ELF>P@"@8@$!\"\" 00(0(2_  0 0( 0($$PtdQtdGNU*Bnv9Ca @M AB@ "AVD (02ABRU$"TB ((C0 Da@ @@ "lP Xk/}+*P{`ns`cD\~\ ?֒ F'3}0ۨmS }dFܽڃ1<]=a (y= aqғmRg#t#CESND`GCYdh.G/6 $a (MFZH)0w?[e뒉ؔqXݪ<x|iQc@*)e䞓e$#AtmdA 9pPe75q3`%\'gl DLukΑ3"9E#{ ~3^ULJݼWYhaڟ+~&} k  pA @^ P] S cJ 0]ub* kT @kNa e  a <[l  @j  @}\ >  ~[4 ; @:F = ̙  ze x @73X Xn' :C  @F  L  p||b**  pF/ T* >/ b*  `x  I_r Z ] p gL @ @ `  @J>  0Fh pB  pa, j   a  !F  JR `< `c/  p] `_( W R po&#  ] : 3 cW  pQ JB jk ~  PPP <__gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClasses_Py_NoneStructPyBaseObject_TypePyExc_ValueErrorPyErr_FormatPyObject_GetAttr_PyThreadState_UncheckedGetPyFrame_NewPyEval_EvalFrameEx_Py_TrueStruct_Py_FalseStructPyObject_IsTruePyLong_TypePyExc_DeprecationWarningPyErr_WarnFormatPyExc_TypeErrorPyErr_OccurredPyErr_SetStringPyLong_AsLongPyExc_OverflowError_PyType_LookupPyExc_AttributeErrorPyErr_SetObjectPyErr_NormalizeExceptionPyException_SetTracebackPyObject_GC_UnTrackPyObject_CallFinalizerFromDeallocrandom_intervalmemcpyPyObject_GetAttrStringPyOS_snprintfPyErr_WarnExPyDict_GetItemStringPyModule_GetNamePyExc_ImportErrorPyCapsule_IsValidPyCapsule_GetNamePyCapsule_GetPointerPyModule_GetDictPyDict_NewPyImport_ImportModuleLevelObjectPyList_NewPyErr_ExceptionMatchesPyErr_ClearPyDict_NextPyExc_NameError_PyDict_GetItem_KnownHashPyLong_FromSsize_tPyObject_GetItemPyObject_SetItemPyLong_AsUnsignedLongPyTuple_PackPyExc_KeyErrorPyDict_SetItemStringPyThreadState_GetPyInterpreterState_GetIDPyModule_NewObjectPyLong_AsSsize_tPyNumber_IndexPyList_TypePyTuple_TypePyErr_GivenExceptionMatchesPyExc_IndexErrorPyUnicode_AsUnicodePyUnicode_ComparePyTuple_NewPyObject_Call_Py_CheckRecursionLimitPyEval_EvalCodeEx_Py_CheckRecursiveCallPyExc_SystemErrorPyFunction_TypePyCFunction_TypePyUnicode_TypePyObject_RichComparememcmp_PyUnicode_ReadyPyTraceBack_HerePyUnicode_FromStringPyCode_New_PyObject_GetDictPtrPyObject_NotPyUnicode_FromFormatPyObject_SetAttrPyMem_ReallocPyMem_Mallocrandom_double_fillPyDict_SizePyNumber_AddPyNumber_InPlaceAddlegacy_gausslegacy_standard_exponentiallegacy_standard_cauchylegacy_chisquarelegacy_standard_tlegacy_standard_gammalegacy_paretolegacy_weibulllegacy_powerlegacy_noncentral_chisquarelegacy_waldlegacy_betarandom_vonmiseslegacy_flegacy_noncentral_frandom_rayleighlegacy_exponentiallegacy_gammalegacy_normalrandom_gumbelrandom_logisticrandom_laplacelegacy_lognormalPyDict_CopyPyDict_SetItemPyDict_TypePyDict_GetItemWithErrorPyMethod_TypePyObject_SizePyFloat_TypePyFloat_AsDoublePySequence_ContainsPyExc_StopIterationPyExc_RuntimeErrorPy_GetVersionPyFrame_TypePyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyImport_AddModulePyObject_SetAttrStringPyUnicode_InternFromStringPyObject_HashPyUnicode_DecodePyFloat_FromDoublePyLong_FromLongPyLong_FromString__pyx_module_is_main_numpy__random__mtrandPyImport_GetModuleDictPySlice_New_Py_EllipsisObjectPyType_ReadyPyObject_GenericGetAttrPyCapsule_NewPyImport_ImportModulePyCapsule_TypePyExc_ExceptionPyType_ModifiedPyCFunction_NewEx_PyDict_NewPresizedPyObject_IsInstancelegacy_random_logserieslegacy_random_geometriclegacy_random_zipflegacy_random_poissonlegacy_negative_binomialPyNumber_Longrandom_uniformPyEval_SaveThreadlegacy_random_multinomialPyEval_RestoreThreadPySequence_Tuplerandom_triangularlegacy_random_hypergeometricrandom_positive_intPyUnicode_FormatPyNumber_RemainderPyExc_UnboundLocalErrorPySequence_ListPyNumber_MultiplyPyList_AsTuplePyList_AppendPyObject_GetIterPyNumber_SubtractPyNumber_InPlaceTrueDividelegacy_random_binomialPyInit_mtrandPyModuleDef_Initlogsqrtpowexp__isnanrandom_binomial_inversionrandom_binomial_btpefloorloggamlogfactorialexpflogfrandom_floatrandom_doublerandom_standard_exponentialrandom_standard_exponential_fillrandom_standard_exponential_frandom_standard_exponential_zigrandom_standard_exponential_zig_fillrandom_standard_exponential_zig_frandom_gauss_zigrandom_gauss_zig_fillrandom_gauss_zig_frandom_standard_gamma_zigrandom_standard_gamma_zig_fpowfsqrtfrandom_positive_int64random_positive_int32random_uintrandom_normal_zigrandom_exponentialrandom_gammarandom_gamma_floatrandom_betarandom_chisquarerandom_frandom_standard_cauchyrandom_paretorandom_weibullrandom_powerrandom_lognormalrandom_standard_trandom_negative_binomialrandom_noncentral_chisquarerandom_noncentral_frandom_waldacosfmodrandom_geometric_searchrandom_geometric_inversionceilrandom_bounded_uint64random_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillmemsetrandom_bounded_bool_filllibm.so.6libpthread.so.0libc.so.6_edata__bss_start_endGLIBC_2.2.5Q ui kui 0(G0(F0(0(`*`z*p* **y**y**0****y**z**y**y**y**@**0**y**Є*@*0*H*y*P*{*X*}**@**0**y**@**0**y**y****z**y** z**y* * z*(*z*0*y*@* *H*0*P*y*`* *h*0*p*p~*x*y**@**y**@**p~**y**y**@**y* **(**0*y*@*0*H*y*`*0*h*y**0**y****z**y****z**y****z**y****y**y* *z*(*y*@**H*z*P*y*`*P*h**p*z*x*y**`**}**y**`**}**y****y**0**y* *}*(*y*@*~*H* *P*}*X*y*p*}*x*y******y**@**Px**`**p|**y****y* *`z*@**H* h**p* ****p***`**`*P**0*@*8*X*0*`*`* **L*** *** ***  **(*H*Ћ*P*@p**x* *** *********@,8**@*`*p*h*,*`**@*P***@**+*0** (* *0*+P**X*x***@***@+***+*Њ**** **@**H*h**p****@****p***`**0*P*8*`X*@*`**0*** ******** **(*H**P*p*Љ*x****@***@*******8**@*`*p*h**`** *P**@*@***0**(* *0*`P**X*x***@*** ***͓*Ј**_ ** * @ **H *h **p * ** * ** *@* *p* *!*`*!*0!*P*8!*X!*@*`!*!*0*!* !*(*!* !* *!*`!**"** "**("* H"**P"*p"**x"*)"*Ї*"*"**"*"**"*ڗ#**#*8#**@#*ԗ`#**h#*A#**#*ޘ#*p*#*#*`*#*$*P*$*Η($*@*0$*9P$*0*X$*x$* *$*.$**$*$**$*$**$*%** %*@%**H%*h%**p%*%*؆*%*%*І*%*%**%*&**&*0&**8&*X&**`&*&**&*ȗ&**&*ȗ&**&*@&*p*'*` '*h*('*&H'*`*P'*&p'*P*x'*'*@*'*'*0*'* '* *'* (**(* 8(**@(*@`(**h(*(**(*(**(*(**(*)*Ѕ*)*()**0)*P)**X)*|x)**)*ژ)**)*)**)*)*p*)***`* **@**P*H**h**@*p****8*****0*****(***+* *+*0+**8+*X+**`+*+**+*+**+*+**+*֘+**,*ܖ ,*Є*(,*H,**P,*p,**x,*,**,*,**,*Ҙ,**,*-*p*-*8-*`*@-*`-*X*h-*-*P*-*-*H*-*-*@*-*.*0*.*(.* *0.*P.**X.*x.**.*Ֆ.**.*.**.*.**.*/*Ѓ* /*@/**H/*h/**p/*/**/*@/**/*Θ/**/*0**0*00**80* X0*p*`0*0*`*0*Ζ0*X*0*Ζ0*P*0* 0*@*1* 1*0*(1*zH1* *P1*Pp1**x1*P1**1*1**1*1**1*ǖ2**2*82**@2*~`2*Ђ*h2*ʘ2**2*x2**2*r2**2*l3**3*l(3**03*uP3*p*X3*ux3*`*3*3*P*3*@3*@*3*p3*0*3*4* * 4*f@4**H4*yh4**p4*p4**4*4**4*k4*Ё*4*g5**5*`05**85*`X5**`5*Ƙ5**5*5**5*5**5*˜5*x*6*˜ 6*p*(6*H6*h*P6*p6*`*x6*u6*P*6*f6*@*6*ؔ6*0*6*7* *7*87**@7*0`7**h7*a7**7*u7**7*7*؀*7*8*Ѐ*8*\(8**08*jP8**X8*^x8**8*^8**8*8**8*Δ8**8*Δ9** 9*@9*p*H9*Ĕh9*h*p9*Ĕ9*`*9*9*P*9*W9*@*9*:*0*:*N0:* *8:*X:**`:*I:**:*I:**:*:**:*:**;*D ;**(;*]H;**P;*p;**x;*R;**;*;**;*;**;*<**<*8<**@<*`<**h<*<*x*<*<*p*<*@<*`*<*=*P*=*(=*@*0=*;P=*0*X=*x=* *=*6=**=*6=**=*@=*~*=*>*~* >*1@>*~*H>*@h>*~*p>*@>*~*>*y>*~*>*`>*~*>*Z?*~*?*Z0?*~*8?*X?*p~*`?*,?*h~*?*,?*`~*?*?*X~*?*?*P~*@*`n @*@~*(@*H@*8~*P@*p@*0~*x@*@b@* ~*@*@*~*@*@*~*@*SA*~*A*8A*}*@A*`A*}*hA*A*}*A*TA*}*A*`SA*}*A* B*}*B*G(B*}*0B*PB*}*XB*UxB*}*B*B*p}*B*B*`}*B*B*P}*B*C*H}* C*@C*@}*HC*`DhC*0}*pC*ړC*(}*C*ړC* }*C*@qC*}*C*D*}*D*0D*}*8D*XD*}*`D*hD*|*D*D*|*D*D*|*D*ND*|*E*N E*|*(E*7HE*|*PE*pE*|*xE*E*|*E*ЍE*|*E*'E*p|*E*HF*`|*F*H8F*P|*@F*8`F*@|*hF*BF*0|*F*"F*(|*F*"F* |*F*G*|*G*d(G*|*0G*ޕPG*{*XG*ޕxG*{*G*,G*{*G*<G*{*G*<G*{*G*`\H*{* H*@H*{*HH*hH*{*pH*H*{*H*H*{*H*`!H*{*H*nI*{*I*n0I*{*8I*VXI*p{*`I*`I*`{*I*I*X{*I*I*P{*I*6I*@{*J*0 J*0{*(J*LHJ*({*PJ*LpJ* {*xJ*`J*{*J*J*{*J*֕J*z*J*ΕK*z*K*8K*z*@K*C`K*z*hK**K*z*K**K*z*K*K*z*K*xL*z*L*x(L*z*0L*$PL*xz*XL*$xL*pz*L*L*`z*L*L*Xz*L*L*Pz*L*M*@z* M*@M*8z*HM*hM*0z*pM*M* z*M*M*z*M*M*z*M*ƕN*z*N*ƕ0N*z*8N*SXN*y*`N*N*y*N*N*y*N*N*y*N* N*y*O* O*y*(O*HO*y*PO*pO*y*xO*O*y*O*JO*y*O*`O*xy*O*`P*py*P*G8P*`y*@P*!