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(*H$RH$0HHEL\$ HP0L\$ IAL\$ LP0L\$ _LL$(L\$ oyLL$(@$L\$ *HE@H$H4HH$H$H$H$H$H$HHD$(n[H$Ht H/XH$HDŽ$H/VHDŽ$H+dVH$H/FVHDŽ$L\$(aHGP0H&&9HDŽ$1HD$H[&E1H$HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(&HEHP0aHCHP0Gw@$&HGP0FICLP0HGL\$P0L\$uH qHL$p =P@9Hd'Ht$ HHD$HHHHH+HCHP0Hl$HHH\$pLd$0H 1HE11H\rII HHIHuHPHR0.HUHD$HR0HD$HBHP0IT$HD$LR0HD$HFHP0/t@$H;*9$L$H;9$1HWBq1E1 HZuLsL -8$H QA;P 1LL$ LLHsLL$ H AH BR9|H}H\$ 醢D[s@$H$#HD$ ZHEL\$HP0L\$@H|$hsIH|$HsHD$H;-7$0H%t!H &&HDŽ$1HD$H‰&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1E1HD$(f.H;$L$H;7$c0IPBP0E1 HjuMpLD$@qL V6$p LD$@VA;P /LL$PLD$@LLHqLL$PH LD$@AH BR9|"H/HH$M髨fDLD$@fqLD$@@$H$LǺLD$@!LD$@HCHP0HAHP0H$ HHCHP0HGP0HEHP0HCHP0!IEHEHP0HGP0HCHP0}IELP0VHCHP0%ID$LP0 HCHP0\LILd$ HH]l&R&RHDŽ$E1H,&HD$xE1HD$HD$xE1HD$PUHL$xIHHLd$ &&PHDŽ$1Hņ&E1H$E1HD$E1HL$PHD$xE1H\$xHILd$ &1Hn&t&NE1H\$PH$1HDŽ$E1HD$HD$xE1E1OH&ILd$ -&&d1H&HD$xE1HDŽ$E1HD$E1HD$xE1HD$P\rHL$xHI&&1H&HDŽ$E1H$HL$PE1HD$HD$xE1E1xHGHH$HWHHH$H$H/- H$H HT$xH$Q IYLLsH$HCxHH~HHH;[H$HHtH9yYH$HHtH;t H,H$HYHHA@ HHH!1$H51L\$H819pL\$H$HNH0$H5;L\$H8iL\$H$pHLHPH0$H PH5LMH81oHI&~&HDŽ$1HY&HD$xHD$PE1E1HD$HD$xE1E1mH %1$H9H$H;1$5IPB 5E1 HjuMpLD$@kL 0$p LD$@VA;P (1LL$PLD$@1LHkLL$PH LD$@AH BR9|H 1HH$M鼡LD$@6kLD$@@$L11LD$@LD$@H3~I?&%&HDŽ$1H&HD$xHD$PE1E1HD$HD$xE1E1#nn锜Ht$xH}IЁ&&1H&HDŽ$E1H$E1HD$E1Ht$PHD$xE1Ha}Im&S&HDŽ$1H.&HD$xHD$P)HL$xH}IM#& &H&HDŽ$1H$1E1E1HD$HL$PHD$xE1LHLD$(LD$(H=m&背HkH=m&HV&H5V&蠌HIHt$xH\|Ih&N&q1H5&HDŽ$E1H$E1HD$E1Ht$PHD$xE1"HL$xH{ILd$ &1H&&BE1H$HDŽ$E1HD$E1HL$PHD$xE1鵿'l阘H\$xH}{I&o&1HV&HDŽ$E1H\$PH$1E1HD$HD$xE1E1AkI`H=4LL$PjgLL$PcIHt$xHz~&~&HDŽ$1H~&E1H$Ht$PE1HD$HD$xE1E1鮾LHLgjHtI,f.H=LL$PfLL$P31|gHI@Hk*$H5lH8c%cgHuH?*$H5@HD$@H:cHD$@fkjIH=LL$P"fLL$PLIHHDŽ$Hy}&}&MHDŽ$H_}&HD$xHD$PH9*$H5RL\$H8bL\$LHL$xIHHyM)}&}&E1H|&HDŽ$E1H$HD$E1HL$PHD$xE1Ht$xIHHxM|&|&HDŽ$1H~|&E1H$E1HD$E1Ht$PHD$xE1w]H$Lm@Ht$HL$8HxLd$X(|&X1H{&|&E1H$Ht$PE1HL$HHDŽ$E1HD$HD$E1HD$xHD$@E1HD$ HD$0E1HDŽ$HD$(HD$8HD$`HD$h郻HL$xHUwMH\$@MMH9{&O{&13{&>H$E1HDŽ$E1HD$1HL$PHD$xE1HvLz&Mz&LH\$@Hz&MHD$xHDŽ$HD$P8gI@HLLrfHH$ٗLIHLH\$xIHHUvMaz&Gz&E1H-z&H\$PE1H$HDŽ$1HD$HD$xE1E1f[LHL$xIHHuMy&y&1Hy&HDŽ$E1H$E1HD$E1HL$PHD$xE1頹H\$xHruI~y&dy&1HKy&LD$(E1H\$PH$1HDŽ$E1HD$HD$xE1E11H=1f&I>H=f&HO&H5O&IH;'$H-dHH$FH$H/(H$HDŽ$HGLAHHZH$AHIH$AվHÏZH$H/iHDŽ$MLIHaaH\H9$$H5:~H8]ADHt$HL$8HsLd$Xw&X1Hw&w&E1H$HDŽ$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$`Ht$PE1HL$HHD$8HD$HD$xHD$h3cHiHrLd$Xw&Xv&HDŽ$1Hv&HD$E1HD$E1HD$HD$xE1HD$@HD$PHD$8E1HD$ HD$0E1HDŽ$E1HD$(HD$HHD$8HD$`HD$h釶H=`c&#HhHt$xHrMH\$@MMHv&v&1u&$H$E1HDŽ$E1HD$1Ht$PHD$xE1ڵH\$Hqu&Yu&HDŽ$1H|u&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`HD$hDŽ{HpLd$Xt&Xt&HDŽ$1Ht&HD$E1HD$E1HD$HD$xE1HD$@HD$PHD$8E1HD$ HD$0E1HDŽ$E1HD$(HD$HHD$8HD$`HD$hWq]Hv9HDŽ$Ht$HL$8HoLd$Xs&X1Hs&s&E1H$Ht$PE1HL$HHDŽ$E1HD$HD$E1HD$xHD$@E1HD$ HD$0E1HDŽ$HD$(HD$8HD$`HD$hWILHpHo*s&s& HDŽ$HD$E1Hr&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$E1HD$(鸲HnLr&M~r&jH\$@Hbr&HL$xHXnLH\$@M\r&H5r&;r&hE1H$HDŽ$E1HD$1E1HL$PHD$xE1H\$Hmq&Yq&HDŽ$1Hq&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`HD$hK]dH;$KHNVHH$H\$Hlp&Yp&HDŽ$1Hp&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`HD$hKH=K]&HH&H5H&?|HaH$H$H\$cH=vHL$FXHL$b@LHH[HH$b@HkLo&Mo&2H\$@Hko&M[Ht$xHHQkMH\$@Xo&H1o&7o&[E1H$HDŽ$E1HD$1E1Ht$PHD$xE1HjMn&n&YH\$@1Hn&HD$xHDŽ$HD$PH$HBIHjn&n&A"11HD$H[n&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(/0H=xH#1΂H$H4HH$H$H$H$H$H$iHHD$(Him&m& HDŽ$E1E1Hgm&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$AHUHH$mLeHI$Hmu HEHP0ID$LAA1B1H_yHH|[鈖H=rHL$ UHL$ 1ctH$ HCEHHD$0ȂHL$xHGhVl&H_c&c&Ll$(Hc&oH_Ll$c&c&HDŽ$1Hc&1H$HD$E1E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$YH=YP&oHǵIH\$xH_#c& c&}HDŽ$1Hb&E1H$H\$PE11HD$HD$xE1E1ۢHPH$H5IH81NuH=hHL$ JHL$ E1H$.I֊HF^Ub&;b&HDŽ$11Hb&E1H$E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(ܡH=gHL$JHL$r1 sH]a&a&HHDŽ$H]a&HD$E1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(KVJHXH. $H5/gHD$H:FHD$Zr#JH7H $H5fHD$ H:_FHD$ |H=fHL$ HHL$ sHD$xtHi\x`&^`&"11E1H@`&H$\L\$IHL\$uH` $H5afH8EL\$H\`&_&"1E1HD$H_&H$H[_&k_&H_&骷H=L&H7&H57&kHуHL$8Hy[_&|n_&HDŽ$1HI_&1H$E1E1HD$E1HD$@E1HD$ HD$0E1HDŽ$HL$HE1HD$8HD$HD$xHL$8HZ^&{^& HDŽ$1H^&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HL$HE1HD$8HD$HD$xTHt$HL$8H!Z0^&k^&1H]&HDŽ$1H$E1HD$E1HD$@E1HD$ HD$0E1HDŽ$HD$(E1Ht$PHL$HHD$8HD$HD$x鞝JIH\$HcYr]&kX]&HDŽ$1H3]&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8؜H=I&hHISHH$I[HHI+u ICLP0HCIA1ҿAHt$HL$8HAXP\&k6\&1H\&HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PE1HL$HHD$8HD$HD$x2HL\$ HۀH\$HW[&ku[&HDŽ$1HP[&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1HD$(HD$8H=G&L\$ fL\$ HH=G&H2&H52&L\$ fL\$ HH\$HVZ&kuZ&HDŽ$1HPZ&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1HD$(HD$8H|$eFL\$ ~H=_LL$ BLL$ HD$ quLYHHD$ zqH$GHD$ ^qH|$hdI H=t_LL$PLD$@ALD$@LL$P,1vLD$@rBHLD$@uHI$H5J_HD$PH:>LD$@HD$P8uLLLD$@GLD$@H$LǺLD$@膲LD$@uLHcGjH$pHSjHW$H5 \L\$H8>L\$9H=rE&5dHʫH=^E&H/&H5 /&RdH騫H=<^HL$pL\$Ht$h@Ht$L\$HL$pܛLHL\$CHHD$L\$HSW&W&"11E1HW&H$駗H|$XZgIH\$8HgSvW&{\W& HDŽ$1H7W&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8H5F;&H=T&18HH$HH$H/uHGP0H\$8HuRHDŽ$xV&z^V&1HEV&HDŽ$E1H\$HH$1HD$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HD$8H\$8HQU&zU&HDŽ$1HU&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$89HQU&yU&LHT&HD$8HDŽ$1HD$E1E1HD$HHD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HD$8驔H;a$L$@H;$HSBE1 HjuLk=H d$p V;P HL$LLHH UHMQ&yQ&HQ&H=WLL$PLD$@9LD$@LL$P1LD$@:HLD$@uH#H5WHD$PH:6LD$@HD$PuLLL\$ ?L\$ 6MH$LߺL\$ ԪL\$ MH55&H=LN&1eHH$H謻H$H/uHGP0H\$HLHDŽ$P&`P&1HrP&HDŽ$E1H\$PH\$8E1H$HD$E1HD$HD$xE1H\$HHD$@1HD$ HD$0E1HDŽ$E1HD$(HD$8HD$`H\$HKO&`O&HDŽ$1HO&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`@HK&O& O&zHDŽ$11HN&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(餎H{JN&pN&"1E1HD$HKN&H$gH>JMN&3N&"1HD$HN&H$-H|$X:L\$I[H5&N&L1LD$@gLD$@\H\$8HIM&tM&nHDŽ$1HM&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8GH\$8HI(M&rM&IHDŽ$1HL&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8阌 9`Ht$xH`HoL&UL&HDŽ$1H0L&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PE1HD$xH=8&WH`H=8&H8"&H5A"&WH_HGK&K&HDŽ$HD$E1HZK&E1H$HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E11HGK&J&HDŽ$1E1HJ&E1HD$HD$xH|$PQ73]H5.&H=H&1'HHD$(H\$(HlHHD$HHHu H|$(HGP0H\FkJ&QJ&HDŽ$11H*J&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HEI&I&HDŽ$11HI&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$HD$xE1VH\$xH(E7I&I&HDŽ$E1HH&E1H$H\$PHD$1HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(黈HL$xHDH&H& HDŽ$1H]H&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HL$PE1HD$x uL6HD$x[H$计HD$xy[H5],&H=&E&1?HH$H膲H$H/uHGP0H\$8H|CHDŽ$G&xeG&1HLG&HDŽ$E1H\$HH$1HD$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HD$8H\$8HBF&xF&HDŽ$1HF&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8@HB&F&w F&HHE&HAE&iE&oHE&HD$HDŽ$1HD$E1E1HD$HD$xE1HD$PHD$8E1HD$@HD$ E1HD$0HDŽ$E1HD$HHD$(HD$8HD$`酅.Ht71BfuLH3!GH$0HٞGH5#H56KHD$ H:*HD$ 7BuL3#BH$艞 BH5])&H=B&1HH$twHjH$H/uHGP0He@HDŽ$hD&sND&XH7D&HD$8HDŽ$1HD$E1E1HD$HAH @D&sD&THC&H?C&C&XHDŽ$11HC&HD$E1H$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(tH;#H(HH$H$BH\$8H?C&rC&DHDŽ$1HB&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8鍂Hd>sB&rYB&FHBB&HNH|$P.0AH5tA&HxL@H\$8H= B&pA&:HDŽ$1HA&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8}HT=cA&nIA&+H2A&HD$HD$PH#=2A&A&HDŽ$E1E1H@&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$HD$xH<@&@&HDŽ$1E1Hd@&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$HD$x2H <@&?&HDŽ$1HD$H?&E1E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1H|$(,Ht;?&i?&"1E1HD$HD?&H$`+L\$H@H%;4?&?&"11E1H>&HD$H$H=,&JI鷁m+H?H:>&w>&H>&gH=+&JHr?H=+&H &H5 &JHP?H5#&H=;&1HH$H*H$H/uHGP0H\$8H :HDŽ$#>&u >&}1H=&HDŽ$E1H\$HH$1HD$E1HD$HD$xE1HD$@E1HD$ HD$0HDŽ$E1E1HD$(HD$8}H\$8He9t=&uZ=&yHDŽ$1H5=&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8|H\$8H8<&t<&lHDŽ$1H<&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$85|H 8<&t<&jH;&H|$P{(;H|$HGHD$`H7;&;&HDŽ$E1E1H;&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(E1HD$\{H37B;&(;& LH;&ImLl$(H$1HDŽ$HD$E1E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(zH#H5@H8< oIEL1E1E1E1P0Ll$(H$E1HDŽ$HD$E1HD$HD$@HD$ HD$0HDŽ$HD$(%zH5 :&9& HDŽ$HD$E1H9&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(yHGP0鮩HCHP0鍩HGP0kLkM:HkIEHEH+u HCHP0H$LHkH$Im;IELP0;LL$?"HLL$uH#H5?H8LL$H48&8&!HDŽ$1HD$H8&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(XxH=X>HL$(LL$ LL$ HL$(eH1LHLL$ #HILL$ %鑙H37&7& !HDŽ$E1HD$H7&E1H$HD$@E1HD$ HD$0HDŽ$E1HD$(HD$zwHGP0ID#XH63E7&+7& HDŽ$HD$E1H6&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(vHT$8L鷣H|$X.#InH;#LߺL\$pL\$pHD$H|$uuHU2d6&J6&"11E1H,6&H$HvH2.6&6&"11E1H5&HD$H$ vHl$HD$H9H;-)#H;-|# jL1L\$pJBL\$pHD$5-"8HL$8H15&yx5&HDŽ$1HS5&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HL$HE1HD$8HD$HD$xuH="&@H7H=!&H) &H52 &@H7H04&4&!HDŽ$E1E1Hq4&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$Kt}Htz1$6H=:!&H &H5 &.@IvH/3&3&;HDŽ$HD$E1H3&HD$HD$xbH#H59HD$ H:CHD$ 5Hy/3&n3&6HDŽ$HD$E1H?3&HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(-sH.2&2&4HDŽ$E1HD$H2&E1H$HD$@E1HD$ HD$0HDŽ$E1HD$(HD$E1HD$xrH=&L\$>>L\$HkeH=b&H&H5 &L\$Q>L\$H?eLoM(HGIEHH$H$H/uHGP0H$H$LH$Im(IELP0(H=7HL$0LL$(LL$(HL$0'1 (Hm-|1&_b1&HK1&{HF-U1&\;1&E1H!1&H$Ht H/MHDŽ$t I)H$Ht H/H$HDŽ$Ht H/HD$@H5-&HDŽ$HxXG HD$@HLHE11E1E1E1HH\$H$E1HDŽ$HD$E1HD$HD$xH\$PH\$8HD$@HD$ HD$0HDŽ$H\$HHD$(1HD$8HD$`HD$hoH+Ll$/&/&HDŽ$E1H/&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$HD$HD$xdoH#LH89H)+Ll$(3/&/&HDŽ$1H.&1H$HD$E1E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(nH*.&.&HDŽ$11Hb.&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$E13nH *.&-&HDŽ$1E1H-&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$E1mHy)-&n-&HDŽ$1HD$H@-&E1E1HD$H,);-&!-&HDŽ$E1E1H,&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(E1HD$lH(,&,& H{,&h!Hl({,&\a,&E1HG,&!HB(Q,&\7,&<E1H,&H=&H&H5&58H!HGLL$P0LL$IALP0HGP0HGP0HPH#H5SH81HDŽ$H'Ll$(+&+&j HDŽ$1H\+&HD$E1H$E1HD$E1HD$@E1HD$ HD$0E1HDŽ$HD$('kH&Ll$(+&*&m HDŽ$1H*&1H$E1E1HD$E1HD$@E1HD$ HD$0E1HD$(HD$jH$YHc&Ll$(m*&S*&h HDŽ$1H.*&E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$iH%Ll$()&)&R HDŽ$1H)&HD$E1H$E1HD$E1HD$@E1HD$ HD$0E1HDŽ$HD$(fiH\$H8%G)&_-)&HDŽ$1H)&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`hH\$8Hv$(&yk(&HDŽ$1HF(&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8gH\$8H#'&w'&HDŽ$1H'&HD$E1H\$HH$1E1HD$HD$xE1HD$@E1HD$ HD$0E1HDŽ$E1HD$(HD$8FgH=& 3HH\$H#'&c&&HDŽ$1H&&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`pfHG"Ll$Q&&7&& HDŽ$E1H&&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$HD$HD$xeH %&%&H=P5%&ڸH|$@H$H$H$xH5Y &H="&1HIt@H;Imu IELP0H:!I%&^/%&oH%&H!"%&^%&kH$&`H $&]$&_H$&9H $&$&HDŽ$1E1H$&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$HD$xE1TdHt$xH& I2$&$&1H#&HDŽ$E1H$Ht$PE1HD$HD$xE1E1cH#&#&HDŽ$E1E1H#&HD$xHD$HD$xHD$P2HL$xHix#&^#&HDŽ$E1H8#&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(E1HL$PHD$xcsL\$ H7Ht$xH"&"&HDŽ$1H"&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PHD$xE1WbH=W&.I7H=C&H|%H5%7.I6S HsH+#H5,(H8XHt$xH!&!&4HDŽ$1H!&1H$E1E1HD$E1HD$@E1HD$ E1HD$(Ht$PHD$xE1paHt$HL$8H=L!&l2!&1H!&HDŽ$E1H$H\$`E1HD$HD$@E1HD$ HD$0E1HDŽ$HD$(E1Ht$PHL$HHD$8HD$HD$x`H &l &LHi &HD$HD$PoLkMILcIEI$H+u HCHP0H$LL|H$ImIIELP0IHt$HL$8H&l&1H&HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PE1HL$HHD$8HD$HD$xo_HȼHy#H5z%H8魼HItHx H$HM&&HDŽ$1H&H\$xE1E1HD$HD$xE1E1H\$P1^H#H5)H81 H$tHv&k&#1HD$HI&H$e^Ht$HL$8H2A&k'&E1H &HDŽ$E1H$HD$E1HD$@HD$ E1HD$0HDŽ$E1HD$(Ht$PHL$HHD$8HD$HD$x]H= &H<%H5E%)I@DHhw&k]&HDŽ$1E1H5&HD$HD$HD$PHD$8HD$HOHt$HL$8H &l&1H&HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PE1HL$HHD$8HD$HD$x\L\$ H[CHt$HL$8HCR&l8&1H&HDŽ$1H$E1HD$E1HD$@E1HD$ HD$0E1HDŽ$HD$(E1Ht$PHL$HHD$8HD$HD$x[H=&'I[BHWHH$XCHGHHH$H$H/uHGP0H$HH$L脣ICHt$HL$8H!&l&1H&HDŽ$E1H$Ht$PE1HL$HHD$E1HD$HD$xE1HD$@HD$ E1HD$0HDŽ$HD$(HD$8ZH$HGABH|$IBHt$HL$8H;J&l0&E1H&HDŽ$E1H$Ht$PE1HL$HHD$E1HD$HD$xE1HD$@HD$ E1HD$0HDŽ$HD$(HD$8Y+AHt$HL$8H|&lq&E1HW&HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(Ht$PE1HL$HHD$8HD$HD$xXH=&$H@H=&HO%H5X%$H?H2LL$L\$HL\$LL$u H#H5H8L\$LL$HDŽ$HHW&=&#1HD$H&H$7XH=7HL$pLL$Ht$cHt$LL$HL$pSH&&*#11E1H&HD$H$WLHLL$}HHLL$tySH{&p& HDŽ$E1E1HG&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(E1HD$WH&&'#1E1HD$H&WH&& #1HD$H&H$VLL$HL\$ OHfu&[& #11HD$H7&H$SVH=S&LL$"LL$IoNH=5&Hn%H5w%LL$$"LL$ICNH&&#11E1H&HD$H$UH&&"#11E1Hx&HD$H$UHT$LHLL$L\$8HH$L\$LL$OH=QHL$(L\$ L\$ HL$(1!H="H$LL$pL\$KL\$LL$pH$NhH@uH#H5H8XH&& HDŽ$HD$E1H^&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1E1HD$(2TH && HDŽ$1E1H&E1H$HD$E1HD$@E1HD$ HD$0HDŽ$HD$(E1HD$SHrHn}&c& HDŽ$1H>&HD$E1E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(8SH=&rH=&Hy%H5%rH&& HDŽ$E1E1H&HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(HD$URH,;&!& HDŽ$H&H\$H &k&HDŽ$1H&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8iQH;#HvHD$H|$H $& &"1E1E1H&H$QH &&"1E1E1H&HD$H$P9HRL\$H\$I9L;ڽ#L;0# كR1HHD$,H\$HH W&_=&HDŽ$1H&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`OH\$H &c{&HDŽ$1HV&HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`NH #H &&y"1E1H&E1H$HD$L$HL$8NHl$H5Y%H1wIqMHGP0f(HK Z&@& HDŽ$E1HD$H&E1H$HD$@E1HD$ HD$0HDŽ$E1HD$(HD$E1MZI3kH  & & HDŽ$HD$E1Hx &E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1E1HD$(LMH=L%HiH=8%H%H5%,HiH=%lH=%H%H5%kHD H#H5H8TH & &%HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`*uHzI"H$PjDIH$1;H$91"}L\$HHt$8H9H%.%[HDŽ$E1H%HD$E1H$HD$@E1HD$ HD$0E1HDŽ$HD$(E1Ht$HHD$HD$x)H=%L\$L\$HH=HL$HL$E1HuH#H5H8MkMI[IEHI+u ICLP0LLHaqH$Im!IELP0HL$8H%%YHDŽ$1H%E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HL$HHD$E1HD$xg(Ht$HL$8H4C%i)%J1H%HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$`E1Ht$PHL$HHD$8HD$HD$x'L\$IHt$HL$8Het%iZ%L1HA%HDŽ$E1H$Ht$PE1HL$HHD$E1HD$HD$xE1HD$@HD$ HD$0HDŽ$HD$(HD$8HD$`&PIoHt$HL$8H%i%G1Hz%HDŽ$E1H$HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HD$`E1Ht$PHL$HHD$8HD$HD$x&H=%H%H5%L\$L\$HH%_%H%͟H%%WHDŽ$1Hh%H=%H%H5%HH=j%-H\H|$XH\$H(%b%HDŽ$1H%HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`HD$h|$HL$8HN]%C%`HDŽ$1H%E1H$E1HD$E1HD$@E1HD$ HD$0HDŽ$E1HD$(HL$HE1HD$HD$x#H=%H!%H5*%HGH=%yH3H\$Ht%ci%HDŽ$1HD%HD$E1H\$PH\$8E1H$HD$E1HD$xHD$@E1H\$HHD$ 1HD$0HDŽ$E1E1HD$(HD$8HD$`"RH&#H8.HAWAVIAUIATUSHHhH-"#L%S#L D%HHD$0HD$XHFHl$8Ld$@Hl$HLL$P;HH\#Hc H1LK8LL$PLC0LD$HHK(HL$@HS HT$8HsHt$0HL9H;=# ۉ$LHh[]A\A]A^A_1ILH1ILfD1IzfD1dfH~@H|$XDHCfDHH$L &HAHH H5fLOH#HNH8LDH1H%%H%H H= sHh1[]A\A]A^A_H9HT$(Ht$ HL$LD$LL$LL$LD$HL$Ht$ HT$(HLL$LD$HL$Ht$ HT$(qH-%%H%5%59HHHD$H5!HcHHC@HD$XHC8HD$PHC0HD$HHC(HD$@HC HD$8HCHD$0LHt$IHH HcHH5%LIHVHHD$0MH5%LHVHtHD$8IMH5e%LHVHtHD$@IM~rH5o%LHVsHtHD$HIM~LH5%LHVMHtHD$PIM~&H5#%LHV'Ht;HD$XIM-Ht$0HT$8HL$@LD$HLL$PH|$XHD$HL$HT$0LH5U%L0yH#2%%jH%fff.AWAVAUATIUHSHH#HH|$0HDŽ$HDŽ$H$'HFHHHn(Ml$ Md$LHD$pHDŽ$HDŽ$EHHD$\*H%L(hE111AHLAHHD$8x*H8 H% L(hE111AHLAHHD$@[&H8 HxH58%H|$HH%W&HD$H|$HHp%f.(HD$8Pc H9[IHDHL8Mt I9HPHuMLpHXtIMtIHtHHi%H=%H9xb&HѸ%H|2HH=%HH$t2HGH5Q%HH`)HHD$pZ)H$H/HD$pH=Ӈ#HDŽ$H9xD,HH"DH$H$HtH/H$HHDŽ$,H|$pH/H|$HD$pHHD$p$,HHD$ H${,HH$MHDŽ$HDŽ$HGHD$pHD$pHG t I/Mt I.4Ht H+H%H2%H9XA&H%HS&HH=%HH$~,HGH5a%HH,HHD$p,H$H/7HDŽ$HH$+H\$ HH$HX^HH$+H%H?%H9X+H%H+HH %H%HAH5%HHL$HH%HL$IM+H)PH5%H$LLD$LD$BI(BH\$pL$L$HCLM+H-#x W;UP +LHLAHD$aX SP E=H @9H|$$H|$pH/{H$HD$pH/TH$HDŽ$H/*HD$HDŽ$HXHpHx Hr%H\$PHD$(ID$ ID$HPHHBHcHM!LHH$HhH{#H QH5L HOH81LBH,gHGV% <%`A`AH %H H= Hj1H[]A\A]A^A_HdfW1۾H=J%%H-HD$0L-%HLLeLHI,H@HH LLHHI,HD$0L-%HLLeLH2,HHLMa LHHAHH$,HHH; k#HDŽ$+HPHH$+H@HHH$H$H/ L$H$M* L$HGH;#H;5#HWB,E1 LjuLg%H=G%H9x%%H&%H^%HL=%M#%IGH5N%LHHQ'HH'I/N HL$HIHL$&HEHhHL$HHD$pHL$7&H%H=o%H9x%HN%H%HH:%HH$v%HPH5%HHL$HHD%HL$HH$#H$H/aH$H5]%H|$pHL$HDŽ$HL$?H$H/HAHDŽ$Lt$pLM4HL$H-U}#x HL$W;UP HLLHL$AI轸x HL$wp E=P@9ML$H)I,$H|$pH/DL$HD$p1H %Ht$8IEL$HDŽ$LHH$H9iIHDŽ$IGH5%LHH2HH$CH|$uHHD$p}HIHD$pH$LHD$pID$HHD$p6H$H/HDŽ$I,$HD$pH%HD$pHD$ H%H9XHU%HHHA%HHD$pTHPH5H%HHH)IMH|$pH/SHD$puHHD$pFH\$ HHD$pHXPHH$H%H%H9XHp%HHH \%H\HAH5%HHL$HH*HL$HH$H)zH$H5%H$蒸1 H$H/}ID$HDŽ$H$Ht$pHHFHt$(HT$kH-y#x HT$Ht$(O;MH LH;x OH E=P@9HH$I,$H|$pH/kH$HD$pH/DH$HDŽ$LHH$H5%HDŽ$HD$H@HD$XIGHHj HHH$* HGP HGHPHE H HcHLpHX-HGP0HGP0HGP0@HGP0@!IFLP0 IGLP0IELP0I`HH$HALD$HP0LD$HGP0I@LP0fHWR0@HOH; px# H; y# HWB E1 LjuLgH-{w#x W;UP M L1AIx OH E=P@9Ȳ@$HGP0HGP0HGP0y薲@$fNHGP0HUHR0HWR0HGP0qHGP0IGLP0HGP0@HCHP0IFLP0HCHP0IGLP0@$frH|$葰HH$2薱HHD$ H$HH$HDŽ$HDŽ$HC4LHHAHP0wHGP0ID$LP0HGP0fHGP0@sHGP0@HGHL$P0HL$IGHL$LP0HL$ID$LP0^HAHP0fBHL$豰HL$@$HGHL$P0HL$jHGP0HGP0ID$LP0j`@$@GHHD$(H|$(B H$H/HD$0L%q%HDŽ$HLHUHHT$`JHHD$P H@HT$`HHYHH|$PHHD$P HD$0L%O%HLHUHHT$`HHHHT$`LMHHAHH$HHH; r#HD$pHPHHT$pH@HHH$H$H/Ht$pH$HHGH;t#H$7H;t# HWBz HJE1 HL$`uLgHt$h蝮H-r#x Ht$hW;UP  LHD$`Imx OH E=P@9} H@$M LH|$pH$HtH/H$HHD$pi H$H/H$HDŽ$H/rHDŽ$aH|$(HD$`HD$0Ht$E1Hl$XLl$hLt$XLl$HHxHHH H\$HHt$0HILIDI0LD$MLLH0HH6QAGIG E1Ʌ-yH(H0H0H@(AE;O}NIcI4H0H@H0Pt8fH(AHR8HcR H0E;O|HH\$0H;l$(:Lt$XLl$hH\$HH|$`艧HD$PH5ݧ%H@LMXHt$_H-p#x Ht$W;UP 1H|$PAI/x OH E=P@9MH|$PHHD$HHHMYI,$HGHD$(GHd$(H D$(H\$(]GHD$(GHd$(H D$(VHD$(HGHD$(;ft{y9TfHD(H0H(H)0'H0HcHH%%B1Hf%Hap%V%B1H=%H8G%-%BE11HD$H%H=,gg1IL#HeHز%*Ͷ%pCH%E1*H%*%nCH%E11HD$ E1E1E1HD$Hgv% \%AHD$ H<%H:I%/%AH%LnIt/iItIbHF(H$ID$ H$ID$H$HIIIMM?L$L$H$H=/%Hh%H5q%HH$L5H5~1%LHLyH?N% 4%NANAH%H5%HHV蠞HH$IH5%HHVxHH$t:IMH5%HHVKH>H$IH=jHv% k%DADAHO%*ID$H@O%15%"DH%c贠HL$IH=0%Hɐ%H5Ґ%$HH=%ѿH,HuH`#H5 H8qH%1%)DH%H5%H=%1HIt?HUI/u IGLP0HUd%J%AH3%H.=%#%AH %E11HD$ E1E1HD$zH% ߲%AE11HD$ H%E1E1E1HD$8HD$HD$@!H% %AE1E11Hg%HD$ E1E1HD$HD$@ܞH7F%-,%CH%H$HD$pHt H/uHGP0H$HDŽ$Ht H/uHGP0H ű%߱%H=x5±%HDŽ$DH$HT$pH$L?H]#H9EHEH|$HHD$ wHI=HD$ LHLD$I@蟕HHD$ LD$HmuHELD$HP0LD$I(u I@LP0H$Ht H/uHGP0H|$pHDŽ$Ht H/uHGP0H$HD$pHt H/uHGP0IHLLHDŽ$H[j%/P%CH9%IHLLLD$IE1E1E1HL$ LD$HD$ yH %/%CHٯ%H׫%/̯%CE1H%tHeHH3H%/%CHw%IHLLE1E1E11E1HD$ HD$H=L%.2%CH%HPHH$H@HHH|$pHD$pH/uHGP0H$Ht9H|$pH'7pHªѮ%-%CH%H|$p7HH|$p%-%CHj%HLH/BHGP06HKZ%-@%CH|$pH$%H"1%1%DH%EH %1% DH٭%H=%Hv%H5%HXH=ۚ%螹HDH%1%DH|%nHm|%1b%DHK%HFU%1;%$D1HD$E1H%E1E1LLHHHD$>H=N? HѨ%Ƭ%8BHD$ E1E1H%E1H=%H%H5%赸IHv%k%*BHT%CH=x%;IH;J%0%AH%oHuYzH %8%DH۫%H\$E1E1E1E1U HHt+11H%5%VDH%HW#H5ϱH87 HL$Hcr%X%6BHD$ E1E1H2%E1H=S%HL$HL$%H=8%HQ%H5Z%HL$'HL$H%۪%4BHD$ E1E1H%E1(H%%/BE1E11H%HD$ E1E1HD$$HfMr%X%,BHD$ E1H5%E1E1ŖHHHX#LH8HDŽ$H%8%uDHթ%I/IGLP0H-X#LH8躎H%8%sDH%H%6x%`DHa%H=%HH{HHW%-=%CH|$pH!%H=E耑IK1LLHnH%8%DH̨%"HHT#H5H8cH=ǮGH$HH_H5ɧ%I\HHMT%:%B1HD$ H%E1E1E1HH=6JR%6%JRHHԧ%;Hϣާ%ħ%BH%AWIAVIHAUATUSHHD$PHD$`HD$pVHHD$71IoH5%H9kH9HXHeHJH~%H;rg1H;tUHH9uIL%%LmLLHHD$1H@HHLHH|$HHD$1MH-%Ml$HL贐H0HHLMvLLHAHHD$P0HHH; R#HD$`6HPHHT$`6H@HHH|$PHD$PH/Ll$`H|$PMCHGH;S#L$ H;~T#N,HWB;,1 LbuHo膎HR#H Q;P :,LHAH]H qp BR99H,HH|$`HHD$pHtH/Hl$pHHD$` 5H|$PH/@H|$pHD$PH/HD$p襈HD$0H HHHt H;~R#HHHuHHH@HHT$HL$ HD$(t HD$HHD$ HtHHD$(HtHH\$HH: I L,H-S#sIGHD$pHT$PH9H@hLLHH@(HЅ}"H|$PH/IHHD$PHLɎIIGH9H;2P#lH@hLLH)%H@H%HHD$p$IGH9H;O#2H@hHLH$H@H$HHD$Pe$IGHT$pH9H@hHLHH@(HЅ#H|$pH/HGP0HH5ʐ%LHA,HHH|$P.*H5%H9;HGH;P#,Hu L-O#HcP#1IEI9HD$8@AHHPHHEHD$Pt-IEHPHIUH5m%IoLyH%%BHH|$PE11Hʡ%7H襫DHH5%LH1HHH|$`1HtO#H9HD$8H;=N#HHPHHHD$`%LHH)HHD$P)ImH|$PHGn)HGHH H9HcHE1H/uH%H u%HD$PH9H(Hu%H(HH=u%HH|$P(HGH5%HHk(IM&H|$PH/LHD$PX~HHD$PC&`HHD$`%HT$PHD$PHP;HHD$P%H֖%H t%H9Hr%Ht%HN%HL=t%M %IGH5f%LHH$HHD$p#I/,HT$pH5͉%H|$P蓁H|$pH/IEHD$pL|$PHt$`HH#Ht$ {~HB#H Ht$ Q;P i#LLHN~H qp BR9_H#Hl$pIm6H|$`H/H|$PHD$`H/Hl$pHD$PHD$pH5|%HEHHHn#HHD$p,#HPH5*%HHH#HHD$PH|$pH/]H|$PHD$pHGHGHHxHfHH|$PIH/IL=A%HD$PHSLHHT$($~HHD$ zH@HT$(HHpHH|$ HHD$ [IL='%HSLHHT$(}HHHHT$(LMHHAHHD$pHHH; ?#HD$`a$HPHHT$`O$H@HHH|$pHD$pH/Ht$`H|$pHHWH;@#H$. H;A#%HOQ HAE1 HD$(uLHt$0{H?#H Ht$0Q;P LHD$(IW{H qp BR96MFLH|$`IHD$PHtH/L|$PMHD$`H|$pH/H|$PHD$pH/-HD$PuL=?#H HHHt L9HPHuHHH@HHL$(HD$0tHHD$(HtHHD$0HtHILD$IMIF Lt$H\$@L|$HHl$8LHLIMHLt$HD$HL|HD$HL$LLH,HHyLLH:yLLL,yLt$HuHl$8H\$@L|$HIL|$PHHHD$Pt H+HL$(HtHHD$HHHHL$0HtHHD$HHHH\$ H5t%1HHHHSH\$HHHHHQHHHPHR0DgAMcIdH|$PH/HGP0AEHHD$H|$ yHH%%mHH|$PE11Hw%fAEHD$AEHd$H D$H\$AEHD$CAEHD$AEHd$H D$&DgDgGII DgGII I@HHH@HL$(HD$0EHGP0IGLP0HGP0@IELP0 IELP0HGP0@IELP01HHD$pHD$ HHGP05HGP02HGP0 HGP0@HGP0@HGP0@IELP0v@$fHGP0IGLP0HGP0HL$HHHT$Ht$I Hl$H\$HLL|$8HHHD$HHIL$MIHLUxILH0H3I7H0HIL|$HuHl$H\$L|$8[u@$HD$!GHD$GHd$H D$GHD$DoGII DoE1HCHP0 HGP0oHAHP0HAHP0&HD$HD$ HPHR0HD$9LuHD$uIOH@L(IEHOH; ":# H; :#HWBHJE1 HL$(uLtH(9#H Q;P ,1?HHH@HT$HL$ HD$(LhIEJH;=W9#2u1H|$`HPH1R0L=%9#HQ9#HD$8HIHGP0P@IGJHHT$`f.IGJ0HIGHT$`L9IGJHAHP0 HAHP0L;-4# LpHH|$PĆ%%KHE11H%Ht H/$Mt Im$H|$`Ht H/ Mt I/!H|$pHt H/H 1%K%H=5.%Y1HD$HD$HPHR0HD$lIELP0>H%څ%HH|$PE11H%&H$bVH;=V3#oH|$`Rn@$YHGP0fHGP0@IELP0HGP0@IGLP0HGP0@聒fDqfDH$H=f1fDHcH%% JHy%H|$pHt H/zH|$PHD$pHt H/mH|$`HD$PHt H/0H $%>%H=5!%HD$`CH|$@HL$pHT$PHt$`HL$pHT$P1Ht$`qHI Lt$1HL9HIHD$HHIu H|$HGP0I,$u ID$LP0H H;\$8AH;0#DEH+u HCHP0E@  H|$`Ht H/H|$PHD$`Ht H/H|$pHD$PHt H/HD$@HL$ HD$pHH8HHL$0L`HXHHHHL$(HHtH/t~Mt I,$~HH+ HCHP0L=%0#H;0#HklAHGP0HGP00HGP0@=HGP0@rID$LP0rHGP0@HGP0@vHGP0@H}ځ%%JH%+H}%%JH%H}}H|$p%m%JHV%Ht H/uHGP0H|$PHD$pHt H/uHGP0H|$`HD$PHt H/uHGP0H %%H=5%HD$`H|$0HL$`HT$pHt$P@HL$`HT$p1Ht$PmHHLt$1HLHIHD$HHIu H|$HGP0Hmu HEHP0HH;6.#@H;-#@@H+u HCHP0)H|$PHt H/H|$pHD$PHt H/H|$`HD$pHt H/HD$0HL$HD$`HH8HHL$ HhHXHHHHL$(HHt H/sHt HmHH+HCHP0H;,#HGiH {/%%JH|$pH~%Hz%~%JH~%THz~%~%JH|$pH~%KWHz~%~%JHu~%,賋11HXzg~%M~%JH6~%H1z@~% &~%0JH~%HD$@HL$ HH8HHL$0L`HXHHHHL$(HHt H/3Mt I,$/HtH+tH|$PE1E1HCHE1E1P0H|$PHEHP0H{y}%p}%JHY}%HD$0HL$(E1HT$ Ht$E11HH|$PHGP0*HGP0@7HGP0@DHGP0@}11fS11f~H5}%1Mku k_H$tHHx|%|%KIH|$PE1E1Hb|%H]xl|%R|%HH;|%HL$ HHD$HHHjHAHE1E1P0H|$Pv_eHt'1H=Ht$0RdHt$0LH(#H5HD$(H:xaHD$(gH*#LH8`HD$pHw{%{%HHq{%1H)#LH8j`HZwi{%O{%HH|$PE1E1H-{%H(#H5H8`mdHuH|$PIHv{%z%HH|$PE1E1Hz%7hHItHIHQHIbIWHD$ LR0HD$ IHvz%yz%HE1H_z%E1Ld$`Hl$pH\$P#cLHHHH2vHD$PHD$pHD$`&z%Hy%z%JHa(#LH8^Huy% y%IH|$PE1E1Hy%H=bT1 H5y%1uLHhfH$9H=}a1bHuHo%#H5pHD$H:^HD$H uy%x%JHx%Htx%x%JHx%bVeI2Htx%x%IHH|$PE11Hx%H}tx%rx%=HE11HVx%HQt`x% Fx%tIH|$PE1E1H$x%1H&#LH8]HD$PHtx% w%IHw%HL$H5Hsw% w%_JH|$PE1E1Hw%HGP0ID$LP0Hsw%uw%JH^w%Ld$pH\$PLl$`%`LHHLH4sHD$`HD$PHD$p(w% Hw%w%EJHrw% v%=JHv%Hrv% v%9JHv%Hrv% v%4JHv%ncHH;"#[IMueHQr`v%Fv%?HH|$PE11H%v%H r/v%v%,HH|$PE1E1Hu%1^H##H|$PI9HD$8L;-##AL;- ##A A `QIJH$#HH8ZHD$PHqu%zu%JHcu%HL$HHD$HHHu HAHP0H|$PE1E11H##LH8,ZHq+u%u%JH|$PE1E1Ht%1ZC^HBH!#H5{HD$H:ZHD$-Hpt% t%}IH|$PE1E1Ht%1]HHspt%ht%}HH|$PE1E1HFt%1H?pNt% 4t%IHt%8Hp't%  t%IH|$PE1E1Hs%1VHos% s%{IH|$PE1E1Hs%1"K`HHoHHGHEHH|$PHD$PH/uHGP0HT$pH|$PHHD$`HmlHEHP0]HAoPs% 6s%IE11Hs%Ho$s%  s%IH|$PE1E1Hr%1S‚k_aHnr% r%IH|$PE1E1Hr%1H=_%~~HH=_%HP%H5P%~HH=xZHCnRr%8r%HH|$P1Hr%H=>xHt$ tZHt$ yHD$pHmq%q%HH|$PE11Hq%/LL]HHD$ptg>^Hmq%q%HH|$PE1E1Hlq%^ZHDSH#H5wH8V8]H%m4q%q%HH|$P1Hp%iH= ^%|IH= ^%H%O%H5.O%}IHlp%p%H1Hp%9Hlp%p%HH|$PE11Hlp%Hglvp%\p%H1HCp%H>lMp%3p%HH|$PE11Hp%H5Fp%1Hk p%o%JHo%pHko% o%rIH|$PE1E1Ho%1:\HHv]HHH豷HMHQHHUgHUHD$HR0HD$NHCkRo%8o%ZH1Ho%[Hko%o%XHH|$PE11Hn%QHHjn%n%KH|$PE1E1Hn%1H=tW1#[I[IHnj}n%cn%HE11HGn%H=k[%.zHH=W[%HL%H5L%KzHxIHin%m%zH1Hm%wqZ#Him%m%xHH|$PE11Hm% 6ZILxHD$H|im%qm%jHH|$PE11HPm%zIH>iMm%3m%hHE11Hm%Y[H#H5H8RMVHuH|$PHD$Hhl%l%]HH|$PE1E1Hl%1AWAVAUATUHSHHXHHD$0HD$8HD$@HFHL~H~ HF(L|$0H|$8HD$@HG HoHEHHHcH@oH1 Lt$@3H=I<$HEIHHEHHHEtHXL[]A\A]A^A_DHEHP0H5U%HIHVMTHHD$0t HCH$H#H5tL iH hHynAH81VH|fpj%Vj%H:j%H UfH=LbHX1[]A\A]A^A_ÐID$LP0HCHP0dIELP0pHGP0@H5]%HFHEHHHHt HHQHHu HPHR0HEH5]%HH0 HIM IEH5P%LHH HHImM~ IHCH;g#LkMLsIEIH+LLL/IMHQHIUIHQHI?HVIHQHIHHQHHjHPHR0[fID$LP0MoGHH HH1QHHthHCd7h%h%Hh%5h%oHcfDoGLt$@HH H1 fJHHQH3`%HHH%`%HCH1H=S%HIH+JID$L-_%LHLHHH6H; I,$5HNHIH=z`%HSHHI,$HHCH;<#H;#Hl$KH;m# HSB E1 LbuLstOL-#H QA;UP  HLAIIOAUH H BR9MMIHmiMI,$ELImRHbf%e%E1He%He%5e%H=Ht H+MI$LE1OHKIVHD$LR0HD$IWHD$LR0HD$HCHP0\fIELP0HCHP0HCHP0ID$LP0ID$LP0HCHP0ID$LP0HEHP0IELP0IUHD$LR0HD$bM@$6Ht$H'I(H;X#L|$ H;#(HSBE1 HjuLcLL-^#H QA;UP LLHLAUH H BR9|H]IOL@$Ht$ HcHLfIt(ItIHF(HD$@HC HD$8HCHD$0HFII#I>MwM-L|$0H|$8QHHHڽH HHQHHHCHP0H_b% b%Hb%H b%b%H=G5b%I1H^b% b%9H}b%HH^b%jb% 1HQb%I,$u ID$LP0E1H 5b%VHK^?b%%b%E1H b%H)H;#L|$0H;#^HSBuHJE1 HL$uLsJL-#H QA;UP ,LLHD$ImJAUH H BR9|MLI2J@$Ht$0HMH_H5L%HHVJHHD$8RIH5?L%HHVJHHD$@ IwM3H #H5,H8|FH\`% `%H`%M)LImH\`%t`%H]`%IELP0Hc\MT`%:`%ĊH#`%ZI.PIFLP0AHu#H8FI,$H\_%_%ډH_%u ID$LP0H _%_%H=Ō5_%E1-LHBH[I_%w_%׉1H^_%Ht[h_%N_%҉E1H4_%HRHG[;_%!_%H _%H [_%^%H^%LsMLcII$H+@HLL I.IkIFLP0\HZ^%^%Hn^%HKH+HtZh^%N^%H7^%oHJIMF LHLH=HT$0LbH5$LHoHY]%]%H]%H #H$L \H [HaH5gAH81IHY]%r]%H[]%PFHuH #H5cH8BE1HHH# #H_H5^I1H81&IH!Y]% \%8H\%HH #H$L [H [H`H5 gAH81HHX\%\%H\%tHCHP0EHt?1H=bD@㨀!Ht$ HHWH`#H5abH8AT$\$Y$Xf.OL$H []f(A\H;S j\f(e@f(H []\A\fff.AUATL%erUH-]vSHHH;S *Hc;DAY sH([]A\A]@HnL$ HcH;$\d$\$SL$ A(A WAI*\$d$YYX.JL$ H[]A\(A]H;S KH*Y :\C(.H[]A\\A]HHH?P H*YHfffff.HGH?HHH?P ch\f(> HfWffff.AUATIUSHH~BHI1fDH}U h\f(T>fW,ADHL9uH[]A\A]ÐHHH?P H*Y \A HWfAUIATIUHS1HH~fDH}UADHL9uH[]A\A]fffff.AUATL%UH-SHH(H?SHH H*HHcH;DAY sH(f([]A\A]D@L-iwL$HcH;A\AT\$\T$SL$$f(fW-Ҵf(:T$\$Y$L$Xf.hH;SHH H*HHcH;DAY ;AdHcL$H;ALd$\L$ST$$f(fW5(f(9L$$d$YT$f(Xf.H(H[]A\A]H;S e\f(; H([\]A\A]f(f.AWIAVL5AUL-}ATIUHS1HHHA HH9I?AWHH L }H*HL}HcI;AYLr]H^uLD$8HcLL$0L$HT$(\$ I?\T$AWL$D$f(fW%f(8T$HT$(\$ LL$0YT$LD$8L$Xf.HT$LD$LL$I?AWHH LD$H*H@LL$HT$HcI;AY @HcLD$8LL$0HT$(\$ I?\L$T$AWL$D$f(fW-ӱf(7T$HT$(\$ LL$0YT$LD$8L$Xf.-HT$LD$LL$I?AWHH LD$H*H@LL$HT$HcI;AY @ GL$I?H\$ \T$AWL$D$f(fW=f(6T$\$ YT$L$Xf.eLf(T@I?AW qb\f(8 \A HH9(DHH[]A\A]A^A_fI?AW5b\f(d8 \I?AW=a\f(78 _\fDAVAUATL%CjUH-;nSHHH?S *Hc;DAY sH([]A\A]A^ÄL-eL$HcH;AdA\\d$ \$SL$A(A Wje9I*\$d$ L$YVYX.eH;S *Hc;DAY >FAdHcd$ H;A\\L$\$SL$A(A W8I*\$d$ L$YYX.H;S *Hc;DAY AAdL$H;Hd$ AL\L$S\$( W8L$H*d$ \$YY(X. HH[]A\A]A^fH;S íH*Y \9 H[\]A\A](A^ffff.AVAUL-ATL%UHSHH @HqL$HcH;\$\T$SL$%O$Yf(Y2T$\$Y$L$Xf.w\$\T$AVL$%$Yf(Y0T$\$Y$L$Xf.wAVII HcLH!H*YLtfW I;<CHD$(B IL;l$ H8[]A\A]A^A_f.I>AV-9\\f(2 I>Y $AV5 \\f(W2fW/ $f(XYf.vAX iPfW CfDAUATL%5UH--SHHHT$HcH;$\d$ \$ST$AA ZYY=/I*\$d$ T$Y nYXZf.w8H;SAA DH*HcAYtWD;l2(H[]A\A]@H;S -H*Y\(4H;YT$S 5ǨH*Y\(4WT$(YX.yAXQWYH[]A\A]fffff.SHH0f.YD$1fW|$f. =Yf.|$|$^\=NY|$(Qf.%~Y^d$@H@.L$fWYX RYf.sf(D$H;YYL$ST$ f(5YYYY\f.wZT$ K/D$D$:/T$  ,]YYX\T$XYT$(Xf.L$4D$(YD$H0[f.D$zXL$ \^D$.t$L$ f(D$Yf( ?X^\z.T$\$\f.sH;SHD$0 XT$\L$f.b WD$f(^L$.\$f.rH0[fWH0[H0[003f(fSHH .եD$hW|$.I=.|$N|$\=Y|$Q.&%o^5_t$d$H8*L$YWX 7.s(D$H;YYL$ ST$ (H*Y 5YYYD$\.wYT$0D$D$ 0T$ ˤYY\T$ XYT$X.L$,D$YD$ H [Wt=a.|$5Jt$@H;S HH*YT$T$ 0 \L$T$ .r5 ^L$D$ ( /\$ .rifD$ƣ\L$^D$/t$(L$D$ Y( ^\.T$ \$\.#H [H [/.(HHH?PHHff.HHH?PHfff.HHH?PHHff.HGH?f.8f(D„f.QTD„{USH(-f.Cf(1f(l$5TY\$ ٠$^f(YX ȠY\ ĠYX Y\ YX Y\ YX Y\ YL$)L$$X W\$f(l$\%Wf.^YX fX\DH~?fD\ SL$Hf($`)L$H9$\}H(f([]Ðf(\H,H*XDfWff.HL$$|'L$YX$HAUATL%kUH-rSHH8H?D$SHH H*HHcH;DAY sD$H8[]A\YA]Ð@L-bL$HcH;A\AT\$(\T$ SL$D$f(fW% f(%T$ \$(YT$L$Xf.dH;SHH H*HHcH;DAY 7A\HcL$H;AT\$(\T$ SL$D$f(fW-]f($%T$ \$(YT$L$Xf.Hf(DH;S P\f(' E\vfff.HHH?L$$PL$YX$H@HL$'L$HYfHL$ &L$ HYfSHH 5(PD$f.L$s>D$H'$HD$}' $H [X^f(fDf.rf.H;SH;$S O$^L$D$f(% OT$^L$$f(%X$%fOf.rfWf.v<$H [^f(ff.HYS&HXfDSf(HH\$ $D) $Hf(f(Y$&)\$$HY[^f(fSHH#HD$u#L$H[^f(ÐAUATL%gUH-nSHH8H?D$SHH H*HHcH;DAY s6%6Nd$^L$f()"\D$H8[]A\A]XL-^L$HcH;A\AT\$(\T$ SL$D$f(fW-f(!T$ \$(YT$L$Xf.v=~M|$CH;SHH H*HHcH;DAY rA\HcL$H;AT\$(\T$ SL$D$f(fW=/f( T$ \$(YT$L$Xf.BH=Lf(|$yH;S5Lt$\f(" \FfDH;S=bL|$\f(" Ϙ\fDAUfWATUSHH8f.zuH8f([]A\A]%LH;H-~lL%wd^d$SHH H*HHcH;DAYsL$H8[]A\A]f(!fD@L-\T$HcH;A\AL\$(\L$ ST$D$f(fW-f(HL$ \$(YL$T$Xf.[H;SHH H*HHcH;DAY.FA\T$H;H\$(AL\L$ ST$D$f(fW5֘f(L$ \$(YL$T$Xf.H_f(fDH;S JJ\f( \m@AUATL%bUH-jSHH8H?%J^d$SHH H*HHcH;DAY s:fWf(IL$H8[]\A\A]f(L-ZL$HcH;A\AT\$(\T$ SL$D$fW }f(L$>T$ \$(YT$L$Xf.JH;SHH H*HHcH;DAY s?fW fH;S-H\f( =\@A\HcL$H;AT\$(\T$ SL$D$fW f(L$UT$ \$(YT$L$Xf.aHf(/fDH;S5H\f(M u\fW @SHH$L$ fWf.wFH;Sf.Lr f\\f(YD$$H[\f(@XYD$X$H[fffff.SHH$L$DH;S"GG\f.f(v_ 7fWNYD$$$H[\f(DSHH$L$DH;SfWf.v F\^YD$X$H[fHWH~fffff.HHH?D$P MF\f(Y`Qf.zD$HYb"f(fff.SHHD$L$H$Y 7Jf(L$XL$f(Qf.zQf.z.$H[Y^D$f(!\$f(f(T$!T$f(뷐USHHXf.D$sf.zuHX[]`1t$fWf( ED$H $H;S $Yf.L$wHXH[]fDQf.D$ $  $D$8Y ב5ߑ=X Ǒf(YL$\ 9\f(5\-^l$@^X5t$H\|$0f(X|$ H;Sf(H;\[H$S$D$f(AVt$I9v$D$19щsDI>AVI9wH HL$KLII9uH([]A\A]A^A_ÐHE2E1HHLbH\$)DI>AVIL9IIs-HD$1II9HsfI>AVIH9IwLHD$KDII9uHH HHH HHH HHH III HE1fI>AVD!9wHD$KDII9uH([]A\A]A^A_HK1DI>AVHD$IDHH9u%H11HHH HHH HHH HHH HHH II I HE1@I>AVL!H9rHD$KDII9uC9/%Hffffff.AWAVAUMATIUSH҉t$HLHʃHH؃H9HGH D$HAE-HAEHAEHAE HAEAEI9toMI)LHH<Ht,fnL$IL1fpHHfAH9rHI9t)t$HPI9At~HAtI9~ T$ATH[]A\A]A^A_IEuuBE1Hɉ\$ D$~I>AVt$H9v$D$ 19щsDI>AVH9wH L$CLIM9uH[]A\A]A^A_ÉHHH HHH HHH HHH HH H-E1@I>AV!9rD$CDIM9uH[]A\A]A^A_H1I>AVD$ADHL9uH[]A\A]A^A_Hu;11A2( HfH_LȃHH؃H9HGH HH+HfA1}HfAqFHfAqAHfAq<HfAq7HfAq HfAq HfAqH fAqfAq H9II)MINMt1fnI>> from numpy.random import Generator, PCG64 >>> rg = Generator(PCG64()) >>> rg.standard_normal() -0.203 # random See Also -------- default_rng : Recommended constructor for `Generator`. Gets the bit generator instance used by the generator Returns ------- bit_generator : BitGenerator The bit generator instance used by the generator %%%%%4L4<44\4eW`w; GpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIpIGpIpIGpIpIpIpIpIFFpIpIFpIpIFFFpIpIFpIpIpIpIpIpIpIpIpIpIpIpIpIFPFGpIGGpG`GpIpIPGpIpIpI@G0GpI@G@FGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGPFGG`FGGGGGFFGGFGGFFFGGFGGGGGGGGGGGGGFFGG@G`GGGGG GGGG0GpFG0G{III{IIIIII{I{III{IIIHGHG{IIIIIIIIIIIIIIIII]IRIhIIhIhI]I]III]IIII]I]II]IH5,# 0L,x"xxxxt|zqh,l(dTDLXLLLHLqhhh_hVhMhDhLnnn o,l|X(8TltԐȐJ>2&(//0<0ZWQWHW?W6W-WoWWWWXwR2<4$i#Y$k$@%w$[%i%|$4DTd =gx*h.r.3&..//.&/ /UVR R,VUnsupported dtype "%s" for standard_gammaUnsupported dtype "%s" for standard_normalFormat string allocated too short.x must be an integer or at least 1-dimensionalunable to allocate shape and strides.probabilities are not non-negativenumpy.core.umath failed to importno default __reduce__ due to non-trivial __cinit__negative dimensions are not allowedndarray is not Fortran contiguousmean and cov must have same lengthgot differing extents in dimension %d (got %d and %d)covariance is not positive-semidefinite.cov must be 2 dimensional and squarecheck_valid must equal 'warn', 'raise', or 'ignore'both ngood and nbad must be less than %da must be 1-dimensional or an integerUnsupported dtype "%s" for standard_exponentialUnsupported dtype "%s" for integersUnable to convert item to objectProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Out of bounds on buffer access (axis %d)Non-native byte order not supportedInvalid mode, expected 'c' or 'fortran', got %sInvalid bit generator'. The bit generator must be instantiated.Indirect dimensions not supportedIncompatible checksums (%s vs 0xb068931 = (name))Generator.standard_normal (line 857)Generator.standard_gamma (line 1031)Generator.standard_exponential (line 296)Generator.standard_cauchy (line 1515)Generator.noncentral_f (line 1289)Generator.noncentral_chisquare (line 1435)Generator.negative_binomial (line 2832)Generator.multivariate_normal (line 3333)Generator.hypergeometric (line 3111)Format string allocated too short, see comment in numpy.pxdFewer non-zero entries in p than sizeEmpty shape tuple for cython.arrayCannot take a larger sample than population when 'replace=False'Cannot create writable memory view from read-only memoryviewCannot assign to read-only memoryviewCan only create a buffer that is contiguous in memory.Buffer view does not expose strides zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() unknown dtype code in numpy.pxd (%d) uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random`. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random(size=None, dtype='d', out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : {str, dtype}, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() numpy.core.multiarray failed to import normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.default_rng().multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=2) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() integers(low, high=None, size=None, dtype='int64', endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : {str, dtype}, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. choice(a, size=None, replace=True, p=None, axis=0): Generates a random sample from a given 1-D array Parameters ---------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : boolean, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. a must be greater than 0 unless no samples are taken'a' cannot be empty unless no samples are takenGenerator.permutation (line 3917)Generator.multinomial (line 3497) wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_gamma(shape, size=None, dtype='d', out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : {str, dtype}, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None, dtype='d', method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: x must be an integer or at least 1-dimensional laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Raises ------- ValueError If any value in alpha is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") Unsupported dtype "%s" for randomGenerator.triangular (line 2588)Generator.standard_t (line 1580)unable to allocate array data.probabilities do not sum to 1Generator.logseries (line 3252)Generator.lognormal (line 2339)Generator.geometric (line 3060)Generator.dirichlet (line 3647)Generator.chisquare (line 1367)Generator.vonmises (line 1674)Generator.rayleigh (line 2451)Generator.logistic (line 2259)Generator.binomial (line 2688)ndarray is not C contiguousitemsize <= 0 for cython.array'a' and 'p' must have same sizeGenerator.weibull (line 1855)Generator.shuffle (line 3786)Generator.poisson (line 2908)Generator.laplace (line 2055)Generator.integers (line 350)mean must be 1 dimensionalRange exceeds valid boundsGenerator.uniform (line 749)Generator.pareto (line 1757)Generator.gumbel (line 2140)probabilities contain NaNInvalid shape in axis %d: %d.Generator.random (line 141)Generator.power (line 1954)Generator.normal (line 929)Generator.gamma (line 1123)Generator.choice (line 508)Generator.zipf (line 2980)Generator.wald (line 2520)Generator.bytes (line 479)Cannot index with type '%s''p' must be 1-dimensionalnumpy.random.generatorGenerator.f (line 1201)standard_exponentialnoncentral_chisquaremultivariate_normalngood + nbad < nsamplecline_in_traceback__pyx_unpickle_Enumnegative_binomialmay_share_memorybounded_integerssum(pvals[:-1]) > 1.0standard_normalstandard_cauchy__setstate_cython____pyx_PickleError_poisson_lam_maxdtype_is_objectallocate_bufferView.MemoryViewstandard_gamma_integers_typeshypergeometric__generator_ctorRuntimeWarning__reduce_cython____pyx_getbuffergenerator.pyxcount_nonzerobit_generatorOverflowErrorstringsourcesearchsortedreturn_index__pyx_checksumnoncentral_fRuntimeErrorpermutationmultinomialexponentialdefault_rngcheck_validPickleErrorMemoryErrorImportErrortriangularstandard_t__pyx_vtable____pyx_resultnumpy.dualmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexError__reduce_ex____pyx_statelogserieslognormalleft > modegeometricenumeratedirichletchisquareTypeErrorGeneratorAxisErrorwarningsvonmisessubtract__setstate__reversed__reduce__rayleigh__pyx_typepickleoperatorlogisticitemsizeisnativeisfiniteintegers__getstate__floatingendpointbinomialallcloseEllipsisweibulluniformtobytesstridesshufflereshapereplacepoissonnsamplememviewlaplaceintegergreaterfortranfloat64float32capsule at 0x{:X}asarrayalpha <= 0updateunpackuniqueuint64uint32uint16structreducerandom_pickleparetonormalnamemethod__import__ignoregumbelformatencodedoublecumsumctypeschoiceastypearangezerosuint8statestartsigmashapescalerightravelrangeraisepvalspowerpcg64numpyngoodkappaisnanint64int32int16indexgammaflagsfinfoerrorequal__enter__emptydtypedfnumdfden__class__bytesarrayalpha__all__PCG64ASCIIzipfwarnwald__test__takestopstepsqrtsortsizesideseedrtolprodpacknoncndimnbad__name__modemean__main__longlocklessleftitemintpint8highfull__exit____dict__datacopyboolbetabaseaxisatolzigtolsvd__str__outobj__new__lowloclamintepsdotcovanyalladd333333?C?9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: ٬ @r鷯?Q?Q?9v?(\@ffffff@.@4@x&?@?UUUUUU?a@X@`@|@@MA>@@-DT! @h㈵>-DT!@4?N@Si@>Aޓ=?3?r?q?0@; 8 ֏ ; z cʤ0ϧƨשH xrC(H7pͭ7H0`P{h֮e Xݵ8l ϸ%<  0 ph p @( P@ pX  ` X  X @ 0 X  ``X   ``    @`hp 0hp0 p&hP,1P2x@4:<@>0@@@pCPEGK M@0MXOORRTHpZZ \@]P^Hbehhko( `s v y`!|!0"""``##Б0$$P%@%p%%& H&`&&X''0 (((@@)))0@***+0@++P+,P@,,@,, 8--- .p.. . /h//`)0+X0.0/0@4 108h1D1O82\2pn2t@3Px3@3004Э`4x44405h556X66(6XH7Ђ77P88089` `9P>90e:@P::;`X;`4;E(<`F@<G<H<H=H =0I8=Ip=I= J=L >Op>@R>S8?U?pW?Y@\P@\h@\@\@\@^@^A`@A`XAapA0aA0bAPbAbAbB0ePB@gBiB jCj0CjPCkhC`kClCnCnDPyXD{Dp|Dp}E}0E~XEEЂE0EEF(FPFPFFP GG HPHH0hIIPJ`J JzRx ${ FJ w?;*3$"D\ t4EBDD d GBI AAB,iADD R CAA @  8 $0<8EtP,TpADD  CAG  4ADD ~ AAG O AAG 4hdAA ABY $(<(IDl A \XaDD A |1A$pvD h AA TBEE A(A0G@j 0A(A BBBI { 0A(A BBBE ,4eBID D0M AABd4|dAGD0q AAA X AAF 4dAGD0q AAA X AAF ?AG uA .$$sAK`eALqAw P cl(AT K w$AG@ AF |@[BBB B(D0D8D 8A0A(B BBBG D 8A0A(B BBBB b8K0A(B BBB<4 BED D(G` (A ABBC DtBFB B(A0A8D`8A0A(B BBBDsBDA G0e  GABK H  AABA 4P[BFD D(H0|(A ABB$<vAKD0cAA$dSgADD0[AALBEB B(A0C8DP8D0A(B BBBDGBEH D(D0G0A(A BBBD$BEL E(D0A8DP8A0A(B BBBDlBEL E(D0A8DP8A0A(B BBBL*BEB E(D0C8D@t 8D0A(B BBBF ,qAAG0u CAF 440eBDD E GBH AAB4lhADD | AAI O AAG $K,fBDD XAB ™AZD /AD A AI G AH [ AL G AH ^ AI d ~AD A AD A$ ?AGA pDA4 ZBGD ~ ABE CAB AR$ ٚ$< $T FAG vCt  AR , [BDG D0E AAB4 6BEG D(D@r(A ABB4, BAA G0q AABLd ֜#BAA G0  DABB D  DABE E DABL BEB B(A0E8G8A0A(B BBB ZG R AGT< BAA z ABG D ABI A OBH V ABF \ aBBA D(E0{ (A ABBE ^ (G ABBE A(A ABBL ̡|BEA D(E0O (A ABBE J(A ABB4D BBA A(A0(A ABB| ^II XE b$ pAG@ AI L BEB B(A0A8G 8A0A(B BBBA ,TADD ^ DAA DDNBAC G0R  AABE T  AABH 4uBDD Z GBC AABL0BBB E(D0A8GP 8A0A(B BBBG ,X3BDB B(A0A8G` 8A0A(B BBBE  8A0A(B BBDB  8F0A(B BBBI \ 8F0A(B BBBA BBB E(D0H8DP 8A0A(B BBBH d 8A0A(B BBBJ u 8D0A(B BBBF B 8E0A(B BBBH L\H$BEB B(A0A8G 8A0A(B BBBA $(5AG0 AE ,@{AAG  CAI dqBBB E(D0C8F 8A0A(B BBBJ 7 8A0A(B BBBG ,l BDA  ABK L"BEB B(D0A8F@M 8D0A(B BBBH ,$yAAG0 AAG h%^D R A <%^D R A L\%tBBA A(G@ (A ABBA Z (A ABBA <(eBBA A(G0 (D ABBA <H*BBA A(I0 (D ABBA <,+bBDA  DBA ~ DBA ,l.AJ AB R AA 0,0cAJ AB R AA 3,3BAAD0 AAE ,,(5ADG L AAA D\5BBB D(D0GPH 0A(A BBBA L07BBB J(A0A8DP 8A0A(B BBBF <[D O A ,=MBDD Q ABB ,D0>BDD P ABC ,t ? ADD0s AAA D@-BBB D(D0GP$ 0A(A BBBG 7$Ab\C BBB D(D0G 0D(A BBBA  0C(A BBBG \dF BBB D(D0G 0D(A BBBA  0C(A BBBG \PI BBB D(D0G 0D(A BBBA  0C(A BBBG \$LBBB D(D0G 0D(A BBBA  0C(A BBBI dpOBBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG dR(BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBE dTU(BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBE dXX(BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBE d$ [BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG dx^(BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBE \@aBBB D(A0G 0D(A BBBA  0C(A BBBH dTcBBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG df(BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBE d$i5BBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG dmBBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG dpBBB E(D0A8G 8D0A(B BBBA  8C0A(B BBBG <\Ht]BBJ A(A0 (A BBBF ,hy7ADD r AAC $xz AD u AA ,`{BHD  AEC L$#;BBB B(A0A8J;8A0A(B BBB,t~ADD0z AAA \3BBB D(A0G 0C(A BBBB  0D(A BBBC L3BBA D(G (C ABBF  (D ABBD \T3BBB D(A0G 0C(A BBBB  0D(A BBBC dBBB E(D0A8G 8C0A(B BBBI  8D0A(B BBBF \ȋBBB D(A0G 0D(A BBBG  0C(A BBBG \|BBB D(A0G 0D(A BBBH  0C(A BBBG \XBBB D(A0G 0D(A BBBH  0C(A BBBG \< BBB D(A0G 0D(A BBBH  0C(A BBBG \ BBB D(A0G 0D(A BBBH  0C(A BBBG L H BEB E(D0A8Dp 8A0A(B BBBG LL!+BEB E(D0A8Dp 8A0A(B BBBE <!GBBA I(D0 (D ABBC <!BBA A(D0 (C ABBE <"HBBA A(D0 (C ABBE <\"BBA A(D0 (C ABBE <"BBA A(D0 (C ABBE <"8BBA A(D0 (C ABBE <#BBA A(D0 (C ABBE <\#سlBBE A(G0 (D BBBI L#BBB B(A0A8GP 8A0A(B BBBC #HRoY<$AD h AJ Q AF D CI G AA LD$ BBB B(D0D8D 8A0A(B BBBI d$BBB B(A0D8D` 8A0A(B BBBB  8D0A(B BBBA ,$ADJ AAA L,%BBB E(D0A8Gp 8D0A(B BBBG L|%Xc BEB B(A0F8IpX 8D0A(B BBBH %xDj B D%pDA D0W  AABD hW0<4&OBBA A(D@ (A ABBI Lt& BBB B(A0A8Dp 8A0A(B BBBA L&BBB E(A0A8DP 8A0A(B BBBH L' BEB E(A0A8D` 8D0A(B BBBA Ld'P!BED A(G@ (D ABBG n (D ABBI L'0)BBB B(A0D8G@ 8F0A(B BBBF L(#BBB E(E0E8F@ 8A0A(B BBBK $T(HAG AG D|(BBB D(A0D@ 0D(A BBBG d( BEB E(A0A8G9 8C0A(B BBBD  8D0A(B BBBG d,)8 BEB E(A0A8G9 8C0A(B BBBD  8D0A(B BBBG L) BBB E(D0D8Gc 8A0A(B BBBI d) *BEB E(D0A8D 8D0A(B BBBF  8C0A(B BBBD LL*x;BBB B(A0D8DPs 8A0A(B BBBB L*@3BBB E(A0D8GP 8F0A(B BBBF L*D)BDB B(A0C8I ` 8A0A(B BBBG L<+XnBDB B(I0A8J 8A0A(B BBBA ,+uAAJ AAI +hy4+`yBAA J  AABD  ,|L$,|BEE B(A0D8G 8A0A(B BBBF Lt,BLB B(A0A8G 8D0A(B BBBA L,BIB A(A0 (A BBBA  (A BBBI L-PBBB E(A0A8D 8D0A(B BBBH Ld- BBB B(A0A8G`C 8A0A(B BBBB L-0#BBB B(A0D8Ga 8A0A(B BBBA L.$BBB B(A0D8J 8A0A(B BBBD LT./BEB B(A0D8J 8A0A(B BBBG L.0!A*BBB B(A0D8JS 8A0A(B BBBD L.0K,BBB B(A0D8J 8A0A(B BBBD dD/w BBB B(A0A8G 8D0A(B BBBA  8C0A(B BBBA L/q BDE B(A0A8L\ 8D0A(B BBBD /DZ B L0huBEH B(A0A8J 8A0A(B BBBE Ll0UBBE B(A0D8J 8A0A(B BBBK L0BEB B(D0A8J 8A0A(B BBBA L 1&BBB B(A0D8G 8A0A(B BBBC L\1(+-BBB B(D0A8J 8A0A(B BBBA L1W8,BLB B(D0A8G_F 8D0A(B BBBF d1؃BBE E(A0A8G 8A0A(B BBBD  8C0A(B BBBD Ld2H6BBB B(D0D8G 8A0A(B BBBA L2:BEH B(A0A8G[ 8A0A(B BBBA d3[BBB B(A0D8G 8D0A(B BBBF  8C0A(B BBBB l3 3 a mL3 BHH G@m  EABB   AAFD k AAF\3 )BBH H(G@g (D ABBE  (A ABED v(A ABFL4 "GZd4 |4 3Gg44 _BBD A(D0K(A ABB4 >Gs44@ BBED D(F0f(A ABB\5X BBH H(GPm (E ABBF : (D ABBE g(A EBBL|5 BEI I(D0D8F 8A0A(B BBBJ l5(BBB H(H0G@g 0D(A BBBA  0D(A BBBN s0A(E BBET<6XBBI H(K0GP 0A(A BBBD 0A(A BBBL6BBE E(H0H8Dp  8A0A(B BBBK L6 BBH H(G@ (A ABBE (A ABB<47nAG@\ AK  AA N AA M AE 4t7AG0l AA   AA J AE 7(DM70DM78DM7@ 4 88vAD@M EAB `D8(D c<\8BBH H(G`y (A ABFB 8x,D g8D U8D U,8AG0D AS A9p DQ,9x WAK }EL9 /AG ]A<l9 JBBH H(G`V (A ABBI L9" BFA A(G`L (E ABBI S (A ABBO <9$LBBH H(G`b (A AFBI ,<:&AG R AM XAl:'kAG YA:X'NAG DA:'DI:'TD @ E $:'AG W AI 4 ;H(AAGpe AAH T DAG D;*&IXLd;*[ BBB E(D0A8J 8A0A(B BBEA <;4eBID D(Dpr (A ABBA 4; 7D@ L s E C E A O L<,<7AG  AD L AC K DI h AE l<X8[AK AE$<8EO0 EA <<`9AGP AG L AK ^ AA  AE $< <AG@ AG ==WD R4=P=`D VL==d==AK0F$=>H@ I Z A ,=X?BFD c ABF L=?NBBE B(D0D8DPw 8D0A(B BBBE L,>@BBE E(A0C8D@o 8D0A(B BBBF ||>(ABDE B(A0A8DPq 8A0A(B BBBB \ 8A0A(B BBBJ  8D0A(B BFBK |>HBBDE B(A0A8DPm 8A0A(B BBBF [ 8A0A(B BBBK  8E0A(B BFBJ ,|?hC^AF M AK S AL |?CBBB E(A0D8G` 8A0A(B BBBF  8A0A(B BBBB  8A0A(B BBBA ,@FBBB E(D0A8FP 8A0A(B BBBD { 8A0A(B BBBA e 8A0A(B BBBA o 8A0A(B BBBA @HEB B(A0C8DP8A0A(B BBBDP 8A0A(B BBBE ^\LAL`PV8A0A(B BBBJBB E(A0C8DP4AMfbID _ABG \AMBEB B(E0D8D`p 8A0A(B BBBA [8A0A(B BBBLDB0NBBB E(A0E8G 8D0A(B BBBH .p.h)3=M ؼ P)X)oX8 { )802pz o1oo/op)&6FVfvƽֽ&6FVfvƾ־&6FVfvƿֿ&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfv&6FVfvConstruct a new Generator with the default BitGenerator (PCG64). Parameters ---------- seed : {None, int, array_like[ints], ISeedSequence, BitGenerator, Generator}, optional A seed to initialize the `BitGenerator`. If None, then fresh, unpredictable entropy will be pulled from the OS. If an ``int`` or ``array_like[ints]`` is passed, then it will be passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also pass in an implementor of the `ISeedSequence` interface like `SeedSequence`. Additionally, when passed a `BitGenerator`, it will be wrapped by `Generator`. If passed a `Generator`, it will be returned unaltered. Notes ----- When `seed` is omitted or ``None``, a new `BitGenerator` and `Generator` will be instantiated each time. This function does not manage a default global instance. permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> rng = np.random.default_rng() >>> rng.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> rng.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> rng.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) >>> rng.permutation("abc") Traceback (most recent call last): ... numpy.AxisError: x must be an integer or at least 1-dimensional shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> rng = np.random.default_rng() >>> arr = np.arange(10) >>> rng.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> rng.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Raises ------- ValueError If any value in alpha is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int or array-like of ints Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> rng = np.random.default_rng() >>> rng.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> rng.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], [2, 4, 3, 4, 0, 7]]) # random For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. Now, do one experiment throwing the dice 10 time, and 10 times again, and another throwing the dice 20 times, and 20 times again: >>> rng.multinomial([[10], [20]], [1/6.]*6, size=2) array([[[2, 4, 0, 1, 2, 1], [1, 3, 0, 3, 1, 2]], [[1, 4, 4, 4, 4, 3], [3, 3, 2, 5, 5, 2]]]) # random The first array shows the outcomes of throwing the dice 10 times, and the second shows the outcomes from throwing the dice 20 times. A loaded die is more likely to land on number 6: >>> rng.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> rng.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.default_rng().multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability mass function for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.default_rng().logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a) * count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative and less than 10**9. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative and less than 10**9. nsample : int or array_like of ints Number of items sampled. Must be nonnegative and less than ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. The arguments `ngood` and `nbad` each must be less than `10**9`. For extremely large arguments, the algorithm that is used to compute the samples [4]_ breaks down because of loss of precision in floating point calculations. For such large values, if `nsample` is not also large, the distribution can be approximated with the binomial distribution, `binomial(n=nsample, p=ngood/(ngood + nbad))`. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating discrete random variates", Journal of Computational and Applied Mathematics, 31, pp. 181-189 (1990). Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = rng.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.default_rng().geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.default_rng().zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], ... 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> rng = np.random.default_rng() >>> s = rng.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = rng.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> rng = np.random.default_rng() >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = rng.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> rng = np.random.default_rng() >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = rng.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = rng.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> rng = rng >>> b = [] >>> for i in range(1000): ... a = 10. + rng.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.default_rng().logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> mu, beta = 0, 0.1 # location and scale >>> s = rng.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = rng.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.default_rng().laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> samples = 1000 >>> s = rng.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = rng.power(5, 1000000) >>> rvsp = rng.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + Generator.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.default_rng().vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.default_rng().standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> import matplotlib.pyplot as plt >>> s = np.random.default_rng().standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> rng = np.random.default_rng() >>> import matplotlib.pyplot as plt >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(rng.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.default_rng().chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> rng = np.random.default_rng() >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = rng.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.default_rng().f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.default_rng().gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None, dtype='d', out=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. dtype : {str, dtype}, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.default_rng().standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that :meth:`normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.default_rng().normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.default_rng().normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None, dtype='d', out=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : {str, dtype}, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use one of:: mu + sigma * gen.standard_normal(size=...) gen.normal(mu, sigma, size=...) See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Examples -------- >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 #random >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- integers : Discrete uniform distribution, yielding integers. random : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random`. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.default_rng().uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None, axis=0): Generates a random sample from a given 1-D array Parameters ---------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more than one dimension, the `size` shape will be inserted into the `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 + len(size)``. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. axis : int, optional The axis along which the selection is performed. The default, 0, selects by row. shuffle : boolean, optional Whether the sample is shuffled when sampling without replacement. Default is True, False provides a speedup. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if p is not 1-dimensional, if a is array-like with a size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size. See Also -------- integers, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> rng = np.random.default_rng() >>> rng.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to rng.integers(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to rng.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.default_rng().bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random integers(low, high=None, size=None, dtype='int64', endpoint=False) Return random integers from `low` (inclusive) to `high` (exclusive), or if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces `RandomState.randint` (with endpoint=False) and `RandomState.random_integers` (with endpoint=True) Return random integers from the "discrete uniform" distribution of the specified dtype. If `high` is None (the default), then results are from 0 to `low`. Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is 0 and this value is used for `high`). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : {str, dtype}, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. endpoint : bool, optional If true, sample from the interval [low, high] instead of the default [low, high) Defaults to False Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. Notes ----- When using broadcasting with uint64 dtypes, the maximum value (2**64) cannot be represented as a standard integer type. The high array (or low if high is None) must have object dtype, e.g., array([2**64]). Examples -------- >>> rng = np.random.default_rng() >>> rng.integers(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> rng.integers(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> rng.integers(5, size=(2, 4)) array([[4, 0, 2, 1], [3, 2, 2, 0]]) # random Generate a 1 x 3 array with 3 different upper bounds >>> rng.integers(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> rng.integers([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], [ 1, 16, 9, 12]], dtype=uint8) # random References ---------- .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval", ACM Transactions on Modeling and Computer Simulation 29 (1), 2019, http://arxiv.org/abs/1805.10941. standard_exponential(size=None, dtype='d', method='zig', out=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. method : str, optional Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method. 'zig' uses the much faster Ziggurat method of Marsaglia and Tsang. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.default_rng().standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. random(size=None, dtype='d', out=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random` by `(b-a)` and add `a`:: (b - a) * random() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : {str, dtype}, optional Desired dtype of the result, either 'd' (or 'float64') or 'f' (or 'float32'). All dtypes are determined by their name. The default value is 'd'. out : ndarray, optional Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) `++++`+`++`+`++++p++`++++`+p++p++p++`+`+++++`++`+++++`+@+P+`+@+P++`+`+`+`++`+`+`+`++p+`++`++`++`+++`+++`+++`+@+p+`++`+@++`+0++0+`+++`+++`+`+`++`++`++P+0+`++`+@++`+p++++`++`+ ++++++`+++++@++P+++ +`'$+ '7+&&+&=+`p+@&A`+ P+&#@+%&0+%< +#+ + +`+@+ ++ +@++ +p+@%%`+`P+@@+@0+  +` +`"+%*+$(+$++@$#+++ "+ +p+``+ P+@+$&0+#* +#%+@#%+!+!+++ +++ +#2p+ `+""P+"@@+@"00+@ + +++"$+p+!)+:++ + !+p+ `+P+n@+ 0+ ! + $+`"+` 0+`++ *+| ++`+^+]+l+l+ p+0`+ &P+5@+I0+E(+ + +p+ +t +A+*++l+#+a +p+`+jX+jP+@+8+ 0+~ +,+,+++)+++}s+h+h+Y+Yp+ `+4X+ P+tH+@+`hx 0+  + + ++++=+`%+ )+++p+ `+ZX+ZP+H+@+8+0+ (+  +@ +9+++`++q ++ + + p+5`+P+@+ 0+ (+f +@[ +++Q+I+I+ ++A+A+x+p+ P `+P+H+ @+IJ0+  +6+9++7)+++@%-+W++ ++1++p+`+P+@+0+1 + + + +++ ++ +f ++{ +p+h+`+-P+-H+)@+ 0+ + +X++M +)+)++B +r + d + + + +  +p+%`+ P+@+8+0+# ++!+++5 +T+T+ +7 ++@+d+dp+ `+P+~@+~0+ +`"+y+`+7 + $+++++3+t+tx+p+@ h+~ `+= X+P+@@+Q0+ +++'+"+* +++i ++b+b+p+oh+`+P+H+ @+ _8+0+b(+ +@+@+y+  +`#+ +0+j+s+s+ +op+`+ P+ @+W 0+@ ++m+++|<+g+a+N +s ++C ++p+ `+P+b @+: 0+[ +[+e+U+U+U +`+- ++O+O+++q+[p+Ih+I`+VP+Q@+L8+0+(+ + ++@ +++k+ + ^ +C+=+G+B+ +p+!`+`P+@+H 0+ +$ ++ +=+4 +++ +TY +M++p+`+P+@+70+ + &++J ++J%+++ +> +/+D +*+*+ ++1 p+/`+1P+H+%@+' ++uXFD0Nk++,`11@C8Pm++Н+D B0+`+s/  R/6Wi,P1~Y|azlyq@yzwuu01`C7/D000+ 41Cpj++p+`++pY`.P0.07H1C P8 D0//++`p4/0A!`q }I+"@D+=+`7+a)+{@(++?!+a@q +j@*x`*@*  ** p*** * *в * y*p@l*_*@M*@A*P0*0'*@*d*@*)p)С)Z`)U ) ){) @)G< ),p2)4`w@)pmo)UGCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55)GCC: (GNU) 4.8.2 20140120 (Red Hat 4.8.2-15)GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55).O1eK?svsg$fS?GZ$$FGXp#||I$;- ,as~,tpR,'0]srА*oJymyint088ӳ8y8V.R ( t#S#?#bp#D# X#(D#0;G#8l#@)A#H9#P#XԦx#`H!~#h'#t#pU't#t){#x@-X# /.f#>w/#3#<# E#F#G#"H#)I?#Kt# M# Dt    (  T:*_#_### 7  9bwy : #e ;4 # Z <: Ջ ? *% @  3O Ftt [ H R IG x J t) K+ _ L& ] MMSc Nout O&  P& F Qm ,@ R+ S+ o T  U .   b 8 9# :#;t#4=#<(  #get !#set2!#doc# #  / F2 V#nV## VgcS\2% 2(|* #0.!#"# Y)o ]Hpl@qa8rV=_#P7_#&S<_#6@_#E_#0ő|*#t#Kk#}[I# AhJ#( K=HP~*Q#tR#0NdT#8hU#@ W^/any_``//a5/b;P\i~*]#c#H idA "!.!!!  U|*V #mW#p-lL.  |*#Fd1#p J|* #~J# Z 9!%(|* #~#'# (eK0|*#n#.w#L!# (#(5)GK*0JJP m\kqJ?<0f|*g#G5h#?i#ܩj# 4k#(_cl2!(+@|*,#-F#.#/# "@2!0i <"=t#>#i ?W hJnKL#(L#(sGM#0N#8O#@UP#HQ #P<R#XSn#`W Tp|*#ot#T#\#  #(#0s#8#@h#H#P4x #X!#`N"#h%)'( 2|* #O#?#4# P]FE^dyyt#0p|* #cy#W7# #(y#0#8#@#Hܘ#Pm#X#Y"#`&)$t#h*t#lH+t#pw,#t-7#xE.J#{Jt#J, t#!t#"J#@##a'$t# ^%t#$U&t#('9't#,\k(t#0)t#4S*t#8+t#<!G,t#@P-t#D.t#H"0#P1t#X3{#`I4#hi6t#p+X7{#x19t#=:{#0=#a>#}Bt#6D{#R8E#F#G#H#I#Lt#MP`!Jat#b#R8c#d#e# f#(g#0=h#8+Xi#@}j#H,k$_is q  s #t% #idv#w#xH# az#('{#0@|#8}#@ ~#Ht#P98#X%?#`v`#h)#pT(#xTt#t##!#-ft#v##0S##-+ #L#|r##E##w#,$_ts% n% # % #; #0y#at# ݫ#$߫#%Ӛt#(t#,t#0ܳF #8ScF #@=#HgZ#P{#X#`#hy[ #p5w ##t##*J#t#o##1# t#A"#>#t#8%#&#(#)w#%id,w# n; ,WQ W tv yt ƻ ~###ϻ #v v ;  0&t !!# u  e!!2!v =!C!t]!  "|* #W t#s t#$ t#;k t# t#  t#$ #( #0fo #8# #@ !#Ht "#PT ( #XN )#` *#hN +#p -#x .#F 2#( 3h!'!ӱ"!!!D!݂ !PQ #!y !8("A#!I8!ż!B! !ͬ!!Y!$f!A! ! !1 !L !4 !3!fr!|! !!Pk!,!+!!M!N!9!!W!'"#!k!!!0'"#!7>!s!B],"#  "># "D*$"Ed$#"Fj$#j"Hp$# E"A6$ B$B$# c"BT$B$d$B$*$H$ $  "$$ @J"$t$ f"$ $"""t &" % $%t L"0%"E% p"Q%tk%DD 3"w%t%"%" "% %""" "% %" " &t)&)&/&`"X+'|*"Y#]8"`]!#P"b#8"d#'?"i#("k#h"mt# "ot# "qt#$/"w*#( "}#0io"#8%f"*#@ "#H "B$#PKk""#X -"7'tV'V')& /"h't'" A"h' B"'t'%" T&"'t'" /" q"' (" "(( H("" *"T(t(%""""#)x"*B "*#V"*#O"*#)"#*#y")*#+p"/*#c"5*#;0";*#="A*#-"G*#_"M*#("S*#v0"Y*#"_*#x"u*#U"#P"$*#-"%*#Fh"&#x"(*#")*#f"**#"05*# ** %$$$$E%k%%%+'$%\'' o*o* ' ** '''(H( "2(2"**"*#]b"#** "/&*P"+|*"#"#%nd"t#+"%# q"%#(*"#02"*#8("t#@"#H "* "++ P|"D+8H "L,|*"M#D"Nt#4"O"#E"O"# l"P,#("Q,#q"R,#V"S,# "T,#%ao"U+# ="V# q"W"# "Y-# "Z-#Mx"[,#O"\,# &"J,,,,%+ "-  "-  )0"-|*"#!"t#E""#4""# %nd"t#(+",#0{"-# ,-  "-*-(# .}[# ## .#F#*.##@.#Y#.# w..l*..1@.0.#-A$+=/߲$,t#T$-1#9$.#r$/1#q$01# fm$11#(m$2#0p1$31#8xm$41#@xl$51#Hxr$61#Pc$71#X\$81#`$91#hp2$:1#pp3$;1#xp4$<1#C$=Q.(h/%ph#%sh#%nh/#h#O5i# M(i#!4i#"  iH/V08 W0#X#]bY0#qZ0#P[0#k0|*#5#%obj#E# A#(%%H#0{5#85#@ #H(t#t#H1#0 0  \/ /h1# 1#E?#1#t#X#\U#](t#`L181##?#1 ?1  11 U1(2(2#a?#1 ]2H2,1#2#OO?# ?#(rj?#0 ?#8t#@R#Dm#ER #F'#G.2 (:2 " B=W3!x!!!w!G4!i(!0!fN!tY!2 !]- 0`3F.1|3|*#4#E#F.# =/#H%%#0m4GT6#ڃ6#3vp4|*#5##%len# #(t#0\b #8q #@8#H#P#X9+#`B+t#ht#l5xX6#495|*## 85%6#i  7#t-7#M7#;-7# O@h7#(7#095 15 514/6%`0#0##C?6#Z6#?6/6tZ6E666""""o3`6 66""6666 46606 706-707M70037h70S770n7?87%`95#  78 t#x t#gt#%7" 77 8/ [b*8!! J!ɐrR8\s7#Ntt# # u*8,v8vjwt#?xt#y8#R8+8,n6-,*|ћ!,8ћ,ћ0tbћ-2қ-b$қ-қ-5wԛ 3i>-2/-;3>-2/-;/-2/-;2 u?,*|!,8,0tb-2-b$--5w +9ɬ1?0bɬ8+FԞtX?0aԞ]!0bԞ]!+ܞt?0aܞ]!0bܞ]!1mroݞ/1iឍ1nឍ+art?,Zar-@,,+'t2@0obj,8]!+Iktu@0objk,8k]!,k,Fkt2l@0ch+s]?@0ch먫,t+ ?@0ch , t+)Qt A0ts-at+!ctKAe@Au32flu8gKA1ShA V[A +ĪtA0bufĪ. 0dimĪt,Īt,Īt.ת+,tB0x,---3--U..o.9ަ3B-(vB3B-y3+B-z3KB-~8/-3~83kB-J/-3J/-8/-38/1valצt1tmpئ/-;ۦB +C0x-C-3C-U.o.93tC-(?B3/C-B3AC-C3SC-G83eC-PJ/-}8/1val1tmp/-; +rFD0x-D-3D-U.oh.9d3ZD-(B3D-3'D-39D-83KD- J/-:8/1val]1tmp^/-;a +n8aE0op180op28,r88,8t,ݯ8t.o 3>E1bHaE1aI81xI81llbKfE1llaL1llxL-(NB-EO//1baE1a1-\1 8 +!QE,!Q+Z0tE0o00n01r1/-;<+E,-\+7F,,r7F,皘-\w+ ;}tfF0i},w4}+1F0o0i,,t,t->/1r+|oLG0op1o0op2o,ro8,o835G-{|t-r}J-E~-(B/1baE1a1+5qMG0op1M0op2M,rM8,M83G-{Zt-r[J-E\-(]B/1baE1a1+ϒftH0s1f0s2f,Ift-L5mt-.mt.( ./Ú3H-t-Pt--3H- -" /-\t/-\t-ǎ/-;2OI,*|O!,8O,O0tbO2fZI,Z,M Zt,[t,Q[,i\t,'\t-#]-f@]- e]1ctx^-$|_!-}[a 3I-k3I-l3I-m/-;{21݇.J,݇.J,Ę݇t,HA݇t,>݇t-އt0+}K0obj,G, ,," ,1G,Gt, t,,t1mp04badj/-\=-2G>->-# >3pK-B-UGC33K-2S/-;S3SK-2Z/-;Z/-2[/-;[/-;d+MtL0objM,M,GN, N,O," O,1GO,GPt, Pt,,Pt1mpR04bad/-\|t-2G}-}-# }3L--UG3L-2/-;3L-2/-;/-2/-;/-;2mM,7.J,t,t-gEt-8 03BM-)/-;)/-μ+ /-,/-;,2{{M,n{-;2}cM,n}c2AC{M,n{2rN,7.J,t,t-+t-8 0/-μ +vN0b-1x3gN-(B-E//-;Ƭ+n@N,P,,[G,,,!O-t/-'?ON+t6O0err,~+tmO,*|!0err-~28O,N+@AtO,4A,NA/-;C+\P0o0i,t,,t,t3'P1n/1rœ3CP1nȜ/1rʜ/1mϜ*/1lҜ++P,9x,-+@<t,Q0o<0i<0v<,6t-(7-9-:-;-t-($ 26 :h0fmt㝱7-䝺1msg:h Jh +5th0err,,(1rest+"i,!,ҙ㘘,~㘍,1co7-T-- -I-1k똘1d옘1nd혍1nk-\.,43pi1pos 1i /-23/-;32i,,Ft,,˚,ɜ-N-+tj,,j,?,,ʙ,r1key-1pos-j-%j4bad.N.Z.3j1cmpt/-t*Ηj/1cmpЗt+z۪tDk0buf۪. ,۪t,۪t1iݪt.35k-|ߪ/-|몍+gtk0buf. 0dimt,t,t./-|2nk0ctxnk,o2,8p12+Mtl,+ ,t,(t,t,1,2,\.J,-8 0-\101buf. 1it-t-4t1ctx2-  t.;.>/-2</-;<+ZD06m0objD,2LDt-\E0-F6m-+ GFm-Ht.]T .2Fm tVm +[Y_6n,}eY_,8Y_,Y_,0Y_,yY_-TZ_6-9.81a`/ /wr9na`U?c:/8]Xo/#/wr9nXoUA: /Bt0/u/4sCoCv| ZCaDetjDp 6EK/vsFT|Gi/TFTQH]t//sCo=DtmpDp6=Is?2J@?;8/8D#0 0wyuKo#UKx#T:D<00$;V<U<00@b<:800ML9<00@ 9>908t0+0wuCoOCv| Ca1etDp3:OG!0TFTQH+t00u0FvvCoDtmpDp3:Jp?2J?;7+<t%w0o1tmp1p 03v-2#/-;#3v-2&/-;&3w-2)/-;)/-*/-;*Mvv0E1mwNv @v| @v Iw@v J @v4 IPw@vj J@v Iw@v J@v <0 1@ wB <0 1@we 8DP1]1wxKoDUKxDT:=P1X1E;(=U:X18`1s1w}yKoUKxT:=`1k1;=U<`1k1@= ::`1k1|; ;U<`1k1@; >$;k12C;z,*|C!,8C,C0tbC-2D-b$D-D3y-2K/-;K3z-2L/-;L/-2M/-;MO}y12A {NyA Ny NyNyz@y@y@y[Iz@yJ@@yIpz@z#J@zlP1FUvJ@zJ@,zHft234s{Kaf1UKbf1TQiht\JP-)(2-1(2+g{,(]g,ҙg,~g-!h{- i-?j-(ktRs{34wL|N{N{FN{@{@{ @{@@{vS4FR0Bh 4i4|Cth]! CahCkhDpi3:EDojhT84|FUUFT0Pg4FQ0Bp44x}Ct]!CasCkDp늎67DoZT4h}FUUFT0P4FQ0Umaw}V4WcFT @FQUFR. U1.(+4F8~,\F,F3)~-;N/-;WHZ^CxZ(Dm\$a?^Dres_X}R5N ~^N}I~@*~Yc~FT1FQ hZcFT FQ FR [cZdFT +>8?0x-aE-3aE-U.o.93-(3B3-63-73-;83-DJ/-q8/1val81tmp/-;O^45/.;pU\z\\]]I\^55\^ 505\^0585ۀ\^85P5\;ta77wRN(@ )W7dFUUB ]t1).KYdFU1YdFU1Y;dņFU2Yd܆FU1YdFU1Yd FU1Y_d!FU1Yd8FU1YdOFU1Y:dfFU1Yd}FU1YdFU1YdFU1Y^d‡FU1YdFU3FTsFQsFRsYdFU1YBdFU1Yd0FU1YdGFU1Yd^FU1YfduFU1YdFU1YdFU1YAdFU1YeވFUsFTsFQsYdFU1Yd FU2Ygd#FU1Yd@FU2FQsYdWFU1YEdnFU1YdFU2YdFU1Y'dFU1YpdʉFU1YdFU1YdFU1YKdFU1Yd&FU1Yd=FU1Y&dTFU1YodkFU1YdFU1YdFU1YJdFU1YdNJFU1YdފFU1Y%dFU1Ynd FU1Yd#FU1Yhd:FU1YNdQFU1YdhFU1YdFU1Y)dFU1YrdFU1YdċFU1YU(eFU1FT0FQ1FR0FX3Fw8 YdFU1Yd%FU1Y0d<FU1YydSFU1YdjFU1Y'dFU5Z(eFU3FT0FQ5FR0FX3Fw81cv7A8)`Cov*Dpw3:*I?~*J?;~*Y7e5FUsb8KFUUZ68eFUscP88+ACo+Dp6+I΍? ,J0?;@,I`?v,J?;,Yi8eFUsb8,FUUZ8eFUs2cڎ,nc0-(ct-ct-ct-ct-ct-ct-cH-cH.Vc.Cd/-;cc@s8;,*Col-Dp0l-IYAֳ@APQetb`dM'9'NM-eA'9cNO-J@[.\g@sQ/@ 1@ 1@1@2@3>A9>Î:I@\̎YA9eFUs[:eY#9eKFUwFTPFQ`[:eIp?;3J?;q3I?3J?;3I0?4J`?;I4Y9eFUsTu:FUsZ;eFUs2R5,R,qR ,#R, R ,QbR ,&R ,HARt,8R?-(S--JT- U-[V-W-Xt-Yt-Zt-[-\-]..W.V*_*; =4N86ND7NPM8N\9Nh9Ntf:;;@ ;@j;@;@;@ȑ<@ԑM=@== )\=S@y>><>$k<>,k<Y\<*sFU|FTFQ}FRFXFYFwFw~Y<fFT|FQ}W =fFUQFTUH6t=>'?V*|!)@V8@V@CtbFAAq A.& A @?2 A?b$ A? BfbadBg>^==?"GB^==ϔ?#jBI?$BI?5w+ BI3?2;CJ0?;;DCI`s?2<zCJ?;<CPJ>FUvI?2=CJ?;=DP:>FUsI ?2FRD<>>?;FuD^>>7?2GD<>>?;GDIP g?2HDJ ?;HEYj=:fFUwFTFQ@[=Xf+T9KI,n9K6,P9K",c9K",89K",H9K",9K,y9K-(:K"-2;K"-K"-?K"-@K"_>?JEdNFNFNĖGNЖKGNܖGNG;@/H@ zH@H@$G@0G@<HY1?ufFUFTYK?fFU|FT~FQvYY?fCFU~FTsFQvZg?fFUsFT|FQv+s0obj,1res1tp]!/1f_d?@ILNv[JNJ@~K@KI @$LS?FTUY?f7FUvFT|Z?fFT|2Kә,nK6,PK",cK",K6-(K"-2K"--*K-K"-K"-K"_L@k@ZLuNZFMNfMNrMN~N@eN@N@N@M@M@ƙNZB@fFU}FT0FQsFR0FX0BtsOVOVX埘ODob:P4badI ?;pPPNFUs^TiT?2PF[<?;>|[PFUsYfFU[fY07-FU[XfYs7RFUY7jFUYFUYgFQ}[ngY17FU[G@gY`7FUYgFQs[ngYg#FU[cYcOFT ZFU|BE]![AV9xE\VE\V/<E9]VEF?]V]F 8]?\H^A+I:h~?!JQ^4bady^j?2z^<?;z^PFUsYgFUUFTvY9cFT FQ}FRvYlcFT FQ}FRvFX|Yg"FU~FTFQ XFR}FXvFY|ZgFU0FT~FQ0BEmt^gV9xm_VmG`Cpm`Csigm`Ddn+a?oua4badI ?;aPFUs^M?2b<?;bPFUsYgrFU|FT ?YhFUsFT~Y#!hFU|YAcͣFT FR~YQ9hFUvFT}Y]VhFUvYh!hFU|YcLFT FR~FX}FYvZnhFUvFT}B t>bV9x{cVl:cCfdCsig_dDdd?dfp-pDtmpxe4bad˫I J?;ɫePFUs^?2̫e<?;̫ePFUsY gǥFU|FT ?Y$hFUsFT~Y4!hFU|YRc"FT PFR~Yb9h@FUvFT}YnVhXFUvYy!hpFU|YcFT FR~FX}FYvZnhFUvFT}-BЙp@AeVЙKgVЙgViЙtXh?"љi?9xҙi?әKj?ԙj?ՙkfbad@I ?2 kJP ?;  lPAFUv^@@?2 Cl<@@?; flP@FUs[@h[@hY@hZFUFT~FQsFR}FX|Y'AhrFUvYWAhFUFT~FQsFR}FX1[rAh[A@gHv'tABl Co'9mCv'mCx'7nXo<AA)N<nN<otN>u;==@>su@%>u@1>u@=>NvI0 g@N>vJ` @[>vI @n>wJ @{>LwPCFUvJ @>wJ0 @>waX?w Nj?x;t?T\~?e1?p LM?;C?UaX? CkCw{Nj?MxNt?x@~?x^1C`Cl@?x@?,y`kC_@Oy!N%@y;@@^(BN%@]zL@Z@dFT LYMX?FU|ZtcFT _Az\A\A\A]A>A;AAZdFT _ApCDz9NAE|hAiAiA]A>ACI @A|I @ Bx}^CC@PB}^CC6@B}^D"DU@0B}<0D\D@lB~^DD\D@yB>~[ODc[5D i^\DD @Bb~@B~^uDD=BSPDFUs[eD8~ZuDAFUsWC!jAU_BS~ NBC\B\B\B]B]C<M\uC@C|XB$ðNB<$@B@B3@B3]B]CIP@CW^$@"C^C@4C̀^b@FC^@XC)<\fCZ iFUsZ 9FUs^$I@CcPBFUsZ8~FUU_CSٲNC\C\C\C]C]CD<\LDZ iFUsZ FUs^²@tDPFUsZ]8~FUU_EG=uNEل@E8^%@`NE<%@\EZ@cFT `FQvZ7FTv_EGNFNFNF@*FILFNF%NFqJ\*F[cWEFUUZg%iFTs_fFЈNxFNF{\F;FF;FFYdFUTWAFUUaFw;FU;FTLF;FF<=6GT@@GaLGwV;^GU;vGTLG;jGjG<=GT@GMLG$LLLL\ M\M;LL;LLJ@CM^;@PMϊ<;@]M[Gi`GViaNGXwP;)NU\3N\?N-t--x_euNe֓Ne"ie\e\e]eXùA<@[=չ )[d[iZdFT  <NeNe<@eڔ@e$@eZ]eIP&@ePFUvIX@eJ@ePFU|Yg}FUsFT YiFUvY'hFU|YR RFUsFTvFQ FR FX1Yu R'FUsFTvFQ FR FX1Y RdFUsFTvFQ FR FX1Z RFUsFTvFQ FR FX0B CobjV4?J-z꜍Dm*dN8N)NkJ@3N@?NIx@NN.@ZNZiFUvI @hN~PFU|YFUvYi˽FUvZiFU|dOP,NONOŞNOŞNONO^*`@P<*@P^3R@,Pܠj=Jj=Vj=bj@nj"@zj~]j>j>j>jkj^@j[#/j[j/j[Nj[c^@j<@j[/j[Z/j[Nj[cX?(N?&N?JY{ljSFUFTwFQ}FR~YczFT FQ[c_iDDo NiNiNi@Niy@i٦@ikiZDcFT hFQUFwR_hNhl7=!h|=-h|;h YjFUsFTFQ FR|ZjFUsOfEENfE@Mf ]YfkAfk6fN*fI0@ffsJ0@fIp*@fPEFU|Y0EhdAFU0YEEFddFUsFT|FQ0ZEcFT FQsI@fPJ@fYlEfFUsFTvlEfFTUWEdFT + tI,~ ,[ 1i 1n /1t_ O|NOѮN)OoXJh#NhhFNthjN\h<@hFWX?FUUFTTX b%NܰN;< b@(@2ѱ<+R@=:JhFNNhh*NthNN\hqgH>gGkHg: gH}KkHg;gH>g_H: gH}KkHg;guK>gH: gH}KkHg;giK>ggI>gI: gI}KNHgENgaK>gJ: g=J}KNHgNg|J>g|J: gJ}KNHgyNgJ>gJ: gJ}KNHg;NgSK>gSKZ%KFUvFTFQ~FRw_\PKK2NnPVNzP\Pd7KpNUNIVJp@a*TKFUUFTv[Kd[KhZKԶFUvjnPU_GK.NNNGNGNHB@H\H>'HM>/H3LI7@OLNNNN`NNJ@n@@b@ \,\8@D>PRdOLNiNNNN[NJ@'@@@ \,\8@D6>PRdOLNNNTNNNJ@@@@ \,\8@D{>PRd4P0LfN-NcNNNNaJ0@@M@@ T \,\8@D >PTRdP`LJN8 Nn N N N* Nl J`@ @X @ @ _\,\8@DW>P%RdPL.N N?NuNNN=J@@)@@ .\,\8@D>PQdQLNNN NNNNJ@\@@P@ \,\8@DG>PQd`QLNN/NeNNN-J@@&@\@ \,=8S@D>PQYQFT}FQ}FR}FXFY~ZNSfFT~FQZSfFT~FQZSfFT~FQZTfFT~FQZBTfFT~FQZTfFT~FQZTfFT~FQZUfFT~FQZVUfFT}FQ|+0ch,tUM2UFU|Ydd]FT Ydc|FT (YdcFT XYecFT ZJedFT ^Hcc?!?-;ZUcFU|Y:`)FU|YbdHFT Yc`FU|YcxFU|Z-dFU|M g`ejP;dNg<N$g=N0gM=N@`g}>@lg}>@xg>@gB?>ge>ge^f'f>@g'B: g'fj;Hg^;gtf>gtf^ff@g/F: gfj;Hg^;G@gG>gf>gf^"g4g@gI: g4gj;Hg^;g}g>g}gX ggkjBNHg/MNN@lg>N@xgN@gN>gg>ggX ghRj%NHgPNg[h>g[hX gh9jNHg~SNgh>ghX gh jNHg#VNg!i>g!id g>iNHgXNg j>g j^ij@g]\Zi gFUvFTFQwFR}FX~j[jWk[OkkkZk gFX0YjeFUXFT`FQh[jeI?ϋ^J?;ϋ_I"?Ћ9_J0?;Ћo_T.k6FUsZkeFUsH;tkKm_iCoU`Dtmp`Dp-;U`dvvk`sNvU`J`@v`@vU`I@vYaJ@vaI@vaJ0@vaI`;@v1bJ@vgbt,Q-7--i:4bad,3-;)3.-;*3N-2-/-;-/-2./-;.2ע͠,N͠t,\͠71posΠt1iΠt-Ϡ831tmp7/-;/-(tn~1PmsdVl:1fV1tYhV>2tiVQ2 j?37k?!4pl?*|5!m4badId xm9NmJ@( n\4eAm ŠNk0nN_fnNSnJ @wn@o@oIPB?2JpJP?;JpPpFU|Ir?2KIpJ?;Kpdn ;NpNqNrNarJ @.s@9t@u]I` @uPDNvNy8wJ \@w@xdA@o !ߠNkxN_PyNSyJ !@wz@ {@{^grr@9|ZzrkFT s $ &4$^rr-@\|Ns>Vu>^t>f t>n5t>v@t>~}t]I#E@I$d\PzuFUvI0$@PuFUv^IuVu@Yt.FQ0YtFUvY9uFU FQ FR 2ZudFT +n},nn0-Tn-Nn-gw>vI$@EJ$@RϕPcvFU|^!v?v@a<&v?v@n(P?vFUsI %*@KJ %@KJP%@P+wFU|I%\@J%@PvFUvI%o@[vdYv|lFUvFTsZwFU FR 2+2n,nn0-xd7w&nNUNIʚJ&@a?TwFUs[xdIP&\*PgxFUv^(xKx@<PFxFUs^xxV\N y>Ry[MydZyFU pFT enFQ KFR 2+n,nn0-oy>wyX3Yyy)nNEYYo]{dfz'mu N vNҦJ'@ Ҧ@ Z{lFUvFTsI' @fPzFUsI' @P{FUvd3Yz(m NEYJ(@QY@]Y@iY[zl^z{* @|VI@(\ @yJp(@P{FUv^{{ @<{{@P{FUsY"zh FU0[ZzdYzl FUvYzl FTvZ|{FU +9m ,n9m0-H:m-m-?m -@m -Am -Bm.Km.Vm3 -;Ym3 -;vm3 -;zm3 -2m/-;m/-2m/-;mBL|~CoLCxLeY|(MNYJ(@Ye |(2mN, J(@8 T@D x@P ׫@\ @h  @t @ ܭ@ M] > }d|(umaN DNJ(@ @ Z[}lFUvFTsI)@ 4P}FUs^1}B}@ jPB}FUvI@)@ J@)@ װP}FUvIp)@  J)@ WP}FUs^v~~F@ P~FUsY|h]FU0[|dY%}lFUvY}FU Yf~.FQ0Zv~FUs+Gl,nl0-Nl-KdF*mN N޷J*@ ޷@ 'ZlFUvFTsI@*@XrPxFUs^C@jPFUvIp*u@|˸Jp*@PDFUvI*@KJ*@PPFUsYhFU0[:dYlFUvZFU (2 , 0, .J-y!t-}e" -E# -$ -& -'t-(t-)t-*B~.J˹V~0˺V%~.JS?r~-;?@5@AĿ@M@Y0@e@q@}@&I`+q?2aJ`+?;aPFU|Yȃ{FU|FTsj@|Z FU XFT ~FQ FR 2BTTp #zVnp0a?%p.JADp0|?Bd7ƈ ,%pNUNI J ,@amTFUU[dd7`,'p NUNIJ`,@apTFUv[ƊdI,(\OP‰FUvd7&,*pNUNIJ,@a'TFtFUs[dI-\aPډFUs^@srPFUs^@<@PFUs^e@<@:PFUvYbhd|FU1YmFTsZ=FU H*hԋ]Vnh0 VShlVh?h?Q">Y"ݐd o΍.`%L2oN(oNoJ.\;md(FUsFTvYhd{(FU3Yhd(FU3Yhd(FU3YEhd(FU2ZݐFU (+H]A),n]6-)ϓ>)T*FUUZԓFU PFT ]FQFR 2+$>^*,n>^6,=>^-*d7@0M^},NUNI9J@0@aT5n,FU|[ddl#A0O^-N#3N~#X7Rr*-NU7NI.d7< 1^}/NUSNIJ 1@aTXn/FUU[ȕdI`1/\'.PFUsI1/\5.J1\B.PFUsYrki/FUsFT|FQvZ!FU <ÕNO_LNY_NE_ZcFT +A^0,n^6,mg^-0Ȗd7Y2^>2NU+NIaJ2@aTv/2FUU[Tdd0@2^2N1N1}J@2@)1T2FUsFTv[Ԗ^Ȗ2\0PÖFUsIp22\0Jp2\0PFUsZ'FU +ot4,n6,-pp-_-_;__;__ZFU +3g<:,n<6,d<,y<-9>9z^azb<@9PzFUs^ #<@9< #@9P#FUsTU<FTv FRsFX1FY0Fw4Fw(0Fw0ZBFU PXi <=NiNi#NiZNi~Ni< \i=iRZ cFT hFQ ZKFU PFQ FR  =  = +[9>,n96,d9,y9--;93|>-29/-;9/-29/-;9B>U9СBBVnU9V\U9\VU9 ?dV9 ?yW9g!?"N="N="#J6@>q#@">#@.>$>:>#>B>^@@O>$PFUs^*C.A@a>$<*C@n>$PCFUsTueAFTv FRsFX1FY0Fw6Fw(0Fw0ZbFU Xi؟,9BNi$Ni%Ni=%Nia%Ni%<؟,\i=iRZ,cFT hFQ ZZkFU FQ FR +9B,n96,9,y9-D?8+Z%iFU|Y%iVDFU|Yԣ#mnDFU|ZFU|FT `U+FQ@FR}FX dBB#P79ENlB+N`B+NTB,JP7@xBT,@B,@B,>BC>B^FE@B-PFUs^JcE@B- Gs>G^եJ@G7PFUs^z_J@1GB7GB7PFUsTɥJFTv FRsFX2FY0Fw3Fw(4Fw0ZFU Xi0z 8VKNie7Ni7Ni7Ni7Ni8<0z@i48@il8ZzcFT hFQ FY .ZFU FQ  FR  K  K +#0kL,n06, 0,H0,y0-gt/~0gq0agȧ0I@8rNAJ0K T+AK0KJ8?N0E>?ΙO0/>^ǫM?h0?Z%iFU}Yة%iMFU}Y۪#mMFU}Y%iNFU}Y5NFU FT2FQ3FR1Z>FU}FT T+FQFR~FX dK80ONK5?NKX?NK?NK?J8@K?@K]@@L@> L3>L^O@!L*APFUs^:SaO@3LMA<:S@@LMAPSFUsTOFT| FRsFX2Fw2Fw 2Fw80FwvZrFU Xi:0ZPNipANiANiANiANiB<:@i?B@iwBZ:cFT hFQ FY .ZyFU FQ FR +%E-CQ,nE-6,E-,yE---0TNPHNPHNPHJ9@P8I@PI@PI>P>P[^B[S@PcJP[FUs^ S@ QJ< @QJP FUsT6TFT| FRsFX1Fw2Fw 0Fw80FwvZ*FU 8Xi8-TNiJNiJNiKNi(KNiLK<\i=iRZcFT hFQ Z3FU 8FQ FR +S,U,n,6,,,y,-UR>JU>RU^rW@_UASPFUs^";@X@qUdS<";@~UdSP;FUsTfyXFT| FRsFX1Fw1Fw 0Fw80FwvZZFU `Xiа$,&YNiSNiSNiSNiTNi*T<а$\i=iRZ$cFT hFQ ZcFU `FQ ?FR +I,Z,nI,6,I,,yI,-YK>Y^\\@Y\PFUs^Rk\@YB\"^>*^^-a@7^ePFUs^wa@I^e<@V^ePFUsTڶaFT| FRsFX2Fw0Fw 1Fw80FwvZ¸FU Xi@+pbNifNi9fNipfNifNif<@@if@igZcFT hFQ FY .ZɷFU FQ FR +B+Yc,nB+6,ʼnB+,yB+-b;>c^e@coPFUs^B[e@!c+oTg޾>\g^i@igywPFUs^/j@{gw<@gwPFUsThjFT| FRsFX0Fw0Fw 0Fw80FwvZFU Xiؽ+*kNiwNiwNixNiwNi>x<ؽ+\i=iRZ+cFT hFQ ZjFU FQ FR +O* l,nO*6,ʼnO*,RO*,yO*-?* ~?Ι*/~^^m?+*~Z%iFU}Y%ivmFU}Y#mmFU}Y%imFU}YmFU FT2FQ3FR1Z>FU}FT  S+FQFR~FX dEk`>H*VoN{kNok3NckkNWkJ`>@k@k8@k>k3>k^n@kPFUs^:So@k(<:S@k(PSFUsT9oFT| FRsFX2Fw2Fw 1Fw80FwvZrFU PXi:B*oNiKNioNiNiʁNi<:@i@iRZ:cFT hFQ FY .ZyFU PFQ FR +;)p,n)6,ʼn),y)-rA)= R+A)=J>?)?Ι)/^&r?)^Z%iFU}Y%i>rFU}Y|#mVrFU}ZdFU}FT R+FQFR~FX  d)p0?)sNSpNGpN;pLjJ0?@_p@kpq@wp>p>p[^B[/s@p>P[FUs^ ys@pa< @paP FUsT6sFT| FRsFX1Fw2Fw 0Fw80FwvZ*FU Xi)_tNiNiNiߊNiNi'<\i=iRZcFT hFQ  Z3FU FQ WFR +8H)`u,nH)6,'H),4H),RH),yH)-u<> u^kx@uPFUs^C\x@(uҔ?dzc>lz^o}@yzPFUs^j}@zݞH#>P^S@]ŨPFUs^*C@o<*C@|PCFUsTzւFT| FRsFX2Fw2Fw 2Fw80FwvZbFU Xi*;Ni Ni/NifNiNi<*@iک@iZ*cFT hFQ "FY .ZiFU FQFR +UA~,n~6--'JIA@@4@PFUvd\PBNzPvNnP JB\Pd7PBՆNUvNI JPB@azTƆFUsFTv['d[hZԶFUvjnPsIB\FPFU|IBB@XŵPFUsd7 BNUNIDJB@aT)FU}[dd750CNUANIwJ0C@aTUFUs[}dIpC\jPFUsdCN41N*JC@@IC@MX^@ZPFU}YdFU1ZfFT}YwmڈFUvFT~[cZ9fFT~ID\|PFUvd7@DwNUĺNIJ@D@aThFU}[dd7D҉NU5NIkJD@aTÉFUs[WdID\PFUsID/@7d7FO9NUNIJF@aYT*FUU[ddPFQN N9NoJPF@,TFUsFQv[l^,΍\̋P,FUsIF\ڋJF\PFUsZFU h+x,n6-`vd7GNUNIOJG@aT"FUU[dd7.@GNUNI2J@G@a{TNFUs[d^Sv>\mPqFUsIGh\JG\PFUsZFU +u:͑,n6-v--;3P-;3p1tmp/-;3-2/-;3-2/-;/-2/-;B{Vnv?ܐqd7HƒNU4NIjJH@aT4FUv[dd7@@H!NUNI)J@H@aT`FUs[dIH@\PFUsd7vHNU NI?JH@aTFUv[dd7HNUeNIJH@aTFUv[tdI0I\PFUvd7`IpNUhNIJ`I@aTaFUs[dII\ PFUsII\PFUvIJє@12PFUsI0J@ChPFUvI`J\UJ`J\bP FU|IJ\@<@PFUs^AR@FU|FTvYq]FU ZFU +;[t-!\-9\/-y`:h+1tϖ.K$+$Jt.KY6.0t+Mt.K+t-.K3K-;3]-;3o-;3-;/-2“/-;“+Ǔt-ɓ.Kӓ3֗-;Г/-2ԓ/-;ԓ+ٓt-ۓ-ܓ.K37-;3I-;3i-2/-;/-2/-;+қVt)-YlFU0Yl FU1Yl!FUDYl9FU2Y5lTFU 1 YOloFU ʚ;YomnFU UFT0FQ0ZlFU ^Dܞ@YeJJ@fe"^(N@IbE[nYh,FUsFT ZiFUsFT Xϖ([+<([][4E[sE[E[E[0E[oE[E[E[,E[kE[E[E[(Eph KdoPKɡJPK] YnFU +[<uYlFQ +YnˠFU +[+uYbFU +YnFU +Y 5FU +YnTFU @+[)uY`FU @+YnFU +[XuZFU +dKJK@%]1^Wf#@>DPfFUs^R@PgPFUs^@bPFUs^~@tPFUsYnϢFU 0Y$d FUsFT 0FQ FR `FX1Yrn,FU 0YdiFUsFT 0FQ FR FX1YnFU 0Y`dţFUsFT 0FQ ~FR FX1YnFU Yd!FUsFT FQ FR`FX2YRd_FUsFT FQ FR H FX1YdFUsFT FQ FR 0FX1YdڤFUsFT FQ FRPFX2ZNdFUsFT FQ FRFX1dKIJK@]^o@ɗSPFUsYAFUsFT FQ `+FR YnͥFU YBA FUsFT FQ P+FR ZAFUsFT FQ H+FR IK@=ev<@JePFUsX < @@@]^@*PFUs^  )@< P FUsYnHFU YgFUsFT FQ @+FR YdgƧFUsFT FQ 0+FR YgFUsFT  FQ  +FR YgDFUsFT *FQ +FR HY<gFUsFT 6FQ +FR HYg¨FUsFT AFQ +FR YgFUsFT FFQ +FR Yg@FUsFT KFQ +FR Y\gFUsFT RFQ +FR XYgFUsFT cFQ +FR XYnݩFU zY6 gFUsFT FQ +FR xY~ g[FUsFT FQ +FR xY gFUsFT FQ +FR xY g٪FUsFT FQ +FR xYV gFUsFT FQ +FR xY gWFUsFT FQ +FR xY gFUsFT FQ +FR xY. gիFUsFT FQ +FR xZv gFUsFT FQ +FR x^2 B A@[bhPB FUv^  p@mbP FUv^V f @bPf FUv^  ά@bP FUv^@bPFUv^,@bPFUs^<K[@b:PKFUs^@b]PFUs^@bPFUv^@bPFUvd LJ L@@@@0@Ș=Ԙ}=}=}@>G] ><>Q>$IpLM@1\X)HVsN[NONC5N7\<H\fd=Lě$L=JL@=}IL7@w^6?V@@dP[FUs^((m@#dP(FUsda(@NIԷNa7NacJ@N@aZ(fFU `FT pFQ0^W)f)@5dPf)FUs^))=@Gd<))@Td1^*(*w@gdT<*(*@tdw^i**@d*d7OM^NUNIJO@agT6FUU[!ddl#BPOO^zN#N~#4X7Og*lNUjNI%iFUs^#?/Z%iFUsY#m;FUsZ/FUsFT T+FQ@FR}FX Xi/Ni=NiaNiNi=Ni<@i@i5ZcFT hFQ FY .d(@P/VNXN {NJ@P@#@/H@;>G>O^@\PFUs^@n8<@{8PFUsT9FT| FRsFX1Fw1Fw 0Fw80FwvZFU  ZFU  FQ FR +8?,n86,H8,y8->^O@{PFUs^@<@PFUsTFTv FRsFX1FY0Fw9Fw(0Fw0ZFU PZNFU PFQ \ FR +,n6,H,y-w>>^%>@P>FUs^ #0@< #@P#FUsTiFT| FRsFX1Fw1Fw 0Fw80FwvZBFU ZFU FQFR ++(z,n+(6,}e+(,H+(,y+(-s>#^@0!PFUs^z@B!>^@*PFUs^!:K@ +>I^0I@@5PIFUs^E@c5<@c5PFUsT$~FT| FRsFX2Fw0Fw 1Fw80FwvZ FU Xio.>Ni5Ni5Ni5Ni5Ni6JT@X>@>@?>z>^@?PFUs^?@?<@?PFUsTxFT| FRsFX2Fw0Fw 1Fw80FwvZFU 0XilV.8Ni?Ni?Ni7@Ni?Ni[@<l@i@@i@ZlcFT hFQ FY .ZFU 0FQ \FR +--,n-6,3-,H-,y--*>^@IPFUs^1J9@I<1J@IPJFUsTrFT| FRsFX2Fw0Fw 1Fw80FwvZiFU XXi-2Ni JNi0JNizJNi JNiJ<@iJ@iKZcFT hFQ FY .Z[FU XFQ FR +1/',n/6, /,`/,y/->Y^@Y@ TPYFUs^3@,T<@,TPFUsT4lFT| FRsFX2Fw0Fw 1Fw80FwvZFU Xit/,NiOTNisTNiTNiOTNiT<@i U@iGUZcFT hFQ FY .Z FU FQ # FR +0t]!0a0k1p01o4bad/-;+btx,nb,\b,b-r b-e3 bt-Ę bt-5c.Q3Lc.Vnc/-;hbM\ jUNnVNx1WNX@Z@Z>0dbpVNZN[N]JpV@]\@^\>>%>-IV+=B=6 V+dAiW?bNA=_JW@A_@AM`@AM`]A>A#IXW@A`^@BNa^#@0Bra^0@@ Ba^@`@PBa< X@lBa^4XH@yBb[Cc[% i^@B8b@BnbI`X@BbPFU~[8~ZAFU~[(!dXAbNbJX@b[dIX@O=c@[c^^@h dZ%iFU}Y-#mvFU}Y%iFU}Y=%iFU}YFU}FT V+FQFR~FX ZFU FT2FQ3FR1[c[cXiHbNi-dNiQdNidNidNid<@id@i4eZcFT hFQ FY .dxYNbSN^NWeNeN5fJY@f@f@Sh@h@h>>>k>q]IpY@idiWuYUcNWGiN{WkiJY@Wi@Wi@Wi@W j>WYQoFU}FTsFQ|[}Co[toZFU FR 2Z0FU FQ YFR 2IY@4jPjFUsT,FUUFT0P{FQ0H; jjCt]!kCa1lCkm1p-;1oe\'ZNoNx*pNnkJZ@q@fr>@drpZNrNsNouJpZ@u\@v\>>%(>-I[.=B=6 V+dAy[?bNA wJ[@Aw@A0x@A0x]A>AS I \Z@Ax^@B1y^8 S @0BUy^` p @ Bxy^p  @PBy

 > >{>]I]@diW]UcNW*N{WNJ]@Wq@W@W߁@W>WY-QoFU}FTsFQ|[ Co[ toZ FU FR 2Z@FU FQ YFR 2I^@AP FUsT<FUUFT0P FQ0BlX]@ w6Vn]6woe3]t?ZGd.`qkXNLԍN@ J`@c@@o[dTFFUsFT}FQ0[d[d[cY.dFU @YFdFUsFT}FQ0ZdFT `Ip`\ZPFUsYFUsZ_FU FQ4FR 2B$_ 0Vn$_V2$_G?]d.8`:_kXNLUN@J`@c@o0[QdTuCFUsFT}FQ0[}d[d[)cYj.dFU @YFdFUsFT}FQ0ZdFT `I@a\]P"FUsYFUsZFU 8FQ4FR 2B^7f$ Vn^fV+^ȓ?Q^gd.a_ kXNL֔N@ Ja@cB@o[dT7 FUsFT}FQ0[ d[d[cY.d} FU @YFd FUsFT}FQ0Z5dFT `Ib \^^PFUsY: FUsZFU hFQ2FR 2B|@ Vn|V+|I?{Xd.Xpb| kXNLWN@Jpb@cØ@o2[qdT+ FUsFT}FQ0[d[/d[IcY.dq FU @YFd FUsFT}FQ0ZdFT `Ib \XPBFUsY FUsZFU FQ2FR 2B8}WhVn}hV2}ʚ?Xd.@c} kXNL؛N@J@c@cD@o[dT%( FUsFT}FQ0[-d[d[cY.dn FU @Y1Fd FUsFT}FQ0ZUdFT `Ic \XPFUsYZ FUsZFU FQ4FR 2BOq` VnqV+qK?Zd.xdqkXNLYN@Jd@cş@o4[dTFUsFT}FQ0[d[Od[icY.dbFU @YFdFUsFT}FQ0ZdFT `Id\ [PbFUsYFUsZ/FU FQ2FR 2B r\jVZ rjVe3 rtZVĘ rtVH r11?T r0?t >|>>+]dGf[NHNG-NGJf@H#@H{]'H]/HI@g!@Q"]QIj=@Q^~""\QW"oFUU^""!@Q5<""@Q]^""@Q@Q^""@QP"FUs["8~Z"GQFUs<"#NYQ<"#\cQ\oQ\{Q>Q"]QZ #dFT H.Yf ##)J%Vnf0Vrfc?g'gVDg%dX?d#`jfNt?Nj?J`j@~?^}##@?!@?X[+(IjK$?$|f!{d)#jfN[NONNCN7{Jj\fX=##ěhL=<##@=Ik{@wL^##@<#$@X3Y$$f NEY'<$$@QYV@]Y@iY[$ld?*$@kfT N&?<%%N&?Xd.$pkfD!NXNLN@7Jpk@c@o[$dT$ FT|FQ0[$d[%d[E(cY`(d !FT `Y(.d)!FU @Z(FdFT|FQ0Ik^!?;fQIk!DtmpfJ0l?;fP&FUvIpl!?2fJl?;f)P &FUsIl"?2f_Jm?;fP/&FU~I@m^"?2fJpm?;fP?&FUIm"?2f7}-;??}?N@}<?Jo@a^T*2)FU}[0dIo[)?;}Ip)?;|~P,FU~IPp)Dtmpl~)JPp?2l~)Jp?;l~rPZ-FU~Ip*?;z~P,FUdNM,p{~*N)N=Jp@3N@?N1I0qm*@NNi@ZNZa/iFU~Iq*@hN<P*/FUY.i*FU~Y/i*FUZq/FU~Iq+?2~aJq?;~P-FU|^-@-r+?2~<-@-?;~>P;-FUvI r+?2~aJ r?;~PA/FU^// ,?2~1gK@1gVDj1dX?0Pr-Nt?Nj?JPr@~?=^0 1-@?s@?[,1[e1%Z1FU  FT 1FQ MFR 2+gƘ.0coƘ7,ҙƘ0naƘ,Tǘ1fȘ-*|ɘ!-$ʘ1i˘-\̘/-;ޘ_h141NhNhNh@hk@h@h@hp@h@ ix@ix@ i\*ii5i@@i>Lig2khd.V3r00NS.1NH.gN<.N1.Jr@_.L@i.@u.@.!@.XIr/@.Pa4FU}[[3jYn3=l0FU|FTvFQ~FR0Z3oFU}FT0d.3r1NS.NH. N<.CN1.Jr@_.@i.7@u.o@.@.I s0@.EPu4FU~[3jY3=l0FUFTvFQ~FR0Z:4oFU~FT0[1dYd2ob1FUvFT~FQ0FR}FX|FY0Fw0Fw[l2d[2dZ2.dFU @H0j4@{H<Vnj0Vj8Vj?j. ?j ?ڸj?(j?Fd4FUwFT}FQ0Y?.d4FU @[^@cZ}@dFT `Ipt5-;[jPG:FUwItD5?;\j'P::FU}Itn5?;j'P9FUsIu5?2j(J@u?;j^(P9FU|^776?2j(<77?;j(P7FUsd78pusjM6NU(NI)Jpu@a)[>dIu6?!|j)*Ju1tmpjJu-;jP :FU~d.8vj7NX_*NL*N@+Jv@cy+@o+[8dT*97FU}FTwFQ0[29d[9;d[B>cYa>dX7FT `Y@Fd|7FU}FTwFQ0Z@.dFU @Ipv7?;j,Iv7?;jT,Pj:FU}Iv8AewjKds{:wjc8N{,N{,N{-Jw@{-@{R-@{-@{-P;FR0I0w8?2j.J`w?;jE.P;FU<:!;?;j{.P!;FUwIw|9AewjKIw09?2j.Jw?;j.P;FU^;;g9?;j.P;FUwZ;.FU}^<C<9?2j/<<C<?;jT/P@<FUw^C<`<-:?2jx/-\>-?OkEAB3O>;}EUd=A x^7>L=L=J x==\==V==V,!0arg_O>B/D4?Na>5Nm>96d=Cpx~?N= 7N=7Jpx@=8@=y8@=8[3CdTSC?FU}FT|[[Cd[Cd[CcYC.da?FU @Z&DdFT `YC.?FTHFQ1[CdZDs{FTHFQ1+_?t@0L?0v?-UA/-;D+ׇtB@,0x1L) 1lenHr0DR19GJVSr:VHArt%;?TrG<?Tr=?xrt??ort@?-r A?mgrbC?arD?sEgÊt]IgV]N?]E?;s_^^H"HtE?;s^PHFU|IzE?26t^Jz?;6t^I{E?27t%_J@{?;7t_PMFU~Ip{F?28t_J{?;8t`I{TF?2=t8`J{?;=t`PLFUsd@H|lsFN!@`N@aJ|@+@a@5@faZpOlFU|I`|F?;saPKFUvI|F?;sYbPKFUsX?RI]It8GL&?tbJ|?;>t$cPKFUI }G?2?tZcJP}?;?tc^J6JG?2@tc<J6J?;@tc^JKH?ews dd?K}s~HN?CdN?dJ}@?dI}aH@?GeZ4K2pFU|FTwI}H?;s}eI~I?~sed OLP~sHN)OeNOf[NI[Lc[L@gYhDhIFU0YhFOp5IFU[Fh[GmYGO>hIFTwYHIFU|YHIFU /YsIlIFU|YIhdIFU2YOJhdIFU1YJdIFUs[JhEL#JFUv[JuTI~M@K,y@KyI M@!KWzPTFUsXmO0XRXeMN{OzZMXcFT XFQ2[UVx}IPN@4KzJP@AKzPTFUdRfVNN{J@x|Z%TdFU~dRfNN}J@K~ZUdFUvd0 S(fNN1~N1J@)1T5SNFU}FT|[1WI O\xKPUFUsIP.O@KӀI`O@K J@KePZUFU~IO@LJ @LPJUFUvIPO@*LJP@7LP TFU|IO@KPd0TAfPN1N1.J@)1[>W^U@UhP@K<U@U@KP2UFUsIP@J$PWFUvd\V ePZWdFT Y\RB@PFUTRPFU}FTTQSQFU}FTsFQvTS5QFU}FT|FQYuTTQFU TTvQFU}FTsFQYV.QFQ0YVQFUvZW{FUs?id?jd?kd&?ldDAmdV-nd.KdgVd.\dRXPdWNN0RN$RNR JP@HRʑ@TR@`R\@lR@xR@R@R@Rٓ@R@R4]R>RY>R8YIfU@R<PbFU|IU@RrP]`FUvI@U@SPF`FU|IpU@SޚP^FU|IU@%SPY_FUvIЃV@7SJPB_FU|^__OV@eS<__@rS^qaaV@ISڛVFTvYZVFU|YZWFU hY\d WFUY\m8WFT|Y\O>PWFTvY ]hWFU|Y@^dWFT @Z^dFT IWDtmpdHJ?2dHJ0?;dݜP[FUvdNY`dXN)NJ`@3NΝ@?N-IЄbX@NNd@ZNݞZ^iFUsI0uX@hN_Y]iXFUsY]iXFUwZ!_FUsI`X?2dJ`?;dIXY?~dd O \d=YN)OLNO[_I[[c[\@gIrY?;d^.\D\Y?2d<3\D\?;dPD\FUvYE[YFU [p[cE[wZFUZ`pFUTBkpbd4\V!V7V7?ҙM?\.,d.b [NX.NLN@J @c@oާ[bdT c[FUsFTvFQ0[cd[cdY*d.dS[FU @YGdFdv[FUsFTvFQ0[TdcZrddFT `Ip[?;'PcFUvI[?;pPcFUsIІ\Aҙ=@es{cN{N{N{=J@{=@{s@{@{ߩTc}\FTwFQ2PdFQ2FR0^dd\Aҙ=@Zd.FTwFQ2ZbhdFU2BJtdgaV^gV`}ƫ?^@f PfFU}YwehdU^FU0YeFdx^FUsFT}FQ0Z"fcFT FQs^ee^@fBaFUsFT~YfaFUZ{g&ZFUvFT}FQ~Bh#{tghcV/#{.JA?HA${t?}e%{ ?E&{ P?('{t?2({t?c>md.dirlfN@dJ=Ld~@Xd@dd0>pdl]xddiP7fNھNJP@))@5y@A@M@YE@e@q@}+@Yrj,PfFT~ZlFU FT FQ <FR 2^jjf@dmFU 8FT lFQ +FR 2+oh,no0-hod7_moiNUNIJ@aT|miFU|[pdd7m ojNU6NIlJ @aTmiFUv[pdI`-j\,hP:oFUvd7mojNU9NIoJ@aTmyjFUs[odIЊj\>hPJoFUsdO>nokNm><Na>%d=.npkN=N=Jp@=9@=@=[CndTenBkFU~FT|[mnd[od[pcYp.dkFU @Z7qdFT `Y]o.kFTwFQ1YmodkFT|Zos{FTwFQ1^nn#l@Ph`PnFU|^ooml@bh&.VC&3m-;%3m-;%3m-;&3m-;/&3n-;1&3&n-2?&/-;?&3Fn-2@&/-;@&/-2D&/-;D&Hs%@q}5[yVns%(V\s%"Vs%?yt%?(u%?,v%?mwdO>q%KrNm>Na>d=r qN="N=~J @=@=@=Y[rdT;rqFUFTv[Crd[vd[{zcYzdqFT `Zz.dFU @Yx.rFTFQ1Ymyd0rFTvZzs{FTFQ1d7rp%rNUNIJp@aTrrFUs[nzdIr\mPvFUsdGr%tNHYNGENGJ@H@H]'H]/HIps@wFTsYswFU|TAu xFT} FQ~FRsFXT_v4xFT} FQ~FRsFXYwSxFU YQ{rxFU Z{hpFTvXitMt%+yNiANieNiNiANi<tMt@i@i9ZMtcFT hFQ aFY .ZtFU FQ YFR +lz,nl6,yl,(l,,l-[Em-ydO>}|~Nm> Na> d=}7~N=I N= J@= @=$ @= [}dT~}FUFTv[#~d[d[[cYxd~FT `Z.dFU @YDŽ.U~FTFQ1YMdm~FTvZՆs{FTFQ1d7`~Д~~NU NI JД@a5 T~~FUs[NdI\yPFUsdG~@րNH NGlNGJ@@H@H]'H]/HIЕ@J\H\H]'H]/HJ\H@Htd} aNJ @0ZdFU^.F@HpZ4kFUvFQ2I`@$zPFUsI@6zPFU|I@zPFUsIE@z5<7H@zPHFUv^m}@Hz FTsY!FU|T!IFT} FQ~FRsFXT?qFT} FQ~FRsFXYFU Y1FU Z·hpFTvXi-_hNihNiNiNihNi<-@i&@i`Z-cFT hFQ qFY .ZlFU FQFR +c=',n='6,}e=',y=',(=',,='-[E>'-)dO>@M'Nm>2Na>3d=N=4N=l4J@=4@=4@=G5[dTMFU|FT}[d[d[cYdFT `ZH.dFU @Y.ΊFTFQ1YdFT}Zjs{FTFQ1d7\O'\NU}5NI5J@a"6T|MFU[dI@{\6PڎFUdGp\'ONHm6NG7NG{7Jp@H#8@H{8]'H]/HI@JМ@H?@H^?]'H]/HIpG@FTsYɐFUvTFTv FQFRsFX1FYFw1Fw 0Fw80Fw~TIFTv FQFRFXFw1Fw~YhFU YwFU ZhpFT}Xi50'-NiFNi:FNiqFNiFNiF<5\i=iRZ5cFT hFQ xZtFU FQ FR +fғ,nf6,yf,(f, f,,f-[Eg-/-;>3-2?/-;?/-2C/-;CHE vFLVn HV\ IV J?y vL?( M?  N?, Q?\\ے]>dO>Rv Nm>^^Na>b_d=0N=_N=-`J0@=P`@=`@=.a[dTYFU}FT~[d[Ud[cYv.dFU @ZdFT `Y.ڗFTFQ1YdFT~Z9s{FTFQ1d7xhNUdaNIaJ@a bTYFU[dIС\PJFUdG8[NHTbNG,cNGcJ@HXd@Hd]'H]/HI@FUZkFU~JNHRoNGoNGoJ\H\H]'H]/HJ\H@HodNApJ@pZVdFU^6@HpZ4kFU~FQ2IF@VqP FUsI@i@h8qPFUvdGp;NHnqNGZrNGrJp@HPs\H]'H]/HI]@eFTsY8}FUvTjFT| FQFRFXTѡFT| FQFRFXTCFT| FQFRsFXTc%FT| FQFRsFXYDFU YcFU Z*hpFT~Xi5YNiNi!NiXNiNi|<5@i@iZ5cFT hFQ FY .ZtFU FQ (FR +naͣ,na3:,2a->dͣ`aNNߣJ`@@@[@ϋ@'h@3[@?f@K=@WK]c>kn]sXfF;NF NF NF NxFl<@F <@FIN@dE'|NEPNEJ\Edl#8 7N#ʓN~#e78 *NUʓNIJ @aTRFU|[NdIP\E^e{mNEbNE0 Nm>Na>d=`N=ÛN= J`@=U@=@=[dT$FFUFT~[,d[edYݬ.dFU @[cZdFT `Y{.̫FU|FTwFQ1YdFU|FT~Zɬs{FU|FTwFQ1IH@d0<ǫ@qSPܫFU}Y"&ZlFU}FTvFQ~YFU ZdFT P^Ӭ\PFUsYFU FQAFR 2ZpcFT FQ Bpt SvV^pȞV`}p'Vyptş?ʭNm>Na>`d=N=N=J@=N@=@=[ dT,LFUFT}[4d[d[cY..dFU @ZNdFT `YxdͰFUvFT}Y.FUvFTwFQ1Zs{FUvFTwFQ1I :?;<P:FU}IPd?;PJFUsI?;PhFU|^֮?2<֮?;PFUv^Я>?2*<ٯ?;MPFUs^(?2p<(?;pP&FU|I?!JDtmpɬJ?;ɬPFUvI,?2J?;6P߰FU[<GiYLpQFUsYmoFU|FTsYFU|Y֮FU YViFU~YRֳFU|ZȰ&ZFUsFTFQ}+@,%.J,HAt-(t-r-H-}>&>&Xo\@T~N\N\N}\<@T@\@\@\,=\P@\|dѶNĴ,NuNJ@д-@ܴR@@"@@ ]d3Yֶ .hNEYkJ @QY@]YS@iYSZlFU $ &I`@%PFUvdO>iJڼNm>6Na>d=N=lN=J@=@=m@=[dTη&FU~FTs[ַd[5d[UcY.dlFU @ZndFT `Y.FTtFQ1YdFTsZs{FTtFQ1Ip@7P FUsI\IP'FUv^f@[H<@hHPFU}Iб@{~J@P*FU~^ @< @ PFUsI0@0J0@ĵ0PFUv[ֶGiYd9FU~Y dQFUvYhdhFU3YFmFTvY FUvYlFU YtViϾFU|ZFUv^øK?($X S[GiY6FU 0ZøViFUsdӵ@`,N N=N5NJ`@D@!@-[@9dF@/NNx=NlN`NTJ@]@@zJ@@XeFгNDNx7NlhN`tNTJг@%@@CJ @@X[x#N[ N[ N[ <@[ @[j @\ @\ @\* X[N[N[N[&<@[P@[@\@\@\XINJN JFNINI<@!J0<NINJN JNI<\!J:gNg)NgMNgpNgNg<@g1[GiY gFU|FTFQFRsFX0ZViFUvd3[дņsNQ[gNE[Jд@][@i[,@u[@[@[@[@[>[XIΆNJ(N JLNIoNI<@!JX[ FN[N[N[W< @[@[I@\@\1@\id[N[N[' N[a J@[ @[i!@\-"@\e"@\"d@EN#N Y$J@@!,%@-'@9'@Ew(@Q(@]u*@i,3@u3>>V]dI%NJ4N J5NI5NI5J@!J5<NIC6NJh6N J6NI6<\!J:gNg6Ng6Ng7Ngk7Ng7<@g7[GiY gwFU|FTFQFRsFX0ZViFUvd0\.>Nb\8NV\`8NJ\8N>\9e*HNI9N9Nt :NhE:N\:NP:ND=;N8y;J@<@n<@<@+=@ȑ=@ԑ$>@>@O?\=V@~?>T>$k>,oY_*FTsFQ~FRsFXsFYsFw}FwsYfFTsFQvZrfFUFT}FQsvdIoP7NJ,@N Jd@NI@NI@JP@!JA<{NJZANI~AN JANIA<{\!J:gNgANgBNg3BNgBNgB<@gB[GiYkFU|FTFQFRsZViFUvXo\N\*CN\MCN}\pC<@\C@\E@\E=\P@\&Gd[ 6]N[GL[N[~HJ@[I@[I@\J@\J@\JdͶR'NmKNLNMN߶uNJ@{O@P@'Q@3fS@?S@K7T@WU@cX@o%Y@{Y@Y>>>d3[@=NQ[[NE[\J@@][]@i[4^\u[@[Q@[^@[_@[a>[|dr;N;cN;dN; eN;eN;fJ@;g\;@;h@;h\;\;]<]<<%]<d[σN[iN[iN[LjJ@[j@[k@\Rk@\k@\kX0\ `{Nb\hlNV\lNJ\lN>\lZW*FTFRtFX~FYtFwsFws^@l[GiYFU ZViFUsYqFU|YfFUsFQ|Zp\FT0d`0@N1mN zmJ0@!m@-op@9p\E@Qq@]r@ij{@u{]>>YOqFUFT FQ vs $ &3$Y/ FT [fYkk1FUsYhaIFUY}abFUYkk|FUsYqFUFT FQ sv $ &3$YfFU}FT~FQsZqFU}FT FQs+ty,8 0,t,\.J,ƺt1it-4t1buf. .؝.ܝ/-|ÝH0P@}V(U~V~VtVx?HVStЀ9tDitX?P0ˁ?.{0{Dbuf. ~?[?Z? v6̆?0.gdVmApף)NmtNmNmNtmNhmJp@m@m@m@m @mU@m@ml]m>n]ndvNy_VNNNNNNLNNN(NNqJ@ND^+NNzNNNNÒNNNNLN<+\N<+\NZ+dFT Yp<FU}FQ0ZpFU0FT0d. _RNXNLZN@ɓJ @c@on[dTGFUFT}FQ0[OdY.dFU @[dYFd(FUFT}FQ0[cZdFT `Iu@nΔPFU}^@n<@nPFUI@nMJ@nPFU}^|;@Kn͕<|@Xn͕PFUI0o@knJ`@xnPPfFU}^@n<@nYRdFU}YfpFU}YpFU}Yhd FU4ZFU d⣬N,N /NxNJ@80@B@N]Z]b<@kI?2<?;PFUv^ .P?2&<.?;IP&FU^?2l<?;PFU}YhdFU}["dY FUFT}FQYfFU~FQ}3$Y7f;FU~FQ}YYfdFU~FT}FQ}YFU|FT|FQYcFT `Y1fFU~FQ}YMqFU~FT FQ}ZhdFU}+\BOq@ƚVnOq0xAPq0zAQq0|?e3Rqtכ?NItJ@a.T+FU~[0ddA7л}gTNAJл@A9@A@A]A>AI0@A^Pp@PB^3@0B^R@ Bո^ q@B<@@lB2^g@yBU[vcZP iFU|^Y:@By@BI @BY8~#FU|ZAFU|Z!jA|Ij-;~gd7gNUNIUJ@aTFUv[0ddA0gNAnJ0@A@A@A]A>AI@AY^ (I@ B^h@0B^@B4^ @PBX<@lB{^@yB[cZ iFU|^o@B¿@BI>@B0Y8~XFU|ZAFU|Z!jA|I -;g^t?2gh vgVv4dX?PtNt?Nj?]JP@~?^{@?@?ZFTsdu N#NJ\)@5@A@MQ@Y@e@q@}D\dNpuN)N|J@3N$@?NI0s@NN@ZN2ZiFU~I@hNPFUvYiFU~YiFUvZFU~dGouNoNoNoNoNoNoNo_NoNohNoN}o0NqoNeoNYo1J\p\ p@p@%p@1p;@=p>Ip>Qp]Yp]ap]ip]qp]yp]p]p]p]p>p]p]p]pI [@pb[GiYFFU ZViFUsY /FT FQ{Zj/FT @FQ{^l#Dtmp|uIp;>Qp]Yp>ap>ip>qp>yp>p>p>p>p>p8]p]p]p^Dq@p-[IGiYjjFU ZqViFUsZ!/FT FQ{I ?2vcJ ?;vPFUIP%?2vJ?;v-PFUvdNPuN)NcJ@3N@?N"I@NNZ@ZNZiFUvI`@hNAPFU{YiFUvYiFU{ZFUv^,-;uPFUvdNvN)NfJ@3N@?NK I@NN @ZN ZiFUvIP@hN PFU{YXiFUvYqiFU{ZFUv^3-;vPFUvdNvN)N J@3N9 @?N I@NN @ZNG ZiFUvI@@hN POFU|YiFUvY,iFU|ZFUv^Ih6-;vP^FUvIp?~su d OtuuN)O6 NOl [I[ec[@gI?;fv PFUdX?ov;Nt? Nj?4J@~?j^,@?@?[MI@}?2vJP?;v\P,FU|^?2v<?;vPFUsX\]v*;j] ZcFT FQ YCfHFUsFQ|YRfmFUsFTvFQ|YdfFUsFT~FQ|YFFU ![c[c[2cET{FUY%FU{FT0FQ0Y%1FU{[3fYBfcFUsFTvFQ|YVqFUsFT FQ|[cY{FUj@[CqYN{FUj@YpFUZ.{FU|#FTsj@|+d^,nd0,Sd-xd-r d-d-od71 @NU*NI+J@a,TN FU}[3dI .@|8-JP\JP\PjFUsdO> LNm>-Na>.d= ,N='/N=/J@=/@=0@=q0[ dT FU|FTv[ d[+dY.dFU @[cZdFT `Y.PFUFTFQ1YdnFUFTvZs{FUFTFQ1I0@0J0@1PFUvI`@M1PRFUd7^ Q+NU1NI2J@aN2[ddO> SzNm>2Na>3d= @)N=!4N=}4J@@=4@=5@=k5[ dT FUFT}[ d[d[cYd FT `ZL.dFU @Y.GFTFQ1Yd_FT}ZUs{FTFQ1I@5J\J\PFUvI@ 5J@G6PFU}I0\*PzFUI`'@<}6PFU~IJ@N6PFU|^y@`7PFUsdkE LN}E27d=;^mN={7N=7J@=78@=m8@=8[OdTo FU|FT0[wd[d[cY .dPFU @ZdFT `^-N}E89Z%.FUsFQ0Z.FUsFT0FQ0dO>@_%Nm>[9Na>9d=N=?:N=:J@=:@=;@=v;[ dT-_FU}FT[5d[udYP.dFU @[ecZdFT `Y.FUvFTFQ1Y<dFUvFTZs{FUvFTFQ1IW@;J@;P FUsI0@<J`@;<P,FUv^@rq<<@<PFU|Yr&ZFU~FT}FQYmFU|FTsZFU 0+B{ ,n{6,N{"-|-Na>\*a@6a?]Ba>JadBl\ NB?JhBiBiB]B]CIE @C@^ * @"C@^P` @XCA^`p @4CMA^p @FCqA<\fCZ iFUTZ9FUTd3 tNQANEBJ @]B@iB@uzC@D@G@H@CK@L]> d7@ NUNNINJ@aOT01 FUs[dIc @OP*FUvI = P+= @+YE FT P+FQ @+[yEd70 NUPNISPJ0@aPT FUv[dIpB @ QP:FUvIa \PKFU|d."_NXVQNLQN@QJ@c}R@oR[BdTf FU~FT|FQs[nd[UdYFdFU~FT|FQsY.d5FU @[ cZ( dFT `I@~\&PzFU~Ip@85SPjFUsd7NU~SNISJ@aTTFU|[/ dI\JPFU|IT@\TJ@\iJ@\vPFUsIp@UJp@`UPFUvI@UPFU~d7ONUVNIVJ@a{WTpFU|[dI '@WPFU|IP`@IXJ\J\PFUsdO>Nm>XNa>Yd=^N=ZN=YZJ@=Z@=Z@=4[[dT'FU~FTv[/d[dYo .d4FU @[ cZ dFT `Yr.FU|FTFQ1YdFU|FTvZ s{FU|FTFQ1IP@}[JP@ [PFUvI@ [PFU|d4J|NRJ3\NJ3\NJ\NJ3\NJ3\NvJ3\NjJ3\N^J\NFJ]J@J]]]JIo@J]@J]\J@J8^I 5@J^@K^IP@TK_JP@aK_P FUvYd FU}ZeFTvIX@qKL_PFUsPFU~FTsZHcFT ^ @. o_P FU~I@ _J@ _PFU~I @ `JP@ [`PFUsIQ@ `J@ `PFUv^@ `<@  aPFU|dO>Nm>CaNa>ad= N=aN=FbJ @=b@=b@=4c[dT6FU~FTv[!d[]dYH!.doFU @[]!cZx!dFT `Ys.FUsFTwFQ1Y4!dFUsFTvZ!s{FUsFTwFQ1dkExPEN}Ejcd=^N=cN=cJ@=5d@=~d@=d[dTFU|FT0[d[dY .dFU @[!cZ !dFT `^  &N}E#eZ .FUsFQ0Z'.FUsFT0FQ0Iw@@ FeJ@M eP~FU~[EhYYdFUvYwgFUsFQvYgFUsFQ|Y.&ZFU~FTvZ#FU `^+mNaeNae<+m\*a\6a>BaW]JaZfFU `FT lFQ FR [c+O#l,n#6,#,6#,y#-*/#t-Y#+-#+-#+-#1-#1-'#1--*#-$3-;A$3-;C$3-;Q$3-;$3-;$3-;$3-l$w-݊$3'-;$3U-!$/1tmp$/-;$3-ew$K/-2$/-;$3-ew$K/-2$/-;$3-;$3-;$3-;$3-l$w-݊$3-;$35-l$w-݊$3G-;$3u-!$/1tmp%/-;%3-2%/-;%3-;%3-! %/1tmp%/-;%3-2%/-;%3-;%3-;%3+-;%3=-;(%3O-;H%3o-2W%/-;W%3-2X%/-;X%3-2Y%/-;Y%3-2Z%/-;Z%3-2[%/-;[%3-2_%/-;_%3/-2`%/-;`%3O-2a%/-;a%/-2b%/-;b%Hvk#!<f$4Vnk#cgV\k#lVk#l?l#n?6m#Co?yn#p?:,I0!@Pz+FU|I`!@P+FUvI!"= p+=  `+[:EZ*:EFT p+FQ `+d7]#-$|"NUZNIJ@aT}#m"FU~[9dI "@JP.FU~IP"@~P.FU~I"@P.FUsd#B$*#NKJ@Z.dFUIM#@ P.FUI r#@P.FU~IP#@P /FUsI#@%P.FU~I#@[J@Pf+FU|I0$@J`@!%P,FUvIN$@4[J@AP,FU^N%d%$@PǤ(%)Nm>Na>d=(P)N=CN=JP@=!@=W@=ư[)dE=) )FU~FT[E)d[/dY:.dY)FU @[;cZ;dFT `Y/.)FUsFTFQ1Y7d)FUsFTZ;s{FUsFTFQ1I)@edO>)%e+Nm>Na>d=)p*N=@N=³Jp@=P@=@=[)dE**FUsFT~[#*d[/d[<cY_<.d*FU @Z<dFT `Y0."+FU~FTFQ1Y7dB+FU~FT~Z<s{FU~FTFQ1I+@J@Pu5FUI +@@P-FU~IP+@ dv*%,NҶJ@.Z+dFUsI7,@nPJ-FUs^<+P+f,@BPP+FUsI,@tڷJ0@P30FU~I`,@FJ@|PV0FUsI,@J@I -@JP@TI-=ds{s-$-N{N{N{J@{@{e@{@{ѺP<FR0<--@<--@*P-FU~^Y.. .@TMS1FUsFT~Y@$Uno1Fa1YW$Un1Fa1T$1FT~# FQ~FR~FX2FYsFw0Fw~Fw 0Fw80[&hdT'1FU}T.+B2FT~# FQ~FRsFX2FY|Fw0FwFw 0Fw80Y:,a2FU Y2&Z2FUFTFQYO5&Z2FU~FTFQ~Y5.2FQ0Y52FUsY18.2FQ0YE83FUY8&Z53FU~FT}FQ~[9c[C:cXi%%#3NiNiNi NiNi.<%%@iZ@iZ%cFT hFQ ?FY .Z &FU FQ FR +ZORE =,nRE6,RE,yRE-]SE"-TE"-(UE"-2VE"-BWE+-CXE+-YEi3-s!ZEi3-[E1-é\E1-}e]E-^E-G!3;-;G3;-;G3;-;G3;-2G/-;G3<-2G/-;G30<-2G/-;G3P<-2G/-;G3p<-2G/-;G3<-2G/-;G3<-2G/-;G3<-2G/-;G3<-2G/-;G/-2G/-;GHXIE<a:ZVnE V\EVE?E?yE?AE= `V+AE=J`?E?ΙE/#^Z(ZQ>?0EYZZ%iFUvYY#mi>FUvYZZ%i>FUvZZFUvFT `V+FQFR}FX Gd$45=KEzYNN4|NB4N64J@Z40@f4@r4 @~4X@4@4@4@4W@4@4@4@4@4@4r=5~=5=5@&5@25@>5@J5\V5@b5@n5@z5@5@5@5@5@5&>5TM>5B>5CX>5B>5}U>5QU>5E^>5H>6nI> 6nI>6MI@@6I A=16 0+==6  +YQE@FT 0+FQ  +[QEd7>pEJANUNIUJp@a[,RdI]A@O6IA=a6 +=m6 +YKREAFT +FQ +[_REd7> EBNU NIBJ @aT> BFU~[VdI`J@7d)@/FDN[NONCN7J\fX=@@ěDL=<@@@= I@D@w; ^AAD@ <AA@ Ip:E=7 +=7 +YU[E,EFT +FQ +["]Ed7]A>FENU NI J@a [SdIE@8[ I@E@D8 J@Q8 IE@d8 dd_BPF FNv_3J@_@_@_ZBlFUsIRF@v8*JP@8`PNFU}IF@8J@8PNFU~IF@8EJ@8{PNFU|I@F@8IFT~Y1Bhd.IFU2YTMIFU Y4TzIFUFTFQ~FRYvThdIFU1YTmIFU~FT~YVUݪIFT}FQ~FR|j=YUݪ JFT}FQ~FR|j=YVp'JFU~Z?a&ZFQ~I0J=9 з+=9 +Y$SEJFT з+FQ +[8SEd7BpFJNUNIJp@a[tSdIJ@:eIZK=: +=%: +Y\ELKFT +FQ +[]Ed7C0FKNUNIJ0@a[#WdIpK@7:Rd.ODFLNXNLN@DJ@cz@o[iDdTD*LFU|FT~FQ0[Dd[Nd[WWcYrWdpLFT `YqYFdLFU|FT~FQ0ZY.dFU @IL@:2P&NFU~I0L@ ;hddTE`$GMNNvJ`@0@IXM@dPEFU~FT}FQ~YcEfvMFU~FT|Z_fFT|ddE&G*NNNvqJ@,@I0M@3PEFT}FQ~YEfNFU~FT|Z^fFT|I`[N@;iJ@(;J@5;dO>DF2GONm> Na>d=qF`YON=,N=J`@=@=@=c [FdTFNFU|FT~[Fd[Nd[`cY_adPFU}I)T=w:[P.IPKT@;J+J@;+ImT@;+J@<,I@T@<6,Jp@"<l,IT@5<,J@B<,PPFU~IT@U<-J0@b<D-PPFUvI`%U@u<z-J@<-PPFU}Xd_ OOFUNv_-< OO@_/.@_~.@_~.ZOlFUsIU=6ZO.FUv^tRRV@?7.[ DhdYM%YFU Y+Ohd\.kYFQ0[P\XiIRJEE ZNi2Ni,2Nic2Ni2Ni2?(XC?YF? [i>([Ul>0[8l>8[RfdO>bdNm>Na>d=bpIdN=qN=Jp@= @=A@=[bdTbcFU|FT~[bd[odY.ddFU @[̈́cZdFT `Yy.gdFT~FQ1YddFT~Zs{FT~FQ1d7/cdNUӂNI J@aTPcdFU|[dITe=[ 0+=[  +[EZڅEFT 0+FQ  +XSacceN}ä́NqaLeal uNm>6Na>#d=m uN=˼N=:J @=@=@=X[6mdEam~9uFT}[kmd[xdYB.druFU @[XcZwdFT `Y.uFUFTFQ1YduFUFT}Zhs{FUFTFQ1I v@+^d7mmvNUNI$J@aοTm^vFU~[؇dIPv@=^-PtFU~Iv\O^PtFUdnvNcJ@ZsdFU~Iw@a^'PtFU~I Iw@S_JP@`_PrFUsI{w@s_J@_8PqFU}Iw@_nJ@_nPqFU~^nnw@_qPzNm>Na>|d=4qyN=N=QJ@=@=@=^[QqdTxqByFT}[qd[}dY1.d{yFU @[cZ܎dFT `Y4.yFU~FTFQ1Y]dyFU~FT}Z{s{FU~FTFQ1^qq=z@^PqFUIgz\E[J\R[PyFUsI0z@e[J0@r[PyFUvdwpzNJp@MZexdFU~^ww,{@^(FT~Y?@FU}YɇhpXFTsYJ&ZFU~FT~FQ}Y&ZFUFT~FQ}[c[c[ucXighg]NiNiNi;Ni_Ni<ghg\i=iRZhgcFT hFQ ZgFU FQ ^FR     +-i(:l,n(:6,i(:,(:,(:,y(:-*/):t-.*:+-+:+-1,:+--:-.:-;_/:-:.KM<.:.VX<.ss;3)-;U:3;-;d:3M-;s:3_-;:3q-;:3-;:3-;%;3-;&;3-;';3ˆ-;(;3-l=;w-݊=;3-;A;3)-!G;/1tmpJ;/-;J;3I-2N;/-;N;3[-;O;3m-;R;3-;T;3-lZ;w-݊Z;3-;^;3݇-!d;/1tmpg;/-;g;3-2k;/-;k;3-;l;3!-;o;33-;q;3E-;;3W-;;3u-l;w-݊;3-;;3-l;w-݊;3-;;3Ո-l;w-݊;3-;;3-!;/1tmp;/-;;3C-ew;K/-2;/-;;3q-ew;K/-2;/-;;3-;;3-;;3É-!;/1tmp;/-;;3-ew;K3-2;/-;;/-;;3C-ew;K34-2;/-;;/-;;3U-;;3g-;<3-!</1tmp</-;<3-2 </-; <3NJ-; <3ي-;<3-;<3-;<3-;?<3/-2N</-;N<3O-2O</-;O<3o-2P</-;P<3-2Q</-;Q<3-2R</-;R<3ϋ-2S</-;S<3-2T</-;T<3-2U</-;U<3/-2Y</-;Y<3O-2Z</-;Z</-2[</-;[<H\K9ѻVn9V\9`V9?i9I?9?9L?y9?>b>cI@h PJFUI2@.o PZFUvIU@@v PjFU~I=І +=܆ +YEFT +FQ +[2Ed71P?;NUj NI JP@a TQFUs[dI4@G! PFUsdO>M;Nm>}! Na>W" d=˓07N=" N=H# J0@=# @=# @=\$ [dE~ԑFU}FTs[d[qdY.d FU @[vcZdFT `Y.[FU|FTFQ1Y˷dyFU|FTsZs{FU|FTFQ1I@N$ PFUsI@`W% PFU}djS;'N% J@J& ZʝdFU~I0:@r& ^k@8& PFU~^.@J& P.FUsdC(`:NC' J`@C' @C( @C( ]C]CI@C) ^Х@D/* ^5@>DS* ^T@D* ^Xls@,D* <\LDZ iFU}Z  FU}I0= p+= `+[>EZ`EFT p+FQ `+d7`\;mNU+ NI7+ J`@a+ T^FU|[dI@+ PFU|I@', P@FU|I֕@, PFUsd10p;N- J0@P- ZdFU~Ip0@&- I=\ P+=h @+[EZEFT P+FQ @+d7;NU- NI- J@a. T̗ۖFU~[wdI@z. I@Z= 0+=  +[EZ>EFT 0+FQ  +d7#p;NU/ NIR/ Jp@a/ THFU~[֭dIʗ@'0 I'= +=Ȉ +[JEZlEFT +FQ +d7;NU]0 NI0 J@a1 TɘuFU~[1dIP@ڈh1 d.p;NX1 NL2 N@2 J@c53 @o3 [dTFUFT}FQ0[əd[7d[̱cY.dUFU @YFdzFU~FT}FQ0Z˹dFT `I@v3 PFU}I ͙@'4 d.P;͚NX]4 NL4 N@@5 JP@c5 @o6 [ÚdTEFU~FT}FQ0[d[zd[cY8.dFU @YYFdFU~FT}FQ0ZdFT `I@Hu6 P_FU}I@Z6 POFU~dO>f  a7 Na>x8 d=N=8 N=Z9 J@=9 @=8: @=: [dTFU}FT~[d[dY~.dFU @[cZ dFT `YB.9FU|FTFQ1YdYFU|FT~ZҸs{FU|FTFQ1I@: I @̊&; PzFU}d>P<N; JP@< Z%dFUsI@ފD< PFUsI;@< PFUsI m@< J@ @!= PFUIp @4U= J @A= PoFUv^1@P= <1@]= P,FU~I =Hds{!;hN{> N{c> N{> J!@{> @{? @{D? @{z? PVFR0< @@U? <@@b? I`!\=ds{X!;N{? N{R@ N{@ J!@{@ @{@ @{ A @{AA P/FR0I!@@wA J "@&A <ؠ@5A dCP":wNCB JP"@C3C @CC @CC ]C]CI"a@CD ^#؟@DD ^@,D:E ^@DsE ^Х5@>DE <`\LDZm iFU|Z% FU|dCآ#:NCE J#@CF @CUG @CUG ]C]CI`#|@CG ^x@DUH ^@,DH ^1@DH ^P@>DH <@`\LDZM iFUsZ FUsI#@R'I PrFU~I#ڡ@dI PlFUsI$@4I J@$@AJ Ip$.@T>J J$@atJ PiFU|I$`@tJ J%@J PFUsI0%@K J`%@LK I%@K J%@K I%Ƣ@ԋK J &@$L IP&@ZL J&@L PFU}d6`&;DLH`J&@T`L @``M @l`M [զld6`&;LH`J&@T`8M @``rM @l`rM ZlFU}d6` ';LH`J '@T`M @``M @l`M ZlFUIP'@N PFU~I'$@iN ^ԧS@N PFU|^=ȉZǨ.FU~^`Ԥ@N <`@!N PCFU~I'=Z.FU~I'&@ O J(\J(\^Q@l|O <+Q\y<+Q\PGFU|I@(@O J@(@O Ip(@O J(\J(\P׵FU~^aq@YP PqFUs^tl@|P <\ <\PFU|I(@.P J(@;P I)@vP P4FUsI0)@/Q J`)\J`)\·PFUs^z4@zQ 8FT~YPFUsY4kmFUvFQ5YO>FUsFT|[5hd[ohdTFT~# FQ~FRsFXFw1FwvFw1Fw ~Fw01[VmYvO>FT~Y0FUsYbOFU 8[c[7c[cTȩFQ~FR~FX0FY3Fw~Fw1Fw|Fw(1Fw0sFw1Yi&ZFU}FT~FQ~YM.FQ0YaFUsY&ZEFU}FT~FQsYŴ.\FQ0YٴtFUs[&hpYw&ZFU~FT}FQ|[hpXih:YNiQ NiQ NiQ NiR Ni@R x>ìI*+@Ьɜ PRFU~I*N@ PjFUvI +q@ PzFU|IP+ҷ= 0+=  +YEķFT 0+FQ  +[Ed7+J2-NU NI J+@aҠ TFU~[2dI+P@ PFU~I+= += +Y]EFT +FQ +[qEd7 ,O2NU NI J ,@a TFU~[dI`,!@ҭҢ d.,z2!NX NL| N@ J,@c` @o [پdTFU}FT~FQ0[d[jdY.dҹFU @[DcYhdFT `ZFdFU}FT~FQ0I-4@n I0-W@; P:FU}dO>g`-2Nm> Na> d=-ZN=? N= J-@= @=S @=¨ [dE׿~FU}FT~[߿d[d[cYd=FT `Zr.dFU @Y5.~FUsFTFQ1YEdFUsFT~Zs{FUsFTFQ1I@.@a P*FU~Ip.@ PJFU}d/.2HN J.@ ZdFUI.k@ PZFUI/ȼ=( +=4 +[EZEFT +FQ +d7@/2#NU NIì J@/@aX TFUs[udI/F@F PjFUsI/=X г+=d +[EZEFT г+FQ +d7/2NU8 NIn J/@a T7FU}[gdI 0!@v; PFU}d.P02%NX NL N@l JP0@c @oP [dT$FU~FT~FQ0[,d[d[cY.dFU @YFdFU~FT~FQ0ZdFT `I08@ I0K@$ dO> 12Nm> Na>̲ d=1NN=a N=г J1@=? @=u @= [dE~FU}FTs[d[dY.d$FU @[cZdFT `Y.rFU~FTFQ1YdFU~FTsZs{FU~FTFQ1I2@ PFUsI02@ߵ dO`22,N J`2@ Z-dFUI2O@\ PFUI2=̰ +=ذ +[OEZ{EFT +FQ +d733NUP NI J3@aA TFU~[dIP3*@ PFU~I3= += +[EZEFT +FQ +d7733NU! NIW J3@a T\FU~[ldI3@, d. 4J3NXb NLֻ N@E J 4@c8 @o [ dTNoFU~FT}FQ0[Vd[d[ cYX.dFU @YiFdFU~FT}FQ0Z0dFT `I4@ PFU}I4-@ȱ& dO>5Y3Nm>\ Na>I d=50N=޿ N=M J5@= @= @=a [dE~FU}FT~[&d[d[cYdFT `ZS.dFU @Y.TFUsFTFQ1YdrFUsFT~Z}s{FUsFTFQ1I5@( P?FU~I6@: du@6_3N J@6@' Z}dFUI61@Lg PZFU^P`@p P:FUI6@< PtFU}I6@N I7@`R P/FUsI@7@r PFU~Ip7@B J7@O5 PFU~I7B@b J8@o PFUv^ >@~ <>@ P9FU|I@8@4 Jp8@j PFUI8@" J8@/ I9=@ds{09i2_N{ N{h N{ J09@{ @{ @{ @{@ P:FR0<@Mv <@Z Ip9\=ds{392N{ N{ N{N J9@{N @{ @{ @{/ PFR0=Z .FU~^`s=ZZ.FU~^%L@R <2L\<2L\PGFUsI;@u J;@ͮ P{FU~^/?3@^ P?FUs^@ <\<\I;@,R J<\9J<\F^@ڱ <\<\PFUsI@<:@ J@<@2 PFU~Ip<c@j J<\J<\^ @ PFUs^C@6 <C\C<C\PP9FU~I<#@d! J<@qm PFU~^R@ PFUsI=u@* PFU}I@=@ P,FU}Ip=@4 PFU}T~FU<EvFUFQ0FR0FX FY0TļFU<Eټv;FUsFQ0FR0FX FY0TNFU<E|{FU~FQ0FR0FX FY0[hd[hd[hdTFT~# FQ~FRFX~Fw0FwvFw0Fw |Fw00YWqFUY8Wq FU~Y`Wq8FUs[Un[UnYUnnFa~1TxFQ~FR}FX3FY~Fw0FwsFw 0Fw(~Fw80YFU hY_&ZFU}FT~FQ~Y.FQ0Y/+FUsY&ZSFU~FT~FQ~Y.jFQ0Y FUsY[&ZFU~FT~FQsY.FQ0YFUsY.FQ0YFU}Y.FQ0Y7FU}YO.NFQ0YcfFU}[c[c[FcXiP12Nij Ni Ni Ni Ni ?2N ?Ι3N/Y ^/?>N Z%iFUsY#mGFUsY#m_FUsZFUsFT W+FQFR|FX odUAP>WNNU NUX JP>@U9 \U@U \U@Uj @V ] V>VdbA>oNeNtX J>@ @o \\@ >>dEH ?&NEg NE J ?\Edl#Y`?7&N# N~# e7Y`?*NU NI J`?@ad TrFUs[Od^{A\E^SiNE NE IH NJI NI N&I N2I J@@VI9 @bIo @nI @zI @I; \IdH0@iNH NH NH NH; ^ @I\ ^+@I ^J@I ^(9y@I P9FU}[jY}yFU|FT~FQFRYqFU1YkFU Y}yFU|FT~FQFRY(q,FU}ZqFUvZ9hFU|FT xdO>`@zNNm>8 Na>d d=&@cN= N= J@@=R @= @=0 [;dT]FU}FTs[ed[d[ cY%dFFT `Z.dFU @Y.FTFQ1YmdFTsZs{FTFQ1dX?DPAN#Nt? Nj? JPA@~? ^]@?A @?x [IA=V +=V +YEvFT +FQ +[EdO>ANNm> Na>M d=BN= N= JB@=N @= @= [dT=FU~FTs[Ed[AdY-.dXFU @[~cZdFT `Y.FU}FTFQ1YdFU}FTsZs{FU}FTFQ1I`B@V< PFUvdO>BNWNm> Na>J d=BN= N= JB@=% @= @= [dTFU}FT|[d[d[cY/dFT `Z.dFU @Y4.$FTFQ1Yd<FT|Zs{FTFQ1^9X@V POFU|I@C@W6 J@C@Wm PcFU|IpC@1W JpC@>W PtFUv^I=VV<=V]<=V]PFU}ICy@V JC=V^PFU~YFU Z&ZFUvFT~FQsXiQNJNi Ni NiE Ni Nii <\i=iRZcFT hFQ oZBFU FQ FR Hi  {Vni0 Vi ?i, ?i ?Ti ?s N> N= JF@>E @%>{ @1> @=> IF7@N>2 J G@[>h IPGY@n> JG@{>  - P`FUIGAew`iKds{MHai'N{P N{ N{ JH@{ @{ @{N @{ PFR0IPHg?2bi JH?;bi PyFU}]d.fMvtNX* NL+ N@=+ JM@cs+ @o+ [dT0FUsFT~FQ0[d[d[cYdvFT `Y.dFU @ZFdFUsFT~FQ0IM\PFUsYFUsZ+FU `FQ FR 2^ P-;hhP FUsd NzhNW+ NKU, N?, N3, N' - dI @NÈNJX- N J, NI+ NI - J@N@!J- <NI. NJT. N Jx. NI. <\!J:gNg. Ng. Ng/ Ng>/ Ngu/ <@g/ [GiY gFUyFTwFQFR~FX0ZViFUyXI#XՈ/NJ/ N J0 LINIS0 <#X\!J<#XNJ0 LIN J0 NIS0 <#X\!J:g'XNg0 Ng0 Ng1 Ng=1 Nga1 <'X@g1 [,GiY@FU|FTwFQFR~ZGViFUvY;ZFTvFQvFR~FY|Z#FTwFQFR~FXyFY|^?;Qh1 IN?$|h!1 X>h@N>2 N>62 N>b2 N>2 <@>2 @>2 @>)3 @?L3 XHhNHo3 NH3 NH3 NH3 [RjYFUsFTyFQyFRyY qFU}Y$ݪFTwFQyFR~j=sZ;}yFUsY6FU~FTyYCqNFU}[ekT{FUFT|FQsY~FU [Zto t +N=],nN=6, N=,SN=,yN=,N=,GN=-O=-}eP=-Q=-R=-S=-T=-U=-#V=-.=.sj>.'?.,?.T?.Vf@.VA3t-;x=3-;}=3-;~=3-l=w-݊=3-;=3-!=/1tmp=/-;=3-2=/-;=3(-;=3H1tmp=/-;=3f-l=w-݊=3x-;=3-!=/1tmp=/-;=3-2=/-;=3-;=31tmp=/-;=3-l=w-݊=3(-;=3:-;=3L-;/>3^-;=>3p-;S>3-;^>3-;c>3-;e>3-;f>3-;h>3-;w>3-;>3-;>3-;>3$-;>36-;>3H-;>3Z-;>3l-;>3~-;>3-!>/1tmp>/-;>3-2>/-;>3-;>3-;>3-;>30-!>/1tmp>/-;>3p-ew>K3a-2>/-;>/-;?3-ew?K3-2?/-;?/-; ?3-;?3-;?3-l*?w-݊*?3-;.?32-!3?/1tmp6?/-;6?3R-2:?/-;:?3d-;;?3v-;>?31tmp??/-;??3-!N?/1tmpQ?/-;Q?3-2U?/-;U?3-;X?3"-@Z?-E[?/-;v?3f-4x?3E-;{?3W-;?/-;?3x-;?3-l?w-݊?3-;?3-l?w-݊?3-;?3-;?3-!?/1tmp?/-;?3X-ew?K3I-2?/-;?/-;?3-ew?K3-2?/-;?/-;?3-; @3-; @3-;@3-;@3-;@3-l<@w-݊<@3"-;@@34-;K@3F-;L@3X-;c@3v-l@w-݊@3-;@3-l@w-݊@3-;@3-!@/1tmp@/-;@3-2@/-;@3-;@3*-;@3<-;@3j-!@/1tmp@/-;@3-ew@K3-2@/-;@/-;@3-ew@K3-2@/-;@/-;@3-;@3-;@3.1tmp@/-;@3N1tmp@/-;@3`-;@3-2A/-;A3-2A/-;A3-2A/-;A3-2A/-;A3-2A/-;A3 -2A/-;A3@-2 A/-; A3`-2 A/-; A3-2 A/-; A3-2 A/-; A3-2 A/-; A3-2A/-;A3-2A/-;A3 -2A/-;A3@-2A/-;A/-2A/-;AH<cY4 GVn<V5 V\<z@ V<A ? <:C ?S<ZE ?y<G ?<XJ ?G<@M ?>">*>2+ >:V>B>J>R>ZI P @g0 P FUsd\PPPy=e NzPf NnP JPP\Pd7P: NUf NI JP@a T+ FUvFTs[5d[7hZ&7ԶFUsjnPvIP \yP FU~IQ @ P FUvI@Q = += +[6EZ7EFT +FQ +d7~pQ=a NUK NI JpQ@a TR FUs[8dIQ @( P* FUsdO>Q= Nm>q Na>6 d=`R N= N=' J`R@= @= @=; [dT, FU|FT}[4d[E-dYwW.dX FU @[?YcZ^YdFT `Y*2. FUvFT~FQ1Y$Pd FUvFT}Z(Ys{FUvFT~FQ1IR@q PJ FUIR:@- JR@: P: FU}IS=M +=Y +[z:EZ:EFT +FQ +d7@S=NUb NI J@S@a] TFU[9dIS@k PZ FUdO>S=zNm>G Na> d=H TN= N= J T@=R @= @= [\dTFU|FT~[d[U-d[WcYyXdFT `ZX.dFU @YM2.9FUvFT~FQ1YKdYFUvFT~ZXs{FUvFT~FQ1IpT@S Pj FUsIT@ JT@ Pz FU~IT2= p+=  `+Y8E$FT p+FQ `+[AEd7>U=NU NI JU@aX T^~FUv[2AdIPU@ P#FUvIU\-P:$FUsd7U,>5NU NI JU@a TFU~Z@dFU~IUT\?P FUsd7  VP>NUg NI J V@am T: FU|[IdI`V\cP FUsIV@ P,FUsd7 VZ>LNU NI8 JV@a T =FU|[%NddO W\>]NO NO NO NO NO! ^ - @DP P* FUsFT0^-(-@P <-(-@P ^`-p-9@,P; <`-p-@7P_ ZPPjO0jO0jO0IPW|\uP(FUsd7@ W_>NU NI JW@a Ta FU|[zNddOm Wa>NO NO NO NO NO4 ^  P@DP P FUsFT1^(-@-@P <(-@-@P ^p--@,P; N JX@ Zm(dFUsIX@ P:)FUsd73 Y>NUg NI JY@af TU FU~ZBdFU~dOa PY>$NO NO NO NO NOZ ^  @DP P FUsFT0^`&x&@P@ <`&x&@Pd ^@'P'@,P <@'P'@7P ZU4PjO0jO0jO0IYC\PFUsd7 Y>NU NI JY@a T FU|[+BddO Z>NO NO NO NO NO ^%@DPM P"FUsFT0^x&&Q@P QN, JZ@ ZdFUsI0[t@) P FUsd4J`[>ENRJ7 N^J7 NjJ7 NvJ7 NJ! NJ7 NJ7 NJ7 NFJ$ J`[@J% ]JI[(@J[& @J' \J\JPFU~Z4cFT I[d\MP* FUsd7\>NUA' NIw' J\@a@( T FU~Z5dFU~dO,@\>NO( NO( NO( NO( NO + ^JnC@DP+ PkFUvFT0^&&}@P?, <&&@Pc, ^`'p'@,P, <`'p'@7P, Ze4PjO0jO0jO0I\\_PJ FUvd@\>YN!@, N@)- J\@+@)- @5@H. Z;lFU~FTsI\x\qP: FUsd7 ]>NU. NI. J ]@a3 TFU~[;dI`] @ 4 J]\J]\Pz FUsI]>@T4 J]@4 P&FU}I^a@4 PZ FUd7W0^>NU5 NI5 J0^@a6 TwFUv[?dIp^@6 Pj FUvd7^>ENU;7 NIq7 J^@a:8 T-FU~Zb?dFU~dO^>V NO8 NO8 NO8 NO8 NO; ^@DP; PFUvFT0^&&@P< <&&@P7< ^p''2 @,PZ< @o> [dT!FUFT~FQ0[ d[J%d[EcYF.d\!FU @YGFd!FUFT~FQ0ZVdFT `IP`!@ ? I`!@C? P FUd7U`(?/"NU? NI? J`@aQC Tv "FU|[EdI`"= P+= @+[$EEZFEEFT P+FQ @+d7 a,?"NUC NIC J a@aD T"FU~[DdI`a"@9E Ia5#@ oE Ja\Ja\#P:!FUIag#@7E Ja@DF P*&FUsI0b#\WP!FU}I`b#@i8F P !FUvIb#@{F Jb@F P FU|Ib#@I P*!FUIb$@K @BL Ic<$@L PJ!FUsXmOyMM]?$N{OL ZMcFT XFQ3[,=x}dGc?r&NH M NGO NGIP Jc@HKS \H]'H]/HI@d%@_ @}H_ ^z..G'@H ` [.jYeOka'FU~ZQkFU~J0fNHC` NG{` NG` J0f\H\H]'H]/HJ0f\H@H` d&`f (N!a J`f@ja Z2dFUs^'$'8(@Ha P$'FUsZ&4kFU~FQ3dGf?B*NHa NG}b NGc Jf@Hc @HMd ]'H]/HI g)NHd NGd NG e J g\H\H]'H]/HJ g\H@HFe dRPgA)Ne JPg@e Z2dFUs^tp)@Hf PFUsZF4kFU~FTsFQ3Jg@lI0q4@S+ P+%FU|I`q4@Ea Jq@R P%FU~Iq5@e Jq@r] P%FU~I r85@ JPr@ P%FU~Irl5@) Jr@ P%FU~Ir5@؆ Js@: P%FU~I@s5@ Jps@Ї P &FU}Is6@ Js@h P%FU~It:6@% Jt@2 P%FU~^6@A <@N PFU~^6@e' <@rJ PFUsI0t-7= += +[WEZYEFT +FQ +d7!"pt>@7NUm NI Jpt@a% TB"y7FU|[UdIt7@p P~,FU|It7\'Pn,FUs^""7@9 P"FUvIu8=uds{"pu?x8N{܊ N{8 N{n Jpu@{n @{ @{ڋ @{ PUFR0Iu8@a Ju@ P_/FUv9@9 <##@\ P#FUIpv:=ds{$v@9N{ N{ۍ N{ Jv@{ @{Z @{ @{Ǝ PXFR0Iw9@ J0w@M Ps/FUv<% %@ P%FUsI`w:=]ds{)w?:N{ N{ N{8 Jw@{8 @{ @{ @{ PUFR0Iw:@n> J x@{t  3y9?<Nm> Na> d=>3`y~<N= N=C J`y@= @=Փ @=1 [Q3dTv3<FUvFT}[~3d[3dYT.dT<FU @[TcZTdFT `Y3.<FUFTFQ1Y^Qd<FUFT}ZQs{FUFTFQ1^78>=@g <78\<78\P8FUvIyp=@ Jy@ P.8FUsIy>@' ^===@8 P=FUs^>0>=@J̕ P+>FUv^VV>@X PVFUvY=p'>FUsE=s>>FUvE=sU>FUvE=sl>FUvE>s>FUvY>O>FT3[V'ZVx}FUs^<9Z9?@} A@ BFU~FT~YlCFU~FT~[JhdY.CCFUFT|FQ0YhdZCFU2[hYgCFUsFQ~YDgCFUsFQ~Yd.CFU~FTFQsY:.CFQ0YNCFUsYDFU YO>;DFUvFT~Y lYDFUvFT}[jhdYN;mDFU|FT~YolDFU~Yj".DFUsFQ0Y $hDFU1Y*hDFU0Y+.EFQ0Y+EFUsY3O>:EFUsFT~Y8&Z^EFUFTsFQ}Yj9&ZEFUsFT}FQ~Y?.EFQ0Y@EFUsYC.EFQ0YCEFUsYkD&ZFFUFTvFQ~ZH&ZFU~FT|FQ~Xi8  A=FNi Ni, Nic Ni Ni <8  @iט @i Z cFT hFQ {FY .Z FU FQ  FR +bXtG,nX,\X,X-}eX-8X-X-0X-EuXt-GBZ>GZ>G[]G]GI{%O=G=G V+dN[@|)YSMN)Nߦ J@|@3NN @?N I|L@NN @ZN` [FwiI|M@hN PH N2H N&H® NHۯ NH J}@VH @bH \nH@zH} @H @HP @H @H] @H @Hּ @H־ @HG @H @H @H @ I @IU ]"I]*I>2I4hd7\}Y QNU} NI J}\aT\QFU~[qdI0~IQ@cI J`~\pIJ`~\}II~kQ@I J~@I" I~Q@IX PdFUsIQ@I J@I I0Q@I I`Q@J P^FUsdNU^VZRN)Ni J@3N @?N] INR@NN @ZN Z.iiFUsI@aR@hN| Y]hiyRFUsY}hiRFU~ZHiFUsIpR@OJ PcFU}dG^ZTNHI NG] NG J@H) @H ]'H]/HI S@<`><`JL;L;N; L;L;J@; \;\;\;\;@; ><b]<d`0 [WND J0@ ZmcdFU~IpX@J PcFU~IPX@IK< <a=a@VKv P=aFU~IЄcX@sJ d3Y}fmZXNEY J@QY- @]Y @iY ZflFU| $ &I0X@J PiFU~dO>f`|Z2ZNm>v Na> d=!gYN=o N= J@= @=J @= [5gdTVg~YFU~FTv[^gd[id[ncYndYFT `Zn.dFU @YrjdYFTvYj.ZFTFQ1Z os{FTFQ1IUZ@+J PiFUvI@tZ\=JPiFUsIpZ@J Jp@J\ PiFU}IZ@J JІ@J PiFUsI [@ K$ J0@Km PiFUvI`<[@-K J@:K PiFU~^kkk[@?I PkFUs^]lwl[@QI2 PrlFUs^mm[@JU PmFU}^mm[@Jx PmFU~^pp'\@I PpFUs^qqV\@J PqFU~dO>otY]Nm> Na> d=tN]N= N= J@=& @=\ @= [tdTt\FU|[ud[SudYu.d$]FU @[9vcZgvdFT `Yu.t]FU~FTFQ1Yud]FU~Zvs{FU~FTFQ1YO]&Z]FUsFT~[]@rY_m]FT~Y`4k^FU~FQ2YEbq/^FU~[}cc["fcYfda^FUvYfhdx^FU2Yfm^FT~Yg^FUsY4h^FU Yk.^FQ0Yk^FUsYCl. _FQ0Y]l%_FUsYmcQ_FT FQ {Yrmhpk_FT~YmO>_FT}Ym_FU~Yod_FT HY!pd_FT p[MpcYp._FQ0Yp`FUsYq.,`FQ0ZqFU~X2@!oHoBY`LP@N\@ Nh@@ ND@d ZHocFT FQ YZ`FU FR 2ZocFT  FQ ^ZZ3a?; PZFUTYMaFUUFT0PvFQ0+NKi,nK6,K-WK--K-L/-;>L3Oc-2BL/-;BL3ac-;EL3sc-;FL3c-ldLw-݊dL3c-;hL3c-!mL/1tmppL/-;pL3c-2tL/-;tL3d-;wL3d-;L3'd-;L3Ed-lLw-݊L3Wd-;L3d-!L/1tmpL/-;L3d-2L/-;L3d-;L3d-;L3d-;L3d-;L3 e-lLw-݊L3e-;L3Ke-!L/1tmpL/-;L3ye-ewLK/-2L/-;L3e-ewLK/-2L/-;L3e-;L3e-;L3e-;L3e-lMw-݊M3 f-; M3;f-!M/1tmpM/-;M3[f-2M/-;M3mf-;M3f1tmpM/-;M3f-!3M/1tmp6M/-;6M3f-2:M/-;:M3f-;=M3f-;>M3g-l\Mw-݊\M3/g-;`M3Ag-;eM3_g-lmMw-݊mM3qg-;qM3g-;sM3g-;vM3g-;wM3g-;xM3g-!M/1tmpM/-;M3h-2M/-;M3h-;M3+h-;M3Kh-2M/-;M3kh-2M/-;M3h-2M/-;M3h-2M/-;M3h-2M/-;M3h-2M/-;M/-2M/-;MH_fK`w@ VnK VK4 ?bȉ>b x>'bIp}j=4b +=@b +YEojFT +FQ +[6Ed7wKjNU1 NI1 J@a2 TwjFUw[sdIj@Rb3 I0 k\dbPFUsI`lk=vb p+=b `+YE^kFT p+FQ `+[Ed7YxLkNUK3 NI3 J@a4 T}xkFUw[AdIk@bR4 dO>x&L4 Na>u5 d=xlN=06 N=6 J@=S7 @=7 @=18 [xdTyvlFUFTv[ yd[ed[HcYcdlFT `ZÝ.dFU @Y.lFUsFT~FQ1YdmFUsFTvZ+s{FUsFT~FQ1I _m@b8 PZFU}d7kyP5LmNU8 NI29 JP@a:: TymFU~ZdFU~Im@c: J\cJ\ cPFU}I0n@4c: J@Ac; PFUsI0Sn@TcS; P{FU|I`vn@fc; PjFUvIn@h; JЌ@h< PFU^&zLzn@h>< <+zLz@ha< PHzFU~ISo=xc P+=c @+YEEoFT P+FQ @+[*Ed7z0fLoNU< NI< J0@a> TzoFU}[dIpo@c? P"FU}dO>zsL2qNm>@ Na>A d={0pN=B N=C J0@=C @=D @=D [&{dTL{lpFUFTv[T{d[Ud[cYdpFT `Z.dFU @Y.pFU~FT~FQ1YΒdqFU~FTvZ s{FU~FT~FQ1IEq@cD d7{LqNUE NIUE J\aT{qFUs[ːdIq\dPFUd{0LrNE J0@E ZڃdFU~Ipr@dF d7-|LlrNULF NIUE J\aTM|]rFUs[ddF`|L sNFF NFG NFJI NFI ^z||r\G@G\J @GJ @(GJ Y"4krFU~FQ2Z-FU~FT1jF0I0/s\dd|`LtsNJ J`@K Z؄dFU}Is\dPڅFU}IАs=d +=d +YɔEsFT +FQ +[Ed7!} LQtNUL NIOL J @aM TF}BtFU~[:dI`dt@ecM d.}L`uNXM NLM N@UN J@cN @o O [~dT(~tFUFT|FQ0[0~d[dYƖFduFUFT|FQ0[cYdCuFT `Z.dFU @Iu@eiO PFU|I u@eO PjFUdw~PLuN4P JP@Q ZdFU}Iv@e9R P:FU}Ikv=e +=e +[SEZuEFT +FQ +d7~MvNUS NI!T J@a(U T vFU[ΘdI0v@fsU PʈFUdO>0`MFxNm>AV Na>V d=_wL=N=`W J@=W @=X @=tX [tdTwFU~FTs[d[d[KcYhdwFT `Z.dFU @Y̊.xFU|FTFQ1Yd%xFU|FTsZs{FU|FTFQ1Iix@`fX PFU~^x\rf<\fPFUsI@ y=g и+=g +YBExFT и+FQ +[Ed7^MgyNUX NIY J@aY TŀXyFU}[{dIy@"gY PJFU}d7܀aMyNU,Z LIJ\aTyFUs[ddO0cMzNObZ NObZ NObZ NObZ NOb[ ^&JVz@DP[ PGFU}FT0^ 8z@P5\ < 8@PY\ ^8Pz@,P|\ <8P@7P\ ZkPjO0jO0jO0Ip {\4gPzFU}Ij{=Fg +=Rg +[ƓEZEFT +FQ +d7ŁЕoM{NU\ NI\ JЕ@a] T{FU~[dI{@dg ^ I@{\vgP FUvd.*ptM|NXC^ NL^ N@_ Jp@c(` @o` [DdTmp|FU|FT}FQ[ud[EdY.d|FU @YHFd|FU|FT}FQ[cZݕdFT `I}\gP;FU|I9}@ga P*FU}I@\}@ga PFUd7ǂpM}NUVb NIb Jp@ajc T}FU~ZdFU~I}@gc J\gJ\gPzFUvI-~@gd J@gMd PFU|IPP~@ hd PjFUIs~@hd PZFU}d0bM~N1;e L1J@)1e T~FUsFT~[I~@0he J0@=hDf I`$@Phzf J@]hf PwFUIV@phf J @}hg P5FU}IP@hRg J@hg PMFU|I@hg J@hg PdFUvd7-M NU*h NI`h J@a>i TFU~Z dFU~IPY@fi J\fJ\fPkFU|I@fi J@f!j PFUsI@fWj PZFU~^ 0݀@fj P!FU}I =~eds{PL\N{j N{ k N{Bk JP@{Bk @{xk @{k @{k PFR0<ׇ@el <@e=l ^nȉƁ=PeZ.FUdO>AL'Nm>`l Na>l d=ĂN=Wm N=m J@=m @=n @={n [dTaFUvFT[d[-dY.dFU @[ cZ;dFT `YE.FU}FT~FQ1YEdFU}FTZ>s{FU}FT~FQ1dO>| 9MNm>n Na>Lo d=P%N=o N=o JP@=p @=]p @=p [dTƒFUvFT[d[*dYv.dFU @[cZdFT `YB.IFU|FTFQ1YDdgFU|FTZ^s{FU|FTFQ1^@bp <\b<\bPFUsI@bq J@bIq PčFU~dO>?MxNm>lq Na>q d=mN=r N=^r J@=r @=s @=_s [dTFU}FT~[d[dYΚ.dFU @[cZdFT `Y.9FUvFTFQ1YdWFUvFT~Z-s{FUvFTFQ1^Ն@cs <\c<\cPFU~I@cs J@ct PFUI@d=,d 0+=8d  +[EZ0EFT 0+FQ  +^@Jd't PFU^2C‡@d]t PCFUv^K[@dt P[FU~Ip@"et J\/eJ\FU}YKÊFU~Y&ZFU~FTvFQsZ&ZFUvFT|+i4,n46,P4,d4,y4-41-4-*/4t-(4"-4"-4+-j, 4- 4-i~ 4+-. 4+->h>ƌ>ΌB>֌>ތ>>>>>ɵ>>>>&>.>6>>>F(>N(I@[ P~FU~IР=@m˼ PoFU~dC6LNCf J@C! @C- @C- ]C]CIp6@C- ^@D IС̛@,D ^R\@D ^\r @>D) <6F\LDZ> iFU|Z FU|I= += +[EZEFT +FQ +d7@4NUc NI J@@a T'FU}[dI'@S PFU}I= д+= +Y EzFT д+FQ +[nEd7|4NU NI J@aT TԝFU}[dI0@͍ PrFU}I`@ I,@ IO@T PFUsdk5 NG N; N/ J@S @_ >k]sT֢ԞFU3FT~FQ~FR~Z/FU FT RFQ <FR %I@M@+f J@@8f Jp@E PFUvdd$y5N Nv J@d @ I@ PbFU~FTvFQY3fݟFUFT|ZqfFT|dd0{5NW Nv J0@ @? Ip]@ PFTvFQYf{FUFT|ZfFT|I @Y0 JХ@ff J@s I0@ Jp@ I@> IЦ @t I@ː I@J@ؐ Jp@ƕ PFUsIV@ٕ JШ@ PFUs^4\@C <>\@h P\FU~I=ے p+= `+[VEZuEFT p+FQ `+d7:@6FNU NI J@@a [dIY@D I=  P+= @+[EZEFT P+FQ @+d76NUz NI J@a [1dI@@)1 Ip3@g PFUIF@ IЪY@  dd297N NvR J@ @ IPͤ@ P}FUvFT~FQ~YKfFU~FTZfFTdd;7N/ Nvx J@. @ Iq@ PFT~FQ~YfFU~FTZfFTI إ@ JP@,2 J@9h I @M J@Z PFUI@m I0@T ^@ [oqYԫXrFUsFa~1FT~FQvZqFU~IP\P_FUvI@ PPFUsI=Mds{4aN{" N{X N{ J@{ @{ @{ @{0 PFR0I`@^ J@k PZFU}_>_T.FU2FT~FQ~Z8j_~j_~I$=Î +=ώ +[EEZgEFT +FQ +d75NUw NI J@a TpFU[dI @g PнFUd7ͱP5NU NI JP@aB TFUs[dIZ= += +[bEZEFT +FQ +d755NU NI J@a2 TVFU|[$dIح@} PFU|I0@ I`@ I@2 I1=i[.ddD6ϮNh Nv J@3 @ I0@' POFT}FQY&fFUFT~ZfFT~I`@/] J@< J@I I"@] J0@j5 I`5@}k IH@ Iдm@ d)8`Z6,N[$ NOl NC N7 J`\fX=8YěݯL=<8Y@= I@w2 ^py@h V N> N= J@>" @%>X @1> @=> I@@N> Jp@[>C I5@n>y Jж@{> PTFUvJ@> J0@> P`FUsI`@> <̶޶@t ^ͱ@ґ <@ߑ I@ < @ I@7 PFU|^۷=@$m Ib@6 PFU~^!8@H <+8@U I ʲ@h# g@HY f@ Y.ùFUFQ0TçFa~1FT4TFas81FT1[`hdY.'FTFQ0Y?O>?FTY.\FUvFQ0Y{FU [ʲhdY.FQ0[d[O>Y".ֺFU|FQ0[]kE[{[ٿc[Pc[{Xi՟3Ni Ni Ni$ NiH Nil <՟@i @i ZcFT hFQ FY .Z^FU FQ FR HmP cVn6E V Vy V" VdK5 VG 95ut?*2SN ?3N -f-? 6O ?2"|Q ?wQ AKw_?0~T ?\ ?zc ?qj ?si3Yu ?'1v ?}ey ?} ?:W ?-L ? ڟ ?]K ?R ? ?X ? ?Bf ? ? ?*qNm>Na>Ӣd=0N=N=J0@=g@=@=[<dEpxFU}FT~[xd[XdY.dFU @[cZdFT `Y5..FUxFTzFQ1Y4dNFUxFT~ZXs{FUxFTzFQ1I?2+nJ?;+P FU~I?;.I?;;$I?;>ZI@??2JJ?;JhP FUvI?2KJ?;KvP; FU|I?2LJ@?;LP* FUs^:)?!3><:Dtmp6a<-:?;6^Zt?2:YR&ZFT}Y|jHOxYݪ7FRsj=xYvVFU 8YFUxFTyFQyFRyY.FQ0ZŴFU}dNlJ@[dI ?;IxAlw +A݊ +YEjFT +FQ +[Ed7P`NUHNI~J`@a[vdI?;I ?25J?;kI@#?;dLG)pNGױNvGױNjGN^GI\G\G@Gn@GY4kFQ3ZFT0jG0I?;do NJ @L[dIp)?;IAl@w +A݊@ p+YEFT +FQ p+[Ed7,BNU´NIJ@a.[dI0?;DyI`dAlEw `+A݊E P+[^EZEFT `+FQ P+d7GNUNIJ@a.TFUs[`dI?;IyPoFUsI TAlJw @+A݊J 0+[EZDEFT @+FQ 0+d7&`LNUNIJ`@a.TKFUs[dI?;NyPFUsdO>Y@Nm>Na>d=PN=aN=йJP@=0@=@=[dTtFU}FT|[d[2dY.dFU @[,cZZdFT `YnH.FUxFTzFQ1YdFUxFT|Zs{FUxFTzFQ1Ij?;[WPFU|I?;^PFUsd7v_NU5NIkJ@a[dI@?;aټdO>plDNm>Na>d=N=XN=ھJ@=@=@=[dT7FU}FT|[?d[2d[cY7dFT `ZN.dFU @Y!I.FTzFQ1YMd)FT|Zgs{FTzFQ1I`t?2m]J?;mI-;nPFU|I?;qdX?0|#Nt?Nj?5J0@~?k^L@?@?[(I`=?;/I}Dtmp01J?;0P FUsd7 DNUNIJ@aUT%FUxZdFUxdLG=PFNGNvGNjGN^G^W|U\G@G@G=@GaYߖ4klFQ3ZFT1jG0I?;HdINJ@[rdI0?;JOd7pj_NUNIJp@aTGFUxZ5dFUxIy?;mdanNEJ@{[dI@?;oI<Alw +A݊ +[~EZEFT +FQ +d7 NUNIDJ@az[CdI?;dO>~@Nm>Na>d=N=N=J@=@=@=[dT8FU}FT|[d[2d[cYd~FT `Z+.dFU @Y;I.FUsFTzFQ1YdFUsFT|Zs{FUsFTzFQ1I@?;IpB?;PJFUvdwN J@C[dI?;I0Alw +A݊ +[AEZcEFT +FQ +d7``NUNI J`@a{TQFUs[dI?;PFUsd7CNUNIEJ@a{[HdI?;I0A?!J`Dtmp2J`?;2PFUsI?2{J?;Pz FUvI?;I?;1PkFU|dD NJ @H[dIp?;I7?; d|NJ@mZMdFUsI0?;!PFUs^^~?;jP~FUxd7p`DNUNIJ`@aT,FUxZdFUxd0N1N1`J@)1TFTy[/eI?;dFkNFNFNFNF4^:h)\G\G@G@(GY#4kHFUyFQ2ZkFUyFT0jF0I`?;>IAlw +A݊ +Y{EFT +FQ +[Ed7;NUtNIJ@a[^dIU?;+I@?2aJ?;I?;dLG3NGNvGNjGN^G*I0\G\G@G@GY=4kFQ3ZFT0jG0I`M?;dN.J@d[dI?;^?;I6AlMw p+A݊M `+[EZEFT p+FQ `+d7PONUNI3JP@a|TFUs[dI?;QPFUsI*AlYw P+A݊Y @+YUEFT P+FQ @+[iEd7?[NUNI3J@aTdxFUx[dI0?;]2I`?;_hPFUvI?;bI?;cP*FUsI)?;d0I iDtmpefJ ?;efPFUsd2`NJ`@SZ=dFUd7iNU NI J@a TFUxZdFUxIZ?!i JDtmp J0?; dO>`Nm> Na>d=XN=N=MJ@=p@=@=[4dTYFU|FTv[ad[ dY.d.FU @[cZdFT `Y4.vFTzFQ1YldFTvZs{FTzFQ1I?2KJ?;P FUvI0?;dO`PNONONOQNONOUI@DP8I @OPTFU}[rh[@gPLFU}^**@P<**@P^00 @,P*<00@7PgZPFU}FT jO0jO1jO0dePXNJP@[dI?;YdzN6J@l[R dI?;{I0oAlw а+A݊ +YEaFT а+FQ +[kEd7qNUNIJ@aN[ dI?;dO>1Nm>Na>d=,`N=N=_J`@=@=@=M[?dTekFUsFT|[md[@dYnx.dFU @[ycZ>ydFT `YQV.FUvFT{FQ1YdFUvFT|Zs{FUvFT{FQ1IK?;Iu?;P&FUsI?;;d@NqJ@@?Z$dFUvI?;P&FUvd7ldNU\NIJ@a!TLFUxZ_dFUxI?!"J@DtmpD"Jp?;z"dO>Nm>"Na>8#d=MN=#N=#J@=$@=o$@=$[adTEFUvFT|[d[(dYy.d~FU @[cZ<dFT `Y#A.FT{FQ1Y&dFT|ZBs{FT{FQ1I`)?2%J?;7%IC?;m%IDtmp%J?;%P&FUxI0Alw +A݊ +[REZtEFT +FQ +d7k`KNUh'NI'J`@a (T<FUv[dIu?;X(P 'FUvIAlw +A݊ +[EZEFT +FQ +d7=NU(NI(J@a)TA.FUx[=dI@W?;A*Ip?;w*PZ'FUsI?;*I?;/+P'FUvI?;+d70&ENU ,NIC,J0@a!-T-FUyZPtdFUyIp?!,q-JDtmp/-J?;/-I?23.J?;3].P(FUsI@?;6.dO>pa6Nm>.Na>>/d=ON=/N=/J@=0@=O0@=0[$OdTJOFUFT}[ROd[OdYf.dFU @[XcZ|dFT `YO.FTyFQ1YdFT}Zs{FTyFQ1dO>0Nm>0Na>1d=9N=;2N=2J@=2@=)3@=3[dExFUvFT~[d[$dY[.dFU @[ \cZ-\dFT `Y%.^FUFTyFQ1Y2Ud|FUFT~Z]s{FUFTyFQ1dO>JNm>3Na>4d=P`N=I5N=5J`@=5@=(6@=6[PdT+Q9FU~FT}[3Qd[QdYۀ.drFU @[cZ#dFT `YQ.FUxFTyFQ1YFdFUxFT}Zjs{FUxFTyFQ1dCLN6J@b7Z%dFUsIv?;Dm8P FUsd70NNU8NI%9J@a:TRFUy[TTdIP?![";JDtmp^X;J?;^;IY?2b;J?;b<P#FUsI s?;cD<IP?;fz<IDtmpg<J?2g<J?;g =P#FU|dr(NB=J@=Zu dFUsI0R?;se>P!FUsI`Alw p+A݊ `+[YEZYEFT p+FQ `+d7 NU>NI>J@a?[ZdI?;e?IN?2?J@?;?Iph?;@IDtmp=@J?2=@J?;@P#FUxdONO'ANO'ANO?CNOWENOEIm@DPFIZ@OPGT8?FUx[th[u@gPUFUx^$0$@PKG<$0$@PG^$$@,PG<$$@7PGZoYPFUxFT jO0jO1jO0I=?; HPO"FUsI mDtmpgHJP?;Hd7NUHNI IJ@a7KTFUx[BXdd.SNXoKNLLN@LJ@cM@owM[mdTAFU|FTsFQ[d["dY[.dzFU @Y[FdFU|FTsFQ[[cZ[dFT `I0?;kNI` ?;NPz"FUsI&?;IOI|DtmpOJ?2OJ?;:PP:$FU~I0Alw P+A݊ @+[aEZ6aEFT P+FQ @+d7c`BNUpPNIPJ`@a;QT3FU[#`dIl?;QP"FUd.jNXQNLRN@SJ@cT@o\T[ dT5FU}FTFQs[=d["dY^\.dFU @Y_Fd@FU}FTFQs[bcZ.bdFT `I0?;vUI`?;UP"FUI?;TVP"FUsIo?@V?EWI@?;WXmOpaN{OXZcFT XFQ2[x}IpDtmp:XJp?2:XJ?;YYPj$FUxIDtmpYJ?2YJ?;ZPZ$FUvd720$xNUZNIZJ0@ac]TRiFU}[E\dIp?!*]JDtmp-}^J?;-}^I?21^J?;1^PJ$FU~I(?;43_PZ#FUI0B?;5_d7`>NU_NI4`J`@aNaTFU|[x_dI?!DaJDtmpGaJ?;GaI#?2KbJ?;KbbPz$FUvI@M?;NbP#FUIpDtmpObJ?;OccP8#FU|d7KYNUcNIdJ@aeTwFU~[jdI ?;]ZedKP^|NKeNKeNKeNKeNKeNKfNKfNKXgNKhNKhJP@ Lli]L^/R@Li@*Lj@6Lj@BL2k^@SLk@_LkZeFUxFT^/3@LlP/FUvPFUxFTvFQ~ZVcFT `FR I?;_lP#FUd7Bh NUlNImJ@amTbFU~[ZdI+ ?;lmP#FUI0m Dtmpm-nJp?;mznP#FUxI Alw  +A݊ +YzE FT  +FQ +[m}Ed7t# NUnNInJ@a3o[|dI@= ?;~od7p NUoNIoJp@a1qT FUxZKdFUxI Alw +A݊ +[REZ~EFT +FQ +d7<U NUqNIqJ@aq[~~dI0o ?;8rI` ?;nrP FUsI ?;rdo NrJ@s[* dI ?;msIPz Alw +A݊ б+YEl FT +FQ б+[Ed7 NUsNIsJ@a uT FUx[dI ?;VuI\ Alw +A݊ +[KEZmEFT +FQ +d7m0 NUuNIuJ0@a}vT FUv[dIp ?;vPFUvd7GNU]wNIwJ@ayT/FUxZÿdFUxdO>Nm>yNa>zd=)PEN=zN=O{JP@=r{@={@=|[=dTbFU|FT}[jd[AdYw.dFU @[ϺcZdFT `YS .cFTzFQ1Ycud{FT}Zws{FTzFQ1I?2`|J?;|I?;|P'FU}I0 ?;N}d7`gNU}NI}J`@a~TXFUx[ odI?;~dO>INm>Na>d=PN=8N=JP@=@=&@=[dTFU|FTv[d[AdYm.dUFU @[MycZqydFT `YQ.FUsFTzFQ1YjmdFUsFTvZms{FUsFTzFQ1I?;ށI&?;P (FU|dmmNJ@Z%dFUxI@?;fIp?; PJ'FUsI?; I?;!I'DtmpWJP?;PJ(FUy^  y1tmp{<  -;{P FUxI|AewK{ds{ N{N{sN{J@{@{@{T@{PvuFR0I0/?2ۆJ`?;II?;G<  ?;}P FUvIAl4w +A݊4 +[ʧEZEFT +FQ +I?;8P2FUsI0+?;:I`W?;=EP?3FUxI?;>P03FUvI?;?d7"NU&NI\J@aދTFUxZ?udFUxdF0"NF.NF.NFnNF^,o\G\G@G@(GY4kFUyFQ2ZoFUyFT0jF0I-;"dD" NɏJ@KZdFUvI6?;"P:FUvdLz H#NLNLPNLPNLJ \ M@M ^@'M<@4MPFUyZl FU FQ H#I`7?2I#J?;I# PFUyIy?2J#XJ?;J#P FUyI ?2K#JP ?;K#iPFUxI ?2L#J ?;L#P*FUxI =?2M#eJ ?;M#P;FU|I@ }?2N#Jp ?;N#-PJFU}I ?2O#cJ ?;O#PZFUxI ?2P#J0 ?;P#_PrFUyI` C?2Q#J ?;Q#PFUxI ?2R#[J ?;R#PFUxI ?2S# JP ?;S#SPFU~I ?2T#J ?;T#PFUxI G?2U#8J ?;U#PFUI@ ?2V#Jp ?;V#PFUyI ?2W#fJ ?;W#țPFUxI ?2X#J?;X#PjFUxI0O?2Y#bJ`?;Y#PzFUx^?2Z#<?;Z#!PFUxd7#NUFNI|J@a؞T4FUxZdFUxIzAl #w +A݊ # +[EZ#EFT +FQ +d7| #NU(NI^J@aTFUx[dI@?;#3Ip\Al#w p+A݊# `+[EZEFT p+FQ `+d7U#NUiNIJ@aTFUs[cdI?;#YPY3FUsI?;#d.@#NXNLbN@עJ@@c@o[*dThnFUvFTx[pd[#4d[cYdFT `YFdFUvFTxZ5.dFU @I ?;#]P4FUvI5 ?; #ߤIO ?;!#d.k@*#E!NXKNLͥN@-J@@c@o[dT FUxFQv[d[@4dY.d FU @YFd!FUxFQv[scZdFT `I[!-;,#Iu!?;-#ZI0!?;.#dX?Sp^""Nt?ƧNj?Jp@~?E^h!@?{@?ZpFUsd7k"`"NUըNI J@aTQ"FU}[pdI"?!q"eJDtmpt"J?;t"P FUxI@"?2x"J@?;x"ZP:FUsI"#?;{"PFUv^<p|#Dtmp|"ƫ<<p?;|"ƫPfFUyI#?2=#J?;=#!I#?2>#WJ@?;>#PFUsIp$?2?#ìJ?;?#IL$?2@#/J?;@#eI0|$?2A#J`?;A#ѭI$?2B#J?;B#=P/FUvI$?2C#sJ ?;C#d7 P"G%NU߮NIJP@aǰT@8%FU}[wddFS"%NF&NF&NFbNFٲI%\G\G@G@(GY4k%FUvFQ2ZFUvFT0jF0I&?;",P3FUvd@"X&NԴJ@@Z0dFUxIn&-;"I&Al"w +A݊" +[6EZEFT +FQ +d7"6'NUUNIJ@a*T#''FUx[ޚdI0P'?;"ud7O`"'NUNIJ`@aTv'FUxZdFUxI'-;"Pn(FUxd."(NXNLN@J@cf@oȹ[dTQ(FUvFQx['d[(d[ycYzd(FT `Y.d(FU @ZDFdFUvFQxI@(?;"JP(FUvIp)?;"d0u")N1N1J@)1#Tl)FUxFT}ZFUxI)-;"P(FUxd4J0!}/+NRJNJNJNJNJNvJSNjJN^JNFJӽJ@J7]JI@+@J@Jɾ@J8@JIp*@J@KyI*@8KJ@EKP$FU}YX!d*FU0Zx!eFU}FTxI*@qK"P!FU|P!FUxFT|Z}wcFT ^!!e+?;XP!FUsI+?;{P.FUvI@+Dtmp#Jp?;lP/FU}d7*5,NUNIJ@a\T+,FUyZ odFUyI,?!J DtmpJ ?;P /FU}IP,?2>JP?;P/FUsI,?;P.FUvd7+[-NUNIPJ@aT+C-FUxZdFUxIu-?;I -?;P*/FUvIP-?;P>/FUsI8.Alw 0+A݊  +YpE*.FT 0+FQ  +[vEd7,.NUZNIJ@a[MpdI .?;IP/Alw +A݊ +[ӁEZEFT +FQ +d7-K/NUGNI}J@a[pqdIe/?; I/-; P/FUxI0/?;4P/FUsI`/?;jI/?;P/FUvI;0DtmpJ?;P/FUs^12w0AewK{Z1.FUxdC51NC!J@C#@C@C]C]CIP ~1@C^>>0@D^h??1@,D^??11@D^??P1@>D&Dl`9IP$6Al w +A݊  +[/EZNEFT +FQ +d7S9$ 6NU7NImJ$@a[dI$ 7?; d`9 % c7N`$J %@`z@`@`SZ9rFUsd`9P% 7N`JP%@`@`,@`Z9rFU I%%8Al w Я+A݊  +[4EZSEFT Я+FQ +d7:% l8NUNI*J%@a`[բdI&8?; d.3;0&!9NXNL-N@J0&@c@o8[Q;dT;8FUvFTxFQ0[;d[Id[1cYQdD9FT `Y.dc9FU @Z FdFUvFTxFQ0I&9?;!nI&9?;!POIFUvdl;&!R>NlNlJ&@lJ= m{@m\!m>-m>ek;'MNkNlVN lNlNl>]ld?;' ;L?J'\?\?>?GeX?; (nrNt?Nj?2J (@~?h^ <<<r;@?@?[GXkt<y=;NkNkJNkIP(;@lJ(@lPOFUvdDk7U(.k<NnkTNzkNbkLVkJ(]kY2VdN<FT `Z\dFT  d[AeU(0<LmALANA8NyApJ(]AZUcFT FQ0djU )39=NjNkLjJ )@k]kJ )@6kZdFT XUU5=N,N BNnNFT YG {.>FU +ZJHcFT FQ1X6`}BB>LH`<}BB@T`@``@l`ZBlFUxd6`BP) ?LH`JP)@T`@``@l`ZBlFU~I)4??;PRFUvI)N??;* I)x??;` PQFUsdC*?N J*@ Z PdFUvIP*??; PJ-Dtmpw tJ-?;w tPQFUy^FF'E?2{ !PNFUvI0G?;?!I0H?6$F!!=XL"NqN!HN~Nr Nf< NZa <"NqN@ @ @ @ @ @ƙ!ZTNfFUsFT0FQvFR0FX0[LoqYMfHFUvFT0FQ|FR0FX0Z\MqFUxd.\M1"INXO!NL!N@Y"J1@c"@oV#[MdTMLIFUxFTvFQ0[Md[Nd[LucYudIFT `Y.dIFU @Z@FdFUxFTvFQ0Ip1J?;"#PNFUx^ N"N6J?; "#PNFUsI1|J?!$J1DtmpG$J2?;}$dkEV020KN}E$d=W2^pKN=P%N=%J2@=%@=2&@=&[1WdT`W KFU~FT0[hWd[WdY.dFKFU @[cZՈdFT `^#CKN}E&Z9.FUxFQ0ZW.FUxFT0FQ0I2L?4&Ip3K?;'I3L?;'^rr>L?;([Sapqa}qa}qa}YaOLFT2[*r'Z6rx}FU}I3LAew y{Zgl.FUv^ mPmPM?! <(<mFmDtmp r(<mFm?; r(P+mFUv^}}M?!(<}}1tmp<}}-;^M?;(dO>49ONm>(Na>)d=م04NN=)N= *J04@=f*@=*@=1+[dTsNFU}FT|[d[\d[~cYdNFT `Zdž.dFU @Yw.NFUsFTzFQ1YdOFUsFT|Zs{FUsFTzFQ1^Ti_O?;g+^O?;+PFUx^zO?;+^O?;W+^֛ P?;|,I43P?;\ +,PFU}^ԠP?!a,<Dtmp,<?;,PFUs^ ,Q?2,< ,?;,P"FU}^ùQ?!-<ѹDtmp$-<ѹ?;$-PFUs^Q?2G-<?;~-PFU}^˾AR?!-<˾Dtmp-<˾?;-I4mR?;(" .PFUx^wR?!W.<Dtmpz.<?;.^R{AS?!.<^{Dtmp.9p5TNm>o/Na>/d=o5TN=0N=0J5@=0@=I1@=1[dTTFUvFTx[d[dY!.dUTFU @[acZdFT `Y.TFU}FT{FQ1YCdTFU}FTxZZs{FU}FT{FQ1^NU?!f1<Dtmpi1< ?;i!2^U?!D2<Dtmpg2<?;g2PFUv^ V?22<?;2PFU}^;PFV?;2^%:lV?;f3^V?!S*3<1tmpV<-;V^1&W?2ZM3<1?;Z3P,FU}Ybhd=WFU1[h[gY4kvWFUyFQ1YO>WFTxYOpWFUxTeWFU<E|sWFUxFQ0FR0FX FY0Y64k XFTyFQ3T%XFUsFT~Y[UnAXFax1Y4k`XFUxFQ0Y&Z~XFU|FTv[UnY4kXFTyFQ4YC.XFQ0Y^XFUsYJO>XFTxYf. YFQ0[Yhd.YFU1[hYgSYFQvY.kYFTsYT4kYFUxFTyFQ4Y4kYFUxFQ0Y4kYFUxFQ4Y4kYFTxFQ0YhdZFU1[hYsg+ZFQsY.CZFTvY}O>[ZFTsYrr}ZFUxFTxYhdZFU1Y&ZZFTsY4kZFUxFQ4YvO>ZFTyYvr[FUxFTsYhd[FU1[h[;gYhdM[FU1[hYgz[FUsFQxY &Z[FUFTvFQ}Ym[FUxY{;m[FUxFTY4k[FUxFTxFQ0[hdY=.1\FUxFTsFQ0Ya4kP\FTyFQ4Y 7j\FUyY hd\FU2[ hY g\FQxY_ 7\FUs[ gY .\FUxFTvYhd]FU1[h[gYhd5]FU1[,hY^g\]FQyY&Zz]FUvFTsY]FU 8[ChYg]FUxFQxYki]FUxFQxY!ki ^FUyFTsY*r(^FU}FTvYU+&ZN^FUvFTsFQxY+hde^FU1[+hY,g^FUsY+,.^FTvFQsY-hd^FU1[H-hYj-g^FUvY.g_FUvFQxY>.."_FUsFQv[x0kEY6hdF_FU1[7hY7gm_FQx[:hd[>c[?cYBr_FUvFTyYB4k_FTsFQ4TlC `Fa 1Fb~81Fc 1?FU7[CdYbDO>1`FU|YE.N`FU}FQ0YSErp`FUyFTxYFO>`FUs[Kd[LdYhLO>`FUvFT|YU&Z`FQyYfkE`FU|Y~kkE aFUs[mkEYh..aFQ0[Y;.RaFQ0[TYy.vaFQ0YaFUsYa.aFQ0[zY.aFQ0[Y{aFUx#j@xY.bFQ0[֛Y&Z>bFUvFT}Y&Z\bFU|FT}Y&ZtbFQ}YO>bFUxYUkEbFUx[ kEY&ZbFQxY&ZbFQxY8&ZcFQ|Y&ZcFUsFT}Y&.6cFQ0[;Y.ZcFQ0[%Z&ZFUsFT}FQ|B=!3gVn!5V\!7V!7?"8?y#89?$9?d%l:?&;?5u't;?[d[cXi-BgNiA>Nie>Ni>Ni>Ni><-\i=iRZ-cFT hFQ YnagFU}FwsZlFU 8FQ FR  g  g +umAq,nmA6,PmA,mA,ymA-nA"-(oA"-~pA"-qqA"-$rA+-6sA+-6tA+-uA+-svAi3- wA6-KxA-yA--*zA-}e{A-%C|A-C.DC.VD. D.ѷC.Y D.HwC.D.ZD.@D.YD.^D3j-;A3/j-;A3Aj-;A3_j-l*Bw-݊*B3qj-;.B3j-l6Bw-݊6B3j-;:B3j-;m-;C3^m-2C/-;C3~m-2C/-;C3m-2C/-;C3m-2C/-;C3m-2C/-;C3m-2C/-;C3n-;C3"n-;C34n1tmpC3Tn-2C/-;C3tn-2C/-;C/-2C/-;C3n-lDw-݊D3n-;D3n-l"Dw-݊"D3n-;&D3o-;(D3o-;+D3'o-;,D39o-;-D3go-!{D/1tmp~D/-;~D3o-2D/-;D3o-;D3o-;D3o-6$D!3o-;D3o-;D3o-;D3p-2D/-;D33p-2D/-;D3Sp-2D/-;D3sp-2D/-;D3p-2D/-;D3p-2D/-;D3p-2D/-;D3p-2D/-;D3q-2D/-;D33q-2D/-;D3Sq-2D/-;D3sq-2E/-;E3q-2E/-;E/-2E/-;E+Dx@h&y@h{@h@hI@hކ\h=h~=i~=i@iG@+i@7i@CiJ@Oi@[iG@gi@si!\i>i)>i >i?>ig>i>i>i?>i>i+>i>i)>i)>i;0>i>i>jI7zv@jPFU~I7v@"j}P FU~I 8|@l)d)8CwN[NONCTN7)J8\fX=ě4wL=<@= I 9Gw@wB^fw@<@˞IP9w=l +=l +Y$EwFT +FQ +[0Ed7T9C+xNU`NIJ9@a̟['dI9>x@lI :`x@mMJ`:@mI:sx@1mdd_ :CxNv_J:@_{@_@_ZlFU~I:x@CmhJ0;@PmPFUI`;0y@cmJ;@pmPFU~I;by@mSJ;@mPFUsI <y@m<((@mIP<y@m<7(D(@m(dd_(<CzNv_KJ<@_@_@_Z(lFU~^))Fz@nΤP)FUv^)/)ez@n^/)I)z@9n<<)I)@Fn7I<z@YnZ<_)l)@fn}I<z@un<))@nå^ +/+P{@l<+/+@l <"+/+@l,^++{@mO<++@mr[jYO>{FTvY4hd{FU2Yo({FU Y(|FU}FT~FQ~FRY(hd)|FU1Y(mI|FUvFT~Y)ݪu|FTFQ~FRsj=}Y)ݪ|FRsYk*p|FUv[*ݪZI+&ZFQvI=(}=n +=n +Y#&E}FT +FQ +[7&Ed7P=Do}NUNI˦JP=@a[,dI=}@nLI=}=n ж+=n +YV,E}FT ж+FQ +[j,Ed7=$D@~NUNIJ=@aBT1~FU~[%dI0>S~@nI`>t~\nP~FU~d.G>)DrNXèNLʩN@J>@c@oC[`dT~FUsFTFQ~[d[Zd[D&cY_&d1FT `Y-FdUFUsFTFQ~Z2-.dFU @I?@o$I0?@oZIp?@,odC>?VDƀNCƬJ?@Cn@C@C]C]CI @@C̯^'@DE^F@,D^e@D^@>Dݰ<|\LDZ iFU|Z0# FU|ddX@sDjNNv`J@@@ŲI@6@PFUFTvFQ|YgfTFU|FT}Zf0fFT}ddAuDNDNvJA@ʹ@RIPAԁ@ PFTvFQ|YfFU|FT}Z 0fFT}IA9@>oCJA@KoyJA@XodO>sBDONm>Na>Cd=`BN=N=շJ`B@=@=.@=d[dTԂFU|FT~[dZ~1.dFU @Y~.FTFQ1Yd4FT~Z1s{FTFQ1dkEBDN}Ed=B^CN=N=JB@=>@=t@=[dTFU|FT0[d[(dYH.dFU @[N1cZm1dFT `^WmuN}EZe.FQ0Z4.FT0FQ0I@C@loJpC@yo9ICÄ@ooIC@oP{FUv^b@oۺ[oqYrKFU~FTvFQsFRFX~FY~ZqFU~d.DD^NX|NLN@JD@c@od[8dT[؅FUFT|FQ0[cd[ d[P.cY.dFT `Y1.d=FU @Z1FdFUFT|FQ0IpD@oPFUID\oPFUsIDԆ@pJE@pZPFU~I@E@pJpE@pPFU~IE<@pkJE@qͿPFU~IFn@qJ0F@%qcPFU~I`F@8qJF@EqPFUIF҇@XqJF@eqaP/FU}I G@xqJPG@qPFU~^vP@q1<{@qTPFUsIG=Fj +=Rj +Y-EFT +FQ +[-Ed7wG,B NUwNIJG@aTFU[/dIH/@dj8P FUI0H=vj p+=j `+[.EZ /EFT p+FQ `+d77 pH8BӉNU,NIbJpH@a[.dIH@jIH@jd. I=BNXONLN@@JI@c@o[ dT+ rFU~FT|FQ~[3 d[?dY.dFU @Y9FdъFU~FT|FQ~[cZ&dFT `II \jII-@jZPFU|II@@jd_ JXBދN_N_HJJ@_@_0>_>_T FU2FT~FQ~Z8j_~j_~d7 PJgB9NUzNIJPJ@aT *FU[UdXd_1 ; iBNv_<1 ; @_b@_@_Z; lFU~IJ@jIJ،@kPFU|IJ5=k P+=k @+[EZEFT P+FQ @+d7 @KB|NU\NIJ@K@a[YdIK@0kIK=Bk 0+=Nk  +[\"EZ~"EFT 0+FQ  +d7 KBINUINIJK@aHT :FU~["dI L\@`kIPLo@rkd.H LBUNXNL_N@JL@cg@o[ dT ڎFU|[ d[dY Fd FU|[!cY!d8FT `ZC!.dFU @ILt\kPFU|I M@k IPM@kBd73MBNUxNIJM@aTyFU[ddBMBNBJM@B6@B@B]B]CI0N@C^q@"C+^(H@FCf^Hc@XC^qΐ@4C<\fC[ i[9Xd_nCkNv_<@_;@_@_ZlFU~IN~@kddNB(N NvUJN@@ IO@mP'FU~FTvFQ~YfFU~FT|ZfFT|ddH@OBʒNNvJ@O@[@IO@PFTvFQ~Y\fFU~FT|ZfFT|IO@kJO@kTJP@kdO>@PBݓNm>Na>d=5PN= N=XJP@={==\@=[SdZ!.dFU @Yb.FTFQ1[ dZ!s{FTFQ1dkEqPBN}Ed=qPQ^єN=GN=JPQ@=@=@=4E{~aFU|[d[d[Jd[!cY!dFT `Z#.dFU @^N}EZ.FQ0Z.FT0FQ0IQ>@kJQ@lI RQ@lIPRd@,lFIR@>l|IR@Kl<@Xl[/oqYrFU~FQsFR}FX~FY|ZgqFU~d.gR6CNX4NLN@JR@c@o[dTlFU~FQ0[d[dY.dFU @YFdĖFU~FQ0[cZdFT `I`S@ll9PFU~IS6@~lPFU|^p@8p<@Ep ^@Xp,<@epO^ @xpr< @p^ @p<@p^h@o<@p\PFU|^@p<@%pdq3SB?NqJS@q@q>q22]qTLFU1FT~ZA2FU FT JRFQ 6FR %ISd@lSPkFU~^&&@4jxP&FUI T@oPO0FUYOpΙFU}TFU7E~FU|FQ0FR0FX FY0T*!FU<E@~NFU}FQ0FR0FX FY0TvaFQ4TFU~FT~1YGhdFU1[rhYgFQ~T<ҚFT1T)FU~FQ1YhdFU1[h[ gYS hd5FU1Y mMFT|Y[ hddFU1[ h[. gY:hdFU1Y?FU [c[j{Y&.FQ0Y&FU[.cZ1{FUXi`AÜNiNiNiNi=Nia<@i@iZcFT hFQ FY .ZFU FQ FR +4XH,nH6,H-( H"-2 H"-P H"-H H"-8 H"-H-.-H-yH-I.Q3QI.WI.VK.0I.J;hJ.MJ.9(J.WJ.MLJ.RJ.eJ.'kJ.$K.oJ.^J.J.J.T K..K.V*K3;-;AH3M-;CH3_-;LH3q-;\H3-;^H3-;lH3-;nH3-;|H3˟-;~H3-lHw-݊H3-;H3-lHw-݊H3+-;H3=-;H3O-;H3a-;H3s-;H3-;H3-;H3Š-!H/1tmpH/-;H3-2H/-;H3-;H3 -;H3-$|H!3,-;H3>-;I3^-2I/-;I3~-2I/-;I3-2I/-;I3-2I/-;I3ޡ-2I/-;I3-2I/-;I3-;#I3"-;$I34-;(I3T-23I/-;3I3t-24I/-;4I/-25I/-;5I3-;JI3-;MI3Ǣ-;UI3٢-;uI3-;~I3 -lIw-݊I3-;I3I-!I/1tmpI/-;I3i-2I/-;I3{-;I3-;I3-!I/1tmpI/-;I3ۣ-2I/-;I3-;I3-;I3-$|I!3"-;J34-;J3T-2$J/-;$J3t-2%J/-;%J3-2&J/-;&J3-2*J/-;*J3Ԥ-2+J/-;+J3-2-J/-;-J3-;7J3-;8J3*-;IS>Qi@>Y]]a>i_I>qI]y]>?>?>?>G9>0b>o=>U]>ɞ\>ўEW>ٞ?>?>d>X]>\> lZ>?>?>!?dX?2 UkINt?;Nj?;J U@~?Z<^23@?<@?<ZS8FUvdd"3PUJ`N<Nv3=JPU@|=@>IU,@?P`3FU~FTvFQ}Y13fJFU}FT|ZdfFT|dd|3UJNo?Nv@JU@@@WAI Vʬ@AP3FT|FQ}Y3fFU}FTvZdfFTvIPV/@¥AJV@ϥBJV@ܥUBdO>"4VJENm>BNa>Bd=W40WN=0CN=fCJ0W@=C@=C@=C[j4dT4ʭFUvFT}[4dZ`.dFU @Y7U.FTFQ1Y`d*FT}Z`s{FTFQ1dkE4pWJN}E+Dd=4W^9N=tDN=DJW@=D@=E@=;E[RdTR֮FUvFT0[Rd[Rd[`cY`dFT `Zg.dFU @^E]X]kN}EqEZS].FQ0Z>].FT0FQ0I X@EJ`X@EIX@FIX̯@"6FIYn@4lFd)@5ZJN[FNOQHNCIN7lFJZ\fX=@5a5ěaL=<@5a5@=KI0Zt@wK^55@L<55@MdP5`ZJNP7MNP7MNP7MNPMNPMNPN^5 63@QDOP 6FUFT|^>>@PO<>>@PO<>>@QOZ UxjP0jP0jP0IZ@WOdOJ6ZJѲNO4PNO4PNO4PNO QNO_R^d669@DPsTP6FUFT|^0><>s@PT<0><>@PT^>>@,P U<>>@7P-UZ[PjO0jO0jO0dO60[JNOPUNOPUNOPUNOVNOV^66K@DPpXP6FUFTs^N>Z>@PXZ>@PX^>>@,PX<>>@7PXZt[PjO0jO0jO0dP6[JߴNPYNPYNPYNPYNPZNPZ^67f@Q[P7FUFTs^q>>@P[>@P\<>>@Q1\ZUxjP0jP0jP0^787@ET\I[2@iw\J\@v\P2SFU~I@\f@]Jp\@]P#SFU~I\@]J\@^PSFU~^XXԵ@ɦ^CbN>bN=bJ^@>Vc@%>c@1>c@=>dI _@N>TdJ`_@[>dI_@n>dJ_@{>dP\FUv,eOePZFUs[+5jYG6ufFU~FTsY4YFU YMYܸFU~FT~FQFRYpYdFU3YY.FU~FTvFQ0Y\ݪ@FT~FQ~FR~[_dZ_}yFTsFQvFR|d787_=HɹNUreNIeJ_@ajTT7FU[cddFl70`?HmNFkNFlNF!nNFn^77;\G@Gn@Go@(Gi@I`i@9'Ji@FPOQFU~Ii@YJi@fbP/QFU~I j@yJPj@&P?QFU~Ij'@sJj@IjI@ߝJ k@ƤIPkk@٤KJk@^jVV\PVFU~^VV@ PVFU|dVk;J NJk@IZWdFUs^VV;@PVFUsIk]@/YJ l@<IPl@OŠJl@\Il@k1Jm@xgd=7W0mVJL=N>N>N=$J0m@>q@%>@1>ݢ@=>Ipm$@N>IJm@[>ImV@n>Jn@{>PXFU|!DPWFUsd=\@nPJL=N>gN>ɤN=J@n@>z@%>@1>@=>BIn!@N>xJn@[>I oS@n>JPo@{>-PbFU|Jo@>cJo@>P|\FUs[;jY=ufFU~FTsY=kiFUvY VFU Y&VFU~FTFQ~FRYIVd-FU3YgV.PFU~FT|FQ0[bdZb}yFT}FQsFR|I p@ϧPTFU~IPp@ΧF^??@|Qm]QI@r\@Q^AA!\Q[Ao^M*M@@Q<*M7M@QU^jj@Qy@Q^jj@QPjFUv[j8~ZjGQFUv<mmNYQ <mm\cQ\oQ\{Q>Qm]QZmdFT IprR@vBd7:ArhHNUxNIJr@aTcAFU[mddOqArjHNOfNOfNOfNOfNOz^AA @DPPAFT0^MMZ@P<Q^]QIy@Q^EEk\Q[Eo^7MJM@QcQ^]QZ^dFT G{HNm>Na>xd=KG|N=N=!J|@=D==_@=z[jGdZ.^.dFU @YnT.FTFQ1[e]dZ|]s{FTFQ1dkEG@|H:N}Ed=G|^N=N=HJ|@=k@=@=EG~FU[Gd[Ld[)Nd[^cYX^dFT `Zyk.dFU @^jj!N}E]Zj.FQ0Z[.FT0FQ0I@}\@ʠJ}@נI}o@I}@"I ~@Xd)HH~HfN[{NOONC#N7XJ~\fX=HHeHěL=[;O>Ym?.FU~FQ0YpChdFU1[Ch[-DgYI.1FU~FQ0[dJcYP.]FU~FQ0YS|FU [_c[ecYf&ZFTv[#mcHPnpm~VnV\n\Vn?/=on-,p8?2q:?wSNtd7+nІ;NU*NI`JІ@a[xdIt@PTJ0\]TJ0\jTPpFUsI`@~TJ`@TNP*pFU}I@TP pFU|dͣnЇ9ZNNߣ JЇ@!@z"@#@x$@'%@3#@?&@K&@W']c>kp]sXfFnnNF)NF)NF)NxFyTyNEQ-NEt-<>yTy\EZTydFT x[{@gd7p@NU-NI-J@@a}.TppFUvZ{dFUvd7pNU.NI.J@am/TpFU}[{dI\PtFU}XfFppwNF/NF/NF@0NxF0wNm>2Na>3d=w FN=3N=4J @=y4@=4@= 5[TxdE{x~FU~FT[xd[xd[h~cY~d)FT `Z~.dFU @Yx.jFUsFTFQ1Y~dFUsFTZ~s{FUsFTFQ1Ip@H5Jp@U5PyFU}I@d5:sNm>N;Na><d=hsPHN=o<N=<JP@='=@==@==[|sdTsFU~FTv[sd[ud[|cY|d+FT `Z8~.dFU @Yu.lFUsFTFQ1Y$~dFUsFTvZ[~s{FUsFTFQ1I@T>PZuFUvIЎ@,T^>PKuFU|I@>T>PjuFU}I0F@bU>J`@oU'?P:uFUsdO>uNm>]?Na> @d=uЏDN=V@N=@JЏ@=A@=jA@=A[udTvFU|FT[vd[Uvd[}cY}.d'FU @Z~dFT `Ymv.hFUsFTFQ1Y|dFUsFTZ}s{FUsFTFQ1^ww@TB  Z Ad?  W AZ@  T AA  Q APB  M A?C : I Ah*D U E A$.E p A AEF  = AG  9 AaH  5 A I  1 AJ  - A;5K  ) At5L - % ANM H  AދN c  AO ~  A8P    AQ    A;R   AS     ALT   AtU 0  ACV K  AW f  AHGX   AY   AoZ     AT[   AQ\   Am]   A=^ 3  AV_ N  AL` i  Aa   A3b   A_c   A^d   A@xe   Ayf   Ag &  Ah A  A7i \  ANj w ~ Ak  y Al  t AHm  o An  j Ao  e Ap  ` A"q 4 [ AkLr O V As j Q A`t  L A`)u  G A"=v  B Aw  = A,x  4 A8y  / APz '  * A?{ B  %  W  A| m   G A)}   G AP~   AL    G A   G A@   G   A    A :   G A= U   G Ad p   G A    G A   A<~   G A=   G Ad   G A5%    G A -   G AO H   G Aj c   G A ~   G A:   G A0   G AH   G A   G A[~    G A   G AA ;  y G A? V  s G A/ q  m G A 3  g G A&  a G APP  [ G A  U G A.S  O G A%O   I G AT .  C G A I  = G A d  7 G Az   1 G   A  * AH  # A   A=   Ab   Aw~ 1  A# L  A  g  A1   A=     AD   AS   A   A   AF 4  A O  A t j  A)   A   A   A9   Al   A   A '  A B  A ] t A] x l A  a A  Y A  Q AU  I AZ  A A7o  9 Ah 5 1 A ! P ) A0  k ! AB   A   A    A   A   Abj   AKl (  A C  Aϲ ^  AJ~ y  A7A   A   A   A̯     A   A +  A F  A a  A0 | { A  r Af  i AZ  b A  W A  N A@  C A} 9 : A T - A*M o $ A[   A   A   A   A|   A.   A ,  A G  A b   w A   gA̱   A   A   g  A   Aa $  A ? | A Z q A u f A  X A<  M Ab  B A5  5 A5  * At    , AL B  A ]  A x  A   gA?   gA_   gAw   gA   gA   gA 5  gA6, P  gAP> k  Au  ~ A1  o A:  b A  U A  H A  : A ( , AQ C  A@ ^   s AQ   c  Au   At     AM   A2   AE 0  cAJ K  A f  cAS  p cA  ` cA c  @ AK    A!(   Aem   cAJ$ #  c 8 AZV N  (A: i  ARv!   A"  ` AqE#  @   Ad$      A3%    % A& ;  Au' V  A|x( q  A)   A7*  `   A+  @ AA,      AGo-   A8. 3   H AȪ/ ^  8A0 y  A1     A?}2  ` Ae3  @ 8Ab4    8Aj5   8A'6 +  A7 F  A[M8 a  At9 |  A:  `   A1;  @ A<      Ak=   As> #  A˹? >  A@ Y  8A6 A t  8A~B  ` A C  @ AD    AE   AeF   AyG    4 +  AH A    AnqI \   AJ w  `  AK  @  AL     ALM    AuN   4A@O   4AP !  4ADŽQ 4!  4AR O! ` 4AS j! 0 AT !    ! AU !  !A}mV !  ! ! !AFW ! ` ! "t Ab|X "" @ ! 8"t A9.Y N"  '" d"t^AmZ z"   S" "tAGS[ " @ " "tpAj\ "  " "tAd] "  " #tA^ *#   # @#t A[_ V# @ /#ACz` q#  ! #tC Aea #  v#ABb # ` !Ac #   !Ad #   $ 4Ae $  # /$tA^%f E$ ~ $ [$trAfg q$ } J$ $tAlh $ t v$ $tw A2i $ `h $ $t Aj $ @[ $ %t AЉk !%  P $ 7%tIAU6l M% I &% c%t(AJm y% 7 R% %t,AIn % @% ~% %t AGo %  % %tc AEp %   % &tA6[q )&   & ?&t Ar U&   .& k&t6 Ams &  Z& &tA"t & @ & &t6 Au &  & &t Av ' @ & 't< A#w 1'  ' G'tACx ]' @ 6' r' &A`y '  b' 'tA&z '  ' 't A){ '   ' 't;AE| ( | ' "(t A>} 8( s ( N(tA~ d( k =( z(t A5 (  ^ i( (tX Au ( T ( (t A[R ( J ( ( $A ) J ( ))t A ?) > ) U)t A k) 1 D) )t A[ ) ' p) ) #A^ ) `' ) ) 6Ag )  ' ) * %Aי * & ) -* <Aq C* & * X* @A n* @& H* * "Ad * & s*A * % ) * ;A * % *A * @% ( + )A %+ % *A @+ $  U+ *A k+ $ E+A + @$ s*AÍ + $ )A0 + # *A + # (Ae + @# ( , 1A~ , # +A  8, " ! M, ?AY  c, " =,Al ~, @" AF7 , " ) , (A , ! , , A  ,  ! ,A= -   !A %-   )Ah" @- `  A [-   )A v-  , - 3Ali -  {-A/ - ` (A -   , - 5A .  -ArV .  s*A; 8. ` !A` S.   ) h. 2A ~.  X.Aj .  !A@ . ` s*ASQ .   ) . .Ar .  .A /  s*Al$ 0/ ` E+A$ K/   *A@>  +A  +A  +A  +A  +A\  +A  +A  p+A}  `+A  P+An  @+AHY  0+A"P   +A   +Aٔ  +A`  +A  +A  +A  +A7  +A@9  +A*  +Al  +A-  +ASd  p+A  `+A*  P+AxL  @+A  0+A   +AI  +A;  +A1?  +A  +AW  +Ae  +AB"  +AL+  +A+  +A-  +A  p+A   `+A  P+A   @+A   0+A   +Aw  +A  +A>  +A  +A  +Az  +Ac  +A6  +A3p  +Aj  +A|Q  p+A  `+A  P+A8  @+AC0  0+A   +A  +AS  +A$  +AB  +A;  +A   +A8  +Ad  +A:r  +A%:  +A~  p+AIp  `+Au  P+Ae  @+A  0+AF   +A  +A\  +A  +Ak  +A[  +Ae  +A  +A  +A+  +A  +A7z  +A[  +A@L  p+AL  `+A6U  P+A9  @+A  0+A   (+Ab   +Aנ  +AR  +A  +A  +AI  +Ak  +A#  +AU  +A>  +AF  +A   p+A_  `+A   X+A  P+A6!  @+A"  8+An#  0+A$   +A%%  +Aج&  +AJ'  +A|(  +AƏ)  +A]*  +A> +  +A_,  +Ajz-  +AH.  +A/  +Aɖ0  p+A"1  `+AHq2  X+A3  P+A4  H+Aޟ5  @+Ap=6  0+A;7   +A8 8  +A9  +A:  +Ao;  +Aw<  +AV=  +A>  +A?  +Aj@  +A|A  +ASB  p+AC  `+AD  X+A`E  P+A\sF  H+AG  @+AhH  8+AI  0+AJ  (+A,K   +AL  +AM  +AEN  +AIO  +AӜP  +AQ  +A"R  +AS  +AGT  +AfU  +AV  p+AW  `+A )X  P+AY  @+AXZ  0+Az[  (+AK\   +A]  +A+k^  +Aߖ_  +A`  +Ana  +A,b  +Abc  +A d  +Ae  +Acf  +AKMg  x+A#h  p+ATi  `+Aj  P+A+}k  H+ADtl  @+A m  0+Acn   +A\qo  +Ap  +Aq  +A^r  +A,s  +A5t  +Au  +AKv  +A/w  +A%x  +Ay  +AKz  +AP{  +Aו|  p+AV}  `+ACF~  P+A  @+As  0+A   +A  +AR  +A  +A3  +Aю  +A.  +A  +A0  +A#\  +Aj  +Ah  +A"  p+A  h+AM<  `+AG  P+AQ  H+A ^  @+A  0+A   +A<  +A  +A  +AF&  +Ah  +AT  +A8  +A&  +A11  +A  +A  +A  +A  +A  +A  p+A  `+A*  P+A_  @+A  8+A  0+A^P   +A*  +Aˣ  +AS  +Aq  +AI  +A  +AU  +AY  +A  +A  +A `  +A"{  +AD  p+AC  `+AL  P+AQ  @+A~  0+A   +A8  +A  +AA  +A&  +AԤ  +Ak  +AT  +ARW  +Aj  +AH  +A  +AV  x+A   p+ADR  h+AY  `+AD  X+A  P+A  @+A   0+Ao7   +A  +A  +A-n  +A  +Ad  +A  +A+  +A  +A`  +A;{  +A  +A  p+A  h+A  `+A  P+Ar9  H+A  @+Ah  8+A  0+A  (+A*   +A5  +A`.  +Ab  +A  +A  +Am  +Aa  +AC  +Ayw  +A  +AM  +AI  p+Ay  `+A|  P+A  @+A\  0+A_   +A  +A57  +A\  +A΁  +A  +AE  +A  +A_  +A  +A  +A  +A-K  +A  p+A?b  `+A  P+A  @+A  0+An   +A  +Ad/  +AD  +AH  +AS  +A:<  +A  +A>  +A  +Ai  +A=O  +Ap<  +AT  +A  p+ACQ  h+A  `+AO  P+A  @+A(  8+AB  0+Ab  (+A   +AG  +A  +A  +APh!  +A"  +Ah#  +As$  +At%  +AZx&  +A6'  +A(  +A)  +A+*  +A+  p+A?,  `+A@-  P+Av.  @+A/  0+A0   +A1  +A2  +A3  +A,4  +Ab55  +Aw6  +A7  +A 8  +A9  +A:  +A;  +A <  p+A=  `+A%U>  P+Ar?  @+AZ@  0+AA   +AB  +AY C  +AD  +AXE  +AF  +AG  +AyH  +API  +AJ  +AK  +A7dL  +AZM  +AN  +ABO  +A%P  +A)Q  p+A_ R  `+A"S  P+ABT  H+AU  @+A  0+AP   +A  +A  +A  +A\  +A  п+A8  ȿ+A^  +AF  +A   +A:  +AC  +AN  p+A  `+A   P+A  @+A  0+APf   +A.  +A  +A]  +A]  +A  о+A  +A7^  +AG^  +AW^  +Ag^  +Aw^  p+A`  `+A`  P+A`  @+A`  0+A-a   +A=a  +AMa  +A]a  +Acb  +Asb  н+Ab  +Ab  +Ab  +Ab  +A0  +Ab  p+Ab  `+Ad  P+A\  H+Ad  @+Ad  8+A  0+Ae  (+A e   +A0e  +A@e  +APe  +Azg  +AM  +Ag  м+Ag  +Ag  +A{  +Ag  +Ag  +Ah  p+Ah  `+A  P+A  @+A2 0+Ai  +Ai +A j +Az  +ABj +ARj +Ab л+Al +Al  +Ax  +A  +A R' I+ Zt?AtZ @D+ Zt4AzZ =+AM# `7+AS% )+AeJ$ @(+A/ $ +AaUj#( +AIr%=(  +AT&6' @*Als&/# `*Ad'$ @*A^i($  *AZ{( ' *Ac)v$ *A*& *AFD*" *A+i(  *Aʨ+)  *Ap ,'  *A,D)  y*A6-' @l*A-'" _*A.R% @M*A .% A*AG0/& 0*A2/( '*A*A0v# @*A<0( *A3$ *Ay7& )A9T8" )Aނ8p) )AT9&% `)A9~%  )AVk<.&  )Al<& )A"AZ& @)AE!  )AG" )ASKS" @) ^tAC!&N^ )A1y'N +Am +A 3 + ^ ,AC0o^ + ^ A.)`^ +Aj'f +Ae84 + ^ AЅ^ `+ _ A) _ +A +A +Aˆb p+A# + _ AG{_ +AZ; +Avތ95 @+ _ Ad_ + ` AnSn` `+A{ +At +A?b Н+AB @+A㍎7 +A_ +A}4$ _ +Akk) + ` Avv` + a Aш~` +A-B  + /LatA ;a @W+u>~uè~vT v{ uu&tun'" awu&s'8au#,vؼgub u8(uY(uBu6c$ub+u2uuP+u~u1uR)u* uJ*u+u*+uP+u}+un+u +uL+u+uCc+u9+u-+uK+u$c+u+uQ+u-+u+uT+uD,htu*4x*# t +ya+c7z -tc7{+W|Y+Sd}ΝZ!zwC,ctFdz?(.hdz+dy. dz ody#.dy< 8tdzH3e7z+d*!(ezC% h7etttttt~1HUey ?te~%t.@e. |}eH|+Ye|o+Zf:fD|_+uXfz+xtufz$wfc3wy> f]!|;M+Nfz1$wfc3wwwf~zg=zFRt@ge+Xyc tngtzWtg~ g]!yO gy[<+tg?7z- thzI!hz9hz8)tVhz%nhz!!hzVh{Ezs/Jhtz 4hz+tt iz8%izHGi}A ~&ki y.tiz{tiy~h9i z=iz۾iy^.jz+st/jyjhHjHjy!tljz+z_tj y5Iitj?j|[+jj}__!~TjzL0>tkDD?ya9Xt4kyc Wkt|Qfkk~1[kylky %ok7za2gk?zK2ck?yy 9tlyU *lyq t=lz)8dl!7z)t|lyy.ly.slzl8z݇9tlz(>my8#mzk;my.YmyW 0wmzpWKmy39.im{6t3yjmy 6my4ny8nzG 3Unz`G-mn1z+#_nV't{/(y tn]!z/<nz}/9ny* t ozTB+ozrCo{4Hyp..tto. t{3+zJoz ,oytz4 pJtJtJtzY4pyoo.2pzd@Op) yq.hpy.py.OpyV6pyppp zi<0?qyZ1Mq?CqtJ|I+MWqzC11oq{-,!z$q1qc31|o,q!ycy.tq|5qt~}+Jq|Y2h ryo.8t'ry`.@rzN%aXr?z]?$rc31r=/zPrJy54.nryX. ryR.~r|#$$sc36i3"rzݦ'w/#3%#<# E#F#G#"H#)IP#K[# M+# P@>DaPD>L-~PL>;P>rngbufval[fP>bufSP>buf fP>offfrngffbufO!PP>rngPPbufP-[!m]2^h!H4CPH> &4 (s__i (~__f (4 (~TKP>rngval>"P>rngbufval}P>rngbufvalmaxHl-Pl>rimidxnxo-}^- P^>idx_x_- pD !>F"F"G"HG#Dp !UG!UG$Px! H!gH%&ac %r%r#aPVb %r%r'"i'k:i4M P>riidxx44~ P>idxx4  H !# |J". K"8 PK"C K#! !2K!2K$M Г!t 1L!i {L%^ &&W !7L$!I%2%2&&x !7L(!x~I%2%2'7Ri'ji) 4#M/ *P >oM(&ǁ݁ !7oM(!ǁ́I%2%2+ -w *P >M(a !rM!rM- P>)-3M0 *P>@N$ ! @N#a ! %r%r'":i,@N *P>xO-cnt[O-out P.i[\P( `! P#a`g %r%r'|:i-) 4ނPm*P >Q&& !_!7Q(!I%2%2'΂ji,.$"NQ*P$>:R-cnt$[R-out$ R.i%[S(a'!rUS!rUS)A{-0xS*P{>WU$4P|!WU/P"V">V"tV#DKQp%U%U$x! V!W!;W&aЕc%r%r& h!W/"W"X0c#D p?%U%U$9`x% !BX!eX&aTc%r%r#aЄքb%r%r'"i1Є2UU':i'"i,XU*P>Z-cnt[bZ-out Z.i[ [$[!j[/"["["4\#D[bp%U%U$ x! \!\!I]&aͅPc%r%r&Ch!]/"]"]"!^#DCJpm%U%U$x! l^!^!^&ac%r%r&*0h!#_/0"Y_"_"_#D*1p#%U%U$g`x! `![`!`&a~cs%r%r#a}b%r%r'"i32U':i#aPWb%r%r'"i'l:i#ab7%r%r'"i':i)4C`*P>b$ И!# b/И". c"8 c"C (d#!͈ӈ%2%2$M !t d!i d!^ d&&PY!7be$!I%2%2& !# e/". e"8 f"C Uf#!%2%2$M P!t f!i f!^ f&&͉,!7Gg$!͉I%2%2& 6Ps!# g/P". g"8 h0C d#!6<%2%2$M ]%t !i %h!^ Hh&&u!7h$!upI%2%2&&<!7h(!I%2%2'Ri1 c2UU''ji'Ri'[Ri-P>rm[idx[x-xx-yy-)\-Pii*P>j$e!0k/"k"k"%l"l",m"wm"m&a Ư%r%r#D%U%U#aPV%r%r&as`%r%r3ߋ"iL2a---'k:i':i,Gm*P>sr٪4m[Xt4۪t.idx[t.x4.u.xx4xu.yy4u&&0!7u$!I%2%2#!v|!2u!2u&&E!7/v(!ƏI%2%2&&!7hv$!PI%2%2'C"i'ji'&jiX-PX>]bY-bZ-cZ-U[-V[-X[-Y[-5-v6P>w6]b-x7!x!w/"}y"y8"y"z"{9a6|%r%r9a\ c%r%r32Us':i3:i=2aP-3:ij2a-?P-H-3Fi2a`-H-P-2b-?H-3p2Us3i2b-?H-:'i4jP>]b4b4c4U4V4X4Y454\{!6P>\|6]b4 }7P!! }!\|/P"-}"7~8A"K?~"U~"_X9&N !7$!I%2%29&@ !7(!I%2%23 2Us'ji3ji 2a\43U 2Us3i !2b 4?X43#ji6!2a4?\4X43Tin!2ah4X4\42b 4?X4:U'i5p{!6P>@;D!U@!U@5@pĕR"6P>؀;!!2؀!2؀5{Е$"6P>p;Dוݕ!Up!Up<w#6P>;D!U!U5I-#=x-dx0->x2-axp->gl-bgl0->k{S>n{V?a $PUUUUUU?llfJ?88C$+K?<ٰj_AAz?SˆB8?5gG - $ #@-{$6P>Aloc-@6-Bԗ2UU5-ęƒ&6P>Ą6-#7p !Ą/p"[""Dž&D Сp!%%U%U(Pęx! !JCS&akcs%%r%r#֘ęh&!mD֘ę"""ֆ#D֘ܘp%%U%U(ęx! !F!i&a@c=&%r%r#abc&%r%r'\"i3&2Us':i'"i5d -Й('6P >؇6V -$63 -o7aי !r؇!r؇@-'6P>6]b-+6-fB2UU2a-@4 >(6P>6]b4"64]B/j2UU2a45Z-@5)6P>DAa-Ab-EGa-uEGb-F)U-V-EX-EY-EXpY-*9a (!rM!rM9a!$)!r!r3iT)2aw-2b-?h-Bi2aX-2b-?`-3p)2Us2ah-B2Us2a`-@v;-@Z1*6P;> Adf;-DBQ2UU2a--?@?-`*6P?>6E?-?6?-v3|)*2Us2ah-B)2Us@D-ŏ"+6PD>93͛ +2UsBۛ2Us5H-:~-6PH>AaH-9PIp-!/P""g"&D p+%U%U(p:x! 8!CS&ac,%r%r& h--!/ ""O"#Dp,%U%U$1Px! Д!!Q&aLc,%r%r#ab,%r%r'"i3-2Us'):i#aН֝bS-%r%r'М"i':i'W"i5aL-@L/6PL>AaL-a9xP/!Ǘ/""I"&Dxp&.%U%U(؞Lx! !#CS&a0cx.%r%r#^Lh/!FD^L"i""#D^dp.%U%U(Lx! !!B&apcB/%r%r#a &bh/%r%r'"i3/2Us';:i'8"iGҞi2b-5S-PeX26PS>gAaS-ƛ9TT12%/""J"&Dkpk0%U%U(x! !<CS&a@c0%r%r&hh1!r/""":#Dhnp#1%U%U(Сx! !CS&acu1%r%r#ahnb1%r%r3+"i12a-3Y12Us':i#ab2%r%r3B"i!22a-':i'"iGi2b-5:W-"36PW>ɟAlocW->6W-EUX-Ha¢ȢZ2!r!r':i':i5f-036Pf>Alocf-@6f-EUg-¢HaHNi3!r!r'q:i':i5q-T46Pq>Alocq-ޣ6q-)Ur-HatF4!r`!r`'ݣ:i@|-46P|>6|-6-O|-Y3$42UU2a-2b-:"i5-dr56P>6-@9aW5!r!r'8:i'^i@"-pw,66P>Adf-^Enum-I?- 352Us362Us2ah-'i'i&{6P>lam-k{U-V---a-b--vr-us-X{7P>lam-X{-U-a-5Z{ŧi{96P>lAlam-˩96H 7!6S!6x/ "6"687" 7^Ha7%r%r'e"i;,6ŧCJ6C>6SDŧ"V6"`68j6"t6"6'"6^"6"6ͬ"6"6;Ha`j8%r%r9ajP8%r%r3ƥ:i82a-'̦i3&:i92a-37:i92aX-3_:iO92aP----"3#k92av;-'i@l{Ч/:6P>ӭAn-2Ap-mEY-3(':2Us2a-2b-?--G72UU5{[ˮf>6P>An{|Ap-6 f>Er-7Eq-Efm-Ep1-Exm- Exl-Exr-Ec-|I\-I-Ep2-Ep3-wEp4-Ea-aEu-nEv-йEs-AEF-wErho-Et-EA-Enrq-fEx1-Ex2-ؼEf1-Ef2-H>z-hEz2-Ew-Ew2-Ex-(Em{KEy{Ek{Ei{JK K[K]XKv&sKK};Ha'=!r!r9aĪR=!rb!rb3Ǩin=2a}-''j'bi'q:i'i':i'i':i3:i=2a -~-3:i>2a ~-}-3F:i@>2a~-}-~-~-'diBJi2a~-56c{`Ŵ?6Pc>Anc{5Apd-6 df>uEqe-Eqne-Enpe-xEpxe-EUe-6EXf{lIf{HaQ`ye?!r&!r&Ha˳?!r_!r_3˲:i?2a-'ڲ"i'[iBi2a-@]?{д}@6P>nAp-"An{6 f>Eq-T1l>@2UU2TT2a-2QQ3L/:@2Ts2a-?-:f/:'ul>@-4B6P>Adf-6-FЧAIs4BEn4B<3ٵ)xA2Us2aw--?3A2Us'uiFAEi9B_3L7A2Us2ah--?Gf)2UU3 jB2ah-G4)2UU2a`--{@-۶B6P>6E-B6-y6-Et-3@B2Us2ah-2b-B)2Us5-̷NC6P>6-56-U-EX->EY-uIE-9a]0C!rA!rA3C2Us'i5-зͺz(F6P>Amu-6H-Es-QU-V-EW-EY-EZ-[I\-~Emod-neg[HaD!r^!r^9a`D!r!r9a#E!r[!r[HaƹRE!r!rFEEr- Erho-T3iE2aH--@H-P-"'i3 jE2aH-']:i'8j3Pj F2a@-Bhj2b --DT!@5!{к׻wG6P>Ap-`Eq->r-hU-V-I\{Ha F!r!rHa  G!rc!rc3:i1G2a-?`-'""i3W:iYG2aH-3l:itG2aX-'i5%"{75H6P">Ap"-DU#-EX${{Esum%-I%-$Eq%-n7a*!r!r5 3{@H6P3>>Ap3-9aG04H!r>!r>'g:i3:iH2a-?w-'jL7{w]I6P7>Ap7-715HNI2UU2a-:G@?{½J6P?>Aa?-]Eam1@->b@-hF`JETE-EUE-EVE-&EXE-]3/ J2Us3 / 0J2Us37ilJ2a-?w-2b-X-'<jBti2a-?w--?"2bX-Bi2a -@2bX-5[-нK6P[>F6;[-6[-6B\-I*]-7I]]-nI]-I ]-IP]-U^-9afK!r*!r*'i'i5oVcL6Po>AmaxorIpIpyH! &vL!2!27D8CUSCUS=LP>rng-Lm B2 L51`P6P>7AoffArngz6^6P[H~M%%%%%D"8;!%2%2HпKN%%%Dп"[7Dп%U%UHL4 O!L!LD4"L"L "LmHD N%U%UD1"L;D &%U%UH@O!!!!KD@"n""9!C aO%2%2D`"B;!x~k%2%2;DCUSCUS~5[xR6P>Aoff)Arng6Y6P 6=bufH~Q%%%%%D" ;!%2%2HEQ!C!|!!DE"""jH! aQ%2%2D A";!06k%2%2;!PVC2SC2SuRPv>rngvvbufv-}Rm2R5` U6P>AoffArng6I6P96=bufHS% %%%%D"7P%%%;!%2%29 T!!G!;!%2%27R Ъ!ER!9RO!-R!!R/Ъ"QRo"]R"gR9 T!g!!;!%2%2DN"tRo7hP%%%;!%2%2]UP>rngbuf-Um2U5} 1X6P >9 Aoff I Arng 9 6  6 P 6  =bufH"@yV%d%X%L%@%4D@y"p~7@%F%:%.;!Za%2%29ЫW!F!:!.J;!`g%2%27 U!VU!JU!>UR!2U/"bU&"nU\"xU9@W!F]!:!.;!|%2%2D@"Ue7%F%:%.;!(/%2%25fgY6P>_AofffArngf66f6 P6 \=buf!7S"CR!!-!}!q%e/ !qQ!}%!!_%e;!%2%2M)V]6P)>SAoff)Arng*Acnt*[6*Pn!Aout+V]"Ei,[#F`[Ebuf3%I4[%H4}BZ!%!&!K&!q&D4}"&"&"'FZ"k';!hok%2%2;!@Ga%2%2D-N9\H}-[9H[!'D-["';~p~<%%%%%Dp~"R);!pw%2%29LT_\!Lu)!L)/"L)"L)"L@*F:\"L*;D%U%U;D %U%UHDH\!U*!U*DWNM\H} M\!*D "+;0?P%%%D0?"+;D07%U%UM^@+_6P^> /Aoff^ 0Arng_0Acnt_[16_P 3Aout`3Eia[4ObufbPc[9@z^!k6!6!6!6/@"&7"K7"7F^"7;!k%2%2;!a%2%2QN_Iq8H}P~q$_!G;DP~";;~t%%%%%D"B?;!%2%2;!l!2e?!2e?M@?dbRP>_=offV=rng\=cnt[RRPX=outdbYi[buf[9R 9a%ER%9R%-R%!R/8QR0]RR8gRF`0tR\7X@%%%;!ox%2%27(p%%%7!%2%2FЯbN^H}a%D8;#% %%%%D#0Q7%%%;! %2%27`P%%%;!~%2%2S A eRP>]=offV=rng^=cnt[RRPX=out eYi[buf[FcN_H}RlRc%DRl8;"%d%X%L%@%4D0pR7%F%:%.;!%2%29 Ud%VU%JU%>U%2U/8bU0nUU8xUF0d0U^7%F%:%.;!%2%27%F%:%.7!;%2%27 %F%:%.;!%2%2SfB5fRP>V=offfT=rngfQ=cnt[RRPX=out5fYfi[>bufPN[Q7S2P%%%%}%q%e/P%q%}%%%%e;!X_%2%2fT#p)C g6P>EAn{E6  gGFApix FAd[DG6 f>GI-HEj[HEdn{HB?2U2T2Q~{ g U6 5g / g -Jg U Y_g ' :gU yg  :g g N ]g  ~g 4g N g  gN g  gN h  gN  h  :gN$ q;h :gN Vh ~gN )qh gN kh gVg 4B3 ; @V4 4B l?Vr 4B~)@V hi@4V hS>Vx hN@W> Wè Xexp e-:i-Xlog n-Ri-Yx e4ji4Y{ n4i4Xpow -i--Yh -i-Yf 4i44Y 4i4Z-j-Y - j-Y [8j-Xcos @-Pj-YS 7-hj-Y -j--[is--  N0b*yintg)4ym4t8oԆ044ӳyR ( I#S#?#bp#D# X#(D#0;G#8l#@)A#H9#P#XԦ#`H!#h'#I#pU'I#t)#x@-b# /.;#>w/#3#<# E#F#G#"H#)I#KI# M# N,N: Us Tv!"NAO"SOOmP#^&P/Q8SBM*TVT_ThTqUzWUzU$UV2VUVV%W b Us%W z Us&o %  Uv%  Uv%'  U|%=  Uv" a-%o 2 a~4-|4-v4-% J Uv%  e U|v%&  U~v%<  Uv"%  a--0@-" aAv~4-~4-4-v4-4-v4-v4--?"'>'è({W {(S-o ) - -( - P*log n- -( - -+h --% UR$ > : ; I$ >   I : ; : ;I8 : ;I I !I/ &I ' I : ;  : ; I8 : ; ' I5I& : ; : ;  : ; I8  : ;  : ;<  : ;  : ;I : ;I : ;I 8  : ;  : ;!( "' I# : ; $ : ; % : ;I8 & : ;' : ; ( : ; ) : ;*' +.: ;' I ,: ;I-4: ;I. : ;/ 0: ;I14: ;I2.: ;' 3 4 : ;5.: ;' 6.: ;' I 78.: ;' I@ B 9: ;I :1X Y;1 < =41 > 1?4: ;I@41A4: ;I B.: ;' I@B C: ;ID4: ;IEB F B GB B H.: ;' I@B I UJ UK: ;I L1M.1@B N1O.1@PQ4: ;I R.1@ SB TU.: ;' @ B V: ;IWB 1X1X YY1Z1[1\41] 1^ _.1@B `B 1a.1@ B bB c.: ;' @B d1RUX Ye1RUX Yf : ;g : ;h41 i41 j1B k1 lB 1mB n.: ;' @o4: ;I p1RUX YqB r.? : ;' I@ B s4: ; I t!I/u4: ; I? < v4: ;I? < w!x4: ;I?  y.? : ;' I< z.? : ; ' I< {.? : ; ' I< |.? : ; ' < }.? : ;' I< ~.? : ;' < .? ' I4 < .? : ; ' < .? : ; @' I< 6 % $ > $ > : ; I.? : ; ' I@B : ; I4: ; I 1  B &I I !I/ 4: ; I .? : ; ' I< I% $ > : ; I$ >   I : ; : ;I8 : ;  : ;  : ; I8 I !I/ : ;I' II : ; I8 .: ; ' I : ; I.: ;' I : ;I: ;I4: ;I4: ;I &I : ;  : ; I4: ; I4: ; I: ; I .1@B !1"41#1X Y $1RUX Y %1&1RUX Y '1(1X Y ).? : ; ' I@B *: ; I+.? : ; ' I@ ,.? : ; ' @B -: ; I.4: ; I/ U041 1B 12 B 3144: ; I5.? : ;' I@B 6: ;I71RUX Y84191RUX Y:B 1;1X Y<.? : ;' I@ =: ;I >4: ;I ?4: ;I @.? : ;' I@B A: ;IB1C1 D E4: ;IF UGB 1H1X YI4: ;IJ : ;K : ;L.? : ;' I@ B M.? : ;' @B N4: ;I O4: ;I P4: ;I Q R: ;I S.? : ;' @T.? : ;' @B U4: ; I V4: ;I W4: ; I? < X.? : ; ' I< Y.? : ; ' I< Z.? : ; @' I< [.? : ; @' I< % $ > $ > : ; I  I : ; : ;I8 : ;  : ;  : ; I8 I !I/ ' II.: ; ' I : ; I: ; I4: ; I4: ; I .? : ; ' I@B : ; I: ; I4: ; I1X Y1 41411  B !1X Y "1 #41 $ %1&1'4: ; I? < (.? : ; ' I< ).? : ; @' I< *.? : ; ' I< +.? : ; ' I< [V numpy/randombuild/src.linux-x86_64-3.7/numpy/core/include/numpy/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/bits/usr/include/usr/include/sys/opt/python/cp37-cp37m/include/python3.7mnumpy/core/include/numpynumpy/core/include/numpy/randomnumpy/random/src/distributionsgenerator.c__multiarray_api.hstddef.htypes.hstdio.hlibio.hstdarg.htypes.hunistd.hstdint.hpyport.hobject.hmethodobject.hdescrobject.hobjimpl.hbytesobject.hunicodeobject.hlongobject.hlongintrepr.hfloatobject.htupleobject.hlistobject.hdictobject.hmoduleobject.hfuncobject.hclassobject.hpycapsule.hpythread.hpystate.hframeobject.hcode.hnpy_common.hndarraytypes.hbitgen.h distributions.h __ufunc_api.hpydebug.hbytearrayobject.hboolobject.htraceback.hsliceobject.hpyerrors.hceval.hwarnings.habstract.himport.hstring.hstdlib.hpymem.hpylifecycle.heval.hpythonrun.h .qJ=pKJ tT.7֞?w+\i9sK;=.uXߋ~KLKJG?YK;K.yO sK;=.KXKXgL!tKJ]"u֒KKKKKKXgXuXges&tXZa3f_.cyJ=ՑYYYYYYrJX.a.WGct]K;Kt JMdeMq?/ZzX|Mq?/Zu;KxX7';#ts6t~XXY;=/ ufV`fLKyJI Ju^}(3lL:Zr>}L:Zr>?V@t#G?ug|X#G?uzg!J 9K h uu uu Xuu Xuu Xuu Xuu Xuu XuXK0!wJ  <v. f f KYbh&<w<c<& X <vJ Xf 6v# J X XdX*X~J tv J < <d<X~tJ4\MwKMYMy<_Z$KKKu?=UK Jugha,bX˅XM$JwG[gJft?M+\i9=KK=K JestYuZKYesw XX;*.<X.ff<N<$Y;=/.btt <>r3sB5J <(zz~JXk.h-TJ,X~ +Xfq[giJ}ֽ=WK= t.\FYYZ].t>[GYq|fZUj7gLɭ;=.3XWKYK~[eHk}*I!K $g;/.Y.~tAf:Z;g.!<GJ9JI IcgZ| XtI3tB[g`X|tt~W;v YDtXٻX<Xp< " t <w .bt J L:  t <w .bt2fL :  t <wX .bt2fL : <wX fbt Xst: <wX fbt Xst:Zf <wX fbtf st:Z <wX fbtf st:Z< bfJ st)J XJ2 NJ2lfb<J=JJ2p4<JJ XfK>֢ tt X"~sK;KK/KuX uZ\ْ; ._~"z&wY-=fMgt\/7K- J M=XBz/ IoJ:Ldu>tQ~^/K=;us==#X:>7uK=/-.j<.b. X?b. X?b. ?b.)K <= XAtoo<>@$0?ô~JKKzPzf`>,Ô<ÔA"~t*!ch')%'>3@ 0?~JKgKzPzf`>?}&uu-ht$nu'?,@.?<.JM~JKgKzPzf`>}&uu-ht$c 1#-tKYu@ X   J Z v< < J t@_t fvJ < J N_t fvJ < J N_t fvJ < J N_t fvJ < J N_t .vJ < J N_t .vJ < J N_t .  Nt <QX/.v< < J<rmJ .vJ < JJrmJ fvJ < JJrmJ fvJ < JJrmJ fvJ < JJrmJ fvJ < JJrmJ fvJ < JJrmt f Jr~9fG9<G<:t-ct f6x.Rh挒@8h@8h@80vZLZJ^td<d<tYH f6x.P>h،="="="@8g="="Y=hY=Y=tʇʇ^td<d<tYHfJtXJt;XJt;Xg]rL`#w"lt$ "d.$' L  it"dJn0R;fJM.umJ/cȅ?%7'vcKO7]s"0aX JutJdK;.q<<f Z[;K>5<Z JwXLMHMLM:LJ/~+<YI=h׭8<Z JwXLKLKLt,n<mt.$~t'%=5~X=*`%!-c -~/*.Jtoo<Y;=3/XÎXt;ŽXdYeĎXZЎoX"-.'/;Y.ÏttX! <u.5t'ΏqJ";n*JtXLdK.Zk#ttoJ"jJ$}R;f$J[֐JK}<͐t}X Jt}<(=}.Y t5/..?}7'v't<<t;~K/O7].}";}j5g'&,* Ju:YfuL&J tw< J_cI=[.Dx x ~J' tyJ5hgKe=n;=Y/7t"$&y, Ju:YfuL&J tw< J_cI=[.Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~, Ju:YfuL&J tw< J_cI=[.Dx x ~J' tyJ5hgKe=n;=Y/7t"$&}, Ju:!Y#fuLK'J tw JmcI=S2RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&p* fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&y* fu:YfuL&J w JXcI=[3Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~4 fu:YfuL&J w JXcI=[3Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~4 fu:YfuL&J w JXcI=[3Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~4 fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&~* fu:YfuL&J w JXcI=[3Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~4(u;Yfg&J wX JQcI=W~'' tyJ5jmK/O7]`5."$9?//X&~2 fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&~* fu:YfuL&J w JXcI=[3Dx x ~J' tyJ5hgKe=n;=Y/7t"$&~4 fu:Y+fuLKK(J w JfcI=<RxJ|xt|x~J' tyJ5dWKI=Y/;""$%Pf&&v-z?~M fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&R* fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x}J' tyJ5f_KI=9"$P/Xg֏ H&|*teXJw9L}Jt;u;X}}Jt;}X}Jt;}Xt;=f}J[ڌJK}<،t}X،}J׌t;}XZZLLJ z "-[S}N"}!$ٌ'}q7<q@ .';=/!}Z&<K;}f}R.<ތ}*Ӎ}Jt}X}Jte}.K .c qJ"/}1}XX}Jt}X}Jt;}.Zk#$foJ"J}$}.ftX=}X}Jt;}Xގ}JԎt;}Xӎ}JҎt;}Xώ}Jώt;}Xh tX"#<F7"}f"X}'Ύ'}َ*}'Ԏ'ÎJtŽXdKeĎ.Zk#toJ"jJ$~<  uu:YYfDxJDxtxxD~' tyJ5hL'J w JXcI=getKe=n;=Y/8t"$ޑ/ &9 uu:YYfDxJDxtxxD~' tyJ5hL'J tw JecI=getKe=n;=Y/8t"$ޑ/ &9  uu:YYfԊDxJDxtxxD}' tyJ5hL'J w JXcI=getKe=n;=Y/8t"$ޑ/ &*9 fuu9YY#f"A~X' tyJ5f.LL'J w  JfcI=e_tKI=:"$Y/X/Xg֏.&|/  uuu9YYY%f(LL(J w J^cI=dDxJDxtxxD~' tyJ5d]KI=;$"$Y/X/X/Xe֏ &,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxDڭ~' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &~,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxDˬ~' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &~,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxD~' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxD~' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &,iɰsx~MHKKJJ;J#fRxJ|xt|x֦J'tê֡sY;&~֟~J[fl J tf t-g%8 Kyf}JJ|fd<t J<3J~P( ~ w t~X<~<'Ë~8 Xv< J f'~' J~YI=t3Y;=g=;~%/g./'vMG}fɰsx~MHKKJJ;J#fRxJ|xt|x֦J'tΨ֡sY;&~֟~J[fl J tf t-g%8 Kyf}JJuݧfd<tXJ=1.~P( ~ w t~X<~<'Ë~8 Xv< J f'~' J~YI=t3Y;=g=;~%/g./'vMwGы~XыX~X<~<f~ZZQqHJXf)tVtm<-X$ċ<ċ<dX"$֭гg 'ctҳtγ,Wӳ<ӳ<֭g 'ctt,W<<э֭g 'ctt,W<<I6֭Ig 'ct6It6I6,WI6<I<6I5֭Jg 'ct6Jt5J5,WJ5<J<5֭g 'ctt,W<<< .X<<fӊXZZQqHJX)fbXt<)tt'tY<'.<<%PX0"K'mXJZYtJZY߂Ȓ8@#f-]J 2XK X ZhfKבIKߣlJJlf<kXf  X%3L X.}_X^X}J<F0,}t}tt?ԣ<t14Y;U""2tJX@,<tf2"J5<J<3tN}$K%5.It7<*X%.tJO=YuZKYegsBw.X J t2t,i too<1gKK J:+8LLR 3)rDt\YLT=-3wL]!LQ^FJ Xv j XK;=i=-uW=Ygw%<b.Jb.J t Jt<tffL[LLh)H?qxOe<cJJcJJcJJcJJcJJcJJcJJcJJcJJcJJcJJcJJcJJcJJv  XXX\KKKYɆ  YM!LX"-W%,4. XJlJ<cJ6/WK;K Xo.bKXh .%XuXuXX;[~U;,<Y,:+.Nt.p,:.et. .<N2<S-<*.~'.X¤<¤<f>#=*.t.V*.t.jX)=F%:.t.X=~..Xz<<<#Jqt< X# gfj'"lJ9&tp.<pf;K/cp a=[&ZjfXK/.p I=JY<$bJ # .vVLYu<2XNlȮ],~WYuKfXKXۧtnK st X f )~# <XfOJ-f!?tXX(0~WX~tuLר~f  X&Ԏ0/LJX/X/X|Z XsXL JX&[(,ʨ~h.Y++~&~<;=gYK f<X ܦ.6g~f~+<X~@+A ''~3 XMb+<XZH~0+<Xv<.t.Vv<.t.0}-\9;( $Y+'<!X}0;<4t;Yf thKKKK_usg~< .wJ ffg~<.LdJfYX/,.0/5X~Jŋ~#.tW[.ztYĒX-="R~3~t.g<<*O1.N<211͟;=gYKY|JJ|JuK|<tJJK f/;iTn|J=OOV <[ Js< <'fXX3&zzY <=KK <CXXK ""Z0Zw"dYJ J t t X X> v< < X @_ fvJ < X N_ fvJ < X N_ fvJ < X N_ fvJ < X N_ .vJ < X N_ .vJ < X N_ .  N/YX  <dv< < X<rmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrm fvJ < XJrm fvJ < XJrm f JrY#t]J#"&tto<o<tYX&tZ&<Z<&tYfttg<g<tJtXJt;XJt;X eKgح% `qM7OJ X JYzJͱ"-mX"P '.p''X'~ fuv9YYY%f$L.<eKg0~˝~Jt;ʝ~X tJ>K~tuJ>K~5~-JDxJDxtxxD~' tyJ58@#f]<~t v-K&J/~I=KOYW=;=I=;=iۖ~ v-K,7}.>~8@#.]<˖~t;0wKOyYW=;=I=;=ءl<#Z%f\}$~KI="ږ~s-'Ȼ~Xq<Xܘ~f";~/X/X/~]&,'U4 fuv9YYY%f$L.<eKg0}}Jt;}X tJ>K}tuJ>K}5~-؍JDxJDxtxxD}' tyJ5Ē8@#f]<}t v-K&J/~I=KOYW=;=I=;=i} v-K,7Դ}.>}8@#.]<}t;0wKOyYW=;=I=;=ءl<#Z%f\}$}KI="}s-'Ȼ}Xq<ƏX}f";~/X/X/}]&,'*4 uv8YYY+f%ZZQ)eKg0~Š~Jt;Ġ~X tJLK~tuJLK~5<A~X'v58@#f]<~t  tw J]~KOYW=;=I=;=iݙ~t  twJ J(؛~8@#.]<͙~t0wtKOyYW=;=I=;=ءl#Z%f\}$ݚ~YI=Y/,ԙ~s-"U~Xq.X~f%/X/T'"-j~]'-~&&W. fuuv8YYYY-f,LL*eKg0}}Jt;}X tJLK}tuJLK} 5-8@#f]<}t ߍtJ>K}WKJ~͎8KOYW=;=I=;=i}t tuJ>K}WK=:~ˋKOYW=;=I=;=ij*} WKJ~I=KOYW=;=I=;=i} WK7-.8@#.]<}t-ٸ8@#.]<}58@#.]<}~9TDxRxt|}' tyJ5tKOyYW=;=I=;=ءl#`Z%tee\}T}KI=Y/,}q.ȑ}fo.ʋ}*/X/X/Ў}'}>*&,}v'ښ4$u[X X>f<  ftXY;-.N.gXtggJt;gX$K\J!YYYYW=ggugmWKuʻ&-bJ"'utY'Xte<M'g$)zfX'O*t=V&n[ Xt< <4XjK=B=<BXA<><AX><A>Xtt Jphض=#@8g=#@8g=#@8g=#@8g=#=Y=#Y=v8 v J>="="=ض="="="Y="Y=L ! Xu . t.= ]u{ ;J~ /4@8h挒@8h@80@80vZv- v JKs /u /u /u /u /u /u /u /u /u3. u u Xu Xu Xu Xu Xu Xu2. X JJs <~   Xf i #m< JXdX  ! Xu . ~t $Xf .w. .   w d   w d   w d   w d   w d   w d   w d   w   vfm < m  m X m X m X m X m .  3$O"P7mL&;/&\8B.=~X cu~ 8 v< X0k. X X f~?3 v< < mfX u u Xu Xu Xu Xu Xu X;W$iL#;/&\8D.J t &8 uJ <L! Xu . rX +v J < <d< XsJt ?<،挒挒@8h@8h@8h挒־'0|@ .u u Xu Xu Xu Xu Xu Xu;.J8=.B<= XmJ ;-D}=t- Xw& Xw& X&=*B|A t<<)qXG8.qJA|K tux1tY|''",V*$V'iX")JֻUp.*'R "Z0Zt' '9.1+U x<g(/;= X~~Jj߁J&\H JztHJ%/8@sfY )RK  XU#A';AX=h $t<";?hf;KɭV׭V׭VVVVV I~"("<<X)؇/;=uf*t;h i.#'dJt J t t X Xc<J v< < X @_ fvJ < X N_ fvJ < X N_ fvJ < X N_ fvJ < X N_ .vJ < X N_ .vJ < X N_ .  Nc; . v< < X<rmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrm fvJ < XJrm fvJ < XJrm f Jrc"ntG*cJt J t t X Xc<J v< < X @_ fvJ < X N_ fvJ < X N_ fvJ < X N_ fvJ < X N_ .vJ < X N_ .vJ < X N_ .  Nc> <v< < X<rmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrmX fvJ < XJrm fvJ < XJrm fvJ < XJrm f Jrc"ntH2l Jt;X;(Jt;X;)  8 tfXX,8 <X"fu@ $u;:.u-:''w?'?'J2.Nt 2 ..uKY@'YJ J t twJ  jQX L . *Z&gK~3 KבIKf <X wR"J4޽tt;ݽXusgXJ4jj}"f'')'ؽ')+?!%U' x?ƕ}.tZ0Zxt';=gK;Y%[!;=gK;U%!'ْ*j'j''r3k.,o|D/Rt..H%8}Dr~u.<~%.5.tX1\;".^tf"ff>KKKY_~< 9f~XȎY~&-2 JC]J<t<<t-g"#-ۍX$ɐ"'~,}Jʏt}XKKYKWKgʭ(}=}XeKgʭ(}KKYKW=ghD}ytx fH:QdWKgʟ&s6WKgʭ& f}#"}.-ȭ}f/&t}$}X1*}X*=X1O.=6};+e<~Jt;~X > <~Jt;~X׀}J΀tu)}Ɂ~Xt;ȁ~XKKYK!W=gہ~Xt;ځ~XKKYYjWKuʭ*}ÆJ;=m"V>gEA}~=6 ݀} y yr{}&s6t}V*<tg- /΃.}}tjWKgʻ&WHJdWKgʟ&}oJ"Jz.Ձ~'m[<8.~d< Z;'.L4<~r'X(< ".x@8x<Ā'}Ѐ<}<u$ .р\}tҁ~Z&.=Na=O.=ؓ~#   Xwt fw f*~Jt;~Xi ؟}<0  XvfuI X  f~<8<|XCDxJDxtxxD~'v5 <~Jt;~X#; <YQSZZX/.~wt XN <~Jt~<~Jt;~X$KWYg#-~XNm]G),~o.<s+pp. <+~t~<bR.~( fuv<`fuLK?Xg<  =YK Xut X:~Jt~.Ց.~Jt;~X- <LYLZrLYФX/.~Z eh!X~t=~<<~<-*fuX 'fx9IXQz'؃!s''~6@K;YgKKK)}KYKKY%t +/deKg)~ a.M}% |4c:- <XtzҠg~#|'Mv<=Bt֛~tK;YgKKKi/f}. vv7YZsYY3f/LM'K X&\eKg*}}Xt;}X d<L}X҃t;}X}J0(tJ>K}tuJ>K}tuJ>K}tuJ>K}Ĭf}Jv-K}1<zJ``*A}'vt8@#f]J}}Jv-K~1<<8@#f]J}ԭ-}Jv-KX%׀<}Jրt;}X-}Jɀ<}JȀt;}X-}J<}Jt;}X-}J <}Jt;}X$KWY#!-}}Jt;}X}J/:zX·X},}.}<&x<<Z 'tKOYW=;=I=;K#ij8}f-}Jv-K$<}<D:-?̈t}f:<tt,<}6,m,}Q@,ۀ,}|}B~<}v/KKKKuW=(}, {"/XY/XY/XY/;LJ"}]KKKwIYK,}~<,̀,}x}~<f\}}}<|3<$|3<v|<s}}<}|<~ .Ob}"}}<x}}<}&,<<}|.<},`#|,<,~ fut< X$+fuKKJ: : ; >iͷ<~J̷t;~XƼ NKWYg",~䟒~</(=%0/RxJ|xt|x~J'v5dJt;ݬ~'<~Xt;~X ح~<1"<~Jt~<~Jt~<~Jt~#= .nYQSLZɸX"7~(= .  fYPULXY2~ NWK"K1~ן~J/  Xv twJ JUf{0J1~.~.&18A<ԟ~.ԟ~<1=}-/ /~<~JK #~X+6t~X~< #~Xb(̸2~%(~.~.&+;An<ٻD; &D;'~=%~--]#<~-6YYKY&uW=(~*~",#~<~<YKKK0~.~/},<<<m.q.<n/-~ ʸ<~<~A}:.uKKYKYP%O]46q1 <tO*~?/}<M(tO~',~|t}~;)v-?|tBǻ2/~~,<<<a~,<~--<l fut< X$+fuKKJ< : ; V>[<~Jt;~X<Ŷ~JtĶ~; <(ZYLZHLYZX#/.~NKWYg(Ų~䟒Ռ~</<~Jt;~X<~Jt;~X- <(ZYLZZX0(g3ȵ~NKWYg(~䟒~</<~Jt;~X<~Jt~= <nYLZHLYZX#/.~NKWYg(~䟒~</  Xv twJ JD8RxJ|xt|x~J'v5dJt   ( &    Xvu X <  }K//.z3.tҌ~.Ҍ~.+0J~.~.A.~.~.7}y:s$- $-~/~< ~+/K;K ڲ~//γ~< #³~X~1Jɵ~*~%~.(~/Y8%~4-uG19<YWK~]zKI=Y/3O;2<q^;t</<q` <;<_ttKKKY/W=|($P$=n=~KKYK$]#<fKKKKtY$~}=<6~ <~<~ }~ΠuKY~<ؕ$WKgʻ*~ʕeKgʭ*~}€ .~".{)~KO7]`x.9?//Ӗ]f~XoX"-~f&,-~kX"JO*~6~X'}'~X'KKKYI=4.f.f.tlt  Xwt [ x9KIXKPy/ t~X Xv< <f .?! Xu  J X~!J XuJ . Xt֭+ܸ'gt&"v>Kv}KMړXMYMYMǢX:>^yg":g-<tٸX,W߸<߸<ft'492 uuu8u3f$ 2  XwX Jw9L~Jt;u;t~ <~Jt;~X$WKg".~ <~Jt;~X߷WKg".~  <~Jt;~XZVL -Yi#~Xޱt=~X!0ٱ~Xt;~X!},>8u<;}X;0RxJ|xt|x~X'v5, $$>~Xt;~X JuX X~X~Xt;~X Ju X~X-~J1~Xt=~X JuX X~X~Xt;~X JuX X~X-ݤ~J/%X~<~8<=}.<}X={@$tv e&^Z$8@#f]<~ έ<~Xͭt;~X }/~< ~|5s<p<;@zZZVLq<th/K;K ~-|J~z{ϮJ uuuu{Z8@#f-]J~8t<;~ov<7 ]t;:ZX:t<;3^q<4K;7@~lv<<]t=m<t<;~{'KKKKIYrJ\$<M<3I=9~R"=.t;AX<|<;|KKYKW=rJq<t;dX<|<;~@q<;:t<;s@Mq<=m<t<<X|ȍ|<<|<;}<}}):<}<6<}.;}XKKYY%~ ͮ<~<uB}7|<< <yC{.;z >K;u0ƴ~"|<<|><|<;|ȍ|t;q|#|:s<:<~ '~|<~p''~<~t~ ~:<~<<;<~X~~";<}<}t}<}t~}}t;}>8t<;ְ~ [%<}.}tXn'}<}t}<}tҺ~|q<vuKYKW=WJ|/q<~ |<?| ~.|<=|==~-DtA6<~|<<|@e~ <~<"yC1@sKKYKur-7~ {7'~<~t~t7î//-~$P/XY/XY/J~J'zYX{q<X~f{q<`{<:<{~{'q<:=<ĺ~"z|}<}t~~<}t;~z}zG6~:'KKKKt{q<X~J|9~<}t;}<}t}<}tƸ~J{q<X K~zq<XR;/<~K vHY^"<|'~'е'~ܵ'~<)j-?}<}t՟~t*7t~ '\$<ҭ~}<}t}f~{<{<{_rX{<<{;tX.${<{<{t~^"<-ț2~ ~<~t#~͵~fֲ"~˸d(ɰvrK/$J<<3f"RxJ|xt|x֦X,.fHKIZXK׻IY~fWWZ;Yf~t=* J  Xm. J J fL-~X+!~X<~J R΅ttͅKKKKWY弟Z Xvt J wJ J  Jm< J  fVLd t /hŤ~JŤtiKבI=~X* tJŀtuJBZ$8@#f]<~JtͰ..J t JmͰJ J Jw J~< .vJ J0# Z$8@#f]<J&t<J v< < JmXͰ v< t f 5vP 93~<~.}>~~x#VYIPOYWK#@*#~tYIPOYWK#@*~<"7mt~<~`qM7OWKg(:y. .tٸ!Y;Y1\ #\$[4Ǐ~}.Ȁ}<t~0tf'}<}<}<}p7.'O76.S-< '7.<~3<=Jh=+|<}~<}X3X~f~''3Fs.7.1~<-'~)<&~<~< B1K=W){)I=pX%%%Y/Y/ vjSLU"<ڀtjWKK6.J-2O&:u3<ڽ!Y;=g=W~"<^"X.~Jts~L . <wt f5~Jts~t$WKg#-~~XՕt=~XKKKYI=g}<<|&<5~Jt;~Xt$WKg#-~~Jt;~Xus=~J/~JҔt;~Xt  te $ ~f.~K <wt f5~Jt~ǁ <(ZYNVL:ZX!.~~<K <~Jt;~X$WKu#/~䒟}"g;Yw ~5~Jt;~X~Jt;~Xޞ JuX X~X[L<~Jt~#.~~Xt=~XKKYKW=gLdKY~.)~.~<~&<<=tu;=g#,~.~<~-v<< tJ6~¾.~.}.}<<~-<~Xݓt=~XYYKKwI=gg$Ly/~<~JXK ~)~y~~~~uKx<~ȫg8Dt|<ӗ~gucܗ.~TvD-:x<;t>s:<$IKg"*W~fu.<$IKu"*;~f-u<.KKKYI=J<~ Ju.;.It$WKg"*;f~'~u.;.t~KKKK/I=p$6se<(<~-<<~t~.~<<~t~=~<<~J$~<<~-<<~t~< L~-%x(}_<~   Aؿ~Jt;׿~.Ց3ݿ~Jt;ܿ~X緓" < J >Z@pN8ZZ0K Xut v Jt7;=gKu<'} <}X-kt~Jt~." X!;h! Xp}}X= }X1+f   Jt~Jt~.!%~Jt;~X3†~Jt~NWK,1~=Ԇ~X"NWKg",~ X! ut XuKY}AK! w g Xt~JJ~.t  te }/}X= }.<}<-f~Xt=߈~.#!͡}XΡ= }.͡<}<-f w f~Jt~X!eNWKg",~h }.<}<-ftȉ~Jt;lj~.=ʉ~X!KKYY!hҠ }.Ҡ<}<-f0 }X=}</ #<yy<H.y<;;>;wͅ~Xt=̅~.LKY}.! ut}<X }./-kt~Jt~." X!;h!̄ Xp}}X= }X1+ f&us)}X.}..bBf  tŊ~Jt;Ċ~.ZKZtъ~JtЊ~& !W֟t}<  ~Jt~.YKKYKeKg".~ }nK=Y}xxx<;;;;xrt%}f/-f$}f/-!f  t~Jt~X!NIKg".~h }X=}<KtՍ~Xߍ~Jtލ~.gK;gKKKWKg".~eh!W tt~Jt;~.ZKZt~Jt~)  ~ t=~.KKKKIYg } <t;<}%'}J/Ď~Xt=Î~.MKKKKuIYg!eh!; ʛ"}J/t~Jt~." =;h!WK=QՃ~&f~X t=~.ZKZ#/~ !; tЏ~Jt;Ϗ~.ZZK#/ɍ~ KKOK_ vX~Jt;~XKKKK$KIYg#/~! ~X~<t~XKKYKY/.Ɛ~Jΐ~<tΐ~. ~X?9?i3~ސ~Jt;ݐ~X%VZ;}X}.}<fu1 QXu<wDw <~ K~0}X.}.ẍ́}t t~Jt~X ~X=~tt~J~#W < J  ZƷZ[ }.<}<- ftLJ~JtƇ~3̇~Jt;ˇ~.χ~Xt=·~X2WKg".~ ~J~<tW~t~XjWKg".~hZVL}</u!K!W}X.}..}Xϡ.}..͡}X.}..}.}.fyyVXy<;;;;}XԠ.}..|(sshQ=w9}X.}..}X.}..yV.tzJr~b1|/tK;K ~z~|(v}XÝ.}.KK&t*.!-!v <v=@'~Xt=~Xt ~.Z.}K Zl<ʔ~uuuuXXuuuuXuXuuuŎ~ ~Xt=~Xt~Jt~Zt~Jt~8!X0'6~!ɹL)~Ju0,0~!kXur }.}.f=lt~8ItYuKe!pt~tt;~tYKKKYw!I=gl4X(.^"<T,<Xz<?z@?X/XgXgXuX-7z((}X.}.}X.}.~Jt;~Xt Xp̎~ZJ}1 tŗ~Jtė~ʗ~X=ɗ~.Õ~Jtu0'g2~Z:~X& yu" vw~}y(%}˛.}<fp#.tt' Xu<x; <R"; %}.}.f%.{{X<{X8wDyA ^ylyv r.~ y X r < J~ #.st' ~Xu<x; <s) <~u  <w <r% <rt <mr.x; <}t~X t=~XKKKYu!̋~X wt=Ջ~.ZZK$  wt X,~Jt~X!WZt~Jt~X!!w;;<tym2 Ht]w <w ;;<X}.}./ksx'<xtxX>=?;|X- "{X'c<|;;;;<~4 t] t#S-~0~w'<wtw=;^w'<wt?X$;X'D;X'}< "t~Jt;~XZKZt~Jt;~X!e!~Ju"-~ w Jl  X Őt   wt J%ғ~Jt;ѓ~X }<}X}<}; X~ky<Jv)4 <kt{X}}<}X̓~C!.jc<u<;.Q;>;6IX<X <s?Y< u<  .sXw <sX!=.t7<u=<X?@.;;X}!!.ec<u<;3L;>;;DXX΁~W).]#SX-<Xz<?z@?X}<o <pt;>;}X2r2Y u< r. <rXw <sX!8.t2<Du=<X?@.;;X }!:.t4<Bu=<X?@.;;bX;'Ӂ~ 5ː~r2Y u< r. <rXw <Vu# .r llJ;;;XӅ~J0.o'<o;?K;gKKYt%tK~e u u u<;;: uXw <yX%2{t'{X<{X@xB@X~qtXw<.wtw<;;Utt Xw<.wtw<;;Xۖ~EҖ~fu"w'<wt;X~w'<wtw<;; <0s,' }Xu<x; <rXs- .ds. <u<x; <gXK us) <~u  <w <~t  .ut nX <u.;;;; X~ pp<p<;;p<<X&ƃ~ t^}J~w" <w<;;><eX,vt Xw< .utw<w<;;Xft .tt X<t.x; <X{$~u u u<;;>; X~tu ut <u<;;>;X%% ~r.s. <~ko<['"yy.<y<;;>yX:sXyyy<;;:yX:|XR%..|t|k<;;><|X~|,.|t<g|=<|X|.;;X;jX&uy'<py.y<;;;;Tyy<t*y<;;>;rXy*y.<>yX;;;;XNWKg"*~fJKń~y'y.<z<<yX;>Uyyz<;;:yX:X‰~'(*O~$&u~<.}t'<~~><}X~.>;T}!.}t<~=<}X~.;;Xv v v<;;;;  Xk>k<f~zz<z ;;>;[Xzz<z ;;>;X~u u u<;;: uX < X}6w <w ;;<Xu v. <Ntu<~#<u /u u<;;;; Tu u u<;;=w <Xu' <tuX u.;;;; Su u u<;;: uX < X]~&uy'<py.z<;;;;Tyy<t*z<;;>;rX}*~"}X!i.<<<~=?<~XXtk%O~f"uszXz.<$v v v<;;;; X}zz<z ;;>;Z9~z8z<z ;;>;qX1w'<w;>Sww.<w ;;=Vww.wt<w<;;<X~k<~ k)X<~'a6&uz'<zz<;;;;Tzz<z ;;>;sXzz<z ;;>;V'ɑ~#q'<q;>>6X%p <p<;;;~p:z<<pY< p<o <Htp;;;"XuKKYYf<~oo.o ;;;X-~ <~<rop<ot;;xXӓ~o <Jtp;;;Xz   ~6l)S~yyz<;;:yX:X 6o'<o;?֛~tt"v <vt~%v <vt;;>;yXv'k< vt;: < XwJKKYKXw(~t~'S-<6t;.X v !~<m.7;<~Y< ~<~~X~.Xw'<w ;;UX0 q.q<q<;;;jXqqq<;;=<kXqq.<q ;;:<Vqq.qt<q<q'<q;>>+X'~Q/<!>]6"Y~p.ptp<;;?[p.p<p<;;;Xؒ~ p.ptp<;;;jXp.ptp<;;?rX~!.~t<=<~X~.;;Xyy<*y<;;>;FXyy<*z<;;>;zX<}!.}t<}u=<}X?@.;;Xw'<w ;;xX *t't''u v. <ou;;:w <Xc#.tt' Xu<x; <Xu' <<u  u' <ut;> <uX X~ u uk;;: uXw <X6~t /u <u<;;: tXw <yXg%.{t'{X>;><{Su4KKYYfo%/{t'k;;:{X<{XX~Xs 6s <u<x; <yX5X~*ko<|%<{t=?;{Xp"{|.<{<{.'k;;:{X<{XX~ {.{k<;;><{X=@XƇ~ {%<{t{X<{X@xB@Xć~{%<{t{;;:{X<{XX6v.=~k.<~2u).kX~<~<zp'<p;>>Xx/k<ek<~fk<Jk)X)4>ktX~(}t=~Xo <p ;;;;5Xop.<Qtp;;>Xʓ~o0.ot<p<;;;\0o'<4<ot;?Vos{{<{=<{X{.;;X~ 7X(<ktX~5m}!.~t<=<~X~.;;X}!.}t<}u=<}X?@.;;X$=l yo'k<pt;:<X~p <p ;;;;tX60/~"m'mf;;?~n.<~tn;;; Xmt:z<<mmf#~ft)#~<~<~pp.<p ;;:< X0p <pp'<p;>>Xq.n.s o<;;;X fK vtKf <k~<k<^k< J}w)rx<w<;;;<qy~!.~t<=<~X~.;;`"|!.|t<|J=<|X|.;; X"~xO~$K;gKKKXwfxxx<;;:xX>X~xxx;;;;[xxx<;;:xX>]xx.x<x<6~~!.~t<=<~X~.;;]K;gKKKXwf'~*cKWYg=*} a.M~%}!.}t<}u=<}X?@.;;σX} }!.}t<}u=<}X?@.;;Xy"'w-/xtx<;;;/%?K}Xդ.}.#}!.}t<}u=<}X?@.;;Xv w.<wt;>>Vv wk;;:w<|X'zzz<;;:zX:XIKg*~fJOf́~%'wc..xtw<;;>Xv v. wtk;;;; zXK;gKKKXwsJ|2|t<|J=<|X|.:X~F#/|t'<|z@x<|X|.?/}4/~"u v v<;;;; XDKKYKttu u. vt v<;;> Uu v. <v ;;:w <X~"usv< v tv j"usv< v y<|!.|t<|J=<|X|.;;X~|!.|t<|J=<|X|.;;[<|%.|t'|<;;>7|X}'}}!.~t<=<~X~.;;X]zLˊ~ x'<xt;><xX{X́~tKKYKfYxxk;;:xX <{X|%.|t'k;;:<|X~ |.'|X<|X@xBX~|%.|t'k;;:<|[~,'v y~"<Dž~}!.}t<}u=<}X?@.;;Xxxx<;;:xX>{X6}!.}t<}u=<}X?@.;;X h}X fuvu7'zJYYYY;f# g}<X @tA~X' tyJ5"}X<}.'.IYW=%/X/XY/XY/XY/XK(6$3 fuu< Xu#fuLYXk< <= =  Jw X  = 'x9IXy DvX Jv"צ~Jʦtu)~yX;8<t>"""xJ׾~<T ~< !<~Jߩt;~XZvԩD~Jөt~t!!٫ ~JثXu#=.~ _.Y _ ~Jt;~.ɿ~[ZZ0ɭ Xwt X:~Jt;~XW0Z<~Jt~t$ ~Xu0()~偑~~f|"|"m<-;8:H8~$K̓I="{"%p,$NP/zQ'~ 6~X{''"m<-7:'um<-`t;8;2U<m<(.Wt7:~/"!  v Y %ͼX~˼<~Xh[ZLvW! kc"zt;8<z${< 6z;8C.zxJ$K;gKKKi1'f)''t6'~ 'zw.<zt8~<~X~~;<~tT]'f "y;8~tǧ$}~~;<~tD~;<~t~<m<.~t7:~ȏ<~t8} .΅ m'~'@~Jé'~6D.~t;8!to<o<t_X //Q<Ȕ |tt}<}t~KKYKigp}.}<}tt~}<}t6~~.~)~<.~~nA </}~~.B~.t<..t<.ס~.}'}<}tY;=g~..~Dt<.~z-t>{t~t<.rO.~t<.~t<.t<.~X=<=tނ <;"fKKHYY:X;&E<Zt&Xf=fXKKYYW=g  $K[J J~I=~,c7' tyJ5ytXK;-.NgJtggJt;gX$K\JKKYKK//~+:D;0Df;XEt XZw9LeXt;u;X_/P/<P J"< X"< X"< X"< X"< X"<[p"< X="C< X2"N< X'"Y< X"d< X"o< X;"x<[n,X"=f",h,Z\8@0=-?=w;=4Y0xtNu) XOY&m-;7(#;=b<-;;-N-;:N-;Z-$%XXXXXjg.''y<Y;=h1 J_u0(XuqY;=h;=/&[70p<<0u-?X=ytY;=h;=/&[70;=0u-?X=fyYuYXp |/;Y/#\t _zXXY;=~f;ʑ\  -D<.% JiXY;=~f;ʑ\  -D<.% Jcf!;Y;=/t\8X@u;/Y=IoX.X  <}X<# <# Y-E3X!_ (<zXq?&Z<&XUX+<U/J3=/yX J?]u X;=gI=;=g###%-/Xu!-XK;=ʃ;=/I=`ff<`.ɻgYK/YZvJbJ<bJ.^.0*Yu uJ t!.) J=H//[://. "= 4@T8NZ[XitLusY\mXzJ XsJtgeYy0:/YqLusYXyI Xu2vYI>Y|XKKXy< JTXX.WLxKX8~ ʃJCY-W0(R+v,8AA <v< t8=?=?=.Lg fJ I/ʯN.ugD%]{< '4=wA?????????????| tdt8uuuu0!v>Ewqu0Ԯ07usu0!v7 twtu0!v>7vu=s/uvru0!v>7 tst t4y<{);;u);;u);;u);u);u);u);u&Cyt;HH;HHHHHHHHHH;HHHHHHHHH?5. ?5. ?~5. 9w9>@>A 9w9>@>A 9נ!!!!!!!!!!!!!!!!!!!!!!!!!!