`P*Xy*hP*!P*Py*P*=P*@y*P*P*8y*P*Q*0y*Q*6(Q* y*0Q*-PQ*y*XQ*-xQ*y*Q*Q*y*Q*Q*y*Q*Q*x*Q*R*x* R*@R*x*HR*hR*x*pR*R*x*R*:R*x*R*R*x*R*S*x*S*0S*px*8S*XS*`x*`S*S*Px*S*S*@x*S* S*0x*S*"S*(x*T*" T* x*(T*HT*x*PT*pT*x*xT*qT*w*T*jT*w*T*jT*w*T*cU*w*U* 8U*w*@U*`U*w*hU*U*w*U*`U*w*U*\U*w*U* V*w*V*U(V*pw*0V*1PV*hw*XV*1xV*`w*V* V*Pw*V*V*Hw*V*V*@w*V*,W*0w* W*@W* w*HW*hW*w*pW*(W*w*W*W*v*W*W*v*W*@X*v*X*0X*v*8X*XX*v*`X*X*v*X*X*v*X*(Y*Q@Y*s*HY*Y*Y*PY*`Y* Y*NZ*#HZ*@dpZ*@xZ*`GZ*GZ*[*Z*`[*Z*P,Z*H`[*uh[* Hp[*@Q[*[*[*[*\*\*` \*v(\*`8\* *@\*lH\*X\* *`\*h\*x\**\*Ú\*a\*)\*ԛ\* \*@)\*Z\*Њ\*)\*\*\*)]*]*j]*) ]*(]*8]*)@]*H]*dX]*`)`]*h]*<x]*)]*+]*]*@)]*ʞ]*b]*)]*S]*]*`)]*ۛ]*`]*)^*^*H^*) ^*ܚ(^*g8^*)@^*H^*X^* )`^*h^*vx^* )^*%^*Р^* )^*s^*P^*v)^*h^*^*i)^*K^*0p^*a)_*@_*P_*@W) _*(_*pm8_*@N)@_*H_*`sX_*`A)`_*_h_*x_*`5)_*+_*y_*`&)_*2_*|_*)_*:_* _* )_*_*_* )`*~`* `*( `*(`*Ы8`*(@`*H`*0X`*(``*uh`*Px`*(`*U`*`*(`*ޞ`*`*@(`*`*`*@(`*`*p`*(a*a*a*@( a*(a* 8a*(@a*Ha*Xa*@(`a*ha*xa*s(a*{a*a* h(a*a*Ћa*W(a*Ҟa*~a*L(a*a*pa*`A(b*b*Pb*>( b*(b*g8b*@:(`b*hb*xb*@9(b*͛b*@b*9(2(2(2(2( 2( (2( 02(82( @2( H2(P2(X2(`2(h2(p2(x2(%2(+2(,2(-2(.2(2(2(2(2(2(2(J2(L2(M2(N2(R2(T3(3(Y3(3(b 3((3(03(83(i@3(kH3(P3(X3(`3(mh3(op3(x3(q3(r3(s3(3(t3(3(z3({3(3(~3(3(3(3(3(3(3(4(4(4(4( 4((4(H4(P4(X4(`4(h4(p4(x4(4( 4(4(4(4(4(4(4(4(4(4(4(4(4(4(4(5(5(5(5( 5((5(05(85( @5(H5(P5(!X5(`5("h5(#p5(x5($5(5(&5('5(5((5()5(*5(5(5(/5(05(15(25(35(45(56(6(66(76(8 6((6(906(:86(;@6(<H6(=P6(>X6(?`6(@h6(Ap6(Bx6(C6(D6(6(E6(F6(6(G6(H6(I6(K6(O6(6(P6(Q6(S6(6(U7(V7(7(W7(X 7(Z(7([07(\87(]@7(H7(^P7(X7(_`7(`h7(ap7(cx7(d7(e7(f7(7(7(g7(h7(j7(7(l7(n7(p7(7(7(7(u7(8(v8(w8(x8(y 8((8(|08(}88(@8(H8(P8(X8(`8(h8(p8(x8(8(8(8(8(8(8(8(8(8(8(8(8(8(8(8(8(9(9(9(9(H诔H5'%'@%'h%'h%'h%'h%'h%z'h%r'h%j'hp%b'h`%Z'h P%R'h @%J'h 0%B'h %:'h %2'h%*'h%"'h%'h%'h% 'h%'h%'h%'h%'hp%'h`%ځ'hP%ҁ'h@%ʁ'h0%'h %'h%'h%'h%'h %'h!%'h"%'h#%'h$%z'h%%r'h&%j'h'p%b'h(`%Z'h)P%R'h*@%J'h+0%B'h, %:'h-%2'h.%*'h/%"'h0%'h1%'h2% 'h3%'h4%'h5%'h6%'h7p%'h8`%ڀ'h9P%Ҁ'h:@%ʀ'h;0%€'h< %'h=%'h>%'h?%'h@%'hA%'hB%'hC%'hD%z'hE%r'hF%j'hGp%b'hH`%Z'hIP%R'hJ@%J'hK0%B'hL %:'hM%2'hN%*'hO%"'hP%'hQ%'hR% 'hS%'hT%'hU%'hV%'hWp%'hX`%'hYP%'hZ@%'h[0%'h\ %'h]%'h^%'h_%'h`%'ha%'hb%'hc%'hd%z'he%r'hf%j'hgp%b'hh`%Z'hiP%R'hj@%J'hk0%B'hl %:'hm%2'hn%*'ho%"'hp%'hq%'hr% 'hs%'ht%~'hu%~'hv%~'hwp%~'hx`%~'hyP%~'hz@%~'h{0%~'h| %~'h}%~'h~%~'h%~'h%~'h%~'h%~'h%~'h%z~'h%r~'h%j~'hp%b~'h`%Z~'hP%R~'h@%J~'h0%B~'h %:~'h%2~'h%*~'h%"~'h%~'h%~'h% ~'h%~'h%}'h%}'h%}'hp%}'h`%}'hP%}'h@HH dHHH5dHEHw'H81_SHGt HHH@`HHHHt|HPH;w'HLBt&Hv'H LH81u$\Hv'H H5HH81H u3HCH1P0'HHuHJv'H5H81H[AVEAUIHATIUHSHWHHH@u Hu'H5HHLH81 uLK M9rt(Eu#Hu'H5@MHLH81BM9vPAuKLt$HL $IMLL1 11L yH u HCHP01HH[]A\A]A^AWIAVIH5AUIATIUSH]HHLHHHu+LHHu'H5MLH81LHu9HLHAHHt'H5@IMLH818LHHIt%HHP1HHu&HSD$ HR0D$ H u HCHP0H[]A\A]A^A_AWIAVIH5xAUIATIUSHLHHLHHHu+LuHHt'H5LH81LHu9HLH0HHs'H5IMLH818LHHIt%HHP1HHu&HSD$ HR0D$ H u HCHP0H[]A\A]A^A_AWIAVAAUIATUSH(Hl$H$HD$I1LHLt0H$H@uHr'H54L1H814Eu*H $Hu"Hr'H5+LH81H([]A\A]A^A_UHHSQH=)HHuHs'H5HH81nZH[]ATIHUHSHHWH=L)H@)HHRI$HEtHHu H[]A\n1[]A\H*f.Gz u HPr'HHq'HH*f.Gzt H,r'HHq'HHr'HH5H81UHHSHiHHt6HHH HQHHuHSHD$HR0HD$HHHH[]SHHuHGP0Hp'H5HH81&[ATIUHHSHHHt1LHHH HQHHuHSD$ HR0D$ H[]A\SH]HHH@tWHCHHw?HHcHCHD$`8D$Pu D$b8D$RtbLl$pL2HMHL11Ly'H>)$)^H )|Hd'1H@ HHо)KHH!)u'H9)Ծ)^H),H=1JHHо)u'H))^H|)H=1 HH)u'Hl)R)^H;)HHH)HH)u'Hr') )^H)eHH=urHH8)u'H0)˽)^H)#HH=<0HH)u'H))^Hr)HHý)H5H=ս)HE)ycHT):)^H#)C! C H{tc{"t4HEHH8HHH(H+Hu)u'Hֿ)q)[HZ)H5)1HH)u'HE)+)[H)H5)1HH)u'HJ))[Hβ)=H5r)1VHH<)u'H))[H)H5)1HH)u'Hs)Y)\HB)H5v)1HH)u'Hx-))\H)kH5)1HH:)u'H2)ͱ)\H)%H5گ)1>HH)u'H)3)(\Hp)H5)1HH)u'H[)6A)3\H*)H5.)1HH8)u'H`):)>\H)SH5)1lHH)u'Hϰ)_)I\H) H5)1&HH)u'HԼ)o)T\HX)H5)1HH6)u'HC) ))_\H)H5f)1HH)u'HH) )j\H̯);H5)1THH)u'H) )u\H)H5)1HH4)u'Hq) W)\H@)H5)1HHޔ)u'Hv+))\H)iH5)1HH)u'H0)ˮ)\H)#H58)1)u'H˭))\H) H5)1"HH)u'Hй)k)\HT)H5)1HڿHH)u'H<)")\H )zH5/)1HH9)u'HA)ܬ)\HŬ)4H5٥)1MHH)u'H))\H)H Q'H5l)1HH)u'Hc)I)\H2)H5)1HH0)u'Hh)D)]H)[H5p)1tHH)u'H׫))]H)H5)1.HH)u'H9)w)]H`)H5Ԩ)1HHF)u'HK)21)%]H)H5)1HH)u'H)X)0]HԪ)CH5)1\HH)u'Hg)p);]H)H5ҙ)1HH\)u'H!y)_)F]HH)H5|)1HH)u'H۷3))Q]H)qH&)H5ߢ)1HH)u'H1)̩)\]H)$H ɕ)H)1L ɩ)1D$8HD$AHL$0H Ț)HT$ HT$HT$H$HL$(LL$@1HH )u'HR)8)_]H!)HE)H5)1HHȍ)u'HP))h]HԨ)CH )H)1L )1D$8HD$AHL$0H )HT$ HT$HT$H$HL$(LL$@1HH$)u'Hq)W)k]H@)H)H=}s)H)H`HȌ)HhHŒ)ey'H[)%)]Hߧ)NH=Bt)HOs)uH>L'H9s)uHs)H=)11H-s)HHtEH5h)HHmHxHHHuHHCHP0H81|qHMu HEHP0H5s)H=\)H?H6)Uѕ)l_H)H%H HCHP0 HPIX) )VHs)H|9'H0H U)o)H=5R) bHL$pHT$`Ht$PLSy$H٢1) )VH)yH5y)H=0)[HHu$H)ؔ)VH):HHMu HEHP0H^))VH)ILLHWH|$PHt HuHGP0H|$`Ht HuHGP0H|$pHt HuHGP0H ')A)H=֣5$)`Hi)):_H)\HtH u HCHP0MtI $u ID$LP0MtIMu IELP0H")HHu'H)_)C_Ho)H#)H5܁)HH=y)HX)_>)E_1H%)JHMu HEHP0H=ɑ)褻H 8'H=)HHz)[HHu'H9)SԒ)[_H),H5a)H=)H蒽y)H)S)]_1Hz)IHMu HEHP0HΒ)H v)H9Hu)Hv)Ht HH-v).H=)HH=)Hv)H5v)HHu'H`)U)g_H)SH5X)HLHHHӑ)U)i_H) IH u HCHP0H)H u)H9Hu)Hu)Ht HHu).H= ) HH=~)Hu)H5u)@HHu'H>)V$)v_H )|H5q)HKHHu'HK)V)x_Hϐ)H u HCHP0H5$)H=)H蕻y)H)V){_1H})GHMu HEHP0Hѐ)H t)H9Hu)H}t)Ht HH-nt).H=})HH=})HMt)H5Vt)HHu'Hc)W)_H)VH5)HJHHu'H%ڏ)W)_H)GHMu HEHP0H5)H=)Hny'Hԛ)Wo)_HX)H u HCHP0H)H Vs)H9Hu)H9s)Ht HH*s).H=|)HH=|)H s)H5s)HHu'H?)Xڎ)_HÎ)2H5g)HIHHu'H)X)_H)H u HCHP0H5)H=ӎ)HKy)Hf)XL)_1H3)EHMu HEHP0H)H r)H9Hu)Hq)Ht HH-q).H={)谿HH={)Hq)H5q)пHHu'H΍)Y)_H) H5!)HyHHHu'Hۙ)Yv)_H_)DHMu HEHP0H5ӄ)H=)H$y'H?)Y%)_H)OH u HCHP0Hc)H p)H9Hu)Hp)Ht HHp).H=wz)茾HH=fz)Hp)H5p)謾HHu'H)Z)_Hy)H5 )HUGHHu'Hl)ZR)_H;)|H u HCHP0H5)H=)Hy)Hg)Z)_1H)RCHMu HEHP0H=)H o)H9Hu)Hio)Ht HH-Zo).H=Qy)fHH=@y)H9o)H5Bo)膽HHu'Hϗ)[j)_HS)H57)H/FHHu'HF)[,)_H)~BHMu HEHP0H5)H=b)Hڵy'H@)[ۊ)_HĊ)H u HCHP0H)H Bn)H9Hu)H%n)Ht HHn).H=-x)BHH=x)Hm)H5m)bHHu'H`)\F)_H/)H5)H EHHu'Hm")\)_H)2H u HCHP0H5)H=?)H跴y)H҉)\)_1H)AHMu HEHP0H)H l)H9Hu)Hl)Ht HH-l).H=w)HH=v)Hl)H5l)HMu HEHP0H)H rj)H9Hu)HUj)Ht HH-Fj).H=t)ҸHH=t)H%j)H5.j)HHu'H;)_ֆ)_H).H5|)HAHHu'H)_)_H)=HMu HEHP0H5{)H=Ά)HFy'Ha)_G)`H0)qH u HCHP0H)H .i)H9Hu)Hi)Ht HHi).H=s)讷HH=s)Hh)H5h)ηHHu'H̅)`) `H) H5z)Hw@HHu'Hّ)`t)`H])H u HCHP0H52z)H=)H#y)H>)`$)`1H )t<HMu HEHP0H_)H g)H9Hu)Hg)Ht HH-g).H=sr)舶HH=br)Hg)H5g)訶HHu'H)a)`Hu)H5y)HQ?HHu'Hh)aN)`H7);HMu HEHP0H5x)H=)Hy'Hb)a) `H)'H u HCHP0H;)H f)H9Hu)Hf)Ht HHxf).H=Oq)dHH=>q)HWf)H5`f)脵HHu'H͏)bh)*`HQ)H5Ev)H->HHu'HD)b*),`H)TH u HCHP0H5u)H=a)H٭y)H?)bڂ)/`1H)*:HMu HEHP0H)H ^e)H9Hu)HAe)Ht HH-2e).H=)p)>HH=p)He)H5e)^HHu'H\)cB)9`H+)H5_t)H=HHu'Hi)c);`H)V9HMu HEHP0H5t)H=:)H責y'H́)c)>`H)H u HCHP0H)H d)H9Hu)Hc)Ht HHc).H=o)HH=n)Hc)H5c):HHu'H8)d)H`H)vH5s)H;HHu'HE)d)J`Hɀ) H u HCHP0H5r)H=)H菫y)H)d)M`1Hw)7HMu HEHP0Hˀ)H b)H9Hu)Hb)Ht HH-b).H=m)HH=m)Hb)H5b)HHu'H])e)W`H)PH5q)H:HHu'H)e)Y`H) 7HMu HEHP0H5q)H=)Hhy'H΋)ei)\`HR)H u HCHP0H)H a)H9Hu)Hsa)Ht HHda).H=l)аHH=l)HCa)H5La)HHu'H9~)f~)f`H~),H5o)H9HHu'H~)f~)h`H~)H u HCHP0H5o)H=~)HEy)H`~)fF~)k`1H-~)5HMu HEHP0H~)H J`)H9Hu)H-`)Ht HH-`).H=k)誯HH=k)H_)H5`)ʯHHu'H})g})u`H})H5n)Hs8HHu'HՉ})gp})w`HY})4HMu HEHP0H5Mn)H=})Hy'H9})g})z`H})IH u HCHP0H]})H _)H9Hu)H^)Ht HH^).H=qj)膮HH=`j)H^)H5^)覮HHu'H|)h|)`Hs|)H5l)HO7HHu'Hf|)hL|)`H5|)vH u HCHP0H5zl)H=|)Hy)Ha|)h{)`1H{)L3HMu HEHP0H7|)H ])H9Hu)H])Ht HH-]).H=Ki)`HH=:i)Hs])H5|])耭HHu'Hɇ~{)id{)`HM{)鼿H51k)H)6HHu'H@{)i&{)`H{)x2HMu HEHP0H5j)H=\{)Hԥy'H:z)iz)`Hz)H u HCHP0H{)H |\)H9Hu)H_\)Ht HHP\).H='h)s)p$s)`H s)NH u HCHP0H5`)H=[s)Hӝy)H9r)pr)a1Hr)$*HMu HEHP0Hs)H S)H9Hu)H{S)Ht HH-lS).H=#`)8HH=`)HKS)H5TS)XHHu'H~Vr)q)H5?)HHu'HQl`)_)aH_)DH5H)HHHu'Hl_)_)aH_)HMu HEHP0H5{H)H=_)H\y'Hkw_)]_)bHF_)H u HCHP0H_)H >)H9Hu)H=)Ht HH=).H=L)ĐHH=L)H=)H5=)HHu'H-k^)^) bH^) H5G)HHHu'Hj^)^) bHs^)H u HCHP0H58G)H=^)H9y)HjT^):^)b1H!