~5. ։uty u t| u tx> u tx> u tx> u t4A9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiJ<i<)H A A A A Awt Y;uj..j.<j<)HjJ<j<)HDAtz  ~ numpy/random/src/distributions/usr/include/usr/include/bitslogfactorial.cstdint.hmathcalls.h ~h erXJiIKR numpy/random/src/distributions/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/usr/include/bits/opt/python/cp37-cp37m/include/python3.7mnumpy/core/include/numpynumpy/core/include/numpy/randomdistributions.cdistributions.hstddef.hstdint.htypes.hlibio.hpyport.hnpy_common.hbitgen.hnpy_math.hziggurat_constants.hstdio.hmathcalls.h pY,f>KUMgWg2EOgfj.<j<hfXHkaOTffifJf0=G[=Ig2EAg.<<f<<JXk}Afn<<iJ~7tnA0G9tDfEO2.Dt s!tnX<(XI=>,L'ZtsyJ{z zJ,f>KUMgYe6c<j.<j<hfXHb%,f>KUMgWgkfj.<jf<hfXHMkJ<kfeXfeXJ?,LeC,t>KM=s=Ksk.j2<jJhffHbD,t>LWUMW=Igkfj%<jJhffHbD,t>LWUMW=Igkfj<jfJhffH&eJt!e#Httk&t,yf{z zf0=G[=Ke6c.<<f<<JX f0=G[=Igkf.<f<f<<JX f0=G[=Igkf<<f.<<.fXifM9kJ<kn<eXJ%tiJo .<<X~f9?K;h;/  J~f<<gsK :Z:cz .<JX~t9?K;h;/~t<Jhs ~.<~<~f<~<J~tX~ e~ff:>L;/u~n<~~<<~D<~/sKfh>| u JuX fK5yXQGKKKKKKKKVhVeKeIugXK;I4EOnJ+JJ=|Jt| t|<|f,<>KUMgWg.gK|Jj.<j<hffH#cb,f>KUMgWgkfj.<jf<hffH&eXf2J|<<|JgIK>iGi./ZVbt||.f;YZXoXKIKveY;KIZIKW0|Jt| t{<{f,<>KUMgWgK|.j.<j<hffHb8,f>KUMgWgk.j.<jf<hffH&efk2f2/Ie{0KUMgYe.g|j.<j<hffHb&,f>KUMgWgkfj<j<hffH&eff*|Jt| t{<{ ,<>KUMgWggeKI|j.<j<hffdb&,f>KUMgWgXf*j.<jf<hffd&eff2{f$xXzXB>{tfKIK/Th{tfKYI1J{<<{f<-IKiiYYgeKWs;1g0W3Dփ-0{f6JJ6<]WgIIiKIh{{<{Xfu,WYHgIgIl& ==)JKHh-Vg!=eYK5WaPzfgIiWZKHhGgYIKH"YGMKUIKZGhHg.zffzf<z<zfJWKKIgZYfgZ9ggWKI=6&\2 vf01#.'g!WKI=2^K;g;IWLhLHhYeKvLzYOZ]q[EKMcKZG,Ige؎4znz/LAV-MTVWMZVLVWLyJ.QX[G׭f4%jfTMh$dgIhIg8Xye1L;KxgKye jx ZGY;[9 ?i ft KI1pf.vt[Y1/Y;Ys u/ XvJ <v =VT Y=;KIIKh\F@FNYgeKy*<y<"y 'kEk@yx?fxf<YxX<x4fxffhMe1IO1xf.<\f6,&SO\ d*+f~jx.fx/eKJ (tfJx<<xfvt f;=;4<u< <uJ u fs^Jt  fPzu. fe^Jt f0,;Y0}f=9fG<9<BwJt/~Y.s~fwJtW/J}Y.W=-}.wJtW/JJcMtt/w.tWg } .}J.}X.}x/L.}X<t fW/i9[g"O9 (Z< ~u t3EOL,0ut tePJm}<<}tXs tA7k0:>v t;=;4<|gtJ ttost tht|st`1I])OgN> IuWgWYk  }<.}<s. t3EOL,0ut tePJs|.t0s tf ms th< C&CWKWWWWWWy . }f}~=~t=o/|:<G<9.BwJ tD<}t=o/{t=9<BwJt{=<{wJ zi/*|N/>[r tF8 zȑ;Z`ɠ/[ numpy/random/src/distributions/usr/include/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/bitsnumpy/core/include/numpy/randomrandom_hypergeometric.cstdint.hstddef.htypes.hlibio.hbitgen.hstdio.hdistributions.hlogfactorial.hmathcalls.h 0GG.~= Jv:YWgh:WhVhUkicM%__pyx_k_itemlong long int__pyx_kp_u_Generator_shuffle_line_3786__pyx_v_aligned_p__pyx_k_start__pyx_k_Generator_wald_line_2520__pyx_pw_5numpy_6random_9generator_9Generator_59gumbel__pyx_k_choice__pyx_float_0_0nb_lshift__pyx_n_s_isnative__pyx_n_s_int_disable_importlib__Pyx_GetAttr3Default__pyx_kp_u_Generator_power_line_1954__Pyx_SetItemInt_Generic__pyx_n_s_ngooditersrandom_standard_gamma_zig__pyx_k_O__pyx_e_5numpy_6random_6common_CONS_POSITIVE__pyx_pf_5numpy_6random_9generator_9Generator_46standard_t__pad1__pad2__pad3__pad4__pad5__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get____pyx_pw_5numpy_6random_9generator_9Generator_57laplacedata1data2__pyx_tp_dealloc_5numpy_6random_9generator_Generator__pyx_k_f__Pyx_StringTabEntry__pyx_k_n__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_p__pyx_k_contiguous_and_direct__pyx_n_s_mean__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_v_hash_setNPY_CHAR__pyx_k_state__pyx_k_prod__pyx_tuple__44__pyx_k_triangularkwargs__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_vonmises_mu_kappa_size_None_Dra_Py_NoneStructallocfunc__Pyx_ErrFetchInStateasync_gen_finalizer__pyx_memoryviewslice_assign_item_from_object_PyArray_Descr__pyx_k_negative_binomial__pyx_k_Generator_logistic_line_2259__pyx_k_bounded_integers__pyx_k_methodPyLong_TypePyByteArray_Type__pyx_L4_bool_binop_donetype_name__pyx_k_reduce_ex__Pyx_PyInt_As_Py_intptr_t__pyx_doc_5numpy_6random_9generator_9Generator_86multinomialnb_and__pyx_v_c__pyx_k_gamma__pyx_n_s_operator_PyType_Lookup__pyx_tuple__51__pyx_v_k__pyx_check_strides__pyx_tuple__55__pyx_k_covariance_is_not_positive_semidPyVarObject__pyx_n_s_endpoint__pyx_kp_u_Generator_uniform_line_749arraysize__pyx_v_x__pyx_k_Indirect_dimensions_not_supporte__pyx_v_array__pyx_n_u_scale__pyx_n_s_sidePyObject_RichCompare__pyx_L9_try_endPyArray_DotFunc__pyx_k_int32__Pyx_GetAttr__pyx_n_s_sqrtPyUnicode_FromUnicode__pyx_k_copy__pyx_v____pyx_v_a__pyx_v_bboundscheck__pyx_v_dpyexitmodule__pyx_v_i__pyx_v_jmp_subscriptkwdefs__pyx_v_n__pyx_v_o__pyx_v_p__Pyx_PyInt_AddObjC__pyx_k_OverflowError__pyx_v_s__pyx_v_u__pyx_v_v__pyx_vtabrunerr__pyx_k_float32__pyx_n_u_df__pyx_k_integers__pyx_k_warningsfunc_kwdefaultsgc_nextNpyAuxData__pyx_ptype_5numpy_broadcastPyBytes_FromStringAndSize__pyx_v_is_slice__pyx_v_indices__pyx_k_Providing_a_dtype_with_a_non_natPyGC_Head__Pyx_ImportFunctionNPY_OBJECT__pyx_n_s_nsample__pyx_int_neg_1__pyx_kp_u_Generator_standard_exponential_l__Pyx_CodeObjectCacheEntry__pyx_kp_u_bytes_length_Return_random_bytePyModuleDef_Slot__pyx_tuple__67__pyx_v_mnixPy_UNICODE__pyx_v_methodml_name__pyx_v_meanPyErr_WarnFormat__pyx_k_empty__Pyx_BufFmt_TypeCharToNativeSize__pyx_memoryview_fromslice_py_stopaxes_specs__pyx_fatalerror__pyx_clineno__pyx_pf___pyx_MemviewEnum___reduce_cython__PyModuleDef__pyx_v_idx_data__pyx_kp_u_Generator_rayleigh_line_2451__pyx_vtabstruct_memoryviewnpy_int64PyExc_ImportError__pyx_f_5numpy_6random_16bounded_integers__rand_uint16__pyx_k_mean_must_be_1_dimensional__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_v_dst_stridesPyASCIIObject__pyx_string_tab__pyx_L7_except_errorhas_cstopPyGILState_STATE__pyx_n_s_getstate__pyx_pw_5numpy_6random_9generator_9Generator_15beta__pyx_k_memviewsq_inplace_repeatenc_packmode__pyx_n_s_zeroslong_longPyObject_Not__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_triangular_left_mode_right_size__pyx_v_start__pyx_kp_u_Generator_standard_cauchy_line_1_PyCoreConfig__pyx_L42_errorPyUnicode_Decode__pyx_n_s_ravel__pyx_k_float64__pyx_k_Generator_bytes_line_479tp_dealloc__pyx_methods_memoryview__pyx_n_s_numpy_dualPyInterpreterState__pyx_typeinfo_cmp__pyx_kp_u_permutation_x_Randomly_permute__pyx_getprop___pyx_memoryview_basePyErr_NoMemory__pyx_v_alpha_arr__va_list_tag__pyx_n_s_format__pyx_v_pixiternextfuncuint32_t__pyx_pw_5numpy_6random_9generator_9Generator_87multinomial__pyx_n_u_triangular__pyx_L12_exception_handled__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_v_tmpdatain_coroutine_wrapper__pyx_k_allocate_bufferts_after_subb_handler__pyx_pf_5numpy_6random_9generator_9Generator_74poissonnext_double__pyx_tp_new_memoryview__pyx_doc_5numpy_6random_9generator_9Generator_46standard_t__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_dict_version__pyx_kp_u_logseries_p_size_None_Draw_samp_copy_strided_to_strided__pyx_k_strided_and_direct__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_array___setitem____Pyx_CodeObjectCache__pyx_n_b_Oco_filename__Pyx_HasAttr__pyx_n_u_dfnumsetattrfunc__pyx_v_lnbad__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get____pyx_k_standard_normal_size_None_dtypePyErr_ExceptionMatches__pyx_L72_bool_binop_donelong double__pyx_MemviewEnum___repr____pyx_n_s_nbadPy_FatalError__pyx_L55_error__pyx_n_s_pyx_result__pyx_float_1eneg_8__pyx_k_unable_to_allocate_array_dataPyObject_SetItem__Pyx_TypeInfo__pyx_f_5numpy_6random_16bounded_integers__rand_uint32PyErr_Fetch__pyx_v_suboffset_dim__pyx_pf_5numpy_6random_9generator_9Generator_64rayleigh__pyx_L9_error__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get____Pyx_PySequence_ContainsTFNPY_HEAPSORT__pyx_k_Generator_binomial_line_2688__pyx_v_diric__pyx_f_5numpy_6random_9generator__check_bit_generator__pyx_L16_bool_binop_done__pyx_n_u_float64npy_bool__pyx_v_pop_size_i__Pyx_ImportType__pyx_v_new_shapePyCFunction_TypePyCapsule_GetName__pyx_kp_u_alpha_0__pyx_k_a_cannot_be_empty_unless_no_sam__Pyx_PyErr_ExceptionMatchesInStateinternal__pyx_memoryview_err__pyx_f_5numpy_6random_6common_check_constraint__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr____pyx_memoryview_err_dimuse_tracing__pyx_k_f_dfnum_dfden_size_None_Draw_sa__Pyx_InitCachedBuiltins__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get____pyx_pf_5numpy_6random_9generator_9Generator_6__getstate____Pyx_BufFmt_TypeCharToStandardSize__pyx_k_isfiniteNPY_STRINGcurexc_value__pyx_memoryview_typecontext_ver__pyx_pf_5numpy_6random_9generator_9Generator_66waldPyNumber_InPlaceTrueDivide__pyx_n_s_integertemp_intid_mutex__pyx_k_logistictstate_headtp_weaklist__pyx_k_unpack__pyx_tuple__13__pyx_k_Generator_permutation_line_3917__pyx_pf_5numpy_6random_9generator_9Generator_48vonmises__pyx_get_best_slice_order__pyx_k_standard_gamma_shape_size_NonePyObject_GetIter__pyx_kp_u_standard_normal_size_None_dtype__Pyx_init_memviewslice__Pyx_RaiseArgtupleInvalidm_sizetp_new__pyx_k_pcg64__pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__PyTuple_Packout_start__pyx_k_PickleErrorco_kwonlyargcount__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__m_indexPyLongObject__pyx_k_Format_string_allocated_too_shor_2ma_values_PyErr_StackItemPyArray_FastTakeFunc__pyx_k_add__pyx_L1_error__pyx_k_pickle_2__pyx_k_Generator_gumbel_line_2140__pyx_kp_u_chisquare_df_size_None_Draw_samnb_inplace_xor__pyx_atomic_int__pyx_n_u_choice__pyx_v_p_srcinplace__pyx_k_Generator_noncentral_chisquare_l__pyx_k_reduce__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_k_finfo__Pyx_INC_MEMVIEW__pyx_k_Generator_logseries_line_3252__pyx_k_lam__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_code_cacheno_fail__pyx_n_s_pyx_typecancastscalarkindtoPyGILState_Ensuredump_refs__pyx_tp_clear_5numpy_6random_9generator_Generator__pyx_ptype_7cpython_4type_type__pyx_n_u_uint16PyThreadStatePyUnicode_2BYTE_KIND__pyx_v_nbad__pyx_k_empty_like__pyx_k_mode__pyx_k_svdinterned__pyx_v_dst_shape__pyx_v_itemsize__pyx_n_s_arange__pyx_kp_s_unable_to_allocate_array_data__pyx_doc_5numpy_6random_9generator_9Generator_52weibull__pyx_k_enumerate__pyx_k_Generator_standard_gamma_line_10tp_baseargdefs__pyx_L48_except_error__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_n_s_dtype_is_objectf_back__pyx_n_s_cumsumacquisition_countPyDict_Newkwtuple__pyx_kp_u_Unsupported_dtype_s_for_random__pyx_v_x_ptr_py_tmp__pyx_v_retclone__pyx_kp_u_Generator_standard_t_line_1580hash1hash2return_eqc_api__pyx_kp_s_contiguous_and_direct__pyx_k_Invalid_bit_generator_The_bit_ge_unused2__pyx_n_u_uint32__pyx_n_s_fortranPyList_NewNPY_SHORT__pyx_n_u_b__pyx_doc_5numpy_6random_9generator_9Generator_60logistic__pyx_k_laplace__Pyx_PyObject_CallNoArgPyModuleDef_Base__pyx_doc_5numpy_6random_9generator_default_rng__pyx_v_val_data__pyx_v_kappa__Pyx_Is_Little_Endiandecode_functp_basicsizectversion__pyx_pw_5numpy_6random_9generator_9Generator_33standard_gammatp_members__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_kp_u_Generator_pareto_line_1757__pyx_k_Unsupported_dtype_s_for_standard__pyx_k_multivariate_normal_mean_cov_si__Pyx_PyFunction_FastCallDict__pyx_k_side__pyx_v_infoempty_list__Pyx_PyObject_GetItembufferinfoPyBytes_TypePyLong_FromStringwas_sq_slice__pyx_L41_error__pyx_memoryview__slice_assign_scalar__pyx_v_psdold_exc__pyx_v_dst_data__pyx_k_noncentral_f_dfnum_dfden_nonc_sPyGILState_UNLOCKED__pyx_L34_try_return__pyx_f_5numpy_PyArray_MultiIterNew3__pyx_v_parr__pyx_gilstate_savestart1start2__pyx_k_standard_normaltmp_value__pyx_k_Unsupported_dtype_s_for_standard_2__pyx_k_Unsupported_dtype_s_for_standard_3__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__tp_flagsPyUnicode_FromFormatPyTryBlockdestructor__pyx_k_flagsPyCode_NewPyObject_Malloc__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_memoryview_get_item_pointer__pyx_n_u_bit_generator__pyx_pf_5numpy_6random_9generator_9Generator_54power__pyx_n_s_index__pyx_k_pareto_a_size_None_Draw_sampleslocal_valuetp_setattro__pyx_n_s_locPyArray_FillWithScalarFunc__pyx_v_p_dst__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__PyArray_CopySwapFunc__pyx_k_ravel__pyx_n_u_logistic__pyx_v_oright__pyx_kp_u_negative_dimensions_are_not_allo__pyx_pw_5numpy_6random_9generator_9Generator_61logisticdev_mode__pyx_type_5numpy_6random_9generator_Generatornogil__pyx_L12_unpacking_failedmodules_by_index__pyx_v_rangeis_valid_array__pyx_v_p_sum__Pyx_TypeTest__Pyx_BufFmt_Contextdigits__pyx_k_setstate_cython__Pyx_PyObject_Callis_strcodec_error_registry__pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1_NOTNANexc_type2__Pyx_PyErr_GetTopmostExceptionbuf_flags__Pyx_RaiseUnboundLocalErrornew_max__pyx_v_have_start__pyx_n_s_errorcopyswapnf_lasti__pyx_getsets_5numpy_6random_9generator_Generator__pyx_k_step__pyx_builtin_OverflowError__pyx_kp_u_x_must_be_an_integer_or_at_least__pyx_k_power_a_size_None_Draws_samples__pyx_vtabptr__memoryviewslice__Pyx_Raisethread_id__pyx_n_s_may_share_memory__pyx_v_temp__pyx_memoryview_copy_object__Pyx_IterFinish__pyx_k_allargnameob_basePyFrame_Type__pyx_n_s_memviewPyObject_SetAttrStringreadonly__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_module_is_main_numpy__random__generator__pyx_kp_s_strided_and_directcallback_free_data__pyx_kp_u_Generator_permutation_line_3917__pyx_pf_5numpy_6random_9generator_default_rng__Pyx_ImportFrom__Pyx_PyObject_GetAttrStrwarning__pyx_tp_clear_Enumam_anext__pyx_kp_u_Generator_poisson_line_2908__pyx_n_u_hypergeometric__pyx_k_permutationignore_environmentNPY_CLIPMODE__pyx_v_randoms_data__Pyx_ListComp_Append__pyx_n_s_floating__pyx_n_s_test_PyMainInterpreterConfig__pyx_L13_unpacking_done__pyx_array___getitem__PyArray_FromStrFuncfromstrPyExc_ValueError__pyx_v_buf_ptr__Pyx_check_single_interpreter__pyx_e_5numpy_6random_6common_LEGACY_CONS_POISSON__pyx_v_idxPyExc_RuntimeErrorPyEval_SaveThreadco_extra_freefuncsPy_buffer__pyx_kp_u_Generator_gumbel_line_2140s2_is_unicode__pyx_k_chisquare__pyx_k_anyob_shash__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_n_u_powerPyObject_GetBuffer__pyx_memoryview_broadcast_leadingPyObject_GetAttr__pyx_n_s_isnan__pyx_slice__33__pyx_b__pyx_v_n_arr__pyx_dPyUnicode_WCHAR_KIND_vtable_offsetsubarray__pyx_m__pyx_v_is_scalar__pyx_r__pyx_fill_contig_strides_array__pyx_n_s_scale__pyx_L5_argtuple_errortp_init__pyx_doc_5numpy_6random_9generator_9Generator_24choicePyTypeObjectnb_remaindertp_freereturn_neucs2ucs4__pyx_f_5numpy_6random_6common_contnb_inplace_remainderdotfunc__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_v_rightfillwithscalar__pyx_array___getattr____pyx_L22_bool_binop_doneeval_framemodule_search_path_env__pyx_memoryview_assign_item_from_objectrandom_bounded_uint64__pyx_vtabptr_memoryview__pyx_kp_u_logistic_loc_0_0_scale_1_0_sizenew_memview__pyx_builtin_IndexError__pyx_k_pyx_checksum__pyx_k_gumbelPyCapsule_Type__pyx_ptype_5numpy_ndarray__pyx_memoryview_refcount_copying__pyx_v_onsample__pyx_k_choice_a_size_None_replace_True__pyx_v_val__Pyx_GetAttr3__pyx_capsule_create__pyx_pf_5numpy_6random_9generator_9Generator_72negative_binomial_arr_descr__pyx_e_5numpy_6random_6common_CONS_POISSON__pyx_doc_5numpy_6random_9generator_9Generator_64rayleigh__pyx_k_range__pyx_pw_5numpy_6random_9generator_9Generator_35gamma__pyx_L10__pyx_L11__pyx_v_flagsternaryfunc__pyx_pw_5numpy_6random_9generator_9Generator_75poisson__pyx_L15__pyx_n_s_intp__pyx_k_ngood_nbad_nsampleconst_zeroPyArray_ArgFuncim_weakreflistnb_indexPyThread_allocate_lockPyNumber_Subtract__pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1limit__pyx_getsets__memoryviewslice__Pyx_PyNumber_IntOrLongWrongResultTyperetvalNPY_LONGDOUBLE__pyx_v_dfdensq_contains__pyx_memoryviewslice_objtp_setattrPyDictObject__pyx_cython_runtime__pyx_k_locm_mls1_is_unicode__npy_i__pyx_n_s_tobytes__pyx_k_low__pyx_f_5numpy_6random_6common_kahan_sum__pyx_L40_error__pyx_L36_unpacking_done__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_numpy_dual__pyx_pf_5numpy_6random_9generator_9Generator_14_bit_generator_4__del____pyx_k_geometric_p_size_None_Draw_sampindirect_contiguous__pyx_v_extent1__pyx_v_extent2__pyx_kp_u_Generator_zipf_line_2980__pyx_v_on__Pyx__GetExceptionasciimodule_search_paths__pyx_pf___pyx_array___reduce_cython____pyx_n_s_random__pyx_k_Non_native_byte_order_not_suppor__pyx_n_u_nsample__pyx_k_strided_and_indirect__pyx_v_negative_step__pyx_k_name__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr____pyx_k_wald__pyx_n_s_PCG64__Pyx_RaiseTooManyValuesErrornb_subtractNPY_BOOLexecutabletypeobj__pyx_vtable_arraynb_absolute__pyx_k_strPyFrameObjectPyArrayIterObject_tagob_type__pyx_n_s_logical_or__pyx_n_s_ndimasync_gen_firstiter__pyx_k_numpy_random_generatorinquirynum_threadsimport_timePyNumber_Add__pyx_kp_u_Generator_f_line_1201_PyUnicode_Ready__pyx_n_u_permutationtp_getattr__Pyx_PyBool_FromLong__pyx_n_s_addnsavepvaluePyTupleObjectrtversion_IO_backup_base__pyx_doc_5numpy_6random_9generator_9Generator_74poisson__pyx_kp_u_Range_exceeds_valid_bounds__pyx_L30__pyx_v_direct_copypy_funcname__pyx_pf_5numpy_6random_9generator_9Generator_4__str____pyx_k__4__pyx_L3_bool_binop_done__pyx_getprop___pyx_memoryview_ndim__pyx_k_return_index__Pyx_is_valid_index__pyx_kp_u_Generator_multivariate_normal_li__pyx_L25_error__pyx_type___pyx_MemviewEnum__Pyx_PyInt_From_int__Pyx_check_binary_version__pyx_kp_s_Out_of_bounds_on_buffer_access_a__pyx_n_s_cline_in_traceback__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_kp_u_left_rightclass_name__pyx_n_s_setstate__pyx_n_s_lamPyOS_snprintfstrlen__pyx_kp_u_shuffle_x_Modify_a_sequence_innb_invert__pyx_doc_5numpy_6random_9generator_9Generator_68triangular__pyx_tp_clear_memoryviewm_clearPyModule_NewObject__pyx_k_high__pyx_k_stop__pyx_v___pyx_type__pyx_t_5numpy_6random_6common_ConstraintType__pyx_n_s_class__pyx_k_ctypesc_profileobjwarnoptions__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__nb_inplace_floor_divide__pyx_k_rayleigh_scale_1_0_size_None_Dris_trueNPY_CLIP__pyx_n_s_ASCII__pyx_k_RuntimeError__pyx_L11_bool_binop_donestdin__Pyx_RaiseDoubleKeywordsError__pyx_kp_u_Generator_triangular_line_2588__pyx_v_inc__pyx_kp_u_at_0x_X__pyx_pw_5numpy_6random_9generator_9Generator_79geometricbyteorder__pyx_kp_u_Generator_negative_binomial_linerandom_binomial__pyx_builtin_enumerate__pyx_L16_try_endim_self__pyx_arg_length__pyx_tp_as_buffer_memoryview__pyx_k_zipfkwds2max_count_IO_read_end__pyx_vtabstruct__memoryviewslice__pyx_v_dst_slicedescrsetfunc__pyx_memoryviewslice_convert_item_to_objectold_val__Pyx_decode_c_string__pyx_k_probabilities_are_not_non_negati__pyx_k_bytestp_as_sequence__pyx_n_s_strides__Pyx_SetItemInt_Fast__pyx_k_Generator_dirichlet_line_3647_array_interface_IO_save_base__pyx_k_allclose__pyx_v_ndim__pyx_pf_5numpy_6random_9generator_9Generator_10__reduce____pyx_kp_u_negative_binomial_n_p_size_NoneNPY_ULONG__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem____pyx_k_Generator_multinomial_line_3497__pyx_moduledef__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copyPyFloat_Type__pyx_pf_5numpy_6random_9generator_9Generator_22bytes__pyx_k_nsample__pyx_bisect_code_objects__pyx_n_u_zipf__pyx_v_to_object_funcPyFloat_AsDouble__pyx_v_multin__pyx_lineno__pyx_memoryviewslice___dealloc____pyx_vtabptr_array_Py_CheckRecursiveCall__pyx_getprop___pyx_memoryview_nbytes__pyx_v_val_arr__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_methods_5numpy_6random_9generator_Generator__Pyx_BufFmt_ProcessTypeChunknb_divmod__pyx_doc_5numpy_6random_9generator_9Generator_44standard_cauchynd_m1__pyx_v_tmpNPY_CPU_BIG_IO_write_end_Py_CheckRecursionLimit__pyx_n_u_normal__pyx_getprop_5numpy_6random_9generator_9Generator__bit_generator__pyx_k_random_size_None_dtype_d_out_No_PyFrameEvalFunction__pyx_v_keylast_time__pyx_k_pyx_unpickle_Enumf_localsplus__pyx_n_s_dtype__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_integers_typespyexitfunc__pyx_k_cov__pyx_pw_5numpy_6random_9generator_9Generator_19standard_exponential__pyx_n_s_int8__pyx_memoryview_slice_get_size__Pyx_PyInt_As_int64_t__pyx_kp_u_Unsupported_dtype_s_for_integers__pyx_int_4294967296__pyx_k_paretoexact__Pyx_InBasesdescrgetfunc__pyx_k_Unsupported_dtype_s_for_randomcoerce_c_locale_py_slice_IO_buf_base__pyx_k_boolowned_stopPyFloat_FromDoublem_docssizeargfunc__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get____pyx_v_tol__pyx_n_s_enterhas_cstart__pyx_n_u_lam__pyx_doc_5numpy_6random_9generator_9Generator_62lognormalPyObject_GC_UnTrack__pyx_pf_5numpy_6random_9generator_9Generator_44standard_cauchyPyMappingMethods__pyx_v_stride__pyx_k_kappa__pyx_v_f_stride__pyx_n_s_searchsorted__pyx_v_typeinfo__pyx_n_s_nonc__pyx_pw_5numpy_6random_9generator_9Generator_63lognormalvsnprintf__pyx_L7_bool_binop_done__pyx_pw_5numpy_6random_9generator_9Generator_89dirichlet__pyx_n_s_pyx_getbuffer__pyx_doc_5numpy_6random_9generator_9Generator_28standard_normalprogramequals__Pyx__ArgTypeTest__Pyx_ImportType_CheckSize_Warn__pyx_v_src_extentPyArray_SetItemFunc__pyx_pw_5numpy_6random_9generator_9Generator_14_bit_generator_5__del____pyx_k_standard_gammainstall_signal_handlers__pyx_n_u_bool__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_n_s_reduce_exnb_floatnb_inplace_rshift__pyx_pw_5numpy_6random_9generator_9Generator_81hypergeometricPyDictKeysObject__pyx_filenamePyMem_Malloc__pyx_n_u_int16PyExc_NotImplementedError__pyx_v_mask__pyx_k_pyx_PickleErrormemcmpPyArray_NonzeroFuncwritable_flag__pyx_kp_u_a_cannot_be_empty_unless_no_sam__pyx_k_size__pyx_kp_u_Generator_logistic_line_2259slice1slice2sdigit__pyx_k_atol__pyx_L11_errorsq_length__Pyx_StructField_before_forkers__pyx_kp_u_a_must_be_1_dimensional_or_an_in__pyx_k_subtractPyErr_SetObject__pyx_n_u_gamma__pyx_k_Generator_normal_line_929__pyx_f_5numpy_6random_16bounded_integers__rand_int16__pyx_v___pyx_PickleError__pyx_L35_continue__Pyx_BufFmt_RaiseExpected__Pyx_ValidateAndInit_memviewsliceNPY_NTYPES__pyx_pw_5numpy_6random_9generator_9Generator_39noncentral_f__pyx_e_5numpy_6random_6common_CONS_GT_1co_lnotabarg_passed_twice__pyx_f_5numpy_6random_6common_check_array_constraintnum_expected__pyx_k_newcode_line_IO_markerPyObject_GetAttrString__pyx_k_sigmaprintfunc__pyx_n_u_shufflefmt_offset__pyx_pf_5numpy_6random_9generator_9Generator_88dirichlet__pyx_pw___pyx_memoryview_1__reduce_cython__out_endsetitem__pyx_pf_5numpy_6random_9generator_9Generator_26uniformam_await__pyx_n_u_int32__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_k_right__pyx_kp_u_mean_must_be_1_dimensional__pyx_k_all_2new_mvs__pyx_float_1_0__pyx_k_warnscalarkindPyCapsule_Destructorcstring__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_k_pyx_getbuffer__Pyx_BufFmt_ExpectNumber__pyx_n_u_sigma__pyx_k_unable_to_allocate_shape_and_str__pyx_n_s_IndexErrorPyExc_UnboundLocalError__pyx_k_exit__pyx_empty_tuplePyObject_Free__pyx_f_5numpy_6random_16bounded_integers__rand_int32__pyx_doc_5numpy_6random_9generator_9Generator_12random__pyx_n_u_noncentral_f__pyx_k_uniform_low_0_0_high_1_0_size_NgetattrofuncPyTraceBack_Type__pyx_v_flat_found__pyx_n_s_alpha__pyx_v_noncenc_type__pyx_v_frightPyNumber_FloorDivide__pyx_L8_bool_binop_done__pyx_n_s_seedcompact__pyx_k_shape_IO_lock_t__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_getsets_memoryview__npy_mi__pyx_n_s_default_rng__pyx_builtin_RuntimeWarning__pyx_pf_5numpy_6random_9generator_9Generator_52weibull_IO_read_ptrPyCFunction_NewEx__pyx_f_5numpy_6random_9generator_9Generator__shuffle_raw__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_n_s_generator_ctor__pyx_v_tup__pyx_k_dictfunc_globals__pyx_n_u_ngoodcodecs_initialized_PyObject_GetDictPtr__pyx_L4_break__pyx_n_u_uint64__pyx_kp_u_a_must_be_greater_than_0_unless__pyx_doc_5numpy_6random_9generator_9Generator_26uniform__Pyx_StructField__pyx_n_u_multinomialm_slots_flags2__pyx_pw_5numpy_6random_9generator_9Generator_45standard_cauchy__pyx_k_int8__pyx_kp_u_cov_must_be_2_dimensional_and_sqtp_version_tag__pyx_k_sum_pvals_1_1_0__pyx_k_mean_and_cov_must_have_same_leng__pyx_n_u_int64sq_ass_itemPyModule_GetDictgetitem__pyx_L0__Pyx__ExceptionResetbackstrides__pyx_L3__pyx_L4__pyx_L5__pyx_L6__pyx_L7__pyx_L8__pyx_L9__pyx_v_uniform_samples__pyx_kp_u_ngood_nbad_nsamplePyDict_GetItemWithError__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len____pyx_kp_u_Generator_noncentral_f_line_1289__pyx_tp_traverse__memoryviewslice__pyx_v_leftxoptions__pyx_pf_5numpy_6random_9generator_9Generator_90shuffle__pyx_array_get_memview_IO_write_ptr__pyx_f_5numpy_6random_16bounded_integers__rand_int64__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_pf_5numpy_6random_9generator_9Generator_68triangular__pyx_memoryview_is_slice__pyx_kp_u_Format_string_allocated_too_shor__pyx_e_5numpy_6random_6common_CONS_GTE_1__pyx_v_alowPyErr_SetStringPyBytesObject__pyx_builtin_ValueError__pyx_L28_try_end__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_pf_5numpy_6random_9generator_9Generator_14_bit_generator_2__set__c_traceobjstruct_count__pyx_sq_item_array__pyx_pw_5numpy_6random_9generator_9Generator_13bit_generator_1__get__ptype__pyx_k_fortranname_attrPyBufferProcsgetattrfunc__pyx_mp_ass_subscript_memoryview__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_L35_unpacking_failedexc_statePy_hash_t__pyx_kp_u_a_and_p_must_have_same_sizeshape_tuple__pyx_k_zipf_a_size_None_Draw_samples_fsq_inplace_concat__pyx_sq_item_memoryview__pyx_tuple__41__pyx_n_s_item__pyx_pw_5numpy_6random_9generator_9Generator_43noncentral_chisquaresq_repeatfunc_defaults_PyCFunctionFastWithKeywords__pyx_builtin_RuntimeError__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_memoryview___len__func_obj__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get____Pyx_BufFmt_TypeCharToAlignment__pyx_v_seedhashfunc__pyx_fail__Pyx_BufFmt_StackElem__pyx_v_found__pyx_tuple__11__pyx_tuple__12PyThread_type_lock__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_tuple__15__pyx_tuple__16__pyx_tuple__17__pyx_tuple__18__pyx_tuple__19__pyx_k_Buffer_view_does_not_expose_stri__pyx_memoryview_getbuffer__pyx_L51_try_endPyNumber_Index__pyx_k_lockfaulthandler_PyThreadState_UncheckedGet__pyx_ptype_5numpy_dtype__pyx_v_lnsample__pyx_pf_5numpy_6random_9generator_9Generator_14beta__pyx_n_s_b__pyx_n_s_c__pyx_kp_u_rayleigh_scale_1_0_size_None_Drreprfunc__pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem____pyx_n_s_n__pyx_n_s_p__pyx_base__pyx_t_5numpy_6random_6common_constraint_type__pyx_tp_dealloc_arraycodec_search_path__pyx_array_type__pyx_kp_u_Generator_binomial_line_2688__pyx_v_sigma__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_tuple__23recursion_depthPyMem_Realloc__pyx_tuple__26__pyx_tuple__27__pyx_tuple__28__pyx_tuple__29__Pyx_RaiseNeedMoreValuesError__pyx_n_s_prod__pyx_k_epshomePyErr_Formatnb_inplace_power__pyx_v_flefttp_as_number__pyx_v_nslices__pyx_k_IndexErrorPyList_Type__pyx_kp_u_power_a_size_None_Draws_samples__pyx_n_s_reshape__pyx_v_src_shape__pyx_tuple__30__pyx_tuple__31__pyx_tuple__32__pyx_tuple__34__pyx_tuple__35__pyx_tuple__36__pyx_k_cumsum__pyx_tuple__38__pyx_tuple__39nb_int__pyx_k_logical_or__pyx_k_poisson_lam_maxPyExc_SystemErrorPyTuple_TypePyExc_NameErrorc_tracefuncPyCFunctionObject__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX__pyx_v_firstNpyAuxData_CloneFunc__pyx_kp_u_Generator_weibull_line_1855__pyx_pf_5numpy_6random_9generator_9Generator_20integersPySlice_New__pyx_n_s_warnob_fvalutf8__pyx_kp_u_Generator_hypergeometric_line_31__pyx_n_s_numpy_random_generator__pyx_v_alignment__pyx_tuple__40__pyx_k_standard_cauchy_size_None_Draw__pyx_tuple__42__pyx_tuple__43old_tb__pyx_tuple__45__pyx_tuple__46__pyx_tuple__47__pyx_tuple__48__pyx_tuple__49__pyx_mp_ass_subscript_array__pyx_v_shapePyErr_Clear__pyx_k_Generator_standard_normal_line_8__pyx_n_s_View_MemoryView__pyx_k_wald_mean_scale_size_None_Draw__pyx_v_size_i__pyx_n_s_enumerateNPY_LONGdlopenflagsnb_inplace_true_divide__pyx_tuple__9__pyx_pw_5numpy_6random_9generator_9Generator_93permutation__Pyx_WriteUnraisablePyArray_CopySwapNFunc__pyx_pf_5numpy_6random_9generator_9Generator_14_bit_generator___get__exc_tb__Pyx_PyFunction_FastCallNoKw__pyx_pf_5numpy_6random_9generator_9Generator_82logseries__pyx_v_item__pyx_tuple__50__pyx_k_Can_only_create_a_buffer_that_is__pyx_tuple__52__pyx_tuple__53__pyx_tuple__54__pyx_tuple__56__pyx_tuple__57__pyx_tuple__58__pyx_tuple__59use_cline__pyx_pyinit_modulewstrcancastto__pyx_n_u_standard_normalPyUnicode_AsUnicodePyInterpreterState_GetIDtype_numwstr_lengthtp_descr_set__pyx_tp_traverse_memoryview__pyx_memslice_transpose__pyx_kp_s_itemsize_0_for_cython_arraynb_power__pyx_v_ngood__pyx_pf_5numpy_6random_9generator_9Generator_80hypergeometric__pyx_k_check_valid_must_equal_warn_rais__pyx_memoryview_is_f_contig__pyx_pf_5numpy_6random_9generator_9Generator_70binomial__pyx_tuple__63__pyx_tuple__64__pyx_tuple__65__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_tuple__68__pyx_tuple__69__pyx_k_stridesenc_count__pyx_pf___pyx_memoryview___reduce_cython____pyx_k_int16__pyx_slices_overlap__pyx_n_s_itemsize__pyx_k_Generator_zipf_line_2980__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_n_s_flagsco_stacksizetp_hashNPY_UNICODEshow_ref_count__pyx_type___pyx_memoryviewslice__pyx_memoryview_obj__pyx_memoryview___str____pyx_kp_u_Unsupported_dtype_s_for_standard_3__pyx_n_s_arrayNPY_QUICKSORT__pyx_doc_5numpy_6random_9generator_9Generator_84multivariate_normal__pyx_k_tobytes__pyx_pw_5numpy_6random_9generator_9Generator_73negative_binomial_IO_buf_end__pyx_tuple__71__pyx_tuple__72__Pyx_BufFmt_RaiseUnexpectedChar__pyx_k_Invalid_mode_expected_c_or_fortrvisitprocshort unsigned int__pyx_vtabstruct_5numpy_6random_9generator_Generator__pyx_k_standard_cauchy__pyx_k_Generator_triangular_line_2588f_trace_lines__pyx_k_full__pyx_pf_5numpy_6random_9generator_9Generator_24choice__pyx_k_permutation_x_Randomly_permutem_basetp_print__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_pw_5numpy_6random_9generator_9Generator_37fgc_prevma_used__pyx_n_u_right__pyx_memview_slice__pyx_v_selfnb_inplace_lshiftPyExc_BufferError__pyx_v_resultptp_as_asyncPyLong_FromSsize_t__pyx_n_s_count_nonzero__pyx_k_greater__pyx_k_MemoryView_of_r_objectco_namesPySequence_Tupleraise_neg_overflownb_true_divide__pyx_L46_error__pyx_pf___pyx_array_2__setstate_cython____pyx_pw_5numpy_6random_9generator_9Generator_14_bit_generator_1__get__tp_richcompare__pyx_n_s_ImportError__pyx_n_s_RuntimeWarning_IO_read_base__pyx_v_capsule__pyx_doc_5numpy_6random_9generator_9Generator_50pareto__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_pyframe_localsplus_offset__pyx_v_src_stridesPyObject_SetAttrtp_iter__Pyx_PyInt_NeObjC__pyx_n_u_chisquare__pyx_n_s_greater__pyx_k_ndarray_is_not_C_contiguous__pyx_k_Cannot_create_writable_memory_vilocal_type__pyx_kp_u_mode_right__pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer____pyx_v_objobject_reduce_ex__pyx_kp_u_Providing_a_dtype_with_a_non_natNPY_CDOUBLEob_refcntafter_forkers_parent__pyx_f_5numpy_6random_6common_discrete_broadcast_iii__Pyx_RaiseNoneNotIterableErroruintval__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get___PyByteArray_empty_string__pyx_tp_dealloc_memoryview__pyx_n_u_dfden__pyx_doc_5numpy_6random_9generator_9Generator_32standard_gammafunc_doc__pyx_kp_u_standard_t_df_size_None_Draw_saNPY_WRAPPyImport_ImportModuleLevelObject__pyx_k_randomco_cellvarsPyBuffer_ReleasePy_GetVersion__pyx_kp_u_geometric_p_size_None_Draw_sampfunc_codeuint8_tutf8_length__pyx_n_s_start__pyx_memoryview_setitem_slice_assignment__pyx_k_Generator_power_line_1954__pyx_k_axis__pyx_getprop___pyx_memoryview_suboffsets__Pyx__ExceptionSwap__pyx_v_shuffle__pyx_v_allocate_buffer__pyx_pw_5numpy_6random_9generator_9Generator_67waldnb_inplace_matrix_multiply__pyx_k_noncentral_ftp_alloc__pyx_pf_5numpy_6random_9generator_9Generator_86multinomial__pyx_array_obj__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get____pyx_k_may_share_memory__pyx_pw_5numpy_6random_9generator_1default_rng__pyx_pw_5numpy_6random_9generator_9Generator_27uniformbuiltins_copy__pyx_vtable_memoryviewsetter__pyx_f_5numpy_6random_16bounded_integers__rand_int8exc_info_shortbuf__pyx_L25_except_error_sbuf__pyx_temptp_bases__pyx_n_u_pvals__pyx_n_s_tollenfunc__pyx_k_check_validf_executing__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init____pyx_e_5numpy_6random_6common_CONS_POSITIVE_NOT_NANfunc_module__pyx_k_longlimits_sizes__pyx_n_s_state__pyx_v_tmp_slice__pyx_k_noncentral_chisquare__pyx_v_have_slices__pyx_align_pointerargsort__pyx_e_5numpy_6random_6common_CONS_NONE__pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc____pyx_mdef_5numpy_6random_9generator_1default_rngPySequence_Containsbf_getbuffer__pyx_v_dimf_globals__pyx_k_mainunsigned char__pyx_L81_bool_binop_donemessage__pyx_k_a_and_p_must_have_same_size__pyx_v_buf__pyx_kp_u_Generator_wald_line_2520PyDict_Next__pyx_n_u_a__pyx_k_strided_and_direct_or_indirect__pyx_n_u_c__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get____pyx_n_u_f__pyx_doc_5numpy_6random_9generator_9Generator_16exponential__pyx_getprop___pyx_memoryview_shape__pyx_n_u_nfrom_memview__pyx_n_u_p__pyx_methods_Enum__pyx_doc_5numpy_6random_9generator_9Generator_38noncentral_fPyDict_SetItemString__pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc____Pyx_PyInt_EqObjCNPY_CLONGDOUBLE__pyx_tstate__pyx_memoryview_copy_contentsPyArrayIterObject__pyx_k_dirichlet_alpha_size_None_Draw__pyx_L10_bool_binop_done__pyx_k_TypeError_pos__pyx_n_s_datageneric__pyx_obj_5numpy_6random_9generator_Generator__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_n_u_geometric__pyx_k_Cannot_index_with_type_s__pyx_v_msg__Pyx_CreateCodeObjectForTracebacknmodule_search_pathPyErr_WriteUnraisable__pyx_pw_5numpy_6random_9generator_9Generator_14_bit_generator_3__set____pyx_n_s_RuntimeError__pyx_k_Generator_integers_line_350__pyx_k_equal__pyx_k_Ellipsis__pyx_k_numpy__pyx_v_p_arr__pyx_k_doublePyMethod_Typenargs__Pyx_AddTracebackPyArray_API_Boolob_item__pyx_v_sz__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_k_Incompatible_checksums_s_vs_0xb0PyUnicode_Kind__pyx_k_Invalid_shape_in_axis_d_d__pyx_n_s_mode__pyx_n_s_allclose__pyx_k_multivariate_normal__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str____pyx_v_new__pyx_n_s_less_equal__pyx_k_multinomial__pyx_v_dst_extent__pyx_v_state__Pyx_modinit_global_init_code__pyx_k_generator_ctor__pyx_n_s_PickleErrorkey_value__pyx_n_s_integers__pyx_n_s_warningsPyDict_Typef_builtins__pyx_getprop___pyx_memoryview_T__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get____pyx_k_Cannot_take_a_larger_sample_thangot_Z__pyx_kp_u_Generator_multinomial_line_3497__pyx_tp_as_mapping_memoryview__pyx_t_19c_or_f_flag__pyx_v_n_uint32__pyx_pymod_create__pyx_kp_u_random_size_None_dtype_d_out_No__pyx_k_Generator_f_line_1201m_init__pyx_v_totsizema_version_tag__pyx_pw_5numpy_6random_9generator_9Generator_25choice__pyx_k_pyx_resultm_freenb_positive__Pyx_PyNumber_IntOrLong__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_doc_5numpy_6random_9generator_9Generator_76zipf__pyx_L47_exception_handled__off_tPyCapsule_IsValidPySlice_Typef_codenb_inplace_subtractfunction_name__pyx_n_s_str__pyx_k_ngoodlocal_tbdims_m1__pyx_f_5numpy_6random_9generator_9Generator__shuffle_intencodingPyNumber_InPlaceMultiplystruct_alignment__pyx_k_uint8__pyx_n_u_standard_cauchy__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum__pyx_k_Generator_chisquare_line_1367co_coderecursion_criticalPyArray_ArrFuncs__pyx_k_Generator_lognormal_line_2339__pyx_pw_5numpy_6random_9generator_9Generator_47standard_tPyList_AsTuple__pyx_t_24PyArray_ArgSortFuncPyUnicode_DecodeASCII__pyx_pf_5numpy_6random_9generator_9Generator_36f__pyx_k_take__pyx_k_bit_generatorco_firstlineno__pyx_methods_array__pyx_n_u_capsule__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_f_5numpy_6random_6common_cont_fco_extra__Pyx_setup_reduce_is_named__Pyx_PyObject_Call2Args__pyx_v_dst_stride__pyx_n_u_paretoretcode__pyx_v_data__pyx_v_onbad__pyx_tp_as_buffer_array__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer____pyx_k_Generator_standard_exponential_lPyMem_Free__pyx_doc_5numpy_6random_9generator_9Generator_34gammabitgen_tpy_code__pyx_n_s_svd__pyx_k_endpointnb_multiply__Pyx_PyList_Append__Pyx_modinit_type_init_code__pyx_k_rtol__pyx_v_ordernpy_hash_t__pyx_v_ongoodscanfunc_dictkeysobject__pyx_n_u_noncentral_chisquarePySequenceMethodstp_is_gc__pyx_getprop_5numpy_6random_9generator_9Generator_bit_generator__pyx_moduledef_slotsfunc_weakreflist__pyx_k_sort__pyx_memoryview_get_slice_from_memoryview__pyx_v_modedataptr__pyx_memoryview_slice_memviewslicenxoption__pyx_L6_bool_binop_done__pyx_memoryview_copy_new_contig_err_stackitemfp_offset__pyx_v_df__pyx_k_gamma_shape_scale_1_0_size_NonePyNumber_InPlaceAdd__pyx_v_dtmemcpy__pyx_doc_5numpy_6random_9generator_9Generator_14betapsave__Pyx_PyObject_to_MemoryviewSlice_dc_nn_uint64_tNpyAuxData_tag__Pyx_PyInt_From_uint64_t__pyx_n_s_left__pyx_L14_bool_binop_done__pyx_dict_cached_value__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_vtable_5numpy_6random_9generator_Generator__pyx_find_code_object__pyx_k_integerfastclip__pyx_pf_5numpy_6random_9generator_9Generator_13bit_generator___get__use_cline_objfreefunc__pyx_k_obj__pyx_v_src_slice__pyx_pf___pyx_memoryviewslice___reduce_cython____pyx_vtabptr_5numpy_6random_9generator_Generator__pyx_n_s_pyx_vtable__pyx_k_RuntimeWarning__pyx_k_reshape__pyx_v_temp_arr__pyx_pf_5numpy_6random_9generator_9Generator_34gamma__pyx_memoryview___getitem____pyx_n_s_obj__pyx_k_formatPyType_ModifiedNPY_VOID__Pyx_inner_PyErr_GivenExceptionMatches2__pyx_doc_5numpy_6random_9generator_9Generator_36fco_flags__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_Generator_standard_cauchy_line_1__pyx_kp_u_Generator_choice_line_508__pyx_k_AxisError__pyx_k_encode__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsampPyArray_FastClipFuncco_consts__pyx_k_default_rngml_flagsis_listPyObject_GC_Trackpy_result__pyx_n_s_isfinite__pyx_v_bufmode__pyx_tp_as_mapping_array__pyx_v_dst__pyx_k_binomialfirst_time__pyx_n_s_stepNpyAuxData_FreeFuncPyBytes_FromString__pyx_kp_u_Generator_geometric_line_3060__Pyx_modinit_type_import_code__pyx_k_logseries__pyx_n_s_bounded_integers__pyx_getprop___pyx_memoryviewslice_baseml_methtp_as_mapping__pyx_k_int__pyx_kp_u_dirichlet_alpha_size_None_Draw__Pyx_PyInt_From_int64_ttrash_delete_latertp_weaklistoffsetkw_args__pyx_n_s_pcg64tp_iternext__pyx_k_getstate__Pyx_ImportType_CheckSize_Ignore__pyx_pf_5numpy_6random_9generator_9Generator_12random__pyx_n_u_zig__pyx_tuple__37__Pyx_IternextUnpackEndCheck__pyx_n_u_bytesnew_packmode__pyx_k_zeros__pyx_kp_u_probabilities_are_not_non_negati__pyx_v_fmode__Pyx__ExceptionSave__pyx_L13_except_error__pyx_builtin_reversed__pyx_k_pyx_state_old_offsetco_varnames__pyx_empty_bytess_binomial_t__pyx_k_nbad__pyx_n_s_ValueErrorPyArray_CompareFunc__pyx_n_s_finfo__pyx_v_format__pyx_kp_s_Buffer_view_does_not_expose_stri__Pyx_PyUnicode_Equals_gc_headPyDict_DelItemfunc_annotations__pyx_k_dtype_is_objectslen__pyx_v___pyx_checksum__pyx_n_s_name_2co_cell2arg__pyx_k_numpy_core_multiarray_failed_toPyCompactUnicodeObject__pyx_k_alpha_0__pyx_pf___pyx_memoryviewslice_2__setstate_cython____pyx_k_a_must_be_greater_than_0_unless__pyx_v_bitgen__pyx_v_itfirst_kw_arg__Pyx_PyInt_As_size_t__pyx_k_packis_unsigned__pyx_pf_5numpy_6random_9generator_9Generator_8__setstate__main_interpreter_id__pyx_n_s_all__pyx_builtin_ImportError__pyx_n_u_Generator__pyx_n_s_update__pyx_k__24__pyx_k__25__pyx_k__2__pyx_k__3root__Pyx_InitGlobals__pyx_k__6__pyx_k__7NPY_UINT__pyx_n_u_standard_exponential__pyx_n_s_bit_generator__pyx_k_issubdtype__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_n_s_int64_IO_save_end__pyx_L5_except_errorelsize__pyx_k_itemsize_0_for_cython_array__Pyx_GetItemInt_Genericfunc_qualnamelaml__pyx_memoryview_is_c_contigPyObjectlamrbase_exec_prefix__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_n_s_check_valid__pyx_n_u_float32mp_length_longobject__pyx_buffmt_parse_array__pyx_v_use_setstatetp_itemsizeobjobjproc__pyx_k_alphainvalid_keyword_type__pyx_pf_5numpy_6random_9generator_9Generator___init___py_start__pyx_v_stepnpy_intp__pyx_pw_5numpy_6random_9generator_9Generator_65rayleigh__pyx_L7_except_returnacquisition_count_aligned_ptmp_type__pyx_k_tol__pyx_k_integers_low_high_None_size_NonPyEval_RestoreThreadPyModule_GetName__pyx_n_u_kappa__pyx_n_s_any__pyx_n_s_struct__pyx_v_dtype_is_objectf_trace__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_k_mean__pyx_n_s_right__pyx_v_out__pyx_pf_5numpy_6random_9generator_9Generator_38noncentral_f__pyx_n_s_Tend1end2__pyx_kp_u_zipf_a_size_None_Draw_samples_fPyArray_GetItemFuncnum_pos_args__pyx_k_Cannot_assign_to_read_only_memor__pyx_kp_u_Generator_standard_gamma_line_10__pyx_k_testraise_overflow__pyx_pf_15View_dot_MemoryView_5array_7memview___get__overflowed__pyx_n_s_reduce_cythontp_del__pyx_n_u_lognormalPyArrayObjectnum_maxstackcheck_counter__pyx_L8_try_end__pyx_n_s_replace__pyx_n_s_OverflowError__Pyx_setup_reduceinterninterpNPY_UBYTE__pyx_k_Generator_vonmises_line_1674PyObject_Size__pyx_v_muNPY_CPU_LITTLE__pyx_pw_5numpy_6random_9generator_9Generator_49vonmises__pyx_f_5numpy_import_arrayPyMethodObject__pyx_n_u_mean__pyx_tp_new_array__pyx_k_pyx_type__pyx_empty_unicode__pyx_n_s_name__pyx_f_5numpy_6random_6common_float_fill__pyx_pf_5numpy_6random_9generator_9Generator_60logistic__pyx_n_u_binomialnum_found__pyx_n_s_emptyattr_namePyObject_HashPyGILState_LOCKEDwchar_t__pyx_L12__pyx_L14getbufferproc__pyx_L16__pyx_L17__pyx_v_ni__pyx_L19__pyx_n_s_dfdenPyFloatObject__pyx_builtin_MemoryErrorNPY_CPU_UNKNOWN_ENDIAN__pyx_v_memviewsliceobjnb_xorPyThreadState_Get__pyx_k_geometric__pyx_getprop___pyx_memoryview_strides__pyx_n_s_idnpy_iter_get_dataptr_t__Pyx_PyObject_SetAttrStrPyObject_GenericGetAttrPyObject_IsInstancePyLong_AsLong__pyx_ptype_7cpython_7complex_complex__pyx_L21__pyx_L22__pyx_L23__pyx_L24__pyx_L25__pyx_L26__pyx_L27__pyx_L28__pyx_L29ssizeobjargprocpy_frame__pyx_doc_5numpy_6random_9generator_9Generator_66wald__pyx_k_sqrtPyNumberMethods__Pyx_PyObject_GetSlice__pyx_ptype_5numpy_flatiterhave_gil__pyx_k_Generator_poisson_line_2908__pyx_kp_u_choice_a_size_None_replace_TruePyEval_EvalFrameEx__pyx_pw_5numpy_6random_9generator_9Generator_77zipf__pyx_k_df__pyx_int_20__pyx_builtin_TypeError__pyx_n_s_longPyExc_KeyError__pyx_check_suboffsetsready__pyx_tp_as_sequence_array__pyx_n_s_allocate_buffer__pyx_n_u_poisson__Pyx_CLineForTraceback__pyx_v__high__pyx_k_PCG64__Pyx_InitStrings__pyx_L32dummy__pyx_L34argmaxPyUnicode_InternFromString__pyx_L37__pyx_L38__pyx_L39__pyx_n_s_low__pyx_pf_5numpy_6random_9generator_9Generator_28standard_normal__pyx_v_suboffset__pyx_tuple__60kw_name__pyx_tuple__61unused__pyx_tuple__62__pyx_type___pyx_memoryview__pyx_n_s_higham_aitertp_finalize__pyx_n_s_stopNPY_NTYPES_ABI_COMPATIBLEshort int__pyx_n_u_shape__pyx_v_have_step__pyx_insert_code_object__pyx_pw_5numpy_6random_9generator_9Generator_13random__pyx_L41on_delete_data__pyx_L43__pyx_L44__pyx_L45__pyx_L46__pyx_n_s_pickle__pyx_doc_5numpy_6random_9generator_9Generator_72negative_binomial__pyx_v_lngood__pyx_n_s_method__Pyx_PyObject_CallMethO__pyx_n_s_unique__Pyx_IsSubtypetp_mroassert_direct_dimensions__pyx_v_high__pyx_k_basePyFunction_Type__pyx_k_negative_dimensions_are_not_allo__pyx_doc_5numpy_6random_9generator_9Generator_30normal__pyx_k_left_right__pyx_n_s_new__pyx_n_s_main__pyx_L52__pyx_L53__pyx_L54__pyx_L55__Pyx_GetBuiltinName__pyx_L57__pyx_L58NPY_RAISE__pyx_k_pyx_vtable__pyx_v_nametp_getsetwas_sq_ass_slice__pyx_k_ImportError__pyx_k_normal__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem____pyx_k_got_differing_extents_in_dimensi__pyx_k_searchsorted__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get____pyx_L32_except_error__pyx_int_50__pyx_v_itempPyGetSetDef__pyx_k_negative_binomial_n_p_size_None_markersPyModuleDef_Init__pyx_k_Generator_negative_binomial_linepy_srcfileslot_fileno__pyx_n_s_import__pyx_L2__pyx_n_s_mu__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get____pyx_L67__pyx_n_s_uint32tstate_next_unique_id__pyx_L4_argument_unpacking_doneco_zombieframe__pyx_doc_5numpy_6random_9generator_9Generator_58gumbel__pyx_n_s_issubdtype__Pyx_ImportVoidPtrnext_raw__pyx_tuple__70__pyx_k_x_must_be_an_integer_or_at_least__pyx_L7_error__pyx_v___generator_ctorstdout__pyx_doc_5numpy_6random_9generator_9Generator_48vonmises_typeobject__pyx_n_s_uint64numitercodec_search_cache__pyx_k_less_equal__pyx_k_indexcheck_size__pyx_n_u_standard_t__pyx_k_reversedPyDict_Size__pyx_k_Generator__pyx_n_s_return_index__pyx_v_invacc__pyx_L74m_module__pyx_k_isnative__pyx_L78__pyx_kp_u__2__pyx_kp_u__3__pyx_L6_error__pyx_kp_u__5PyExc_OverflowError__pyx_L31_except_error__pyx_k_idnewfunc__pyx_kp_u_Generator_standard_normal_line_8num_min__ssize_t__Pyx_XDEC_MEMVIEW__pyx_k_MemoryView_of_r_at_0x_x__pyx_v__masked__pyx_pw_5numpy_6random_9generator_9Generator_5__str____pyx_t_10__pyx_t_11__pyx_t_12__pyx_t_13__pyx_t_14__pyx_t_15__pyx_t_16__pyx_t_17__pyx_t_18__pyx_n_s_rangeptraceback__pyx_kp_s_Unable_to_convert_item_to_object__pyx_v_stop__pyx_memoryview_refcount_objects_in_slice_with_gilPyUnicode_4BYTE_KIND__pyx_k_raise__pyx_k_error_PyCFunctionFast__pyx_n_u_random__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_pf_5numpy_6random_9generator_9Generator_50paretoNPY_USHORT__pyx_n_s_boolafter_forkers_child/io/numpy__builtin_memset__pyx_t_20__pyx_t_21__pyx_t_22__pyx_t_23__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get____pyx_t_25__pyx_t_26__pyx_t_27__pyx_t_28__pyx_doc_5numpy_6random_9generator_9Generator_88dirichlet__pyx_tp_new_Enumtp_name__pyx_kp_u_Generator_integers_line_350__pyx_kp_u_Generator_laplace_line_2055__pyx_n_u_nbadPySequence_List__pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw_5numpy_6random_9generator_9Generator_29standard_normaltp_docf_blockstack__Pyx_PyErr_GivenExceptionMatches__Pyx_Importprogram_name__pyx_v_memslice__pyx_k_reduce_2__pyx_n_u_laplaceobjobjargproc__pyx_v_offsetexc_type1__pyx_kp_s_strided_and_direct_or_indirectPyMethodDef__pyx_v__dp__pyx_k_floatingzerodivision_check__pyx_n_s_df__pyx_pf___pyx_memoryview_2__setstate_cython__wraparound__pyx_kp_u_Generator_dirichlet_line_3647latin1sq_concat__Pyx_TypeInfo_nn_uint64_tsetattrofunc__pyx_v_endpoint__pyx_vp_5numpy_6random_6common_MAXSIZE__pyx_builtin_Ellipsisargmin__pyx_n_s_size__pyx_pf_5numpy_6random_9generator_9Generator_18standard_exponential_IO_write_base__pyx_doc_5numpy_6random_9generator_9Generator_92permutation__pyx_pw_5numpy_6random_9generator_9Generator_9__setstate____pyx_k_lognormal__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX__pyx_L6_except_errorco_nlocalsPyArray_ScalarKindFunc__pyx_n_s_atol__pyx_n_s_astype__pyx_k_operator__pyx_n_s_covcobj__pyx_n_s_dot__pyx_v_svdPyException_SetTraceback__pyx_k_dirichlet__pyx_k_weibullhas_binomial__pyx_n_s_MemoryError__pyx_kp_u_Unsupported_dtype_s_for_standard_2__pyx_k_isnanwrapped_i__pyx_n_s_capsule__pyx_k_mu__pyx_kp_u_Generator_normal_line_929_PyDict_NewPresized__pyx_n_s_setstate_cython__pyx_MemviewEnum___init__sizetypec_profilefuncmodname__pyx_k_seed__pyx_array_getbufferPyArray_FastPutmaskFunc__pyx_tp_dealloc__memoryviewslice__pyx_builtin_range__pyx_getprop___pyx_memoryview_size__pyx_kp_u_p_must_be_1_dimensional__pyx_k_scale__pyx_doc_5numpy_6random_9generator_9Generator_90shuffleprevious_item__pyx_kp_u_standard_exponential_size_Nonefield_afield_b__pyx_L39_bool_binop_donecontig_flagPyErr_NormalizeExceptionmp_ass_subscript__pyx_k_npvargs__pyx_k_shuffle__Pyx_ImportType_CheckSize_Error__pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit____Pyx_BufFmt_TypeCharToGroup__pyx_kp_u_Non_native_byte_order_not_supporcoerce_c_locale_warngetteralign_mod_offsetPyImport_AddModule__pyx_k_standard_exponential__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get____Pyx__GetModuleGlobalName__pyx_n_s_exit__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get____pyx_kp_s_MemoryView_of_r_objectPy_OptimizeFlag__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_cfilenm__pyx_v_have_stop__pyx_L23_error__pyx_v_viewPyLong_FromLong__pyx_ptype_5numpy_ufuncglobal_dictrandom_multinomial__pyx_doc_5numpy_6random_9generator_9Generator_54power__pyx_v_memviewslice__pyx_v__dict__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc____pyx_v_bytesvaluecontext__pyx_L30_exception_handledf_valuestack__pyx_k_Generator_rayleigh_line_2451__pyx_n_s_pvals__pyx_v_indexmodules__pyx_n_s_shufflecurexc_type__pyx_n_s_dict__pyx_n_s_AxisError__pyx_v__inutf8_mode__pyx_self__pyx_k_Generator_uniform_line_749__pyx_v_pop_sizetrash_delete_nesting__pyx_kp_u_ndarray_is_not_Fortran_contiguou_cur_columnma_keysPyExc_DeprecationWarningtp_traverse__pyx_v_size__pyx_n_u_muPyArray_ScanFuncmemview_obj__pyx_v_bit_generatormemview_is_new_reference__pyx_f_5numpy_6random_16bounded_integers__rand_uint64__pyx_v_atol__pyx_n_s_asarray__pyx_k_mode_right__pyx_k_astypeco_argcount__Pyx_PyErr_ExceptionMatchesTuple__pyx_kp_u_Generator_chisquare_line_1367ob_svalPyExc_ZeroDivisionError__Pyx_copy_spec_to_module__Pyx_ParseOptionalKeywords__pyx_memoryview_thread_locks_used__pyx_k_Generator_choice_line_508PyDict_GetItemString__pyx_v_error__pyx_memoryview_thread_locks__pyx_k_Generator_multivariate_normal_litmp_tbbinaryfuncNPY_BYTE_gilstatePyUnicode_Typeshow_alloc_count__pyx_doc_5numpy_6random_9generator_9Generator_22bytesobject_reduce__pyx_k_Unable_to_convert_item_to_objectfasttake__pyx_v_seen_ellipsis__pyx_pw_5numpy_6random_9generator_9Generator_69triangular__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__Pyx_PyInt_From_long__pyx_memoryview_copy_data_to_temp__pyx_v_stridescastdict__pyx_pymod_exec_generatorPy_ssize_tgc_refsimport_func__pyx_doc_5numpy_6random_9generator_9Generator_78geometricvarnamePyLong_AsSsize_t__pyx_L5_error__pyx_n_s_less__Pyx_InitCachedConstants__Pyx_BufFmt_CheckString__pyx_k_dfnum__pyx_v_new_ndim__pyx_L26_errorcoordinatessizeof_dtype__pyx_pw_5numpy_6random_9generator_9Generator_51paretoPyExc_TypeError__Pyx_modinit_function_export_code__pyx_tp_traverse_5numpy_6random_9generator_Generatorpythread_stacksize__pyx_pw___pyx_memoryviewslice_3__setstate_cython__PyUnicode_FromStringfunc_name__gnuc_va_list__pyx_n_s_unpacktraverseprocf_locals_PyDict_GetItem_KnownHash__pyx_k_weibull_a_size_None_Draw_sample__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__nb_floor_divide__pyx_k_u4__pyx_v_src_stride__pyx_pf___pyx_MemviewEnum_2__setstate_cython____pyx_tuple__8__off64_t__pyx_v_to_dtype_func__pyx_v_srcspec__pyx_MemviewEnum_objentries__Pyx_memviewslice__pyx_v_alpha_data__pyx_n_s_kappa_py_xdecref_tmp__pyx_n_u_weibull__pyx_n_s_lockPyObject_RichCompareBool__pyx_v_broadcasting__pyx_kp_u_Generator_random_line_141__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_pf_5numpy_6random_9generator_9Generator_2__repr____pyx_tuple___pyx_kp_u_gamma_shape_scale_1_0_size_Nonetp_call__pyx_doc_5numpy_6random_9generator_9Generator_82logseries__pyx_v_oleft__pyx_L13_bool_binop_done__pyx_ptype_5numpy_6random_9generator_Generator__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_k_class__pyx_n_s_ctypesPyArray_FillFuncsysdict__pyx_v_scale__pyx_pw_5numpy_6random_9generator_9Generator_83logseriesf_genowned_startinvalid_keyword__pyx_n_s_pyx_PickleError__pyx_v_src_ndim_unellipsify__pyx_k_structnb_inplace_addPyObject_CallFinalizerFromDealloc__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get____pyx_n_s_TypeErrortp_repr__pyx_memoryview_copy_object_from_slice__pyx_v_accquote__Pyx_PyCFunction_FastCall__pyx_v_suboffsets__pyx_kp_s_generator_pyxPyImport_GetModuleDictPyArray_VectorUnaryFuncnwarnoption__pyx_v_attr__pyx_array___dealloc____pyx_array___cinit__current_idasync_excallocated__pyx_n_u_multivariate_normal__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_array___len____pyx_kwds__pyx_kp_s_MemoryView_of_r_at_0x_x__Pyx_PyInt_From_Py_intptr_t__pyx_v_unique_indicesis_subclassbf_releasebuffer__pyx_setprop_5numpy_6random_9generator_9Generator__bit_generator__pyx_memoryview_setitem_slice_assign_scalar__pyx_pf_5numpy_6random_9generator_9Generator_42noncentral_chisquarePyExc_StopIterationpy_linePyDict_SetItemtracemallocparent_offset__pyx_L31_exception_handled__pyx_k_ASCII__pyx_k_Unsupported_dtype_s_for_integers__pyx_L5_bool_binop_done__pyx_L18__pyx_n_u_dirichletco_weakreflist__pyx_v_nsample__pyx_k_Generator_gamma_line_1123__pyx_k_int64__pyx_v_lamPyBaseObject_Type__pyx_k_bytes_length_Return_random_bytefastputmask__pyx_n_s_sigmainstance_class__pyx_k_probabilities_do_not_sum_to_1__pyx_L27_return__Pyx_modinit_variable_export_codePyLong_AsUnsignedLong__pyx_getsets_array__pyx_k_ignorePyExc_IndexError__pyx_k_asarrayob_digit__pyx_v__strnb_inplace_or__pyx_pw_5numpy_6random_9generator_9Generator_11__reduce__m_methodstp_as_buffer__pyx_v_final_shape__pyx_k_exponential__pyx_n_s_all_2m_copy__pyx_n_s_encodeNPY_CFLOATPyAsyncMethods__pyx_memviewslice_is_contig__pyx_pw_5numpy_6random_9generator_9Generator_3__repr____pyx_v_structPyUnicode_FromStringAndSize__pyx_n_s_float64tp_dict__pyx_v_extentrandom_interval__pyx_pyargnames__pyx_memoryview___cinit____pyx_v___pyx_statenext_uint32releasebufferproc__pyx_k_dtype__pyx_v_c_stride__Pyx_PyObject_GetIndex__pyx_v_src_data__pyx_kp_u_sum_pvals_1_1_0type_objuint16_t__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get____pyx_n_s_epsPyFunctionObject__pyx_v_mnarr__pyx_f_5numpy_PyArray_MultiIterNew1__pyx_f_5numpy_PyArray_MultiIterNew2__Pyx_PyObject_CallOneArg__pyx_MemviewEnum_type__pyx_k_noncentral_chisquare_df_nonc_si__pyx_pf_5numpy_6random_9generator_9Generator_16exponentialnb_matrix_multiplyto_name__pyx_n_s_shape__pyx_pf_5numpy_6random_9generator_9Generator_92permutation__pyx_kp_s_Can_only_create_a_buffer_that_isPyErr_Occurred__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get____pyx_k_uniformlong long unsigned int__pyx_L10_try_end__pyx_int_184977713__pyx_k_intp__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_getprop___pyx_array_memviewnb_inplace_multiplyinitproc__pyx_n_s_double__pyx_vtabstruct_array__pyx_v_alphaPyUnicode_1BYTE_KIND__pyx_k_Generator_random_line_141NPY_STABLESORT__pyx_kp_s_strided_and_indirect__pyx_k_lesstp_clear__pyx_k_triangular_left_mode_right_sizePyCapsule_New__pyx_k_enter__pyx_k_a_must_be_1_dimensional_or_an_inNPY_ULONGLONGoriginal_obj__pyx_k_stringsource__pyx_tp_new__memoryviewslice__pyx_e_5numpy_6random_6common_CONS_BOUNDED_GT_0_1__pyx_n_s_full__pyx_n_u_uint8__pyx_n_u_int8core_config__Pyx_modinit_function_import_codeuse_hash_seedPyEval_EvalCodeEx__pyx_k_standard_exponential_size_Noneob_sizetagPyArrayObject_fields__pyx_v_dfnum__pyx_kp_u_hypergeometric_ngood_nbad_nsampalign_atPyUnicodeObjectcopyswap__pyx_v_omodeco_name__pyx_L85_bool_binop_done__pyx_kp_u_left_mode__pyx_k_at_0x_X__pyx_k_logseries_p_size_None_Draw_samp__Pyx_ErrRestoreInState__pyx_k_standard_t__pyx_kp_u_Generator_gamma_line_1123__pyx_n_s_sort__pyx_int_1000000000__pyx_L9_bool_binop_done__pyx_pf_5numpy_6random_9generator_9Generator_84multivariate_normalcoroutine_origin_tracking_depthabs_py_ssize_tNPY_INTon_delete__pyx_pw_5numpy_6random_9generator_9Generator_91shuffle__pyx_f_5numpy_6random_16bounded_integers__rand_uint8next_uint64nb_negative__pyx_k_arange__pyx_memoryview___dealloc____pyx_k_dot__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_n_s_acython_runtime_dict__pyx_k_contiguous_and_indirect_py_decref_tmpsq_item__pyx_kp_u_integers_low_high_None_size_NonPyExc_AttributeError__pyx_methods__memoryviewslice__pyx_pw_5numpy_6random_9generator_9Generator_85multivariate_normal__pyx_kp_u_Generator_lognormal_line_2339PyNumber_Remainder__Pyx_GetItemInt_Tuple_Fast__pyx_n_s_pyx_checksum__pyx_k_cline_in_traceback__pyx_k_zig__pyx_k_ndim__pyx_kp_s_Cannot_index_with_type_s__pyx_n_s_reversedc_line__pyx_k_Fewer_non_zero_entries_in_p_thantp_descr_getfactorsowned_instance__pyx_L4_error__pyx_memoryviewslice_typeNPY_HALF__pyx_builtin_idnb_reserved__pyx_k_Generator_pareto_line_1757__pyx_kp_u_mean_and_cov_must_have_same_lengerrors__Pyx_modinit_variable_import_code__pyx_int_1__pyx_n_u_gumbel__pyx_v_n_uniq__pyx_pf_5numpy_6random_9generator_9Generator_56laplace__pyx_memoryview_slice_assign_scalar__pyx_k_reduce_cython__pyx_n_s_standard_normal__pyx_kp_u_Generator_bytes_line_479ival__pyx_kp_u_probabilities_contain_NaN__pyx_v_p_suboffset_dim__pyx_n_s_axisPyExc_Exception__pyx_memoryview_setitem_indexed__pyx_n_u_ignore__pyx_kp_u_Unsupported_dtype_s_for_standard__pyx_k_poissoncurexc_traceback__pyx_k_beta__pyx_k_ValueError__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__tp_getattro__pyx_kp_u_u4fastlocals__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_n_u_exponential__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_v_randoms__pyx_v_bytesitemPyCFunctionWithKeywords__pyx_k_replace__pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVEtypegroupnb_rshiftfrom_mvsNPY_FLOAT__pyx_pf_5numpy_6random_9generator_9Generator_40chisquaremoddictPyThread_free_lock__pyx_n_u_logseries__pyx_n_u_waldgilstate_counter__pyx_k_setstatePyNumber_MultiplyNPY_TIMEDELTA__pyx_k_Generator_noncentral_f_line_1289__Pyx_SetVtable__pyx_unpickle_Enum__set_state__pyx_doc_5numpy_6random_9generator_9Generator_18standard_exponential__pyx_type___pyx_arraynb_inplace_and__pyx_k_View_MemoryView__pyx_memoryview_err_extents__intptr_t__pyx_n_s_out__pyx_n_s_npPyErr_WarnExPyCapsule_GetPointer__pyx_n_u_betanb_or__pyx_v_memory__pyx_L31_error__pyx_kp_s_no_default___reduce___due_to_noneval__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_n_u_raiserichcmpfunc__pyx_L34_try_end__pyx_k_p_must_be_1_dimensional__pyx_kp_s_Cannot_assign_to_read_only_memorallocator__pyx_v_tmpslice__pyx_k_vonmises__pyx_k_chisquare_df_size_None_Draw_samPyUnicode_Format__pyx_ptype_7cpython_4bool_bool__pyx_pw_5numpy_6random_9generator_9Generator_1__init____pyx_memoryview_refcount_objects_in_slice__pyx_v_dtype__Pyx_PyObject_IsTruetp_cache__pyx_memoryview___repr____pyx_k_data__pyx_n_s_pyx_state__pyx_doc_5numpy_6random_9generator_9Generator_56laplace__pyx_k_uint16__pyx_doc_5numpy_6random_9generator_9Generator_70binomialmalloc_statsPyTraceBack_Here__pyx_v_dst_ndim__pyx_k_powertranslate_Py_TrueStructfunc_dictnumpy/random/generator.c__pyx_n_s_reduce_2_py_xincref_tmp__pyx_k_Generator_shuffle_line_3786__pyx_v_restp_methodsgetiterfunc__pyx_pw___pyx_array_3__setstate_cython____pyx_n_s_integers_types_Py_FalseStructGOOD__pyx_L7_break__pyx_args__pyx_pf_5numpy_6random_9generator_9Generator_30normal__pyx_v_cdf__pyx_L13_error__pyx_v_axis__pyx_tp_dealloc_Enum__pyx_pw_5numpy_6random_9generator_9Generator_17exponentialid_refcount__pyx_v_msliceml_doc__pyx_tp_clear__memoryviewslice__pyx_pf_5numpy_6random_9generator_9Generator_78geometricPyTuple_New__pyx_vtable__memoryviewslicenb_bool__Pyx_BufFmt_DescribeTypeChar__pyx_n_u_integers__pyx_v_set_size__pyx_k_Generator_laplace_line_2055fixed_cause__pyx_k_uint32f_iblock__pyx_k_count_nonzerob_levelPyErr_Restore__pyx_k__5__pyx_k_name_2check_intervalf_trace_opcodes__pyx_v_replace__pyx_n_s_copy__pyx_v_memview__pyx_k_no_default___reduce___due_to_non__pyx_doc_5numpy_6random_9generator_9Generator_80hypergeometric__pyx_v_length__pyx_v_max_val__pyx_k_multinomial_n_pvals_size_None_D__pyx_pw_5numpy_6random_9generator_9Generator_55powerneg_one__pyx_f_5numpy_6random_16bounded_integers__gen_mask__pyx_n_s_pickle_2__Pyx_BufFmt_TypeCharToPadding__pyx_L29_errorPyErr_SetNonePy_tracefunc__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_doc_5numpy_6random_9generator_9Generator_20integers__pyx_memoryview_newco_freevars__pyx_n_s_base__pyx_v_value__pyx_v_arg__pyx_pf_5numpy_6random_9generator_9Generator_58gumbel_chainim_func__pyx_v_arr__pyx_kp_s_got_differing_extents_in_dimensi__pyx_k_noncnew_countPyCFunction__pyx_kp_u_covariance_is_not_positive_semid__pyx_k_update__pyx_k_Generator_hypergeometric_line_31__pyx_memoryview___setitem____pyx_v_loc__pyx_k_pvals__pyx_pw_5numpy_6random_9generator_9Generator_71binomial__pyx_k_rayleightp_dictoffsetPyListObjectPyImport_ImportModulePyArrayMultiIterObject__pyx_k_out__Pyx__PyObject_CallOneArgfunc_closure__pyx_v_low__pyx_pw___pyx_array_1__reduce_cython____pyx_n_u_standard_gamma__pyx_k_a__pyx_pw_5numpy_6random_9generator_9Generator_23bytesoverflow_arg_area__pyx_n_s_takereg_save_area__pyx_n_u_negative_binomial__Pyx_PyInt_As_int__pyx_t_5numpy_int64_t__pyx_kp_u_standard_gamma_shape_size_None__pyx_k_MemoryError__Pyx_BufFmt_ParseNumber__pyx_k_uint64unequal__pyx_kp_u_Generator_vonmises_line_1674fscodec_initialized__pyx_t_1__pyx_t_2__pyx_t_3__pyx_t_4__pyx_t_5__pyx_t_6__pyx_t_7__pyx_t_8__pyx_t_9__pyx_n_u_noncPyCodeObject__pyx_pybuffer_index__pyx_f_5numpy_6random_6common_cont_broadcast_3__pyx_verify_contig__pyx_v__low__Pyx_PyDict_GetItem__pyx_n_s_rtol__pyx_k_dfdenmore_or_less__pyx_memoryview_slice_copy__Pyx_PyObject_SetSliceNPY_LONGLONGfieldPyUnicode_Compare__pyx_k_left__pyx_k_generator_pyx__pyx_L6_exception_handled__pyx_L3_error__pyx_v_cutoff__Pyx_PyIndex_AsSsize_t__pyx_pw_5numpy_6random_9generator_9Generator_21integersnb_add__pyx_n_s_dfnum__pyx_pw_5numpy_6random_9generator_9Generator_41chisquare__pyx_pf_5numpy_6random_9generator_9Generator_62lognormaltp_subclasses__pyx_n_u_vonmises__pyx_k_Format_string_allocated_too_shormodule_name__pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_L6_except_returnc_metadata__pyx_n_s_subtract__pyx_f_5numpy_6random_6common_discNPY_DOUBLENPY_USERDEF__pyx_doc_5numpy_6random_9generator_9Generator_40chisquare__pyx_int_0PyInit_generatorempty_dict__pyx_n_u_fortranNPY_TYPES__pyx_k_Generator_standard_t_line_1580__pyx_v_bufp__pyx_memoryview_convert_item_to_object__Pyx_PyInt_As_long__pyx_tp_getattro_array__pyx_k_numpy_core_umath_failed_to_imporGNU C 4.8.2 20140120 (Red Hat 4.8.2-15) -msse2 -mtune=generic -march=x86-64 -g -O3 -std=c99 -std=c99 -fwrapv -fno-strict-aliasing -fPIC__pyx_n_s_empty_like__pyx_k_itemsizePyArray_SortFunc_IO_FILE__pyx_array_new__pyx_get_array_memory_extentsf_stacktopbase_prefix__pyx_n_s_reduce__Pyx_BufFmt_Init__pyx_k_Generator_geometric_line_3060__Pyx_GetItemInt_Fast__pyx_f_5numpy_6random_6common_double_fillNPY_DATETIMEPy_UCS1Py_UCS2Py_UCS4PyLong_FromUnsignedLong__pyx_n_u_loc__pyx_kp_s_stringsourceis_complex__pyx_L24_exception_handled__pyx_v_ahigh__pyx_kp_s_contiguous_and_indirect__pyx_v_arange__pyx_kp_s_Indirect_dimensions_not_supportefunctiongp_offset__pyx_getprop___pyx_memoryview_itemsize__pyx_f_5numpy_6random_16bounded_integers__rand_boolarg1arg2__pyx_tp_traverse_Enum__pyx_tuple__10PyMemberDef__pyx_tuple__14__pyx_n_u_uniform__pyx_doc_5numpy_6random_9generator_9Generator_42noncentral_chisquare__pyx_k_T__pyx_L30_errorPyExc_AssertionError__pyx_k_Generator_weibull_line_1855PyType_Ready__pyx_k_array__pyx_memoryview_checkargc__pyx_k_b__pyx_k_ctp_strf_linenom_traverse__pyx_fPyErr_PrintExargvunaryfunclimitsNPY_MERGESORTPyFrame_New__pyx_n_s_poisson_lam_maxallow_none__pyx_n_u_warnfull_traceback__pyx_codeobj__66__pyx_tp_new_5numpy_6random_9generator_Generator__pyx_k_Range_exceeds_valid_bounds__pyx_k_capsule__pyx_v_ndim_other__pyx_k_pickle__pyx_v_check_valid__pyx_pw_5numpy_6random_9generator_9Generator_31normal__Pyx_ImportType_CheckSize__pyx_methodsPyUFunc_API__pyx_kp_u_Generator_logseries_line_3252__pyx_n_s_equal__pyx_n_s_numpy__pyx_codeobj__73__pyx_pw_5numpy_6random_9generator_9Generator_7__getstate____pyx_memoryview_copy_fortran__pyx_pw_5numpy_6random_9generator_9Generator_53weibull__pyx_n_s_Ellipsis__pyx_n_u_rayleigh__pyx_v_cnt__pyx_L6_break__pyx_k_uniquefrom_listco_extra_user_count__pyx_pf_5numpy_6random_9generator_9Generator_76zipf__pyx_n_s_Generator__pyx_memoryview_copyfrom_name__pyx_v_result__pyx_pf_5numpy_6random_9generator_9Generator_32standard_gamma_Py_EllipsisObject__pyx_k_probabilities_contain_NaN__pyx_v_pvals__pyx_tp_as_sequence_memoryview__pyx_k_left_mode__pyx_n_s_packPyGILState_ReleaseNPY_NOTYPE__pyx_k_import__pyx_v_cov__Pyx_PyList_Extend__Pyx_PyObject_LookupSpecial__pyx_v___pyx_resultlogfacthalfln2pinumpy/random/src/distributions/logfactorial.clogfactorialnext_floatrandom_logisticfmodrandom_bounded_uint32_fillrng_exclrandom_binomial_inversionrightprodrandom_betabuffered_uint16random_chisquarerandom_buffered_bounded_uint32ratiorandom_bounded_bool_fillrandom_standard_exponential_frandom_noncentral_fslamrandom_doublerandom_geometric_inversionrandom_geometric_searchbounded_lemire_uint64acosrandom_poisson_multrandom_negative_binomialrandom_standard_cauchyrandom_standard_exponentialwe_doublerandom_uintrandom_zipfrandom_frabssqrtfziggurat_nor_r_frandom_gamma_floatStep10random_buffered_bounded_boolki_doublerandom_positive_int32lowerrandom_gauss_zigsignziggurat_exp_rrandom_gammaStep20random_buffered_bounded_uint16invalphabuffered_bounded_lemire_uint16random_paretorandom_bounded_uint16_fillrandom_normal_ziguse_maskedrandom_standard_tziggurat_nor_inv_rrandom_gauss_zig_fillStep30random_uniformChi2ziggurat_exp_r_frandom_waldnpy_uint32ke_floatbuffered_bounded_masked_uint8random_gumbelStep40buffered_bounded_lemire_uint32buffered_uint8leftprodrandom_geometricfe_doublerandom_double_fillrandom_standard_exponential_zigenlamziggurat_nor_rStep50Step52bound__npy_nanffe_floatwi_floatrandom_bounded_uint8_fillnext_gauss_zigki_floatStep60random_standard_exponential_fillnext_standard_exponentialstandard_exponential_zig_unlikely_fdenommu_2lbounded_masked_uint64random_weibullrandom_positive_int64random_binomial_btperandom_positive_intrandom_lognormalbcntrandom_vonmisesnpy_doublerandom_rayleighrandom_powerwe_floatrandom_standard_exponential_zig_fillrandom_gauss_zig_fbuffered_bounded_masked_uint16buffered_bounded_lemire_uint8logfrandom_noncentral_chisquareziggurat_nor_inv_r_fke_doubleremaining_p__isnanrandom_standard_exponential_zig_frandom_standard_gamma_zig_fwi_doublefi_doublerandom_logseriesleftoverbuffered_bounded_masked_uint32random_poisson__builtin_ceilexpfstandard_exponential_zig_unlikelynumpy/random/src/distributions/distributions.crandom_exponentialthresholdrandom_bounded_uint64_fillrandom_triangularloglam__bintrandom_poisson_ptrsrandom_laplaceloggambitgen_stateleftbasepowf__int128 unsignedrandom_buffered_bounded_uint8random_float__builtin_floorfi_floatremaining_goodpopsizehypergeometric_hruahypergeometric_samplerandom_hypergeometricmaxgoodbadremaining_totalcomputed_samplemingoodbadnumpy/random/src/distributions/random_hypergeometric.c//0//0/ /u//P"/#/P// u0./"/ p $0."/#/ u0.0/2/w2/6/w6/:/w:/^/w ^/e/we/g/wg/p/wp/q/w q/r/wr/t/wt/u/w0/A/UA/^/S^/i/Ui/q/Sq/u/U0/I/TI/e/Ve/h/Ph/i/Ti/r/Vr/u/T0/J/QJ/g/\g/h/Th/i/Qi/t/\t/u/QK/O/P//w//w//w//w //w//w//w//w //U//V//U//V//U//U//U//U//U//U//U//U//U//0//0//u0000000 0u00U0+0U00T0 0P 0!0T!0*0P*0+0T0 0Q 0!0Q!0+0Q00d0wd0t0wt0u0w00k0Uk0u0U40Y0PZ0m0P?0Y0PZ0m0PH0W0PZ0m0P00w00w00w0 1w 11w11w11w1E1w 00U01V11U1E1V00U00U00U11U!1.1U21>1U00U21>1U00U21>1U00U!1.1U00U!1.1U00U11U00U11U01U01UP1X10P1X10X1]1u`1k10`1k10k1s1u11w11w11w11w 11w11w11w11w 11w11w11w12w 11U11P11U11P12U11T11T11T12T11Q11Q11Q12Q11R11R11R12R11U11U11V11V12V11S11S11U12S11U11U11U11U11V11V11V11V11V11S11S11U11S11S11U2t2wt2u2wu2v2wv2$3w $3%3w%3'3w'3@3w@33w 3 4U 44U44U44U34T44T44T44T34Q44Q44Q44Q34Y44Y44X44X44P44P 4$4w$4P4wP4Q4wQ4i4w 474U74Q4UQ4X4PX4f4Uf4i4U 424T24Q4TQ4a4Ta4i4T 474Q74Q4QQ4Z4QZ4i4Q=4L4P84Q4Pg4i4Pp4t4wt44w44w44wp44U44U44P44U44Up44T44T44T44Tp44Q44Q44Q44Q44P44P44PUQUwww8U8U.P.8u#`707 909fPfSPSUR RfPfSPSUSU4V5wV5Z5wZ55w 55w55w55w 55w55w55w55w 55w(55w056w6 6w0 6!6w(!6#6w #6%6w%6'6w'606w06k6wk6l6w0l6m6w(m6o6w o6q6wq6s6ws6x6wx66w55U55S5S6US6l6Sl6w6Uw66U55T5%6]%6(6T(6g6]g6w6Tw6x6Tx66]55Q5'6^'6(6Q(6g6^g6w6Qw6x6Qx66^55P56S(6S6Sx66S5!6V(6m6Vm6w6px66Vwwww Fw0FGw GHwHJwJKwUJ\JKUTHVHKT8P8@XP@S@BPBGS@S66U66U66U66U66T66T66T66T66u66u66w66w66w66w066w66w67w77w077w77w7 7w 7$7w066U66V67U77V77U7$7V66T6$7T66P77P77X66P66S77S7"7P"7$7S66S77S0717w1787w87<7w<7m7w0m7n7wn7o7wo7p7wp77w077w77w77w77w00777U77o7Vo7p7Up77V77U77V07@7T@77TZ7i7Pp7~7P~77XG7M7PM7n7Sp77S77P77SZ7i7Sp77SKLwLSwSw wwK\U\UUUK\T\ST]zPzh]S77U77U77pwwwww77w78w88w8;8w;8A8w77U78S88U88U8;8S;8A8U78U88U78U88UP8Q8wQ88w88w88w88wP8a8Ua88S88U88U88S88Um88U88Uz88U88U88U88U88U88U88w88w8y:wy:z:wz::w:;w8 9U 9z:Sz:{:U{:;S'9u:S{:z;S\9u90u9919929939949959969:7::0;;1;';3';7;27;G;7G;W;6W;g;5g;z;4E9c9u0.c9u9 pu)u99+u)99+u)99+u)99+u)99+u)99+u)9:+u):: pu):;t $q $.;;t $+ $.;z; pu)T9:Q::Q:: +:;q;;+#;z;QT9l90l9919929939949959969:7::0;;1;';3';7;27;G;7G;W;6W;g;5g;z;4;;U;;P#:::U::U0:::U::U>:Q:U::UK:Q:U::UU:h:U::Ub:h:U::U;;w;;w;;w;;w ;;w(;;w0;;w8;o<wo<p<w8p<q<w0q<s<w(s<u<w u<w<ww<y<wy<<w<<w<<w8<<w0<<w(<<w <<w<<w<<w<<w<<w8<<w0<=w(==w ==w==w= =w;-<U-<s<\z<<U<<\<<U<=\= =T = =U;-<T-<k<8k<z<Tz<<T<<T<<T< =T;-<Q-<k<]z<<Q<<V<<R<<R<<Q<<V< =U = =Q;-<R-<k<8k<z<Rz<<R<<R< =R = =R;-<X-<k<8k<z<Xz<<X<<X< =X = =X;-<Y-<k<8k<z<Yz<<Y<<Y< =Y = =Y-<W<VW<k<v<<^<<~;;x;p<Sz<<S<<S< =y;;P;-<t-<z<z<<t<<<<t< =;;P;-<r-<z<z<<P<<r<<<<P< =r = =;<  $@L$)<k< 1)z<<  $@L$)<<  $@L$)< = )z<< 0.<< 0.<< })< = );-<0-<W<VW<f<vf<k<V<<0<<^<<~<<^==w==w==w==w =&=w(&='>w'>(>w((>)>w )>+>w+>->w->0>w0>>w=`=U`==S=Y>UY>>S=<=T<=->]->.>T.>>]=7=Q7=+>\+>.>Q.>>\=i=Ri==V=Y>RY>>V= >UL>V>U=#>V.>Y>V=#>S.>Y>S==P==P==PY>b>Pb>g>= >PL>T>P> >UL>V>U> >UL>V>U >#>V.>L>V>>V<>L>V>#>S.><>S>!>S.><>Sk>>U>>U>>U>>U>>U>>U>>U>>U>>w>>w>>w>>w >>w(>>w0>>w8>?w??w8??w0??w(??w ??w??w??w>?U?s? s??U>?T??T>?Q??>?R?s?Vs??R>?X?s?]s??X>?Y??w???,?_,?0?T0?s?1?5?P>s?0>,?_,?0?T0?g?g??_??w??w??w??w ??w0??w ??w??w??w??w0??w ??w??w??w?@w0??U??S??T??U??S??U?@S??T??\??T??\??T?@\??P??P?@X??V??Q??V?@V??R??R@@w@@w@@w@ @w @(@w((@d@w0d@e@w(e@f@w f@h@wh@j@wj@k@w@-@U-@j@}`j@k@U@-@T-@k@T@-@Q-@h@\h@k@Q@-@R-@f@Vf@k@R-@[@S[@`@sB@G@PO@`@R$@e@Sw w w pw0pqwqrwrswUrVrsUTUsT+P+qS3TSTiSstwtxwx|w|w0wwwsUUsTVT0P\PSPSSSSwwww w(w0w8ww8w0w(w wwwU_U0P0P0^PP^0& &?^^0^0^rPrSLS0PSSS00/P/^SSy0yPP0PR>R0606WPWVVV0P0P]0]?]]0707FPF\0?\P\0f0fPSS0?S0>R0&>R?VVDTVT]]Yi]i\\n\SSSwwww w(w0ww0w(w wwwUUT]TQVQR\RXv^0PS?kYnYwSwwww w(w0w8ww8w0w(w wwwU\UT^TQ_QR]R0PS0"P"FVFPPPcVVSSwwww w(w0w8ww8w0w(w www U \UT^T Q _Q R ]R0#P#S*0*3P3WVWaPatVVPSSp@r@wr@w@ww@y@wy@~@w ~@@w(@@w0@@w8@@w@Aw8AAw0AAw(AAw AAwA Aw AAwAAwp@@U@ A_ A AU AA_A"AU"AA_p@@T@ATA&AT&A2A]2AATAA]p@@Q@@\A&AQ&A]A\]AAQAA\AAQAA\AAQp@@0@AV AAVA-A0-A7AP7AAVAAPp@@0@@\ AA\A]A0]AjAPjAA\AA0p@@0@@P@@^ AA^A7A07AA^AA0p@@0@@P@@S AASA7A07AVAPVAASAA0@@] AA]7AA]@@V AAV@@V AAV@@S@@SAAwAAwAAwAAw0AAwAAwAAwABw0AAUAASAAUABSAATAAXAATAATABTBBTBBTAAQAAQAAQABQBBQBBQAATAAXAATAAUAASAAUBB0AAUBBU B"Bw"B&Bw&B*Bw*BoBw oBvBwvBxBwxBBwBBw BBwBBwBBw B1BU1BoBSoBzBUzBBSBBU B9BT9BvBVvByBPyBzBTzBBVBBT B:BQ:BxB\xByBTyBzBQzBB\BBQ;B?BPMBQBP_BcBPcBxB\xByBTyBzBQcBvBVvByBPyBzBTcBoBSoBzBUBBwBBwBBwBBw BBwBBwBBwBBw BBwBBwBBwBCw BBTBCTCCTCCTBBQBCQCCQCCQBBRBCRCCRCCRBBUCCUBBVBBVBCVBBSBBSBBUBCSBBUBBPC CPBBUCCUBBUCCUBBVBBVBCVBBVBCVBBSBBSBBUBBSBBSBBUUU CjCUjCkCU CjCTjCkCT,C[CQfCjCQ5CDC0DCXCP5C[CRw"w"&w&~w ~www6T6BVBLTLVT(B0wwwpCqCwqCuCwuCCw CCwCCwCCw CCwCCwCCw CCwCCwCCw CDwDDwD&Dw &D'Dw'D0Dw0DDw pCCUCCUCCUCCUC4DU4D\DU\DdDUdDDUCCuCCuCCU#C4Du4DTDU#CCpCCPCCQCDuD(DQ8DHDPDDTD0uDDPDDlkDtDPtDDSwwQw QRwRSwUSUPISIMPMRSPISI I0s"$ssPspPs N$s !$ISSTwTXwXw wwS\U\UcmPmSPSimPmSi i0vsssPspPs N$s !S w wwAw AEwEFwFGwUTFVFGU#,P,ESEGP%@VGIwIPwPTwTw wwww wwwGbUbSUUSUGOTO\T\TG[Q[VQVQgPVQVSUUSwwwUSUUTTuuuuw w ?w ?BwBGw6P6;l6U6UXYwYkwkpwX_U_kSkoUopUXcTcpTpUQUwwww w0w wwwUVUTTQ\Q\QPSPSVUP\Swwww w(nwnow(opw prwrtwtuwUuUTr\ruTQuQRt]tuRXpVpuX#P#&S&(P(KSKRPRoS$0$&P&(0(DPDKLKj0juP(KSKjUKj\Kj]KjVuwwwxwxywyw w0w wwwuUSUuTTPPTS P\0-QPQVP-V -V\0\wwww w0w wwww0w wwww0w www,U,8U8"S"*U*JSJRURSUUSUUSUSU'T'8T8eTepVpTVTVTVTVTVVVT V TPP P q ,u#h,2U##h8?P?PqPs#hs#hqs#hFHVHeTepVpTVTVTVTVTVVVT VepTPTXP\HetepvptvtvtvtLbPpPvPPP\01;T;?P?yTyXTXTT"S"*U*JSJRURSUUSUUSU*P"*S?RPJRSVVVzPw w "w"$w $%w(%*w0*1w81ww8w0w(w wwwiUi_UiTiSTSTiQi~iRiRiXiPVV\)V R3$T"PSP}DDwDDw DDwDDUDDQDDUDDTDDTDDQDDQDDRDDPDDwDDRDDXDDRwwwUUEEwEEwEEwE~Ew ~EEwEEwEEwEEw EEwEEwEEwEEw EEwEEwEEwEEw EEwEEwEEwEEw E EU E~ES~EEUEEUEESEEUEESEEUEESEME0MEOEPOE}EVEE0EEPEEVEEUEEVETE0TE}EVEESEETEEUEE0EEVEEUEEV)EE0EE06EDEPDEE\EE\EE\ME}E\EE\EE\lE}EVEEVEEUEEVlE}EVEEVEEUwwww w(w0w(w wwwcw0cjw(jkw kmwmowotwtuw0uvw(vww wywy{w{|wUUjSjsUstUtvSv|UTT&T&bVbiTikVksTstTtwVw|T0TTUU &T&bVtwVw|T bStvSv|U0&P&[\b]t{]0MTFR0FMTFRSFN0NRP|~w~www w(w0w(w wwww0w(w www|TVTTVT|USUSTVUS0P\]TSTTSUwwww w(w0w(w www PV STPWTS#P]a]'P\a\?PSaSa]fv]v\{\ww ww wUUUUThTTThTUUUTQFFwFFwFFwFFwFFwFpGwFFUFFSFFUFpGSDFFSF0GS[GpGSDFF1F0G1[GpG1DFFsF0Gs[GpGsDFF {F0G {[GpG {mFF q $@L$)FG q $@L$)DFZFPZFFsFGs G0GP[GoGsFGUGGUFFUFFUFFUFFUpGrGwrGwGwwGyGwyG{Gw {G|Gw(|G}Gw0}GGw8GHwHHw8HHw0HHw(HHw HHwHHwHHwH}KwpGGUGH~H}K~pGGTGGPG}K}pGGQGH_HHQHLH_LHH^HH_H(I^(I*I_*II^IhJ_hJiK]iKuK_uK}K^pGGRG}K}GGH}KGGUGGpGG}G}KGG0GGGHH}KGG }1)GG1HLH }1)LH_H }2)HH }2)HH }3)H*I }3)*IOU>OS~"SHU~HUUUReUtURN>OT>O/U}/UHUTHUtU}N>OQ>O/U}/UHUQHUtU}N>OR>O/U}/UFURFUtU}N>OX>OS_S"SX"S/U_/UHUXHUtU\N>OY>OS^S"SY"S/U^/UHUYHUtU]>OR~"S/U~HUZUSZUtUsNNPN>Oq>O/U~/UHUqHUtU~NOPO>Ot>O/U~/UHUPHUtU~N>O r $@L$)eOO }2)OO }3) P4P }4)[PP }5)PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)T`T }5)`TT }4)TT }3)T/U }2)/UFU r $@L$)FUtU }1)N>O0>OR~RS~"S/U~/UHU0HUZUSZUeUseUtUS>OS^"S/U^>OS_"S/U_>OS}1"S/U}1>OS}#"S/U}#>OS}#"S/U}#>OO~OR~"ST~TU~UUR U/UROR"STUUSU/UsTOYOPYOO}#OS"STTU}#U/UeOOPOS~"ST~TUPU/U~eOO }2)OO }3) P4P }4)[PP }5)PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)T`T }5)`TT }4)TT }3)T/U }2)kOO0ORRR"STTU0UUSU Us U/USOR^"ST^OR_"ST_OR}2"ST}2OR}#"ST}#OR}#"ST}#OO~OR~"ST~TT~TTRTTROR"STTTSTTsOOPOO}#OR"STTT}#TTOOPOR~"ST~TTPTT~OO }3) P4P }4)[PP }5)PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)T`T }5)`TT }4)TT }3)OO0ORRR"STTT0TTSTTsTTSOR^"ST^OR_"ST_OR}3"ST}3OR}#"ST}#OR}#"ST}#O4P~4PR~"S`T~`TyT~yTTRTTR4P]R"S`TyTTSTTsOOPO4P}#4PR"S`T`TyT}#yTT P4PP4PR~"S`T~`TyTPyTT~ P4P }4)[PP }5)PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)T`T }5)`TT }4)P4P04P]RmRR"S`T`TyT0yTTSTTsTTS4PR^"S`T^4PR_"S`T_4PR}4"S`T}44PR}# "S`T}# 4PR}# "S`T}# 4PP~PTR~"ST~T4T~4TATRQT`TRP.R"ST4TFTSFT`TsJPOPPOPP}# PR"STT4T}# 4T`T[PPPPR~"ST~T4TP4T`T~[PP }5)PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)T`T }5)aPP0P.R>RTR"STT4T04TFTSFTQTsQT`TSPTR^"ST^PTR_"ST_PTR}5"ST}5PTR}#("ST}#(PTR}#("ST}#(PP~P%R~"SS~SS~SSRTTRPR~"SS~STSTTsPPPPP}#(PTR~"SS~SS}#(ST~PPPPTR~"SS~SSPST~PP }6)PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)ST }6)PP0PR~R%R~"SS~SS0STSTTsTTSP%R^"SS^P%R_"SS_P%R}6"SS}6P%R}#0"SS}#0P%R}#0"SS}#0PQ~QQ}"SS}SS~SSRSSRQQ}"SS}SSSSSsPPPPQ}#0Q%R}"SS}SS}#0SS}PQPQ%R}"SS}SSPSS\PQ }7)9Q[Q }8)wQQ }9)"SbS }9)bSS }8)SS }7)PQ0QQ}QQ}"SS}SS0SSSSSsSSSQQ^"SS^QQ_"SS_QQ}7"SS}7QQ}#8"SS}#8QQ}#8"SS}#8Q[Q}[QQ}"SbS}bSzS}zSSRSSR[QQ}"SbS}zSSSSSs+Q0QP0Q[Q}#8[QQ}"SbS}bSzS}#8zSS}9Q[QP[QQ}"SbS}bSzSPzSS\9Q[Q }8)wQQ }9)"SbS }9)bSS }8)?Q[Q0[QQ}QQ}"SbS}hSzS0zSSSSSsSSS[QQ^"SbS^[QQ_"SbS_[QQ}8"SbS}8[QQ}#@"SbS}#@[QQ}#@"SbS}#@[QQ}QQ\QQUQQ\"S9S}9SMSXXSbSXQQ]QQ}9SRS\RSbS|nQQV"SbSVwQQS"SbSSwQQ }9)"SbS }9)}QQ0QQ]QQ}QQ]"S9S09SRS\RSXS|XSbS\U'VU'V.VU.VWUWWUWcw >c@cw@cBcwBcHcwHccwccw8ccw0ccw(ccw ccwccwccwcQew__U_za\zaaUab\bbUbii^ij^>ii}8ij}8>ii}ij}>ii~#@ij~#@>iai\aiiVii\iiQii_ijQfii\ii|iiViiviiVijPjjpGiiSijSGifi0fii\ii|ii\ii0iiViiviiVijPjjpjjPfii }9)ii0iiUiiU#j3jUtQ>ttQttQtuQuuQuuQs>tQ>ttQttQtuQuuQuuQstTttSttTtuSssVsswuuV}tt0tt09ufu fuu0st u0.tt q8 $0.t$t qH $0.$t9tq  $0.9t>t q4 $0.>tdtQ4 $0.dttPttQ4 $0.ttPtt p $0.ssq1st u0.tt p $0.st0ttPttVtu0uuVuuPuuVHtNtPNtlttNtUtPUtltt$UtdtPdtlttpttUttUtuVuuVIuUuUuuwuuwuuwuuw uuw(uuw0uuw8uCvwCvGvw8GvHvw0HvJvw(JvLvw LvNvwNvPvwPvXvwXvwwuvUvPv_PvQvUQvev_evvUv6w_6w;wU;ww_uvTvevTevvTv6wT6w;wT;wwTu?v0Qvw0uv0vJv\Qvev\ev{v0{vvVvvPvv\vvVvvPvw\w-wV-w6w\6wzwVzww\wwVuv0vGvSQvevSevv0vvSvv\vvPvvSw%wP%w-wS6w;w0;wwSww\uv0vHvVHvQvPQvevVevw0vv]vv}xvv]vv}xw-w];ww]vv]vv}xvw]uv0vvPvv0vvPvv\vw0w%wP%w-wS-w;w0;wBwPBwgw\gww0wwPwwSvJv\Qvev\v!v\Qvev\!vGvS&v?vSvv\w-w\vv\w-w\vvVvvVw wU-w3wUwwwwwwwwwwOxw0OxPxwPxQxwQxXxwXx9yw0wwUwxSxxUxySy9yUwwTw9yTwKx0Rxx0x9y0wKx0Rxx0xxPx9y0ww0(xKx0xy0wx0xxPxKxSRxxSxy0y yP y9ySwx0x(xPRxfxPfxnxXnxuxPx9y0wwTxxTwwUwxSxxUxySy9yUwwPwwuxxs(xKxSxxSxx0*y9ySxxS*y9yS@yDywDyVyw VyWywWyyw @yHyUHyyU@yLyTLyyT@yRy0Wyy0@yRy0RyWyPWyy0@yMy0MyRyPWycyPcyyhyywyyw yywyyw yyUyyUyyTyyTyy0yy0yy0yyPyy0yy0yyuyyU#lzzwzzwzzwzzw z zw( zzwzzw(zzw zzwzzwzzwz({w({){w(){*{w *{,{w,{.{w.{/{w/{t|wzzUzDzSDzzUz {S {{U{|S|&|U&|M|SM|t|Uz!zT!zzTzzTzt|Tzz0z~{0{t|0QzYz|zz0z~{0~{{P{t|0zz u0)z`z0`zjzPjzzSzz0zzPzz0/{6{P6{Q{S{{S{{0M|T|Pz(z0(z2zP2zzVzz0z {P/{]{V{{V{{P{{V{|P&|M|0M|t|VDzLz\LzQz|xQzz\zz|x/{Q{\{{\=zz]/{Q{]{{]M|t|]=zz\zz|xzz\/{Q{\{{\M|t|\DzQzSfzjzPjzzS{{SDzQzVfzzV{{VjzzPzzp{{PDzQzSzzSzzVzzsz { {M| z {0{M|0z {VQ{]{V{{VV{]{V{{V{{S||w||w||w||w ||w(|F}w0F}J}w(J}K}w K}M}wM}O}wO}P}wP}~w0||U||S|~U~E~SE~Q~UQ~l~Sl~~U||T|Q~TQ~X~TX~~T|B}0P}}0}~0||||B}0P}}0}}S}~0|| u0)||0||P|B}VP}}V}~V~ ~P ~E~VE~l~0l~u~Pu~~S~~0~~P~~S||\|||x|}\}}|xP}}\}}\|B}]P}}]}~]|}\}}|x}B}\P}}\}~\||0||P|}S}+}0+}<}P<}B}SP}}S}}P}}S}}P}~S~~0||S||P|}SP}}S||V|}VP}}V|}P}}pP}Z}P||S}}S1}B}V}}V}}VE~Q~0}}V}}V}}S}}SE~Q~0}}S}}Sv~~S~~w~~w~~w~~w ~~w(~w0w(w wwww0~~U~#S#RURSU~TT~~U~#S#RURSU~00019|~00S0~ 0 PVRVRYPYV#,\,1|x1r\r}|x\:\]]R]]r\rx|xx\\R\\~@0@JPJxSx0PSSPRSR0PS#1SFJPJ}SS#1VF}VVJ`P`dpP#1Sd}SVV:RVm0V:RVSFRSm0SFRSwwwSw SWwWYwYZwZw wwww €U€Y\YZUZ\U\ T RVRZTZ]T]jVjTVTR0Z}0}\p~0VP 0€SSZSS€ UZaUҀ RZaR0 Q X RVV R\\De0e12с3с45464R7012)3)M4Mq5q67RTTRRR!RQQT!R!RQQ38PP3_0_12ˁ3ˁ45262R70ۂ1ۂ2#3#G4Gk5k678XiUi|v|UvUāvāՁUՁvUvU+v+KUKRP \p~ !w!+w+ͅwͅ΅w΅ЅwЅwww#w 2U2΅S΅υUυSU#S<EPEUT ۅ0ۅP#03EPEUTPUƅQυQUƅFυF[012&3&[4[~5~67a0„1„2,3,]4]567[ƅ1υ1[ƅ0υ0[PRPPR P &&CPCLRLUPU[[pPpuRuPƅ1υ0ƅ104U45U04T45T@AwAKwKMwMNwNPwPbwbcwcdwdw@RURNSNOUOcScdUdS\ePeuT@W0WdPd0SePeuTdkPu#Q#FsO[suFCOdC~012Z3Z4ȇ5ȇ67;8PچPKPcPPЇPP#;Q{F Od ~P#q#Fs1O[s1{چRچTRKTKTRTZ p3$"Z|R|TRTR;T;F1Od0;F1UUTTwˆwˆƈwƈw0wwww0UUUU0?0D00?0?DPD00&I0y0PX߉00DKPV00Xh0hPSSDhShoPoS00шTTшUUUUш؈P؈uuTŊTIVljV߉VVŊUŊΊVPvŊu1ET߉T1hSljS1;P;Es߉sSS0S0V0Vwwwhw hiwijwjkwkԋw !U!iSikUkԋS!T!ԋT!Q!jVjkQkԋV+:PY0dkPkԋ0":PP;0;XPYk0krPԋ0@XPwwww w(w0=w=>w0>?w(?Aw ACwCEwEFwFwU?V?FUFIUIVU6V6>U>VTFTF1S16T6SQA\AFQFMQM\#Q#6\6>Q>\09SF0[cPcz^',Q>CQFz]]9V9S7902UzPwzތ1zތ ozތ Rwwww w(w0w8@w@Aw8ABw0BDw(DFw FHwHJwJPwPuwUF]FKUK]Uu]TuT70Ku0UF]FKUK]Uu]΍0΍USU_P_^SKZSZs^sS0ݐS;P;AʑSʑR^RWPW^P>S>CPCuS0D\s0Y\0ݐ\A\Cm00PKV0VzPzu00P΍S΍$0$=P=UVU0PVKZVZ0PVVVl00PSVPʑVʑ*0*1P1V0PCVmu0D0D_P_0SpKTPTs^sE0EVPVl00P^USS0S0PCu00PK0V^Vl000A^W0W^P0C^Cu0΍TT΍]Kl]]U]u]ߍTߍ]ߍ}PVCmVJ_VKsVU_SZsSSYSݐSYSD\<\AVAUSSFUSSU^^^ww wۓw UۓUTۓT0ۓ00Pۓ00PPۓhwwww www-w U\U3\34U48\8UU\-UTVTmVmnTnVT-VPSPrSSS -SmVmnTnVT-V3\34U48\8UU\-USmVmnTnVT-V3\34U48\8UU\-U0-00S-0800r00-0$4TT$3\34U48\8UU\-U$.P.3|34uuAmVmnTnVДVVT VA\Д\\U \RmVmnTnrVRr\Rn|02w26w6:w:w wwwJw 0WUWUUÕUÕǕUǕJU0JTJ\T\TÕTÕJ\0WQW{V{QQÕVÕǕQǕV&Q&JVCWQW{V{QQÕǕQǕV&Q&JVCJTJ\\ÕJ\CWUWUUÕǕUǕJUV!& C[0Õ͕0JWTÕǕTJWUWUUÕǕUǕJUJQPQWuÕǕuTÕTÕ0UÕUPQwQUwUYwY̖w0̖͖w͖ΖwΖϖwϖ\w0PuUuOUOSUS\UPdTdVTΖVΖϖTϖӖTӖ\VPȖ0ϖ\0TdTdVTΖVΖϖTϖӖTӖ\VTȖ0ȖϖPϖ\0Ty0O\0T0ϖ֖0\0duTOSTduUuOUOSUS\UdkPkuuOSuVTȖVϖӖTӖVȖSϖSPs#pϖӖs#p`bwbdwdfwfjw jnw(nuw0uww0w(w wwww`USUəSəәUә@S@gUgŚSŚUSUfSfU`TۘTۘTVәTәT V TTTfVfT`Q\QŘ\ŘۘQۘQә\әQ\Q\Q\`0ΗVΗϗUϗXVXYUYVۘVۘ0әVә0UgVgkUkV0Vf0fVP^QQۘ]י]]f]ΗVΗϗUϗXVXYUYVۘVәVUgVgkUkVVfVSUUۘSəSəәU@S@gUgŚSŚUUfUܗ0]]Ř0ә00@g]ܗ x xŘۘ x x xf x0SSΙә bg ӗ0ܗZ00Ř0ә00@Ś0ŚҚPҚٚSٚ0SfmPmS p $0) p $0)P\Řۘ\@\gu\uyPy\UUϗTTϗUϗXVXYUYVVŘۘVәVUgVgkUkVVfVŗPŗϗuuYTgkTXVXYUYVŘۘV@VgkUkuV vjyUŘӘU]]Ιә0bg]]]ӚSSPFwn1n on Rwwwwwww w(w0~w~w0w(w wwwOwORw0RSw(SUw UWwWYwY`w`wU[V[USVSZUZUVGUG^U^VTSTRSRZTZSGTGSߛQߛ\QU\UZQZcQch\hQG\G^Q^\0!R!Tw0G00TQ0G0z00P~Pٝ^]l]G]НPTQ!R!Tw[V[UGUz0zVPG00SGS[0[dPdVPPGVazSGS30͜P͜ w32313 wwww w(Şw0Şww0w(w wwwoworw0rsw(suw uwwwywywСwU{V{UsVszUzUVgUg~U~СVT S TrSrzTzSgTgСSQ\Qu\uzQzQ\Qg\g~Q~С\0ARAtw0gС00tQ0gС00С0Pӟ~ƠPƠ^ӟ]]gС]ޠPtQARAtw{V{UgU0VPg0 0 SgS{0{PVPPgVS#gSӟS0ӟP+wӟS2ӟS1ӟS ZСҡwҡԡwԡ֡w֡ڡw ڡޡw(ޡw0w¢w0¢âw(âŢw ŢǢwǢɢwɢʢwʢww0w(w wwwwС#U#VʢUʢVUϣUϣ(V(UUVС#T#*S*ʢTʢST(S(TSСQŢ\ŢʢQʢ\QQ\ӣQӣ\Q\С#0#aRawʢ(00С#0#Qʢ(00С0ʢ0ʢP~ڣP^ʢ](]]P#Q#aRaw#VʢU(U#0âVâʢP(0#*0*¢S(S#0PâVâʢP(/P/VSCSs0 P Kws2s1s wwww w(w0ww0w(w wwwww0w(æw æŦwŦǦwǦЦwЦwPUPϥVϥUVȦUȦUXVXUVUVPTPWSWTSȦTȦXSXTSHQH\Qæ\æȦQȦӦQӦئ\ئQ\Q\P0PȥPX00P0P{R{ȥ~X00P0PȥQX0000P'~";P;D^^U^']ܦX]]PPȥQP{R{ȥ~PȥPPϥVϥUXUP0VPX0PW0WSXSPϥ0ϥإPإVPX_P_VեSsS'0'FPFyw'3'2' enqnyXeyRwwww w(w0Ǩw8Ǩww8w0w(w www}w}w8w0w(w wwwjwU\U\U֪U֪ǫ\ǫثUثj\TSTSTSwTwjS Q ]Q]QQ]ڪQڪǫ]ǫثQثj]0Y0wj00CPC~0wj00Q0wj00j0שPשP_wǫ_ث_^^wj^ǫPQCPC~Y\Uw\0VPw00SwS0PVPPwVS3wSa0P9wa3a2a %.q.9X%9Rprwrtwtvwv{w {w(w0w8_w_cw8cdw0dfw(fhw hjwjlwlmwm7w7:w8:;w0;=w(=?w ?AwACwCHwHwpŬUŬf\fmUm=\=DUDwUw/\/FUF\pŬTŬͬSͬmTm:S:DTDЮSЮ/T/SpQh]hmQm?]?DQDKQKP]P{Q{/]/FQF]pŬ0Ŭ5YmЮ0/0pŬ0Ŭ5QmЮ0/0p[0m0mPP_m^TЮ^/^PŬ5QŬ5YŬf\fmUЮ/\Ŭ[0[dVdmPЮ/0Ŭͬ0ͬcSЮ/SŬ<0<EPEdVdmPЮ׮P׮/VB[S/S0Pw21 wwww w(w0w8ww8w0w(w wwwgwgjw8jkw0kmw(mow oqwqswsxwxȲwU\Um\mtUtU_\_vUvȲ\TSTjSjtTtS_T_ȲSQ]Qo]otQt{Q{]Q_]_vQvȲ]0eY0_Ȳ00eQ0_Ȳ00Ȳ0PưP_ư^^_Ȳ^ֱPeQeY\U_\0VP_00S_Sl0luPuVPP_VrS_SưK0ưP#wưK2ưK1ưK вҲwҲԲwԲֲwֲ۲w ۲߲w(߲w0w8wów8óijw0ijƳw(Ƴȳw ȳʳwʳ̳w̳ͳwͳww8w0w(w wwwwв%U%Ƴ\ƳͳUͳ\U״U״\U\в%T%-S-ͳTͳST0S0TSв!Q!ȳ]ȳͳQͳ]QQ]۴Q۴]Q]в%0%Yͳ000в%0%Qͳ000в0ͳ0ͳPP!_ͳ^0^^P%Q%Y%Ƴ\ƳͳU0\%0ijVijͳP00%-0-óS0S%0PijVijͳP07P7VSKS{0PSw{2{1{ www w w(w0w8ww8w0 w(  w wwwͷwͷзw8зѷw0ѷӷw(ӷշw շ׷w׷ٷwٷwwbUb \ Uӷ\ӷڷUڷ&U&\(U(\bTbjSjTзSзڷTڷhShǸTǸSZQZ ] Qշ]շڷQڷQ]*Q*](Q(]b0bٶYh0Ǹ0b0bPٶ~h0Ǹ0b0bٶQh0Ǹ000'P':2KPKT_Ǹ_(e_:^h^Ǹ^PbٶQbPٶ~bٶYb \ UhǸ\b0VPhǸ0bj0jShǸSb0PVPhoPoǸVSǸS:0:VPVw:3:2: u~q~XuR¹w¹ĹwĹƹwƹ˹w ˹Ϲw(Ϲйw0й׹w8׹ww8w0w(w wwwww8w0w(w wwwwU\U\UǻUǻ\U\TSTST S TSQ]Q]QQ]˻Q˻]Q]0Y 000Q 0000ӺPӺһ޻P޻_^ ^^PQY\U \0VP 00S S0PVP 'P'VS;Sk0PCwk2k1k wwww w(w0½w½ƽw0ƽǽw(ǽɽw ɽ˽w˽ͽwͽνwνnwnqw0qrw(rtw tvwvxwxww2U2ɽ\ɽνUν$U$t\tyUyU"\"%U%\2T2νTνTyTyT"T")T)T2Q2:S:νQν߽Q߽qSqyQyQSQþSþ"Q")Q)S202Qνþ0"00ν0P0DPDS^SXPνѽ]þ]"]ESPSX@2Q2ɽ\ɽνUþ"\20ǽVǽνPþ"02:0:ƽSþ"S20PǽVǽνPþʾPʾ"VS޾"SѽR0ѽ P *wѽR1ѽR wwww w(w0ǿw8ǿww8w0w(w www}w}w8w0w(w wwwjwU\U\UU\Uj\TSTSTSwTwjS Q ]Q]QQ]Q]Qj]0Y0wj00CPC~0wj00Q0wj00j0PP_w__^^wj^PQCPC~Y\Uw\0VPw00SwS0PVPPwVS3wSa0P9wa3a2a %.q.9X%9Rprwrtwtvwv{w {w(w0w8_w_cw8cdw0dfw(fhw hjwjlwlmwm7w7:w8:;w0;=w(=?w ?AwACwCHwHwpUf\fmUm=\=DUDwUw/\/FUF\pTSmTm:S:DTDS/T/SpQh]hmQm?]?DQDKQKP]P{Q{/]/FQF]p05Ym0/0p05Qm0/0p[0m0mPP_m^T^/^P5Q5Yf\fmU/\[0[dVdmP/00cS/S<0<EPEdVdmPP/VB[S/S0Pw21  wwww w(w0w8ww8w0w(w wwwMwMPw8PQw0QSw(SUw UWwWYwY`w`wU\US\SZUZU\U\TSTPSPZTZ!S!TSQ]QU]UZQZcQch]hQ]Q]0Y!000EPE~!0009R9~!000Q!0000~P^P~^T^_l!__PQ9R9~EPE~Y\U!\0VP!00S!S0PVP!(P(VS<S10P w14131 q X Rwwww w(w0w8ww8w0w(w wwwww8w0w(w wwwwBUB\U\UU\U\BTBJSJTSTHSHTS:Q:]Q]QQ] Q ]Q]B0BYH00B0BsPs~H00B0BQH0000P+P+4__E_^H^^PBQBsPs~BYB\UH\B0VPH0BJ0JSHSB0PVPHOPOVScS06P6iw32  U^q^iXUiRwwww w(w0w8ww8w0w(w wwwmwmpw8pqw0qsw(suw uwwwywywZwU\Us\szUzU\UZ\T S TpSpzTzSgTgZSQ]Qu]uzQzQ]Q]QZ]0yY0gZ003P3y~0gZ00yQ0gZ00Z0PP_g__^^gZ^PyQ3P3y~yY\Ug\0VPg0 0 SgS0PVPPgVS#gSQ0P)wQ3Q2Q "q)X)R`bwbdwdnwnow opw(pkw0klw(lnw npwprwrxwxw0`lUl']'(U(]U]sUs]xUx]UU]"U"M]M\U\]UZ]Z_U_}]}UU]`tTtTglUl']'(U(]U]sUs]xUx]UU]"U"M]M\U\]UZ]Z_U_}]}UU]g0Un\s0x\\0"0gU0UgSs0g{0{PV0X00PUVsV0Vx0"V"/0/\V\cPcVRVPVg0P S ,0k0S0.>0>UPs|P|SSESXxSS0SP/S/6P6\S\00R00Sg0s0]x0"0VsVXVVxVVV"&T&/V,SSSS"/SPs"&s,SSS(TT']'(U(]U]UU]Ux]U]"U]UZ]Z_U_}]}UU]P'}'(uu@TTx|T@SSxSS;MS@JPJTsx|s^T^*^*8T8;^VV;VPSP;SPT]]TTU]UUU"URZ]Z_U_}]}UU]PuuTRVT>SSR_S P sRVsUn\JX\Ug\V0VESXxSSXlSX]lx]")]lx]www;w ;<w<=w=@w@w UUUUTVQ=V=>T>VQV70>0TVQ=V=>T>VQV,07>P>00,700TTUUUUPuuVQ7V>yVVQVTT7S>ySS P sswwzw z{w{|w| w !U!UU UT Tv0| 0v0v|P| 0%0 0N0 0!TT!U!UU UP!uu9MTT9vS|SS9CPCMsswwww wwww 3U3VUVUVUVUVUU!V!UUVU00v0|S0SA{\{S0\0S!00\070v0$0$5P5ZSZk0k|P|S0PSPS&P&ASAq0S!0!(P(oSo0c0v005J0JZPZ|V|0PV0qV!0HOPOoV003TT3U3VUVUVUVUVUU!V!UUVUuK_TTKSSSSowS|SSKUPU_ssTTVUVUqU!UUVUPvuuTosTVVosUs|VV VPvosuTT$SSSPssPkSSqVVSq{\{S\SAqV0AqVAq0S0Sww w w w( w0 w8-w--w8--w0--w(--w --w--w--w?U?S-ULS-U  P  V  P B VB X 0X a Pa  V  P  V  0  P  V ( P( f Vf v 0v  P  V  P  V 0(P(HVH]P]V0P<V<EPEV0P"V")P)V0PV(-0-6P6VVV]P]V0V!0!*P*EVE0 V 0PVPVF0FV-0--V  P  S PS0PSPKSK`0`iPiSPS0S(W0W`P`SPS00S00PSP S l0lS0PSPS0P S  P [S[k0ktPtSP(S((0f))0))P))P)) 0+))0))P*%*P%*'*  +(*=*0=*I*Pi**P** +**0**P**P** +**0**P+6+P6+8+ +9++0V,},0,$-0$---P--M-SM-b-Pb--SSxS&AU9AUPSPS0PS#P#fSfx0xPSPS0P?S?_P_S0PSPSSWxSSS~SSPS0PSS(SS0PSPS-00P S 5 P5 & S2  S J SV  SS & S2  S J SV  S2 X V  VV v V VVS<`SSSVuV 0(S(606S0(S-00(\(606\0(\-0!0!(](606](-]]P0(0PV P V-0P_(-_ (-  (-  (- 4P6SP!(S6S(SWS6\(-\?](-]PPZnPn^(-^Zu0u{P{V-Vu^-^VV-V <VSWSS\-\\]-]]UeUZeUk{Up{UUUVVVV!V!SVS-VLkS((S(- p(- `((P()S))P)@+SW)@+S))U))U*'*U*'*Up**Uw**U**U**U&+8+U-+8+U+- p+- s++P++S+,P,},SG,},Sb,- pb,- s},,P,,S,,P,$-S,$-S--S--Vwwww0www)w05U5U U )U$T$eVefTfVTVT)V0)0$T$eVefTfVTVT)V0P)090)0g00)0$5T T$5U5U U )U$+P+5u uBeVefTfVVTVBSSOeVefTfgVOgSOfs02w24w46w6:w :;w(;Bw0Bww0w(w ww w ww0w(w wwwcw0U\U(U(\UU\Uc\0TT(T(TTTTcT0QSQ$Q$0S0QQSQSQhShQQcS0(0(Yh0c00(0(Qh0c000c0&P&Y^P^h]c]>PPP0PXw2 x2XR(Q(Y(\Uh\(0VPh0(000ShS(0PVPhoPoVSSprwrtwtuwuyw yw(RwRUw(UVw VXwXZwZ`w`ww(w  w  w wwpUVVV[U[hUhV U OUOVUUVpT[T[hTh T STSTTTpQUSU[Q[dQdoSo Q QS#Q#(S(SQSSQQSph0hXw 00ph0hQ 00p0 0ZfPf]9P9Q],\\~P:QP60PXw626  x2 XRhQhXwhV UUh0V P0ho0oSSh0PV PPVSSwwww w(w0ww0w(w wwwBwBFw0FGw(GIw IKwKMwMPwPwCUC\UUI\INUNUG\G^U^\*T*TTNTNTGTG^T^TQSQQSNQNSQSXSXcQchShQSGQG^Q^S0YN0G00QN0G0>0N0P^^yPy^l]G]PzPx0P9X9Pwx2x FLx2LPXFPRQYI\INUG\>0>GVGNPG00FSGS0(P(GVGNPPGV%>SGSwwww w(w0w8ww8w0w(w wwwww8w0w(w wwwwSUS\U U \UU \ U\STSSTSTXSXTSSQS]QQ]QQ]Q]Q ] Q] 0 YX00 0 >R>~X00 0 QX0000";P;D_ _3P3KX^^P PS0ShPhwS3S1S  Q >R>~ Y \UX\ 0VPX0 0SXS 0PVPX_P_VSsSwwww w(w0ww0w(w wwwWwWZw0Z[w([]w ]_w_awahwh@wU\UU]\]bUbU\U@\TTTbTbTTT@T Q SQQZSZbQbkQkpSpsQsxSxQS^Q^SQ@S0|Y0^@00NXN|~0^@00|Q0^@00@0P]^uPu]|^^@^vPPP|QNXN|~|Y\U^\0VP^00S^S0PVPP^VS^S;0PXw;3; j x3X R@BwBDwDFwFJw JKw(KRw0RMwMQw0QRw(RTw TVwVXwX`w`ww0w(w w w ww@UT\TYUYU\ U fUf\U\@TYTYT T jTjTTT@QSYQYiQiS Q QS#Q#(S(jQjSQSQS@0#YY00@0X#~Y00@0#QY00@I0Y0rP]%P%],^^&4PP^PzP#QX#~#YT\TYU\I0IRVRYP00QSS*0*3P3RVRYPPV0ISSo0oPXwo3o x3XRwwww w(w0ww0w(w wwwww0w(w wwwwcUc\ U ^U^\UU=\=NUN\cTc T ETETT=T=NTNT[Q[kSk Q QSQQSQSQ_S_Q=S=NQNSc0cY _00c0cX~ _00c0cQ _000 0";P;D]P=]_^^PP*=PcQcX~cYc\ U_\c0V P_0ck0kS_Sc0PV P_fPfVSzS00P0TXTkw3 agx3gkXakRwwww w(w0ww0w(w www_w_bw0bcw(cew egwgiwipwpPwU\UUe\ejUjU\UP\TTTjTjTTTPT Q SQQbSbjQjsQsxSxQSQSnQnSQPS0Y0nP00RXR~0nP00Q0nP00P0P]nP]^nP^PPPQRXR~Y\Un\0VPn00SnS0PVPPnVS*nSC0PXwC3C x3XRPRwRTwTVwVZw Z[w([bw0b]w]aw0abw(bdw dfwfhwhpwpww0w(w ww w wPUd\diUiU\UvUv\U\PTiTiTTzTzTTTPQSiQiyQySQ#Q#(S(3Q38S8zQzSQSQSP03Yi00P0X3~i00P03Qi00PY0i0P]5P5]<^^6DP`nPP3QX3~3Yd\diU\Y0YbVbiP00aSS:0:CPCbVbiPPV@YSS0PXw3 x3XRww w w w(w0w8ww8w0w(w www w+U+eUelPlzUz U&T&\ATA\T\T\-T-4\4<T<S\ST+\+Te\euTu\TU\U|T| \+Q+]AQAc]cQ[][eQenQn]QU]U|Q| ]8FPF:SASeS S/FPFSeS~P SN]:QAc]cQQ[][eQQU]U|Q| ]N\:TA\T\T\-T-4\4<T<S\ST+\+Te\\TU\U|T| \N:SASeS SN0Ai0i]]`]q]e0]U0U|]| 0^^^^q^U|^iUU#U-^U$UUi  ` q  U| i00`0q00U|0zuu#u-^u$uu#P47|7<\M^P%8P4U0P\P^^UUpp4MPMV__&<P<U _e^U^| ^P0Pw32 qXRQ\l\\q\U|\]^]]q]U|]S^SSqSU|S0 &1 s0)7Dq 7,DMq0)MQ |4 $0.kqPl}q 7,}+7,q 7,+1 7,q|q0)p0) s0) sp)[k qO) sp)1PPU\PUUu4uQuQPRPr0.0:S`qSwwww "w("#w0#'w8'ww8w0w(w www; w;U; U  P  U ; U6T6(\(QTQ\T\1 T1 N \N ] T] d \d l Tl  \ L TL [ \[  T  \  T  \  T  \  T ; \;Q;(](QQQs]s Q  ]  Q  Q  ]  Q  ]  Q ; ]!;Q;(](QQQs]s Q  ]  Q  Q  ]  Q  ]  Q ; ]!6T6(\(QTQ\T\1 T1 N \N ] T] d \d l Tl  \ L TL [ \[  T  \  T  \  T  \  T ; \HVPVJSQS S ; S?VPVS S  P ; S^(](JQQs]sQ Q  ]  Q  Q  ]  Q ; ]^(\(JTQ\T\1 T1 N \N ] T] d \d l Tl  \ L TL [ \[  T  \  \  T  \  T ; \^JSQS S ; S^(0Qy0y]& ]1  ]  ]  0  ]  0  ] ; 0^  ^6 L ^  ^  ^yUU1 S U]  UL T U  Uy &  1         y0& 01  0  0  0  0uu1 S u]  uL T uuH S Pd g |g l \}  PU h Pd  0  P  \  P  ^  ^U  Up  pd } P}  _ E _V l Pl   ; _  ^  ^ ; ^2 E P(0Pw(3(2( qXRa\  \6 L \  \  \]  ]6 L ]  ]  ]S  S6 L S  S  S0   6A s0)GTq 7,T]q0)]a |4 $0.{P  q 7,  +7,  q 7,  +1 7,  q0)  p0)   s0) sp)k{ qO) sp)-AP  P  PU6 F U4QQPsRPsr0.@JS  S@ B wB D wD E wE N w N R w(R $w0$(w(()w )+w+-w-0w0w0@ M UM  V  p  s EUEYVYUV s UlVlU@  0.0V0@ ] 0  0.E0Y000>l\l0@ | 0 0.g000>l]l0@  0  P  S.ESEY0YSS0S*P*>S>l0lSc   v $ &EY p $ &EY p $ &  0.E0Y000l0  P  S.ESYSSSlS  VVV  P V.EVYgVlV  ].E]Y]]]l] SSSSS00>l\>l\00Rl]Rl]wwww w(cw0cfw(fgw giwikwkpwpw0UUUUTTTT_0l00 0000k]l]SSPSlSSSgVlV "w"$w$%w%&w &*w(*w0w(w wwww0 PUPtUtyUyU PTPtTt|T|T 00 00$20^008]]1xS^Sx|P|SS$2SSCVVwwww w(w0w(w www7w0UU U 7UTT T 7T07020@00070]7]SS P 2SSS7SV7V@BwBDwDEwEFw FJw(Jw0w(w ww w w0@pUpUUU@pTpTTT@00@050DR0~00X]]QS~SPS5SDRSScVVwwww w(w0w(w wwwWw0U$U$)U)WUT$T$,T,WT0W0R0`0070?W0]W](S7S(,P,RSSS?WSVWV`bwbdwdewefw fjw(j3w036w(67w 79w9;w;@w@w0`UUUU`TTTT`/0<0`0U0dr000x;]<]qSSPS<USdrSS7V<Vwwww w(w0w(w www\w0UPVP\p\pspUVUsU(V(\UT\TQ:S:QSQ(S(\QR]R\]0V\00V\00T00g00\(\0*0T000,:0Xg00^\0:0:\P\S0S0gSSPS(0(\S: s $ &: Q $ & Q $ & s $ &g Q $ & Q $ &(\ Q $ & s $ &T00g00(\0T\P\SSgSS(\STVV(AVPVV,:VA\Vc^^g^^(\^S,SV0VXgSSagSSXg00\\Xg00^^`bwbdwdfwfhw hiw(ijw0jqw8q3w34w845w057w(79w 9;w;=w=@w@!w`UJVJjUj/V/>U>VUUn Vn  U  U K!VK!T!UT!!V!!U`T4S4>T>!S`Q_uQu_Q_QQ!_h__hT4S4>T>!ShVHV Pu  S  S g P K! T!! +/0^u00   K!T! p $0) 4 $0./Q4 $0.>uQ4 $0.Q4 $0.S g p $0)hn 0n { P{  V !0!!V!!P!!VPs>DsPs P s>FsPs$>Fs$Ps8>Fs8/2>2!2TJnT  T !\J\\\\d|\ !\/!K!\pJnp  p t~)Jn t~)   t~)PPP ( PARqR  R  q # R# ( qdUU ( U~Y ( YARA\|\d|P| .Q.vtv~tPtPb22bnTb\uPQQ{PQQ||QJ2u22 2( S 2T!!2*TuTT!`!T`!n!C\u\\\\d|1 ; \T!n!\!!\ *pupT!`!p* t~)u t~)T!`! t~)9CPP( S PARq( B RB G qG N RN S qdU( 1 U; S U~Y; S YARA\|\d|P1 ; | .Q.vtv~tP( ; tP2 2T\P^ ^P^ ^| |^-UFVU|  V!!V  UK!Q!U!"w"8"w8"B"wP"Q"wQ"U"wU"}"w }"~"w~""w""w ""w""w""w ""w""w""w ""w""w"#w P""U""U""U""U""U""U"#U##Ub""u""U#""u""u"#u##U#""pq!""u""P""h""P""S""S"#U##U #"#w"#$#w$#&#w&#(#w (#,#w(,#0#w00#4#w84#%w%%w8%%w0%%w(%%w %%w%%w%%w%#)w #d#Ud#Z$\Z$%U%%\%E&UE&g&\g&&(U&(8(\8(#)U #`#T`#L%VL%%\%%V%&V&E&\E&#)V #%0%%P%%w%'0'#)0 ##0#j%Sj%%0%%&S%&E&0E&&(S&(8(08(#)S ##0#y%^y%%0%%0%5&^5&E&0E&&(^&(8(08(#)^ ##0#%_%%0%&(_&(8(08(#)_&&Pd##T&(*(Td##U&(*(Ut##Q&(*(Q##0##P##X#$P$%]%%P%&(]8(#)]#% %&( 8(#) #% %&( 8(#) #% %&( 8(#) #$R%%R#%S%&(S8(#)S#%^%&(^8(#)^#%_%&(_8(#)_$$ | f!$% %&( 8(#) $%0%&(08(#)0*$E$ | $ &%% p $ &%% | $ &%% p $ &%% | $ &z$%0%E&08((0((0z$$\((\z$$R$$w((w((R$$P$*%\%&\8(`(\$$X$$((((X/%9%U%%UG%%V&E&VL%%V&E&V^%%S&E&S`%j%S&%&Sj%%^%&E&^o%y%^%&5&^y%%_5&E&_~%%_5&E&_l&&Uz&&U&&U&&U''U%':'U@'U'U`&g&0((U((U%%V''U''U''U''U''U''U0)2)w2)4)w4)6)w6)8)w 8)9)w(9)=)w0=)A)w8A)D-wD-E-w8E-F-w0F-H-w(H-J-w J-L-wL-N-wN-P-wP--w--w8--w0--w(--w --w--w--w-0wM)*]**U*+]+_-_--]----]-///]/// 0] 0 0U 00]090900]0){)U{)+V+-U--U--U--U-0U0))T)C*C*F*tF*--O-TO----T----T----T-00))Q)C*C*F*tF*---Q----Q-00))R)-R--R--R--R-0RM).*0-H-\_-|-0--0--\--0".S.\7/Y/\y//\//0//\/ 0090o00000++r++p++rM)+0++V+ ,^ ,,P,,V-F-VO-T-PT-_-V_--0--V--0-S.VS.Z.0Z..V..^./V//0//V/00090V9000M)-0--PO--0--P----0-00** }1++1M)v)0)$*0.**0*,0,,P,*,0*,:,P:,M,_M,,0,,_,-0O-T-PT-_-V_--0--0-,._,.3.0S..0..P.._..P..V.7/07/Y/_Y/y/0//0/00 0900000M))0))P).*^.*+0++^+A,0A,M,PM,,^,,P,,^,-0O-_-0_-|-^|--0--0--^--0--P-".^".3.0S.Z.0Z..^..0.7/^7/Y/0Y/y/^/ 0^ 000090^90@0P@0o0^o00000^**P*+||--|S.Z.|** }}@**}}[8**}}[T0*+ [T0|-- [T0S.Z. [T0++R++P++px++S++sx+,S,,sxO-_-S|--P-".SZ.7/SY/y/S090S"++Q+-]O-_-]|--Q-".]S.7/]Y/y/]090]"++R++P+,S,,sx,-SO-_-S|--P-".SS.7/SY/y/S090S++TS.Z.T`)) r $ &)- R $ &-- r $ &-- R $ &-0 R $ &-- r $ &)-0O--0--0-".0S.7/0Y/y/0/900o000)+^_--^--^S.Z.^//^/0^o00^))\/0\00\))P)$*\_-|-\//\)+__--_--_S.Z._//_/0_o00_$*+^|--^--^S.Z.^ 00^o00^F*-1O-_-1|--1--1-".1S.7/1Y/y/1 0901o001F*- }O-_- }|-- }-- }-". }S.7/ }Y/y/ } 090 }o00 }F*-O-_-|-----".S.7/Y/y/ 090o00_*h* q $0)F**]**U*+]+-O-_-|--]--]-".S.7/Y/y/ 0 0U 00]090o00]s**T 0 0Ts**]**U*+]+-O-_-|--]--]-".S.7/Y/y/ 0 0U 00]090o00]s*}*P}**}**u 0 0u**U--U++^,,^ ,A,^O-_-^..^,,^O-_-^G,,_,,_Z.r._. /_//2/_Y/d/_i/t/_++^M,,^,,^Z..^.7/^Y/y/^090^,,_,,/$/P$///_./P///^,,~Z..~//7/~Y/y/~b,,QZ..Q//7/QY/`/Qi/p/Q///-H-\--\--0?.S.\y//\--\--\-F-V--0-@-V".,._,.3.07/Y/_//0".,._7/Y/_,.3.0//^//^00w00w00w0q1wq1r1wr1s1ws1t1wt11w00U0r1Sr1t1Ut11S00T0s1Vs1t1Tt11V71d1Z>1d1Q0j10j1t1Pt11071>1Z0e10e1j1Pt11P11X0 1T'1+1T0 1U'1+1U0 1Q'1+1Q0101 1P0 1X11w11w11w11w 11w(11w011w812w22w822w022w(22w 22w22w22w24w11U1g2Sg22U23S3 3U 33S33U3B4SB4|4U|4~4S~44U11T1g2]2V3]V33_3W4]W4f4_f4|4]11Q1g2\g22Q2i3\i33Q3W4\W4f4Qf4|4\|44Q12V24V1g2^23^W4f4^142_23_343_M3V3_V33hW4f4h"2W2RW2c222R 33R$3-3RA3M3R&2Y2QY2c222Q 33Q(3-3QE3M3Q2g20220 3-30=3M3042g2_g22S22SV33^W4f4^V33W4f4V33_33q3$"33 q3$"#33 q3$"#V33VW4f4Vt33P33]W4f4]i3m3Pm33\W4f4\33T33p+"33033Q33P33SW4[4P[4f4S33]W4f4]33^3W4\f4|4\34]44q3$}"4&4 q3$}"#&4+4 q3$}"#3W4Vf4|4V394P94W4^f4|4^33P3544-4T-494p+"4404+4QB4M4PM4W4Sf4j4Pj4|4SG4W4^f4|4^44w44w44w44w 44w(44w044w848w88w888w08 8w( 8 8w 88w88w88w8@w44U4)5_)58U8Z8_Z8<U<=_= =U =8=_8=I=UI==_=>U>>_>?U?/?_/?4?U4??_?@U44T48V88T8@V44Q4H5SH58Q88S88 ~3$r"#8:Q::S::Q::S:_;Q_;;S;;Q;;S;<Q</=S/=I=QI=y=Sy==Q==S==Q=>S>>Q>>S>?Q?S?SS?a?Qa??S?@Q@@ ~3$r"#@@Q@@S44044P4 8\8"8U"8I=\I=M=UM=W=\W==0=>\>>U>@\66P66vt"66P66vt"#66P66vt"#67P77vt"#77P7&7vt"#&7.7P.7;7vt"#;7C7PC7L7vt"#L7T7PT7]7vt"#]7e7Pe7n7vt"#n7v7Pv77vt"# 77P77vt"# 77P77vt"# 77P77vt"# 77P77vt"# 77P:.:P4!60!68S8909:S::0:.:S.:C<0<<S<8=08=I=PI=@066T66t66t67t7&7t&7;7t;7L7tL7]7t]7n7tn77t 77t 77t 77t 77t 77t: :T :.:t47077]8909:]:@044044P4406708?80?8I8PI88w890::w:?:0^:o:0:!;w!;_;0_;;w;;0;C<w8=W=0W=^=P^==\=9>w9>>0?4?w4?;?P;?a?wa??0@Y@0@@0@@w44s#@F$0.8"8s#@F$0.I=M=s#@F$0.>>s#@F$0.4505"5P"535^35H50H5s5Ss550!6708c90m99S990:.:0L:^:0^::S::0&;F;0_;;0;;P;;S;;P;;S;;0<<^<<P< =^ =8=08=D=SD=I=^I==0==P==S==^=>0>>P>9>S9>e>0>>0>?S??0?@0@Y@SY@@0@@04)50)5:5P:5i5_i5708Z80Z88_890::_::0::_:_;0_;;_;;0;C<_<=0==_==P=9>_9>>0>?_?@0@@_4Y50Y5i5Pi56]6708&80p8x9]x990::]:.:0.::]::P:<]<8=08=A=^A=I=]I==0>>]>>0>>]>>P>?]??0?@]@Y@0Y@@]E8808m9::0: ;&;;;<=>0>>?4?0@@47088088P88R89wm990:&;0_;C<0<8=08=I=RI=9>0>@0@@R@@w@@P@@R!66066T66t66t66t67t7&7t&7;7t;7L7tL7]7t]7n7t n77t 77t 77t 77t 77t77t990::0:.:T4F60F67S79099S9:0:.:S.:@066Q66q66q6 7q 7"7q"777q77H7qH7Y7qY7j7qj7{7q {77q 77q 77q 77q 77q: :qt" :.:qt"1F66Q67s 99s :.:QF67R::R::qs"F66Q66Q66q66q67q77q7*7q*7?7q?7P7qP7a7qa7r7q r77q 77q 77q 77q 77q::Q: :qt" :':qt"1':.:qt"44TI=M=T4!6\.:^:\o::\<8=\I=M=UM=W=\==\>?\?@\Y@@\44|I=M=u_5!6_.:^:_o::_>>_?@_Y@@_i55So::Ss5!60.:^:0>>0?@0Y@@0s5!6].:^:]>>]??]?@]Y@@]s5!6w.:^:w>>w?@wY@@w55P55SL:^:SY@@S55S>>S?@S6!6].:?:]??]77S99S7 8\9:\<<\77\9:\78S77S8"8T>>T8"8U"89\::\^:o:\:<\=>\>>U>>\??\@Y@\@@\8"8u>>ug88]::]8m90&;_;09>>0@@088R89w@@R@@w8m9]&;_;]9>>]@@]-919P19c9S&;F;S9>e>S8-9S@@S@@Sc9m9RF;Y;Rm99]^:o:]::U::Q;;U;;Q::T;;T:&;];<]::Z;;Z::P;;P::Q::}#;;}#:&;_;;_::_;;_:&;w;;_;;_;;_;;w<C<w8=I=0<C<wC<<^H<`<^`<<_e<}<_}<<]<<]<<R<<RAAwA.Aw.A0Aw0AAwAAUA/AU/A4AU4AAUAATAARA/AT/A4AR4AATAAQA/AQ/A4AQ4AAQAA0*A/AP/AA0 AAp0./A4Ap0.AAPUA\APAA0/A5A05ARAPUAA0AAP:ARAPAAwAAwAAwAAw APBw0PBQBw QBRBwRBTBwTBXBwXBBw0BBwBBw0BBwBBwBBwBBw BBw(BCwCCw(CCw CCwCCwCCwC/DwB2CU2CCUCCUCCUCCUCCUCDUD/DUB2CT2CCHCCTCCtCCHCCTCCHCCTCDtD/DH(C2CT2C}C\CC\CCTCC\ D/D\(C2CU2C}CUCCUCCUCCU D/DU.C}C]CC]CC] D/D]VCZCPZC}CVCCVCCV D/DV,CVCVCCVCCV0D2Dw2D4Dw4D6Dw6D8Dw 8D9Dw(9D:Dw0:D>Dw8>D:Jw:J;Jw8;JJw(>J@Jw @JBJwBJDJwDJEJwEJRw0DaDUaDEJUEJJJUJJeJeJ-QU-QWQWQRU0DaDTaDDDEJTEJNJTNJrJrJOTOPPkPTkPPP-QT-Q`Q`QQTQR0DaD0aDDGHHIEJEJmJ0mJrJXKKK!LS!LBLMMN&NOPkPP"Q-Q-Q`Q0QR0DtD0tDDPDD_DG\GH_HI\IDJ_EJrJ0rJK\KBL_BLM\MM_MN\N&N_&NN\N O_ OO\OP_PkP\kPP_P"Q\"Q-Q_-Q`Q0`QQ\QR0tDD0GNG1I I1OO1OP0kPP0tDD0iEE IIrJKBLL7MNMsNNOP0P8PkPP0Q"Q`QQ0DD0DcEScEiERiEE^ENGSNG_G^_GGHSH IS II^IIYEJrJ0K LY L!LwwLL^LLL7MS7MXM^XMMSMNS&NsNSsN{NNOSOP08PkPSkPP0PQS"Q-QY-Q`Q0QR00DD0iEEX IIXIIXEJrJ0K LX L!LwLLXLL7MXMXsNNOP0kPP0"Q-QX-Q`Q0QR0@ICIspCIISrJKSBLwLSP)PS`QQSQQS0DI0IIPEJK0K LP L!LBLR00D2Du#@F$0.MFG 0)GGH1HH p $0)HH 0)@ICI sp0.CIII $ &p0.JJ $ &p0.&NHN1N0O10OO 0)OO 0)8PkP 0)PQ 0)0D2Du#@F$0. 0DnD0nDtDPtDD0DDSiEGFSNGoGSGHQHR I-IS-InI0nIrIRrIIEJUJ0UJ`JP`JmJXmJJ0JJPJ3KR3KhKwKKSBLWLwwLMSMMRHNNSNNYNNSOPSkPPSPP0PPSPP0Q-Q0-Q4QP4Q`QX`QgQPgQQRQQwQQQQPQR_0DD0DDDD^DGVGoH^H#IV#I]I0yIIPII^EJJ0JJPJJRJK0KKVBLwL0wLoMVoMM^MMVMM^MMVMHN^HNNVNN^NNVN0O^0OTOVTOcO^cOOVOO^OO0OOPO8P^8POPVOPP^PPPPP^PPVPQ^QQ0QQPQQ^QR0DD0DEwEEUEGwHIw1IIIPJJPwLLwLNMwSMMwMNw&N7NwHNsNwNNw0OOwOP 8PkPwkPP PQwQQPQ"Q|DD0iEE IIwLL7MNMOPPkPrPPrPP0D`E0iEE0EE_EF0GFF0FFPFNG^_GG0GG[GGwHGH0GHQH[HI0EJK0BLL0LLPLL_LJM0JMNM p3$v"#MM0MM[MMwMN0&NsN0NNXNN0N Ow O0O[0OGO^GOcO[cOP0PPPPP^PQ[QR0hFFPOOPGGH1&NHN1N0O10DG0GGPG"H\"HI0IIPIN0NNPN O\ OP0PPP8PR0E`E\MN\2E[EQ[E`EqMMQEEXNGYGXEEXNGYGXD`E^EF^_GG^H I^L7M^XMbM^MM^MM^HNsN^NN^cOO^8PBP^EE^_GoG^DiE1ENG1oGGH1H I1L7M1XMM1MN1&NsN1NO18PkP1PQ1DiE0ENG0oGGH0H I0L7M0XMM0MN0&NsN0NO08PkP0PQ0EFTL.MTMMTHNPNTYNsNTNNTDcEScEiERENGSoGGHSH ISL7MSXMMSMNS&NsNSNOS8PkPSPQSEF1LM1MM1HNsN1EFPMMs N$s !YNsNs N$s !FFUEFsLMsMMsHNsNsEFQFFsLMQMMQHNPNQYN_NQ_NsNsNN1NNsNNaDcEScEiER"FNGSoGGHSH ISMNS&NHNSNOS8PkPSPQSFF0FFQFFTFNG^0OGO^GOcO[FFUFNG\0OcO\FGP0O7OPFGPGNG^GG[HGH\GHQHRMMR"Q-Q0GHQHRMMRQHoH^MM^N&N^"Q-Q0VH`H^MM^`HoH[N N["Q-Q0eHoH[N N[HHIEJKKK!LS!LBLIIK!LSH ITcOoOTH I\cOO\8PkP\HIPI IpcOoOPIIVrJKVBLwLVP&PVQ"QV`QQVQQ^QQV#I@ISKKS&P8PYQ"QSQQYQQYIDJ_KK_!LBL_II_KK_IJY!L3LYIJY!L3LYJ1JXJ1JXJJ0JKP+K3KT3KhKwBLWLwQQw+K3KU3KK\BLwL\QQ\4KhKPBLYLPQQPKKhKPBLYLP^KzKR_LwLRLLPsNNPLLTsNNTLLPsNNP R"Rw"R$Rw$R&Rw&R+Rw +R,Rw(,R-Rw0-R1Rw81RSwSSw8SSw0SSw(SSw SSwSSwSSwSXw RWRUWRS]S4SU4SS]SSUST]TTUTU]UVUVV]VVUV,W],W0WU0W9W]9W=WU=WX] RTRTTRR_RTTTT_TUTUUTUVTVV_VVTV,W_,WWTWW_W0XT0XRX_RXyXTyXX_ R[RQ[RgSgSSQSTT TQ TQTQTTQT"U"UoUQoUUUUQUUQUVVVQVXFR[RQ[RgSgSSQSTT TQ TQTQTTQT"U"UoUQoUUUUQVVVVQVXFRTRTTRR_RSTSTTTT_TUTVV_VVTV,W_,WWTWW_W0XT0XRX_RXyXTyXX_FRWRUWRS]S4SU4SS]ST]TTUTU]VV]VVUV,W],W0WU0W9W]9W=WU=WX]FRTRTTRR_RS\S4ST4SS\SQT\uTT\TT_TTTTU\VV_VVTV,W_,W0WT0W9W\9W=WT=WW\WW_W0X\0XRX_RXyX\yXX_FRR0RS^SQT^uTT^TT0TU^V,W0,WW^WW0W0X^0XRX0RXyX^yXX0FRR0RRPRSVST0T TV TQT0uTTVTT0TUVUU0UUVV,W0,WFWVFWW0WWVWW0W0XV0XRX0RXyXVyXX0SS0SSSuTT OU_USFRWR u0.WR[R p $0.VV p $0.FRbR0bRRPRR0RRPR8S0SS0STP TQT0TT0TTPTTSTT0TUPU7U0oUU0UUPUUVUUUVVPVBVSBVTVPTVVSVV0VVPVVVVV0VVPV,WS,WFW0FWMWPMWmWVmWtWPtWWVWW0WWVW X00X7XP7XRXSyXXPXXVFRR0RR^RS0ST0TT^TU0VX0FRR0RR\RQS0QSZSPmSS0ST0 TQT0TT\TT0U7US_UU0VW0WW0 XRX0RXYXPyXX0uRRPRRSTTSTTPTTSBVTVPTVVS0X7XP7XRXSyRRUTTUBVTVU0XFXUFXLXsRRPRRSTTSTTPTTS0XRX2RR_RSTSTT TQTTTT_TUT_UUT,WWTW0XTRXyXTRS^ST^ TQT^TU^_UU^,WW^W0X^RXyX^RRpRS ~)ST ~) T$Tp$TQT ~)TU ~)_UU ~),WW ~)W0X ~)RXyX ~)RRPRSVTUV_UUVUUV,WFWVWWVW0XVRXyXVRSpSS v)TU v)_UoU v)oUUpUU v)UU v),WFW v)WW v)W0X v)RXyX v)S4ST4SZS\,W0WT0W9W\ X0X\RXyX\S4SU4SZS],W0WU0W9W] X0X]RXyX]S*SP*S4Su#p,W0Wu#pmSSP_UiUPSS^T T^uTT^7U_U^SS^OU_U^SSVT TV7UOUVSSV7UOUVSS\T T\STPUUPUUVUUUTTTTU\9W=WT=WFW\WW\W X\TTUTU]9W=WU=WFW]WW]W X]TTPTTu#p9W=Wu#pU7USVVVWWVUUTUVTUV0UVUVV]XXwXXwXXwXXw XXw(XXw0XXw8XH\wH\L\w8L\M\w0M\O\w(O\Q\w Q\S\wS\U\wU\V\wV\pbwXXUXQ\]Q\V\UV\f`]f`v`Uv`pb]XXTXXXXf`Tf`~`X~`pbTXmHmSjjSMllSlm0/mHm0MllSPmRmwRmTmwTmVmwVmZmw Zm[mw([m_mw0_mnwnnw0nnw(nnw nnwnnwnowonn^no^pp^pp^!qrBrPBrwrSvvSvzzSr>rSzzSrrTizmzTrrSvvSBzvzSrrPrrsizmzsrs2tWu2zuv2vv2vw2wx2xey2yBz2zV{2{S|2|}2rrTttTyzTzzrsVtWuVzuvVvvVvwVwxVxeyVyBzVzV{V{S|V|}Vrrpttpyzprr ts)tt ts)yz ts)s sPw{xPy/yPAyMyPx[xR[xwxqy*yR*y/yqAyHyRHyMyq*x{xUyyU#y/yUAyMyUDx{xY#y/yYAyMyYwxRx{xvy/yvAyMyvwwQw28b2T>^8b^PR8URUbPR8URUb q8Uq1R&mS%S8aVVv2^O2-2y222¢΢2 2W22p2'TžTvT?V^VvɞVyVVWV'qqvq5?P^PyPP¢΢P PRqR¢ɢRɢ΢qR qUU¢΢U U͛Z¢΢Z ZdRvvPyRvh~Q~śtś͛tPyQtP22žTɞVɞ՞P՞VV˞՞P՞VV՞ppVv_"2{2-ɟ22822΢ڢ222p2T-VTQ]T]pƚV{˜V˜Ӝv-]VVV2pVp-VpQ]p t)-V t)Q] t)ƚP{ PPP΢ڢPPRqR΢բRբڢqRqӜ UU΢ڢUU Z΢ڢZZR˜v˜ӜvPRvQttPQt!(PJ282JVTJ]V]sPsV8V_sPsV8Vi~q0q~V";_ǝ0";_OYSSYi^ǝ^V^Yi^ǝS\0'Q'4w\4\ +x4+4X4Rwwww w(w0w8ww8w0w( w  w www§U§\UP\PQUQ\_U_o\oU\UUDUDiUiU\9U9I\IMUM\UȧTȧVTTV_T_oVo|T|VTVTTDVD_T_VTVT00000P0000ȧTȧVTTV_T_oVo|T|VTVTTDVTVT§U§\UP\PQUQ\_U_o\oU\UUDUU\9U9I\IMUM\U00D000ͧ0*0*0P0___o0o|_|0_P_V0V^_^0D0_0n_1o1I1Ze01ѧP+P+QvPvIMvezvۧp#++p#++Qv#+IMv#+ezv#+00Ҩڨ06o000D0ǫ009]9000 F]Fo0o|]]\0D0ǫ]000\000V00V0V0D00000ȧTȧVTTV_T_oVo|T|VTVTVT]]_o]]9D]I]§ȧUU'QTIMTesTsz 0+'P\PQUQ\_U_o\oUU\9U9I\IMUM\U8QTIMT8P\PQUQ\_U_o\oUU\9U9I\IMUMe\U8P|PQuIMue\esTsz 0+zT9@Tz\_UoUU\9U9I\Uz|9@|T T]|]]k] U 9]Ѭ]P} uҨ_0o|00ǫ00Ҩ_1o|11ǫ11ҨV_To|TTǫTT֨_^o|^^ǫ^^0]]]*0VVV^0*0VV?_]]F__ʩЩwЩV^Vkwk^^w\\V^^k^Ѭ^V\^k\Ѭ\'_Ѭ_'+P+V_^k__V]^k]Ѭ]ǫ]ǫ] "w"$w$&w&+w +,w(,0w007w87ww8w0w(w wwwSw ;U;VUSV ;T;S(T(9S9]T]SST ;Q;]Q](Q(9]9]Q]]SQ֮ /a0a\0000m\m0ʯ\ϰ0ϰٰPٰ\S0/k0000ʯ0(\(90]s00_0_S0/00dVdS00JSJm0mVS(S(90]0VSVSSV/0Po]o0]%P%?]?m0m]909@P@]]]0S]GKPK^S^LgP(0P]dPLS(T(9S9]T]SSTUgP(0P]sS]s0]dPt]QQ](Q9]QSQt ( 9] S t0(09]0S0SSmSSSSխۭwۭa]adwm]w]]SwʭdVmVVSVa]]S]aVVSVa__S_/3P3a\\\8S\/\"8\d]0m]ʯ]xS?mS\Rm\֮VUʯSٯS(\SSVVad0ϰ_ϰ_`bwbfwfhwhjw jkw(knw0nww8w׸w ׸ظw8ظٸw0ٸ۸w(۸ݸw ݸ߸w߸wwIw `&U&TSTUSUS*U*USUUbSbIU`}T}lVlTVTTV*T*UVUTbVbTVIT`}Q}ؼsؼۼtsۼs ts cscgusg+s+4ts4stssussQstsIsp00ؼsؼۼtsۼs ts cscgusgs00s0sU0Us0<s<0Is}#`}ȸsؼsؼۼtsۼss ts cscgusgss&#`&+s+4ts4stssuss#`*s*U#`Ustssb#`bIslQ_ƶնQն_>__s_ؼsؼۼtsۼss ts cscgusgsstssusssw\s&sUsstssbs<ssIs6l0l1006ȸ001{0001*0U0b01I0TS>SSosSSEsE*SUSbSS%S1XSsS]ISøȸ 00w}#`}ȸsؼsؼۼtsۼss ts cscgusgss&#`&+s+4ts4stssuss#`*s*U#`Ustssb#`bIs6Ts v -lv1)1ƶ˶ v~.