^)HMu HEHP0Hu^)H <)H9Hu)H<)Ht HH-<).H=K)螏HH=xK)Hq<)H5z<)辏HHu'Hj])])bH])H5F)HgHHu'Hi~])d])bHM])HMu HEHP0H5E)H=])Hy'Hxi-])])bH\)=H u HCHP0HQ])H z;)H9Hu)H];)Ht HHN;).H=eJ)zHH=TJ)H-;)H56;)蚎HHu'Hh\)~\)(bHg\)֠H5D)HCHHu'HhZ\)@\)*bH)\)jH u HCHP0H5^D)H=w\)Hy)HUh \)[)-b1H[)@HMu HEHP0HJ)H=/)1HHu'Hg[)[)7bH[)H5G)H=[)HXy)Hgs[)Y[)9b1H@[)HMu HEHP0HTJ)H= /)1&HHu'Hhg[)[)CbHZ)[H5G)H=I[)Hy)H'gZ)Z)Eb1HZ)HMu HEHP03}HHu'HfZ)wZ)ObH`Z)ϞHR)HHEHR)HHR)HHEHR)HPH;R)HHEH-R)HPHQ)HHEHQ)HPHyQ)HHEHkQ)HP HpP)HHEHbP)HP(HO)HHEHO)HP0H~O)HHEHpO)HP8HO)HHEHN)HP@HN)HHEHN)HPHHsN)HHEHeN)HPPH*N)HHEHN)HPXHM)HHEHM)HP`HL)HHEHK)HPhH/K)HHEH!K)HPpHJ)HHEHJ)HPxHJ)HHEHJ)HHI)HHEHI)HHI)HHEHI)HHH)HHEHH)HH=H)HHEH/H)HHH)HHEHG)HHG)HHEHG)HHF)HHEHF)HHF)HHEHF)HHaF)HHEHSF)HHF)HHEHE)HHIE)HHEH;E)HHD)HHEHD)HHD)HHEHD)HHD)HHEHwD)HHYD)HHEHKD)HHD)HHEHD)HHC)HHEHC)HHC)HHEHwC)HHB)HHEHB)HH}B)HHEHoB)H HAB)HHEH3B)H(HA)HHEHA)H0HiA)HHEH[A)H8H-A)HHEHA)H@H@)HHEH@)HHH@)HHEH@)HPHy@)HHEHk@)HXHm?)HHEH_?)H`H>)HHEH>)HhHu>)HHEHg>)HpH9>)HHEH+>)HxH=)H=U)HHEH=)HHj=)HHEH\=)HHNR)HHDR)HEH59N)HHy)H8aT)T)b1HT)# HMu HEHP0,軀HHu'H`T)T)bHqT)HE@)H5O)HFy)H`aT)GT)b1H.T) H2A)H5O)Hy)Hi`T)T)b1HS)T H>)H5O)H~y)H&`S)S)b1HS) Hl=)H5N)H}~y)H_S)~S)b1HeS) H@)H5O)H:~y)H_US);S)b1H"S) H&K)H5?P)H}y)H]_S)R)b1HR)H HSJ)H5O)H}y)H_R)R)b1HR) H;)H5YM)Hq}y)H^R)rR)b1HYR) H?)H5N)H.}y)H^IR)/R)b1HR) Hj?)H5M)H|y)HQ^R)Q)b1HQ)< H>)H5PM)H|y)H^Q)Q)b1HQ)HD<)H5L)He|y)H]Q)fQ)b1HMQ)H@)H5JM)H"|y)H]=Q)#Q)c1H Q)sH;)H5L)H{y)HE]P)P)c1HP)0H+F)H5M)H{y)H]P)P)c1HP)HHF)H5aM)HY{y)H\tP)ZP)c1HAP)H?)H5NL)H{y)H|\1P)P)c1HO)gHG)H5 M)Hzy)H9\O)O)c1HO)$H?)H5K)Hzy)H[O)O)c1HxO)H:)H5J)HMzy)H[hO)NO)c1H5O)H9)H5"J)H zy)Hp[%O) O)c1HN)[H7)H5I)Hyy)H-[N)N) c1HN)Hs=)H5J)Hyy)HZN)N) c1HlN)H6)H5H)HAyy)HZ\N)BN) c1H)N)Hm<)H5I)Hxy)HdZN)M) c1HM)OH@)H5sJ)Hxy)H!ZM)M) c1HM) HwB)H5PJ)Hxxy)HYM)yM)c1H`M)H?)H5I)H5xy)HYPM)6M)c1HM)H!?)H5I)Hwy)HXY M)L)c1HL)CH~9)H57H)Hwy)HYL)L)c1HL)H[5)H54G)Hlwy)HXL)mL)c1HTL)H5)H5!G)H)wy)HXDL)*L)c1HL)zHeD)H5>I)Hvy)HLXL)K)c1HK)7H<)H5G)Hvy)H XK)K)c1HK)H:)H5XG)H`vy)HW{K)aK)c1HHK)H|3)H5E)Hvy)HW8K)K)c1HK)nH9@)H5G)Huy)H@WJ)J)c1HJ)+HV?)H5_G)Huy)HVJ)J)c1HJ)Hc<)H5F)HTuy)HVoJ)UJ)c1H)iHIAhHHAtELHLLgIHtHmt,HtH+u HCHP0HL[]A\A]A^A_DHEHP0@1`HHtcI[fALHLL)gHIuH&H8c^!e<1E1FE1_fDUSHHHt:HHHHPHHuHWHt$R0Ht$HsH1[]DH-&HHEH/t Hk@HGP0ffffff.UHSHH?HhHXH0HPHHHtH/tNHtHmt2HtH+tH[]HCHH@0H[]DHEHP0@HGP0fffff.SHHGtWHGHtDHtHt)x~H[fDGWHH H[DH1[GH[hHHHtH~H HQHHuHSHD$HR0HD$H&H5PH8CaHffff.HHIH9H ]G| H ]GIH$L HHpGIHH5QLDH-&H81kfHfDAWAVIAUATIUSHH8LLoHo 8cx WP H&;AGHHs0HS(HEHMHt$ HT$E1HL$D$E$L1LLcHbp VP H&! I9|H8H[]A\A]A^A_D29}|b@$fDA CQHt`MuKIcWHEH9tfHs0HS(BH=Pa 111Hs0HS(IcWL9t&Hs0HS(1HuLLyH LLLL`HAUIATUSHHHGHHaL%p&p VA;$P d1HLH_ax A$OH B~9|Ht#HH[]A\A]R9}!a@$vaHt)1H=O`t1H1[]A\A]cH &H5OHD$H:=^HD$fDAUATUSHHWH; &Ht$H;&HOQE1 Ld$Hitzm`HV&p V;P LLHE`p NH B~9|%HtSHH[]A\A]R9}`@$LofHt$Ht$t.`Ht51H=^NY_\1늀tHt$qH&H5FNH$H:\H$NHWH;&H;&HOQATE1USH Hitn)_H&p V;P s1LH_p NH B~9|Ht]HH[]A\R9}^@$Lgf.11GhsH=;M6^y1^HfuH&H50MHD$H:[HD$ufATUSHHH9H;&H9GH9Fu;t7 ~ HFH;C1H[]A\@L%&L9uuL9uҐuH߉ZHHH; &H;&H HQHHuHSD$HR0D$fDHKHVH9tHt HVDK DF DD9,A H{0HHA@HDA LN0HHA@LD΃7A 9Ht0LH[111H[]A\L9H]fH{HXLNHb7A m7A aHt$%WHt$)HHt$WHt$fUHSHHGHHtHHtHH[]N_HH&H8YtHefff.AWAVAUIATIUSHxVIP7A1H=2)HD 2)D΃xHcHD9D^1f.}8Q9~&)Љ HcHDD9~׉9A9A9~qHcHHD;AuaL!I$H2)1LLEVHHt hlHYI,$Ht H+@Hx[]A\A]A^A_fL\HIt؅L\IMQH 2)L 1)E11111l$8Ll$0LL$@Lt$(HD$ HD$HD$HD$H$VI.I0Imu IELP0ML0H-1)AHD1)DǃHcHD9l1fDN9)ʉ4 HcHTD9~ωHCHH@0Hx[]A\A]A^A_DH=1)HH@XMw`IGXIG`HD$PIGhIGhHD$XZHH1H8H)H9GH)H H &H9H;&tH4WEHt$PIXIW`IGhMw`IwXHt$XHIwhtH7HNHHtvHtH:HOHH tLHtH8HWHHt,AAfID$LP0iHPHR0HJHD$PHQ0HD$PHOHD$XHT$PQ0HD$XHT$PjHy;H=;L1dRIOH.)AP1E1A9AAE9~IcHHD;jD;.)DA9}%HcփHD9HLH\H H\uMcI=n.)LDhL I$11iI.aIFLH@0EwG1AKIFLP0 VH&H5%)1H=s.)VAX@HHcHvTHH-)-)=-) H:L"H/|HGP0pLaXHI1H5%)HL$`HVVHL$`HH)HH@H))YH H5-)'-)@-)DhL I$H5$)H=z-)HHHD$`THt$`t7H o&HH.HFHL$hHHT$`P0HT$`HL$hH&H 1&ffffff.AVAUATIUSHH H-?&HHl$)HFHHufHVI$IIt$ H=&HH+)HHHHPHHu HSHR0H H[]A\A]A^LfDH*8H ,8HH$L 9H5BHHHHH/8LBH%8LIH&H81-WH8+)!+)&&H+)H 7H=B!NH 1[]A\A]A^HLnMI0HFHHD$NHHT$H74+)L+)DH+)HHPHHu HSHR0H *)*)H=6B5*)H>NHI~H5)HHVSHtHD$IFXHT$L6H5(LHc;H6y*)!_*)HC*)fffff.ATH5!)UHSHGHHaHH)HCH5)HHHIMH+ H}H5/!)HGHHPHH_HEH5b)HHH4HHHmH=?#)HMHHH+H5 #)HMHHAHmHLPMHHsH+t~I,$HEIHHEHHHEu HEHP0[]LA\DHCHP0HEHP0;HCHP0PHEHP0fHCHP0I,$xID$LP0hFTH6THH4M()z3()KH()H ()/()H=?5()M'I$LE1H?4')z')SH')Hmu HEHP0H ')')H=.?5')cH3')z')VHo')H+IHCHP0:H3e')zK')MH4')lH3>')z$')PH ')He3')y')>H&)uRIH13&)y&)<E1H&)RHAUATUHSHHhL 1&HLL$PSHFH>HHVHHuHE1H=3&HHLL$@D$8LL$0LL$(D$ LL$LL$D$L $9%)HHHHPHHu HSHR0HhH[]A\A]LH1H 1HH$L @3H5}<HHHHH1LBH1LIH&H81PH1%)r%)((HV%)H 1H==Hh1[]A\A]ÐLLfMI;HFHLL$HHD$P{HLL$HHHT$PH=1$)$)A(H$)HHPHHu HSHR0H $)$)H=L<5$)YHLL$HGHILL$HyH5)HLL$HHV^MHLL$HtHD$PIE@HT$PL0H5s(LHLL$H]LL$HH`0$)#) ( (H#)f.AUATUHSHHhL a&HLL$PSHFH>HHVHHuHE1H=&HHLL$@D$8LL$0LL$(D$ LL$LL$D$L $i")HHHHPHHu HSHR0HhH[]A\A]LH/H /HH$L p0H59HHHHH/LBH>/LIH&H81NH/")")H")H .H=`:>Hh1[]A\A]ÐLLfMI;HFHLL$HHD$PELL$HHHT$PHm."")")7H!)HHPHHu HSHR0H !)!)H=95!)HLL$H'EHILL$HyH5 )HLL$HHVJHLL$HtHD$PIE@HT$PL-H5ã(LHLL$HZLL$HH-E!)+!)H!)f.AVAUATIUSHH`H-&HHl$PqHFH\HHVI$L )E1It$HH=&HHHl$@H})D$8LL$(D$ LL$HD$0HD$D$H$)HHHHPHHu HSHR0H`H[]A\A]A^LH2,H 4,HH$L -H56HHHHH7,LBHk,LIH&H815KH,))L,L,H)H +H=7VH`1[]A\A]A^HLnMI/HFHHD$PBHHT$PoH+<)L")r,H )HHPHHu HSHR0H ))H=65)HFBHI~H5 )HHVGHtHD$PIFXHT$PL+H5(LHX;H*)g)>,>,HK)fDAWAVAUIATIUSHHhH-&HHD$PHl$XHFHHHV LKI$H )It$HAH=&HHD$(H )HD$Hv)Hl$@D$8HL$0HL$D$ HD$H$)HHHHPHHu HSHR0HhH[]A\A]A^A_H5 )LIHV+>+H)AWAVAUIATIUSHHhH-&HHD$PHl$XHFHHHV LKI$H)It$HAH=&HHD$(H z)HD$HF)Hl$@D$8HL$0HL$D$ HD$H$z)HHHHPHHu HSHR0HhH[]A\A]A^A_H5)LIHV CHHD$PHCf.HH$L ^'H&H%H %H50LNHӽ&HOH8LBH4&1DH%)O),,He)H %H=1OHh1[]A\A]A^A_@HqLvIIML,LHHD$XIMLL$PHT$XH!)u)N)H^)HHPHHu HSHR0H >)X)H=-5;),HF HD$XHCHD$P.HT$PL!H5(LLrNUH>!)=)))H)AWAVAUIATIUSHHhH-:&HHD$PHl$XHFHHHV LKI$H|(It$HAH=&HHD$(H )HD$H )Hl$@D$8HL$0HL$D$ HD$H$)HHHHPHHu HSHR0HhH[]A\A]A^A_H5l )LIHVH;)!)