˶%v1)>1Ⱦ v $0)Ⱦ1s0s1[ sF)[1v s -1w1 sF)\&11U sF)11< sF)<11,Pv1)Xv1)I1OTVTS>SSosSSEsE*SUSbSS%S1XSsS]ISOTSTl0lQ_ƶնQն_>__0s_TS>ShSh|P}PSSw*SUSbSS%S1XSsS]P")PPP[1I1&U&TSTUSUS*U*USUUbSbIUؼؼۼTۼ T ccgUg++4T4TUTIRıPıDZu}DZPu|Pu{Puz0P03uy3IPILuxLbPbeuwe{P01Ų2Ųٲ3ٲ456$7*/7&0&030:2:D5DN4NX6Xb1}0&00*/0/3q $ &# 3$"b06BPBsssP+s+4ts4ss\&s*sss<ssRıPıDZu}DZPu|Pu{Puz0P03uy3IPILuxLbPbeuwe{P}&U&TSTUSU*U*USUUbSbIU+r $ &#3$"#+#p3$"#++r $ &#3$"#+ı+p $ &#3$"#+ıб+r $ &#3$"#+б+p $ &#3$"#++r $ &#3$"#++p $ &#3$"#++r $ &#3$"#++p $ &#3$"#++r $ &#3$"#+0+p $ &#3$"#+08+r $ &#3$"#+8I+p $ &#3$"#+IQ+r $ &#3$"#+Qb+p $ &#3$"#+bj+r $ &#3$"#+j{+p $ &#3$"#+#+#+#+ #+Ų#+ŲԲ(#+Բٲ#+ٲ0#+#+8#+#+#+#+$#+&,p#q#,Vgp#q#,p#q#,*/#+&#+&0(#+0: #+:D8#+DN0#+NX#+Xb#+}&U&TSTUSU*U*USUUbSbIU}012Բ3Բ456$7*/7&0&030:2:D5DN4NX6Xb1@TV@TS@TLRRRsRֳs~ֳRs}DRD`s|`Rs{δRδszR'sy'PRP`sxh}0}12Ե3Ե45637DNPNTvsDRRRsRͳs~ͳRs}DRDWs|WRs{δRδszR"sy"PRP`sx`w0w12ҵ3ҵ45637Ѷ%V,PVXVѶ^1X^ѶնQն_>___s_l Ѷ06M0>000],]P0Xs0Ѷ0P6^6M0>000^P^P0P1^1s0Ѷ0P6S6L0L]P]SM0P S ,0,>SSS,S,3P3SPSX0XsSѶ%0%EPE]V]0+M0V,>000PV0^0Vs0ܶP\>\\\s\ܶ_>___s_ܶ >   s ܶ0>000s0RVVVVViztzSMt>tSSPttSXstdUUUUS,>SP^SSXsSU^,>^P^^^Xs^ѷշPշV,>VP^VXsVѷVVMS,S],]^,^^,^SSVPȸSKؼsؼۼtsۼs ts cscgusgs+s+4ts4stssuss*sUstssbssIsKSSosSSEsE*SUSbSsS]ISK\ؼؼۼtۼؾؾT t Tccgugxx|U|++4t4tu\*UtbsIKؼؼۼTۼ T ccgUg++4T4TU*UTbsIQrQQXEQ*QQX1XXXEXXR#RRPPRK  * U b sI K  * U b sI SQrQQqr"Q*QQSxQxPQEPQSx0x123P4P56704 3 2%1%161=5=@7@E80[uPuRǹǹRR33MRMiiRRͺͺRPRR  RR%%)R)115R5==ER[hRhTǹǹԹTԹ  T 3(3@T@i0ivTv8TͺͺںTں0 (  %%11=8=Eؼsؼۼtsۼs ts cscgusgs+s+4ts4stssussssE*sUstssbsssIsSSosSSSESEsE*SUSbSSsS]IS    E* U b  sI     E* U b  sI \ؼؼۼtۼؾؾT t Tccgugxx|U|++4t4tu\\E\*UtbsIR#RREPRPSpu"SRR(R(PESRSXXPR(0(^1^2ʻ3ʻ4656h6h7EX0X[7[`8`l6lx5x43210 (U(AA[T[wwTǻTǻT3T3KKeTe}}TEPUPXXdTdllpTpxx|T|TTT (T(AANUNwwUUU&U&KKXUX}}UEITIXX``llxxۼSSwSSSۼCCwCCCۼP t w0Q1Q2ǽ3ǽ4757l6l7Ⱦ8PBRZRнR .RCcRtRȾR߼  w   PsTPTswsss߼QBUBKTKQ r3$" QtTt}U}T r3$" TUTǽ r3$" ǽTUT r3$" %T%.U.TȾUSC0I1I234+5+e6e78 P@PUwPPÿPP7PP Ps@R@wTwRTRT+R+YTYeReTR000SSSsss s0. s0. s0.s0S0SQT\PVSSSvus (08( su80,QQQQQQQvUs (08( sU80Ts $ &3$"#TTUs (08U0U(U UsU8U1Ss s0. SwS FwF w 404l1l234656Y6Ys7 =0=r1r234858^6^s7 1w1 0w0 4Q4]R]fPfl{lPRP {zPRP{P'R'0P06{6KPKPRPsPSwSFwFw0w012'3'\4\5670w012-3-b4b5671w10w0PwPR!P!' }|'DPDMRMVPV\}\yPyRP}PRPSSUS<SISccgugxx|U|U<IPs~Ps}Ps|.P.1s{1GPGJszJ`P`csycyPy|sx|PswP012 3 4151E6ET7UZ70 3 14(5(262<20V00UZ0Z^q $ &# 3$"#<0[FIFsPs~Ps}Ps|.P.1s{1GPGJszJ`P`csycyPy|sx|PswPSUS<SIS.p $ &#3$"##+.s~ $ &#3$"##+.p $ &#3$"##+.s} $ &#3$"##+.p $ &#3$"##+.s| $ &#3$"##+..p $ &#3$"##+.1.s{ $ &#3$"##+1G.p $ &#3$"##+GJ.sz $ &#3$"##+J`.p $ &#3$"##+`c.sy $ &#3$"##+cy.p $ &#3$"##+y|.sx $ &#3$"##+|.p $ &#3$"##+.sw $ &#3$"##+.p $ &#3$"##+#+#+#+#+#+#+ #+ #+#+,#+,1#+1@#+@E#+ET#+Vgp#q#,UZ#+#+ #+ #+#+(#+(2#+2<#+SUS<SIS01234,5,@6@T7UZ70 3 14(5(262<2{0w0SosSEsEwS{sws{w{ s0.w s0.s0S0SQT\PVsoSwsSosSEsEwS{w{wsoSwsSosSEsEwS{w{w{w'_'o^_R+EREw_{w]VVV^U_oV]8SEw]'Z_Zo "^"E~' EqVos V E\EwV{\\  E]Ew\P{sPEsEYPYws s $@L$)o s1) s $@L$)ET s $@L$)Tw ss)|0.EM s0.MT s|)Tw ss)Tw ss)'0'Z_Zddo_ 0 "^"+~+E^o{18E1o{S8ESo{s8Eso{8Eo{ s0.8E s0.{1{s{S{1SQT\PVSVR:v:cRcv~Rv}R v| 2R2Nv{NwRwvzRvyR vx&0&K1Kd2d}3}4567PsvrR1v1cRcvv~vRv}Rv|2R2Ev{EwRwvzRvyR vx  0 E1Eb2b{3{45679SS*SSbS<SsS]9@P@s\E*bs<ssFt0tQqQtPUFX\EXXX<X@FPtPU*0=t_t{R{TRR*_S\S&SSbSsS]stssuss\s&sstssbssst]ttttTt\t&EtEo]otttttbtstTU\&Tbs-B0BS1Sg2g{3{4567c07654321Pstssuss\sEsstssboPosss_stssuss\s&G_Gs_stss_b_s_s|\\\E\\b\s\suss_stssuss\s&G_Gs_stss_b_s_sp0)- s0)-9 t1)BS t1)Sg t1)g{ t1){ t1) t1) t1) t1)n1\0Ec s0)co t1) t1) t1) t1) t1) t1) t1) t1) s0) ts0) s0)bop0)o s0)s s0)S\SESSpPsSPXsEossXS\SESSsS909N1Nb2bv3v4567E0786543210s0S\S&SSbSsS]TU\&Tbs1GzGZsZm m(08z80( s=_=\x|\&E__\\1GZGZsZm m(08Z80( sQ }3$"#s $ &3$"#s $ &3$t"#s $ &3$"#s $ &3$u"#s $ &3$"#\s $ &3$"#&EQEs $ &3$"#Qs $ &3$"#s $ &3$t"#s $ &3$"#Qb }3$"#s }3$"#P=Z=PsPc cv(v08&EZPsT8T0T ( T Tstssuss\sEsstssssS\SESSsS9_EG_Gos_s_ttttutt2t2VRV\tEtttttstttttutt?t?VYV\tEtttttstQ%q sF)Eo sF)s sF)PQ q 9QQEo_G_PEG0G[P[_pnS\SSSns\sssPPX)0)gQglqlnQ)OPO[U nXEXP)OPO[U3R3[T[dRlnRRR\s\S\t\PS\&SS<S\&<ctPtws~wPs}Ps|Ps{PszPsyPsx/P/2sw2HPJb0bv1v2345677<F2FP1PZ6Zd5dn4nx3x0\J0\0&00q $ &# 3$"#<0ctPtws~wPs}Ps|Ps{PszPsyPsx/P/2sw2HPJSS<Sct.p $ &#3$"##+tw.s~ $ &#3$"##+w.p $ &#3$"##+.s} $ &#3$"##+.p $ &#3$"##+.s| $ &#3$"##+.p $ &#3$"##+.s{ $ &#3$"##+.p $ &#3$"##+.sz $ &#3$"##+.p $ &#3$"##+.sy $ &#3$"##+.p $ &#3$"##+.sx $ &#3$"##+/.p $ &#3$"##+/2.sw $ &#3$"##+2H.p $ &#3$"##+Jb#+bq#+qv#+v#+#+#+#+#+#+#+#+#+#+#+p#q#,#+<F#+FP#+PZ#+Zd#+dn#+nx#+x#+JSS<SJY0Yq1q2345677<F2FP1PZ6Zd5dn4nx3x0PRwRVwVXwXZw Zcw(cdw0dnw8n`w`aw8abw0bdw(dfw fhwhjwjkwk@wPTSPaSakTk@SPQ}Q}RQRZ}ZQT}TsQsQ}Q@}PbRbd\d@RPX}Xs}sX@}PY}Ys}sY@}0Q00s0Y 00Y] ]0] ]Y ]} ]Y ]}  00 % ]Y%. ]}.f]fh~hk}k 00 ]}@ 00Ptsq}ps}RZ}svPvs}@}pt#Hs#Hq}#Hp#Hs#H}#HRZ}#Hsvpvs#H}#H@}#H0PV0ksVs0P@V"0"0P0R0RZPZ@00_0k0_0R0_@00P]0k003P3R]R0]@0M0k0R0Zs0@0M}QkQRQZQT}TsQQ@}M]T]@]MQUQ}k}R}Zs}@}MVkVRVZsV@VM0_k00R_Zs0_@0M1k1R1Zs1@1MX0XePe_p } 0k0R0Z_0s_0_ P @_Mq0qP}0k0R0Z}0s}0}P}@0M000k00R0|Q}0+0@0M0P]0k]]R0ZaPa|]|0]s00]@00k0R0Z|0T00PPP}QkQRQZ|QQT}Q}PP+}+0P0k0R000]k]]]]J_k__JNPN___Y<}kz}Y]]_R__]0]]]|_Ts_}TeRes}}TeRes}QQ1R11^R^^\R\\P]3P3R]]0&)q)QPR00e e0R 0p}3p3R}}&RVVVV j_._0]]@AwABwBLwL%w%&w&'w'0w0w@U&S&(U(SzY s (nY@0(P(0@0P(0PzzTzzU&S&(U(S012$3$J4Jp5p67(U0U|1|2345H6Hn7zQs(LQLnszPs(UPUnszTs(3T3nszR(nRz0123H4Hn5n67(O0Ov1v2345B6Bi7in8U|U|U|(U(@|@NUNf|ftUt|UPOn UUTTwwww ww wwww@U@SUS,Y s Y0P00P^0^eP,|V|V,@U@SUS=a0a1234"5"H6Hi70$1$K2Kr3r4567,LQLsQs,UPUsPs,iTisTs,RR,[0[1234 5 F6Fi701E2El3l45678SeUez}zU}U}U}U}&U&>}>aUaiP UUTTwwww w(w0w8@w@Aw8ABw0BDw(DFw FHwHJwJPwP8wUJ_JKUK_U8_TVUVKTK#V#TVTVTVT/V/?T?VTYVYTVT+V+/U/VT8VQ)^)*U*s^sKQKc^cQ^Q^ Q ^?Q?V^VQ^8Q8^Q+^+/U/8^20K0P80P9\K\{\_\_nPn\P\8\P9]K]{]8]8?P?_]8].0090tQY0+0+80)9PY`P*T+/T)^)*U*s^s9QKc^cQ^Q^ Q ^Q?Q?V^VQ^{Q8Q+^+/U/8^ P )~)*u+/u7sQKhQQQ?OQO|Q|79 K { 8 790K0{080HsqKhqqq?OqO|#]hPP~ ^ qPkPg0>P>Y^PF|F|FKRT+/TVUV9T#V#tTVTVTVT/?TVTY{TVT+V+/U/8VPvu+/uQ%QQQQ|Q|9 t  /?  Y{  90t00/?00Y{00q%qqqq|##%vPq PP0PVP||RtQ{0tQ@BwBNwNPwPRw RSw(STw0T[w8[w w8  w0  w( w wwww@kUk8|8.U.|U>|>Uu|uU@T_.T._TT>_>T_"T"u_uT@80%c{Y^{1{G4{H{"{.0{8{a{{>0>{u0u{@ K4 H " .   8%{{KG{{8a{%S%8\S@0|8|K|4H||"+R+.|.0||>0"|"u08|87}K4}H}"}}}>}"|u}7 K4 H "   >" u `u0{10arP{{ {){A{G{{{{{T{D{{S^ScSS)SAS9SSeS X R{^uX{@808%^%lSl^U1^12U2^U^U6^67U7m^mnUn7^7KSKG^G S.S.0^S,^,0U0b^bfUf^U^U^U ^ U^8S8a^aS>0>Su0uS@404H_H0_P"0"._.0XX{p11)A111118a1@0|07_K_!0!4PH0P"_.0a_ahPh_0P_>0>MPM_0P_P"_"u0u|P|_0QQ80QUPU%{%c{{KG{G4{H{"{{{8{8a{a{{>{"0u{08c{clRl{K4{H{"{{{{>{" u{0%c{G4{H{"{{8{a{{>{P{u{@_0_^0;0Oo0107V0GZ0ZdPd^40H0"0.0V0^bo00 0000,^80{S^S{ I{cSS)SASG{9{9SS{eST{D{{.S}SrS"]SU}UQ}Q0PR.|.}S.rSr|S}|.|BT.2TrT}V.V}^.^TV}^.^BP.2PruPu|#l}0.0p^^)A^^^^^8a^SsPSPV}~~~~~P~PP P ~PPV00)A00SSsp"MS)4S   )A  {{)A{{{{)A{{VV)AVV\\)A\\PPP}})A}} p#s#+010'p#s#+ $0)01 {0)MW q $0)W {0))A0 0PjzPPS8SlS1SSS SSSSuSTT^U1^12U2^U^U6^67U7m^mnUn^1^K^)^AG^,^,0U0b^bfUf^U^U^U ^ U^^^^^6V1|VKVVVTVkVp6 vs)1LpL| vs)K vs) vs) vs)T vs)k vs)2TT1^12U2^U^U6^67U7m^mnUn^|^^)^A^G^,^,0U0b^bfUf^U^U^ ^ U^^^T^k^^^(P(1~12uu?V|V VV,4VVVDkVVEVpV vs)|p vs)  vs) vs),4 vs) vs) vs)Dk vs) vs)T,0T^U^U6^67U7m^mnUn^^ ^)^A^G^,^,0U0b^bfUf^U^ ^ U^^^T^D^^P~u,0uVV cVGVVVTVDVVp vs)p vs) C vs) vs) vs)3 vs) vs) vs)TT^U6^67U7m^mnUn^c^)^A^9b^bfUf^U^ ^ U^^P~uu#7TbfT#6^67U7m^mnUn^w^)^A^9b^bfUfo^ ^ U^^#-P-6~67ubfuZnT TZm^mnUn^^)^A^ ^ U^^ZdPdm~mnu u11)1A11 X R{^uX{S^SS)SASeS{{^{{){Ar{r {{"V{^u0{10AX {{"XrQ  ) A  R{^{{){A{{{{){A{{ R R{^uR{ Y R{^uY{ P {^uPu{{{${A{{}})}A}}P p0+(0 Z R{R_s?%^u0s?%s?%{Y^0q X0X_s0)^u0s0)s0)es0)Rs0)_n0 { $0. x $0) vps.808^1u0#{#{#+!{#u#+ z $0.0 z $0. ) { $0.A0es0)!RP(8 'PeiPiS7__07__7VV0!VVKVVTVkVR{P{P{avvTvvePPT|P|vPP{VVVVDkVVR{qP{XpPp{vvOvvvPP.P.OvPPPq{ TVGVVTVDVVCIS#s,IPITS+P+T\!Iv#vvvv%IP#PPPvPP,T\e}PPt}TTt}PP!_H_"__THLTUHLUQHLQ0PR4H||"+R+.||"+R+.| SS  w  w  w  w   w(  w0  w(  w  w  w  w  w0  w(  w  w  w  w  w0  U  S  U  S ) U) h Sh  U  S  P  U  S  U g Sg q Uq  S  U  S  T " U"  T  T  T  0 l 0q  0  T " U"  T  T  T  U  S  U  S ) U) h Sh  U  S  P  U  S  U g Sg q Uq  S  U  S i 0i  V ) V) ? 0?  V  0  V  0  V i 0i  ] ) ]) ? 0?  ]  0  ]  0  ]U a P  0  S  0  S  P  S  0  t+) " u+)  t+) ) 0) i Pi  0  P ) 0) 4 P4 ? \? h 0h u Pu  S  0  P  \  0  P q \q x Px  \  P  \  P  S  0 Q 0Q i Vi ) 0) ? V?  0 U 0U i ]i ) 0) ? ]?  0L a P  P? i Pi  \ ) \) 4 P4  \  \  P 9 \  P  \C i U) 7 U  U  U  |_ i Pi  \ ) \) 4 P4  \  \  \  2i  V ) V?  V  V  Vs  p  p  V$ ) V  0  V  0l q 0  V  V  ]  0  0l q 0  ] ) 0  09 q \9 q \ " w" $ w$ & w& + w + , w(, - w0- 1 w81 ww8w0w(w wwww M UM C]CUo]oU]U]U].U.2U2]U]U]@U@-]-U]U 000 00V0 2 02 \0\A0AW\Wo0o\0\0\0.;0;\-0-\0\ Q 0 P _P z0zPS0o_oS0S_PS0 _ S_0_gSg0_.S.0S0S0@S@V0V_-S-0S0 o 0o = V= w 0Y^0PVAVAW0WoVo^PV^ V 0VV0.;0V0PV@^V0V-0-V0V %0o00000-00 C0C]0]0]0< M T.2T< M UM C]CUo]oU]U]U].U.2U2]U]U]@U@-]-U]U< C PC M u.2u| = _A_Wo__ ___ 2 V2 = 44AV VVV = _A__ ___ 2 VAVVV 2 _A___  \\  P 2 \4\\ 2 SASSS2 = VV02 = VVF  _AW___;X_]__^ s TTW s UU^ s uu   %]%]o]];]]V-  UUUU;TU %]]]@V]  UU %___@V_  P %SSS  SS@VSP^^^z]]_g0z]]^^^^\\S S-SS;0000;SSSSJr\\rvPv\\\\DVVVV-S___{{_-D_D_V-VV__g{_D__Vg{VDV_]g{]D]04P4_Sg{S_S0SDXS.SS"S V".VV".V0\\wwww w(w0w8ww8w0w(w ww w !wUKSKUSUBSBUmSm!UTT*T*PTPTTT!T 0!0TT*T*PTPTTT!Tt*tPtT#*tP`t N$t !`ft~}]]]] ]m!]KSKUUU BSBUm!U_V bV 0 V00 0m!0]0] ^0^0^00(z000^,0,^0^ 0m!0606<P<n\noUo\0hVh 00\0\0VP\V0V0(Y0YzV0K0KS\S0VU\0 0m7 07 c \c  V !030 0^o00^Yz0^0 00* !0K0KXPXS0O^Os0|\|0S^\^\0\S(YSYz\z,S,H0g0\00\S B0BIPISmS* S* 7 07 c ^c  \ !S_0_vPvV0V 0?V?0V(z0V0 n0nVUVPV0m!00"00<V< 0/0P^00V0V00\Yz0\0 00m00* 07 !0/T TKSKUUU BSBUm!U/s sV/VVm|VTT4V/PV(MVUVPvu4V/PV(MV-SPS2 S-i\\ \- ^P^^cx^7 ^%!(H(Q,,Q((T22T()^,,^//^,22^22^22U22^77^:;^((P((~22u()^,,^//^,22^77^:;^(((v)_v)y)./;/;/I/_////_77_:::;_;<(y)S./I/S//S//S77S:;S;<S(v)_./I/_//_::_;<_(v)S./I/S//S::S;<S )@)^::^@)D)PD)v)^./;/^//^;<^))R)v)./;/;/I/R//::;<))X)-9-X)))T*^///./^///0^77^<<N<n<n<<^<<)T*~/./~//~/0~77~<<~N<<~<<~)T*^/./^//^<<^N<n<^<<^)T*~/./~//~<<~N<n<~<<~)*SN<n<S*"*P"*T*S//S//S<<S<<S))R)T*///./R//<<N<n<<<W5t5Xt5z5770W5t5Xt5z5Y**^++^,)-^6:6^l*v*Y, -Yv**S++S?-O-S55S**p++p**S?-O-S55S<+[+S+Y,^00^++^0B0^+Y,SB00S++SB0e0S+ ,Qe0s0Q, ,Qe0s0Q ,,X~00X,,X~00X--U--Q<<U<<Q--T<<T--S<N<S<<S--X<<X--Y<<Y--P<<P--^--^++0Y..~Y..~=2^2X^2i2v)y)022R2222R225,5Y,57556S66]66SE8q8_;%;_88Ru;;R;;~8"9]z%%0z%%P%%X%%wz%%3z%% ?%%x3%%X%%R<<w<<w<<w<<w <<w(<<w0<<w8<JwJJw8JJw0JJw(JJw JJwJJwJJwJaw<5=U5=D~DIUIJ~JJUJJUJK~K-KU-K9K~9KuKUuKTM~TMMUM:N~:NvNUvNN~NNUNN~N OU OP~PcPUcPP~PPUPQ~QQUQW~WWUWY~YYUYYUYqZ~qZZUZ][~][y[Uy[[~[[U[^~^_U_`~``U``~``U`Da~DaiaUiasa~saaU<5=T5=b=Sb=ITIJSJJTJJSJYTYZSZaT<5=Q5=IQIJVJJQJJQJYQYYQY=ZV=ZGZQGZqZVqZZQZZVZaQ<5=05=>VIJ0JJ0-K9KVKKVQRV'RgRVVVVVVVYZ0Z[V\)\V__V<5=05=B~IJ0JJ0JK~-K9K~KL~MN~+N:N~vNN~NN~NN~ OO~PP~ QQ~Q S~ySVT~V!V~ZVV~VV~W$Y~YZ0Z][~y[[~[\~]V]~]^~_`~``~`Da~iasa~<I0IJ0Ja0II^YYPY-Z^GZYZPYZqZ^II]YZ]Z(ZP5=B~JK~-K9K~KL~MN~+N:N~vNN~NN~NN~ OO~PP~ QQ~Q S~ySVT~V!V~ZVV~VV~W$Y~Z][~y[[~[\~]V]~]^~_`~``~`Da~iasa~5=>V-K9KVKKVQRV'RgRVVVVVVVZ[V\)\V__V5=D~JK~-K9K~uKTM~M:N~vNN~NN~ OP~cPP~PQ~QW~WY~Z][~y[[~[^~_`~``~`Da~iasa~h=o=Po=HSJJRJJSJTMSMINSvNNS OPSPQSQWSWYSYYS;[][Sq[t[Rt[[S[5`So`aSAEFEPFEzI~JJ~K-K~9KeK~:NIN~NN~N O~CPZP~WW~YY~][y[~[[~^_~``~``~Daia~saa~6EuG0uGH^JJ^K-K09KeK0:NIN0NN0CPZP0YY0q[y[^^_0`5`0o``0``0Daia0saa0GG_GGG H0 H$H1$H9H2JJq[y[5==0==P=D~wII~JK~-K9K0uK:N~INgN~gNpNTpNN~NN~ OP~cPW~WY~Z;[0;[][~y[[~[^~_`0``~`Da~iasa~5=*E0*E1EP1EI~JJ~JK0K-K~-K9K09KeK~eKTM0TMcM~MM~M:N0:NvN~vNN0NN~NN0N O~ OCP0CPZP~ZPP0PQ0QW0WW~WY0YY~Z][0][y[~y[[0[[~[^0^_~_`0``~``0``~`Da0Daia~iasa0saa~@HVJJVJJVK-KV9KKVL?MVN+NV:NINVvNNV OgOVOPVPPV Q-QVQQV S`SVoSUVUVVVWVWWVWXV$YFYVdYYVYYV;[][Vq[y[V\]V^l^Vt^_V`%`Vo``V`aV6E;EQ;EzI~JJ~K-K~9KeK~:NIN~NN~N O~CPZP~WW~YY~][y[~[[~^_~``~``~Daia~saa~uGG GGbGG~GGbGG ~11"GH~13$|"1"JJ ~11"q[y[ ~11"GHbHHdJJbq[y[b5=yB0yBBQBD~wII~JK0-K9K0uKK~KL0LM~MN0N+N~+N:N0INvN~vNN0NN0NN~NNQNN~ O^O0^OgOTgOO0OP~cPP~PP0 QQ0QQ~Q S0 SyS~yST0T[U~[UV0VW~W$Y0$YY~Z][0y[[0[\0\]~]V]0V]]~]^0_`0``0`Da0iasa05=E0EEPEzI~zIISJJ~JK0K-K~-K9K09KeK~eKTM0M:N0:NIN~gNvNSvNN0NN~NN0N O~ OCP0CPZP~ZPP0PQ0QW0WW~WY0YY~Z][0][y[~y[[0[[~[^0^_~_`0``~``0``~`Da0Daia~iasa0saa~5=wI0wIzI~JJ0JIN0vNY0Za0b=o=Po=HSJJRJJSJTMSMINSvNNS OPSPQSQWSWYSYYSZZPZ][Sq[t[Rt[[S[5`So`aSV=>0>>^>>0>4?^4?D0DDPDD^DF0FG^GzI0JJ0JUK0UKeK^eKK0KK^KK0KL^LTM0TMM^MN0N+N^+N:N0:NIN^vNN0NN^NgO0gOO^OCP0CPZP^ZPP0PP^PZQ0ZQQ^QQ0QQ^Q|T0|TTPTT^T[U0[UU^UUPUU^UV0VV^VVUVV^VRW0RWW^W$Y0$Y+YP+YY^Z[0[\^\]0]^^^`0``^`Da0Daia^iasa0saa^V=>0>?V?zI0JJ0JK0KKVKK0KLVLTM0TMNVN+N0+N:NV:NIN0vNgO0gOOVOP0PPVPZQ0ZQQVQQ0QQVQkR0kRRVRVT0VTT~T[U0[UV~V!V0!V.VP.VZV~ZVX0X$YV$YY0YYVYY0Z[0[\V\]0]]]^`0`a0>>0>?Q??~CC0CuG_K-K_9KuK_K+LQL8M_N+N_:NIN_NN_gOwOQOP_QQ_RWW_XX~XX~$YY_YY_[\~V]^0^__`5`_o``_``_Daia_saa_V=!?0!?PZP0PP]PQ0QQ]QfT0TT0TTPTT~T[U0[UbUPbUU~V+W0RWX0X$Y]dYY0YY]YY0Z[0[[P[\]\V]0]a0SGuG ~0.uGH!~#~#-JJ!~#~#-q[y[!~#~#-V=@0@B]BB0JJ]JK0-K9K0KL0MN0+N:N0vNN]NN]NN0NN] OO0PP0 QQ0Q S0ySU]UV]VV0WX]X$Y0Z;[0;[][]y[[0[\0]V]]]^0_`0``0`Da]iasa]V=@0@@T@B~BB0JJ0JJQJK0-K9K0KL0MN0+N:N0vNN~NN~NN0NN~ OO0PP0 QQ0Q S0ySV~VV0WX~X$Y0Z;[0;[][~y[[0[\0]V]~]^0_`0``0`Da~iasa~V=@0@B\EEPE[I~[IzI0JJ~JJ0JJ\JK0KK~(K-KP-K9K09KeK~KL0MN0+N:N0:NIN~vNN\NN~NN\NN0N O~ OO0CPZP~PP0 QQ0Q S0ySV\VV0WW0WX\X$Y0YY~Z;[0;[][\][y[~y[[0[[~[\0]V]\]^0^_~_`0``~``0``~`Da\Daia~iasa\saa~V=>I0JJ0JTM0MIN0vNN0NP0PQ0QW0WY0YY0Za0GGRGHSJJRJJSq[t[Rt[y[SuGG0GG_GGGG_GH0H"H1"H9H2JJ0q[y[0==U-K3KU%>6>T'R+RT%>6>U'R+RU%>,>P,>6>u'R+RuM>W>UKKU>>TVVT>>^KK^VVUVV^]]^``^>>P>>~VVu>>^KK^]]^Y??0MN0+N:N0X$Y0Y??]MN]+N:N]X$Y]Y??VMNV+N:NVX$YV??P??_MN_Y$Y_d??_XX_XX_??]+N:N]?@VKKVgRkRV@&@UKKUC@M@UKKUR@@UJJUh@@pJJp@@UJ KU@@P@B_JJ_vNN_NN_ySV_WX_;[][_]V]_`Da_iasa_@B ?JJ ?vNN ?NN ?ySV ?WX ?;[][ ?]V] ?`Da ?iasa ?@B ?JJ ?vNN ?NN ?ySV ?WX ?;[][ ?]V] ?`Da ?iasa ?@B ?JJ ?vNN ?NN ?ySV ?WX ?;[][ ?]V] ?`Da ?iasa ?@ APJJP@B]JJ]vNN]NN]ySU]UV]WX];[][]]V]]`Da]iasa]AB~vNN~NN~ySV~WX~;[][~]V]~`Da~iasa~AB\vNN\NN\ySV\WX\;[][\]V]\`Da\iasa\hAyATySSThAyAUySSUhAoAPoAyAuySSuAAUNNUAAUNNUAAUNNUABUvN|NUBBUBBSNNSWCXSBB NN WCX BB0NN0WCX0yBB]NN]BB]NN]BB~NN~NNQNN~BB~NNQNN~BB\NN\BB\NN\SSUSSUSSUSSUVT}USUVSVT}U UV VT}U0UV0T[U~T[U^TTUTTUTUUUUUU2UU&U2UUCX\XULX\XUa#aPa%aUa%aUCCToSsSTCCUoSsSUCCPCCuoSsSu-C7CUKKUCCTW"WTCCUW"WUCCPCCuW"WuCCUuK{KUODD0N+N0RWW0dYY0ODD^N+N^RWW^dYY^ODD\dYY\DDPDD\NN\RWrW\[DD]N+N]RWW]dYY]DD^N+N^DDUeKkKUTEE\K-K\__\TEE]K-K]__]kEuEPuEE~EEPEzI~JJ~K(K~(K-KP9KeK~:NIN~NN~N O~CPZP~WW~YY~][y[~[[~^_~__P__~``~``~Daia~saa~[EE^K-K^__^|EEPK$KP$K(K ~##EtF\KK\UKeK\CPZP\YY\^E^\t^^\ _A_\saa\EzF]KK]UKeK]CPZP]YY]^E^]t^^] _A_]saa]EEPEFPFFKKP^^P^#^0t^^P _+_P._>_PEF^KK^^E^^EEXKKXF7FPUKYKP(F7FUUK[KU-F7FUUK[KUDFF^FG:NINNNCPZP^YY^``Daiasaa^ISN OS][h[SHIS5`G`SL`o`S>IzI~NN~NNTNN~WW~wII~MM~INgN~gNpNTpNvN~zII~gNpNTpNvN~II~INXN~XNaNQaNgN~II~XNaNQaNgN~II~INRNQRNXN~II~INRNQRNXN~IISIIS LILUILKLQQQUQQQ LKLTQQT LLVQQV/LKLXQQX:LKLPQQP:L=LQ=LKLv#QQv#OO^OO^LMUMMQQQUQQQLMTQQTLMRQQRLMXQQXLMPQQPLLQLMr#QQr#P PUZP`PUP PUZP`PULL0TMcMUYYUYMcMUYYUhM|MUQQUrM|MUQQUMMUPPUMMUPPUMM^PP^MM^PP^MMVPPVMMVPPVMM]PP]MM]PP] OgOSPPS Q-QS OgO PP Q-Q OgO0PP0 Q-Q0xRRPRRURRURRVU\a\Ul]]Py]]U~]]U]]]E^t^~`*`Q*`5`~t^^P _+_P._>_P^_0_ _0A__0^^P^^\A___\^^P^_\_ _\c__\^_]_ _]A__]._>_PIyJ0IJPJQJwIyJ2IyJ1IyJ Gaawaawaawaaw aaw(aaw0aaw8agwggw8ggw0ggw(ggw ggwggwggwgwacbUcb f_ fqfUqffUfg_ggUgh_hhUh,j_,j oU oco_coroUrop_prUr,s_,ssUsOt_OttUtv_vvUvw_wwUwx_xxUxGy_GyyUyy_yzUz{_{{U{}_}}U}}_}}U}d~_d~{~U{~_U_!U!_>U>^_^U-_-DUD_U_ U >_>OUO_UӇ_ӇU‰_‰UA_AϊUϊ_Uދ_ދU1_1WUW_U _ U_|U|:_:pUpِ_ِ(U(W_WUaHbTHbybSybqfTqfgSgsTstSt^T^΂S΂T‰S‰TSʏTʏSTa*bQ*bUbVUbqfQqffVffQfgVg^Q^wQw΂V΂QVQQʏQʏVQacb0cbyb~qfg0sJt~yy~yy~^΂0‰00ʏ0acb0cbybVqfg0s-tVyyV^΂0‰00ʏ0acb0cbf~qfg0gh~hi~ o`o~rop~rr~rs~sOt~t v~vw~wx~x8y~yy~z}~}}~}}~} ~~~! ~>^~^΂0΂~q~~$~~Ȅd~p~~~Ӈ~‰0A~ϊ ~1~W~׌~~,L~[~0~~ ~~|~ʏ0N~p~͐~(K~acb0cbf~qfg0gi~ op~r,s~sOt~tv~vw~wx~xGy~yy~z{~{}~}l~~{~~~!~>^~^΂0΂~~D~·~‰0A~ϊ~~1~W~0 ~~|ʏ~ʏ0pِ~acb0cbe~qfg0gjh~hti~ op~rr~sOt~tu~vBw~wux~xy~yy~z7{~{|~}d}~}}~}~~{~~~~~!~>^~^΂0΂~Ӈ~‰0A~ϊ~1~W~~,~0 ~~|ʏ~ʏ0N~pِ~(W~ag0gn0n0ff]fg}łPł΂]]fg\b΂\‰\\ʏ\P)7PO]PuPcbe~gjh~hti~ op~rr~sOt~tu~vBw~wux~xy~yy~z7{~{|~}d}~}}~}~~{~~~~~!~>^~΂~Ӈ~A~ϊ~1~W~~,~ ~~|ʏ~N~pِ~(W~cbf~gi~ op~r,s~sOt~tv~vw~wx~xGy~yy~z{~{}~}l~~{~~~!~>^~΂~~D~·~A~ϊ~~1~W~ ~~|ʏ~pِ~cbf~gh~hi~ o`o~rop~rr~rs~sOt~t v~vw~wx~x8y~yy~z}~}}~}}~} ~~~! ~>^~΂~q~~$~~Ȅd~p~~~Ӈ~A~ϊ ~1~W~׌~~,L~[~~~ ~~|~N~p~͐~(K~cbqfVgsVsJt~OtyVyy~yy~y^V΂V‰VʏVVcbf~gi~ op~r,s~s*t~*tOtStv~vw~wx~xGy~yy~yySyy~z}~}~~!~>^~΂~Ӈ~A~ϊ~1~W~ ~~|ʏ~N~pِ~(W~cb f_ fqfUgh_hhUh,j_,j oU oco_coroUrop_prUr,s_,ssUsOt_OttUtv_vvUvw_wwUwx_xxUxGy_GyyUyy_yzUz{_{{U{}_}}U}}_}}U}d~_d~{~U{~_U_!U!_>U>^_΂-_-DUD_U_ U >_>OUO_UӇ_ӇU‰UA_AϊUϊ_Uދ_ދU1_1WUW_ _ U_|U|ʏ_:_:pUpِ_ِ(U(W_WUcb/c0Rflf~lfqf\bnmn\oo0qr\sOt0ww\yy00 0cb\c0RfqfSbnnSoo0qrSsOt0wwSyy00 0p01df0gbn0n o0oq0rs0Otw0wy0y0!0^0΂00Ӈ0‰0ʏ0N0ِ(0W0cbf0Rfqf]gi0i o] op0pr]r,s0,ss]sOt0Ott]tv0vv]vw0ww]wx0xx]xGy0Gyy]yy0yz]z}0}}]}0]0!0>]>^0΂0]Ӈ0Ӈ]‰]A0Aϊ]ϊ0]101W]W0 0 ]0|]|ʏ0N0Np]pِ0ِ(](W0W]cbqf0g]n0]nbn]bnmn~nq0qr~r^0΂0‰0ʏ00Ull  $0.nv  $0.{  $0.ň  $0.(dd } $0)eePh+i } $0)Ull  $0.tu } $0)xBx } $0)z{P{!{Pu||P||P||P}} } $0)}}P}}P~~P{~~ } $0)2? } $0)?VPP]΂ } $0)2 } $0)nv  $0.{  $0.ň  $0."A } $0)P~P,~,3PPPPptPt]cb&c0/cSc0\cc0cc]ce0eePef]gh0hhPhh]hi0iiPii0iiPiUl~Ulm0mm^mmUmm^mn0nnPnHn^Hnbn0nro0roo]op0pp[pp~pq0qq~r,s0,ss~ss^ss~ssPss]sOt0Ott~tt0tt~tt^ttPtt^tv0vv~vIw0Iwnw[nww~ww~wGy0Gyy~yy0yz~z>{0>{c{[c{{~{|0||P|}]}~0~4~[4~{~~{~0!0P]^0΂07~70Ȅ 0 :]:D~Dp]0P1^1B~B0~P]Ӈ0ӇׇUׇ^R0RePez^z0‰~0Pϊ~ϊ0~~00~0S~Sʏ0N~N0~cbc0(de0ef^gqh0qhh^h{i0{ii^ij0j?j^?jWj0WjgjPgjj^jj0jk^k&k0&k6kP6kbk^bkk0kk^kk0klPl1l^1ll0ll^lbn0n o0roo0op0ppPpp]pq0r,s0,ss^ss0ss^sOt0OtTtPTtt^tv0vv^vvPvv^vuw0uwwPww]ww^wGy0Gyy^yy0yy^yzPzz^zj{0j{|{P|{{]{|0|}^};~0;~M~PM~{~]{~0!0^^0΂202?P?Q]Q00PP]PB0Bn^nrUr^0†P†^UO^O0^0IRIz~z0‰J0J^0Pp^ptUt^0NjPNj]00^0?^?ʏ0#P#N]N0Pِ]ِR~P(^(W0W^U^1ll_tt_nv_{_ň_cbf0g,j0gjj06kk0ll0lm_mm0nbn0np0ppPpq~rOt0ott0tt0tv0vw0ww_wx0xx_xy0z}0}}~}0_0!0>~>^0΂0n00(IYIj~ň0‰A0A_~__ϊ0p101W_W0 0  _ ~_0~S0S|_|ʏ0N0Np_pِ0ِY~(W00bbPbqf~gs~Oty~yyPyy~y~P^~΂~P~‰~ʏ~~bbUyyUUUbbPb&c~oo~~Ȅ~bbUbb\\bbPb&c\oo\Ȅ\bbSS;cOcTT;cc\ccUc3f\gbn\no\oq\rs\Oty\y\^\΂\U\ \U\‰\ʏ\\;cEcPEcOc|uc3f3gbn3no3oq3rs3Oty3y3^3΂3 D33‰3ʏ33cd] o:o]roo]]] :]:D~Ӈ](F]ccProoPoo~ Pcd] o:o]roo]]]Ӈ](F]ccTTcc\ccUcf\gbn\nro\oo\oq\rs\Otw\wy\y\!\^\΂\U\\Ӈ\‰\ʏ\N(\W\ccPcc|ccuucHd^ oro^oo^^ِ^cdp o4op8df2gbn2n o2oq2rs2Otw2wy2y2!2^2΂22Ӈ2‰2ʏ2N2ِ(2W28dndThhT΂ڂTڂ~8dfSgbnSn oSoqSrsSOtwSwySyS!S^S΂SSӇS‰SʏSNSِ(SWSOdndphhp΂ڂp^dnd t~)hh t~)΂ڂ t~)|ddPtuP}}P{~~P2?P!uuuXuuuq}}X{~~X~~q26X6?qDuuU}}U{~~U2?U^uuZ{~~Z2?ZtuUuus}}s{~~s2?st uQ uVutVu^utP}}tuuPhDi2xGx2hhThDiSxGxSiiPi+iTx9xT9xGx~ iiPi+iTx9xT9xGx~i+iqx9xq+i:iTdf2gh2op2rr2uv2vw2wx2Gxx2xGy2z}2}{~2~22?22!2>2^2"2ϊ212W2 22|ʏ2p2ddTrNrTT"~dfSghSopSrrSuvSvwSwxSGxxSxGySz}S}{~S~2S?SS!S>S^S"SϊS1SWS SS|ʏSpSddprNrppdd t~)rNr t~) t~)ddPoYpPwxP2PPPo6pX6pUpq2XXqXqpYpU)UUUpYpZZZooUoYpswxU2sssooQoptpptPwxQ2tZp`pPBrr2}?}2BrNrTBrrS}?}SUrkrPkrwrT}1}T1}?}~WrkrPkrwrT}1}T1}?}~arwrq}1}qwrrTdf2gh2vw2Gxx2xGy2z}2?}}2}{~2~2?22!2>2^2ϊ212W2 22|ʏ2p2d eTggTϊۊTۊ~dfSghSvwSGxxSxGySz}S?}}S}{~S~S?SS!S>S^SϊS1SWS SS|ʏSpSd epggpϊۊpd e t~)gg t~)ϊۊ t~)e"ePzzPP>KP]jPazzXzzqX>BXBKq]aXajqzzUU>KU]jUzzZ>KZ]jZ$zPzUPzzss>Ks]js(zMzQMzztzztPtzzPg~~B~Ӈ~Aϊ~1W~ ~~S|~Np~ِ~llTnrTl=m^tt^ww^^Bn^nrUr{^R^zň^ ^Nk^ِ^llPll~nrul=m^tt^ww^^R^zň^ ^Nk^ِ^lllm]mmwwww]xx]1W  ]S|Np]lm_ww_xx__1W_  _S|_Np_mm]ww]xx]1W]S|]mm_ww_xx_1W_S|_1m5mY5mTm~1=~fmjmPjmm~ww~xx~&m5mR5mfm~wwR1O~mmYttYmmTӇׇTmm^mmUmn^tt^1^1B~ӇׇUׇ^mmPmm~mmuӇׇumn^tt^nQn^pq^ss^ss~tt^AJ^n5npssp5nQn^pq^tt^AJ^mnnSqqSrrSrn|nSrrS|nn]qq]nn]qq]nn~qqRqq~nnVnnVn o Qipp~uu~yppxuuxpp[ qqqq]qq}}>] LL]qq~}}~>~ ~~4qq]}}] L]]4qq~}}~ L~~LqPqQPqoq~ ,~{qqPqq_}}__8q{q_ >_qq_*tOtUyyUyyVwBw~GxdxRdxux~,wBwpGxdxpww~{7{~~~R~~~!{7{p~~pF2!2jw2^22[2 2p2F]!{]jw]J] ][]̍] ]FS!SjwS^SS[S SpSVup!Npjwppeu }~)!N }~)jw }~) }~)RRR[Rށ1Q1Rp[bQbgpgnQnspsQRU[|URT[sTQPS^P?22?{] ]?SSUoPo^^[oPo^^e{q q{^@t]~?s] 2YِY~mm0RoRoz~RoRoz~zň QW___wRw~R~qq0^^gg0g%gP%gggwgg5gg1gg wwww w(w0w8ww8w0w(w wwwѻwU~UU~9U9o~oU_~_yUyأ~أrUrD~D6U6~\U\O~O2U2UDZ~DZ U ~UZ~ZbUb~չUչѻ~T(V(_T_VTT2T2T V T,V,ZTZbTbչTչjVjTźVźѻTQ_Q_SQQ2Q2KQKSQ,S,ZQZbQbչQչjSjQźSźѻQ0ғ]_00[]9o]y]Ӣ]]v]]]ƥl]Zu]z]%]2 0 ],0%Q]ٰ] 8]&y]ܳ]]-]]Zb0չj0ź00T\_00[\9o\ţ\rΤ\ݤg\vE\Tl\\6\2 0 -\<h\p\,0ٰ\ )\&:\ܳ\{\\.\\ʶ\2\Zb0bq\չj0ź0*Y\h\Ż\0(S_00[S9oS|SrˤSݤdSvBSTlS!S6S2 0 *S<^SpS,0ٰS&5SIvS{S˴S.SSʶS2SZb0չj0ź0»S0_~_00~9o~_~yأ~rΧ~ ~67~\O~2 0 ~,0,Z~Zb0bչ~չj0j~ź0źѻ~0109ѻ0_c|P\ŬPŬ׬|׬,\+j\ź\_c]6],]Zb]չj]ź]ëثP_~~9o~_~yأ~rΧ~ ~67~\O~ ~,Z~bչ~j~źѻ~(S[S9oS|SrˤSݤdSvBSTlS!S6S *S<^SpSٰS&5SIvS{S˴S.SSʶS2S»ST\[\9o\ţ\rΤ\ݤg\vE\Tl\\6\ -\<h\p\ٰ\ )\&:\ܳ\{\\.\\ʶ\2\bq\*Y\h\Ż\ғ][]9o]y]Ӣ]]v]]]ƥl]Zu]z]%] ]%Q]ٰ] 8]&y]ܳ]]-]]_~~9o~_~yأ~rD~6~\O~ ~,DZ~ ~Z~b~j~źѻ~_121 1,Z1bչ1j1źѻ1Y0Y__9_9O0O2_ p_p0,Z_bչ_j_źѻ_0_V9V9_0_2V <V<0,ZVbչVjVźѻV0_^9^9o0o2^ 0,Z^bչ^j^źѻ^_00Q90Q~_0y20 0,Z0bչ0j0źѻ0I0IYPY0PҒ0ҒP_0R0FT~T09DPDO_OTPT_V_dPdo^o0_0y09Y~Y0@~J~|0|PSأ0rЦ0ЦԦPԦΧ~Χ0 ~ 0\~ש~O0 P<^<p0pwPw_ѭ0%00FRFQ~QhRh~ٰ~ٰ0j~S±~ Ѳ0&0~˴0˴شPشS0S~ʶ00h0A~bqSq0~ź*0*9S9@P@hShlPlwSw~P~Sѻ0O0OYPY0Pؒ0ؒP_00GZGh~h0Z09DPDO_OTPT_V_dPdo^o0_0y0~0.Z.9~900#Y0YuZu~ϣ0ϣأZrۦ0ԧ060BZB\~\0PשZO0 <0<CPCpVp0,0ѭ~ѭխUխ~Z0'j0±ڱ0 0&k0kR~R̳~ܳ00D0D]0K߸0߸]AZ0bչ0źh0h~ѻZP!v,P,[v 0 aSF0FSSvƥvTlvzvS\˩SשS0SٰvSj±0&1v0 vʶ0?SKhSS$ASAZ0j0p $ $)p $~ $), p $0),[ v0) v0)%q#܃+ƥ v0)Tl v0)6}#܃+z v0)}#܃+7}#܃+Ig}#܃+{}#܃+}#܃+  v0)*h}#܃+~[~~ƥ~Tl~z~ ~, p $0),[ v0)c SߞS v0)ƥ v0)Tl v0)}#܃+Ԧ"r#}q"#+z v0),SŭSѭScSrSĮSSٯS"r#}q"#+  v0)AUST0L\Lj]j_00Ԗ\Ԗ0P\ԗ0f \ >]>0P9o0_0ɞ]ɞߞ0Y]00\)0)\ϣ0ϣr\rl0l\0060\\2\ 0r0Q]PٯQٯ0+]ٰ0 0Ѳ]&:0ܳ]ܳ0{.0.5P5\U\@0@\ʶ00\0h\bq0q\ź0*\*ѻ0(0(gSg0PVSV0P.S._00S10qSq0S9o00_SySY0YS00JjSjϣ0ϣrSrl0lzSz!060\S\0%S%O0O2S 0,%0%QSQ0ٯSٯq0qPS 0 8S8S0S`P`qSq0ѲSѲ:0:APASI.00ZvRv~h0hoPoS߸0߸R~Z0bq0qSչ0j0ź̺P̺Sѻ0I0ILQ0ؔQ~_00˗Q˗~,07TY*09o0_0y0ߞ~909NYNY~o0J0i00Jj0ϣ0ϣأQrz00PΧQQ ~6ͨ0ͨPYש0%0 0,F0Fr~rvQv~QQ0ٯ00ٰ_0j0dzPdzѳQѳܳ~ܳ0PQ0@z0z~P~Q~00Qh0߸0$Z0bչ0j0ź~*ѻ0_00ȘYȘ~ 0 4Y4TT090_0y0 ~0Y ~1أ0r0BYB\~\YששO0 0,0U0>~>t0tY0Y%~%0ʶ0ʶضYض0K~KUYUh~hA0AZYbչ0j0źѻ0_0ј0 4X4F0FnXn090_0y090X @Xؠؠ0Jأ0r0ƨXƨBXB\\Xש~שO0 0,0̮SX%00''s0s±X Ѳ0Ѳ&&0ֵXֵʶ0ʶSX0KKUXUhh0$$.X.Ab0jXźѻ0_0;0;YPY]u0uP7]7090_0y0]أ0r0\]\O0 0,0P]0ٰ]ٰ0Pj]j±0± ] Ѳ0Ѳ&]&Z0b0չ]j0źѻ0OYPY___9DPD___yϣ_rO_ p_,Z_bչ_j_źѻ_P_VVOTPTV_VyϣVrOV <V,ZVbչVjVźѻVؒP_^^_dPd^_^yϣ^rO^,Z^bչ^j^źѻ^<PTܳT<SyS%QSܳS<FPFPsܳs]SySISILJ[[jSlz%SSqL\Jj\lz\%\\q\˓ISJjSlzSSqS˓I\Jj\lz\\q\ߓ]]PI]J[]lz]q]ٓTI~J[~[jTlz~~q~LSΝSɞSQqS_][]]ߞ]].]@D]2h]jQɝQɝ~tpɝpQɞٞQQ_~MS([]Ӣ]]v]]]ƥl]Zu]z]]-]([ ϣ rl  .  ʶ 2 bq *ѻ ([0ϣ0rl00.00ʶ020bq0*ѻ09[}}ƥ}Tl}z}ƥ٥}٥} N$} !}QgjqjlQTT\\Z\U\P|uɖ\\ԗ\١\J\r\\ٯ\1\'PSS)S1PQQ~;PppPcQ Q˗TrvT˗Q˗R~ߞ~ѭ~r~rvQv~P˗qrvqݗQߞQ.GTѭխT.GZG~~>ѭ~ѭխUխ~.=P=Gzѭխu^hZZȘT,0TȘYȘ~ ~,0U0>~%~PȘy,0uژYYp0J0± 0Ѳ&0չ0p]J]± ]Ѳ&]չ]pX~Ѳ~X!!&~ęșPș~#2~{SJS±SѲ&SչS]#]X.X70J0ٰ0'j007]J]ٰ]'j]]7~J~ٰ~'j~~P#~iu~7SJSʰS'jSS,7]Ji]7~9NTNY~{~%=~D~~͸~uY j{{Yz%AYAOhYѸYѸ߸*f \j\z\%O\h߸\*\YΛ~{Yhy~\j\z\h\*\]j{]z]h]*]PSj{SzS*SS{ShS *YYiY3]_]o]ٯ]8]h]>S_SS8SSH^p$p^SS8SSSoS9___y_br___9V_yVV_yV9^1^ʟUQKSUSUQʟTKUTʟX KKUXUhΟZKUZٟ[KU[ٟPKUP 0Y0YUQ$,U,.QT$.TPɠ~A~Y$.Y[$.[P$.PɠؠXשXΠؠXשXؠZţ\rΤ\ݤg\vƥ\\6z\{\\.\ʶ\2\bq\*Y\h\Ż\ϣ rƥ z . ʶ 2 bq *ѻ ϣ0rƥ0z0.0ʶ020bq0*ѻ0Ӣ|#|vƥ|Zz| | #]}]|ƥ| N$| !Ӣ|SrˤSݤS!S6ZSIvS{S˴S.SʶS»SӢϣ r Z . ʶ bq *ѻ Ӣϣ0r0Z0.0ʶ0bq0*ѻ0srsݤs6Zsr}s}RrRss N$s !Zϣ~bq~hqZqw~£SbqSأZZݣZZr\O\\O}\rS}SS}SQQ QQ$Y۪ͪY$Y۪ͪY$3XX)3XX3r]]8C]]Ц6  Ц6006 { 60{06 I 60I0ԧ~R)~ΧԧZ .Zԧ\ϣأ0\~\~ĮSXʶSX"] 0qRqRS±~S~aSyܳ]IL0ѳRѳRٴS*9SQdR߸R~z]cٕ0c~P~wcٕ4cٕ3cٕ UqXRwwww w(w0w8ww8w0w(w wwwweUe4~4DUD~UU$~$CUC~U~U~U~U=~=UU~GUG~U?~?rUr~U~U~U~:U:~U~eTexVxDTDVTTTTVTV6T6~V~TT$T$fVfTVeQeDQDSQQQQwSwQS6Q6~S~QQ$Q$fSfQSe0e^_D00_C___0__ _0!_-:___4_Cy__a_r_._:__)_5v__6~0__"R__0$f00e0eSD00SCS0S05S@mSrS6~0^SS0$f00e0e^D00^C^0^0^^4^@d^r^6~0^^^0$f00e0eD~D00~C~~~Yi~~=~0~0~6~6~0~~~0$~$f0f~00>0C0DH| )P)_\P|\6s\$f\DH]]]6~]]$f]]AVPeD~~C~~~Yi~~=~~~6~~~~$~f~e^^C^^^^4^@d^r^^^^eSSCSS5S@mSrS^SSe^__C_____ _!_-:___4_Cy__a_r_._:__)_5v____"R__e4~$~C~~~~=~~~G~?~r~~6~~~~:~$~f~eD11161~1$1f137c7[~5~xb~@r~rbb:Nb[~~~~^~~e0D~C~CW0W~~R~~0~6~~~$~f~e0DVCVCo0oVVV0V6V~V$VfVe404D\C\C0\\0\6\~\$\f\eD00PC0P~0060~0$0f0e0P0P$0$4P40[:~:a0a[~0P[~md0[~D00P~0COPOW~WdPdoVotPt\000~0_0_[~0[~Kx0~90 0 D[Dx~x[[0[[~=0Vd[P\0P~00~'K^KP[}0X~Xg~gW0W~r0r~0 [ 0~[5~5<P<a[a0U~[~@~@GPr0^ [ 60~0[:~:0[/~/9[9G~G0~[ ~ $0f0e0P߼0߼P*0*4P4'0aV]V0N]Nt0t]0P]D00]0COPOW~WdPdoVotPt\000/0/?]?o0o]_0_]K0Kx]x0]Y0Y] 0 ][][=0=o]0PV0FRFL~L^R^~0]P]0g]gW0W]:0:]^]606b]bfUfo]ov0v]505a]ay0y]0^r]r0P]0P ] U0UbPbn]n0]60~00:]:0]P1]18P8^]^0]P]G]G0] 0 $]f0<SPSxv:a0a_Nt0tSw0^P__hS^ _&S[^0^P0vvr_05US0 00_G_S^ $0<Ap $r $)ALp $| $) p $0)AL|| p $0)1~1)r1~1)$*aFRaRl~lxaa~a5~5EaE~e0gS/]/0Sc0m<S<0XSu09P9D~0PS0C00/]?O]O_0_oSo0S0I_0h000 SxS&0&8P8[S=SVoS02]l00R~R~ W0:0 P6o0oSF0Fv]v0S0 050P@S@0S 60~S0:MSMz0zS0S0SGS0 $0fSe0^A0K^02^O0^0b^bD00P^C00^0?^?_00^ 0 ^/0/I^I00_x00 ^ K0K]P]x^x0^[0P=^Vo^0^0}0}^0G0 ^  U C^Co000-^-1U1:^:60ov08R8C~CZRZ{~a0C^C00^P^60~^:0:M^Mz0z^0^00/G0G^ 0f^e0a_a/0/_U0U_0D_x0xPC0__0/_/?0?___0_0___0YsPs~0o0g0guPu_!0!.P.?S?l0l_0P_ 0 6_60PSF0Fv_vc0cvPv_0PS0_0P 0 P6S~M0MTPTzSz^0^ePeS0$0f0e0PؾXؾ~K:0tX~w.0.[X[w~w0X~D00C00o00~ 0_X_~X~AK00XX[~[X~=0VdXdo~00SX~0PXP}~}g0gkUky~yX0~:0ryPyX60b 0 8X8C~CZXZ~~5a~ay0yX~0X ~ 60~00X00~X~X ~f0PD~~COPO~~~~~6~~~$~f~PDVVWdPdVVVVV6V~V$VfV*4P4D\\otPt\\\\6\~\$\f\T-1TQ^^-1U1:^^^y^^^P~-1uQ^^^^Cy^^^TT[a~~~U~~P{u0:[[K0Kx00:r0y0ؾXؾ~~yX~K]Kx]]:r]y] PA^_x^:r^ƾ ^^y^AKXKYXK]/?]=])]:M]]v||^^=^:M^f^gSSS=S:MSSfS^^^^f^SSSSfSڿ]f]ڿ޿P޿]]]]T~~T~~f~^^/^?_^ox^}j^Mz^$]]?o]oF]]]]Mz]/e__O__6T_b_:_v__Mk_ _9NppNe_O__6T_b_:_v__Mk_ _TotTqS_SS6VSb}SvS SPsotsqS_SS6VSboSvS S"6TbfT"t]o]]6b]bfUfo]",P,6}bfuCt]o]]m0x0500P[~~[5~X~~X5~'+P+cSSSS'S Scm[x[mwXX/S/2SS~S2^^^^~^^^/SSSSS/^^^^^]]P/]]]]R/~~R~~~2nS1SSSEORRO_a_ _>_Pn_g__ 7_CW_a___^|_Ynp,pn_ _>_Pn_g__ 7_CW_a___^|_T  T^ ^^Pq^g^ ^  U ^^P~  u^ ^^Pq^g^^^B[TgkTB[X[w~~P}~gkUky~BQPQ[xgkumwXX00g0W0:0]]g]W]:][>~>~~G~GS~Sg~Wh[hz~z~:~QUPU^^^:^ Q^Gg^Wo^]][ [U^UX^ ^^zG``^XSS SSSzSGSU^^ ^z^G`^USS SzSG`S!]G`]!%P%U]] ]z]RU~~R ~z~G`~XD^a^_^^ 6^ 6^kuR)Ru_a_I__`_ '_pa|p_I__`_ '_D_]][9N[S9S^^C~~~R~~R~CVV VV C\C\____XXXXUQ/7U79QT/9T]G]X/9XY/9YP/9P[[+^U^_QUQ+_TT+_X_q~~X~>_PPJ_YYJMQM_x#x#q]z]UQUQTT[~~[ ~YYZZPP@X(@Xx[Vd[[[Vd[]=V]]=V]SoSSoS^^)]0gzRz~gzRz~/lSSXK^KP[^ [R~UX0X~X~^]^] FS8R8C~/20cX~cX~S]]:]"1]c]]H0HfPfwH4H3H dqXRwwww  w(  w0 w8ww8w0w(w wwwFwFIw8IJw0JLw(LNw NPwPRwRSwSwAUAUUTUT`U`uUuUUUUATATTTTT`T`uTuTTTTAQAQQISITQT`Q`uQuQSQQSQSQA0A`SS0SHST`0kSS SJpSu0S0S!5SSLS00PP]P\y\\PAUSTU`uUUUA`SSHSkSS SJpSSS!5SSLSA0SPST0`0Su000A0Ss0sT\`0\%0%<\<u0c\00!\!=0=]\]%0L0 P \A0S0v]vV00`0]V<0<J]Ju0/0Oc00!0!=]=yVy]0]VA0ST0`u000^ x` x x% xeu x x x:PkPPelPPA0S90Je00L\0HqTSaTah +JNTH`SSHSkSS SJpSSS!5SSLSYqTJNTY`SkS SJpSSLSYqsJNsSSSaTah +TLST`SkS SepSSLSPsLSs9  911900  + 0+ +9^^9__X9P9]]P9\\9  9  9 ~ ~9^^9__X9(9]  `S``kkyS S %epSpuSL:UkyUUelUU&`SkySS&:UkyU6]`k]]%]]`dPdS`kSS%S0\`y\\%\\DTTDUUTPPat0tRaQHSHvS<J!=ySv]]<J]!=]y]HS!5Ss]<J]!=]y]s^<J^!=^y^@DPDs\<J\y\@\!5\VV%<VV0\0T%<\\c!U%3UUU0\\/\!\U0]]/]!]P0SS/SS!S9T\Oc\]y0Oc\]yVsv0^*0Pw*1* o "w"&w&+w+-w -.w(./w0/;w8;ww8w0w(w wwww BUB^Uu^uCUCU^UU^U^U^U^U^U^Uc^c{U{^ 4T4STST s0sP/V/0U0VV0[V[_U_V 0PSS5cS{S0S 0]0]5C]CU0U]U]0]U]0]c0{0 0]k^U0g^00K0`\\CU\c\{\0\K0T`~~0T~CU~c~{~0~K0P`~~0P~CU~c~{~0~TN0NYPYZ0Z~,0[0[uPu]0ej00s00P(^(R0RYPYy^y0]P]P]01Z1<~c0,Z,3P3[Z[e0Tn0n]0],0,]0Q]Qj0j]0]s00c]c0 ] e0e]T0<~0,v~#~{~,0e~PPp1)p1)P&__CU_c_{__` 0 0CU 0c 0{ 0 0`  CU c {  `  CU c {  PP`\\\CU\c\{\\~~~CU~~~~c~{~~~~~CU~~~~c~{~~0T[_T/V/0U0`VVVCUVcV{V[V[_U_V&P&/v/0u[_u{PPUUUU00CU0s0{0q]Is]{]@R@c~IZ~{RquPu]]])@Y@c~IU~{YUCNUU&U &_ `~~R~ <~~ `\\<UU<QQ~&`__ <PP0<UU2<UU<KQQAKQQK`_P`_^UQUQ^TT^PPb[[nXXnqQqp#p#E]JQ]j]QdZUUUUZs|ZZs|Z[]]]]UU UUTQ~~R~__fuPu]]P]fuUUu]]00]U]]U]Pu#hu#h0^0^R^1U1U`V5CVUV`kVgVkSUgSpzSUgSz]]UU0UUUciUUciUUouU UouUwww3wUUU3UTTT3T0P30p0.p0.0P0P0P@BwBGwGOwOQw QRw(RSw0S]w8]QwQRw8RSw0SUw(UWw WYwY[w[`w`w@MUM;_;\U\_LUL_U_@bTbU^\T\^LTLf^f!T!^@QS\Q\SLQLSSSXQX_S_!Q!S}0J]\k0kPr]!]!U0UYPY];\{P'\L\!\\P;V\dPd2V2LLqVUV@C0\0P0P;V\dPd2V2LLqV!(P(Vu#+ 0.p0.  0.\du#+k{p0){ q $0.LXp0.X~ 0. 0.UYp0)Y}0)@0\0PM0!0PrVr\r_}0YwY0}0RYyY0}0Y^Y0 X~P X~pXjp0XM0!0PpxXjP QX~Q Q  $ &3$"PXjP1XM1!1 0X0M000fM0!0fM^!^_SSPSSqMV!V:PPU#;\'\:[[LyJ^L^;V2V2LJ0L0: p $0. p $0. 0.U#0.U#L0L^2V2LL0L^L_PLwULyPLy;J1#L1;J^#L^#2V2L#L1#L^'L1'L^'L_'Lw'L\2?P?LVPU\P\rSwrSwr wr wr RrwRryr^wPyyySwwww w(w0w8 w  w8  w0  w(  w  w  w  w cYwU ^  U  ^  U ^U^Uf^fU ^ "U"#^##U#?$^?$X%UX%%U%&U&&^&X&UX&&^&9'U9'}'^}'U(UU((^((U(?)^?)*U*+^++U+]+^]+,U,,^,-U--^-2U2U2^U23U3}4^}44U44^45U5N5^N55U55^55U5C6^C6z6Uz66^66U6_7^_77U7l8^l88U88^8/9U/99^99U9@:^@:n:Un::^:v;Uv;;^;;U;;U;5<^5<:>U:>t>^t>>U>>^>>U>N?^N?X?UX??^??U?@^@@U@A^A-AU-AqA^qAAUAA^AAUAB^B&BU&BlB^lBBUBB^BBUB~C^~CCUCC^C FU F6F^6F%GU%GZG^ZGGUGG^GSIUSII^IIUII^IJUJK^KMUM N^ N NU NgN^gNuNUuNN^NPUP.P^.PgPUgPP^PPUPP^PQUQ1Q^1QFQUFQSQ^SQSUS[T^[TUUUU^UUUUV^VfWUfWW^WWUW X^ XXUXNX^NXcXUcXX^XYUY2Y^2Y:YU:YcY^TS T  S X%TX%%S%}4T}44S4JTJKSKSTS+TS+T2YT2Y:YS:YcYTQV Q  V X%QX%%Q%}4Q}44Q44V45Q5i5Vi5JQJKVKSQS+TV+T2YQ2Y:YQ:YcYQ0]  0 _ ]X%%0<-N-]242]}4405w5]w55~5l6]l6z6~z67]77~78]/939]99]9[:]n:;];;~JK0P.P]S+T0fWW]Y2Y]2Y:Y0:YcY]0 ~  0  ~#?$~X%%0*+~<-^-~2U2~}44055~57~79~/99~9;~:@@~-AA~JK0KK~P.P~S+T0fWW~W X~cXX~Y2Y~2Y:Y0:YcY~0~  0  ~# $~0$?$~X%%0**~<-^-~2U2~}4405`5~5U6~z66~6}7~78~89~/99~9R:~n::~@(A~-AA~AA~JK0KK~P.P~S+T0fWW~W X~cXX~Y2Y~2Y:Y0:YcY~0l ~  0 6 ~#?$~X%%0*+~--~<-i-~2U2~}4405i5~5^6~z66~67~78~89~/99~9i:~n:;~?A~-AA~SII~JK0KK~M-N~P.P~gPP~S+T0fWW~W X~XX~Y2Y~2Y:Y0:YcY~0l ~  0 6 ~#?$~X%%0**~--~<-i-~2U2~}4405;5~506~z66~6\7~7]8~88~/99~9(:~n::~?@~@@~-AeA~AA~SII~II~JK0KK~MM~ N-N~P.P~gPP~PP~S+T0fWW~W X~XBX~cXX~Y2Y~2Y:Y0:YcY~ 0 0cY0  \ 4 |44P44\JRK\S+T\ 4 ]44]JbK]S+T]2Y:Y]JJP KKP4KIKPl ~ 6 ~#?$~**~--~<-i-~2U2~5;5~506~z66~6\7~7]8~88~/99~9(:~n::~?@~@@~-AeA~AA~SII~II~KK~MM~ N-N~P.P~gPP~PP~fWW~W X~XBX~cXX~Y2Y~:YcY~l ~ 6 ~#?$~*+~--~<-i-~2U2~5i5~5^6~z66~67~78~89~/99~9i:~n:;~?A~-AA~SII~KK~M-N~P.P~gPP~fWW~W X~XX~Y2Y~:YcY~~  ~# $~0$?$~**~<-^-~2U2~5`5~5U6~z66~6}7~78~89~/99~9R:~n::~@(A~-AA~AA~KK~P.P~fWW~W X~cXX~Y2Y~:YcY~~8 \8 9 U9  \  ~ o ~o  \  U _ \_ ` U`  \  U t\tuUur\r~A\A~ \ !~!!\!/!~/!?!\?!"~"\#\\##~#?$\?$0%~0%X%\%&~&/&\/&X&~X&&\&9'~9'}'\}'U(~U((\((~(?)\?)*~*+\+,~,,\,-~-<-\<-^-~^--\-J/~J/i/\i/ 3~ 3}4\45~55\55~55\58~88\8;~;];\];v;~v;;\;:>~:>>\>>~>3?\3?X?~X?@\@-A~-A&B\&B*BU*BB\BB~BC\CD~DD\DD~DE\EEUEE\E F~ F6F\6F%G~%GKG\KGG~GG\GSI~SII\IIUII\IJ~KK~KK\KM~M N\ N$NU$NuN\uNyNUyNN\NgP~gPhQ\hQQ~QQ\QR~RR\RS~+TT\TU~U(V\(VX~XcX\cX2Y~:YcY~]l ~ / ]/ ? ~? O ]O 6 ~ ~~x~#?$~%&~*+~--~<-N-]N-i-~242]42U2~5w5]w55~5l6]l6z6~z67]77~78]89~/99~9:~:;];;~?A~SII~KK~M-N~P.P]gPP~fWW]W X~XX~Y2Y]:YcY] ^  U ^U^Uf^fU ^ "U"#^##U#?$^?$X%U%&U&&^&X&UX&&^&9'U9'}'^}'U(UU((^((U(?)^?)*U*+^++U+]+^]+,U,,^,-U--^-2U2U2^U23U3}4^45U5N5^N55U55^55U5C6^C6z6Uz66^66U6_7^_77U7l8^l88U88^8/9U/99^99U9@:^@:n:Un::^:v;Uv;;^;;U;;U;5<^5<:>U:>t>^t>>U>>^>>U>N?^N?X?UX??^??U?@^@@U@A^A-AU-AqA^qAAUAA^AAUAB^B&BU&BlB^lBBUBB^BBUB~C^~CCUCC^C FU F6F^6F%GU%GZG^ZGGUGG^GSIUSII^IIUII^IJUKK^KMUM N^ N NU NgN^gNuNUuNN^NPUP.P^.PgPUgPP^PPUPP^PQUQ1Q^1QFQUFQSQ^SQSU+T[T^[TUUUU^UUUUV^VfWUfWW^WWUW X^ XXUXNX^NXcXUcXX^XYUY2Y^:YcY^(0  0~ P~x~%%~5i505^60 7700l ~  0 6 ~ ~~x~#+$0+$0$S0$?$0%&~*+0--~<-^-0^-i-~2U20550570790/9909;0?@~@A0SII~KK0M-N~P.P0gPP~fWW0W X0XcX~cXX0Y2Y0:YcY0 0 0w~ ~~x0x~/ 0#?$0%&~X&&0&&~9'^'0^'h'~U((0(?)0*+0,,0--02U203]40]4m4~55055~55~570790/9909;0:>\>~?C0SII0KK0MN0P.P0gPSQ0+TpT0UU0fWW0W X0XX0Y2Y0:YcY0 0 U0U^7^7Z\ZePe^U^x0x^ 0 "^"m#0##^#?$0?$_$^_$e$Pe$p$^p$$\$0%^0%X%0%&^&&0&X&^X&&0&9'^9'}'0}'U(^U((0((^(?)0?)*^*+0+,^,,0,-^--0-.^/J/^J/i/0i/2^2U20U23^3}4045^55057077^790/9909;0;M;^v;:<0:<0>^0>4>U4>:>^:>C0CE^E6F06F%G^%GG0GSI^SII0IJ^J-J\-JJ^KK0KM^MN0NP^P.P0.PgP^gPSQ0SQR^RR0RS^+TpT0pTU^U(V0(VfW^fWW0WW^W X0 XX^XX0XY^Y2Y0:YcY0 0 0~~x0x~O!0O!"~"m#0##~#?$0?$0%~0%X%0%&~&/&0/&X&~X&&0&9'~9'}'0}'U(~U((0((~(?)0?)*~*+0+,~,,0,-~--0-.~/J/~J/i/0i/2~2U20U2 3~ 3}4045~57077~7:<0:<=~=0>00>:>~:>C0CC~C6F06F%G~%GG0GSI~SII0IJ~KK0KyM~yMM0MM~MN0NP~P.P0.PgP~gPhQ0hQQ~QQ0QsR~sRR0RR~RR0RS~+TT0TU~UW0WW~W X0 XX~XX0XY~Y2Y0:YcY0 0 0~~x0x~O!0O!"~"m#0##~#?$0?$0%~0%X%0%&~&/&0/&X&~X&&0&9'~9'}'0}'U(~U((0((~(?)0?)*~*+0+,~,,0,-~--0-.~/J/~J/i/0i/2~2U20U2 3~ 3}4045~57077~7:<0:<=~=0>00>:>~:>C0CC~C6F06F%G~%GG0GSI~SII0IJ~KK0KyM~yMM0MM~MN0NP~P.P0.PgP~gPhQ0hQQ~QQ0QsR~sRR0RR~RR0RS~+TT0TU~UW0WW~W X0 XX~XX0XY~Y2Y0:YcY0 0 0]U]]x0x]O!0O!"]"m#0##]#?$0?$0%]0%X%0%&]&/&0/&X&]X&&0&9']9'}'0}'U(]U((0((](?)0?)*]*+0+,],,0,-]--0-.]/J/]J/i/0i/2]2U20U2 3] 3}4045]57077]7:<0:<=]=0>00>:>]:>C0CC]C6F06F%G]%GG0GSI]SII0IJ]KK0KyM]yMM0MM]MN0NP]P.P0.PgP]gPhQ0hQQ]QQUQQ]QQ0QsR]sRR0RR]RR0RS]+TT0TU]UW0WW]W X0 XX]XX0XY]Y2Y0:YcY0 0 0~ ~ 0~x0x~O!0O!"~"m#0##~#?$0?$0%~0%X%0%&~&/&0/&X&~X&(0((R((~(d,0d,,~,,0,-~--0--~-.0/i/0i/x/~x/ 10 11~12022~2202 3~ 3}404:<0:<=~=0>00>:>~:>C0CC~C6F06F%G~%GG0GSI~SII0IJ~K6R06RsR~sRR0RR~RR0R$S~$SS0+TU0UU~UW0WW~W X0 XX~XX0XY~Y2Y0:YcY0 0 0^~X%0%%~&}404J0KS0+T2Y0:YcY00PS(07u0uS0VSa00 = 0b l 0  P  S  0  S  0 / S/ O 0_ o So  0  0@ d 0  0  P X S  08N0NiPiS0n0A0KU^UJ0JPPP}~}0S0S0PS0PS0 0 S 0S0 P S01SxSP SO  0  ^  0 !~!/!S/!?!0?!O!SO!E"0"#0##S##0##S#$0$($P($+$S+$0$0?$O$SO$T$PT$_$S_$$0$%S%0%0?%X%0&&0&$&P$&/&~/&X&0&9'0^'U(0U((S((0()S))P))S/)Y)SY))0))S)2*0n*u*Pu**S*]+0]+h+P++0++P++S+d,0,-S<-N-0N-^-V-.0/J/Si//S//0//P/$0S$010142042U2VU2303 3S 33033~340]4}4045055P55S55056066S6&7077078S8808/9SI99S9;0;M;~v;;0:<<S<<0<=S=:>0>?0?@P@@S@:@0@@0-A\A0AA0&B3B0BBSB C0 CCPC'CS'CNC0NCUCPUCCSCC0C DS DsD0sD}DP}DDSDE0 FXF0XFzFSFF0F%GS%GG0GGSGHPHYHSYHH0HHPHHSHSI0IJ0KKVKKPKKSKL0LMSMMPMMS N-N0uNN0NNSNNPN OS O.P0.PgPSPPPPQSSQQ0sRRSRRPRR^R$S0$S+SP+SKSSKSS0+T2TP2TpTSpTLU0UU0UUPUUSU'W0'WfWSfWW0WWSW XV XXSX%XP%XcXScXXVXXSX2Y0:YcY00PVUBVBk0k~0\505uVu 0  P  V / 0/ O ~O _ 0_  \ - 0 %0i0P#0>0>DPDuVuvUvV0'0'V0PV0 v0V0 K0KV0x0xV0  0 $ P$ / ~/ ? 0O o Vo  0  V "0"m#V##0##V#?$0_$$0$%V%X%0&&P&&V&&0&^'0}'(0()0/)y)0y))P))V))0)d*Vd**0**P*+~+x+Vx+,0,-V-!-0<-n-0-.0/J/0J/x/Vx//0/$0V$01011V13033P3]4045055055U56V6 6P 6^6Vz6 70 77V7808(8P(838~388089\/9r90r9|9P|99\9:0:;~;M;0v;><0><<V<<0<=V==0==P=0>V0>:>0>>0X?j?0j??V??U??V?@0@-AV-A1AU1A\AVAuB0BB0BBPBB~BNC0C%G0%GGVGG0sHHRHH~HHRHH~ IJ0KK0K LV L-N0NO0OOVOOPOPVPgP0PP0SQQ0Q6RV6RR0RRVRS0+TT0TUVUU0UUVUU0UVVV(V0(VVVV W0 W'WV'W.WP.WfWVfWW0WWVW X0 XXVX2Y0:YcY00nVn_0_ 0  0/ ? 0? _ __  0  0^0W_Wz0=U_Uy0)rVr0~_0P~y0!_0P_0 0K7_70x0x_O 0O _ _o  _  _ !0!!V!/!_/!?!V?!O!~O!"0"m#_#?$0_$$0$ %_ %0%00%X%_&&_&/&V/&X&_X&s&0&&0&P'0^'m'0}'(0/)Y)0)*_**0**_*+0++_+,0,-_-<-0<-N-VN-.0/$0_$01011_120242V4230 33_33S3B40O4m404505^60z670738_8390399]99_99U9n:_n::0:;_;M;V;:<0U<u<\u<=_==0==P=0>~0>\>0??0??_?A0A&B0BNC0CC0C D_=DD_EE0E6F_6FF0G%G0%GG_GG_SI-J0-JJ_JJ0KK0K L_FLM0MM_MN0NNPN O_ OO0OOSOO_P.PV.PgP_gPP0FQSQ0SQhQ_QQ_QQ0Q6R_6RR0RRRRR~RR_RS0+TpT0pTT_TTSTT_UU0UU_UU0U(V_(V}V~VW~ WW~W'WP'WfW0fWWVWW0W X0 XX_XY0Y2YV:YcYVu~##@D$0.0PVb l p2.  p2.#?$VKKVu~##@D$0. v $0.  p1.+ %VVV#0$ v $0.X&&V9'T'VB4J4VO4]4V??p1.APBVBBVKK v $0. PN l P  P  ~  P  ~:@A@PSIZIP 0 0D]D00[0~909kZk~0!0!IZIi~0 0x0xZ~o 0o  ]  0 !0!/!0?!D!PD!O!~O!"0#X%0&&]/&Y)0Y)i)~))0)$*Z$*J*~J*+0+.0/J/0i//0//Z/$0~$01011~1 303}404=0==P=0>~0>>0X?$D0$DDVD%G0GJ0KK0K L~ LFL~FLJLUJL]L~]LLZLO0OOZPSQ0QQ0QQ0Q6R~6RR0RRRRR0RS0+TpT0TTZTT~TUZUU0UUZUU~UU0V(V0(VtV~VV~ WWPW2Y0:YcY0Y0Y]!0!mS K0K~  0"_#]$ %~)2*S++],-~J/i/]i/x/~//S:<<0<<~<=~>>0%GHG]GG0K LSOO0RR~RR]TU0UUSUV]WW0 XX~ 0 0PY~K0Y~0PSP0]00 @0@mYm~p0pPY~-0x0xY~ 0  ~ /!0/!?!S?!O!]O!m#0##0##~#0%0&&0&/&SX&?)0**0*.0J/x/0$0101}404<0<<Y<<~<<P<=Y==0=>P>0>]0>D0DD~DDUDD~DEYEE0 FF~6F%G0%G,GP,GGYGG0GGYGG~G]H0]HH\HI~ IIUII~ISIYSI-J0eJvJ~JJ0KK0)MM0MN0 OO0P.P0gPhQ0QQ06RR0RR]RS0+TT0UU0UV0(VXV]XVVYVVPV2Y0:YcY0=>S>0>0(VVSV W0 WWSWWS 0 P0PrPr\l0lP~@0@MPM^S^0 #0-A\AT0TePeu0uP\0x0x\"0"Y"\Y"p"0p""P""V"m#0#_$0_$e$Pe$p$^p$$\$$0 %0%\0%X%0&/&0?&n*0n**\**~**P**~*d,0d,h,Ph,s,Vs,,\,,0,,P,-\--0--\-.0/i/0x/}404<0<0>00>4>Q4>:>\:>zF0FI0IIPIJ\J JP J!J^-JJ0KK0KKPK L\ LN0N O\ O.P0.P5PP5PgP~gP6R06R=RP=RsRVsRR0RR0RSPS$SS$SS0+TLU0LUU\UUUUU\UW0WW\W2Y0:YcY0S  SuS  S56S66S67S 77SVUV  V55U56Vz67V88V P vu55u7V  Vz6 7V88VT88TS / S77S388SPs88sS / S77S~k]kn~<-N-~242]P.P]fWW~Y2Y]:YcY~nV<-N-V242VP.PVfWWVY2YV:YcYVk]<-N-]fWW]:YcY]kV<-N-VfWWV:YcYVk\<-N-\fWW\:YcY\/3P3kS<-N-S:YcYS/SfWWSz_/ O _n:}:_::_]/ ? ]O _ ]/939]99]9[:]n::]T99Tl _O  _#?$_((_*+_-7-_N-{-_42U2_88_/99_99U9:_?@_-AA_SII_KK_MKN_uNN_gPP_PP_FQNQ_W X_XX_P99ul _O  _#?$_((_*+_-7-_N-{-_42U2_88_/99_?@_-AA_SII_KK_MKN_uNN_gPP_PP_FQNQ_W X_XX_&=Q=~N-^-~42E2QE2U2~KK~W X~cXX~XX~VN-^-V42U2VKKVW XVcXXVH~N-^-~W X~cXX~HVN-^-VW XVcXXVW\~XX\P\N-^-\WX\cX~X\QSN-^-SW XScXXSaS_  S*+S88S-A5AS:A\ASAAS ~o y Qy  ~#?$~*+~88~:@@~-AA~KK~I]T-A1ATIV##V@-AV-A1AU1A:AVISPS]v-A1AujV##VT@@TUl ~ 6 ~--~^-i-~?@~@@U@@~SII~M-N~gPP~XcX~u@@u@@~#% 9 TIIT% 8 \8 9 U9  \  \  U _ \_ ` U`  \  U t\tuUuP\ \1\O!\"\#\\#m#~0%X%\&/&\X&(\()\)n*\+),\B,d,\,,\-<-\^--\-.\J/i/\/0\$0 1\12\U22\22\ 3}4\45\55\55\77\;];\];v;~v;;\;:<~=J=\=0>\:>>\>>~>3?\3?X?~X??\A&B\&B*BU*BB\BB~BC\CD\ DD\DD~DE\EEUEE\E F~ F6F\%GKG\KGG~GG\SII\IIUII\ L'L\FL{L\LM\)M`M\yMM\M N\ N$NU$NuN\uNyNUyNN\ OO\gPQ\QR\sRR\RR\$SS\+TU\UIV\VV\ WEW\XX\% / P/ 8 |8 9 uIIu  S,,S  T N$NT  \  U _ \_ ` U`  \  U t\tuUuP\ \1\O!\"\#\\#m#~0%X%\&/&\X&(\()\)n*\+),\B,d,\-<-\^--\-.\J/i/\/0\$0 1\12\U22\22\ 3}4\45\55\55\77\;];\];v;~v;;\;:<~=J=\=0>\:>>\>>~>3?\3?X?~X??\A&B\&B*BU*BB\BB~BC\CD\ DD\DD~DE\EEUEE\E F~ F6F\%GKG\KGG~GG\ L'L\FL{L\LM\)M`M\yMM\M N\ N$NU$NuN\uNyNUyNN\ OO\gPQ\QR\sRR\RR\$SS\+TU\UU\UIV\VV\ WEW\XX\  P  |  u N$Nu 0 010m#0##0?$X%0&*0+,0,<-0^-.0/20U2}40450550550770;?0ASI0IJ0KM0-NP0.PS0+TU0UfW0WW0 XX0XY0 d S((S-!-S^-n-SuN}NSgPPS  P ) s#hPPs#h-!-0-!-V^-n-0d-n-VL ` TuNyNTL _ \_ ` U`  \  U t\tuUuP\ \1\O!\"\#\\#m#~0%X%\&/&\X&(\()\)n*\+),\B,d,\!-<-\n--\-.\J/i/\/0\$0 1\12\U22\22\ 3}4\45\55\55\77\;];\];v;~v;;\;:<~=J=\=0>\:>>\>>~>3?\3?X?~X??\A&B\&B*BU*BuB\BC\CD\ DD\DD~DE\EEUEE\E F~ F6F\%GKG\KGG~GG\ L'L\FL{L\LM\)M`M\yMM\-NuN\uNyNUyNN\ OO\PQ\QR\sRR\RR\$SS\+TU\UU\UIV\VV\ WEW\XX\L V PV _ |_ ` uuNyNum 0 010m#0##0?$X%0&(0(*0+,0,-0!-<-0n-.0/20U2}40450550550770;t>0>?0AuB0BSI0IJ0KM0NP0.PgP0PS0+TU0UfW0WW0 XX0XY0m 1 111m#1##1?$X%1&(1(*1+,1,-1!-<-1n-.1/21U2}41451551551771;t>1>?1AuB1BSI1IJ1KM1NP1.PgP1PS1+TU1UfW1WW1 XX1XY1m  S)/)S!-<-Sn--SQSQS  P  s#hFQJQs#h!-<-10-<-Xn--1t--X X SU((S/)?)SBBS  vU(q(v X S/)?)SBBS? T TBBT? T UT  ~X&k&~9'H'~O4]4~A&B~3BuB~BBUBB~? T uBBuBB~#a 0 010m#0##0?$X%0&U(0((0?)*0+,0,-0-.0/20U2}40450550550770;t>0>?0AA0&BuB0BSI0IJ0KM0NP0.PgP0SQS0+TU0UfW0WW0 XX0XY0a  SSX&s&S9'P'SO4]4S&B.BS3BuBS  P  s#hO4T4s#hX&s&0g&s&X9'P'0D'P'X  T&B*BT  \  U t\tuUuP\ \1\O!\"\#\\#m#~0%X%\&/&\s&9'\P'U(\?))\)n*\+),\B,d,\-.\J/i/\/0\$0 1\12\U22\22\ 3O4\]4}4\45\55\55\77\;];\];v;~v;;\;:<~=J=\=0>\:>t>\>3?\3?X?~X??\AA\&B*BU*B3B\BC\CD\ DD\DD~DE\EEUEE\E F~ F6F\%GKG\KGG~GG\ L'L\FL{L\LM\)M`M\yMM\NN\ OO\SQQ\QR\sRR\RR\$SS\+TU\UU\UIV\VV\ WEW\XX\  P  |  u&B*Bu 0 010m#0##0?$X%0&X&0s&9'0P'U(0((0?)*0+,0,-0-.0/20U2O40]4}40450550550770;M;0v;t>0>?0BSI0IJ0KM0NP0.PgP0SQS0+TU0UfW0WW0 XX0XY0 NSSs&&SP'^'SB4O4SCCSP!s#hB4F4s#hs&&0&&VP'^'0T'^'ViS1S  S34SB CStv vS  S34SB CS0 0 m#0##0?$X%0&X&0&9'0^'U(0((0?)*0+,0,-0-.0/20U2B40]4}40450550550770;M;0v;t>0>?0BB0CSI0IJ0KM0NP0.PgP0SQS0pTU0UfW0WW0 XX0XY0 +  + m# +## +?$X% +&X& +&9' +^'U( +(( +?)* ++, +,- +-. +/2 +U2B4 +]4}4 +45 +55 +55 +77 +;M; +v;t> +>? +BB +CSI +IJ +KM +NP +.PgP +SQS +pTU +UfW +WW + XX +XY +w~ / ~&&~^'h'~34U4B4~]4m4~55~55~:>\>~BB~Pq3 4q 44u#p44 ~##pPnS / S&&S^'d'S]4h4S55S55SBBS + T55T Uw~&&~^'h'~]4m4~55~55U55~:>\>~ u55u55~#,0 0/ m#0##0?$X%0&X&0&9'0^'U(0((0?)*0+,0,-0-.0/20U230]4}40450770;M;0v;t>0>?0CSI0IJ0KM0NP0.PgP0SQS0pTU0UfW0WW0 XX0XY0,>V/ O Vo  V&&V^'m'V33V]4d4Ud4m4Vv;<V:>\>VN`P`jv#h]4d4u#h&&0&&S^'m'0d'm'SS/ ? S;;S;:<S~/ ? ~O  ~&&~&&~m'x'~33~m4}4~v;;~;;U;:<~>>~>?~Pp;;PT;;T^U^U UO  ^ "U"#^#m#U##U?$X%U&&^&X&U&&^&9'Um'}'^}'U(U((U?)*U+]+^]+,U,-U-.U/2UU23U33^m4}4^45U77U;M;Uv;;^;;U;;U;;^:<:>U>>^>>U>N?^N?X?UX??^??UC FU F6F^6F%GU%GZG^ZGGUGG^GSIUIJUKMUNPU.PgPUSQSUpTUUUV^VfWUWWU XXUXYUP~u;;uD_o  _&&_>D]&&]330>D]&&]M4_O o _  _&&_m'}'_m4}4_>>_>>_>?_X??_GG_bvT??TbuVuvUvV_ o VX?e?Vj??V??U??VblPluvuvu??uV_ o VX?e?VTX?a?TU~&&~m'x'~m4}4~>>~>X?~X?]?U]?j?~uX?]?u]?a?~#0 0 m#0##0?$X%0&X&0&9'0m'U(0((0?)*0+,0,-0-.0/20U230m4}40450770;M;0:<:>0>X?0CSI0IJ0KM0NP0.PgP0SQS0pTU0UfW0WW0 XX0XY0'V  V&&Vm'}'Vm4t4Ut4}4V>>V>X?VPv#hm4t4u#h&&0&&Zm'}'0t'}'Z4Y_  _K00%X%0E6F0GG0V(V0Y~ FF~GGYGG~K_0%X%_E6F_GG_V(V_ P A^?%X%^EE^V(V^KS0%X%SE6FSGGSV(VSAKY0%9%YKy_  _EE_auTEETat\tuUuP\ \ O!\&/&\&9'\}'U(\?))\)n*\+),\B,d,\-.\/0\$0 1\12\U22\22\ 33\45\77\;M;\=J=\=0>\CD\ DD\DD~DE\EEUEE\ L'L\FL{L\LM\)M`M\yMM\NN\ OO\SQQ\QR\sRR\$SS\pTU\UU\(VIV\VV\ WEW\XX\akPkt|tuuEEuTDDTYJ~  ~/!?!~ 3i3~33~DD~DDUDD~SQcQ~QQ~pT|T~PyDDuY  Y PV/!?!V&/&VJPS&/&S330JPS&/&SgV !V D$DVrP\ \ !\!/!\?!O!\&9'\}'U(\?))\)n*\+),\B,d,\-.\/0\$0 1\12\U22\22\45\77\=J=\=0>\CD\ DD\ L'L\FL{L\LM\)M`M\yMM\NN\ OO\hQQ\QQ\QR\sRR\$SS\TU\UU\(VIV\VV\ WEW\XX\y_ _!/!_?!O!_&9'_}'U(_?)Y)_+d,_-._$0 1_12_U22_22_45_77_=_=_=0>_FLSL_]LM_)MM_NN_ OO_QQ_sRR_$SS_(V:>3CC36F%G3GSI3IJ3KyM3MM3NP3.PgP3hQQ3QsR3RR3RS3TU3WW3 XX3XY3\T ET77T77~%~ ~O!!~&9'~}'U(~((~?)*~+=,~B,d,~-.~/E/~x/0~$02~U23~45~77P77~CC~JJ~KL~ LAL~FLL~L$M~)MtM~MM~NN~NO~ OP~.PbP~hQQ~QQ~Q1R~$SS~T%U~UU~XX~8Rp EpoyP}'J(P$0?0PU2m2P'((R((F(q$0?0RU2\2R\2a2qa2h2Rh2m2q'J(U$010UU2m2U(J(YU2m2Y''R'J(~#$0?0~#U2m2~#''Q' (t ((tP$0?0tK(U(P73B,d,37ET7~B,d,~LfPfVB,d,VRfPfVB,d,V\qsB,_,sqV3O!"3&9'3((3?)*3+!,3d,,3-.3/J/3x/$03?023m233453CC3JJ3KyM3MM3NP3.PgP3hQQ3QsR3RS3TU3WW3XY3T&&TVOdOTdOrO~%~O!!~&9'~((~?)*~+!,~-.~/E/~x/0~?02~m23~45~CC~JJ~KL~ LAL~FLL~L$M~)MtM~MM~NN~NO~ OVO~VOdOPdOP~.PbP~hQQ~QQ~Q1R~$SS~T%U~UU~XX~p~#r)&&pVOdO pr) tr)&& tr)VOdO tr)P-.Pm22P22P22P .h.Rh..qm22R22R22q22R22q7..Um2v2U22U22UQ..Y22Y22Y--R-.~#m22~#22~#22~#-.Q.I.tI.Q.tPm22t..P&,'3123&&T&,'~12~&'P','S12S&'P','S12S&'v12v','S3+!,3?0 13223223453$SS3XX3LS++S?00S00s22SKS[SSSSS~+!,~?0 1~22~22~45~$SS~XX~Ep++p++~#t)SS~#t) < st)++ st)SS st)432234LS4~22~LgPgS22SRgPgS22S]tv22vtS++P?00P22P45P00R00q22R45R55q55R55q00U22U45U00T45TL00R00~#22~#45~#L0{0Q{00s00sP22s1 1PT)M-MTS?))S L6MSOOSOPShQQSTUSPs)M-MsS?))S LLSOOSOPShQQSTUSMkTFLJLTMkZk~Y)i)~ LFL~FLJLUJL]L~MaPakzFLJLuZY)n)ZTQQT]U]O!"]((]y)*]d,,]/J/]x/$0] 11]22]23]CC]JJ]K L]MM]N O]OP].PgP]hQQ]QQUQQ]QsR]R$S]TU]WW]XY]P}uQQu\n**\_))__O!"_((_**_d,,_ 11_22_23_CC_JJ_6RWR_R$S_UU_WW_XY_S((S**S~O!"~((R((~d,,~ 11~22~23~CC~JJ~6RsR~R$S~UU~WW~XY~p((p2O!"2d,,2 112222232CC2JJ26RsR2R$S2UU2WW2XY2%SO!!S 11S11s23SU%USXXS%~O!!~ 11~22~23~CC~JJ~U%U~XXPXX~p~#t)O!!pXX pt) st)O!U! st)XX st)%P 11P23PCCPJJPU11R11q23RCCRCCqJJRJJq11U22UCCUJJU11TCCTJJT171R71@1t@11~#23~#CC~#JJ~#1L1QL11s11sP23s11Pw!!2222w!!Sw!!~22~!!P!!S22S!!P!!S22S!!p22p!!SNSZ..ZZ..ZY..YY..Y \..\\..\~ P~%%~~%%~TGGTS##SF%GSYHHSHSISPsGGsS##SFFSYHHSHSISTmT IITTmYm~##~YHH~HI~ IIUII~TcPcmy IIuY##YV##V33VT33TS?$O$S3 3SHYHSPs#p33s#pS?$O$S-0/&X&0<<0-JJ0Y~<<Y<<~eJvJ~-_/&X&_<<_-JJ_P#\?&X&\-JeJ\-S/&X&S<<S-JJS#-Y/&9&Y-__$$_ %0%_--_0>:>_I-J_7T^p$$^Zu\_$p$\\ %0%\--\0>4>Q4>:>\T0>4>T^U^ %0%^--^0>4>U4>:>^P~u0>4>u\ %0%\ ~%%R%%~~%%R%%~~%%~%%R%&~~%%R%%~^%%^%&^ *^%%^*~%%~%%R%&~4L~%%R%%~L~%%~%%Q%&~Vn~%%Q%%~n]%%]%&]s~]%&]~~%%~%%R%%~~%%R%%~~%%Q%%~~xSS-"A"TUUT-""\d,,\6RTR\LUU\UUUUU\-"7"P7"A"|UUuN""\d,,\6RTR\""V"#U##QUUUUUQ"#TUUT":#_UV_"#PUUP"#YUUY""Q"##UU#h++VJ/i/Vm+x+VJ/i/Vm##V./Vu##V./V##_##_$$U$$Q XXUXXQ$$T XXT$$_RR_ XX_$$P XXP$$Y XXY$$Q$$# XX#$ %Vi/x/V$%Vi/x/V% %S)#*U#*$*QUUUUUQ)$*TUUT);*_Q6R_UU_)$*PUUP *$*[UU[ * *Q *$*#UU#;*J*Z11Z@*J*Z11ZJ*n*V+!,SXXS3"3"33]3333]SQhQ]QQ]pTT 33_SQhQ_QQ_pTT_>33]33]pTT]>33_33_pTT_L33V33VpTTVy3}3P}33S33STTSF3y3SpTTS738_kn0838S838S== ==0==1=0>2(VV2V WS WW1W'W0'WfW ==S>0>VV WV@99S0r99]r99]K<u<\u<<_@:@SCNCS4DD_sDDVjHHRHH~HH\OOSOO_TTSTT_4  04 N PN  w4  54  24   {m w  q1$q"#w  Xm  RpYrYwrYwYwwYyYwyY{Yw {YYw(YYw0YYw8YPawPaQaw8QaRaw0RaTaw(TaVaw VaXawXaZawZa[aw[a_wwpYYUYvUvvPvvUv_wUpYYTYZSZZTZV[SV[\T\%\S%\PqTPqnqSnq!rT!r>tS>tvTv wS wAwTAw_wSpYYQYZ\ZZQZh]\h]cQc d\ d%dQ%d>d\>dJkQJkl\loQop\p qQ qnq\nq!rQ!rt\tcuQcuu\uuQu*v\*vvQvvQv_w\YYPYZ_ZIa_[av_v_w_YYPYZa_[av_vvPv_w_ZZ\ZZQZh]\h]IaQ[acQc d\ d%dQ%d>d\>dJkQJkl\loQop\p qQ qnq\nq!rQ!rt\tcuQcuu\uuQu*v\*vvQv_w\ZZSZZTZV[SV[\T\%\S%\IaT[aPqTPqnqSnq!rT!r>tS>tvTv wS wAwTAw_wSZZ_ZIa_[av_v_w_ZZ0Z[0[^]__Pcc]c>d]f?f]vfg]Jhh]!iUi]yii]ii]ii]Ajk]JkJm]rmmPmn]nnPnAn]Inun]nPq]Pqnq0!r>t0>tv]v_w]ZZ0Ze[0e[[Y\M\0M\f\Yf\\~\\Yqnq0!r>t0v_w0ZZ0Zm[0m[[P[[[\~\M\0M\f\f\\~\\P\Ia~[aq~qnq0nq!r~!r>t0>tv~v_w0[\~\Ia~[aq~nq!r~>tv~[V[U\%\UvwUAwEwUPwTwUP[V[R\%\~w6wP6wAw~ wwPwAwS)[V[u\%\uvwuAwEwuPwTwu-[V[P\%\PvvPvwuAwEwPPwTwPwAwSs[[UM\f\U}[[qM\f\q]rjrPjrsr]{r;s]s>t]Tqnq^!r>t^ssP(s6sPBZZ0BZXZPXZZwBZZ5BZZ3BZZ wZZq1$#ZZXwZZR[\~\Ia~[ao~oq~nq!r~>tv~[\~\Ia~[ao~oq~nq!r~>tv~[\Y\\Y\\U\3]~~]Ia~[ac~cc~>dJk~JkkYkk~k)l~)lBlYBlXl~ll~ll~Jmo~ooYop~p q~ qqUqq~nq!r~>tt~cuzu~uu~uv~[\~\\R\Ia~[a{k~{kkRk)l~)lBlRBlo~o q~ qqRqq~nq!r~>tv~[\]\^]__Pcc]c>d]f?f]vfg]Jhh]!iUi]yii]ii]ii]Ajk]JkJm]rmmPmn]nnPnAn]Inun]no]oq]>tv][\_\Ia_[ao_oq_nq!r_>tv_,^F^\^^\}f*g\ii\Ajk\no\bb0bb1bb2bb3bb4bb5?fJf1JfUf0Uf`f4`fkf3kfvf2]b`bP`bIcR9eLeR?fvfRAnInR\``Fa9bC>dJdCJdVdFaa0aIaS4hJh [[P^^0@^F^QN^^Q^^QgbLcPLcTc~~9eLeP?fvfPvf}fQJh\hQ\hxh~hhQ!i-iQ-i;i~;iGiQGiUi~JkQkPQk{k}{kkP)lBlPAnInP[[ p $0)[[ ~0)[\p@G$0.\\p@G$0.\\y#@G$0.\\u#@G$0.{kk p $0))lBlr0)Bll ~0) qqu#@G$0.[\0\Y]0Y]h]Ph]]~]]0]]~]^0^^]^a0[ac0ccPcc~cc0cc]cc~c d0 d%d~%d)dP)d>d~>df0f?f]?fvf0vfg]Jhh]h!i0!iUi]Uiyi0yii]ii]ii]iAj0Ajk]kk0kkPkkSkk0klPl)lS)lIl0Il\lP\lwlSwll0llPllSlum0ummPmm]mm0mn]nnPnAn]AnIn0Inun]unn0no]op0ppPppSpp0ppPp qS qq0nq!r0>tdS>df0f?fS?fvf0vf}fS}ff0fg0gEhSJhhSh!i0!iUiSUii0iiSii0iiSi-j0-j4jS4jj0kIn0InunSuno0oq0nq!r0ott[tt~cu~u[~uu~uu~uu[uu~uv[v*v~[\0\]0]3]RE]N]RN]h]~h]a0[ac0ccRc d~ d%d0%d.d~>df0ffPffVff0ffPfgVgg0ggVJhi0iiViiPiiViiViAj0AjHjPHjjVjjPjjVjn0noVoq0nq!r0>tv0]]p ]^S^a~# [ac~# cc~# >dg~# Jhi~# ii~# ii~# i-j~# 4jJk~# Jmo~# HpvpSvpp~# ppSp q~# nq!r~# ^^0^,^\,^F^QN^R^QR^^\^^Qf?f\vf}f\}ffQJhh\!iUi\Inun\gbLcPLcTc~~9eLeP?fvfPAnInP[\0\`0``P`a^aa0[aTc0Tcc^cc0cc^cf0ffPff^fg0gg0gJh^Jhyi0ii0ii^i-j0-j4j^4jAj0Ajjj^jjj0jjPjj^jm0mmPmm^mm0mmPmn^nn0no0oq0nqq0qqPqq^qq0qqPqq^qqPq!r^>tv0gbb0bb1bb2bb3bb4bb5bb69eLe0?fJf2JfUf1Uf`f5`fkf4kfvf3AnIn0\\T qqT\\Y\\U\3]~cc~ qqUqq~>tt~cuzu~uu~uv~!]h]Sc dS%d>dSY]h]R%d3dRdf2?fvf2h!i2Uiyi2i-j24jAj2kJk2JmIn2unn2nq!r2^9_S_'`SVddSddshhSkkSunnS^a~[ac~cc~>df~?fvf~h!i~Uiyi~i-j~4jAj~kkPkJk~JmIn~unn~nq!r~^_p__~#})_`pkk p})__ s})_` s})kk s})/_9_PVdePhhPi!iPddXdeqhhXiiXiiqiiXi!iqdeUhhUi!iUdeTi!iTcddTde~#hh~#i!i~#cddQddsddsPhhseeP_T`2e9e2_'`S_T`~e9e~`1`P1`T`^e9e^`1`P1`T`^e9e^'`<`se4es<`T`^@__2[a9b2>dJd2Lef2hi2Uiyi2i-j24jAj2JmAn2@__S[aaSLeeSeesbiyiSijSJm_mS@__~[a9b~>dJd~Lef~hi~Uiyi~iiPi-j~4jAj~JmAn~U_o_po_y_~#})[aapii p})d_y_ s})[aa s})ii s})__PLefPUiyiP4jAjPeeXefqUi]iX]ibiqbiyiX4jdDdU}f*g\ii\Ajk\no\}fg yii ii Ajk no }fg0yii0ii0Ajk0no0f$g^ii^jjj^no^fgggVggyiijjjVnnnoVf4gUjjqjUzjjUnoU!ggViiVnnVnnV!g4gU0gg^ii^nn^nn^Yg]gP]gg\ii\nn\*gYg\nn\ggVyiiVgg]ii]-j4j0gg]ii]gEhSiiSiiSiiSggSiiSgJhViiViiVghViiVhJh^ii^ hh^ii^kkS]llSmm]mm^ppSqq^ttTtcucuhuThu~u +~uuuuTuuuuTuv +vv}tt[tt~cu~u[~uu~uu~uu[uu~uv[v*v~ttTtt~uu~tt[tt~uu~tu\uu\uuPuT>_V_oToVpTpVۈTۈ V T^V^nTn܉V܉|T|VԊTԊTV*T*5T5VGTGdVduTuɍVɍTjVj~T~VTVƐTƐ}V}T!V!TVT:V:|T|VTVTVTєVєnTnVTVTVT+V+:T:WVWfTfVŖ} $ &3$|"#ŖTgVgvTvVTƗVƗTdVdyTyVT5V5kTkVT8V8gTgxVxÜTÜVTVTV@T`wHz0^z@0twwTwyVy^zT^z}V}}} $ &3$|"#}TVTVʄTʄVTOVOTVT߅V߅>T>_V_oToVpTpVۈTۈ V T^V^nTn܉V܉|T|VԊTԊTV*T*5T5VGTGdVduTuɍVɍTjVj~T~VTVƐTƐ}V}T!V!TVT:V:|T|VTVTVTєVєnTnVTVTVT+V+:T:WVWfTfVŖ} $ &3$|"#ŖTgVgvTvVTƗVƗTdVdyTyVT5V5kTkVT8V8gTgxVxÜTÜVTVTV@Ttww~twky0ky&z_^z{0_O0_ʄS_0___߅_&_Op__ψ 0Hn0|0Ԋ0G_Gɍ0ɍ_?0b0Ӑ00:M_}_є_30Ck05_00$F_0@_twz0z[z^^zǂ0^-0ʄ^ʄN00'0|?0M0|0n005@0twz0z&zP^z0Pw@0tww0wwXwwwwPx0Px|xX|xxwxy0yySyz0^zz0z{^{{0{{P$|P|0|}0}E}XE}a}~a}}0}}X}}~}909Owi0X~0-Xʄ0'?wO0PX~Sυ߅0߅SO0O_~_?0?O~Op0pŇXŇ~ۈ0ۈ^H0H^^^n0nXȉ~ȉ܉X܉0!X|^0*X*>0>nwnrUrwG0uy0yɍ^ɍ0<X<@U@MwM0X~ЏXЏ~202bwbiPiXӐ0)0)[^[Ò0Ò֒^֒0:|0|U~XV0V}~}w0wX0(~(05~59U9G~GyXy0י~יX~^303CXCk0kX~X0^^808g^g0PÜ^Ü՝0՝^@0tww0xTy0Tyky_kyy0yyPyzV^z{0{{0{N}0}w~_w~~0~!_!0OJ0x0Pǂ_ǂ0W_W00-_ʄ?0O___jVjo0oV߅0߅PVO0_o_ņ0ņS?0?O_O\0\pSpN_N_0__Sψ_ψn0n _ 0'_|>0n0#V#0Pɍ_ɍV0?_? V ؏0؏PSb0ƐӐ0ґ0ґ_|0|}_}0Bn_n0_P_fs0\(_(˗0˗VG_G}0}ɘ_ɘ͘U͘_50V_303C_Ck0k\5V5k0kÜ\Ü$_$@0 xy\^z|\\49\߃\_\\ψ \Hn\|\\#w\Gg\uɍ\:\y\~V\b\\Ɛ\\:M\3\Ck\\\$F\@\w xv#@D$0.xy | $0.^z| | $0.-p@D$0.49\߃ | $0._ | $0. | $0.ψ  | $0.Hn | $0.| | $0. | $0.#w | $0.Gg | $0.uɍ | $0.: | $0.y | $0.~V | $0.b | $0. | $0.Ɛ | $0. | $0.:M | $0.3 | $0.Ck | $0. | $0. | $0.$F | $0.@ | $0.w xv#@D$0.-p@D$0..9Ptwx0xWySkyy0yy\yz0^zz0zz]z|0|b~0m~~]~0_0܀]܀0^n0n|P|]0D\D00-]']?O0_o0o\0\0߅\O]O_0_o]0P\]\·0]0N]No0o\0P]\ψ0ψۈSۈ0 S _H^0^nSn0Pȉ]ȉ܉0܉ ] 0']|0S0J]|0%]%G0Gu]ɍ]ɍ\]0?M0M~]~U]0_20b*0`0P)])CVC֒0֒S_:0:M]M|0|]n00]P:]s̖0J0Jv]vzUz]0 P _0י03S3C0CkSk0808XVX]ÜVÜʜPʜ]$0$F]F0՝S՝0@]a}}0}~~p~n~s0Җ~(~~k0twz0^z}0}}P}m~\m~00\^Ȁ000-\ʄ>0Oo00ۆ ^ ?0Op^p0/0N0\^0ψ 0 ^H܉0 '\|0Ԋ\Ԋ|0|G\G0^\|0}^\є0n00s0\P(\(J0vƗ0^G}0}ɘ\ɘ0\^505\F0F\@0twz0^z0*0ǂ>0>DPDb]b0-0ʄ?0O0@N0No]o0P]܉0 '0|0]M0|0:N0}B0Bn]n@0wwTnrTwwXwkxw^zzwOw'w>nwnrUrwGuw<wMw2wÒwwwPwwxnruwwX9IXdx|xT<@Tdx|xX|xxw'?w<@U@Mw2bwdxrxPrx|xx<@uxxX'9Xxx~xyVyWy~ψۈ~ V^n~V֒V3VCk~՝~xWySψۈS S^nSS֒S3SCkS՝SxyVyTyTψۈT V^nTCkT՝VxTySψۈS S^nSCkS՝SxTy_ψۈ_^n_Cf_՝_yyPyTyVψۈV^nVCcVxTy^ψۈ^ ^^n^Ck^՝^`yy]O_] ]wyyTTwyyUyz~_~~߅~|~ɍ~U~:M~$F~@~wyyuu~#yy\\߅\yyS߅S#0yyS߅Syz\_\yzV_oVz&z__ʄSz&z__&z[z^+zLz^zzT~Tz|]Od] ]']?O]]]ۈ]H^]|]Gu]~U]b]]Ɛ]*]`]]Ò֒]5]]]8]]՝]zzPzz}~uz|]Od] ]']?O]]]ۈ]H^]|]]b]]Ɛ]*]`]]Ò֒]5]]]8]]՝]zz~z{V{{~ۈ~VH^~|VÒ֒VV~~՝~z{^ۈ^H^^|^Ò֒^^^^՝^{{VۈVH^VVV՝V{{^ۈ^H^^^^՝^!{{_ۈ_H^___՝_O{S{PS{{SۈSH^SSS{O{SS՝S{{X?IX{{TƐʐT__{|XكXك~{|pكp|$|XX8|L|TT`|0O0ʄ0߅0ψ0 H0n0Ԋ0|G0?0`0:0M03C0k00F0`|1O1ʄ1߅1ψ1 H1n1Ԋ1|G1?1`1:1M13C1k11F1`||TOiT!T#T#, +`||XOiX!X!`~,X,:~~||1z||xz||x|u}]i]ʄ]υ߅]O_]є]s](E]]&]5j]y]k]]||_ʄ݄_,}E}T59T,}E}XE}}~O_~s~5~59U9G~k~~,};}P;}E}x59uW}a}XOYX}m~000}ɘ0}m~\\\}ɘ\}m~___}ɘ_+~/~P/~b~]]}]}m~VVV}ɘVb~m~\\m~~_>__o__&?_GV_[x_w~]>]]&?]\p]ψ] ] ]Ԋ]|]%E] ]є]]Ɨ8]G}]ɘ]]5G]La]f]]F]~~pp~]]&?]\p]ψ] ] ]Ԋ]|]%E] ]є]]Ɨ8]G}]ɘ]]5G]La]f]]F]~ Tɘ͘T~_ψ_ _ϊ_Ɨ_G_ɘ͘U֘͘___Fk_p__~P ɘ͘u_ψ_ _ϊ_Ɨ___Fk_p__<BBS ԊSSFppS0\ \Ԋ\\F\_\ \Fp\\o^ ^Fp^^PV VFhVhVV^ ^ĀTvzT]>O]]Jv]vzUz]PĀ}vzuр]>O]]TT0o0?O000H0܉ 0?0M}0n0s050n]o]H]:f]fjUjs]*<P<F}#hfju#h30'3Y3H0<HYЁT|TЁX]~?O~~܉ ~|U~~:}~Ё߁P߁x|uX?IX*_N_?_ _V_B__5_*>]N]o]?p]]V]3]]]0]*\N\V\6\\ptPt^@N^^6VNV+V:VVVV>]/]o]?p]]3]]]0]__?_ _B__5_ӂTTӂU~N~~?~M|~n~U~5~ӂuu~#D_o__>D\\0>D\\M_No_ _M|_W]N_] ]Mm]b^ T^M|^p}P}s#p s#p-Xȉ܉X!X3CX-X!X-<_m|_2<_m|_Bʄ]'m]DY]'>]Yʄ\>m\^s\>V\sʄVVmVxVVmVT TU&~Op~~|G~}~є~U~5~uu ~#ӆ^\p^^SS%0SS&^O\^ &]ÇUÇŇQיߙUߙQŇTיTׇ__ŇZיZŇ[י[ŇPיPׇXX~_3~3J_:M_$F_@~J]:M]$F]@]_#3_@_]#3]@]VVPV#3V@VS#3S@S_00G_5_|G\5\_%0_f_\%0\f\V%0VfVPS%0SSSfSɍ]TyWy0ɍ^ɍ^K^ ^5^? V5Vm^^^mVVV|]]ݚ]]P\\\v\ښ\X~{{0؏_؏__8Ü_2xVK^\k\ٗ^^0VVxÜVÜ]Ü\@BwBDwDFwFHw HLw(LMw0MWw8Wgwghw8hiw0ikw(kmw mowoqwqrwrDw@Uɟ~ɟ՟U՟`~`rUr~U~~eUe~U~9U9y~yU~٬U٬խ~խU~ĮUĮ~6U6F~FeUe}~}Ub~bGUG~U&~&PUPR~RnUnU~HUHD~@TɟTɟ՟T՟`\`rTr~T~nTnT\T\DT@QɟQɟ՟Q՟`S`rQr~Q~nQnQSQSDQ@0ɟ\ɟ`0r~0~\e\\9y\w\6F\,\ܳ\Ve\j\\\*\9\\v\ÿ\Կ\n0o\\\(\\\b\\\4\Ew\\@0ɟSɟ`0r~0~٠SeSS9>SRWS\aSrtS6ASPSoSSSn0oSSS6SEySS@0ɟVɟ`0r~0~VeVQV9yV٬VխVV6FVgVVrܵVV*ιVڹ9VVѼּVVGVVP_VVn0oVbV@`0r\0dD0P]K]P]]ɟ՟VrVVPɟV~VeVQV9yV٬VխVV6FVgVVrܵVV*ιVڹ9VVѼּVVGVVP_VVoVbVɟS~٠SeSS9>SRWS\aSrtS6ASPSoSSSoSSS6SEySSɟ\~\e\\9y\w\6F\,\ܳ\Ve\j\\\*\9\\v\ÿ\Կ\o\\\(\\\b\\\4\Ew\\ɟ~~~e~~9y~~٬խ~~Į~6F~e}~b~G~&~PR~HD~ٞ ɟ~~ s# e ~9y~ ٬խ ~Į~ 6F~eg r r9~9[    ~b G~ & Pn H ~D ٞɟ0~0s# e009y00٬խ006F0eg0r09[0 0Կ0b00&0Pn0HD0ٞ1h } $0)h~#0)et } $0)t11E } $0)_de_ݫ_ݫ¢P¢]de]] P 9\]٬\]խ\]%\%6]Fe\e]b\9\]&]&D\_]n]o]b]D]ɟ0~0^^Ue00^~9y0U٬^٬0^խ0խ^0%^6F0e^}0 ^ UX0Xr^rb0bG^G0^0&^P_0_^0n^Ho^o0b^b0D^~+9]٬]խ]%]Fe]bG]&P]ɟ0~0VSdeSe0Sy0S0S0S%0%6S6e0eSg0SP0PrSr909oSo0bSb0S0&S&_0_S0nSoSo0bVb0VSDV0ɟ~~~d~et~t0~9~٬խ~~Į~6F~e}~b~G~&~Pn~H~0D~_0_ɟ~~~d~e0~9~٬խ~~Į~6F~e}~b~G~&~Pn~H~E0ED~ɟ0~0^d4049^9y0^0P^E0Eb^bι0ιڹ^ڹn0D00PU0U_P_ɟ0~R0RgPgS0de0elPlt~t{P{~f0fqPq_ 0 S_Sy010e0ŭSŭɭPɭխSխ_0%_%0%_%<0<IPIgS0ͱ_ͱ090[_0ƽ0ƽ_U9_9G0Gv_v}P}_P0_0n00P~0PSD0 0 PO0O_P_ɟ0~0@]@s0s]0']'0de0elPlt~t{P{~0y0٬0٬J]Je0e]%0Į0ծ0g]Y0r0ܳ}0}Pз~۷r0ryP0,90[]0 0vv00P0P_]_0]n00U],0,]0]v0v]U]0PE~E0]D0h } $0)h~#0) $0)et } $0)P\*N\E } $0)1h } $0)h~#0)et } $0)E } $0)PҠP0^çPP606^٬e^խ^Į^`^Pm0X^rг^ܳP9[^^0 v0v}PPV^G^^^^P_^^^ovPP(0^^Ǟɟ0~0E0dy0٬0`e0w0,0,m\m0\909ٻ\ٻ0\0\#U#V\VP0_0n0(000D0ٞɟ0~j0ϥ0e0y00٬0խ0006U0}00 P ,\,J0Jb\b0\0*r0r!