--H)H _H=+Hh1[]A\A]A^A_@HqLvIIML,L$6MIIu*M~.H5(LHV;HHD$XIMLL$PHT$XH_)\E)-H.)HHPHHu HSHR0H )()H=*5 ),HF HD$XHCHD$P.HT$PLH5(LLBKUH))--H)AWAVAUIATIUSHHhH- &HHD$PHl$XHFHHHV LKI$HL(It$HAH=&HHD$(H )HD$H )Hl$@D$8HL$0HL$D$ HD$H$)HHHHPHHu HSHR0HhH[]A\A]A^A_H5< )LIHV|9HHD$PHCf.HH$L HH^H NH5&LNHC&HOH8LBH1l;HV )a)O.O.H)H /H=(aHh1[]A\A]A^A_@HqLvIIML,L2MIIu*M~.H5(LHVZ8HHD$XIMLL$PHT$XHz/))u.H)HHPHHu HSHR0H ))H='5),HF HD$XHCHD$P.HT$PL`H5(LLHUH)ay)?.?.H])AWAVAUIATIUSHHhH-ڲ&HHD$PHl$XHFHHHV LKI$H(It$HAH=&HHD$(H )HD$Hv)Hl$@D$8HL$0HL$D$ HD$H$ )HHHHPHHu HSHR0HhH[]A\A]A^A_H5 )LIHVL6HHD$PHCf.HH$L H]H.H H5#LNH&HOH8LBH1<8H& ) )..H )H H=%]Hh1[]A\A]A^A_@HqLvIIML,L/MIIu*M~.H5(LHV*5HHD$XIMLL$PHT$XHJ )"  ).H )HHPHHu HSHR0H ) )H=$5 )f,HF HD$XHCHD$P.HT$PL8H5w(LLDUHc )I )..H- )AWAVAUIATIUSHHxH-&HHD$PHD$XHl$`HFHHHV(HC LKI$It$HAH=4&HHD$H )HU)Hl$@D$8D$ HL$0H (D$H$HL$(H L(HL$Hv )HHHHPHHu HSHR0HxH[]A\A]A^A_H5)LIHV3HHD$PHCfDHH$HH&H H5 L AHOH81LBHk5H ) )++Ho )H H="'Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLu,IIIMMLL$PHD$XHT$`H) )+H)HHPHHu HSHR0H v))H=!5s).8H5R(LHVV1HHD$XtDIMcH5(LHV,1HtgHD$`I4MLH=H7))+H)5)AHT$PLtH5(LLAH))+Hh)fDAWAVAUIATIUSHHxH-&HHD$PHD$XHl$`HFHHHV(HC LKI$It$HAH=<&HHD$H )He(Hl$@D$8D$ HL$0H (D$H$HL$(H (HL$H)HHHHPHHu HSHR0HxH[]A\A]A^A_H5(LIHVH/HHD$PHCfDHH$H;H2&H $H5L HOH81LBHF1H0) )22H)H H=1 gHx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PL(IIIMMLL$PHD$XHT$`HR)3 ):2H)HHPHHu HSHR0H ))H=95)n8H5(LHV-HHD$XtDIMcH5(LHVl-HtgHD$`I4MLH=Hw,) )1H)5)AHT$PLH5(LLX=H$) )2H)fDAWAVAUIATIUSHHxH-*&HHD$PHD$XHl$`HFHHHV(HC LKI$It$HAH=D&HHD$H (H(Hl$@D$8D$ HL$0H (D$H$HL$(H \(HL$H)HHHHPHHu HSHR0HxH[]A\A]A^A_H5H(LIHV+HHD$PHCfDHH$H{Hr&H dH5 L HOH81LBH-Hp%)W )H)H IH=WHx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PL$IIIMMLL$PHD$XHT$`H G)}-)@H)HHPHHu HSHR0H ))H=5)8H5b(LHV)HHD$XtDIMcH5(LHV)HtgHD$`I4MLH=[  H l)WR)H;)5E)AHT$PL H5M(LL9Hd )W(H(fDAWAVAUIATIUSHHxH-j&HHD$PHD$XHl$`HFHHHV(HC LKI$It$ AH=$&HHD$H D(H(Hl$@D$8D$ HL$0H \(D$H$HL$(H \(HL$H6(HHHHPHHu HSHR0HxH[]A\A]A^A_H5(LIHV'HHD$PHCfDHH$H H&H H5LL  HOH81LBHJ )H e(K(S-S-H/(H H=Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PL5!IIIMMLL$PHD$XHT$`H (m(y-HV(HHPHHu HSHR0H 6(P(H= 53(8H5b(LHV&HHD$XtDIMcH5H(LHV%HtgHD$`I4MLH= MH((7-H{(5(AHT$PLS H5 (LL5HY(?(A-H((fDAWAVAUIATIUSHHxH-&HHD$PHD$XHl$`HFHHHV(HC LKI$It$HAH=L&HHD$H (H5(Hl$@D$8D$ HL$0H (D$H$HL$(H (HL$Hv(HHHHPHHu HSHR0HxH[]A\A]A^A_H5(LIHV$HHD$PHCfDHH$HH&H H5L AHOH81LBH&H((<*<*Ho(H H=q'Hx1[]A\A]A^A_fDHrLvIt(ItIHF(HD$`HC HD$XHCHD$PLuIIIMMLL$PHD$XHT$`H()(b*H(HHPHHu HSHR0H v((H=y5s(.8H5(LHVV"HHD$XtDIMcH5(LHV,"HtgHD$`I4MLH=荽H7(( *H(5(AHT$PLH5m|(LL2H((**Hh(fDAWAVAUIATIUSHHxH-&HHD$PHD$XHD$`Hl$hHFHkHHV0HK(HC LKI$It$HAHHL$(H=(H (HD$Hc(Hl$@H|$0HL$D$8HD$ D$H$H=&(HHHHPHHu HSHR0HxH[]A\A]A^A_HCDHH$H[HR&H DH5 L HOH81LBHf"HP(.(**H(H )H=.Hx1[]A\A]A^A_fDHL~IH(JcHHF0HD$hHC(HD$`HC HD$XHCHD$PLIIIIu*M~.H5(LHV#H HD$hIMLL$PHD$XHL$`HT$hH9(v(*H(HHPHHu HSHR0H ((H=5(U%MvH5 (LIHVpHHD$P H5 (LHVOHHD$XIH5&(LHV*HHD$`tdILHT$PLH5x(LLg.H3(.(*H(5(H=AH(.(*Ho(H=^Ha(.G(*H0(tff.AVAUATIUSHH`L '(H-&HLL$PHl$XHFHoHHLHH$IH&HH H5v L +HII?HH8I1AH( t(11HX(H H=  H`1[]A\A]A^ÐHV LNI$HI(It$ AH=&HHD$(H (HD$H(Hl$@D$8HL$0HL$D$ HD$H$(HHHHPHHu HSHR0H`H[]A\A]A^fHPH(HHVHHD$XIMLL$PHT$XH((H(HHPHHu HSHR0H f((H=5c(HF HD$XHFHD$P.HrH52(HHV&H(HD$PIHT$PLxH5H=E11HHI,HIuHe&H5vH8E11ɺAIffffff.AWAVAUATIUHSHH(HCHEHEH HHCH5(HHH(HH?HCH;Me& LkMLcIEI$H+ID$H;6f&Ll$H;f&IT$BE1 HZuMt$L=e&H QA;P LLIpx AOH BR9MImMrI,$ID$LP0HIMfHHMH5ȫ(HHM5ID$L5(LM,L=d&H QA;P OHLLAIwH QP A=H @9M$I,$tsH+u HCHP0HEHPLHHUtH([]A\A]A^A_DHULt$HR0HD$H([]A\A]A^A_DHCHP0ID$LP0}@$_fIELP0j@$GfHz/(9(L&H(I,$t]HtH+tFH ((H=(5(E1蚋DHt$L较IHCHP0ID$LP0H;Vc&H;d&HSBE1 LbuLkL=b&H QA;P e1LAIx AOH BR9|MbI.D[@$11HIH.(6ɽ(&H(H%HH51L1LLIHx(7^(!&HG(V H~E1YtHt$LwI;LHL?HIHM(9(M&HѼ(H=fD{HuH7`&H5H8pyHkIH(9h(H&HQ(`H[(7A(/&LH'(+H|1(9(J&H(H=HIH=E1HG_&H5H8fHuH_&H5H8XvAWAVAUATIUHSHH(HCHEHEH HHCH5O(HHH(HH?HCH;^& LkMLcIEI$H+ID$H;_&Ll$H;L`&IT$BE1 HZuMt$L=^&H QA;P LLIx AOH BR9MImMrI,$ID$LP0HIMfHHMH5((HH5ID$L5(LM,L=]&H QA;P OHLLAIH QP A=H @9M$I,$tsH+u HCHP0HEHPLHHUtH([]A\A]A^A_DHULt$HR0HD$H([]A\A]A^A_DHCHP0ID$LP0}@$_fIELP0j@$GfH(u(%H^(I,$t]HtH+tFH E(_(H=5B(E1DHt$L}IHCHP0ID$LP0H;\&H;q]&HSBE1 LbuLk L= \&H QA;P e1LAIx AOH BR9|MbI.D@$11HI|IHC()(%H(HHH51L1LLIH#ض((%H(VmH~E1YtHt$L5qI;LHLHIHb(H(%H1(H=50fDHuHY&H5(H8HIH-(ȵ(%H(`H((%LH(+H(w(%H`(H=d_HpIH=;6E1HX&H58H8HuHX&H5H8vAWIAVAUATIUSHHFH iH;JZ& H;UX&/ H@h1LH H@H HHH5۱(H92 HY&H9EH9FwL-X&L9uL9uHYHIt7H;X&H;PX&d I.u IFLP09Hɳ((:E11E1H(E1DHm Ht H+ Mt I. H X(r(H=5U(M1H5}(H=(yHI0HWImu IELP0HF((&1E1E1H²(fE1;} e~ zHEH;FVHEHPHHUeHH ID$H;W&H; V&H@h1LH H@H HHoH5P(HHm H+HH ID$H;{W&=H;U&@H@hLH H@H IM' H5(LH^ I.LID$H;W&H;U&H@hLH H@H IM H5v(LH I.H5r(HH H+L-HK E1HHEH5˥(HHH IM ID$H5(HH) Ht$L5T&H Ht$QA;P I 1LHH QP A=H @9H- I,$HS&H9CHVf.n" H+AGXHEH5ݤ(HHH> HH= HCH5(LML Ht$L5S&H Ht$QA;P ? 1HAIH QP A=H @95M H+ID$(ID$HHH HcHDH5(L  SH5(H=M(XuHI HIm HӺ(n(1E1E1HO(f.C`fDID$LP01HCD$HP0D$GDk@$fHCHP0K@$fHEHP0U1fDI,$UIA_PHH53(HGHHXЅHR&HHMHQHHUMt%IMHQHIUuIUHD$LR0HD$H[]A\A]A^A_@A\$ZHIH[I ((LE1H֬(1GAD$AT$HH HcЉH9tH.Q&H5H8wDA\$i@AD$AT$HH HHcЉH9C@ID$LP0HUHD$HR0HD$HCHP0.IFLP0IFLP0HCHP0ID$H;Q&H;O&1H@hLHH@HIMH5Z(LHImlID$H;Q&RH;#O&H@hLHH@HIMH5v(LHKImHEIELHcЉH9HH DID$H(HELfDID$HHID$HHHIID$HHHIFIl$HEI\$H+fHMHVH9tHt HDM DF DD@9bA H}0LUHA@IDA kLN0HHA@LD΃dg7A 9HtL1H@IL$ HIH5(LI$LE1IL$(HI 1fIELP0IELP0HCHP0cHEHP0DIFLP0RH ((I1H(@Hڴ(u(_E1E1E1HU(H_(E(mE1E1H((ID$LhIE|DID$Lh IEDHJ((qE1E1Hȧ(;Hϧ((sE1E1E1H(Ml$0IEMl$8IETM9LLNHH}Hy7A 7A DIHHHL((IHͦ(LHIHlcIHQHI|IFLP0mIH (yHHt$Ht$`HHt$mHt$lAHU ((I1HԢ(I(HѢ((H(IE1L1E1NIZHڮ(u(H^(Hk(Q(I1H5(pH?( %(1E1E1H(AH[((E11Hڡ(H/(ʡ("E11H(IELP0!H((EE11Hs(HD&H5H88aHb( H(1E1E1H)(dL1f.H9tKHXHt/HJH~H9rt01 @H9tt!HH9u1HtHH9u@1H;5E&ffff.AWAVAUIATUSHH8HME&HHD$  HFHHHnHEI}H5(HGHH HH L%E&L9c[ L=b(HLHI HM, H5w(I9HOE&I9FH9FA~ ~ IFH;FxAIHPHIEFIc}PHIE H5*(HH I.}AEXHI H5(HHT I.RH;-C&H;-aC&^#L9c L-(HLHI HM L9cL-%(HLZHI HM,M9gL-(LL%HHD$7HH|$TI/L9c" L-(HLHI HM M9g HW(LHHD$HI HM+ I/tL9c Hs(HHHD$cHI HM L9c8 L%ɒ(HL.HH HH HT$HIHT$; LpHD$Ml$(M|$0IT$8ID$ HHHHZHmu HEHP0H8L[]A\A]A^A_HHH ۨHH$L H5uHIHHH!LBHLHH@&H81HϨ(j(HN(H H=iH81[]A\A]A^A_DL=@&M9utL9ugLRHHt;H;@&H;I@&@@DH*u HBHP0EH ((1E1HD$H(E1IIHHIuIFHT$LP0HT$Mt I/HL$HtHHD$HHHMt ImHt H*H ((H=r5(gMI$LE1H-?&`@HIHHHHHHCHP0@H;-)?&HHŦz(`('IE1HC(1E1HD$H;->&H;->&Hr(H n(H9HHzn(HtHL5fn(MIFH5(LHHIMyI.IGH5 (LMHt$H Ht$QP H=&;1LAIH H H=&BR9MXIHPHIIHPHItHX=&HHmtMH-F=&[IFLP0BIFLP0tIFLP0IFLP0HEHP0H-<&f.IVLR0rIWLR0S@$(fIGLP0}IGLP0I~HVH9tHt HkEV DN DD@DA9>A I~0M^HA@IDA LV0HHA@LDAADA2A9HtqLE1HA@H;-;&7H*HJ(0(IE1H(fDE1nL9+HHT$zHT$ALVH2I~HDA26DA2)IGHT$LP0HT$QHAHT$HP0HT$ZIEHT$LP0HT$QHBHP0QHnHHnHFHHD$ 诹HHl$ Hv+((IE1H(躾Hu#IGH5:&LH8ºHѕ((IE1H(RHUH(}(E1E1H`(Hj(P(1E1HD$H+(E1H}2((IE1H(HP((1E1HD$HƔ(E1BH5(H诺IHHImH5<(HHV落H-HD$ ID$91L螿HIAHa(G(IH-(H7((1E1HD$H(w޿IH=Ht$菻Ht$H=|(+IH={(Hg(H5g(HIaHu#IEH}7&LH8 Hd((91E1H(bH5G(LϸI蒻Hu*HD$H@H7&Ht$H8蓷H((;1Ho(HD$0HHT$u.ID$nH6&LHT$H8-HT$H7((HH(H5|(HIHD(ߑ(RHȑ(GH5 (H贷IH5u(H蝷I`Hu*HD$H@H5&Ht$H8aHp(V(F1H=(H5(H)HLHt$tHt$WSHHt$UHt$B4讹Hu#IE\H)5&LH8趵HŐ((2IE1H(FH5{(HzI=Hu#IEH4&LH8EHT(:(41E1HD$H(۸Hu#IEHV4&LH8H=(؏(61E1H(;H5(L訵HD$[LILI}H|$ILxILhHD$HT$ L:H57(HHH~3((H(LIH|$ILHxfDAVAUIATUSHHGH5vz(HHHHHCH;-2&HkHLcHEI$H+tfLHLHmIt^M%I,$t.Imu IELP0H2&HH[]A\A]A^DID$LP0HCHP0@HEHP0H;2&L,$H;T3&8HSB"E1 LbuLsH-1&H Q;UP LLAIٵUH H BR9|MI蛵@$HH%RII,$He((H(u ID$LP0H Ռ((H=x5Ҍ(Y1HŌ((H(}HuTLHI,H=toE1HuH/&H5gH8HHFIfAWAVIAUATUSHH(L-0&HLl$yHFH"HpHFHD$I^H,(HH 9`(H9HH `(HHH- `(HHHhAH+HmEI~H5}(HGHH{IMzID$H;.&M|$MI\$IHI,$iHT$LHI/H|HrH+YHm>IFLHnHHQHHu HPHR0IEH(L[]A\A]A^A_HfHzH |HH$L ЗH5 HHHHHLBH(LIH?.&H81}Hg((H(H @H=VH(1[]A\A]A^A_DLl$fDHCHP0HmH5LNH3 &HOH8LBH1\HF{( {(W>W>H{(H H= }H1H`[]A\A]A^fDHOHCHP0LnII MLL՞MIIu*M~.H5f(LHV;HHD$XIMHL$PHT$XHD$HHVH=>z(HHz(z(>GHD$HH+H z(z(}>Hz(u HCHP0H ~z(z(H=5{z(6G1HF HD$XHCHD$PHT$PLGH55(LL谳H|1z( z(G>G>Hy(1fDAVAUATIUHSHH`H |&HHD$PHL$XHFHHHV HKHHa(Hu E1AHHD$0H=bs(HD$Hfh(H $HD$@H|$8H|$ D$(D$HD$H=&Kx(HHH+%HHHuHVHHUHUHD$HHR0HD$HH`[]A\A]A^H5g(LIHVǡHHD$PHCDHH$L H݄HH H5FLNH&HOH8LBHш1輣H[x( Ax(6;6;H%x(H H=w D1H`[]A\A]A^fDHOHCHP0LnII MLL5MIIu*M~.H5b(LHV蛠HHD$XIMHL$PHT$XHD$HHH=I j;Zw(I HH0w(6w(j;CHD$HH+Hm"w(D w(\;Hv(u HCHP0H v(v(H=15v(C1HF HD$XHCHD$PHT$PLH5E'LLH܂v( wv(&;&;H[v(1fDAVAUATIUHSHH`H &HHD$PHL$XHFHHHV HKHH^(Hu E1AHHD$0H=o(HD$H~o(H $HD$@H|$8H|$ D$(D$HD$H=1&t(HHH+%HHHuHVHHUHUHD$HHR0HD$HH`[]A\A]A^H5n(LIHV'HHD$PHCDHH$L ~H=HH H5LNH&HOH8LBHȄ1Ht( t(::Ht(H ߀H= =A1H`[]A\A]A^fDHOHCHP0LnII MLL蕗MIIu*M~.H5W_(LHVHHD$XIMHL$PHT$XHD$HHH=> :s( HHs(s(:Q@HD$HH+Hs( hs(:HQs(u HCHP0H >s(Xs(H=5;s(?1HF HD$XHCHD$PHT$PLH5'LLpH<r( r(::Hr(1fDAUATUHSHHhLZ(H :&HLD$PHL$XHFHHHvHH$IHu&Hp~H `~H5L HII?H<H8I1A聝Hk~ r(| r(::Hq(H D~H=| >1Hh[]A\A]DHV LFHHY(Hu E1HHD$0HH=k(HD$Hd(L$AD$@H|$8H|$ D$(D$ HD$H=&fp(HHH+tdHH7HMHQHHU>HUHD$HHR0HD$HHh[]A\A]H(HHCHP0LfII MLBHMIIu*M~.H5[(HHV~H HD$XIMLD$PHT$XH+H|Op( 5p(D:Hp(u HCHP0H p(%p(H=5p(<1HD$HHA|H= R:o( HHo(o(R:|fHt$L+I(H &H9HL$H;R &HSBE1 HjuLcL5 &H QA;P 1LIَAH H BR9|MDI蛎@$11H)+IH;D$L|$0H; &@HUB-E1 HZuLmDL5- &H QA;P LLHAp p BR9|HIfۍ@$Ht$0Hc*HL舢IHLuI}Hq:e(v e( H e(1HtH+t2HtHmt2H d(e(H=5d(11HCHP0HEHP0蝐HfLHt$ KIHpd(vxd( 1H_d(I,$MID$LP0=/HHpFd(v,d( Hd(ތHuH&H5+{H8ӉHMpd(vc( 1Hc(kH$pc(vc( LHc(AH=z褋Hoc(vc( LHec(WH=izdbE1fHt$LIrHuH&H58zH8MƋHE1H=yVHIĐ|uoLHH#H=y訊1THuH&H5yH8HH&H5yH8- Ht$0HHfffff.AWAVAUATUHSHHXL%&HLd$@<HFHHHnL9H5Y(HFHEHHHHHHQHHu HPHR0HEHHEHHEH{H/HkHEHH5DY(HHIMH5dqL?H5MqL舌HI_IEHHC IEHC(IEHC0IEHC8IE HC@HC HCHHCHRHHQHHwHEH5R(HHHHHHHHQHHDH1HEHPHHUFMtI$HPHI$HX[]A\A]A^A_LH3lH #lHH$L FlH5vHIHHHimLBHpLHH&H81-Hl_(a_( H_(H kH=aN,HX[]A\A]A^A_f.ID$LP0$fDH_(H =(H9H Hy=(H| HL%e=(M| ID$H;& H;&H;~&> IT$B. E1 HjuMl$+L5&H A;H  1LHAH H BR9H MfHI/tyHEHGP0@HPHR0zHWHD$R0HD$f.HEHP011L"HxDIGLP0x4@$MLnMwIHFHHD$@H Hl$@Hi](su]( H^](H iq](5[](H= *HHi;](k!](: H ](H5D(H=[(#HH H;H+u HCHP0H+i\(n\(] H\(L蕈IfhHHh\(p\(o Hm\( Hhw\(r]\( HF\(,H@HIH5H(HHVHM HD$@IFbH&H5/E11H8躁H4h[(d[( H[(U螇tH \(H 9(H9H.H9(H HL9(MI@H; %H &H9HL$H;&IPBE1 LbuMhLD$}L5f%H LD$A;H LD$1LAIJAH LD$H BR9 MM@MI/ID$H5!M(LHHIMIEH;%MuMM}IIImtoHLLI.HthHI/t9Hmt"I$LfDIGLP0THEHP0@IGLP0@IELP0@IFLP0LD$ LD$@$@L11LD$LD$IH;D$Hl$@H;%IUBHJE1 HL$uM}蕁L5~%H A;H HLHD$HgAH H BR9|HMD+@$Ht$@LHHdX(eX( E11HwX(H=V(0IH=V(H6(H56(MIMhMMxIEII(,H %IGLl$0H9HL$H;%IWBHJE1 HL$uMg5L5%H qA;6p zLLHD$I H Aqp BR9|"MtpImIELP0@$Ht$0LKIH=?n:rE1먨LLLIHuH%H5nH8|kH:cV(eV( 1HV(I/u IGLP0H V(E1FHbLV(fV( E1HuV([IHbrV(fXV( LH>V(HbKV(c1V( HV(YH=S(HW4(H5`4(IMl$MM|$IEII,$IGH;%Ll$ H;G%IWBE1 HjuMg}L5%H qA;6p sLLH}H Aqp BR9| HtUImIELP0}@$Ht$ LHH=l}y1fD}HuHg%H5kH8zuPLLHiH=MR(bI{H`T(cT( 1HlT( Ht$ LHID$LP0qH=FkLD$<|LD$0E1pLLD$@LD$IVLD$|HLD$uHz%H5 kH8yLD$"|Ht-1SH=j{LАH-H#%H5jH8\yH=j{{W1uHL菐HxHt$@L H^{HuH%H5CjH8x9Ht$0L IwI@LP0H7_R(nR(Y HR(XHT$@LbH5S'LHH^R(aR(v v HiR(@AWAVAUATUSHH(HF HFHHHHcH@E1HCH5?(HHHIM@{HHHyHHg H5=(HH|HmHQ(H 8'(H9HT H'(H HH-'(HHEH5:(HHHIMHm3H5|G(LH|I,$IFL%7(HHk NyL=7%H QA;P  HLLI"yH QP A=H @9Mi I.H+ID$H5%I(LHH\ HHI,$HCH;%HkHLsHEIH+H9(HL貋HmIMI.AID$H59(LHH(HH)I,$)HCH;>%HkHLcHEI$H+ID$H;'%Hl$H;%IT$BE1 HZuMt$wL=s%H QA;P DHLIawH Aqp BR9M"HmM[I,$DIFL`pMI|$LuHHH=%HHyHmH3HrHLAT$H+Hu HCHP0HKI.u IFLP0HH([]A\A]A^A_ÐHEHP0[HEHP0ID$LP0;v@$4fHCHP0@IFLP0&ID$LP0WIFLP0HCHP0mID$LP0ID$LP0HCHP0HEHP0MHEHP0iHEHP0{u@$6fDnAMcIImLHHIHHDnFII Dnf.DnFII IDHpuIHXL(}L(zE1HcL(Mt I.Ht H+Ht HmMtI,$u ID$LP0H L(1L(H=q5L(1HJXK(K(1HK(dHt$LIfDHEHP0\IFLP0-HCHP0,H;:%H-5(H,$H;%HHSB5E1 LbuLssL=%H QA;P HLAIosH Aqp BR9|MID3s@$HHIH;q%H;,%5HSB&E1 HjuLcrL=%H QA;P  1LIrH Aqp BR9|MIY{r@$11H IHPH%H5oH81HuI.H.VI(I(HI(IFLP0HLԆIuuHfHUI(pI(HYI($HUL`I(FI(E11H*I(H|IuIHbUI(H(lE1HH(H8UH(H(vE11HH(OH UH(H(E1HH(%stIDHTH(pH(HYH(HTcH(IH(xE1H/H(H=7(H(H5(zHpHHOTH=m8G(G(8HHG(1H=<7(qyH(H5t9(HGHH8IM7fmHIEH5x5(LHn- H5N8(HLsnC IGH5C(HH@HL$Ht$kL%H Ht$QA;HL$P LT$LLHD$kH LT$QP A=p4@9H|$ I/ImHCH;r%D$ D$E1H;h% H;#%jHIQMtLhHcD$HL$HcT$ HILH@(HIDHCLM3jL%H QA;P \1LT$LHAHD$gjH LT$HT$qp A=x<@9 H\I/H+H*IFH5'/(LHH IM L-%L9mH gHH, H@H56)(L9B HCHPHM H{HHHHDHhIMk H+HiHH I$Lx L`jHI HT$H5,(HkH3(H56(L|kIFLM.hL%H QA;P  LT$LHLAIhH LT$QP A=p4@9pMvI.EH+I/I,$tjHtHmu HEHP0HXL[]A\A]A^A_f.LL$L(LL$fDHEH5t'(H?@ID$LP0IGLP0gfHCHP0OIELP0dIGLP0Ig@$$fHBHP0_HCHT$HP0HT$;HCHP0I/IGLP0DIFLP0f g@$fHC@HD$Ll$0E1Ht0HD$8H<(HD$@HCLH@ uLSHLAHHqMt ImHL$HHD$HHHGHAHT$HP0HT$.@IGHT$LP0HT$HT$&fHT$@$H (H9H1Hh(HHHT(HHCH5 &(HLL$HH|LL$IM6H+H=d7(H52(LL$HGHHLL$HHLL$gHHD$LL$=H5.(HLLL$gLL$`HCH5<(LMLL$ Ht$dL%H Ht$LL$ QA;P 1LL$ LT$HHT$AIdH LT$LL$ QP A=p4@9 MH+HL$HHD$HHHIGH;%Z D$ D$HD$H;}%H;8%2LL$(cHHLL$( HD$HtHCHcD$HcT$ LL$HLlH9(HHDIGLM cL%H LL$QA;P E 1LL$ LT$HLAHD$ccH LT$HT$LL$ qp A=x9Hr H+I/H*I$I)Hu"(HI,$LIHFw:(]:(i'HD$H=:(HtH+trMtI/twHL$HtHHD$HHHtiMtImt-H 9(:(H=_59(E1fDIELP0@HCHP0@IGLP0zHAHP0@HE9(9('Hn9(IE1HD$HHIIFLP0Ll$HEG9(-9(j'HD$H 9(HZE9(8('H8(kf<@DHD$Ht0HHLl$0HD$8H7(HD$@HH_HD8(~8('E1Hd8("HCLL$HP0LL$HALL$HP0LL$7HCLL$HP0LL$LL$^`LL$@$ID$LLIP0(f.IALP0%HBLL$HP0LL$IGLL$LHT$P0LL$HT$DIG@HD$Ht0HLLL$Ll$8HD$0H5(HD$@HHLL$HL$HtHHD$HHH:Im8IELL$LHT$P0HT$LL$@LL$HT$!_LL$@$HT$fDHCLL$HHT$P0LL$HT$DIEHT$LP0HT$=HB_6(E6(&E1H+6(HD$Ht0HLLL$Ll$8HD$0Hp4(HD$@HHLL$H?B5(5('H5(fDHALL$ HHT$P0LL$ HT$LfIt(TItIMHF(HD$@HC HD$8HCHD$0HLL$XIILL$eIM M|HD$@Hl$8Ld$0HD$H`A5(4(X'E1H4(`H`ICHA4(4('E1H4(`IH@4(4(e'E1HD$H]4(H@g4(M4(Z'E1HD$H*4(H@44(4('E1H4(H;%=HFXIHH{CHH H@3(3('H3(#H?3(3('Ho3(H?y3(_3(g'HD$H?3(H?I3(/3('H3(1H=(H (H5 (dIH=(dIMH5'(HLL$HV[HLL$tHD$8IMzH5(HLL$HV[HLL$HD$@I=H=nILT$dZLT$H>V2(<2('H%2(LLU]HHD$%Ha>2(1(k'HD$H1(ZHuH^%H5HH8WH=HLT$YLT$H=1(1('E1HD$Hi1('/ZHuH%H5|HH8$WLHLt\HI!H}=21(1('H1(1LH/\HH#GLkML{IEIH+u HCHP0IGLD$ 1ҿD$\YHL 5HII?H7H8I1ARH3r'(eX'(##H<'(H 3H=NMe1HĨ[]A\A]A^A_Hy'(H 'H9HHq'HHL5]'MIFH5 (LHH}HH;I.HCH;C%D$HE1E1H;>%H;%{NHI MtLpLct$HHEIKlI$OdHCLM~ {NLd%H QA;P @ 1LD$HLHAIJNH LD$HQP A=H @9qM I/NH+4H&(IEL0HIC H8H%(H 'H9H H'H HH'H HBH5r(HHT$`HH_ HT$`HD$HH|$H H*HQ%(H *'H9H H 'H HL5'Mi IFH5a(LHH> HH I.6HCH;%a H;.%L|$pH;%HSBHJE1 HL$`3LLw%H QA;P LD$hLLHD$`I[LLD$hH AH B9SMdIM I(HD$HH@H;D%H H;W%L$IH; % HD$HHPBHJ1ۨ HL$`5KL%x WA;P ELD$hLHHD$`H}KLD$hH Aqp B9HLL$HI.H I)H;{%H;%DHHPHHE HL$PH (MAH=b%HHq H %HHL$@HH-(HT$(D$8D$ L|$HD$0HD$D$H$HT$X2!(HHD$P H+HCHP0I,$ID$LP0DH@LP0 H@HP0>H;A%HKAH-!(u!(%Ld$P1E1HT!(E1Mt I.1Ht H+EHt H*YMt I(cH !((!(H=!G5 !(H|$PLd$PHD$PHq%HD$XHY%HD$XIGLP0HEHP0IFLP0H@LP0HCHP0HBHP0YIFLP0IALP0gIFLL$HLP0LL$H:I@LP0MHCHP0ZHC@rL$H$E1L$HCHL@@ uLKHLAIMgMI.IFLP0IGLP0G@$fL;=%LHL|$HHf+HL$H((A$E1H(1E1E1E1H1Ld$PHHHlH|$HLD$`HT$XHGP0LD$`HT$XGIFLP0IFLP0HCHP0IGLP09HAHP0IFLP0%HCHP0R(DHD$HHXfR*DLsHHHL$H$L$HI/H*(($1E1Ld$PH}($E@$fE@$mfHt$pHNI|fDH|$HH$)H5IFLD$XLHT$HP0LD$XHT$HHCLD$XHHT$HP0LD$XHT$HHBLD$HHP0LD$HI@LP0LfIt.ItIHF(H$HF H$HFH$H?IHIMHw H$H$L$HD$X!Hf(((#1E1E1H(HD$P1E11yH'(((#E1H(Ld$P11E1E1@H]H5T (HHVDHtH$HH0H5(HHV[DHtH$HHH5(HHV.DH^H$HHKHLCHIH+uHCHL$hHLD$`P0LD$`HL$hHLLHL$hLD$`oVHL$hILD$`H)HALD$`HP0LD$`H&(t($E1HL$HHU(y;FHH&R(8($E11HL$HH(;H= (KIIH= (H0'H59'KI'H6&(($Ld$P1E1H(WEHT$`HD$HH%(($Ld$P1E1Hk(H=($KHH=(H'H5'AKHH%?(%($1Ld$P1H(E1AH~HI%(($L|$HH(E1E1E1E1HL$HH=/LD$H@LD$H1LHCHIH$(l($1E1Ld$PHK(H|$HLGMLOIIHHD$`HHHuHGLL$hLD$`P0LD$`LL$hLLLLD$`LL$HSLD$`HLL$HI(I@LL$HLP0H$((%1HL$HH(H5'H=(5HHHSH+u HCHP0H#`(F((%Ld$P11H&(E1Hx#-((%LL$HE1E1H(LHC#((E%1Ld$PE1H(dLsMLkIIEH+u HCHP0IELD$H1ҿAH"|(b($Ld$P1E1HA(E1$BH{H";(!($H (]H=(GIH=z(Hc'H5l'GIH)"(($E1E1E1H(HL$HLHRIH|$HLRHH!(g(x$E1E1E1HG(HL$HfH!L(2(n$H(NH5'H=h(HIHIQI/H?!((Q$H(Ld$P11E1E1E1XH!((>$1E1Ld$PH(E1$LkMHKIEHH+HLLHL$HPIIEHL$HHHHIEIELP0Hl !