\+J\JOUUź\ź̺P̺\b0 0G00&q00H0o0D0ٞɟ0~0d09y00٬խ00%F0eg0r0ܳi0ikPk~E^EJ0Jb~b^^ڹ~ڹ808=P=09[0 0v0b00&0Pn0D0ٞɟ0~0d09y00٬խ00%F0eg0r0ܳ]0]*_*,P,JSJb_bSPSڹ_ڹ/0/=_=09[0 0v0b00&0Pn0D0ٞɟ0~0PVd0V0P-S9y00٬խ00%6V6F0FUSUYPYeSeg0r0ܳY0Yڹ]ڹ+0+=]=09[0 0v0b00&0&PSPn0HVHD0]de]]9\%6]Fe\&D\H]0_de_0_aɟ~~9y~~Į~6F~r9~ ~G~EOaO~ٞɟ0~0dy0}00PQ~0*N0rn0D0 Pɟ~~~et~t{P{~~9y~~٬խ~~Į~6F~e}~b~G~&~Pn~H~D~U_P_ɟ~~~elPlt~~9y~~٬խ~~Į~6F~e}~b~G~&~Pn~H~ED~ɟ\\9y\6F\ܳ\v\ÿ\Կ\\ɟ y ٬ խ % 6e r9  b  &P  ɟ0y0٬0խ0%06e0r90 0b00&P00ɟ||9y|6F||SJMsMRSR\|\r| N$| !&TTs]w]U#]bq]P&}u5s]w]#]bq]TT]ew](,]U]P}u]ew](,]]gUŭ˭UuUU~SS~~~~e~~&~_~n~Ho~b~D~~~~~e~~&~_~n~Ho~b~D~^^^^e^^&^_^n^Ho^b^D^ߢ0ߢPb0P֢0֢PPP$VVVV$|\\_\$VV_V;EPEj~jpPp~~P~~e~~&~_fPfq~n~Ho~~+____LaPP ~##+\\\e\\&\B\\+VVVeVV&VBVVPP~P P 0P+___e___&_B__YYPPUU UU0DU U:DU U`jUUoUUP~ 0XdeXqQإVV^UU ^ UEJ0UUSSEJ0SSd~ySEJ~4~yS4d~>\~EYTTEYPPEOQOYppmwUծۮŲT,0T̨P,0P̨֨Q֨p,0pUĮήU_%_ũϩU UUU2__ G_2JRJ~~ G~Q[P[VPV~٬VխV%Vb V PV>JQJ~~ G~l|PP __ _X9~٬~խ~%~Fe~b ~&P~PP#UPPUPPPU0Q9~٬~խ~%~Fe~b ~&P~֪YY2Pխ٭P#2UխۭU(2UխۭUDS_%_bg0DS_%_akUͬӬUpUǬUP9~Fe~&P~-SFUS-QQ-TT-PP-XX"-UU"%R%-p#p#:e]P_]?J]P_]_~QQ_~TT_~PPg~XXs~UUsvRv~p#p#UUUUiUUU U000UUïV VïǯPǯVV\\\ Ug}]l}]UU\\UUǰذṴذUr~9[~ ~b~r~9[~ ~b~707PPo~P0ɾPɾ~.0.<PPTT__ƽ_U _Puñ__ƽս_رTTرrS9[SƽSbSرPssAUT#TA\\\#U#,\AKPKU|#ub\\\U%+U,6UUISUU^ڹ&^+M^Uź^^4]ڹ+]=ź]]&NPOP~UXPu|P0źP]_ڹ/_=ź__:NXźXPeiPUekUUekUƴڴUUдڴUUUUUڹU+2P2ڹ~+=~+ڹ += +ڹ += +ڹ += 2aP+3Piڹ]8=]pڹ_yڹ~Pڹ ڹ0յ~ιڹ~յT~ιԹTԹڹ~յ_ιڹ_յ]ιڹ]صUιԹUܵVιڹV*SJbSιڹSյPιҹPUιԹUUιԹUVVJVV*SVbS SVbSضUιU̶ضUUɹι0UU U\Nr\շRQ~*N~&7U+7U=WUKWU]wUkwU*J\b\\1JS!\=J\JOU[_»\ǻٻ\PUU6RPCTUHTUPUPP]0g0PU"~gw~"&P&]~{~P]~g~P5RPCTUHTU՟F0՟Pw՟F3՟F2՟F  qX RPRwR^w^`w`bw bfw(fgw0gnw8nww8w0w(w wwwwPUUyU-U-yU%y%U?y?UyUy<U<yUyU y U y  U \ y\  U @ y@ kUk9y9Uy5U55y5]U]^y^3bU3bcyc_dU_dfyf#hU#htjytjPmUPm_my_m~U~yUGyGUWyWӰUӰyUɳyɳWUWKyKUy U yUyqUqyUByBU5y5&U&_y_UyQUQxyxUyaUacycUPT\PUx-L\Lxx%\xP y x?\xx<xx x x \ x @ xzxbxxk \ QxOsxx55x]^\^^x3bb\bcxcc\ccxccTcc\_d4ex4ee\eexef\ffx#hixijTjj\j)jx)jtj\ llxPm_mx~\GxWxӰxɳxWKxx xxqxBx5x&_xxQxxxacxPQUxU-Q-xQ%x%Qx?x? xxQxx<Q<xQxQx x Q x  Q  x  Q  x \ x\  Q  x  Q  x  Q @ x@ xzxbxxk'x'9Q9QxOsxQ,x?LxLQx QA [ Q$$Q$%x%&Q&<'x<'O'QO''x'O(Qx((x((x( )Q}**xk00x02Q22x3E3xu44x55x5q6x>@x@@Q@AxAAQAAxAAQBBxTHxHQxHIxI@IQ|JKxOOxQQQ:Q:Nx~xǠ'Q~kQQ!rxrQx$x0x0GQWxӰxQxɳQWKxKxMɸxɸQԻuQQQGQBxxQxQ x xQxqQq/x/=Q=xQxQBxBx'x'5Q5exe9QQBxiQx&Q&QxQ_Q_xxQxQQQxxxxQxaQaKxKYQYcxcxP\R\_-R-_R_R_R7_7kRk_R_R,_,?R? _ A RA [ _[ $R$S%_S%%R%'&_'&&R&O(_O(x(Rx((_((R( )_ )}*R}*._..R.90_90k0Rk00_00R0R1_R11R1[2_[22R22_23R3E3_E3u4Ru44_45R5_5__55R5 9_ 9>R>&?_&?d?Rd?D@_D@@R@A_AARAA_ABRB#B_#BbBRbBC_CTHRTHH_HIRI@I_@I|JR|JJ_JKRK?K_?KKKRKKK_KOROhP_hPQRQR_R2RR2RAR_ARR>___R_URU_R_~R~_ǠRǠ'_'~R~פ_פ5R5k_kR_!R!_$R$a_aR_GRG_|R|ȫ_ȫRP_PR$_$RW_WӰRӰ5_5R_DRD_Ri_iɳRɳ_WRW_MRM_8R8_R_ɸRɸ_Rg_gʺRʺ_ԻRԻ_RN_NR_yRyR_RR_R_?R?u_uR_R_TRT_Ry_yR%_%R_R_QRQ_R#_#R'_'nRn)_)BRB_Rv_vRZ_ZR4_4R_7R7_R_=R=_R_R_R_5R5t_tR_eRe_9R9_BRB_R_R_"R"i_iR!_!_R_/_/jRj_R&_&R_RRR_&R&__R__qRq}_}R#_#R_[R[_%R%T_TR _ aRa_YRY_PXUxUXPyyx-xX%x%=X=x?x?x yxxx<x<xXxXx x #x#]XKX y xX x l X  x \ x\  X  x  X  x  X @ x@ xzxbxx?kxkx9X9QxOsxXLxLXx XA [ X$$X$%x%&X&&x&&y&&x&'y','x,'<'y<'O'XO''y'O(Xx((x((x((y( )X}**xk00x01x1F2X22X22x3E3xu44x55x5q6x>@x@@X@AxAAXA-Ax-AAyAAXBBxTHxHXxHIxI&IX|JKxOOxQQXGTH@I|J?KKKSKNOO7Uf000fxy~000!000Ի~000$000000T000G000Gy000 ySHyH ySx000x ySy. ySBi000000p0p}P}UyLy- 0 -P-hRhy%0%=y?0y0<y0yyy y#]yKy y[ l y  y \ 0\  y W y  y  0  P @ yzybyyk909QyOsyy y1F2y22y550THxHyI&Iy]^03bc0_df0#htj0 llyPm_m0kuuyIzzy{Uy&y#Ey۔yly~00ʨyʨG0W0Ӱy0ɳyWK0Իyyyy b0byyqy0y0"R"yB00_y_jRj5yy=iy_yyqy1yxyy0acyP^ ^^  ^\  ^  ^  ^^ ^A [ ^$$^%;&^<'O'^'O(^( )^1g2^22^@@^AA^AA^THxH^I@I^QQ^_mm^Snn^oo^[uu^ww^Hy{y^Izz^8{{^{D|^|}^a}"~^y~~^A^AU^^S^Qń^m^^^^Cw^&^C^f^L^J^E^۔)^Ŗq^^^>k^^Uɝ^:^Ǡ'^~^5k^^r^ ^D^ɸ+^s^ʺ^Ի&^Z^"^yg^*^^?u^^^^e^^^"i^;^^R^q^1^/^^[^%Q^^0Pyy-=0=y?0? y0y0<y<0y 0 ]y/]SK0y 0[ l 0  y \ 0\  y W y  y @ 0@ yzybyyk909QyOsy0,y?LyL00 0$%y&<'yO''y<(O(Sx((y((y}**yk00y0F2y22022y3E3yu44y5505q6y>@y@AyAAyBByTHxH0xHIyI&I0|JKyOOyFSKSSUZS:SafxxKx,x<xl  xx22x&I@Ixz*{x8{{xxSxQx%x2x5xCwxLxJx#xx>rxr}a}xaxǠ'x~'x5kxxrxӱxDxe+x=xF0FZPZx?0? x0x0<x<0x 0  x  P  x  R  x  0  x  0  x @ 0@ xzxbxxk909QxOsx0,x?LxL 0A [ 0$$0$%x%&0&<'x<'O'0O''x'O(0x((x((x( )0}**xk00x01x12022x3E3xu44x5505q6x>@x@@0@AxAA0AAxAA0BBxTHxH0xHIxI@I0|JKxOOxQQ0:0:Nx~0Ǡ'0~k00!rxr0x$xG0W0Ӱɳ0WK0KxMɸxɸ0Իu000G0Bx0 x 0x0qxq0xB0Bx505exe900Bxi0x_0_x0qxq0x101xx0xx0axac0cx0!]! 0 xXPx0xzxbxx?kxk909QxOsx0x,0,?x? 0A [ 0[ ,"x,"4"P4"?"xY"#x##X#$x+$$x$%0%%x%O(0x((0( )0 )}*x}**]**P*.x..]./x//P/k0xk00000]0203E30u44045x5A0B#B0bBK0KN0NOxOP0PQxQR0R7Ux7UVV0VVVxV[YxyY\x\\0\]x]^0^`xa3bx3bc0c_dx_dg0g#hx#htj0tjnkxnk l0 llxlo0osxst0u5uxGuu0u"vx"vNv]Nvwxwy0IzU0Uxŀ0ŀtxtǁ0ǁxw0wx0#CxC|0|x0x>x0~0!G0Gժxժɳ0ɳWxW0MxM0xԻu0$00T0G0GxS0Sx.0B]x]909x0BxBi0c0c]0\z\b\\?k\k909Q\Os\0\,0,?\? 0A O(0x((0(+0+.\./0/~/\~//0/k0\k0000203E30u44045\5A0B#B0bBK0K l0 ll\l(o0(oq\q5u0GuNv0Nvv\vy0Izǁ0ǁ\0#|0|\0\>x0~0!G0Gժ\ժɳ0ɳW\W0Ի~0$00T0G0G\.0Bi00(0(]]U"]"<y<k]k909Q]Os]0>]>?U?]T]y],0,?y? 0 A ]A O(0O(x(]x((0((]($)0$),)P,)6)]6),0,,P,}.x}..].U/0U/~/x~//0//]//x/0000]02023]3E30E3u4]u44044x5\5x580>A0AB]B#B0#BbB]}BzC0zCCPCFxFG]TH@I0|J?K0KKK0KK]NO0OQ0QQxQR0R2Rx2RAR0ARRxRR]R7U0]>ݞ0ݞyx~0xǠ'0f~]~k00!]!G0GǪxժwx|s0sxW0W xx2x@ΰxӰɳ0ɳIxW0Ի]Ի~0~]$0$]0T]T00r]rvUv]G0Gy]y#0S0x0.B]Bi0i]0u0uzx fxVx0xzx_xx?kxk909QxOsx0x,0,?x? 0A [ 0[ ,"x##V#&$x$$x$%0%&0<'O'0'O(0( )0 )6)x}*k000000203E30u4A0AA0B#B0bBK0KN0NOxOP0QR0RYTxT'Ux7UVV0WXxXZx\\0]^0`ax3bc0_dg0#htj0nk l0 llxlm0SnUp0Uppxpq0Utt0t5uxGuv0vwxww0]xx0y{y0IzU0Uxŀ0t0w00C0|0d0L0>x0~0!0Mxɸ0Իu0u~x$00T0G0GxS0Sx.0Bi000U y0yzybyy?kyk909QyOsy0y,0,?y? 0A [ 0$%0%,'0,'<'y<'_'0_'l'yl'O(0x((0((0((y( )0}*000203E30u4A0B#B0bBK0KN0OP0QR07UVV0\\0]^03bc0_dg0#htj0nk l0 llylm0mmymUp0Uppypq0sCtyCtKtUKtUtyUtt0Guv0wy0IzU0ŀ0t0w00C0>x0~0!0MA0Aɸyɸ0Իu0$00T0G0GyS0.0Bi000 x0xzxbxx?kxk909QxOsx0x,0,?x? 0A [ 0$%0%O(0x((0( )0}*000203E30u4A0B#B0bBK0KN0OP0QR07UVV0\\0]^03bc0_dg0#htj0nk l0 llxlUp0Uppxpq0st0Guv0wy0IzU0ŀ0t0w00C0>x0~0!0M0Իu0$00T0G0GxS0.0Bi00 0 \\\fx\x0xzxbxx?kxk909QxOsx0x,0,?x? 0A [ 0[  x ,!\,!,"x##\#&$x$$x$%0%O(0x((0( )0 ) )\ )6)x}*000203E30u4A0B#B0bBK0KN0NO\OP0QR0RS\S Sx SvS\vS{Sx{SS\SSxSET\ETOTxOTYT\T'Ux7UVV0WXxXZxZZ\ZZx\\0]^0`ax3bc0_dg0#htj0nk l0 llxlUp0Uppxpq0st0t5uxGuv0vwxwy0IzU0U\ŀ0t0w00C0>x0~0!0MxM0Իu0u~x$00T0G0GxS0S\.0Bi00 0 ^\U@\@u^uvUv`^`aUa^0^z^b^^?k^k909Q^Os^0^,0,?^? 0A [ 0[ "^""#\"#=#^=#_#\_#l#^l##\#+$^+$$\$$^$%0%%\%O(0x((0( )0 ))^)*\*}*^}*000203E30u4A0B#B0bBK0KN0NO^OP0PQ\QR0R'U^'U7U\7UVV0VVV^VW\WZ^ZZUZ[^[[\[\^\\\\\0\O]\O]T]^T]]\]]^]]\]^0^#_\#_(_^(_X_\X_s_^s_w_Uw_`\``^``\`a^a3b\3bc0cZd\Zd_d^_dg0g#h^#htj0tjj\jjUjnk^nk l0 ll^lUp0Upp^pq0qr\rr^rs\ss^ss\ss^ss\st0t5u^Guv0vw^wy0IzU0U^ŀ0ŀt\t0w0w\0#C\C0>x0~0!0M^M0d\dp^p\Իu0u~^$00T0G0G^\S0S^.0Bi00 0 fxSx0xzxbxx?kxk909QxOsx0x,0,?x? 0A [ 0[ ,"x"#S#&$x?$$S$$x$%0%%S%O(0x((0( )0 )6)x **S*}*x}*000203E30u4A0B#B0bBK0KN0NOxOP0PQSQR0RYTxT'Ux'U7US7UVV0VVVSVWSWXxXZxZ[S[[S\M\S\\0]]S]^0^_S_(_x(__S`ax3bc0cIdSId_dx_dg0g hS h#hx#htj0tjkSk'kx'knkSnk l0 llxlUp0Uppxpq0st0t5uxGuv0vwxwy0IzU0Uxŀ0ŀtSt0w0wS0#CSC0>x0~0!0MxM0Իu0u~x$00T0G0GxS0Sx.0Bi00 0 "V"P]PQUQ]PVP_0_z_b__?k_k909Q_Os_0_,0,?_? 0A [ 0[  V  _ "V"#]#?$V?$_$]_$o$Vo$$]$$V$%0%%]%O(0x((0( )0 )[)V[))_))V) *_ *u*]u*}*_}*000203E30u4A0B#B0bBK0KN0NOVOP0PQ]QR0RRVR S_ SSVS{S_{SSVSS_STVTOT_OT~TV~TT_T'UV'U7U]7UVV0VVV]VVVVV_VW]W XV X=X_=XlXVlXX_XXVXX_X,YV,Y[Y_[YYVYZ_Z7ZV7ZZ_ZZVZZ_Z[][T[VT[[_[[V[[][\V\7\]7\D\UD\M\]M\t\Vt\\_\\0\\V\T]_T]_]V_]]_]]]]^0^^]^(__(__]__V_____V_`_`6`V6``_``V`a_a bV b3b_3bc0cd]d_d__dg0g h] h#h_#htj0tjk]k'k_'knk]nk l0 ll_lUp0Upp_pq0q[rV[rr_rrVrs_sCsVCss_ssVst0t5uVGuv0v%wV%w^w_^wwVwy0IzU0UVŀ0ŀt]t0w0w]0#C]C0>x0~0!0 V M_M0:V:p_pVԻu0u~V$00T0G0G_VS0SV.0Bi000zybyy?H0Hkyk909QyOsy0y,0,?y? 0A O(0x((0(000203E30u4q60q6;y>A0BB0B#BybBGyTH@I0YIJypJ|Jy|JK0KKyNO0OO0OPyPQ0QQyQQ0QRyR7U0N0N~y~0yǠ'0'yˢfy~k0ky0!0$ժ0ժyW0WӰyӰ0Ի~0$y0Ty0G0Gy0SyS0xyBi00z0zxb0bx0x909QxOsxu0(0( l0 llxly0y\00n0nz]zSPT0bS0S0 l0 llSl0101LSL0];Y;Yx0S0fSf)0).S.oVo04S4\0\S<\<0P&S&K0K]P]~S~-0-LSL0%S%0S0PS0V,0,?S?I0IS0Py0Px 0 'S' 0 Pi0PS0XZ0ZfPfS0PS0PS0"S"q0qk^k0%V%0PS0S 0 <SfyYy0P]S]0SC\CQ0Q`P`y303S\0\ySy0S0,S,<0<\V\\SPSl 0l  \  0  V  0  Y  x/  0  V  0  V  S B 0B  S z0L0LSb00k0k`SOS0S0SA 0A  S!!0!!S"?"0?"Y"SY"l"0l""S""0""S"#^#l#0l##V##0##P##x##X##x$?$0?$O$^O$_$0_$o$So$$V$$^$$0$$y$%0%%^%&y&'0''S','0,'<'x<'O'yO'_'S_'l'0l''y''P''y''S''y'(\((0((P((x( )S )6)06) *S *$+0$+o+So++0+,P,o,So,,0,T.ST..0./S//0//S//0/k0Sk00001S12022S2E30E3h3Sh3u40u44V45S55Y55x5606x8Sx89099P9;S;A0AASA-A0-AASAB0BBPBCSCC0CDPD?DS?DD\DYE0YEhEPhEESEF0FkFykFFSF&I0&I@IS@II0IHJSHJpJ0pJ|JS|J"K0"K?KS?KKK0KKKSKQ0Q RS RRPRRSR(R\(RAR0ARMRyMR\RS\RR0RR\RS0OTYT0YTTST'U0'U7U^7UV0VVSVGX0GXSXPSXXSXX0[YY0YYPYZSZ#ZP#ZZSZ[0[[S[[^[\S\7\^7\M\0M\\S\\0\\P\T]ST]]0]]^]^S^_0__S_`0aa0aaPacSc4e04efSff\fgSg)j0)jtjStjnk0nkvkyvkkSk l0lPmSPm_m0_mmSmm0mmPmSnySnoSo(o0(oHpSHpp0pqSqrPrrSr,s0,ssSsUt0UttSt[u0[ukuSkuv0^ww0wwSwHy0Hy{yS{yz0zzPz8{x8{D{PD{{S{0Pǁ0ǁS0%\%CSCP0PwSw|0|S0#V#0S0PySyN0NݞSݞ\S0S'V'606fSf~0~5S5k0kSr0rS0t]tx0Y!G0GժSժ0PsSszPzS0%Y%0x?W0WSy0P@S@ɳ0ɳWSW0ĴPĴִ]ִ0P$]$0MSM08S8A0Aɸxɸy\ѹSѹ\SԻ0ԻPS0S0uSu0$S$T0TS(0(XSX_P_S0S0Sn0nxSx.0.S 0 3Y3>x>WYWbxb07S7CPCqSq0<]<0B0e0e9S90=S=f0f&S&_0_V0qSq0V01]1%S%0aSa0SKSSO(x(SAASMM pq.'M5M q .pp p $0.&nS7<SSҋS #SSٚ S*>S!S pq.S0}V}0V<0<yVy 0 \ V\  0  V z0b00905055V5 l0l0Vʨ0ʨVTG0WVW0VW0WKVK 0 bVb0V0<V<0BVB0V00\0\<0<y\y 0 \ \\  0  \ / 0/ @ \@ 0?H0k900,0? 0A O(0x((0(000203E30u45055\5A0B#B0bBG0GK0KM0M"NS"NN0NNSNk0lUp0p5u0Guy0Iz00#0>f0~0!0\ʨ0ʨ\QG0W\W0\W0WK\K0Ի~0$00T0G0 0 S.0B 0 b\b0\0<\<0B\B0\i000S0S<0<ySy 0 \ S\  0 @ S@ z0b00905055S5C0CCPC+E]+EK0K LP LNxN"N0"NNxNR0R(R](R-R0-R2R]2R\R0\RR]Rf0ff]f l0lGu0Gu[ux[uu0uuxuݞ0ݞ]~0]0Sʨ0ʨSG0|s0s]WSW0SW0WKSK0x 0xxx0xPx.x. 0 bSb0S0<S<0BSB0S00^0[xg00V606c[cx0@[@\x\0x<0<y^y0["xg0[1x10[:g0guPu[\0y0|0|V[ 0l  V  0  ^ \ 0  0 / [/ W x  0  ^  0  P  x0Dz0s0s[x0PLx0Tb00'"0"(P(k]k909Q[Oc[csx00"[">x>I0IdPdu[uxu0],0,4P4?]?0x0 [ %0%%[%n&x&'0''x''0'O(0O(_(xx((0((0()[) )x )-0+.D.0D.T.PT..].e/0~//0//]//P//]/0001011[1F2x2203530h3q3x33064N40u45055^5707n808;0;;[>@0@A0BG0THmH[mHxHx&I@I0@INI[NIYIxrII0IJPpJ|J01KKK0pKK0KhL0hL}LPLqN0NN0NNPNNxNO0O7U0k^^Uɝ^:^Ǡ'^~^5k^^r^ ^D^ɸ+^s^ʺ^Ի&^Z^"^yg^*^^?u^^^Po^^e^^^"i^;^^R^q^1^/^^[^%Q^^S0SN\Nl0lV0P2x20]0VS0P]V]0/y/b0bV0PV>0>Sx0xP_0S0'\'Z0Z_0P_02]2U0UXk_~0X%_80PB_Be0e_0V0 x V/x/4P4<x<f0f.V.d0dV0]0\ 0  ] v 0v  V  0  ]  V  0  P V,0,aVaz00Vb0V?V?0x<V<909QVOsVC0CV+0+kVk0V,0,LVL0V0 \ 6 V6 A 0A [ ][ !0!,!S,!Y"0Y""\""0""_""0""_""]"#_#L#0_#d#Pd##_##0##_##S#+$0+$?$\?$O$_O$o$]o$$_$$0$%V%%_%&0&&V&&P&&V&&S&&y&'V'O'0O'_'V_'l'Sl'|'0|''V''0'']'O(0O(x(Vx((y((0((V((0((S( )] ))0))_))P) *V **_*}*V}**0**V*+0+:+]:++V++0++P+e,Ve,N-0N-i-Pi-}.V}..0./V//0/*/V*/C/0C/U/VU/e/0e//V//0/k0Vk0000F2V22022\22022V23033V3&30&33V33033V330364V644045V5~6066V6707 7P 78V8v90v9;V;@0@AVAA]A-A0-AAVAA0ABVBB0BBPBBVBB0BCPCtCVtCzCPzCeD0eDDSDF0FG]GTH0THxH\xHIVI@I0@IKVKK0KKVK#L0#L.LP.LSLQSL}LVLN0NNVNO0OPVPPXPQxQQXQQxQQ]QQ0QQVQRPRRVR2R02RARVARuR0uRRSRR]RR_RRPR SV SSPS{SV{S'U0'U7U_7Uf0~0!W0@ӰSӰ0Ի~0$00T0G0.0Bi00DG1QQ1ARuR1RR1nkk1Utt1WӰ1D%ESkRuR1z070b000(S(909QYOcYcsy~0`0u00S,0,?S? 0 6 0A _(0x((0(E30330N4f40u4:0::P:P;YP;n;x;A0B#B0bBYI0IK0K000>> 00>A000AB0B#B000#BbB0bBG000GG0GK000KK0KK000KK ySKRM 0SRM"N0"N9N 0S9NqN0qNN 0SNN0Nk000kl0lUp000Upp0p5u0005u[u0[uu000uu0uy000yIz0Iz0000000#0#000>0>f000f~0~000!0!000Ի0Ի~000~0$000$0000T0T0000G000G0000 0SH0H 0Sx000x 0S0. 0S.B0Bi000i0000LLVLCM\.\MMR MCMR.RMMR-MCMR.R-M5MRPp.P!.P-Tc cT-Uc cU#P#-uc cuBLUU^-^?^^^y^^ ^  ^L \ ^^\|^^_dd^*e4e^ef^#hh^hi^jtj^Pm_m^~^ʨ^έ^^~^^b^^^^<^^^^&u^^i^a^Yc^V-V?VVyVV V  VV\|VV_ddV*e4eVe6fV#hQhVhQiVjtjVPm_mV~V5VVbVVV<jVeVVV&uVV VaVYcVS-^S?SefS#h(hSh(iSjjS)jtjSPm_mS~S P B]-L]ef]~]])jtj]BSL^S?S#h(hSh(iSjjSPm_mST^U&Uf|UU\-TL\%T\?T\T\yTy\T\T \  T  \ zTbTTkT\\T\|\|T\]T^3bTc_dT_de\e*eT*e4e\f#hT#hh\hhThi\iiTj)j\tj lTlPmTPm_m\_m~TT\T'\'bTb\T\T\<T<\T\T\T\&T&u\uT\T\aTa9\9YTYc\cT\-TL\%T\?T\T\yTy\T\T \  T  \ zTbTTkT\\T\|\|T\]T^3bTc_dT_de\e*eT*e4e\f#hT#hh\hhThi\iiTj)j\tj lTlPmTPm_m\_m~TT\T'\'bTb\T\T\<T<\T\T\T\&T&u\uT\T\aTa9\9YTYc\cTThhTUUxLxxxxx<xx x x \ x @ xx55x_d4ex#hhxhhUhixj)jxPm_mxGxWxӰxɳxWKxx xxqxBx5x&_xxQxxxacxuhhu-0L0%0?z0b00k0]0^3b0c4e0f#h0hi0j)j0tj l0l~00"TLoThiTPmRmTRmYm +"PLoPhiPPmYmPpLoppLop"5PP={UUQhph{ ux)pk{U UPUxx<yxxxx x \ x @ xx55xxWxӰGxxWKxxx bxqx=x<xBxxuxxQxxx  <y       \   @   L\ |  55 & G W Ӱ  WK    b q < B  u_  Qx    <y       \   @   L\ |  55 & G W Ӱ  WK    b q < B  u_  Qx    <y       \   @   L\ |  55 & G W Ӱ  WK    b q < B  u_  Qx  PPVV<yVVVV V \ V @ VVL\V|VV55V&V7eVVTWVӰVVWKVVBVV bVqV=V<VBVVuVVQxVV\<y\\\\ \ \ \ @ \\L\\|\\55\&\7ي\\QW\Ӱu\\WK\e\\\ b\q\=\<\B\\u?\\Qx\\S<ySS \ S @ S55SSʨSWSSWKSS bSS<SBSS=NTT=NUU=DPDNuuhrUL V UTTUUx<yxxxx x L x @ xx55xʨxέxӰxx bxqxU<xBxxu_xxQxxxuux#Y  Y  x%]  ]55] b]^z<fzfy^  z55^tz b^z;Y;YxfyY55Y55xtx 3Y3>x>WYWbx^<y^t^^;Y;YxfyYtx7s]t]swPw]<f]],;R;x<SxfyRtx^  ^0^  ^Y ) YU< F U>HU/ 6 UpVVVV V @ VVL\V|VV&V7eVʨVӰVVBVVqV=VVuVVQxVVr}V  V}\\\\ \ @ \\L\\|\\&\7ي\ʨ\Ӱu\e\\\q\=\\u?\\Qx\\\/ @ \SS / SSS / S7P%9U-9UZt]U%UU%U!Y09Y!Y09Y)8U?EU.8U?EU@[UKQUQ[UKQUŴ]<]800<08]]<]L}^ ^}P^^ <^FPRPxx*x]PUPq ux)qU U[lTquT[lUquU[bPbluquuUUUUUUUU)000L\0|0&00u_00)]TTuTT +)]UUuUU?Juu?Juu]gULVUoUUppU|U7HTT7HUU7>P>HuublUKVUT[_TS\yS[%SPs[_sS\yS1JTT1mSS[S1@P@Jss\mSSz8\8Czz \22zTHxH\&\z"iz[x [THmH[mHxHx[x[&xx8\ \22\\"i\[x [x8]]22]]"i]P8SS22S"iSS SSC\\\`\]SSI&ISAlSBSSvTToUUvuuUUzr\z\22zI&I\۔zAzAl\=`zUUI IUALUUfUr\\22\۔\A\=`\UU r]]22]۔]A]=`]:>P>rSS22S۔SAS:SS=`SU[ f UU[ f UUyULT#'TLU#'ULQ#'Q!404LP!LRUUSyx #xSŖ;xxSKxSyx #xSŖ;xxSKx$TT$U$yx #xŖxUxP$uux#=-0 #0]K000l  00220&I@I0z{0%0w0C0L#00lٕ0)0Ŗ00>:0Ǡ'0~k00r00e90=0=-1 #1]K111l  11221&I@I1z{1%1w1C1L#11lٕ1)1Ŗ11>:1Ǡ'1~k11r11e91=1=uTuy + T# +ŖޖTӗؗTؗߗ +=P #PŖޖPӗߗP^h1WhpW|pPPU]qUp ux)]qpUUT+4TU-xKxxl  xx22x&I@Ixz{x%xwxCxL#xx>+x+0U0:xǠ'x~kxxrxxe9x=xu+0u04x#OYU,6UaUUup ux)pUU%T>BT%U>BUP%u>Bu:DU&Uz#\#.zz\22z&I@I\\zrz=z~.SS22S&I@ISSSrS=S#\\22\\r\=\#SS22SSrS=S#]]22]]r]=]P#VV22VVrVVV=V6IUOVUdV3V<OVVVćVCwVLVJxV~V5kVDrVwUUp ux)pU-UT~T\SSCKSPwS~SPs~s*\SSCKSCXTCGT<XUCGUCXuCGumwUU\|\l  \S|Sl  SVl  VOW0Vl  V UpvU1\3\K\\p\\z{\8{{\<\S:\Q\-\DvUULcpcv ux)pfvU,EUUUVS3SSzzSpV sx)3LpL sx) sx)zz sx)VSSzzS^Sx|TT|Uxxyxx x  xx*e4exɳxbxxx<x5x&uxxUxacx|uux#yyyyy y  yy*e.eT.e4eyɳybyyy<y5y&uyyacyP*e.ePQp#p*e.ep#pU  U 00y00 0  00\|00ɳ0G0b0000500&u00ac0 pTT"T_fTfj + -P-hRhyyyyy y  yyɳybyyy"R"y_y_jRj5y&uyyacy:hr:hrpU  UTY]TUY]UPuY]uUUXoUUeoUUUU0y00\|0G00&u00TyT&<TT +UyU&<UUuyuuyuU\fU*UU*pp*=UlvUUTTSS7SPssSSJcTTJc[c"xx<x0?1xUcxSxJYPYc{uu[[2V<VVU/6US S/S UU2SS2_R?_R_  _  _  _@ 7_7zRbRRkRR,_,?R?L_ A R[ $R$S%_S%%R&<'_O''_O(x(Rx((_((R((_ )}*R}*._..R.90_90k0Rk00_00R22_23R3E3_E3u4Ru44_45R5_5__55R5 9_ 9>R>&?_&?d?Rd?D@_D@@R@@_@A_AA_AARABRB#B_#BbBRbBC_CTHRxHH_HIR@I|JR|JJ_JKRK?K_?KKKRKKK_KOROhP_hPQRQR_R2RR2RAR_ARR:_~RǠR'~RkR!R!r__$a_aR_G_|R|ȫ_ȫRP_PR$_$RWӰRɳ_WRK_MRM_8R8_R_ɸRԻRuR_RTRT_RRGR_QRQ_R#_#R'_'nRn)_)BRB_R_ _B_R5t_tR_eR9__BRB_RiR!_!_R_/_/jRj_R____x_c_:OpO! x)!<p< x) Rx)? x)  Rx) x)   x)   x)   x)@ 7 x)7 Rx), x)?L x)$S% x)S%% Rx)&<' x)O'' x)x(( x)(( x)}** x)k00 x)22 x)3E3 x)u44 x)5q6 x)>&? x)&?d? Rx)d?D@ x)D@@ Rx)@@ x)@A x)AA x)AA Rx)BB x)xHH x)HI Rx)|JJ x)JK Rx)OO x)SO'_'Sl''SmmSssSCtUtSU''UV,'<'V_''V((VmmVssVCtUtVAoVUl'v'UTCtOtTU y,'<'y_'l'y((ymmysCtyCtKtUKtUtyAɸyuCtKtuKtOty#KmP_'d'P[mU_'f'UcmU_'f'US((Smm0S((SU,'6'UNN{NO]U{]S{N#OUOOUUUOO]U]S]O#OUOO_U_S_MOQOPQOOSSSOMOSUsSQ^Qk{?$O${$${%%^'U7U^[[{\7\{]]^k_?$O$_$$_%%_'U7U_[[_\7\_]]_Q^$$^[[^\7\^Q_$$_[[_\7\_V[[VPQV$$V\7\VRQx$$x[[x\%\xPP{PjQ]jQQ{QQ]ŀ2{2t]PPXPQxQQXQQxŀրx2EXEPxPiXitxPjQ]zQQ]ŀ2]PPXPQxŀրxPjQ^zQQ^ŀ2^.Q2QP2QjQVzQQV2VP.QVŀV SPS  S )6)SRDSS{SSSOTYTS p sx)$p$ sx)   sx) )6) sx)RDS sx){SS sx)OTYT sx)S  S )6)SRDSS{SSSOTYTS<QTOTSTT<QUQfy[  y ,"y#&$y$$yNOyROTyOTSTUSTYTyT'UyWXyXZyZZy`ayt5uyvwyUyMyu~ySy<QuOTSTuP!$!PU!&!UU!&!U S##S0 S##S#U !!UCMU !U\\[ z \##\YZ\^i\##\PS[  S,!=!S!!Sp sx)[ t pt   sx),!=! sx)!! sx)S,!=!S!!S%TZZT%UZZUP%uZZu?IU"&"UU##UU##UU! "UR6x##R#&$x$$x[YjYxu~xR##R#$x0,"#0$$0$$0%%06)}*0PQ0YTT0'U7U0VVW0=XX0[YyY0Z\0\]0^3b0c_d0g#h0tjnk0qs0tu0ŀt0w0#C00u~001,"#1$$1$$1%%16)}*1PQ1YTT1'U7U1VVW1=XX1[YyY1Z\1\]1^3b1c_d1g#h1tjnk1qs1tu1ŀt1w1#C11u~11J JTT$+$ $$ [YyY tu u~ 7X7Jx$+$X$$X[YnYXnYyYxttxu~XfS[YyYS``StuSu~S8JPttP$&$x1&$+$q"$+$S$$x1$$p$$SS,"Y"S=XGXSXXSX,"9"XX,"9"XT=XAXTUxY"#x+$$x%%x6)}*xPQxYTTx'U7UxVVVxVWx=XAXUAXXxZ\x\]x^`xa3bxc_dxg#hxtjnkxqsxŀtxwx#Cxxxu=XAXuSZ_Y""_+$?$_[&[_[[_[[_aa_a9a_KSY""S+$?$S[[S[\ST]]S__S`V`Sa>aSK\[&[\[[\P\""\[\\_]Y""]+$?$]))][[][[][\]\>]]T]]]_`]``]a>a]U""USY""S""S+$?$ST]]S__S`V`Sa>aS UY"f"U^""^+$?$^))^\\^T]i]^__^`@`^a>a^'^+$?$^nT`"`Tn_""______P_`V`"`U"`(`_nxPx`"`u_""_S""SM\\S__S>aaSb3bSrrSs,sSSpS_""_M\q\_q\t\Pt\\V_____P>aa_bb_bbPb3bVqr_rr_s5s__8]M\t\]__]8<P<x]""]b3b]q^""^O$o$^7\\^__^>a3b^cd^qEr^rr^sMs^ss^^p^^U""U_""_""_>aa_qr_rr_s5s__S""S>aaSrrSs,sSSpSPys)sP)s5syPpwPwyUs5sUUpUU""Up2x"#xO$_$x_$i$Ri$o$x%%x'U7UxV,WxWWx7\M\x]]xcdx#4x "x_$i$Ri$o$x"V"#VO$_$V%%V'U7UVV!WVWWV7\M\V]]VcdV#CV'2VO$_$V=QT7\D\T=P]PQUQ]"#]?$O$]o$$]%%] *u*]u*}*_PQ]'U7U]VVV]VW]Z[][[]\7\]7\D\UD\M\]]]]^^]^(__(__]cd]d_d_g h] h#h_tjk]k'k_'knk]ŀt]w]#C]=GPGP}PQu7\D\u~k_"#_?$O$_$$_%%_'U7U_[[_\7\_]]_X" #XYk^?$O$^WW0Yk^?$O$^t_=#_#_PuQ_zQQ_^^_s___ŀt_U=#F#UTs_w_TU\#=#\_##\o$$\PQ\^#_\#_(_^(_X_\s_w_Uw__\j"k\'knk\ŀt\Pus_w_u%_l##_o$$_Xl#y#X%Vo$$VrQzQ0%Vo$$V._#=#_jj_'k1k_8\#=#\_#l#\j"k\'knk\@\"#=#\_#l#\j"k\'knk\evTjjTevUv`^`aUa^_#l#^##^ *}*^VVV^ZZUZ[^g#h^jjUjnk^elPlvujjuU_#f#U0##0 *}*0VVV0Z[0g#h01##1 *}*1VVV1Z[1g#h1 ##  *}* VVV Z[ g#h  ##  *}* VVV Z[ g#h `^`aUa^##^ *}*^VVV^ZZUZ[^g#h^Px##x *}*xVVVxZ[xg#hx\VVV\P\##\Z[\gh\PV##V##V **VZ[VggVggVx##x **xZ[xg#hxe_##_ **_Z[_0##0 **0Z[0g#h0V##V##VZ[VggVggV8e_##_Z[_MaTZZTM`^`aUa^##^ZZUZ[^g#h^MWPW`~`auZZu_##_x##R##xx##R##xT||TU||UPu||uU\ k UTAJTU]xv  x W x  x172xkuuxIzpzxu}k~xy~~xAxAFUFUxԻxxxuAFuFJx#G]Ty~}~TG]Uy~}~UGSPS]uy~}~uwUv  US]S  S]g[  [oU ) Uwp ux) ) pU< U UTT[UxxA [ x[ukuxwwxwwxcxUýxyxQxx?ux P {u'1[[xTTx2VVA [ V[ukuVwwVVVUVxPvu2VVA [ V[ukuVwwVV˿VT¿TU]xA [ x$$x%D&x<'O'x'O(x( )xAAxAAxQQx_mmxSnnxoox[ukuxwwxHy{yxɸtxxʺxOxxU˿xuu¿x# z ]A [ ]AAz[uku]wwzww]ʺz<UA R U[ubuUwwU)]AA]ww]ʺ])<U8e\ww\eiPi\AA\ʺ\2VAAVwwVʺVU()UU()UI]'']Snn]oo]]]U''UTo oTUx''xQQx_m{mxmmxSnnxo oU ooxxPuo ou0:[''[^VzAAzQQV_momVommzmmVHy{yzVSAASQQS_mmSHy{ySVAAVommVHy{yVSAASommSHy{yS\omm\P\AA\Hy{y\]AA]omm]Hy{y] U((U8]\$$\%e&\<'O'\'(\(O(\ɸX\muPu[%%[%n&xup%%p%n& xx)[''[Xy<'O'y(O(yU,(6(U U(&(U'GRGXy<(I(RI(O(y/GRGXy<(I(RI(O(y - U- / QkusuUsuuuQ / TkuuuT / [/ F xkuuu[uuuxIzpzx / YkuuuY / PkuuuP  Q / {#kuuu{#N ] U@@US ] U@@Ue { U@@U  Vu S22S3E3S|JJS!rS  U33U [Lx353x53>3[>3E3xV353V U3 3UT5u>uTUzxbxx?xx A xO(x(x((x00x23xE3u4xABx#BbBxKKx5u:uU:uGuxyIzxx#x>xx~x!xԻx~x$xTxx.Bxixu5u:uu:u>ux#z0b00?00 A 0O(x(0((0000230E3u40AB0#BbB0KK0yIz00#0>0x00~0!0Ի0~0$0T00.B0i01TTT`eTen +1[[[y0`y`n[n~y,{,{DzVVV'?VCVrzVDLSSLzVV'?VCVrzVz1b11 ll1z|b|| ll|z H#b H# H# ll H#zybyy llyyybyRyyRyyby R yy R yxbxRxxRxxbx)R)x0x)R)/x0\b\/\5@\/@\@]b]@]EP]@O]PxOYRY_xZrxOYRY_xrybqRqy_yybqRqwyxwRx_xxwRxxRx_xxRx^^_^^^xRx_x xRx ______yTy_y%=yTy=xRx_xG_xRx_x_iRix|xoyTyxxoyTyxxx3TxT3U3bx  x6 A xE33x3u4x#BbBxKKxx}U}xԻx~x$xTx.Bxix3ux}u}x#TT[xh3q3xYxUxP{u[h3v3[`~T^bT`SE3h3S33SKKS.rS`tPt~s^bsSE3h3S33SKKSU33U P )y)cxyTx)[)Lx[x0xwV  V33V364V#B@BV~V$AVoVVTVkoPoS  S464S~SkSSTSwV33V34V#B@BV$AVoV[33[U33UbV6 A V64u4VQVsViVTxxsTYxxsYxPS6 A S64N4SiSS4SsS *UZ4`4U2HUN4T4USTppTSSUp{pSppS_QppQl}0}PlRTppT]U"]"kyy],?yUpp]ppUpp]Gy]ySUp{pSppS(VV,?V(x R x,?x"(S,?S0"(S,?S1kVV<ky9QPOcP>QPOcPQ`SsSV`SsShwUUmwUUUUUU[[[[VOVV9VY9IYY9IY+?TrvT+>]>?U?]T] 6 ]O(x(]((]00]23]33]AB]yIz]]T]#]>]!]r]rvUv]+5P5>}>?urvuS0 6 0O(x(0((0000230330AB0yIz00#0>0!0200ST 6 TTT +S+V 6 V00V23V33VٚVV*>V!V2VVitv 6 vitv 6 v+V00V23V33VٚVV*>V!V[00[00xS00S "TٚݚT "["`xO(_(xҋxٚxٚݚUݚx P"{ٚݚu4>[O(Y([[uT T[uUux_(x(x((xABxyIzxxҋ x U#x[uu ux#[ xx4C[C\xT xx4CTV((VyyVyIzVyVV"&P&`x((xy zxS((SyySy)zS{SS`V((VyyV\yVVku[(([u]T]((]yy]\]T]ux((xyyx\xUxP x##pu#p x##p,!!0$$0vw0M0,!!1$$1vw1M1,!! $$ vw M ,!!x$$xvwxMx=!!S$$S^wwS!!P!!SMS!!P!!\$$P$$\H\^!w!Pw!!]$$]vv]E]d!!x$$xMxQ!^!0^!w!Pw!!]$$]vv]E]Q!!0$$0vv0M0!!]$$]E]!!\H\!!S*1+V..V//Vo(oV9qVV2\VV*+]//]o#o]*+]//]o#o]*+TooT*+U+.y./y/k0y45yooUoUpypqyuuyNvvyǁy|yyGժyɳWy9yBy*+uoouooy#1+o+V./V~//V:+o+]./]~//]]+o+S~//S0]+o+S~//Sx++V..V0VV++TT++U+.x/~/x/k0x45x(oUpxpqxNvvxǁx|xxUxGժxɳWx++uux#D,N,UC/N/UZ,N-V/C/VU/e/V(oVoVooVHpUpVppVNv|vVvvVe,,S*/C/SHpPpSppSNvvSvvS,,THpLpT,,UHpLpU,,P,,uHpLpu,-UU/^/U--TkqoqT--UkqoqU--P--ukqoqu--Ue/s/UJ..S//S\.f.U//Ur..V//V}..x..S//S5q6x>>S>d?xd?p?Sp??x??S?@xBBxOOxOOSŀx:NS5@ B#B bBTH @I|J KK KN OP QQ QR 7U>sd?p?sp??x#??s??x#OOs>> x#>>Pd?x?x??x#?? x# N$x# !6q6yq6~6S?@S@@y@@SB#BS}BBSOOSŀS/SS6> ?@ B#B bBTH @I|J KK KN OO OP QQ QR 7U0?@0B#B0bBTH0@I|J0KK0KN0OO0OP0QQ0QR07U_GTH_@I|J_?KKK_KN_OO_7U_GTH_@I|J_?KKK_KN_OO_7UGTH@I|JKNOO7U GTH @I|J KN OO 7U0GTH0@I|J0KN0OO07U1GTH1@I|J1KN1OO17U GTH @I|J KN OO 7U0GTH0@I|J0KN0OO07U1GTH1@I|J1KN1OO17U;;S6S;;YYIgIY;]<VGHV@IYIVKKV;>1GTH1KN1OO17U000GTH000KK000OO0007UU000UUy0y#xUUySy#xUU ySU9GTH9KN9OO97U1GTH1OO17U=GTH=OO=7U +GTH +OO +7U 9GTH 9OO 97U{GTH{OO{7U :GTH :OO :7Uy H$H[7U9>V H$H0OOVh<{<p{<=v H$H{7UU0UU1U0GTH07U GTH OO 7U>VOOV>>VOOV7UJpJSSPJZJUUKK[IL}LVNNVSL]LQNNQhL}L\NN\Ub0hL}L\NN\LLVqNNVLLPqNzNPLLPLqNxNNxGu[uxuux dxHx.x"NqNx"NqN1"NqNx"NqNyBNjNVjNqNvTNXNP_NqNQ+N_NV_NjNvjNqNVhM"N0NN0Gu[u0uu0 0H0hM"NVNNVGu[uVuuV =VHVhMlMPlM"NxNNxGu[uxuux |xHxMMPMMSNNSGuRuSsMMSCSM"NxNNTNNx |x N"NSTTQ)u/uQTTU)u/uUTTU)u/uUV0WX0WOWxWWXWWxwx#8X8CxWW0WW0w0W0WX0WOWxwx,WW^WW^w^cWgWPgWWVWWVV!WcWVwV#8X8CxKaa aa0ab1qr0rr]rs 5ss11lavaUrrUaaUU rrUm?m\?mPmVm3mV}}SUzG\Gbzby\yz\ֆzֆ\SمG\Wb\y\ֆ\مGSWbSySֆSG]Wb]y]ֆ]PGVWbVyVVVֆV\hUߏSߏKxUUޛU]]ؠ'V'S+.0 '] ']ǹ\ѹS0]]ȾPʾUʾUxSx{QUUVzQfzUnzU/KU/PSMwSwxS2{2\S\{9]owSwxx2x\xo]]2]\]}VV2V\VPSS\SwS.SPU USV0]]COU-9U1S@C01]1]wwww w(w0w8rwrsw8stw0tvw(vxw xzwz|w|wpwpsw8stw0tvw(vxw xzwz|w|wwUx]x}U}U]U]U]U]Ux]x}U}*]*U]U]TNSN}T}TSTT%S%*T*SQz^z}Q}z^z}Q}*^*GQG^Q^?0?cT}T0}T*T*0?0?cQ}T0}Q*Q*0?0?cR}T0}R~*R*0?0?cX}T0}X~*X*0?0?cY}T0}Y~*Y*0csSn0}0P__~6<T<CPCT~PT~P%P=KPcqPPHcU}UNcs}sT0P,wT6T1T  "w"$w$&w&(w (,w(,0w007w87ww8w0w(w wwwh2w Us~sU ~ U$U$~U~5U5~U,~,1U1q~qU~U~(U(~~~eUe~U~U~PUP?~?uUu}~}U~UP~PWUWm~mUW!~W!!U!!~!!U!#~#C$UC$.~._.U_..~..U.;0~;0T0UT00~0r1Ur1h2~ TsTsT \ T$T$#T#G$TG$u$\u$$T$%\%h2T QsQsQ V Q$Q$#Q#G$QG$$V$$Q$%V%h2Q 0s\s 0$0$_\\\O\1e\\\\j\3l\(##\#$0$$\$%0%)\*?-\x-.\_..\//\//\00\11\2h2\ 0]s 0$0 ]|]]Mc]!]3d]8#Z#]b##]##]#$0$%0&']&'Y']'']?-f-]x--]..].Q/]c//]//]//]11]2h2] 0Vs 0$0 VVV|VVMcVlV&PV8#Z#Vb##V#$0$$V$%0&(Vc*q*V*+V?--V./V00V1h2V  00h20O$h$Ph$m$^$%P%%^s]#}$]$%]e%%PV VVV|VVMcVlV&PV8#Z#Vb##V$$V&(Vc*q*V*+V?--V./V00V1h2V] ]|]]Mc]!]3d]8#Z#]b##]##]&']&'Y']'']?-f-]x--]..].Q/]c//]//]//]11]2h2]s\$_\\\O\1e\\\\j\3l\(##\$$\%)\*?-\x-.\_..\//\//\00\11\2h2\s~$~~5~,~1q~~~(~~e~~~P?~u}~~P~Wm~W!~!!~!#~$$~%.~_..~.;0~T00~r1h2~Ps~$~~5~,~1q~~~(~~e~~~P~?~u}~~P~Wm~~&~0W!~!!~!#~$$~%&'~')~*.~_..~.;0~T00~r1h2~\|>V>]v~eV>CPCs~$~~5O~,~eq~|~l~+P~Wm~(#8#~-.~_..~/;0~T00~r11~E0c05O010e00(~0e0j0Pg0l}00m0  0W!!0 #(#0/00"110X0Xs~$~~0~U~,~1q~~~(~~e~~~??~u}~~P~Wm~W!~!!~!Z#~b##~##0##~$$~%&'~&''0'.~F.K.~_..~.;0~T00~r1h2~ 0~Z0Z^P^~05~O01e00|00~(~~e~~j~j0?g~gl0?~u}~~+~ 0  ~ W!0!!~! #0 #(#~8##0$$0%-0F.K.S./00001h200s~$~~0~,~1q~~~(~~e~~~??~u}~~P~Wm~W!~!!~!#~$$~%&'~&''0'.~F.K.~_..~.;0~T00~r1h2~s0$0^ 0 ^05^50^c0c}^}~(~^e^j^j0?^0}^^+^+m0P0P^000(#^(##0$$0%h20mpUpupus~$~~~5~,~1q~~~(~~e~~~P?~u}~~P~Wm~W!~!!~!Z#~b##~##~$$~%&'~'.~_..~.;0~T00~r1h2~3sS$*S*~S~S~S~S~cgPg~5O~,~eq~|S~~(~~e~~j~Pg~l~?~u}~~+~+P~Wm~  ~!!~ #(#~(#3#S3#8#~-.~_..~/;0~T00~r11~# s0$0_ 0 w_wxUx_05_50_c0cj_j0?_0_U+_+m0m_P0PTUTZ_ZT0T(#_(##0$$0%h20s0$0] 0 ]05]50]c0ca]a~(~]e]j]j0?]0}]]+]+m0P0P]000(#](##0$$0%h200Us~$~~ 0  P ~0~,~1q~0U~0~s0s|S|~0~c0c~(~~e~~~?~l0l?~u}~~P~Wm~T0T~ 0 W!~!!~!8#~8#Z#0b##0$$0%&~&/)0/))~)+0+?-~?--0-.~F.K.~_..~./0/;0~T00~000r11~1h200S'0'S05SO01e00|00zSz~(~SeSjSj0?gSgl0}SS+S 0  S W!0W!!S! #0 #(#S8##0$$0%-0F.K.S./00001h20s0$0SV0V5#0#(S(#0$$0%h20Ps~$~~5~,~1q~~~(~~e~~~P~?~u}~~P~Wm~~&~0W!~!!~!#~$$~%&'~&'-'P-')~*.~_..~.;0~T00~r1h2~0PN0NXPXs0$00P~P~n0n_0P \ Y 0Y d Pd  \ 0 0 050\0\_c\c{00Pg0\3\3X0l0P\P00\00\P6 \6  0W!!0 ##0$$0%&0&&P&&_&&0&&P&'_&''0''P''~'(0()V))0)c*Vc*q*0q*~*P~**V*?-0?-x-\x--0--_-.0.c/\c/j/Pj//\//_//\//U//_/102A200PH0HXPX0R~s0$00P~P~0w  0  R  ~ 05O0OX~h0~0$0c0P0R~30P00!0!"~""R")"~)"P"RP"Z#0b##0##P##~##0$$0%%R% &~ &(0((0()P)/)~/))0))P))~)*~**Rc*,0,,~-?-0x-.0/h20vP<JP)BP3<P##P--P00P~#0. q $0.( p0.PVP]0_00__0|0/0/5P5~ ~0ev~v0P0~00j~Pg~g0l0~0?~u}~0+0m0 0  ~ W!0!!~! #0 #(#~8#Z#0b##0$$_&'0')_))T**_**T*+_?--0./000_1h20s0$00500P#0$$0%.0K.h200SP_~00S9O_1_e_S0|0j0P0l0l_+0+m_m(#08#Z#0b##0$$S&'0'*S**R*+S?--0.5.0./0/T0_00S"11_1h200^00^^0^|00(\(0\j0P0l0+0m\(#08#Z#0b##0$$^&'0')^))Q**^**Q*+^?--0./000^1h200\|\:0]V~eV020 s0$0V005O0ht0V10Uq0qVj0P0X~Z#0b##0$$0%_&0&(0((P((X()~/))0))~))X)*~**P*9*X9*,0--0&-"10"1I1VI1h20Ps~$~~P~5~,~1q~~~(~~e~~~P?~u}~~P~Wm~W!~!!~!#~$$~%&'~'.~_..~.;0~T00~r1h2~NXPXs~$~~P~5~,~1q~~~(~~e~~~P?~u}~~P~Wm~W!~!!~!Z#~b##~##~$$~%&'~'.~_..~.;0~T00~r1h2~P]]]$$]')]**]*+]00] Su Su Su$$ Su'+ Su00 Su \u \u \u$$ \u'+ \u00 \u Au Au Au$$ Au'+ Au00 AuPP___$$_')_))T**_**T*+_00_^^$$^')^))Q**^**Q*+^00^SS$$S'*S**R*+S00S_pT''T_pU''U_fPfpu''uUUUUUU UUU~~~N+u+~++~   N+u+ ++ 000N+u+0++0_____^^^^SSSS((U((U&(C(U7(C(U()~*c*~(c* (c*0))V).)X7)H)U<)H)UN)k)U_)k)Ut))U))U+,+P+.+U"+.+U++U++UT,,TU,,UPu,,u'1UhnUT%%TR~OX~%%R% &~,,~Pr%%rRO]RGs^$Z^^5O^1q^|^(#8#^?&&^-?-^-.^_..^/;0^T00^Gs_$m__1e_|_(#8#_?&&_-?-_-.__.._00_7S-?-SP~Ue~?&_&~Rs]$Q]]1e]|](#8#]?&&]-?-]-.]_..]00]UIOUU=CUU17U>s\$_\\|\(#8#\-.\_..\00\>s $  5O 1 e  | l +m (#8# -. /0 01 >s0$005O010e00|0l0+m0(#8#0-.0/00010Ps|$*||||||SsS|| N$| !X]5>]T00]XV5>VT00VmwPw_P_~5O_1_e_l_+m_/T0_T0[0P[0f0_"11__\5>\T00\~P5>P]>O]]eq]l]+<]Wm]/;0]11]V>OVVeqVlVV+7VWhV/;0V11VP0P04~>OP/0P 000\>O\\eq\l\+<\Wm\/;0\11\X>OX0RPeiP@RUekUHRUekUs^l^r1111^kUl}UU11U^r11^U\r11\P\]r11]U+3UWdU#0<P0U\<P\P#\#]<P]WdU/UU/UUL_UUkVqVP~~.5.~K._.~..~0"1~#00.5.0K._.0..00"10#\\.5.\K._.\..\0"1\#__.5._K._._.._0"1_^bPbSSK.V.S*^S01S__.5._~~U5~?P~~U~~~U~5~~U~~~U5~&~U~&^^5^+5^^5__5_:D_%_D]]%5]IT]%5]T~U~^v~U~vS{ST//T _c_$__&P_Zz__T_?-i-_.._.T/_c//_//_//\//U//_P//u _c_$__&P_Zz__T_?-i-_.._.T/_c//_B [ T..TB [ P..PB Q QQ [ p..pz  UU  UMXU  ^^M^!^&P^0^  \\M\P\ZT\  R  ~~&8R8P~. 2 P2 m ]5M]0] . ]]&P]w  \\$\Z\0T\  UU  ^Z^0T^  T  ~Z~0T~  0  PZiP0P  0  PP  TPTT w_wxUx__cj_P__U+_m_PTUTZ_T(#_  P  PTu1 ~~c~(~~e~~j~P~?~u}~~+~Tt ~ W!~!!~!(#~1   cj P + m Tt  (# 1 00cj0P0+0m0Tt 0 (#0  UU 0 \\T\\a\ , TTXT , PTXP " Q" , pTXp> H UU  T""T  R  ~~~g~  ~!"~""R")"~  P  r""r  RR> H UUf  Q  ~  Q-!>!~f  T  ~  T-!9!~f \c\(~\\\\+\ W!\  P  SS !Sm  S  S-!W!S UouU UciUcxTTcxUx_j_Pg__U+_m_  _W!!_ #(#_cxuuUU(~UUU j Pg  + m   W!! #(# 0j0Pg00+0m0  0W!!0 #(#0uu(~uuuP(0~Hcu N$u !q~u|~8#Z#~b##~| 8#Z# b## |08#Z#0b##0UUA\v\\HVvVVP/~/5P5~e~P~j~Pg~~?~u}~P~  ~!!~ #(#~QW~v~~&Pv{P{ ~##H<\ev\\8\Pg\\?\u}\  \!!\HZVevVVQVPgVV?Vu}V  V!!V\PPevPP0u}PO[Q[C~ev~~?~Pg~~?~u}~  ~!!~uXevXPPUUUURTRqPXTXa~ag  T  !!!!T!!~!!RUPaU  U!!U5RTRq~!!~5RUNq\!!\CRRRq~!!~IUUU1j0 #(#01IUEj\ #(#\~P\~!!\!!\?ITIj~ #(#~UUUUUUUUU:EPE~0:Y~eYQRs(00}00m0sT~}~TswPw(~~}~~m~P\\\~\}\\(~~U~m~(\\UUUUUU XX\)*V**0F.K.0\R**0R3l~1h2~3X0XaPal_11P11_12\2h203R0RaPal_11P11_12\2 2P 2h2_?u~&&_;0T0_0Pw32 qXRp2r2wr2w2ww22w22w 22w(22w022w82?w??w8??w0??w(??w ??w??w??w?omwp2}2U}25^557~`57<^<<p`<>U>>~`>?U?H^HJUJAL^ALPLUPL|L^|LL~`L[M^[MjMUjMvM^vMMUMN^NNUNN^N~PU~P%Q^%QsQUsQ S^ S7SU7SS^STUTT^TUUU%U~`%UU>>~`>?U?H^HJUJAL^ALPLUPL|L^|LL~`L[M^[MjMUjMvM^vMMUMN^NNUNN^N~PU~P%Q^%QsQUsQ S^ S7SU7SS^STUTT^TUUU%U~`%USN~OS~OOsTP~PSU%US\NO\TP~P\U UT U%U\V>?0??V? E0 EHVHNI~JK0K7KV7KK0KKVKAL0PLLVLL~LMVM7M07M[MVjMvMVMM0MHNVHNN0NPVPQ0QRVRS0SSVS\T0\TsTVsTT0TTVTT0TUVU s|)N~O s|)~OO s|)TP~P s|)PQVB0B/C0DFJ0J7K0KK0KL0ALM0M7S0SS]ST0\TT0TU]UOV0OVfVPfVV\VvY0vYYPYYVY_0__]_a0aaPa.aV.aba0alc0lcscPscc\cc0c$d0^dqf0qffVfg0mhh0jj01kl0ull0lom05%6S%6-6s-657Sk<o=So=w=sw=\?SNzOSzO~Os~OOSTP~PS%QUQS S7SSU%US~>?~??0?eH0eHHSHNI~wIK0K7KS7KAL0PL\L0\LLSLL~L[M0jMUN0UNdN~dNN0NP~P"PPTP~P~~PP0PPPP%Q0%QUQ~UQ_QP_QsQ~sQ(S0(S7S~7SS0ST0U%U~%U~>5?~5??0?uH0uH|HR|HI~I-K0-K7KR7KAL0ALPL~PL\L0\LL~L[M0[MjM~jMvM0vMM~MZN0ZNdNRdNN0NO~OTP0TP~P~~PP0PPRP%Q0%Q5Q~5QEQ0EQUQ~UQS0S7S~7SS0ST0U%U~%U~>m?~m??P?zH0zH|HP|HI~II0IIPJ2K02K7KP7KAL0ALPL~PL\L0\LL~L[M0[MjM~jMvM0vMM~MMPMM~M_N0_NdNPdNN0NN0NO~OTP0TP~P~~PP0PP~PEQ0EQUQ~UQ S0 S7S~7SS0STPTT~TT0U%U~%U? HNdN NN  S7S ST U%U X[ C[[ \%] _ ` aUa bb 9kmk 0557 >? HNdN NN  S7S ST U%U X[ C[[ \%] _ ` aUa bb 9kmk 0557 ܩ>? ܩHNdN ܩNN ܩ S7S ܩST ܩU%U ܩX[ ܩC[[ ܩ\%] ܩ_ ` ܩaUa ܩbb ܩ9kmk ܩ75i5PHNPNP{557~>?~_NdN~NN~ S7S~ST~U%U~X[~C[[~\%]~_ `~aUa~bb~9kmk~55~55~5<60>,>0>>0UU0XX05 6Q>>QU UQ55\5 6T 6<6\>,>\>>\U UT UU\XX\55_5 6U 6<6_>,>_>>_U UU UU_XX_56P6 6u#hU Uu#h>>\>>U>>U6%6U>&>U5<60J6570>>0U%U0X[0C[[0\%]0_ `0aUa0bb055\5 6T 6<6\J6N6PN657\>>\U UT U%U\X[\C[[\[[T[[\\\\\%]\__\aUa\bb\55_5 6U 6<6_J6w6_w66U66_66U67_77U757_>>_U UU UU_UUUU%U_X[_C[o[_o[s[Us[[_[[U[[_\\_\\T\%]__ `_aUa_bb_h6{6P{66u#h[[u#h,><>\8><>P>>\>>P5<606570>,>0A>>0>>0U%U0XX0Z[0C[y[05-6S-6<6s657S>,>SA>>S>>SU%USXXSZ[SC[y[S55_5 6U 6<6_66_66U67_77U757_>,>_A>>_>>_U UU UU_UUUU%U_XX_Z[_C[o[_o[s[Us[y[_66PN>Z>SV>Z>P>>S>>P5<606570>,>0h>>0U%U0XX0Z[067Qh>>QUUQ5-6S-6<6s657S>,>Sh>>SU%USXXSZ[S55_5 6U 6<6_67_77U757_>,>_h>>_U UU UU_UUUU%U_XX_Z[_67Pq>>Sy>>U>>U7/7U>%?~(S1SR1S7S~>?~(S1SR1S7S~??~NN~ SS~S"SR"S(S~ST~9kmk~?5?~S"SR"S(S~5??~NN~ SSRSS~ST~9kmk~??W?~ SSRSS~XXU[[0XXUXXUXXUX YUX YUYYVbbVYZSZZS\]S__S.aUaSYYvZZvYZS\]S__S.aUaSZZU\\UZZU\\U$Z_rNN_NOP_OPTPTTPR_UReR_sTT__NOP_OPTPTTPR_sTT__NOP_OPTPTTPP_QR_TT_ ܩNP ܩ%QsQ ܩ NP %QsQ  NP %QsQ ~N~P~PP~%QsQ~0NO0TP~P0\NO\TP~P\_NO_TP~P_>UOTP~%QEQ~EQNQRNQsQ~Bbtb~OO~EQNQRNQUQ~OTP~%Q.QR.QEQ~UQsQ~Bbtb~OO~%Q.QR.Q5Q~OTP~5Q>QR>QEQ~UQsQ~Bbtb~OO~5Q>QR>QEQ~UUU%X+XUUUU%X+XUUUU5X;XUUUU5X;XUUUUXXUUUUXXUVV\Eclc\V_WSWWSbbScEcSVV|V_W s~)WW|WW s~)bb s~)cEc s~)V_WSWWSbbScEcSVVUWWUVVUWWUVWUWWU WWUWWUW2WUWWU(W2WUWWULWW~WWRWX~LWW~WX~LWWWRWWW~WX~OWwWUWWU[WW\WX\_WWSWXSLWwWPWWPoWwWUWWUqWwWUWWUwWW\XX\|WW\XX\WWSWWS\\\~l\\~tbzbRzbb~\\\~l\\~tbb~\\R\\\~l\\~tbb~\A\UtbzbU!\\\\l\\\tbb\%\\\Sl\\StbbS\A\PtbxbP5\A\UtbzbU7\A\UtbzbUA\\\\l\\\bb\F\Q\\bb\Q\\\Sl\\SV\\\Sl\\Sm??~NN~STRTT~9kmk~??PNNP??V??V@*@TkkT@)@_)@*@U*@@_@@U@aA_aAbAUbA9B_9B:BU:BC_CJTJJ_JJTJK_K7KT7KCK_CKUKTUKK_KMTM7M_7MMTMM_MHNTdNrN_7SyS_ySSTT+T_+TsTT[[TX]]T ^_TUaYaUYaa_aaTee_eeTgiTi(i_(i-iT-iJi_JiOiTOii_iiTii_ijTj#k_#k9kTmkkTkkUkgl_glulTulylUyll_llTll_lmUm^m_^momT@ @P @)@)@*@ukku7@@]7SS]T+T]Ua]a]?@T@pT@@ }~)7SKSpKSS }~)T+T }~)Ua]a }~)|@@TUaYaT|@@_@@U@aA_aAbAUbA9B_9B:BU:BC_CJTJJ_JJTJK_K7KT7KCK_CKUKTUKK_KMTM7M_7MMTMM_MHNTdNrN_+TsTT[[TX]]T ^_TUaYaUYaba_ee_eeTgiTi(i_(i-iT-iJi_JiOiTOii_iiTii_ijTj#k_#k9kTmkkTkgl_glulTulylUyll_llTll_lmUm^m_^momT|@@P@@@@uUaYau@@TjjT@A]KK]M7M]MM]dNhN]jj]jjUjk]ll]ll]lam]@@P@@}jju@AUM7MUjjUmmUmm~@K KHN dNrN +TsT [[ X]] ^_ ee gj jj 1k9k mkk kom @K0KHN0dNrN0+TsT0[[0X]]0 ^_0ee0gj0jj01k9k0mkk0kom0@K1KHN1dNrN1+TsT1[[1X]]1 ^_1ee1gj1jj11k9k1mkk1kom1@AuM7Mummumm~#M*Mu N$u !*M7MujjPjj~jjPjjVjjVmmUmm~0A:AUKKUQAbATlmTQAbAUbA9B_9B:BU:BC_CJTJJ_JJTJK_K7KT7KCK_CKUKTUKK_KMT7MMTMM_MHNTdNrN_+TsTT[[TX]]T ^_Tee_eeTgiTi(i_(i-iT-iJi_JiOiTOii_iiTii_ijT1k9kTmkkTkgl_glulTulylUyll_llTll_lmUmm_QAXAPXAbAulmuqAK0KM07MHN0dNrN0+TsT0[[0X]]0 ^_0ee0gj01k9k0mkk0kl0qAAPMMPMM~dNrNPllPAAQAAp#hllp#hMM0MM]dNrN0hNrN]AAU7K=KUA>B]FJJ]uKK]MM]ul}l]ll]A7K CKK KM 7MM MHN +TsT [[ X]] ^_ ee gj 1k9k mkk kl A7K0CKK0KM07MM0MHN0+TsT0[[0X]]0 ^_0ee0gj01k9k0mkk0kl0AB}FJSJ}JJ}MM}FJLJ}LJSJPJJ~JJ}JJ} N$} !&B:BTulylT&B9B_9B:BU:BC_CJTJFJ_JK_K7KTCKUKTUKuK_KMT7MMTMM_MHNT+TsTT[[TX]]T ^_Tee_eeTgiTi(i_(i-iT-iJi_JiOiTOii_iiTii_ijT1k9kTmkkTkgl_glulTulylUyll_&B0BP0B9B9B:BuulyluRBfBT:l>lTRB/C]JFJ]JK]eKuK]MM]ee]kk]kk]k:l]:l>lU>lDl]RB\BP\BfB}:l>luBBUJ!JUJKUMMUllUBFJ J7K CKeK KM 7MM MM MHN +TsT [[ X]] ^_ ee gj 1k9k mkk kl BFJ0J7K0CKeK0KM07MM0MM0MHN0+TsT0[[0X]]0 ^_0ee0gj01k9k0mkk0kl0BBuJ!JuJKuMMuJJuJ!J\JJuJKu N$u !KK|KK\BBU0J@JUC+CTkkTC+CUkkUC!CP!C+Cukku=CGCUUK[KUSCJ K7K CKUK KM 7MM MHN +TsT [[ X]] ^_ gi jj 1k9k mkk SCJ0K7K0CKUK0KM07MM0MHN0+TsT0[[0X]]0 ^_0gi0jj01k9k0mkk0CCThhTCVD_CKUK_5LAL_+TNT_gg_hhUhh_CCPCChhu DVD_CKUK_5LAL_+TNT_:DDDU5L;LU[DE_K5L_7M[M_^^_K_V_____gEh_Shh_hh_[DtDTtDD~gh~Sh]hT[DE]K5L]7M;M]JMNM]SMVM]^_]_?_]K__]gh]hh]DDPDDV%L5LVhhVbDDVghVShmhVDDUL LUDEUKKU$EySy~nop#+ySy~#+n o0/pp0pp0iqq0tt0+wMw04y{y0yy]y z0{{0n o0/pp0)qq^qq0tt^ouu^+wMw0 xxS4y{y0yy0y z^{{0c~~Sn o0/pq0qVq]Vqq0tt0tt]tt0ouu]+ww0 xx04y{y0y z0{{0c~~0n o0/pq0tt0ouu0+ww0 xx04y{y0y z0{{0c~~0noS/ppS+wMwS4y{yS{{S{{SnnU/p6pUGpppT4y8yT>yLyTLySy 0+GpopVopppUppqVttVouuV xxV4y8yU8y{yVy zV{{Vc~~VXpppT4y8yTXpopVopppUppqVttVouuV xxV4y8yU8y>yVy zV{{Vc~~VXpopvopppu4y8yu>y{yV>yLyTLySy 0+ppT{{TpqVttVouuV xxVy zV{{Vc~~VppPppv{{vppT{{Tpq]tt]yy]{{U{{]ppPpp}{{upq0tt0ouu0 xx0y z0c~~0pq1tt1ouu1 xx1y z1c~~1p q^ xBx^xx^~~^~~^pq_tt_ouu_ xx_y z_c~~_ qVq^tt^ouu^AqVq]ouu]xx0AqVq]ouu]rqq^tt^qqPxxxx_xxxx_c~~~~_~~~~_ xxSc~~S;xx_xx_c~~_~~_;xxSxxSc~~S~~SOx~x^~~^~xxPxx^xx^c~~^IxSxRSxx~xx~c~~~~~~yy]y z0yy]y z^y z^o)oV;oLoV]tpt\ptutVo)oV;oLoVrrSttS~zzSrs]t0u]uu] z~z]~zzTzz] {k{]{{]}}] ~'~]E~^~]rr\rrUrr\tu\ u0u\ ztz\~zzUzz\ ~~\rrPrr|rru~zzurr\ u0u\rsV{{Vr6t u u ?uou uu z{ || }} ~c~ r6t0u u0?uou0uu0z{0||0}}0~c~0sqs\u u\uu\2{C{\~,~\E~c~\FsLsLssVssuuuuV||~,~V,~E~E~c~V:ssSuuS||S~c~ShssVuuV||V,~E~VhssSuuS||S,~E~Swss^uu^||^,~E~^ssPss\uu\||\qss\,~E~\s6tV?uouVz {Vs,t\?uPu\_uou\t6t]_uou]NtutS0u?uSyz~z0St]tS0u?uSuuuHv_Hv[v[vrv_{ |_}}}}_} ~urvS{ |S} ~SuHv_Pv[v_}}_} ~_uHvSPv[vS}}S} ~SuHv\Pv[v\}}\} ~\vvPvHvVPv[vV}}V} ~VuvV}}Vww\Cz~z0ww\ww0Cztz\Cztz\C{{\}}\ss0k{{^k{{^uooPoowuoo3uoo1uoo uoo R!w!w w/U/Uw w ww FwFKw KLwLNwNPwPww www w  w  w wwUKSKOUOSU S U/_PP/RR@bXbKSKOUOSU S UObXbORR "w"$w$,w,4w 4;w(;bwbfw(fgw giwikwkpwpww(w www>w>?w(?@w @BwBHwHIw ;U;fSflUlSU?S?IULP PLRr R\bL b;fSflUlSlbL blR RSU?S?IUPWwWqwqrwPZUZ\P\rUUUwwwUPUwwww w((w0()w()*w *,w,.w./wU$V$/UT,\,/TQ$]$/Q0$S$V07w7jwjnw0:U:<P<nUprwrwww{w{w w(w0w(w wwwpUVUpT\TpQ]Qp0SVwwww w(w w( w wwwRwRVw(VWw WYwY[w[`w`ww(w wwwU S UVSV_U_`U`SUPVPRVR-q3$|"-bVbVVbVVRVSV_U_`U`SUVSV_U_`UPRRVSV_U_`Uwwww w(w0w8ww8w0w(w www: wU_U: _TVT: VQ\Q: \0S: S_: _ mPP 2Q25T5mtQ!-r3$y"-!mbmb#mbmb#2Q25T5mtQ#_: __: _TPPTTT TbTbTbTbTTT_: __ : _P  P+T  T+b+  b+b+  b+T  T_ : _@ B wB D wD F wF N w N V w(V ] w0] w w0 w( w w w w w ww { w0{ | w(| ~ w ~ w w w w w0 w( w w w w@ ` U` S U { S{ U U S Un P Pn R R rt ~ 4q2$|"4~ b b q D b q D R { S{ U U S U { S{ U U { S{ U U, y P, M RM y r< y by  DB y by  DB M RM y rB { S{ U Uw { S{ U U { S{ U U P # R # R { S{ U U! { S{ U U S U w w w w w(  w0 w w0 w( w w w w k wk l w0l m w(m o w o q wq s ws t w U S U l Sl t U U S U l Sl t U  p8% p8%  p8%1 p8%1 J TJ ~v T ~v ~ m ~vm s ~ " R" J r R J bJ  b  b k wk t ' / - w w w w w( w0 w8 ww8w0w(w wwwJw U ^UJ^ T J Q J 0 ]J] ^J^ p8%^p8% p8%1^p8%1 U QskUsJs T t^T b QybbJw -PRwRTwT\w\dw dkw(kEwEFw(FGw GIwIKwKPwPww(w wwwPpUpFSFLULSUpp8%1>p8%1p]>]L]pRr>RpcD*>ccD4SpS>SLSUSUwwtwtuwuwKwKLwLMwM[w[\w\]w]jwjkwkpwp~wUuSuvUvLSLMUM\S\]U]kSkoUopUp~S@a@Hv-vMHMQaQ]H]oao~Hthphptht~hpHbH---?"bpPvaX0a0MPaXa;Ma-P-www0www0ww w0 ww w0USUSUSUU Sa X 4aXa Xhlh l X-FbFLX444?"LNbN\Brar\adNaNdwaa4\4LS SU $w$1w15w *U*,P,5U@DwDQwQTw@JUJLPLTU`dwdqwquw`jUjlPluUUUwwwwww w @w@EwPTwTww wxwPcUcxUPcacwwwx`Pcbcxhwwww w(ww(w wwwTwUSUTSaTPPRRbbbRf#S|P|Rb#b#R#S`dwdw w`jUjwPwU`waww``wbwhww wUUa-bhww wUUa4blwww0w0w0w0wwUS*U*SUa*h*6a6hb*`*6b6`aw*P!aswaa6SUNSUwwwUUa-ww9w 9>w>Gw U >S>GU a Gh b %w%G-PQwQXwXuw uvwvwP\U\vSvUwwww w(ww(w wwwwUSUSaP>P_ePR>R_eRb>b>_eb>b>_eb>R_eR_SSPPRRb_bb_bRR_SSwwww w(ww(w wwwSwSTw(TUw UWwWYwYhwh wUTSTbUb Sa-%a% -#TSTbUb S6IPbP6IRbR<G-q3$|"-GIcbc3 bc3 bR S & P Q R Q cQ  Q cQ  Q R S w w w w w( ]!w]!^!w(^!_!w _!e!we!g!wg!p!wp!,#w U ^!S^!p!Up!,#S !a!,#-#!6!Pp!!P."5"P#!6!Rp!!R."5"R4!6!bp!!b!!."5"bp!!b!!."5"bp!!R."5"R!."S\",#S"!"P\""P""P"!"R\""R""R"!"b\""b""""b\""b""""b\""R""R0#1#w1#8#w8##w ##w##w##w ##w##w0#E#UE##S##U##S##U0#E#aE##w##`##w##`0#E#bE##h##a##aE##S##U##S##U##w##w#!$w !$"$w"$+$w##U#"$S"$+$U##a#!$w!$+$`##b#+$h#$a#"$S"$+$U0$1$w1$8$w8$|$w |$}$w}$~$w0$C$UC$}$S}$~$U0$C$aC$|$w|$~$`0$C$bC$~$hC$}$S}$~$U$$w$$w$$w$$U$$U$$a$$-$$b$$-$$w$$w $$w$$w $$U$$P$$U$$a$$h%%w%%w%_%w _%`%w`%i%wi%%w %%U%`%S`%i%Ui%%S%%a%3%h3%%-!%-%a-%_%w_%i%`i%%wB%L%ai%s%as%w%dw%%h%%w%%w%%w%%w%%w%%w%%w%,&w,&0&w0&1&w1&8&w8&U(w%%U%0&S0&2&U2&U(S%%a%2&2&F&aF&F(F(J(aJ(U(%(&%(&S&&0& &V&(&V&& ?& &b&&b& &w &(&b&&a&(&f'F(V ' 'c '?'wQ&U&bU&&wa&&a&F(H&&f&F(P&&a&F(&&g&F(X&&h&F(@0'['d[''w'F(`(i(wi((w((w`(|(U|((S((U((U`(|(a|((-`(x(bx((-}((a((w((w((w((w ((w(((w0((w8(,w,,w8,,w0,,w(,,w ,,w,,w,,w,2w(V)UV),S,,U,2S(V)TV),\,,T,,T,1\12T22\(L)aL),~,,a,1~12a22~(V)QV)4+]4+,Q,,Q,1Q12Q22].),~,1~"22g22~.)V)hV),~,1~122f22~B)V)bV))}122q(22b22}))g)1+i1+,},1}<2A2hA22} *#*f#*(*e(*,~,1~J2O2hO22~@**e*,~,1~U2Z2hZ22~@**f*,~,1~`2e2he22~_*k*gk*1+ 1+,~,1~k2p2hp22~**a*1+e1+,~,1~v2{2h{22~*1+a1+,~,1~22h22~ +1+c1+,},1}22h22}+1+g1+,~,1~22h22~(+1+f1+,~,1~22h22~**a**---~--**-~--~-~-**#}-~-}-~-~-**a*1+~-}--[,,a-1.aa+c+bc++},,}11}++e+,},,ed-i-e-.eR,,d-1.d[,j, ?j,,c-- ?-1.c..c./~/1r~?&~'~?&;--@-?"~?&~'~?&;--UUUUUU?"~-~-"~?&~'~?&;-~-..b.O/}O/10~?&~?&~'~?&~'~?&;-~-~-"..a.|/d|/1H+,~,1~.|/c|/1~e/|/g|/1 /|/j|/1o/|/o|/1o/|/i|/1E/\/f\/1}x/|/f|/1++ab),V,1V122V+,_,,P-i-_-1_11_,I,PI,, r~'r-1. r~'r1..P.1~?&~'~?&e,y,Qy,,q,,Q- .P . .p .1.PH+,S,,U,1Sa+,S,,U,1S22w22w22w23w 33w(3y4wy4z4w(z4{4w {4}4w}44w44w4U5w2Z3UZ3}4\}44U44\44U4U5\2Z3TZ3{4V{44T44V44T4U5V2J3aJ3Z3dZ3334-44a45-5!5!5U5-2Z3QZ34]44Q44]44Q4U5]@3Z3eZ3333-?-33e344444-?-44e4445-?-5U533a3444h4U533c44q5+5c+5U5344*4b74V4bs44b3Z4as44a340474Q74A4PA4V4QV4s40s4u4P3z4S44S3}4\}44UV4u4\`5d5wd55w55w55w55w55w55w55w56w6 6w 6 6w`55U55U55U55U55U55U56U6 6U`55a55-55a55-55a5 6-`55T55T55S55T55S55T55S55T55T56S6 6T`55Q55Q55Q55Q55Q55Q56Q6 6Q55b55-?-56a6 6-?-66w66w66w 66w66w66w 66w66w66w 66w66w66w 66w66w67w 6+6U+66S66U66S66U66S66U66U66S66U66U67S6!6a!6q6wq66-66w66`66w66`66w66`67-6+6b+6`6h`6h6bh66h66-66h66b66h66b67h77-q6u6au66w66`67w66a66P77w77w7]7w ]7b7wb7k7w7/7U/7b7Sb7k7U7/7a/7k7h7%7b%7I7wI7k7-7/7c/7k7-I7M7cM7]7w]7k7`p7u7wu77w738w03888w8898w98\8w0p77U788S8898U98\8Sp7y7ay77c77`798-98I8`I8\8-p77b77h798-98C8hC8\8-78b898X77a77d98M8dM8\8`77e77X798---"98\8X788S8898U`8a8wa8h8wh80:w0:1:w1:8:w8:D:wD:E:wE:P:wP:n:wn:o:wo:p:wp:;w;;w; ;w ;];w`8|8U|81:S1:2:U2:E:SE:F:UF:o:So:p:Up:;S; ;U ;];S`8r8ar8];``8|8b|8p:Hp::g: ;H ;;g;];H88h82:X::h: ;X;C;X88@A9Y9cY99@88W9Y9bY99"979a99a9:c;7;c7;C;9:-":2:a: ;-;7;-7;C;-81:S1:2:U:;S; ;U;C;S89SW91:S1:2:U:;S; ;U;C;S91:S1:2:U:;S; ;U;C;SF:o:So:p:U::bC;M;bM;];::b`;a;wa;h;wh;H<wH<I<wI<P<wP<g<w`;;U;I<SI<J<UJ<g<S`;~;a~;g<`;;c;D<XJ<V<c]<g<c<D<P;I<SI<J<UJ<g<S;D<SJ<V<S]<g<Sp<t<wt<<w <<wp<z<Uz<<P<<Up<<a<<hp<<1<<P<<p<<Pp<<a<<h<<bp<<a<<h<<c<<d<<w<<`<<P<<U<<w<*=w *=0=w<<U<<P<0=U<<a<*=w*=0=`0=>=U>=?=U?=D=UD=E=U0=>=a>=?=-?=D=aD=E=-P=Q=wQ=\=w\=K>w0K>Q>wQ>R>wP=z=Uz=Q>SQ>R>UP=l=al=R>-v=z=bz=R>X>)>a==-?w-==a=R>`==a=>c>K>wK>R>P`>h>wh>>w>?w?"?w"?#?w#?M?w`>|>U|>>P>M?U`>>a>M?X`>>b>M?``>>c>M?h>>e>M?H>>f>M?P>>g>>w>? P-H-??w?#? P-H-#?,?w,?8? P-H-8?A?wA?M? P-H->>-->M? P-H->> --->M?h-`-H->>P>M?UP?R?wR?X?wX?\?w\??w ??w??w??w??w P??U??S??U??SP??T??V??T??Vd?j?Tj?t?Pt?~?Q~??P??Q??P??\??\??P??P??P??S??w??w??w??w ??w(?@w0@@w8@>@w>@B@w8B@C@w0C@E@w(E@G@w G@I@wI@K@wK@P@wP@>Aw?%@U%@:@S:@L@UL@>AS?%@T%@C@VC@L@TL@_@T_@~@V~@@T@@V@@T@&AV&A5AT5A>AV?%@Q%@E@\E@L@QL@_@Q_@~@\~@@Q@@\@@Q@&A\&A5AQ5A>A\?%@R%@:@]:@L@RL@_@R_@~@]~@@R@@R@@R@@]@&AR&A5AR5A>A]?%@X%@L@XL@_@X_@~@X~@@X@@X@@X@&AX&A5AX5A>AX1@6@Pi@s@Pw@~@P~@@Q@@\~@@S@@]@@PQ@@pIB}IB@@PQ@@P@@p}@@P@@Q@@^@&A0@@Q@&A\@&AS@@R@&A@A^AA~}AA^@A^AA~}AA^@AQAA_@ABAwBADAwDAIAwIANAw NAOAw(OARAw0RAVAw8VAAwAAw8AAw0AAw(AAw AAwAAwAAwAAw@AjAUjAASAAUAAS@AjATjAA]AATAATAA]AATAA]@AjAQjAAVAAQAAQAAVAAQAAV@AjARjAA\AARAARAA\AARAARAAR@AjAXjAAXAAXAAXAAXAAX@AjAYjAAYAAYAAYAAYAAYyAAPAAYAAYAAAAQAAVAASAA_AARAAr|AARAARAAr|AARAAQAA^AAwAAwAAwAAw AAw(AAw0ABw8BtBwtBuBw8uBvBw0vBxBw(xBzBw zB|Bw|B~Bw~BBwBBwBBw8BBw0BBw(BBw BBwBBwBBwB4Cw4C8Cw88C9Cw09C;Cw(;C=Cw =CCCwCCECwECPCwPCCwA-BU-BpB_pBBUBBUBB_BBUBBUBEC_ECFCUFCSCUSCeC_eCoCUoCC_A-BT-BBTBBPBBTBBPBBTBFCTFCVCPVCeCTeCrCTrCCTA+BQ+BpB\pBBQBBQBBQBBQBeCQeCrCQrCCQA-BR-BpB]pBBRBBRBBRBBRBFCRFCVCRVCeCReCrCRrCCRA-BX-BBXBBXBBXBBXBFCXFCVCXVCeCXeCrCXrCCXA-BY-BpBVpBBYBBVBBYB9CV9CFCYFCCVBBHBPbBpBPBBSBBFCeCSBBVBBYFCeCVBBUBB_BBUFCSCUSCeC_B8CS8CFCeCCSB9CV9CFCYeCCVBBQBFCQeCrCQrCCQBBUBEC_ECFCUeCoCUoCC_BB]B;C\eCC]BCT CC|tCCT0C7CTBCT CC|tCCTB8CS8CFCeCCSB9CV9CFCYeCCVBBUBEC_ECFCUeCoCUoCC_BBQB0C]CCwCCwCCwCCw CCw(CCw0CCw8CDwDDw8DDw0DDw(DDw DDwDDwD Dw D;Dw;DEEESEEFEFEdESdEhEhEES>E]EY]EhEYhE}EY}EEh>E]EQ]EhEQhE}EQ}EEQ>E]ET]EhEThE}ET}EETFE]ET]EhEThE}ET}EETFE]EQ]EhEQhE}EQ}EEQFEdESdEhEhEESFE]EY]EhEYhE}EY}EEhEEwEEwEEwEEw EEw(EEw0EEw8EFwFFw8FFw0FFw(FFw FFwFFwFFwF$Gw$G%Gw8%G&Gw0&G(Gw((G*Gw *G,Gw,G.Gw.G0Gw0G%Hw%H&Hw8&H'Hw0'H)Hw()H+Hw +H-Hw-H/Hw/H0Hw0H!IwEEFUEFFUFFUF,G^,G/GU/G[GU[GG^GGUG-H^-H0HU0H;HU;H_H^_HHUHH^H!IUEETEFFFTF/G/G[GT[GGGGTG0H0H;HT;H_H_HmHTmHuHuHHTHII!ITEEQEFSFFQFFQF/GQ/G[GQ[GG|GGQG&HS&H0HQ0H;HQ;H_HQ_HuHSuHHQH!ISE?FR?FFRFFRF&GV&G/GR/G[GR[GGVGGRG'HV'H0HR0H;HR;H_HV_HkHPkHHRHHVHIRIIPI!IREFXFFXFFXF/GX/G[GX[GGXGGXG0HX0H;HX;H_HX_HHXHHXH!IXEFYFF]FFYFFYF*G]*G/GY/G[GY[GG]GGYG+H]+H0HY0H;HY;H_H]_HHYHH]H!IYEE0EE1E F2 FF3F%F4%F/F5/F4F6FF0F.G_CG[G0[GG_GG0H/H_0H;H0;H_HS_HuH0HH0HH_HH1HH5HI4II3II2I!I0F/G0G0H0F/G F/G F/GQF,G^,G/GUF/GFFRGGr|G GRFFRGGr|G GRFFQF GSGGQG&HS&H0HQGGQGGSGGQGGPGGQGGPG)H\)H0HQ1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q!8%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q!8%!Q!@%!Q! HHP[GG|[GG^[GG\sGzGPQGGpIB|IBGGPQsGzGPGGp|GGPGGQGGS;H_H^uHHQHHSuH~HQ~HHPHHQHHPHHQHHPHH\HHP0I2Iw2I4Iw4I6Iw6I;Iw ;I?Iw(?I@Iw0@IFIw8FIJJwJJKJw8KJLJw0LJNJw(NJPJw PJRJwRJTJwTJXJwXJJwJJw8JJw0JJw(JJw JJwJJwJJwJCKwCKDKw8DKEKw0EKGKw(GKIKw IKKKwKKMKwMKNKwNK}Kw}K~Kw8~KKw0KKw(KKw KKwKKwKKwKKw0IIUIUJUUJJUJJ^JJUJKUKKK^KKNKUNKYKUYKK^KKUKKU0IITIUJUJJTJJJKTKNKNKYKTYKKKKT0IaIQaIFJSFJUJQUJJQJJ1JJQJDKSDKNKQNKYKQYKKQKKS0IIRINJ\NJUJRUJJRJJ\JJRJKRKGK\GKNKRNKYKRYKK\KKRKKQKKRKKQKKR0IIXIUJXUJJXJJXJKXKNKXNKYKXYKKXKKX0IJYJJ]JJYJKYKIK]IKNKYNKYKYYKK]KKYKKYRII0II1II2II3II4II5II6J%JP%J8JQiJJ0JJ_KK0:KMK_NKYK0YK~KSKK0KK5KK4KK3KK2KK1KK0JJ JJ vJJ1JJ^JJUJJJJRJJrvJJRJJRJJrvJJRJJQJJSKKp@%p!KDK^s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s !@%!s !DKNK~Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q !@%!Q !JJPJDK s DKNK Q JJPJJQJJPJKQKKPKKvp!KKp@%p!KDK^s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s !@%!s !DKNK~Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q !@%!Q !)K1KPYKK^KKUKbMwbMgMwgMiMwiMkMw kMlMw(lMoMw0oMsMw8sM7Nw7N8Nw88N9Nw09N;Nw(;N=Nw =N?Nw?NANwANENwENNwNNw8NNw0NNw(NNw NNwNNwNNwN3Ow3OOwOOwOOwOOw8OOw0OOw(OOw OOwOOwOOwOOwOOwOPw PPw(PPw0P Pw8 PQwQQwQQwQQwQQw QQwQQwQQwQQw RRwRRwR Rw R Rw RRw(RRw0RRw8RRwRRw8RRw0RRw(RRw RRwRRwRRwRRwRRw8RRw0RRw(RRw RRwRRwRRwR9RU9RRRRURRR9RT9RRTRRTRRTR9RQ9RRVRRQRRQRRVRRQR9RR9RR]RRRRRRRRRR9RX9RRRRXRRR9RY9RR^RRYRRYRRYR9R ?9RMRMRvRbvRRRR ?R9R09RRSRR0R9RT9RR_RRTRR_RR p3$Q"8www w w( w0w8ww8w0w(w wwwwjUjSUSjTj]TjTj]TT]jQjjQjQjRjjRjR\P77jQj7jTj]T7jUjSYVYjTj\Y__7jVj}" T"jQjQjTj]TT] P _}}*(TT*(_wVwv~}" T"V `c`w4-v4-w4-v~4-4-}"4-4-T"4-4-v4- $ 4--$EbEw4-v4-w4-v~4-}}*(4-v~4-#}}*(4-}"4-&TT*(4-T"4-4-v4- 9--9jhjw4-v4-~4-w4-v~4-~4-4-}"4-~4-4-T"4-~4-h4-v4-~4-PjgjgjcbbgCQhQbVV\~vvT+(y}a}~~aa#ici~~  ~--"+a//////////?0B0F0W0d0n0H0W0d0n0000081E10081E100(18100(181001(1001(11112111211111111111111111111q333345 5U5Z5~555o5~5556677Z7i7p77788!8788!8i8888z8888888888889::::z;'9::::z;:::::::::0:::::::Q:::K:Q:::Q:h:::b:h:::==`>g>===>==> >P>`>> >P>`> >>@>P>>>@>P>>!>0>@>>!>0>@>g>k>>>>>>>>>>>??????368T?!&?@@A A@@A AABBBAAAABBcBnBoBuBxBBBBCCBBCCBBBCBBBCBBBBBBBBBBBBCCCCCCCCCCD"D0D\DCCCC"$v ;?ABG 8HRu)EaEEEEEEEJEMEOEEElE}EEEEEPXPa!FFF0G[GpG:FAFDFFF0G[GpGFFFFFFFFKKKKL3LLMMNN.NbLLMMNNxLLMMNNNNNN>OR(S/UOR(STOR(ST4PTR(S`TP%R(STPQ(SSQQ(SS`QQ(SbSUUVW Y0YUUUUVV0VW Y0YUVW Y0Yiii jjj8kXkxkkjjjj8kXkxkkj khkxkk khkxk k!kXkhkk!kXkhkkgllmkkklmmklmml*llml*llm:lIlll?lIlllllmKmxm'n#r*rm n#r*rNnYnppYnhnoooo^nhnoooono2qTqqr2rArrrnnno2rAr$o+o0ooTqqr#r*r2rgrr sHs@oonq}q*r2ropp2qqqArgrr sHssp2pr sfppp2qppppq2qppq2qpppqpppqppppppppArFrHsssssttultvtttttpuuttuuuuuuu?vXvwv vv!vXvhvv!vXvhvvv w-wvv w-wvvvvw w-w6wwKxXx9ywwwwxyx(xXxnxxx*y9yxx*y9yDyRy\yyyyyy zzz${/{t|fzz{{zzzzzz{${zzzzQ{]{{{V{]{{{|B}P}E~Q~~|}P}[}}}}}}}}}}}}}}}}}~~~Fddnrx:FFRFR€ Zb R}ƅЅۅ;FP[ƈƈʈшΊ&Љ&*1I߉RXЉ߉FF{<Pu΍s΍JUPZU_Zs_ʑYݐYAUFUۓ$8Ar ÔД<ÕJ<CJ[Õ͕vy{͕ѕYȖϖ\Y]dyO\ϖ֖֖ږuۘәfۘәUZfۘәfȘӗDZgucyȘۘӚٚ`GhGzGŞ؟gС؟gġСg#ʢ(ʢ(ߤ#(P0ЦX0ئXPXǨwjwjwŬmHЮ/mPЮ/Ŭ[Ю/аx_Ȳа_Ȳ_%ͳ0ͳ0%0b@hǸ@hǸbhǸ׹  ׼ܼ 2νؽþ"νؽþ"2þ"ǿwjwjwmH/mP/[/`!h!!B H HBHgZgZgglpgxx"/"/   ,59@Xxak;!R_$.UgJ``l`l)lx")lx7@@Dfyv|  % .29N|ux7!@DKclvvzo|*5PZq||L-+.9Dhovov(((Q(6!(oru0>E  lF((((++++++b,w,z,},)$9)BgB (hchRWc(h`h(hPGhG>GS XX Xh^@x^/4@^R`o(Ic__c_pnPn?DPnbp 8Ybko{0H`xe bko{H` `eU| i` Xz#0` XeU| ` xU| uy0:`j'JX  ; r{@X    ; r{X  @ P       ; y8  P    8 S `  P               ;   @ P     @ P @J  H M R W Z ] c | HY 0HYg lnq#ER_pp *8$2^$727:@J X 8DR~8DWR147?WZ`j/@x@XdrXd * X,:(\ ,AD_gagq/@!P (  !/!K! (  !/!K!b{Cx ( S T!n!!!C( S T!n!!!  $PW`k|  !!  K!T!b"y"~""""""d##&(+(###%%'8(#)#$%%####*$E$%%$%%%&8(`(((*%9%%%9%>%G%R%&&9%>%L%R%&&R%U%^%j%&%&`%j%&%&j%y%%&5&o%y%%&5&y%%5&E&~%%5&E&g&l&u&&&&&& ''' ' '%'.';';'@'I'V'`)v)--)$*`--/////000$*.*--.*1*F*h*00h*l*s** 00**--++,,,, ,,P-`-,,P-`-G,M,,,M,,Z...7/Y/y/^,,Z..//7/Y/i// / ///----?.L.----".,.7/Y/0 1'1,1V33W4f4|4433W4f43W4f4|4G4M4f4|4444444I=W=_5i5::i5s5p::s55P:`:>>>>?@Y@@56@:P:660:@:7799779:<<779:8&8>>c88::p88::8c94;P;=>e>@@@@@@c9m9P;`;m9x9`:p::!;;<::;;::;;::;;`;;>=>;;;;;;;;AAALBXBBBBC#C(C}CCCCC D/D(EcEMMEEPG`GEEPG`GEE`GpGEE`GpGEEEFL7MMMHNsNNNEFLMMMHNsN"F;FBFGFGG%GPGGHQHMMQH`HMMVH`HMM`HoHN&NeHoHN&NHHIIK!LHHHHHIcOpOI#IKK#I-IKKIIKKIIKKIJ!LBLIJ!LBLK^KBLhLKK^KBLhL^KKhL|LLLsNNNNLLsNN?RSSUVXuRRTTBVsVxVV0XRXRRTTRRTTRRT%TRSpUU SSS8S,W9WZSmSUUmSS`UpUSSuTTPU`USSPU`USS@UPUSS@UPUSSTTSSUUUUTT9WFWVVWWVVVWX(H(,,H({(3T3((((22((,-(y)0/P////077:;;<(y)0/P///::;<))0-@-)T*/0///0077<<N<<<<)T*/0///<<N<n<<<T*Y*O5T5W5z5Y*c*-0-l*v*--v**++++++**@-P-++0B0++0B0++B0e0++B0e0+ ,e0~0, ,e0~0 ,,~00,,~00c--<:<=<N<<<s-v-~----<<P////2222E8O8;%;88u;;88u;;<<<5=JJYZYZZZ5=@@IJJJYZa==-K9K=== >>>QQ>>%>7>'R1RH>W>KKW>e>n>>1RgR>>>>VV>>KKY??NNXXXXY$Y??+N:N??KK@&@KK;@M@KKR@Y@e@|@@@JJJJ|@@@@JK@@@BJJvNNNNySUUVWX;[][]V]`Da@AJJ@@@AAOARAWAAA;[][]*]]AaAhAzAySSAANNAAAANNAANNABvNNB BBBOBRB}BBNNBBNNBBNNBBNNBBNNBBNNSSSSSSSSVT^TaTfTTTTUUU!U3UBBBB S@SBCCCoSyS(C7CKK7CECNCsCvC{C\]CCCCW+WCCuKKODDNNRWrWdYqYYYDDN+NDDeKuKTEEEEK-K__qEEEEK-KEEKK^^EEKKF7FUKeK#F7FUKeK-F7FUKeKDFFNNCPZPYY``DaaqFFNN``DasaaaFG:NIN GGEKUKG"G+G5G9KEKDGHJJq[y[HHH>IN O][q[[[5`o`>I[INNdInINNzIIMMMNgNvNzIIgNvNIIXNgNIIXNgNIIINXNIIINXNKuLLLOOQQ$LLLQQL=MPCPZPcPQQLMQQP PZPcPP PZPcP=MBMOPcPPTMcMhMmMYYYMcMhMmMYYcMhMmM|MQQrM|MQQ|MMPPMMPPMMPPMMPPMMPPMMPPMMPPMMPPgOOZQuQQQE^t^`5`t^___^__ _A__acbxfg^΂‰ʏfg^΂‰ʏ cbxfgnn^΂‰ʏb&cooyyȄ b&cooȄ/c4c;cSc\ccccxoocccccd o5o7o:od(doo8ddh;itu xPx}}~~2?΂"Adddtu}}~~2?΂"Ah;i xPx i+i xPxddo`p rrx x}?} 2"ddo`px x 2"oox xBrr}?}Wrwr}?}d"eg3h zz~~>K]jϊ1e"e zz>K]jϊ1g3h~~h#h~~)epev w{x|K]wWq|Nepe{x|K]wWq|v wvvee?}T}W}Z}f$ff$f$f3f!)f3f!RfcfbnmnrrEhjhxxxxMitirrrriissijO j jj,j 5j?j`tpt]jgjPt`tgjj0sEsGsJsjjpttjj‰jjjjp}kkvv,k6kvv6kXk v5v7v:vXkbkpvvkkk?Skkkkkkyzklzzl'lPyeygyjy'l8lz z8lUltt^llňlllln{llttlmwxxx1W  S|Npmmwxxx1WS|mmttmmmmӇmmtt nnttn5nssss5nHnttmn|nr rrn|nr r|nnqrnnqrnnqqippuuuuqq}} > 4qq}} Lstyy!t&t-tPtyywBwPxexhxkx{7{~~~~F!jw^[̍ k^[̍ ?[{2ِ(2ِJORzSw_w 2 ,Zbչjźh 1@2 ,ZbչjźѻOY@PP`ؒ`u(ٰ&:15<Tܳ]gLPpl(q˓LPplqLV_jОjʝ̝ΝО(`ХXl9`ХXl`2hɖԖ0P'101PPckٯԗrݗF#'.Rѭ^hh>tј,>ژ p2PDZڱѲչ2 @,u'Y\_,7Pu7T@`f p(Oh߸* ph* *`p3>p>^%'*ϣأ^qudx``@:=hŸʟKhXAX]eh$AɠؠΠؠآ#Х`2آ#Х`آx@`ʶx@`hwbqأ2ݣ2O}O}}}ͪ ͪ$ͪ$ͪ$3)33C8CЦզئۦ!Χ Χԧ @`Ʃɩʶ̮ʶinq|DZܳٴ*9Md߸Zd߸e6~$feP>H6~$fH``p*4pL-?Cy'0: Ae?ryAKPeKV0@g =:Mff 0$/@P/NNaP`io}`p":boCNpc cmmw2 ~22<EOOn-/1nCWa .7;BdgymwGgWilo: XzGXzG`Xb0Pku 0uh}P``@` @   sG/G3hP  xVoVo=V=VooLO`_dgP 'E[`c "1cnAX`uuASX`uAS9JeLHSiJeYrJUL\9`%eu%&`%Dv<J!=yv<J!=y0%</!0/!/4Vc=Bdy `HXCF c{LO1[ew Is{HX 0 `),0<2<<KAKCEejMPUY^EQjJQjss !PfuuE<c`k5Hp`kpkzXppzXpcocoo{ o{X+!f ;X !MU\r 8 `%%}44JKS+T2Y:Y 8 }44JKS+T2Y:Y  `%%}44JKS+T2Y:YcY  (56 7&756(7  7B  Bu6 7~88 0 n@-P-282P.PfWWY2Y:YcYn@-P-fWW:YcYz@ P 0 @ n::9:P ` P-`-82U2KKW XcXXHP-`-W XcXX` p p  588AA>BIa-A:Aju#$0$@$@@     % = IIX b     ,,     N-N - -(-`-p-PP6 @ ()@ E L d uNNm  (-@-p--FQSQ   )0)  ) )  ))  X(m(o(q( + 0)@)3 8 ? X BBa  `&x&@'P'O4]4      &B3B %x&&P'`'B4O4.8T^^i i   34 0  #55,n&&`'p']4m4w@ P ;;0 @ ;;&p  &p  6;>D& &MWP ` W[bz??` p X?j?&&p''m4}4  0Y  =S    AE%`%EE F6FGGGGV(VAK0%E%KU  UZayEEENEDD  30!@!)30!@!AEJP &0&P[! !gr!!r} ! !0!@!P!=G=P=\=_=a===yMMsRR @!P!y'X(H,d,(0?0U2m277NNMy'X((0?0U2m277NN7H,d,RqH,d,&$'-.12m222222VOrOQQ-.m222222VOrOQQ&$'12&'12++?01222245KS[SSS422Rt22++?012245KS[SSS OVO)M6M@)`)9LLBFMyFL]L`))QQ))p**))w******((%P!!112223CCJJU%UXX%1123CCJJU%UXXw!!22!!22............%%6FXFFFG%G ## @FFIMTv II####3 3@$P$ P$`$#E&`&<<<<2JJ#-0&E&-7$$7Ap$$Ze`$p${0>:> %0%%%%%%%%%*%% *%%*L%%4L%%Ln%&Vn%&n~&&s~&&~%%%%%%!"WWXY!"&"-"E"UUN"Y"s,,v""d,s,"D#h#p#h++P/i/UV"""#UVh+x+P/i/m+x+P/i/p##./u##./$ %i/x/RRRR XX$$ XX$%i/x/$%i/x/)p*11QR R6RUU)2*UU;*J*11@*J*11 +h+RR++XX,,,-/00(0 33SQhQQQpTT>33pTT8883899%9/9=0>(VFVIVUVXVbV}VVVVWW'WBWQWXWj9o9r99kDpDsDDOOTTOOTTYZZ ZZZZ=a[avv_wYZZ ZZBZZ[ \\qnq!r>tv_w[V[ \%\v_w)[V[ \%\vwAwPwww"wAws[[P\g\j\n\Pqnq!r@sJs>t[ \\=a[aooqnq!r>tv\\\\ qq]3]c d)]3]c dO]T]Y]h]%d>dt]~] d%d~]]cc]]cc ^,^^^U^Y^`^^vf}fPhh!iUif^^vf}fhh!i;i}hhhh^^cc^9__L`VdBehhi!ikkunn _9_Vdehhi!ikkunn_L`eBe`<`eBe@__[aaLefhiUiyiij4jAjJm_mj__LefUiyiij4jAjJm_maahiaahig`u`JdVd``````aa bbb9b````````Xcmcpcrc`acca=a4h@haa>dJd}ffffffiifgiijjjnnno!ggiinnnnggiiggyiiggiiggiiggiighiighiihhii hhiiotvttvtcuuu4vvtwwwLz`z@twwwwԊ*>wwwwnww@P xx xx$xPxÒYx]xdxx<Mxx0@xWyЈ`n֒3Ck՝xWyЈ`nCk՝`ykyP`kypywyyyyyyyyyyyypyz`pz&zÄz&z`zz2zzzz~zz0z{P`Ò֒՝{{P`՝{{@P{{{{ƐӐ{{{|ڃ܃߃|$|-|1|8|P|`||Pp*:||Ѕ||Є؄ڄ݄||Ѕ|||}єy!}%},}N}5GW}a}P`}b~Ɩɖ̖}ɘb~m~m~w~`pw~~ ~~0@~~G}~~~ɘ֘!Ј0 ԊF_ Fp p(JƗȀvр܀@P܀J PfsS^pŁɁЁ|@P**@P:HKN0@ 0ǂ ǂ̂ӂ(p(p6;>DMW`pWbP`b -ȉ'3C-'-<?Bm2<?Bm<?BY'>DY'>Ys>V^s>VsVmxVmΆ`pۆ`p P`·יJ:M$F@3@|G50fɍ? 5mяՏ؏ґ8kkԗÜWafɟ՟r~nɟ՟nɟ~\h+8εյnD tU_etɟ9y6FUXɟ9y6FUX9RUXˠ '5@w@s(bv|hwXgŭխpŭߢ'*/$bej_qAbej +05I:I[jjoxheheϥ%6إ4y4y,/4Jz:>EZhwծwŲ̃,9Ȯծ%ϩ ݩ 2} W}2խ2խ(2խDS%\kͬ٬kpyͬ Ui(FUhP_ 1:JP_?JP_8ȮEG_i&]`g7P^g9o ñͱƽսͱѱرƽ,V5:AY,bm%5'6%DSr˳гOu/Oeueueuƴ˴ߴдߴڹ!+8εյJbڹ+=8+=adipɵεյJbιڹιڹιڹJVJVVb Vbö޶8=FXX]fx"'*,=EMU]g]g cci)j1cc:L(:0Pef)j^j~BL0@L^ 0^fr| ||hhPphiPm_mPp"5=BNehkehk{@ `  @ 55‰dgʨѩԩ%'BG­W)XZWKHJ_j b<B2"$!$,26=O`rP ` rw    @55t b2@t2   0  @ P 6H0 @ PSp}  r}  }0 @ 0 @  0  0 00 !0?!0?!8?K.8?K8@L[KWQ[KW<8<  ?BJPT[mq{~)Uu?J]gP`ot&,07IZlP`lzRf[h`q%Q&*1S\f8 22THxH&'n8 22'nCN]gvx22I&I۔l=`x22۔A=`x` p ` p L#(  %=|#Ŗߖӗ`rtv+:GY0@afrr  )>K2D 0~#22&I@Ir=#22r=.IP`do@Pw85k~*4C\CPewp  p1<`pD`cf`cfv,P8MOQ&pu|*e4e   h&_sp  aYc PX`wew&=`p**=pS6;q?CJlu 0@ 0  22O(=imt        u44_      (**00BOc(BOc (ce @ R T V  0-`ck_squ|@P@Aacgn`+`""p""M\t\__ b8bx"""""""#s8s,:Fdik"#"`$p$ "`$p$"2P$`$'2P$`$26=U@\M\z####Yk@$P$t~P#`#~@#P#s__p##p##%p$$.8##8K#@#@K"#@#KO[^ewjj`#p#/VVV8B##BFMeZ[######0cfnpzza}u}tx||`  AU+.6A<@Lfy~~o  S]  ]g  o * , . < ` yý'11d?umqx˿A ` AA[ukuwwʺ)AAwwʺ( )( )''''oo0:''IN^AAQQ_mmHy{yAAommHy{y( (8C((m%%%%'(@'P'0(@( (0('GS`@(P(/G@(P(  2272F2@@kuuIzpz 5 kuuF ] @@S ] @@] e q { @@ B u  22  33 53E3&353 3&35uGu,`~1D0DLLa0@z ll  0 00 00@0@5@0@@P@PEP@PPrP`ZrP`rhh   =%==_G__|`p|pp7x@s0|h33LUY`^rE3h333  4;4T343333ko6 A ;4N44snf4u4*Z4f4*2>HN4Z4Spppp  "(0@1<9QPx>QPxQ`xV`x`wmww   @ @@P@P $+CrS 6 it 6 33000023*>! +ٚ4>P(_(OT`~ #_(x(`((y zDGL`k((ku((u((0!!$$^wwQ!!$$Q!!$$x!}!!!$$!!!!**..**/ /****/ /***+o(o-+E+//:+E+//]+o+//x++./++++<,N,H/X/Z,e, /*/e,o,*/H/w,~,,,,,ppvv,,,,HpUp,-X/h/r----ǁ----kqxq--h//!.+.//J.T.//T.f.//r.}.//}..//56>>h??OO:N56>>h??OO6R6??@@OOffŀ(6R6??@@OOff@@ff~66#666666pKK*7]7`7h7nn7r7y77Q^77ZKpK77KKZK777n81K?KTxn8x8"K1Kx88K"K88KK888988999B9E9M9#SS9W9^9v999?KKK999999999:: :(X:::2:ˢڢC:U:pJ|J3;;|II,V #&;;YI|I;;@IYI;;;>GTHKKOO7UGTHOO7U>OO>>OO7UeUVJHJHJZJEL]LNNSL]LNNhL}LNNLLNNLLqNNL\M"NqN.\MaMhMMNNGu[uuuHMNNNTT)u5uTT)u5uTT)u5uVWWWw#CWWWWwKa brbryr~rrrrrss8sasdspsssdavarraallllGWمGWbyֆ47ӟ֟2LNP9o2\c*Hc7AFs$#$$%s#$$%s$#$$%h2NX$$'))**T*W*****+00CFN$$00TX_q''  UX'( (((&(2(D(((((I)N)Z)l)l)t)})) &?&,,1ht<,r,% &Oh(2tGUe?&_&----&-?-IU=I1=>s$*|(#8#Ps$*|X5>T0f0s5>>B/ 0>B,Req8ReqHReqsl//r11//r111+mI1r11<WI1r1//D_kq#K._...0"1?P&&&5+55D%:D%DT%5IT%5Tv^v;nx----w{//& ) 1 .*/7 ; B a ..r    Mc   e :M&90m w $:w  $          PZ             0 Ta9 H   P""    ")"  6 H H M f     !-!W!  { o{ co36c|(('*/v'*/vHeieeiqPgu}  !!5qu}!!qj~!!!! #(#q1j~!!!! #(#*ge:egls} 3X2A2?DGu5.=.;0T0z2}2205@5;<??8HHH2W7WEWLWYZ^ZlZsZ\\ \\om23K8S8"3`3c3h3RRdd?3`3c3h3RR|33R#Rpdd33R#R34-R9R34-R9R44-R9R"44%UW?HNdN S7SU%UXYZ^ZlZsZ[C[[\\\%]_ `aUabb@55HNdNi5q5{55555 6>>UU6)6 >0>J660><>>>[[66A>Z>>>o[y[6667_>c>h>>U%U>?(S7S>?(S7S?5?S(S?5?S(S5?W? SS??W? SSXXXXXXX YYYZZ ZZ\\ZZ\\Z$Z-ZNOXPP%QZQAGAJAQAcAlmqAAMMdNrNllAA7KCKAAABFJSJJJMMllABFJSJJJMMBBuKKBB&B>BullGBKBRBgB:lDluBBeKuKBBJ!JJ KMMllBBJ!JJ KMMBB0JFJBBBCC CklCCC/Ckk8CGCUKeKGCJCSCXCCCiOiCCCChh DDCKUK5DDD5LALDDHD[DD%L5LghSh^hhhDDL%LDDLLDDDEKL$E=EhhKEOEVEkEmhwhyEEKKEE7M[M^^K__EE7M[MEEKKFMFPFUFKK^^*FMFPFUFKKiFFKKb^t^FFKKFGKKFGKKFGKKGG\TsTX]]^=^1k9kKGG^=^1k9kGGLMMHN[[ ^^=^b^jjmkkGGLMNHN ^^=^b^mkkGGGGjMvMGGjMvMG HKK HHH#HPL\L,H8HHHI K7KALPL\LL[MjMvMMHHH K7KmHpHzHHVI_IALPL_IbIkIwI[MjMmIwI[MjMwIIvMMIIvMMIIMMIIMMIIMMP"PZQwQwQRTT%]5]d``(e[eQRTTd``(e[eSSTTSSTTSSTTSSTTSSTTSSTTSSTTSSTTSSTUSSTU]]] ^0b:bddddm nnnLoxoq:rxttrv+wx4y{yy ||4}}m nqqr.r3r:rxttv+wm nqqr.r3r:rxtt(r.r3r:rw w w+wLoxorvvx4y{yy ||4}} nnn)o@oLopq:rxttrv+wx4y{yy ||4}}~+nDnxxknnp pynnp pnnnn p0pnnppno0pqttpuu+wgwlwqwww xx4y{yy z{{c~~nn0p@pGpp4yTy{{Xpqp4y>ypppp{{pppp{{ppttq3qtt)q3qttAqVqpuuVqiqttrqqttww xxc~~ww;xxc~~~~yyyyyyy zo oqqo)o@oLo]txto)o@oLorrturrrr z#z~zz ~~rrrr~zzrruurr u0urrrrs%su u:ssuu||~c~hssuu||,~E~ssPu`uss@uPutt`upuNt]t0u@uSt]t0u@uurv{ |} ~u[v}}} ~#z(zJzWz?{V{}}L{V{}}d{h{k{{.~KKssSSGGGGXXppuu||---P knp:BF&7@HUNRU[36TW]bNRU[NRU[ : #: ]`jntz: : >AQU[a :  : (,28F M N U ] s w z   s w z B s w z ] ` w z ] ` w z s w z s w z   ! $ * , / 2 > @ F K W _   ! $ * ,  g + . H K Y ^     J  PYan &pGMW]fk~  ;>LOUX[`|;>LO ),=T%+gjux@@FINFINQdj<?EK``#Ih  #&3 6 O R X ^ !B!p!,# !!!!!!!!!0"`",#{"~"""""$$$$%(&,&/&&& ' '''T+W+a+d+j+n+S666766667778(9+9W9Z99999p:: ;;I;];w<z<<<<<<<=G>K>P>y>|>>>????`@f@n@t@@@@@0B9BE@EPE_EdEgExEEPE_EdEgExEEF GG!HFFF GFGIGPGUG`GGFGIGPGUGuGGoJqJtJ~JJJoJqJtJ~JJJMMM'N O8OMMMMM NMMM NMM O8O O'O,O8OEN{NNNNNNNNNNNNN O OOOPQQ?QQQ,Q?Q)P4P8PPPP)P4P8PPIPbPPxP~PPPPIPVPPPPPPPXQ^QrQQQQQQ.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.data.rel.ro.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_info.debug_abbrev.debug_line.debug_str.debug_loc.debug_ranges$.o8 88 @XX{Ho//Uo11@d0202pzn8 xؼؼs ~  c 9 9 A A BP)P X)X `)` h)h p)p P)P ) )  `+H H, H Ѯ  ;(;40U?UWVJ"(`+Xk+#  ,}8X/102 ؼ    9 A P)X)`)h)p)P)))`+  -*6 .J / e /~ 0/E /i / ( 0 j 0 00E 0 P1  `1 1 2' 3(B 4ITP+f p4a+ 1  4 5) eD 6^ 6dw 07d K? 7. sP+@+ 0+ +(+7+c0+r++ +`++P+ +p+D+T+wо+++++++/+X+hp+++p+@+ `+P+,@+<+b0+r + +++++++ +7+G+sн+0+++`++ @+( +T +d +t + + p+ + `+ P+ 0+ H+  +E @+U + 8+ 0+ 0+  + (+ +6  +F +r + P+ + + +  +! +1 0+Z +j + м+ + + + + +. 0+Z +j + + + p+ `+ +P+@+"`+N0+^ +n+~++p+@+P++p++*+H+X`+x++л+++`++P+/+F@+Y+i0+@++ 7q P8 8+9+@W ;[p = > ?s @[ v% +: sgVp+e x0++++++   1 p@*>+F Aq Be B $ CK f  pC/0 S Sr ?p+ GZ+  $ $ F? G_ X} p [  u) # < DZd  E  ||  I  FpB pG z KT KN 0Nu N U @Y3$ _= `e$h j5 k{ Pmq+`+++ +, sG+` u+ wy`+ @y^ y^ zt; |eb ~ b@+  05 @c  BP+0++  3`+DV+[ 0+й++ȿ+++ [< MT+f 0 P  `-++ + V+# $P  0+++++U+  5U+L С ++`U+ ++  U+ !  V 8+e +u + @+ + T+  p(!S+! (T!S+k! в(!S+! !+!h+"+"p+,"S+ C" (~"X+"`+"PS+" "@S+# K#+Z#+i# S+ # p(#R+# 5$H+$8+.$@+>$P+N$R+(e$ $R+ $ $X+$`+$P+ % `]M%`+f%8+w%+%+% 7%  & N&+\&+j& ;&+&8+&@W+A& +&+&+&п+'+'`+,'+A'+N'p+_'@+s'`+'+'X+'+'P+'`+'@+(0+&(p+=((+X(+n( +( +(+(+(+(`+(+)p+#)+<)+k)0+s) +{)+)+)+)+)+)+)+/*+B*+V* @ Gn*+*p+*@+*`+*@+8*++ X "+ #<+ f+ @u+ q + 4c +P+++8,+7, d, A,+,+,+,+-+2-+N-+k-p+-h+-`+-P+.H+..@+^.0+. +.+.+/+8/+h/+/+/+ 0+C0+y0+0+0+1+P1+1+1+1+1@+1+1+1+ 2P+2+02@+?28+R2+b2X+v2H+2(+20+2(+2x+2H+2+2+ 3+3H+03+C3+W3+k3+3+3+3x+3h+3X+4h+4H+)4(+;4+K4+\4+o4+48+4(+4+4+4+5+5+)5+<5+K5+]5H+l5(+|5+5+5+5Ⱥ+5+5+6+6+-6+F6+Q6+o6p+6p+6p+6`+6P+6`+6@+7+%7+ W7P+c7+7p+7 +70+ 8+48`+[8+8+8@+8+8+%9+K9+v9+9P+9+9+: +H:p+s:+: +:+:`+;+;;P+f;+;p+;+;0+<@+<<+g<+<+<+<`+=+5=+`=+=+=+=@+>P+(>+S>+y>+>@+>+>0+ ?+K?`+s?+?+?+?+@0+A@+i@+@+@ +@+A@+VЮ+\V+kV+V+V+Vp+V+V@+V+V +W+2W`Q+0IW A*W+W+W+Wp+X`+"XP+;X@+YX0+rX +X+X+X+X@+X +X@+Y+Y+%YP+4Y0+FYU+(]Y ,Y0+Y +Y+Y+Z+Z+1Z+OZг+hZ+Z+Z+Z+Z+Z`+[0+[+"[0+2[T+(I[  y[+[+[+[W+[+[P+[ U>\+M\+[\+p\+\+\+\+\p+\`+]0+']+A]`+S]P+l]@+]+]+]+]0+] +] +^+^+=^+K^P+W^+f^+u^е+^+^+^+^@+^+ _+)_+8_+F_p+\_+j_V+0_ pY_+_+_+_+_@+_+ `0+0`+C`+]`V+0t` `w&`+`+`p+a`+a+/a+AaP+Za@+xa+a+a+aP+a+a+bи+,b+Jb+cb+b+b0+b +b+bp+c @-@c+Yc+wc+cд+c+cp+c`+cP+d@+,d+Ed+cd+|d+dU+ d P8,d+e+e+.e+Geв+ee+te+e+e+e+ep+e`+ fP+(f+8f@+Qf0+ofp+}f+f+f+f+f+f+g+!g+:g+Xgp+qg`+gP+g@+g+gа+g+h+&h+?h+]h+vh+h+h+hp+h`+h+i +i+"iP+;i@+Yi+jiP+iP+i+i +i+i+i+j+"j+5j+Njб+lj+j+j+j+j+j+kp+*k`+Hkp+Wk+pk+k0+k +k+k+k0+l +3l+Ll+jl+l+l+lЯ+l+l`+l+hm Jmp+\mQ+8sm H6m+m+m+m+n+-nж+Fn+dn+}n+np+n`+nP+nP+n@+o0+1o +Oo@V+ fo+vo p2:oP+o@+o+o+ p+pP+,p+Ep+cpp+|p`+p pm[p+p+p0+q+1q W+ Hq +hXq fq  xq `'$q '7q &&q &=r `=r @&Afr  wr &#r %&r %<r #s  /s `Ts @us  s s  s @t #t  It lt @%%t `t @t @u  (u ` Nu `"vu %*u $(u $+u @$#v  T =` `% )  Ѐ ݀   Z     %  7 @ ^ 9j y  `  q  ρ       5   (  5  I fS @[ {   Q I  Ȃ ׂ A   P * A W  i IJ   6˃ 9ۃ  7)  6 @%-^ Wi x+    1  ΄ ܄  1    2 I V  g u   f   {  ۅ  - )  , 9  K X^ k M ~ )  B  r  d      /  W d %p  }   #̇  !   5 . T9  M 7 u  @ dÈ  Ј ߈ ~  `"9 yF `` 7  $  ˉ  3 t 9 @ a ~ v =   @Պ Q   '& "O * b   i   b ԋ o   &  : _a p b  @ @Ќ yތ   `#/ Q 0w j s  o Ս     W  @% 8 mF U |<} g a N  s Ҏ  C    * : b O : ` [n e{ U U  ` -  ԏ O  q [& I4 VA QN L[ s   ސ  @  4 k\  o ^  C = G B͑ ّ  ! `8 H H ] l $ }   = 4  ˒ ג   TY  M , ; J 7X ~ &  J ߓ + J%A P _  p >  / D ̔ *ٔ    1 " /K 1Y e %r ' + +0+`ݕ+P+P+;Н+Y+r`++`+P+Ӗp+`++P+F+xxI+<@D+@=+5#`7+i)+ @(+sژ+x + K +@*ę`* @* ; * n*= ** -*n *  *  * y* U@l* _* Ŝ@M*)A*d 70*r'* @*D *Y *X)7 )Ԟ) `)JE )- ) )@)7 B ) })q@)_)#.`); .P 0.c p.y`+X) .P)ڡ  p  $ . 8 )S \ e n ' x /         #H ͢`)٢h)p)H+)&7B Qbt ^ģ @`ߣ @ !/ `W8 Tgt ͤޤ  Ч&# /:Las ť֥  ",FSjwH+~ [ Ŧަ к T P" 3>S Й,bm |  ȧڧ  @4HYiz pƨӨ N!5CWes `N Еũ֩ н & BTv PL ɪ [ݪ +=Map nʫ  ~ ($8F]u @ լ   %7KZ 0p 0 ѭ*=Wg s  Ȯܮ > J/@+EUd  ѯ -  W p1C BV зf+  Ű԰H+ @/BXdp @_  ױ  0 R^ o `Ʋ д &  2CX 0kfzȳٳ f 0L] `ew ʴܴ $5GTe" ؼϵݵ 7C h/usr/lib/../lib64/crti.ocall_gmon_startgenerator.c__pyx_array___len____pyx_MemviewEnum___repr____pyx_memoryview___len____pyx_tp_traverse_5numpy_6random_9generator_Generator__pyx_tp_clear_5numpy_6random_9generator_Generator__pyx_getprop_5numpy_6random_9generator_9Generator_bit_generator__pyx_getprop_5numpy_6random_9generator_9Generator__bit_generator__pyx_tp_traverse_Enum__pyx_tp_clear_Enum__pyx_tp_clear_memoryview__pyx_getprop___pyx_memoryview_base__pyx_getprop___pyx_memoryviewslice_base__Pyx_ErrRestoreInState__pyx_typeinfo_cmp__Pyx_PyCFunction_FastCall__pyx_tp_new_Enum__pyx_empty_tuple__pyx_tp_new_5numpy_6random_9generator_Generator__pyx_vtabptr_5numpy_6random_9generator_Generator__Pyx_RaiseNeedMoreValuesError__Pyx_PyNumber_IntOrLong__Pyx_PyInt_As_long__Pyx_PyObject_Call__Pyx__PyObject_CallOneArg__Pyx_PyObject_GetAttrStr__pyx_sq_item_memoryview__pyx_sq_item_array__Pyx_GetItemInt_Generic__Pyx_PyObject_IsTrue__Pyx_InitCachedConstants__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple___pyx_lineno__pyx_clineno__pyx_filename__pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__8__pyx_int_4294967296__pyx_int_0__pyx_tuple__9__pyx_kp_u_a_must_be_1_dimensional_or_an_in__pyx_tuple__10__pyx_kp_u_a_must_be_greater_than_0_unless__pyx_tuple__11__pyx_kp_u_a_cannot_be_empty_unless_no_sam__pyx_tuple__12__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__13__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__14__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__15__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__16__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__17__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__18__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__19__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__23__pyx_kp_u_left_mode__pyx_tuple__26__pyx_kp_u_mode_right__pyx_tuple__27__pyx_kp_u_left_right__pyx_tuple__28__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__29__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__30__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__31__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__32__pyx_slice__33__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__34__pyx_builtin_RuntimeWarning__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__35__pyx_tuple__36__pyx_tuple__37__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__38__pyx_kp_u_alpha_0__pyx_tuple__39__pyx_tuple__40__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_tuple__41__pyx_kp_u_ndarray_is_not_Fortran_contiguou__pyx_tuple__42__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_tuple__43__pyx_kp_u_Format_string_allocated_too_shor__pyx_tuple__44__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_tuple__45__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__46__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_tuple__47__pyx_kp_s_Empty_shape_tuple_for_cython_arr__pyx_tuple__48__pyx_kp_s_itemsize_0_for_cython_array__pyx_tuple__49__pyx_kp_s_unable_to_allocate_shape_and_str__pyx_tuple__50__pyx_kp_s_unable_to_allocate_array_data__pyx_tuple__51__pyx_kp_s_Can_only_create_a_buffer_that_is__pyx_tuple__52__pyx_kp_s_no_default___reduce___due_to_non__pyx_tuple__53__pyx_tuple__54__pyx_kp_s_Cannot_assign_to_read_only_memor__pyx_tuple__55__pyx_kp_s_Unable_to_convert_item_to_object__pyx_tuple__56__pyx_kp_s_Cannot_create_writable_memory_vi__pyx_tuple__57__pyx_kp_s_Buffer_view_does_not_expose_stri__pyx_tuple__58__pyx_tuple__59__pyx_int_neg_1__pyx_tuple__60__pyx_tuple__61__pyx_kp_s_Indirect_dimensions_not_supporte__pyx_tuple__62__pyx_tuple__63__pyx_tuple__64__pyx_n_s_seed__pyx_tuple__65__pyx_n_s_default_rng__pyx_empty_bytes__pyx_kp_s_generator_pyx__pyx_codeobj__66__pyx_kp_s_strided_and_direct_or_indirect__pyx_tuple__67__pyx_kp_s_strided_and_direct__pyx_tuple__68__pyx_kp_s_strided_and_indirect__pyx_tuple__69__pyx_kp_s_contiguous_and_direct__pyx_tuple__70__pyx_kp_s_contiguous_and_indirect__pyx_tuple__71__pyx_n_s_pyx_result__pyx_n_s_pyx_PickleError__pyx_n_s_pyx_state__pyx_n_s_pyx_checksum__pyx_n_s_pyx_type__pyx_tuple__72__pyx_n_s_pyx_unpickle_Enum__pyx_kp_s_stringsource__pyx_codeobj__73__pyx_tp_dealloc_Enum__pyx_tp_dealloc_5numpy_6random_9generator_Generator__pyx_tp_dealloc_memoryview__pyx_memoryview_thread_locks_used__pyx_memoryview_thread_locks_copy_strided_to_strided__Pyx__GetException__pyx_f_5numpy_6random_9generator_9Generator__shuffle_raw__Pyx_PyObject_LookupSpecial__pyx_f_5numpy_6random_9generator_9Generator__shuffle_int__Pyx_SetVtable__pyx_n_s_pyx_vtable__Pyx_setup_reduce_is_named__pyx_n_s_name__Pyx_setup_reduce__pyx_n_s_getstate__pyx_n_s_reduce_ex__pyx_n_s_reduce_2__pyx_n_s_reduce_cython__pyx_n_s_setstate__pyx_n_s_setstate_cython__Pyx_ImportType__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_setprop_5numpy_6random_9generator_9Generator__bit_generator__pyx_tp_traverse_memoryview__Pyx__ExceptionReset.isra.11__Pyx_IsSubtype.part.14__Pyx_IsSubtype__Pyx_TypeTest.isra.16__Pyx_PyInt_As_int.part.23__Pyx_PyInt_As_int__Pyx_PyInt_As_Py_intptr_t.part.24__Pyx_PyInt_As_int64_t.part.25__Pyx_GetBuiltinName__pyx_b__Pyx__GetModuleGlobalName__pyx_d__Pyx_GetItemInt_Tuple_Fast.part.31__Pyx_PyInt_EqObjC.isra.32.part.33__Pyx_PyInt_NeObjC.isra.34.part.35__Pyx_XDEC_MEMVIEW.isra.41.part.42__Pyx_PyIndex_AsSsize_t.part.44__Pyx_GetItemInt_Fast.part.49__Pyx_ImportFrom.part.50__Pyx_SetItemInt_Fast.part.51__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.23751__Pyx_PyObject_GetIndex__Pyx_ParseOptionalKeywords.constprop.87__Pyx_RaiseArgtupleInvalid.constprop.88__pyx_fatalerror.constprop.92__Pyx_Raise.constprop.102__Pyx_PyErr_GivenExceptionMatches.part.46__Pyx_PyErr_ExceptionMatchesInState.isra.47__Pyx_IterFinish__Pyx_IternextUnpackEndCheck__pyx_tp_dealloc__memoryviewslice__pyx_memoryview_refcount_objects_in_slice.constprop.98__Pyx_ImportFrom__Pyx_PyUnicode_Equals__pyx_tp_traverse__memoryviewslice__pyx_memoryview__slice_assign_scalar__Pyx_BufFmt_RaiseExpected__Pyx_BufFmt_ProcessTypeChunk__Pyx_BufFmt_CheckString__pyx_memoryview_refcount_objects_in_slice__pyx_tp_dealloc_array__pyx_tp_clear__memoryviewslice__Pyx_AddTraceback__pyx_code_cache__pyx_cython_runtime__pyx_dict_version.24615__pyx_dict_cached_value.24616__pyx_n_s_cline_in_traceback__pyx_memoryview_getbuffer__pyx_builtin_ValueError__pyx_getprop___pyx_memoryview_size__pyx_int_1__pyx_getprop___pyx_memoryview_nbytes__pyx_n_s_size__pyx_getprop___pyx_memoryview_itemsize__pyx_getprop___pyx_memoryview_ndim__pyx_getprop___pyx_memoryview_suboffsets__pyx_getprop___pyx_memoryview_strides__pyx_getprop___pyx_memoryview_shape__pyx_memoryview_get_slice_from_memoryview__pyx_memoryviewslice_type__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig__pyx_memoryview_is_f_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig__pyx_memoryview_is_c_contig__pyx_memoryview___str____pyx_n_s_base__pyx_n_s_class__pyx_kp_s_MemoryView_of_r_object__pyx_memoryview_setitem_indexed__pyx_MemviewEnum___init____pyx_n_s_name_2__pyx_pyargnames.21424__pyx_pw___pyx_MemviewEnum_1__reduce_cython____pyx_n_s_dict__pyx_dict_version.21482__pyx_dict_cached_value.21483__pyx_int_184977713__pyx_dict_version.21487__pyx_dict_cached_value.21488__pyx_getprop___pyx_array_memview__pyx_tp_getattro_array__pyx_n_s_memview__pyx_mp_ass_subscript_array__pyx_array___getitem____pyx_pw_5numpy_6random_9generator_9Generator_1__init____pyx_n_s_capsule__pyx_n_s_lock__pyx_n_s_bit_generator__pyx_pyargnames.15942__pyx_f_5numpy_PyArray_MultiIterNew2.part.65__pyx_pw_5numpy_6random_9generator_9Generator_83logseries__pyx_float_0_0__pyx_kp_u__5__pyx_n_u_p__pyx_f_5numpy_6random_6common_disc__pyx_n_s_p__pyx_pyargnames.19389__pyx_pw_5numpy_6random_9generator_9Generator_79geometric__pyx_pyargnames.19146__pyx_pw_5numpy_6random_9generator_9Generator_77zipf__pyx_n_u_a__pyx_n_s_a__pyx_pyargnames.19097__pyx_pw_5numpy_6random_9generator_9Generator_73negative_binomial__pyx_n_u_n__pyx_n_s_n__pyx_pyargnames.18994__pyx_pw_5numpy_6random_9generator_9Generator_67wald__pyx_n_u_mean__pyx_n_u_scale__pyx_f_5numpy_6random_6common_cont__pyx_n_s_mean__pyx_n_s_scale__pyx_pyargnames.18470__pyx_pw_5numpy_6random_9generator_9Generator_55power__pyx_pyargnames.18141__pyx_pw_5numpy_6random_9generator_9Generator_53weibull__pyx_pyargnames.18092__pyx_pw_5numpy_6random_9generator_9Generator_51pareto__pyx_pyargnames.18043__pyx_pw_5numpy_6random_9generator_9Generator_49vonmises__pyx_n_u_mu__pyx_n_u_kappa__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.17991__pyx_pw_5numpy_6random_9generator_9Generator_47standard_t__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.17941__pyx_pw_5numpy_6random_9generator_9Generator_45standard_cauchy__pyx_pyargnames.17895__pyx_pw_5numpy_6random_9generator_9Generator_43noncentral_chisquare__pyx_n_u_nonc__pyx_n_s_nonc__pyx_pyargnames.17844__pyx_pw_5numpy_6random_9generator_9Generator_41chisquare__pyx_pyargnames.17794__pyx_pw_5numpy_6random_9generator_9Generator_39noncentral_f__pyx_n_u_dfden__pyx_n_u_dfnum__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.17739__pyx_pw_5numpy_6random_9generator_9Generator_37f__pyx_pyargnames.17685__pyx_pw_5numpy_6random_9generator_9Generator_15beta__pyx_n_u_b__pyx_n_s_b__pyx_pyargnames.16218__pyx_pw_5numpy_6random_9generator_9Generator_11__reduce____pyx_n_s_generator_ctor__pyx_n_s_pickle__pyx_n_s_state__pyx_n_u_bit_generator__pyx_pw_5numpy_6random_9generator_9Generator_9__setstate____pyx_pw_5numpy_6random_9generator_9Generator_7__getstate____pyx_pw_5numpy_6random_9generator_9Generator_5__str____pyx_kp_u__2__pyx_kp_u__3__pyx_pymod_exec_generator__pyx_pyframe_localsplus_offset__pyx_empty_unicode__pyx_string_tab__pyx_float_1_0__pyx_float_1eneg_8__pyx_int_20__pyx_int_50__pyx_int_1000000000__pyx_n_s_main__pyx_n_s_ValueError__pyx_n_s_id__pyx_builtin_id__pyx_n_s_TypeError__pyx_builtin_TypeError__pyx_n_s_range__pyx_builtin_range__pyx_n_s_OverflowError__pyx_builtin_OverflowError__pyx_n_s_RuntimeWarning__pyx_n_s_reversed__pyx_builtin_reversed__pyx_n_s_RuntimeError__pyx_builtin_RuntimeError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_s_MemoryError__pyx_builtin_MemoryError__pyx_n_s_enumerate__pyx_builtin_enumerate__pyx_n_s_Ellipsis__pyx_builtin_Ellipsis__pyx_n_s_IndexError__pyx_builtin_IndexError__pyx_type_5numpy_6random_9generator_Generatorgenericstridedindirectcontiguousindirect_contiguous__pyx_vtable_5numpy_6random_9generator_Generator__pyx_n_s_Generator__pyx_type___pyx_array__pyx_ptype_5numpy_6random_9generator_Generator__pyx_vtable_array__pyx_vtabptr_array__pyx_array_get_memview__pyx_type___pyx_MemviewEnum__pyx_array_type__pyx_type___pyx_memoryview__pyx_MemviewEnum_type__pyx_vtable_memoryview__pyx_vtabptr_memoryview__pyx_memoryview_get_item_pointer__pyx_memoryview_is_slice__pyx_memoryview_setitem_slice_assignment__pyx_memoryview_setitem_slice_assign_scalar__pyx_memoryview_convert_item_to_object__pyx_memoryview_assign_item_from_object__pyx_memoryview_type__pyx_vtable__memoryviewslice__pyx_vtabptr__memoryviewslice__pyx_memoryviewslice_convert_item_to_object__pyx_memoryviewslice_assign_item_from_object__pyx_type___pyx_memoryviewslice__pyx_ptype_7cpython_4type_type__pyx_ptype_7cpython_4bool_bool__pyx_ptype_7cpython_7complex_complex__pyx_ptype_5numpy_dtype__pyx_ptype_5numpy_flatiter__pyx_ptype_5numpy_broadcast__pyx_ptype_5numpy_ndarray__pyx_ptype_5numpy_ufunc__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_6common_MAXSIZE__pyx_f_5numpy_6random_6common_check_constraint__pyx_f_5numpy_6random_6common_check_array_constraint__pyx_f_5numpy_6random_6common_kahan_sum__pyx_f_5numpy_6random_6common_double_fill__pyx_f_5numpy_6random_6common_float_fill__pyx_f_5numpy_6random_6common_cont_f__pyx_f_5numpy_6random_6common_cont_broadcast_3__pyx_f_5numpy_6random_6common_discrete_broadcast_iii__pyx_f_5numpy_6random_16bounded_integers__rand_uint64__pyx_f_5numpy_6random_16bounded_integers__rand_uint32__pyx_f_5numpy_6random_16bounded_integers__rand_uint16__pyx_f_5numpy_6random_16bounded_integers__rand_uint8__pyx_f_5numpy_6random_16bounded_integers__rand_bool__pyx_f_5numpy_6random_16bounded_integers__rand_int64__pyx_f_5numpy_6random_16bounded_integers__rand_int32__pyx_f_5numpy_6random_16bounded_integers__rand_int16__pyx_f_5numpy_6random_16bounded_integers__rand_int8__pyx_n_s_operator__pyx_n_s_warnings__pyx_n_s_numpy__pyx_n_s_np__pyx_n_s_integers_types__pyx_n_s_bounded_integers__pyx_n_s_PCG64__pyx_n_s_pcg64__pyx_n_u_Generator__pyx_n_u_beta__pyx_n_u_binomial__pyx_n_u_bytes__pyx_n_u_chisquare__pyx_n_u_choice__pyx_n_u_dirichlet__pyx_n_u_exponential__pyx_n_u_f__pyx_n_u_gamma__pyx_n_u_geometric__pyx_n_u_gumbel__pyx_n_u_hypergeometric__pyx_n_u_integers__pyx_n_u_laplace__pyx_n_u_logistic__pyx_n_u_lognormal__pyx_n_u_logseries__pyx_n_u_multinomial__pyx_n_u_multivariate_normal__pyx_n_u_negative_binomial__pyx_n_u_noncentral_chisquare__pyx_n_u_noncentral_f__pyx_n_u_normal__pyx_n_u_pareto__pyx_n_u_permutation__pyx_n_u_poisson__pyx_n_u_power__pyx_n_u_random__pyx_n_u_rayleigh__pyx_n_u_shuffle__pyx_n_u_standard_cauchy__pyx_n_u_standard_exponential__pyx_n_u_standard_gamma__pyx_n_u_standard_normal__pyx_n_u_standard_t__pyx_n_u_triangular__pyx_n_u_uniform__pyx_n_u_vonmises__pyx_n_u_wald__pyx_n_u_weibull__pyx_n_u_zipf__pyx_n_s_all_2PyArray_API__pyx_n_s_float64__pyx_n_s_poisson_lam_max__pyx_dict_version.23794__pyx_dict_cached_value.23795__pyx_dict_version.23797__pyx_k__4__pyx_dict_cached_value.23798__pyx_dict_version.23800__pyx_k__6__pyx_dict_cached_value.23801__pyx_n_s_int64__pyx_dict_version.23803__pyx_k__7__pyx_dict_cached_value.23804__pyx_dict_version.23806__pyx_k__24__pyx_dict_cached_value.23807__pyx_n_s_numpy_random_generator__pyx_mdef_5numpy_6random_9generator_1default_rng__pyx_k__25__pyx_kp_u_random_size_None_dtype_d_out_No__pyx_kp_u_Generator_random_line_141__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_Generator_standard_exponential_l__pyx_kp_u_integers_low_high_None_size_Non__pyx_kp_u_Generator_integers_line_350__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_Generator_bytes_line_479__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_Generator_choice_line_508__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_Generator_uniform_line_749__pyx_kp_u_standard_normal_size_None_dtype__pyx_kp_u_Generator_standard_normal_line_8__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_normal_line_929__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_Generator_standard_gamma_line_10__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_Generator_gamma_line_1123__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_Generator_f_line_1201__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_Generator_noncentral_f_line_1289__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_Generator_chisquare_line_1367__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_Generator_noncentral_chisquare_l__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_Generator_standard_cauchy_line_1__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_Generator_standard_t_line_1580__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_Generator_vonmises_line_1674__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_Generator_pareto_line_1757__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_Generator_weibull_line_1855__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_Generator_power_line_1954__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_laplace_line_2055__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_Generator_gumbel_line_2140__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_Generator_logistic_line_2259__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_Generator_lognormal_line_2339__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_Generator_rayleigh_line_2451__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_Generator_wald_line_2520__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_Generator_triangular_line_2588__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_Generator_binomial_line_2688__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_Generator_negative_binomial_line__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_Generator_poisson_line_2908__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_Generator_zipf_line_2980__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_Generator_geometric_line_3060__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_Generator_hypergeometric_line_31__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_Generator_logseries_line_3252__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_Generator_multivariate_normal_li__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_Generator_multinomial_line_3497__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_Generator_dirichlet_line_3647__pyx_kp_u_shuffle_x_Modify_a_sequence_in__pyx_kp_u_Generator_shuffle_line_3786__pyx_kp_u_permutation_x_Randomly_permute__pyx_kp_u_Generator_permutation_line_3917__pyx_n_s_test__pyx_array_getbuffer__pyx_n_s_pyx_getbuffer__pyx_t_4.23780__pyx_n_s_View_MemoryView__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_array___getattr____pyx_pw_5numpy_6random_9generator_9Generator_65rayleigh__pyx_pyargnames.18418__pyx_pw_5numpy_6random_9generator_9Generator_75poisson__pyx_n_u_lam__pyx_n_s_lam__pyx_pyargnames.19046__pyx_pw_5numpy_6random_9generator_9Generator_17exponential__pyx_pyargnames.16270__pyx_pw_5numpy_6random_9generator_9Generator_35gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.17630__pyx_pw_5numpy_6random_9generator_9Generator_31normal__pyx_n_s_loc__pyx_pyargnames.17502__pyx_pw_5numpy_6random_9generator_9Generator_61logistic__pyx_n_u_loc__pyx_pyargnames.18305__pyx_pw_5numpy_6random_9generator_9Generator_59gumbel__pyx_pyargnames.18248__pyx_pw_5numpy_6random_9generator_9Generator_57laplace__pyx_pyargnames.18191__pyx_pw_5numpy_6random_9generator_9Generator_63lognormal__pyx_n_u_sigma__pyx_n_s_sigma__pyx_pyargnames.18362__pyx_tp_new_memoryview__pyx_n_s_flags__pyx_n_s_dtype_is_object__pyx_n_s_obj__pyx_pyargnames.21540__pyx_tp_new__memoryviewslice__pyx_pw___pyx_memoryview_3__setstate_cython____pyx_pw___pyx_array_3__setstate_cython____pyx_pw___pyx_array_1__reduce_cython____pyx_pw___pyx_memoryviewslice_1__reduce_cython____pyx_pw___pyx_memoryviewslice_3__setstate_cython____pyx_pw___pyx_memoryview_1__reduce_cython____pyx_memoryview_new__pyx_n_u_c__pyx_n_u_fortran__Pyx_decode_c_string.constprop.77__Pyx_PyInt_As_size_t__pyx_memoryview_fromslice__pyx_memoryview_copy_object_from_slice__Pyx_PyFunction_FastCallDict.constprop.89__pyx_n_s_struct__pyx_n_s_pack__Pyx_PyObject_CallNoArg__Pyx_PyObject_CallOneArg_unellipsify__pyx_kp_s_Cannot_index_with_type_s__pyx_mp_ass_subscript_memoryview__pyx_kp_s_Out_of_bounds_on_buffer_access_a__Pyx_PyObject_Call2Args__pyx_memoryview_err__pyx_memslice_transpose__pyx_getprop___pyx_memoryview_T__pyx_memoryview___repr____pyx_kp_s_MemoryView_of_r_at_0x_x__pyx_pw_5numpy_6random_9generator_9Generator_29standard_normal__pyx_n_u_float64__pyx_n_u_float32__pyx_kp_u_Unsupported_dtype_s_for_standard_2__pyx_n_s_dtype__pyx_n_s_out__pyx_pyargnames.17435__pyx_pw_5numpy_6random_9generator_9Generator_13random__pyx_kp_u_Unsupported_dtype_s_for_random__pyx_pyargnames.16151__pyx_pw_5numpy_6random_9generator_9Generator_33standard_gamma__pyx_kp_u_Unsupported_dtype_s_for_standard_3__pyx_pyargnames.17560__pyx_pw_5numpy_6random_9generator_9Generator_19standard_exponential__pyx_n_u_zig__pyx_kp_u_Unsupported_dtype_s_for_standard__pyx_n_s_method__pyx_pyargnames.16323__pyx_pw___pyx_MemviewEnum_3__setstate_cython____pyx_n_s_update__pyx_memoryview_err_dim__pyx_memoryview_copy_contents__pyx_kp_s_got_differing_extents_in_dimensi__pyx_memoryview_copy_new_contig__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran__pyx_memoryview_copy_fortran__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy__pyx_memoryview_copy__pyx_n_s_ndim__pyx_memview_slice__pyx_n_s_start__pyx_n_s_stop__pyx_n_s_step__pyx_memoryview___getitem____pyx_pw_5numpy_6random_9generator_9Generator_3__repr____pyx_n_s_str__pyx_kp_u_at_0x_X__pyx_n_s_format__pyx_pw_5numpy_6random_9generator_9Generator_23bytes__pyx_n_s_integers__pyx_dict_version.16560__pyx_dict_cached_value.16561__pyx_n_s_uint32__pyx_n_s_astype__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_pw_5numpy_6random_9generator_9Generator_27uniform__pyx_dict_version.17345__pyx_dict_cached_value.17346__pyx_n_s_isfinite__pyx_dict_version.17363__pyx_dict_cached_value.17364__pyx_n_s_subtract__pyx_dict_version.17379__pyx_dict_cached_value.17380__pyx_n_s_all__pyx_dict_version.17382__pyx_dict_cached_value.17383__pyx_n_s_low__pyx_n_s_high__pyx_pyargnames.17279__pyx_pw_5numpy_6random_9generator_9Generator_89dirichlet__pyx_dict_version.20023__pyx_dict_cached_value.20024__pyx_n_s_any__pyx_dict_version.20026__pyx_dict_cached_value.20027__pyx_n_s_less_equal__pyx_dict_version.20051__pyx_dict_cached_value.20052__pyx_n_s_index__pyx_dict_version.20093__pyx_dict_cached_value.20094__pyx_n_s_zeros__pyx_dict_version.20096__pyx_dict_cached_value.20097__pyx_n_s_exit__pyx_n_s_enter__pyx_n_s_alpha__pyx_pyargnames.19960__pyx_pw_5numpy_6random_9generator_9Generator_21integers__pyx_dict_version.16458__pyx_dict_cached_value.16459__pyx_n_s_isnative__pyx_n_u_int32__pyx_n_u_int64__pyx_n_u_int16__pyx_n_u_int8__pyx_n_u_uint64__pyx_dict_version.16476__pyx_dict_cached_value.16477__pyx_n_s_bool__pyx_dict_version.16482__pyx_dict_cached_value.16483__pyx_n_s_int__pyx_dict_version.16487__pyx_dict_cached_value.16488__pyx_n_s_long__pyx_dict_version.16493__pyx_dict_cached_value.16494__pyx_n_s_array__pyx_n_u_uint32__pyx_n_u_uint16__pyx_n_u_uint8__pyx_n_u_bool__pyx_kp_u_Unsupported_dtype_s_for_integers__pyx_n_s_endpoint__pyx_pyargnames.16403__pyx_pw_5numpy_6random_9generator_9Generator_81hypergeometric__pyx_dict_version.19284__pyx_dict_cached_value.19285__pyx_kp_u_both_ngood_and_nbad_must_be_less__pyx_dict_version.19296__pyx_dict_cached_value.19297__pyx_dict_version.19309__pyx_dict_cached_value.19310__pyx_dict_version.19312__pyx_dict_cached_value.19313__pyx_n_s_less__pyx_dict_version.19315__pyx_dict_cached_value.19316__pyx_n_s_add__pyx_n_u_nsample__pyx_n_u_nbad__pyx_n_u_ngood__pyx_n_s_ngood__pyx_n_s_nbad__pyx_n_s_nsample__pyx_pyargnames.19197__pyx_pw_5numpy_6random_9generator_9Generator_69triangular__pyx_dict_version.18608__pyx_dict_cached_value.18609__pyx_dict_version.18611__pyx_dict_cached_value.18612__pyx_n_s_greater__pyx_dict_version.18634__pyx_dict_cached_value.18635__pyx_dict_version.18637__pyx_dict_cached_value.18638__pyx_dict_version.18660__pyx_dict_cached_value.18661__pyx_dict_version.18663__pyx_dict_cached_value.18664__pyx_n_s_equal__pyx_n_s_left__pyx_n_s_mode__pyx_n_s_right__pyx_pyargnames.18524__pyx_pw_5numpy_6random_9generator_1default_rng__pyx_n_u_capsule__pyx_dict_version.20652__pyx_dict_cached_value.20653__pyx_pyargnames.20617__pyx_n_s_unpack__pyx_n_s_error__pyx_pw_5numpy_6random_9generator_9Generator_85multivariate_normal__pyx_n_u_warn__pyx_n_s_svd__pyx_n_s_numpy_dual__pyx_dict_version.19505__pyx_dict_cached_value.19506__pyx_dict_version.19516__pyx_dict_cached_value.19517__pyx_dict_version.19528__pyx_dict_cached_value.19529__pyx_n_s_integer__pyx_n_s_standard_normal__pyx_n_s_reshape__pyx_dict_version.19573__pyx_dict_cached_value.19574__pyx_n_s_double__pyx_n_u_ignore__pyx_n_u_raise__pyx_dict_version.19602__pyx_dict_cached_value.19603__pyx_n_s_allclose__pyx_dict_version.19605__pyx_dict_cached_value.19606__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_dict_version.19632__pyx_dict_cached_value.19633__pyx_dict_version.19635__pyx_dict_cached_value.19636__pyx_n_s_sqrt__pyx_dict_version.19625__pyx_dict_cached_value.19626__pyx_n_s_warn__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.19441__pyx_tp_new_array__pyx_n_s_c__pyx_n_s_encode__pyx_n_s_ASCII__pyx_n_s_fortran__pyx_kp_s_Invalid_mode_expected_c_or_fortr__pyx_n_b_O__pyx_kp_s_Invalid_shape_in_axis_d_d__pyx_n_s_itemsize__pyx_n_s_allocate_buffer__pyx_pyargnames.21089__pyx_pw_5numpy_6random_9generator_9Generator_93permutation__pyx_dict_version.20449__pyx_dict_cached_value.20450__pyx_dict_version.20455__pyx_dict_cached_value.20456__pyx_n_s_arange__pyx_n_s_shuffle__pyx_dict_version.20474__pyx_dict_cached_value.20475__pyx_n_s_asarray__pyx_dict_version.20497__pyx_dict_cached_value.20498__pyx_n_s_may_share_memory__pyx_dict_version.20512__pyx_dict_cached_value.20513__pyx_dict_version.20532__pyx_dict_cached_value.20533__pyx_dict_version.20536__pyx_dict_cached_value.20537__pyx_n_s_intp__pyx_dict_version.20485__pyx_dict_cached_value.20486__pyx_n_s_AxisError__pyx_kp_u_x_must_be_an_integer_or_at_least__pyx_pw_5numpy_6random_9generator_9Generator_71binomial__pyx_dict_version.18797__pyx_dict_cached_value.18798__pyx_n_s_empty__pyx_dict_version.18800__pyx_dict_cached_value.18801__pyx_dict_version.18918__pyx_dict_cached_value.18919__pyx_dict_version.18921__pyx_dict_cached_value.18922__pyx_dict_version.18818__pyx_dict_cached_value.18819__pyx_dict_version.18821__pyx_dict_cached_value.18822__pyx_pyargnames.18721__pyx_pf_5numpy_6random_9generator_9Generator_24choice__pyx_dict_version.16712__pyx_dict_cached_value.16713__pyx_n_s_copy__pyx_dict_version.16724__pyx_dict_cached_value.16725__pyx_n_s_item__pyx_dict_version.16762__pyx_dict_cached_value.16763__pyx_n_s_prod__pyx_dict_version.16790__pyx_dict_cached_value.16791__pyx_dict_version.16793__pyx_dict_cached_value.16794__pyx_n_s_finfo__pyx_dict_version.16796__pyx_dict_cached_value.16797__pyx_n_s_eps__pyx_dict_version.16879__pyx_dict_cached_value.16880__pyx_n_s_isnan__pyx_dict_version.16891__pyx_dict_cached_value.16892__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_dict_version.16778__pyx_dict_cached_value.16779__pyx_dict_version.16907__pyx_dict_cached_value.16908__pyx_dict_version.16910__pyx_dict_cached_value.16911__pyx_n_s_cumsum__pyx_dict_version.16965__pyx_dict_cached_value.16966__pyx_n_s_count_nonzero__pyx_dict_version.16986__pyx_dict_cached_value.16987__pyx_dict_version.16989__pyx_dict_cached_value.16990__pyx_n_s_ravel__pyx_n_s_random__pyx_dict_version.17016__pyx_dict_cached_value.17017__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_dict_version.17037__pyx_dict_cached_value.17038__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_dict_version.16814__pyx_dict_cached_value.16815__pyx_n_s_issubdtype__pyx_dict_version.16817__pyx_dict_cached_value.16818__pyx_n_s_floating__pyx_dict_version.16836__pyx_dict_cached_value.16837__pyx_dict_version.16839__pyx_dict_cached_value.16840__pyx_dict_version.16953__pyx_dict_cached_value.16954__pyx_dict_version.17202__pyx_dict_cached_value.17203__pyx_dict_version.17205__pyx_dict_cached_value.17206__pyx_n_s_axis__pyx_dict_version.17191__pyx_dict_cached_value.17192__pyx_dict_version.16940__pyx_dict_cached_value.16941__pyx_dict_version.16943__pyx_dict_cached_value.16944__pyx_dict_version.17116__pyx_dict_cached_value.17117__pyx_dict_version.17119__pyx_dict_cached_value.17120__pyx_dict_version.17126__pyx_dict_cached_value.17127__pyx_n_s_full__pyx_dict_version.17129__pyx_dict_cached_value.17130__pyx_n_s_uint64__Pyx_TypeInfo_nn_uint64_t__pyx_pw_5numpy_6random_9generator_9Generator_25choice__pyx_n_s_replace__pyx_pyargnames.16611__pyx_pw_5numpy_6random_9generator_9Generator_87multinomial__pyx_n_u_pvals__pyx_dict_version.19847__pyx_dict_cached_value.19848__pyx_dict_version.19887__pyx_dict_cached_value.19888__pyx_dict_version.19890__pyx_dict_cached_value.19891__pyx_dict_version.19793__pyx_dict_cached_value.19794__pyx_dict_version.19796__pyx_dict_cached_value.19797__pyx_n_s_int8__pyx_dict_version.19805__pyx_dict_cached_value.19806__pyx_dict_version.19808__pyx_dict_cached_value.19809__pyx_pyargnames.19713__pyx_n_s_pvals__pyx_pw_5numpy_6random_9generator_9Generator_91shuffle__pyx_dict_version.20271__pyx_dict_cached_value.20272__pyx_n_s_empty_like__pyx_n_s_ctypes__pyx_n_s_data__pyx_n_s_strides__pyx_dict_version.20209__pyx_dict_cached_value.20210__pyx_dict_version.20212__pyx_dict_cached_value.20213__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum__pyx_n_s_new__pyx_n_s_PickleError__pyx_n_s_pickle_2__pyx_kp_s_Incompatible_checksums_s_vs_0xb0__pyx_pyargnames.23250__pyx_moduledef__pyx_k_ASCII__pyx_k_AxisError__pyx_k_Buffer_view_does_not_expose_stri__pyx_k_Can_only_create_a_buffer_that_is__pyx_k_Cannot_assign_to_read_only_memor__pyx_k_Cannot_create_writable_memory_vi__pyx_k_Cannot_index_with_type_s__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_Ellipsis__pyx_k_Empty_shape_tuple_for_cython_arr__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_Generator__pyx_k_Generator_binomial_line_2688__pyx_k_Generator_bytes_line_479__pyx_k_Generator_chisquare_line_1367__pyx_k_Generator_choice_line_508__pyx_k_Generator_dirichlet_line_3647__pyx_k_Generator_f_line_1201__pyx_k_Generator_gamma_line_1123__pyx_k_Generator_geometric_line_3060__pyx_k_Generator_gumbel_line_2140__pyx_k_Generator_hypergeometric_line_31__pyx_k_Generator_integers_line_350__pyx_k_Generator_laplace_line_2055__pyx_k_Generator_logistic_line_2259__pyx_k_Generator_lognormal_line_2339__pyx_k_Generator_logseries_line_3252__pyx_k_Generator_multinomial_line_3497__pyx_k_Generator_multivariate_normal_li__pyx_k_Generator_negative_binomial_line__pyx_k_Generator_noncentral_chisquare_l__pyx_k_Generator_noncentral_f_line_1289__pyx_k_Generator_normal_line_929__pyx_k_Generator_pareto_line_1757__pyx_k_Generator_permutation_line_3917__pyx_k_Generator_poisson_line_2908__pyx_k_Generator_power_line_1954__pyx_k_Generator_random_line_141__pyx_k_Generator_rayleigh_line_2451__pyx_k_Generator_shuffle_line_3786__pyx_k_Generator_standard_cauchy_line_1__pyx_k_Generator_standard_exponential_l__pyx_k_Generator_standard_gamma_line_10__pyx_k_Generator_standard_normal_line_8__pyx_k_Generator_standard_t_line_1580__pyx_k_Generator_triangular_line_2588__pyx_k_Generator_uniform_line_749__pyx_k_Generator_vonmises_line_1674__pyx_k_Generator_wald_line_2520__pyx_k_Generator_weibull_line_1855__pyx_k_Generator_zipf_line_2980__pyx_k_ImportError__pyx_k_Incompatible_checksums_s_vs_0xb0__pyx_k_IndexError__pyx_k_Indirect_dimensions_not_supporte__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_Invalid_mode_expected_c_or_fortr__pyx_k_Invalid_shape_in_axis_d_d__pyx_k_MemoryError__pyx_k_MemoryView_of_r_at_0x_x__pyx_k_MemoryView_of_r_object__pyx_k_Non_native_byte_order_not_suppor__pyx_k_O__pyx_k_Out_of_bounds_on_buffer_access_a__pyx_k_OverflowError__pyx_k_PCG64__pyx_k_PickleError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeError__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_TypeError__pyx_k_Unable_to_convert_item_to_object__pyx_k_Unsupported_dtype_s_for_integers__pyx_k_Unsupported_dtype_s_for_random__pyx_k_Unsupported_dtype_s_for_standard__pyx_k_Unsupported_dtype_s_for_standard_2__pyx_k_Unsupported_dtype_s_for_standard_3__pyx_k_ValueError__pyx_k_View_MemoryView__pyx_k__2__pyx_k__3__pyx_k__5__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_sam__pyx_k_a_must_be_1_dimensional_or_an_in__pyx_k_a_must_be_greater_than_0_unless__pyx_k_add__pyx_k_all__pyx_k_all_2__pyx_k_allclose__pyx_k_allocate_buffer__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_array__pyx_k_asarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_axis__pyx_k_b__pyx_k_base__pyx_k_beta__pyx_k_binomial__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_both_ngood_and_nbad_must_be_less__pyx_k_bounded_integers__pyx_k_bytes__pyx_k_bytes_length_Return_random_byte__pyx_k_c__pyx_k_capsule__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice__pyx_k_choice_a_size_None_replace_True__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_contiguous_and_direct__pyx_k_contiguous_and_indirect__pyx_k_copy__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_ctypes__pyx_k_cumsum__pyx_k_data__pyx_k_default_rng__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dict__pyx_k_dirichlet__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_dtype_is_object__pyx_k_empty__pyx_k_empty_like__pyx_k_encode__pyx_k_endpoint__pyx_k_enter__pyx_k_enumerate__pyx_k_eps__pyx_k_equal__pyx_k_error__pyx_k_exit__pyx_k_exponential__pyx_k_f__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_flags__pyx_k_float32__pyx_k_float64__pyx_k_floating__pyx_k_format__pyx_k_fortran__pyx_k_full__pyx_k_gamma__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_generator_ctor__pyx_k_generator_pyx__pyx_k_geometric__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_getstate__pyx_k_got_differing_extents_in_dimensi__pyx_k_greater__pyx_k_gumbel__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_high__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integer__pyx_k_integers__pyx_k_integers_low_high_None_size_Non__pyx_k_integers_types__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_itemsize_0_for_cython_array__pyx_k_kappa__pyx_k_lam__pyx_k_laplace__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_memview__pyx_k_method__pyx_k_mode__pyx_k_mode_right__pyx_k_mu__pyx_k_multinomial__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_normal__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndarray_is_not_C_contiguous__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_k_ndim__pyx_k_negative_binomial__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_new__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_no_default___reduce___due_to_non__pyx_k_nonc__pyx_k_noncentral_chisquare__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_np__pyx_k_nsample__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_dual__pyx_k_numpy_random_generator__pyx_k_obj__pyx_k_operator__pyx_k_out__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pack__pyx_k_pareto__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_pcg64__pyx_k_permutation__pyx_k_permutation_x_Randomly_permute__pyx_k_pickle__pyx_k_pickle_2__pyx_k_poisson__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_power__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_PickleError__pyx_k_pyx_checksum__pyx_k_pyx_getbuffer__pyx_k_pyx_result__pyx_k_pyx_state__pyx_k_pyx_type__pyx_k_pyx_unpickle_Enum__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_random__pyx_k_random_size_None_dtype_d_out_No__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_reduce_2__pyx_k_reduce_cython__pyx_k_reduce_ex__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rtol__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_setstate__pyx_k_setstate_cython__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_standard_cauchy__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_dtype__pyx_k_standard_t__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_start__pyx_k_state__pyx_k_step__pyx_k_stop__pyx_k_str__pyx_k_strided_and_direct__pyx_k_strided_and_direct_or_indirect__pyx_k_strided_and_indirect__pyx_k_strides__pyx_k_stringsource__pyx_k_struct__pyx_k_subtract__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_triangular__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_unable_to_allocate_array_data__pyx_k_unable_to_allocate_shape_and_str__pyx_k_uniform__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_unpack__pyx_k_update__pyx_k_vonmises__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x_must_be_an_integer_or_at_least__pyx_k_zeros__pyx_k_zig__pyx_k_zipf__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_moduledef_slots__pyx_methods__memoryviewslice__pyx_getsets__memoryviewslice__pyx_tp_as_sequence_memoryview__pyx_tp_as_mapping_memoryview__pyx_tp_as_buffer_memoryview__pyx_methods_memoryview__pyx_getsets_memoryview__pyx_methods_Enum__pyx_tp_as_sequence_array__pyx_tp_as_mapping_array__pyx_tp_as_buffer_array__pyx_methods_array__pyx_getsets_array__pyx_methods_5numpy_6random_9generator_Generator__pyx_getsets_5numpy_6random_9generator_Generator__pyx_doc_5numpy_6random_9generator_9Generator_12random__pyx_doc_5numpy_6random_9generator_9Generator_14beta__pyx_doc_5numpy_6random_9generator_9Generator_16exponential__pyx_doc_5numpy_6random_9generator_9Generator_18standard_exponential__pyx_doc_5numpy_6random_9generator_9Generator_20integers__pyx_doc_5numpy_6random_9generator_9Generator_22bytes__pyx_doc_5numpy_6random_9generator_9Generator_24choice__pyx_doc_5numpy_6random_9generator_9Generator_26uniform__pyx_doc_5numpy_6random_9generator_9Generator_28standard_normal__pyx_doc_5numpy_6random_9generator_9Generator_30normal__pyx_doc_5numpy_6random_9generator_9Generator_32standard_gamma__pyx_doc_5numpy_6random_9generator_9Generator_34gamma__pyx_doc_5numpy_6random_9generator_9Generator_36f__pyx_doc_5numpy_6random_9generator_9Generator_38noncentral_f__pyx_doc_5numpy_6random_9generator_9Generator_40chisquare__pyx_doc_5numpy_6random_9generator_9Generator_42noncentral_chisquare__pyx_doc_5numpy_6random_9generator_9Generator_44standard_cauchy__pyx_doc_5numpy_6random_9generator_9Generator_46standard_t__pyx_doc_5numpy_6random_9generator_9Generator_48vonmises__pyx_doc_5numpy_6random_9generator_9Generator_50pareto__pyx_doc_5numpy_6random_9generator_9Generator_52weibull__pyx_doc_5numpy_6random_9generator_9Generator_54power__pyx_doc_5numpy_6random_9generator_9Generator_56laplace__pyx_doc_5numpy_6random_9generator_9Generator_58gumbel__pyx_doc_5numpy_6random_9generator_9Generator_60logistic__pyx_doc_5numpy_6random_9generator_9Generator_62lognormal__pyx_doc_5numpy_6random_9generator_9Generator_64rayleigh__pyx_doc_5numpy_6random_9generator_9Generator_66wald__pyx_doc_5numpy_6random_9generator_9Generator_68triangular__pyx_doc_5numpy_6random_9generator_9Generator_70binomial__pyx_doc_5numpy_6random_9generator_9Generator_72negative_binomial__pyx_doc_5numpy_6random_9generator_9Generator_74poisson__pyx_doc_5numpy_6random_9generator_9Generator_76zipf__pyx_doc_5numpy_6random_9generator_9Generator_78geometric__pyx_doc_5numpy_6random_9generator_9Generator_80hypergeometric__pyx_doc_5numpy_6random_9generator_9Generator_82logseries__pyx_doc_5numpy_6random_9generator_9Generator_84multivariate_normal__pyx_doc_5numpy_6random_9generator_9Generator_86multinomial__pyx_doc_5numpy_6random_9generator_9Generator_88dirichlet__pyx_doc_5numpy_6random_9generator_9Generator_90shuffle__pyx_doc_5numpy_6random_9generator_9Generator_92permutation__pyx_doc_5numpy_6random_9generator_default_rngcrtstuff.c__JCR_LIST__deregister_tm_clonesregister_tm_clones__do_global_dtors_auxcompleted.6330__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrylogfactorial.clogfactdistributions.cstandard_exponential_zigwe_doubleke_doublefe_doublestandard_exponential_zig_fwe_floatke_floatfe_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_floatrandom_hypergeometric.c__FRAME_END____JCR_END____dso_handle_DYNAMIC__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyObject_SetItemPyList_Newrandom_laplace_PyUnicode_ReadyPyExc_SystemErrorPyDict_SetItemStringfree@@GLIBC_2.2.5PyDict_Sizerandom_buffered_bounded_boolrandom_geometric_inversionPyException_SetTracebackPyExc_NotImplementedErrorrandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablePyGILState_ReleasePyFloat_TypePyTuple_TypePyErr_RestorePyList_AsTuplerandom_gauss_zig_f_PyThreadState_UncheckedGetPyModuleDef_InitPyEval_RestoreThreadPyFrame_NewPyMem_Freerandom_negative_binomialrandom_standard_cauchyPyCFunction_NewEx__isnan@@GLIBC_2.2.5PyCapsule_GetNamerandom_gauss_zig_fillPyNumber_InPlaceAddPyBuffer_Releasevsnprintf@@GLIBC_2.2.5exp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrStringPyExc_BufferErrorrandom_floatPyImport_AddModulePyBytes_FromStringAndSizePyBytes_TypePyObject_SetAttrStringPyErr_WarnEx_edatarandom_binomial_btpePyModule_NewObjectPyErr_NoMemoryPyErr_SetObjectPyErr_NormalizeExceptionrandom_logseriesPyNumber_Multiplyrandom_rayleighrandom_gauss_zigrandom_standard_exponentialPyObject_RichComparerandom_uniformPyCode_Newrandom_poisson_finistrlen@@GLIBC_2.2.5PyImport_GetModuleDictrandom_bounded_uint64_fillPyObject_GC_TrackPyExc_RuntimeErrorPyErr_GivenExceptionMatchesPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstancePyObject_GetItemPyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningrandom_multinomialPyObject_MallocPyExc_TypeErrorPySlice_TypePyGILState_EnsurePyInterpreterState_GetIDPyEval_EvalFrameExrandom_logisticPySequence_ContainsPyErr_PrintExmemset@@GLIBC_2.2.5PyMem_ReallocPyErr_SetNonePyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_triangularrandom_buffered_bounded_uint32PyOS_snprintfPyTraceBack_Hererandom_standard_gamma_zig_ffmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_Notcos@@GLIBC_2.2.5PyObject_Freerandom_noncentral_fPyNumber_InPlaceTrueDividePyLong_FromSsize_tPyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5_PyList_ExtendPyLong_AsSsize_tPyObject_RichCompareBoolrandom_standard_gamma_zigPyUnicode_FromUnicoderandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_Clearrandom_normal_zigmemcpy@@GLIBC_2.2.5PyList_Append_Py_CheckRecursiveCall_Py_CheckRecursionLimitPyCapsule_IsValidPyExc_KeyErrorrandom_beta_Py_FalseStruct__gmon_start__PyUnicode_AsUnicoderandom_exponentialloggamexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorPyDict_DelItemrandom_hypergeometricrandom_standard_exponential_zigPyNumber_RemainderPyType_Modifiedrandom_gammaPyObject_SetAttrPyBytes_FromStringPyErr_Occurred_Py_EllipsisObjectPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashPy_OptimizeFlagrandom_zipfPyDict_GetItemStringrandom_doublePyEval_EvalCodeExpowf@@GLIBC_2.2.5PyObject_Sizemalloc@@GLIBC_2.2.5random_standard_exponential_frandom_pareto_Py_NoneStructPyExc_ZeroDivisionErrorPyFloat_AsDouble_endPyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectPy_FatalErrorPyExc_AssertionErrorrandom_positive_int64random_gamma_floatPyThread_allocate_lockPyInit_generatorrandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_Comparerandom_double_fillrandom_vonmises__pyx_module_is_main_numpy__random__generatorrandom_bounded_uint32_fillrandom_positive_int32_Py_TrueStruct__bss_startlogf@@GLIBC_2.2.5PyFunction_Typerandom_chisquarePyDict_NewPyExc_IndexErrorPyObject_GetBufferPyLong_AsUnsignedLongPyDict_TypePyDict_NextPyBaseObject_Typerandom_standard_exponential_fillrandom_intervalrandom_waldPyLong_FromUnsignedLongrandom_noncentral_chisquarePyLong_TypePyFrame_TypePyCapsule_Type_PyObject_GetDictPtrrandom_standard_exponential_zig_fPyErr_Fetchrandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringrandom_binomial_Jv_RegisterClassesPyExc_ImportErrorPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelPyExc_StopIterationPySequence_Listfloor@@GLIBC_2.2.5PyObject_CallPyUnicode_TypePyCapsule_NewPyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablePyNumber_InPlaceMultiplyPyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedceil@@GLIBC_2.2.5PyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_SubtractPyThread_free_lockPyTuple_PackPyUnicode_DecodeASCIIPy_GetVersionPyObject_GC_UnTrackPyExc_UnboundLocalErrorPyErr_WriteUnraisablePyDict_GetItemWithErrorPyList_Typerandom_standard_exponential_zig_fillPyNumber_FloorDivide