((/$Ld$P1E1H(E1H8 ((,$Ld$P1E1H(E1V?Hf[H|$`HD$PH/H_ (HD$`HsH{ L{H*D$HD$8H=y'(K ML5|'IT$LHHT$@3HHD$( H@HT$@HHpLH|$(HHD$( ML5J'IT$LHHT$@2HHHHT$@LMLHAHHD$`HHH; q%HD$PHPHHT$PH@HHH|$`HD$`H/Ht$PHjH|$`H$HWH;*%0H;%eHOQE1 LquLgHt$@0H Ht$@QH k%P ;\HL$@LAI]0p p HL$@BR9tMH|$PHt H/MHD$PH|$`H/&HD$`I..2HD$@HD$8HH|$HI~hHL$IE Mu`ME1Hl$8H\$HLLH4MIILD$HL$ HHt$MLHL,L9uHl$8H\$HH|$@*HD$(L-'H@LM./H QH %P ;`1HL$LH|$(AI.HL$p p BR9MHL$(HHD$HHHMI,$HIHL$0HHD$HHHHt H+HtHEHPHHUHtHHPHHu HCHP0LCfDGHD$GHD$GHd$H D$H\$H|$D.HsHz(`(CHI(@GHHD$fGHD$GHd$H D$DL`HXMHGP0@HGP0@HHD$` fHD$(HfHGP0@HGP0@HGP0@,@$dfHGP0@IFLP0HGP0@,@$~fHCHP0;HAHP0HEHP05HGP0@HGP0@HGP0=@IGLP08HGP0@ID$LP0'HCHP0' ,@$/fID$LP0WHAHP04K,HD$H|$*HHD$`+HHHD$PHD$`HD$PHD$`HEDH|$`HWH;ȧ%H;%p HOQ` E1 La0+H QH %P ;HL$@1LAH(&(]DE1E1E1Hk(1H|$PHt H/ H|$`Ht H/H|$pHt H/Mt I.MtI,$tkMtI)tTH ((H=;(5(E1H|$0@LwRQHoIALP0ID$LL$LP0LL${IFLL$LP0LL$VHGLL$P0LL$1HGLL$P0LL$HGLL$P0LL$)@$H$"IO11I>H$>ILvIt&~nItIugHF(H$HE H$HEH$L$III6MMH$MtLPH%LH8<%HD$`H B(-((DH(Ht$(HHD$HHHtE1E1E1HFHE1E1P0E1iH=HL$('HL$(UH '&'^DE1E1E1H'1HLL*HHtRH v'&\'[DE1E1E1H<'1H D'&*'VDE1E1E1H '1H] '&'SDE1E1E1H'1h*H! '&'QDE1E1E1H'1,H='S0H:Hʣ%LH8o#H ~'-d'DE1E1E1HD'H N'+4'DE1E1E1H'&HMH%H5#H8#2H$L9H5@'LLK7UH ''CH'5'H5y'LIHV&HH$H5a'LHVe&HH$t:IMH5'LHV8&H9H$IH=i HM ''CH'1HE%Ht-1bH=HL$@$HL$@E1H%H5HD$8H:Q"HD$8Hv'\'CE11E1H='E1HD'*'CH'E1E1E111H='H'H5'-HH9'"'CH'H|$pHt H/H|$PHD$pHt H/ H|$`HD$PHt H/vH h''H=!5e'HD$`H|$(HL$PHT$pHt$`讹H%I9FIH|$"HHlQ#HI2HhHLHD$81HHLL$8I.I)twH|$`Ht H/H|$pHD$`HtH/tYH|$PHD$pHtH/t(HD$(HLLHD$PH藽HGP0IALP0zHGP0IFLL$8LP0LL$8OH_'$''DH'HD$(HLLLL$I11H LL$JH '$'"DH'H'$' DE1Hj'L`$HICHc'$I'DE11H-'EH7'#'DE11E1H'HGP0~HGP0fD?H5'"'CH'H'"'CH'HGP0HGP0D5IHWHHT$`LHGHHH|$pHD$pH/uHGP0Ht$`HtCH|$pL3Hl!'"'CH'.#H|$pHGH=HL$@HL$@u L4OH$M8H'-}'EE1E1H`'& HIt?E1H=OHL$EHL$H|$(1LW"IH%H51H8HN'-'DH'H+HP%H5 H8H= HL$HHt$@Ht$@HL$H|H$IHc'"I'CH2'pH=F''HH=2'HK'H5T'(HH5@'H='褼HHD$`tJH,2H|$`H/uHGP0HHD$`''CH'}H''CHn'VHx'^'wCHG'/HQ'7'_CH 'E1E1E111HD$0H_''UCH'(HD$MfAWAVAUATUHSHHHZ%HH|$XHDŽ$HDŽ$HDŽ$H$xHFH H HF0HD$`Lu(H] L}H' H(hE111AHLHHD$PEH8 H' H(hE111AHHHHH8q HJ' L(hE111AHLAHI_H8< HL$PE;Au A;D$ H'H 'H9HdH'HvHL5'MvIFH5-'LHHHH^!I.:H['H5t'H9pi!HS'H{!HL?'MICH5'LL\$hHH!L\$hIM!I+ IEH;%LAE1E1H;%H;ӗ%L\$hHIL\$hMtLXHD$PIHKDHEKlIELM LD$hGL=0%p LD$hVA;P 1LLD$hLAIx LD$hWP A=H @9(MI(Im HCH;%H;%L$H;Ŗ%$HSB'HrE1 Ht$hoL=X%H QA;P 'LLHD$hIAAp p B9M$MII. M Im L;=B%L;=%5 IHPHI wH'H 'H9H=H'HHHt'HHCH5'HHHIMH+ H>'H5'H9pH'HHL-'M]IEH5'LHH+IMIm" I@H;%;A1E1H;%oH;%r LD$hxHILD$hMtLhHEHIlI$OdI@HH#L\$pLD$h3L=%H LD$hL\$pQA;P 1LL\$pLLD$hHp LD$hL\$pVP A=H @9F H&I+ I( IFH;ޑ%|H;%H$cH;% IVB HJE1 HL$h NL=7%x WA;P !HLHD$hI Ap p B 9 MU"MLH+d MH)q L;="%L;=%IHPHIO H'H=I'H9xH('HHL5'MOIFH5'LHH$HHI.H'H 'H9HH'HHL'M@I@H5~'LLD$hHH LD$hIMI(yICH;ޏ%AE1E1H;ې% H;% L\$pLD$hIHILD$hL\$pMtL@HD$PIHKDI$OdICLM?L\$hL=%x L\$hWA;P 1LL\$hLAIH L\$hQP A=H @9i MxIm5 I+sHCH;%H;ˏ%L$ H;~%HSBu HJE1 HL$h (L=%x WA;P * LLHD$hIAp p B 9 MMHI.MH)L;=%L;=%IHPHIWHD$XLD$PHT$`H=;%LHp ILD$0L 'Ld$ D$Hl$$LL$(LL$'HIHSHIIWHD$XLR0HD$XHEHH$H{Hr%H dH5 L HOH81LBHHp%'8  '22H'H IH=Y8 觵1H[]A\A]A^A_Ha%HD$`XDHD$PHHLL$L\$hH$H${HIL\$hHi' O'3H8'MmE1E1IE1HHIMt ImHt H+MI.IFLD$XLP0LD$XHHLLD$hL$H$L$蠣HHLD$h@H' t'^4E1HZ'BDHD$PHHLL$LD$pL\$hL$H$&HIL\$hLD$poHZ' '4E1H'fDH$HˢIXH$L諢IH$H苢IIELD$XLP0LD$XWICLD$XLP0LD$X.HCLD$XHP0LD$X4I@LP0KIGLD$XLP0LD$X#LnI(HoJcHHF0H$HE(H$HE H$HEH$H*IIgIIu-M~1H5'HHVHNH$IM9H$L$H$L$HD$`H6'} '2E1E1H'HT '| '2E1E1E1H'H$'{ '2E1E1E1H'1HKHBLkHIEH+uHCHL$hHP0HL$hHLLHL$hHL$hIH)HAHP0MH5'HIHV HH$H5h'HHVHH$W IH5 'HHVHH$I#H5'H=L'WHH HH+u HCHP0H' h'5E1E1HK'ZHU' ;'4HE1E1H'MhMZIXIEHI(u I@LP0HCIA1ҿH(' '4E1H'{MCM MsIII+ IFMA1ҿAPHq' W'4E1E1H:'2LCM&HKIHH+uHCLD$pHHL$hP0HL$hLD$pLHLLD$pHL$hLD$pIHL$hI(qI@HL$hLP0HL$hXL\$XvHL\$X H' '4E1E1Hp'BH=tL\$hjL\$h6LD$hIHH' .'4E1E1H' H=' IvH='H'H5' ITH0' '4E1E1H'HH' '4E1E1Ht'H='- Ig1LLL\$hHIL\$hH=<LD$h2LD$h\Ho$'  '4E1E1H'H=q'Hz'H5'IH=O'IH ' '3E1E1H'pHsLD$X>HLD$XKHy%H5H8*LD$X+HO' 5'4H'M]M< MuIIIm!IFM1AAH0' '3E1E1E1H'H' ' 5E1H'H' q'L4E11HU'=;I+IKHB' ('E4E1E1H 'H='HH={'HD'H5M'HH5ɺ'H=r'}HHDHH+u HCHP0H' '34E1E1Hq'H{' a'!4LE1E1HA'9HK' 1'J4E1E1H'H='IYH='H-'H56'I7H3' 'G4E1E1H'MFMwINIHI.uIFHL$pLLD$hP0LD$hHL$pLHHLD$pHL$hLD$pIHL$hI(I@HL$hLP0HL$hL\$`LD$XHLD$XL\$`H_' 'w41E1H'H=L\$pLD$hLD$hL\$p1LLL\$pLD$hHHLD$hL\$p5xH' r'l4E11HV'>H='Hc'H5l'@I;H5'H='ܘHHHbH+u HCHP0HR' '4E1E1H'H%' '4IE1H'H' '3E1E1Hv'}H='H'H5'`IH=' I|1LLLD$hiHILD$hL\$hIxH[' '3E1E1H'IELL\$hMAP0IF1AL\$hRH' '3E1E1Hy'KH' i'3E1E1E1HI'1/&H5'H='HI&Ho ImHd' '3E1E1H'H5Ƶ'H='芖HI5H ImH' 'h3E1E1H'H5w'H= '+HIH ImxH[' A'H3E1E1H$'3D$xHT$pL$xHS' '03E1E1H'hHT$pTH ' '&3E1E1H'D$hDHT$hHt' Z'3E1E1H='LHG' -'3E1H'Hh' '3E1H'ICLLD$hAP0IFM1ҿALD$hH ' '4E1E1H'H=Hx'8 ^'2HG'5Q'MuHLo IH$LЇILH? IHp%H5H8L\$`LD$XAE1iAE1H1p%H5H8jL\$XLH IH|' b'/4E1E1HE'T HuHo%H5XH8E1HuHo%H50H8E1NH=E1SIELP0yH' 'D3E1E1H'IELP0H' ~'d3E1E1Ha'pHk' Q'4E1E1H4'CHEHn%H5CH8*IELP0HQ' '3E1E1H'LbE1E1E1H' '3H'UH1LAL\$hIH=~y<LH$HIHF' ,'f4E1H'H1LLD$hHHP' '4E1H'H1LALD$hIL\$pA1\H=-H'8 r'2H['H=_Z\EH$HIvH$LwH5N'LH}HI'8 '2H'AWAVAUATIUSHHHJm%HH|$`HDŽ$HDŽ$HDŽ$H$_HFHZ H HF0HD$hI\$(Il$ Ml$H'L(hE111AHLAHIH8K H|'L(hE111AHHAHIH8 H7'L(hE111AHHAHHD$PIH8 AFA;D$uH|$P;Gf H'H'H9X&H'HHL=ۡ'MIGH5'LHHHHPI/D HE'H ~'H9HGH]'HYHH-I'HHEH5%'HHHIM %Hm H'H5'H9pHʠ'HHL 'MIAH5'LLL$XHH,LL$XIMO$I)} I@H;i%$AE11H;j%rH;Kk% LD$pLL$XHHLL$XLD$p#MtLHI$HLdINtI@HH#HL$pLD$XL i%x LD$XHL$pWA;P #1HLL$xHL$pLLD$XHqH LL$xLD$XQHL$pP A=p4@9n H~H) I(a IEH;Vh%#D$XE1E1H;Qi%;H; j%n LD$pHHLD$pMtL@Ht$PHcD$XIJlHHtIEHHHL$XL ih%p HL$XVA;P 1HLL$pHL$XLIFP LL$pHL$XP A=p4@9 MH) ImZHCH;/g%H;Bh%L$H;h%'HSB'E1 Hj L g%H QA;P &LL$XLLHvLL$XP JAH BF 9H6)II/HImH;-ug%H;-g%(HEHPHHUp ID$H5,'LHHHHH'H='H9xkH'HGHL=x'MIGH54'LHHVHH5I/HCH;~e%LkML{IEIH+HLLHL$XQImHHL$X H)HI/H;-f%=I,$iIFH5'LHHHHH'H _'H9HH>'HHL-*'M3IEH5'LHHIMImHCH;Od%[LcMNLkI$IEH+$LLL&I,$HD$XI/H|$X>ImHD$XH;d%I.H|$PH5͸'HGHHFHHHT'H5 'H9pH'HHL=ؙ'MIGH5Գ'LHHHHI/9HCH;c%2LkM%LsIEIH+tHLLHL$pImIHL$p^H)MI.L;%c%H|$PHHD$pHHHHD$`IHT$hH= d%HHp HHD$0H'Ld$ D$$L 'HD$(H'HD$HD$XHD$v'HIH+PLL\$P8HL\$PH]HSHHUH\$XHtH HQHL$PHH>MtI<$HWHI$MI;HWHIISHD$PLR0HD$PID$f.HH$HHa%H H5LL HOH81LBHHe'K K';;H/'H H=K 1H[]A\A]A^A_Ha%HD$hIE>IEHH= HNHcHDH@LP0fH@LP0HH@P0 H;-a%HH`' F'W=Lt$XH*'LLd$P1E1E1E1fHUHD$`HL\$PR0HD$`L\$PDIT$HD$XLL\$PR0HD$XL\$P@HSHD$`HL\$PR0HD$`L\$PDIGLP0fHEHP0IALD$XLP0LD$XjI@LP0IGLP0iIELP0IELP0]HEHP0IGHL$XLP0HL$XID$LP0IGLP0`HAHP0=HCHL$XHP0HL$XIELP0IELP0HT$XIHL$p@HHLL$LL$pLD$XL$L$#wHHLD$XLL$pHW ' '<H۱'LLd$PE1Lt$X1E1Mt ImcHtH3HVHHMEIHSHI2IWHL$xLHD$pL\$hLD$`LL$PR0HL$xHD$pL\$hLD$`LL$PHD$PHHLL$LD$XH$H$vHILD$XoHT ' ''=Hذ'HmtNLLt$XLd$PE11E11DI@LP0%H$HuHHELD$`H1P0LLt$XLd$PE11E1LD$`IUHL$xLHD$pL\$hLD$`LL$PR0HL$xHD$pL\$hLD$`LL$P\HSHL$xHHD$pL\$hLD$`LL$PR0HL$xHD$pL\$hLD$`LL$P3IPHL$hLHD$`L\$PR0HL$hHD$`L\$PHQHD$`HL\$PR0HD$`L\$PHUHL$xHHD$pL\$hLD$`LL$PR0HL$xHD$pL\$hLD$`LL$P IQHL$pLHD$hL\$`LD$PR0HL$pHD$hL\$`LD$PLnI*HJcHHF0H$ID$(H$ID$ H$ID$H$H0IH i I Iu-H~1H5'HHVHH$HHH$L$H$H$HD$hH;R%H$H;S%HSB2E1 HjuLkHL$XSL ' ١'=Lt$X1E1H'E1LLd$PH' '<Lt$X11H}'E1LE1Ld$PHĭy' _'<E1E1HB'eMHMIhIHEI(HEIA1ҿ4MEMM}IIImIGMD$X1ҿA.H=?'Hh{'H5q{'IyH' '=Hr'HǬ|' b'=1E1E1HC'HHH5'I|$+Hy.' '=H'HLHL' '=LE1Hʟ'H1!Hϟ' '=Ld$PH'H2LHI@LLL$XAP0HEI1ҿLL$XIELLD$pMP0IGD$X1ҿALD$pHt)' '<1H'rHK' '<E1H̞'H!֞' '<E1H'H' '<E1E1Hu'Hʪ' e'<1E1Lt$XHD'1LE1Ld$PE1E1fH5'H=Μ'dHHH_H+tHU ' '{<Hٝ'jHHL$pHT$X!HL$pIHT$X2HHT$XHT$XHH' '=Ht'H1LALL$XHLD$pH=ĭaHF'K ,';H'5'H=LL$X LL$X HD$XHuLHHD$X/H$HpWHD$XH' '0=H'H1LALD$XIH=pLL$XfLL$X.1mu*LHuHVA1MH$HVH"HQ' 'b=1E1HЛ'LHHN?%H5߲H8H3?%H5IJH8lHL$`LD$XXuHHHL$pHL$pIH$HHL$pVHL$pIH=>LL$xHL$p/HL$pLL$x?E1HL$pHHL$puH>%H5H8HL$pRL)H=;^_H'K ';H'rHCHP0}HҦ' m'w<1E1HQ'HL$XHHL$Xt$1HHHL$XcHL$XHH=%H56H8޿HL$X}H=LL$pHL$XHL$XLL$p뒨tH$HHL$XlTHL$XH(jHHH"=%H5H8[H$LH50 'LHH\'K B';H+'D$XE1fff.AWAVAUATUHSHHL%=%HH|$HDŽ$L$fHFH'Hv Lv HkLt$HHD$`HD$pHDŽ$HH, H' L(hE111AHHAHHD$`G HD$pHH|$`H/HD$pH5t'HD$`HD$pHD$HHY'H9p Ht'H, HH=t'HH|$`' HGH5'HH HH$H|$`H/H'H;t'HD$`H9PHt'HHL5s'MIFH5'LHH1HH0I. HEH;:%A1E1H;;%H;\<%s T$ HIŋT$ MtLpHt$HHcHHItH~'HKDHELMξH :%P ;P 1HL$ LHAI螾HL$ P rp BR9MkL|$`ImHmV H$HGH;~9%lH;:%L|$`L$H;?;%#HWB1 LjuHoH 9%P ;P rHL$ LHAHP HL$ rp =P@9NHHHD$pH|$`H/n H|$pHD$`$H$H/7 H|$pH;=9%HDŽ$H;=09%Z HHPHHr HD$p|L9d$HD$HHh]CIH HL(Mt M9 HPHuHpML`Ht$ tIEHD$ HtHMtI$H}'H5p'H9pHp'HHH=p'HH|$pjHGH58'HH HHD$` H|$pH/ HD$`H=7%HD$pH9P HHt$[H|$pH$HtH/ H$HHD$pH|$`H/} HHD$`藺HHD$`I_HHD$0HD$pHH$MHDŽ$HD$pHBHD$`HD$`HB t Im HT$ HtHHD$HHH Mt I,$ Hݒ'H5n'H9pNHn'H*HH=n'HH|$`HGH5z'HHHHD$pH|$`H/.Hb'H5[n'HD$`H9p4H1n'HHH=n'HH|$`HGH5T'HHIMkH|$`H/HT$pHD$`HBH;5%WHAE1H; 6%v H;6%胹HIHD$`Ht IFHD$`HT$0IcHHITOlLd$pID$LMl7H 5%P ;P /1HL$LLAIHL$p p BR9[ MvL$I.# H|$pH/YH$HD$pHHD$8H$HDŽ$HPpHx HD$PH'HT$(HD$HD$L%'LLMuLmHHD$@H@HHLLH|$@HHD$@mHD$L%'LLMuLHHHLM2LLHAHHD$pqHHH; 2%. LpM! H@IHH|$pHD$pH/H|$pL$HGH;3% H;l4%\ HWBI E1 LjuLgH 3%p V;P  HL$ LLAIHL$ P rp BR9Mc LH$I.@H$H H|$pH/H$HD$pH/@HDŽ$E1觸Ll$HD$XHLd$(HD$ IHH|$7E1HfWBDLL$KL$CII9XuLHH]'C'GH,'/H6''BFH'H|$`E11E1HD$8HD$PH;'ւ'@FH'H|$`E11E1HD$8HD$0HD$PH''GH|$`E11Hf'E1)HHt>1XH=SHL$IHL$H|$@1H[H!H%%H55H8ݧH; &%H; |'%HHQE1 LiuL`)H &%p V;P g1HL$ LAIP HL$ rp =P@9|MtULH$)©@$11HPFH=GHL$ =HL$ {1HJf۩HuH$%H5(HD$ H:˦HD$ }H*&%LH8ϥHD$pH Հ''VGH'H''EE1HD$0Hq'H1HAxHoHHGHEHH$H$H/uHGP0HT$`H$HлHD$pHmHEHP0HK''EH|$`HD$0H'HD$8HD$P1LHݪHHD$`'H=HL$ 艧HL$ &H=n'H\'H5"\'VIH=n'IH@'&'EH|$`E11H'HD$8HD$0HD$P ЪHH2~'~'EH|$`E1HD$8H~'HD$0HD$PyHފ~'y~'EHb~'LuMt Hۇ{'v{'FH_{'IHT$ LL>Ll$0H|$`Hl$HD$8HD$0HD$P=Hs({'{'FHz'HO{'z'FE1Hz'lHåHHD$/Hz'z'FHD$0E1Hz'#H܆z'wz'FHD$0HD$E1HKz'H=_i'HQH=Ki'HV'H5V'!H/H5I_'H=x'@HHD$ptJHEH|$pH/uHGP0H3HD$py'y'FHy'Hy'y'FHy'u L踶TH$4=LnIIMLH讜MItNIu)M~)H5td'HHVHtrH$IMaH$H$HD$=H5r'HHVաHH$~IHF H$HCH$[H$L H5 'LHvH„wx'4]x'eEeEHAx'HKx'1x'EH|$`E11Hx'E1HD$8HD$0HD$PHD$HH>w'w'EE11E1Hw'HD$0HD$HH=,g'aHHw'w'EE11E1Hew'HD$0H=f'H)T'H52T'FHqH~%LH8#H}2w'w'TGH|$`E11Hv'E1躟HuHv%H5H8诜HDŽ$Hv'v'GH|$`E11Hv'HD$8HD$PH=HL$HL$1LL蓡HH$tHPv'6v'GH|$`1HD$8Hv'HD$P%HJHHL$`HBHHH|$pHD$pH/uHGP0HL$pA1ҿAHAiHEHP0IELP0fHu'u' FHiu'HH1HA!HGP0DHGP0@IFLP0Hu*u'u'FHt'ߠIXHAt't'FE11E1Ht'H=Ad'vHH=-d'HP'H5P'蓦HH܀t'wt'FH`t'VF;H`t'Ft'FE11E1H't'zH=c'HH=c'HP'H5P'HHFs's'FH|$`Hs'~Hs's'FHs'iHs's'}FH|$`Hrs'+HPHHT$pH@HHH|$`HD$`H/uHGP0Ht$pHtEHT$H|$`߮Ht)s's'nFHr'ޞ3H|$`hffffff.AWAVAUATIUHSHHZ%HH$HFHHHnH9HD$@HD$PHD$`Hr'H4G'H9X[HG'HmHH=F'HH|$`tHGH5fh'HHHHD$PH|$`H/G HD$`4HHD$`HEHh؛HHD$@Hr'H\F'H9XH;F'HHH'F'HHCH5e'HHH.IMH+ H5g'H|$@L I.~ H\$PLl$@Lt$`HCHHZL=C%p NA;H LHLH.AH H BR9Q HH|$PH/- H|$`HD$PH/ H|$@HD$`H/H\$@H;HH\$0HXpHx Hp'HD$@H\$HHD$ H$1HD$8ID$ HD$(HLLHH M$L-e'M~LLKH L@MM>LLHAH L@L;%HD$` HPHHT$` LpHIHHQHHHt$`HH$IFH;%H;%IVBR HJE1 HL$uMnHt$=L=&%H Ht$QA;P 5 LHD$I H qp ABR9MLH|$`IHD$@HtH/Ll$@MHD$`I.H|$@H/HD$@ҘH|$(I襔HL$LHHCL5T'LM DL=-%H QA;P  1LHAIAH H BR9M* H+M0 ImHH;l$ M$L->c'M~LLϖHH H@HH/H=LH#yH yHH$L 6yH5HIHHHYzLBHT}LHH%H81Hyl'l'Hl'H xH=>91HĘ[]A\A]A^A_f.HHGP0@IFLP0HPHR0Ht$`HMFL;%7L;%SIVBDHrE1 Ht$uMn2L=%p VA;P o1f @$fHGP04@HCHP0ۓ@$fIELHP0H;l$ HD$0HIHSH\$HHHHu HH@P0LfHt$8L0fHD$@HD$PHHD$`M$L=`'IVLHHT$OHIH@HT$HHLLHIM$L=`'IVLHHT$HHHHT$LMvLHAHHD$PHHH; %HD$`FHPHHT$`4H@HHH|$PHD$PH/Ht$`H|$PHHGH;%Ht$pH;6% HWBHJE1 HL$uLwHt$ۑL= %p VA;Ht$P LHD$I諑p NH A=P@9tMLH|$`HD$@HtH/]HD$@HHD$`dH|$PH/H|$@HD$PH/HD$@vHD$H HL1Mt I9!HAHuHAMHYHD$tIHtHHD$HtHI|$ ܎H贏HIMHD$HL$HLHD$@HS+H5 O'L.ImHHH+HCHP0@11L,CHCHP0hHGP0IFLP0sHCHP0HD$@HD$02HGP0HGP0HGP0賏@$H=C~>}1HysH|$@)g' g'j1HD$0Hf'Ht H/H|$PHt H/H|$`Ht H/Ht H+Mt I.H f'f'H=5f'E1F3HD$0HNHHD$0+HAHYHD$I=L{HGP0JHGP0QHGP0@UHCHP0TIFLP0SHGP0@'HGP0@HGP0@HHD$PIE-@$~HGP0THTH %H5|HD$H:?HD$DHq_e'Ee'H.e'H+[H|$@1+Ha %LH8H`qe'd'H|$@E11Hd'H %LH8ÉHqd'd'E1Hd'kPHt$8L?H={Ht$yHt$1DHIIE1HpFd',d'H|$@E11H d'1LH9IwH=z"IELP0HCHP0H,fHt$p(LŠUHftH1lHoc'lc'HUc'Imt=H|$@E11HD$0IH%H5XzHD$H:HD$IELE11P0H|$@HD$0H=xR'H7'H57'ޔHH=VR'苔HH=yHt$踊Ht$NN˟yH%LH8rHnb'gb'H|$@E11HFb'HD$0KH%LH8&HD$PHwn,b'b'Ha'H%H5yH8aH|$PH0na'a'HD$@Ha'Ht H/uHGP0H|$`HD$PHt H/uHGP0H ra'a'H=m5oa'HD$`!.H|$HL$`HT$PHt$@$HL$`HT$P1Ht$@赍HHLHD$'ImIHT$uIELP0HT$H*u HBHP0MnLAIHPHIu IGLP0EH|$@Ht H/uHGP0H|$PHD$@Ht H/uHGP0H|$`HD$PHt H/uHGP0HD$HL$HLHD$`Hf#Ll$`Ld$PHl$@mLHLHHFlHD$@HD$PHD$`_'H_'_' HD$HL$HL1E1H"H|$@HD$0Hk_'p_'HY_'Hkf_'L_'H5_'HkB_'(_'H_']Hfk_'_'H^'6H?k^'^'8H|$@E1HD$0H^'Hk^' ^'YH|$@E11H^'HD$0^eHLL蛉HHHj^^' D^'lH|$@E11H#^'HD$0(H=u0HYj^' ]'^H|$@E11H]'HD$0Hj]' ]'cHD$0E11H]'H=M'H22'H5;2'HH=L',HHii]' O]'eH|$@E1HD$0H']'5 IHoi$]'  ]'[H|$@E11H\'HD$0覅H~H^%H5sH8藂cLnMIHFHH$HVH$Hh\' j\'gH|$@HD$0HE\'SHt$p!H$LlH5&LH葕yHah\'['xxH['UHSHIEH5 G'HHVĄHtH$IFfffff.AWAVAUATIUHSHhHHH;%Ht$HL$LD$H=['HD$HWH;%HD$0H;%h"HOQ#E1 HYtL5]$H QA;P I"LHt$IIX AKH B9$M#M"IEH5YK'LHH$HH=#HZ'H /'H9H#H/'H"HL=/'M!HL聀s#IHQHI #IEH5M'LHH "IM"L;5$L;5A$ DIHPHI_ E+HZ'H /'H9Hj$H.'H#HL5.'M#IFH5B'LHH%IM$I.T IGH5)@'LMo$LL$(Ht$ zL5c$H Ht$ LL$(QA;P t#1LAHD$ Ex AwH|$ p B 9 H$IIHPHI IHPHI H5L'H9xL=$L9{L9~{  ~ $HCH;FH5?L'H9 L9{L9~  { O(~ d(HCH;F H5!L'H9 L9{L9~  { 1)~ +HCH;FJH5K'H9 L9{L9~  { i)~ ,HCH;FSL5@'I9\L9{M9~{ +A~ ,HCI;FL5V@'I9 L9{M9~yq{ *A~ $*HCI;FL5'@'I9L9{M9~:2{ )A~ *HCI;FL5?'I9L9{M9~{ +A~ 'HCI;F9L5)N'I9L9{M9~{ (A~ (HKI;N1f.R9}@$@LonH;$u9H;5$u(HzHHH;$H;$ DH.u HFHP0E]ELLM E1HT$LH|$IL4$S'HH#I./ HD$H;K$MHD$HHT'H )'H9H"H)'H"HL5)'M"IFH5L'LHH IM"I. H|$LpyHI"I/ L;5$AL;5X$D EI. EH.T'H ('H9H$H('H$HL5('M$IFH5G'LHH"IM"I.H|$LxHI$I/L;5$AL;5$DMEI.O EH_S'H ('H9H'H''H)HL5''M(IFH5D'LHH(IMi(I.4H|$LwHIe'I/L;5$AL;5$D>EI. HL$HHD$HHHS EHsR'H=&'H9xH&'HHL5&'MIFH5J'LHHIMI. HIGH;4$H;G$Hl$@<H;$a!IWB{&HJE1ɨ HL$ LL$ yL5$H LL$ QA;P #HLHD$HD$myH AqHL$p B] 9eH#ILM&H)IFH5X<'LHHIMI.H5P'LuHI2I/L;5$L;5$7DIHPHIEHD$HH@H;$H;$Hl$PH;|$k"HD$HPBS"1ɨ Lzu HD$HHHL$xL5$H QA;HL$P !HHAIwAH H BR9BM#L|$L|$H|$ I/IGLP0R9eH|$ xwH|$ @$Mf.H;$uH;5$uH!tHHt9H;z$H;$MDH.u HFHP0EHZN'uuN'^Ll$1HWN' fHRHEHl$Im2Ht H+3Ht HmHL$HHD$HHHMtI,$u ID$LP0HD$Hh[]A\A]A^A_L;5i$LCwAHZM'dM'Ll$E11H|M' IWD$ LR0D$ CfIVLR0H{HVH9DS DN DD@DA9-A H{0L[HA@IDA LV0HHA@LDAADA2A9Ht!LE1H&tAELLM E1HT$LH|$IL\$ L$4K'HHL\$ I+ICLP0{f.HAHP0HEHP0IELP0HCHP0IFLP0IVLR0FIWLR0#H;Q$uH;5@$uHpHHH;6$H;$ DH.u HFHP0EELLM E1HT$LH|$IL4$I'HH@HSWK'xJ'E1Ll$HJ'^f.L;5a$L;tAHVJ'J'E1HL$HvJ'IFLP0IGLP0&H;$uH;5$uHoHHDH;$H;t$ DH.u HFHP0E ELLM E1HT$LH|$IL\$ L$hH'HHL\$ LHUI'zI'E1E1L\$HbI'Lf.L;5$gLrAXHU?I'%I'E1HL$HI'V@L;5$L{rALt$H5UHL$H'H'E1HH'E1HLl$HHH*H|$HGP0DIFLP0H$HH$HHD$ HHHH?0'HL$HIHHD$ HHHH\$IFLP0IGLP0IFLP0IFLP09HAHP0HAHP0IFLP0$IGLP0>IFLP0aH{HVH9tHt H=DS DN DD@DA9A  H{0L[HA@IDA LV0HHA@LDAADA2A9HLE1HSnAIFLP0IFLP0aMOKRDH7H(H;$uRL;5$uALH~kHHH;$H;q$ DH.u HFHP0EELLM E1HT$LH|$IL4$D'HHHQE'|E'E1Ll$HlE'Mt I. Mt I/ H GE'aE'H=l5DE'H|$Ll$HD$H;5$HHt$ nHt$ AH{HVH9tHt HDS DN DD@DA9fA  H{0L[HA@IDA  LV0HHA@LDA] A DA2A9HnLE1HkAHHSIFH9tHt HVs EN D@90@ 9H{0LSH@@IDA Iv0MFHA@ID?DA9HtE1HkAELLM E1HT$LH|$IL4$#B'HHvHO>C'$C'_E1Ll$HC'L;5$L{lAH:OB'B'E1HL$HB'Ht$0IfHAHP0H\$$@HCHP0#fIGLP0IFLP0H{HVH9tHt HDS DN DD@DA9lA H{0L[HA@IDA LV0HHA@LDAADA2A9HbLE1HiA<HL$iHL$@$H;$uL;5$uLH~fHHH;$H;q$DH.u HFHP0EaE2LLM E1HT$LH|$IL\$ L$?'HHL\$ IHL@'~@'E1E1L\$H_@'LH;5$HHt$ iHt$ ALVHH{Hh@$H{IVH9tHt HDS EN DD@DA9A H{0L[HA@IDA MV0IvHA@LDAAx DA2A9~HLE1HfAk@H;$uL;5$uLHndHHLH;$H;a$DH.u HFHP0EEqLLM E1HT$LH|$IL4$='HHHJ>'{>'E1Ll$H\>'DA2[H;5$HHt$ gHt$ ALVHBH{HDA2H{IVH9tHt HBDC EV DD@DA9A H{0L[HA@IDA MF0IvHA@LDA A DA0A9HLE1HdA_H;$uL;5$uLH^bHHH;$H;Q$DH.u HFHP0EELLM E1HT$LH|$IL\$ L$m;'HHL\$ )HH{<'a<'<E1E1L\$H?<'LHt$@L.IMDA2RH;5$HHt$ eHt$ ALVHH{HDA2 IFLP0WIGLP0WHsIVH9tHt H9s EV D@DA9@  H{0L[H@@IDA e Iv0MFHA@IDA A DDE9H?E1HbADH;$uL;5p$u LH`HIt9H;g$H;$ DI/u IGLP0EHF|:'b:'SLl$1HD:'H|$Ht$P4HD$H;5$HHt$ cHt$ ADA2>LVHoH{HLDA2HsIVH9tHt Hs EV D@DA9@  H{0L[H@@IDA Iv0MFHA@IDAADDE9+HqE1H`ANDA2H;5$HHt$ pbHt$ AMVHC6'd6'1Ll$H6'hHC6'b6'H6'L|$E1E11HL$H=0'H;=$HCHbIM0 H=4'LHI I/CLqrI."HgB6'c6'Ll$1H5'aHQH;C$mHM^IhHB5'f5'1Ll$H5'9H= 'EgIH=|LLL$(Ht$ m]Ht$ LL$(dHAZ5'f@5'H)5'H='Hv 'H5 'gIDA2H$HEH5\H81F`H0A4'4'Ll$H4'\1L_HIDZ]H6H$H5KH8KZH@u4'f[4' 1Ll$H=4'#`IH@:4' 4'Ll$H4'H;5$HHt$ u]Ht$ AH2@Lt$3'3'E1HL$H3'_IH?3'3'ILl$Hm3' HHt$ VHt$ 4_IǐH="'H'H5&'*eIBH="'dI.H_?3'2'Ll$H2'^I!Hu$HYCH5YH81^H?2'2'Ll$H2'$MGMIOIHI/uIGHL$ LLD$P0LD$HL$ LHHLD$ HL$mLD$ IHL$I(OI@HL$LP0HL$6HV> 2'1'Ll$H1'dH*>1'1'E1HL$H1'H=*!'H'H5'cIH=!'=cI H=z1'`1'HL$HD1'H=N1'41'HL$H1'eHm="1't1'GE1Ll$H0'xDA0oIvHH{H\IRH=0'0'HL$H0'DDmDD`IvHH{HHL$LqMQLyIIHHD$HHHYHLLkI.HD$IFLP0HL5mI"IFLP0IGLP0fL;=l$4LFYA(DA09HHt$ RHt$ HHt$ RHt$ H;r/'vX/'jE1E1L\$H6/'LH;=/'#/'HL$H/'TH='H$'H5-'`INH=i'`I:H&;.'.'E1HL$H.'H:.'.'Ll$Hv.'HHt$ QHt$ H:f.'wL.'Ll$1H..'LQ Hs:(.'.'0Ll$1H-'HHt$ >QHt$ }H+:-'y-'Ll$1H-'UH=DHL$UHL$HD$,uH|$HjHD$H|$Ht$PHD$H=GDLL$ =ULL$  E1OLpPIH[P)~UHuHo$H5DH8RHPNH9,',' Ll$1H,':LOH8,'}m,'Ll$1HO,'H8L|$T,'c:,'E11H,'HL$fHn8#,'c ,'1Ll$H+'H>OYHAHP0H=K'H'H5']IHHt$ NHt$ *LN6THH$H5|BH8$QHN)H7>+'{$+'Ll$1H+'H[7+'*'HL$H*''Ht$@L{IDIvHH{HHHt$ MHt$ 1DD5DD(DHM'"LM/H64*'*'HL$H)'KUIUHF6)')'E1HL$H)'H=F'{[IfAVAUATIUHSHH0H ,$L='HHD$HL$HL$ LD$(HFHt~8Ht Hu5LF0HK(HS HsLH0[]A\A]A^HHtHH$L 6HL5H5H 5H5?LNH$HOH8LDRH`91*TH5('('llH('H 4H=OKH01[]A\A]A^LvI+H?[JcHHF0HD$(HC(HD$ HC HD$HCHD$HKII~\IIu*M~.H5W'HHVPHHD$(IMHt$HT$HL$ LD$(MuH5{'HIHVPHHD$tUM~H5E'HHVPHtHD$IM~H5'HHVcPHLHD$ I9HC$LHT$L7H5&LH`5H_3''&'VVH&'FfAWAVAUATUHSHH%''H 'H|$H9HH'HHL%'MID$H5_'LHH'HHI,$#HEAH+EH&'"H 'H9H,H'H>HL%'MID$H5'LHH0IM/I,$E H N$IEH9HL$:H;U$Hl$ ZH; $IUBE1 HZML%$H QA;$P  HLHMA$H H B$9HILMH+ H|$H5n'HGHHIMNIEH;D$uI]HhMeHI$Imx LHL*`H+H HJI,$) Hm IL1HIHHH[ HtHmu HEHP0HĘL[]A\A]A^A_@H 'H9HH'H!HL-'M!IEH5'LHH2IMIm H -$IFH9HL$ H;4$Hl$@YH;$IVBxE1 HZn KL%$H QA;$P HLHoKA$H H B 9{ HMHI,$k HCH5 'HHHIMXH5x '1LGHI I/8 L;%)$L;%$DI$HPHI$# EHCH5'HHHIMH5 'L9ID$H;$I|$uA|$H)$E1L=$HHl$H9 $AAI$HPHI$EIHPHIEH!'bH &H9HhH&H;HL%&MID$H5'LHHIMI,$IEH;D$AD$E1H;$l H;?$a HHI MtL`HcD$HHI\IcHEIlIEHHHL%$H QA;$P  1LLIHH QP A$=p4@9 MI. Im`L;=$L;=?$IHPHIvH 'H H&H9HH'&HHL-&MIEH5?'LHHHHNImC HEH;D$H;$H\$P, H;$-HUBE1 LjuL}RGL%;$H QA;$P HLAI'GA$H H BR9 MMIMI.H+8HCHP0)fDHCHP0HHE1"DAID$LP0H$AHI^H y&H9HHX&HzHL=D&M7IGH5'LHH IMI/HCH5* 'HHH}IMCIGH;$H;$H@h1LH H@HIMI/ZEHIxLhGHI7HB'H ;&H9HH&HHL%&MID$H5a'LHHIMCI,$H5'LLLD$>GLD$iI(IFHHDL%w$H QA;$P {LLLHaDH QP A$=p4@9\HI.9I/ImH|$H58'HGHHIMIEH;D$ MeM MuI$IImHLLVI,$I&MI.I/HCHHH@pH& H@H IMHHHHHCHP0DHEHP0cL;%A$GLDA8H&'Cu'fLE1E1E1HU'I$1E1HHI$Mt I/Mt ImIMt I.Mt I(H ''H=A5'HHE1LHCA8H&'G'LE1E1E1H'1@IELP0fID$LP0ID$LP0HCHP0WIGLP0ID$LP0IT$LR0IELP0yIT$LR0bIWLR0oHCHP0dL;=a$L;BH$'I'LE1E1E1Hv'14IGLP0fID$LP0[IGLP0-IH|$H5'HGHH HHH HCH;D$LcMLsI$IH+t`LLLSI,$HH I.XIFLP0IfIGLP0IELP0HCHP0@ID$LD$LP0LD$fDIE@Ld$pH\$xE1H$IEHtpLH@ uM]HLAIMMI,$ID$LP0I@LP0rfIELP0IGLP0IFLP0>@$fIGLP0HIFLP0.IELP0IFLP06>@$fID$LP0LID$LP0IELP0RDRDM~MuXIFLP0"IGLIMoDMWIMZ=@$wf=@$FHtpHLLd$pH\$xH$0HI1Hn!#'I 'LH'ME1E1fDH2!'O'@M1H't=@$ID$LD$LP0LD$LIIELD$LIP0LD$OIFLD$LP0LD$EI@LP0EIGLD$LP0LD$Ht$ LIfDHt$@LHHt$PHIGH=U'H&H5&EI&H '='KE1E11H'1]H='7EIHt'=Z'KE1E1E1H:' ?HH;$L|$0H;$IUB1 HZuImW;L%@$H QA;$P HLH-;A$H H BR9|HM-f.:@$Ht$0LsHHm'?S'LLE1E1H3'1H;$L|$`H;$ HSB} E1 HjuLkZ:L%C$H QA;$P  LLH0:A$H H BR9|H` I9@$Ht$`HHV=IM~MMfII$I.u IFLP0HLLLI/HJIGLP0;Hd'?'#LE1MLH'E1H|$'LE11H'1E1eH;Z$Hl$pH;$ IUB E1 LzuMu8L%$H QA;$P  LHAI8A$H H BR9|M MMY8@$Ht$pLI(GIH'>'KE1E11H'1ry;IH'>v'KE1E11HW'MuMI]IHImu IELP0HLHJI.I IFLP0HX 'B'FLE111H'H=Y&H&H5&@IH=7&l@IH'B'DLE1E11Hp'1MHx'C^'dLE1E1E1H>'1HF'C,'bLE11E1H '9IcHU 'B 'ULE1E1E1H 'vH;$L3IM- H 'G 'LE1E1H} '#H 'Gm 'LE1E11HN '-49I5H5U&H=~ 'HHxHoIHmu HEHP0H^ 'D 'uLE1E11H 'H=^&H&H5&>IH=<&q>IL>IHLIHHLIItHs 'JY 'LE11H= 'LLoIHH4 'Q 'lME1E1H '7IrHE 'O ';ME11H 'H=H&}=IH=4&H&H5&=IH="3qH 'Oj 'BME11HN 'LLL{6HHlH< 'O" '=MH 'H` 'K ' ME1LH 'H=b&H&H5&HD$H|$AImHT$0HHD$(HHHuH'H7&H9XhAH&HDAHL=&M@IGH5&LHH@IM7@I/#IEH;$.3H;$Ld$p)H;Q$HDIUBRE1 HZuMu(L$H QA;P ML\$(LLH'L\$(H AH BR9%H-NMH>I.yI,$^HD$H;$#He&H &H9HB>H&H>HL-&M=IEH5&LHH=IM =ImHD$AH@ I,$EHD$HH|$H5&HGHH<IME<L'H <IHQHImH4HCH5&HHH3IM3L/'Hb3I.H1H5J&H=C&NHI+M~IEII.1ҿAIGH;$H;Z$|L\$0HIL\$0*MtLhHa&IHKDM\IGHH"*LT$0L$P LT$0A;P Z&1L\$8LLT$0LHH L\$8LT$0QP A=H @9H%I*vI/HCH5&HHHQ%IM %H&H R&H9H'H1&H'HL&M='IBH5&LLT$0HH'LT$0IM%I*TIGH;ٗ$MwMMGIII/LLLLD$0/I.ILD$0[Im(MB&I( H+ HD$ HH@H;O$%H;b$L$H;$s8HD$ HPBFE1 HZu HD$ LpL$H QA;P MFL\$0LLHL\$0P JAH BR9H>IL|$ M2'I/F IFH;$m&I~H,IFHD$HIF HD$8IF(HD$0HD$HHHD$8HHD$0HI. H5&HD$@H9` H˗$H9XH9^  HD$@x ,~ .<HD$@H@H;F H5&HD$@H9tlH9XH9^HD$@x :~ @HD$@H@H;FH5{&H|$@輻?;H&H&H9X7H&H7HL5&M;7IFH5&LHH7IM6I.H&H~&H9Xo6H]&HA6HLI&M5ICH5U&LLT$`L\$XHHh9L\$XLT$`IM9I+H|$0H5&LT$XHGHH8LT$XIM8Ht$8LLT$`L\$XHIL\$XLT$`8I+'IGH;̓$7D$XE1E1H;ǔ$%H;$DLT$hL\$`5HHL\$`LT$h&7MtLXIHD$0NlLcl$XLT$XHJDIGLMP;LՓ$P LT$XA;P ;1L\$`LT$XHLAIH L\$`LT$XQP A=p4@93MZ:H+I/6LT$XGHILT$X9LpI$L` LT$XHILT$Xj8HT$PH5&HLT$XLT$X(HT$PH5&LLT$X_LT$XrIBHHh5LT$PL$P LT$PA;P 9L\$`LLLLT$XHD$PwX L\$`LT$XSP A=p4@9)H|$Pv8I*I/9I.H\$PH;k$H; $H&H&H9X*H&H*HL5m&MQ*IFH5&LHH&*IM)I. Hw&H&H9P)H&H*HL&M<*IBH5&LLT$@HHc*LT$@IM)I*IEH;7$H;J$H\$8H$H;$U6IUB:E1 HZuMuL$H QA;P X8L\$@Ht$8LHwL\$@P JAH BR9H8ILM*'H)IFH5&LH@pHPH@HCIMI.Ht$0LHI&ImIGH;$(&D$@E1H;$/H;$mHI(MtLhLcl$@HEIKlMtIGHHy*LT$@2L$P LT$@A;P $*1L\$XLLT$@LHH L\$XLT$@QP A=H @9Ho&I* I/-HmHt$HeHH%H+H|$( HH%HEH5&HHHHy%ЅH+<HEH\$ Hl$@HHD$XHHH}HL$HtHHD$ HHHkHL$(HtHHD$HHHiHt HmiHL$HHtHHD$HHHWH\$8HtHHD$HHHEHL$0HtHHD$HHH3H\$PHtHHD$HHH!HL$HHD$HHHI,$u ID$LP0HD$@DHL$@H; $u_H;5 $uNH|$@ HI3"H;$AH;$D EI.u IFLP0E!EHD$Pl@L;5$.LcAH"&&W@H&HD$ IE11E1E1E1HD$PHD$0HD$@HD$81HD$HHD$(@MI.IFLT$XLL\$ P0LT$XL\$ fIVHD$(LR0HD$(\IFLP0vIFLP0IGLP0ImIELP0@IFLP0fIFLP0\IFLP0IELP0IGLP0IFLP0DIELP0IEL\$0LP0L\$0IFL\$0LAP01ҿL\$0DIGLP0IBLP0I@LP0H+ HCHP0DIELD$0LP0LD$0IGLP0fIGLD$0LP0LD$0WIFLP0IG@qH&HHLL$L\$0L$H$趟HHL\$0] H?&&@H&HD$ IHD$PHD$H1E1HD$0HD$8HD$@DMt Im Mt I/ Mt I+ Mt I* Ht H+ H 5&O&H= 52&H|$@tHD$@HD$@HD$ HAfDIFLP0IBLP0?HAHP0IFLP06IELP0HI-HT$Lt$HIFH ID$LP0H|$LE1@ ADIELP0HCHP0HEHP0IGLP0IG@HHLL$H$L$肝HH0Mt Im I.UIFLP0FDHCHP0fIBLP0{LT$0 LT$0@$OHL$P+fDHL$PHt$@HCHP0tHAHP0HAHP0MHAHP0HEHP0HAHP0HCHP0HAHP0HCHP0HEHP0IFLD$0LP0LD$0LT$@ LT$@@$IBLP0IFLIMDIFLIMDIEHHI1DIELIH\$@H;l$uH;5[$uH|$@HHq)H;O$AH;$D` EH+u HCHP0E6)EDMNIMMFIMIMHITM]IHL$@HVHIH9tHtHfDHT$@DF DJ D@D9A j L\$@LMSHH0A@IDA ? LN0HHA@LD΃  7A 9EHLLE1HA&fL;5$LAHZ&&'@H&3fH;q$5HK(H &&AH&HD$ 1E1E1HD$@f.IFLP0rIGLP0IFLP0:IELP0IFLP0IFLT$XLP0LT$XICLT$XLP0LT$XICLT$XLP0LT$X1IGLT$XLP0LT$XIG@HD$0HHLLT$`L$L\$XL$H$HIL\$XLT$`d/Mt I+Im#IELT$XLP0LT$X f.HCLT$XHP0LT$XLT$XFLT$X@$IBLP0LT$XLT$X@$IFLP0IGLP0H5&H|$@z,10H&H&H9Xk0Hm&HG0HHY&Hv,HCH5&HHHK,IM,H+IFL-O&HH)*L$H QA;P 7)1L\$@LLHL\$@H Aqp B9AHS/I.<H+HCHP0fD1yHHD$Hu*&&?HD$PHD$H1H&HD$(H&HHLL$L\$0L$H$詟HHL\$0'Mt Im`I+ICLP0yRL;5~$ LAHCHP0G@$IFLP0IFLP0DHHLL$H$L$՞HHH&&oBE1E1H&HD$ HD$@*fIFLIMtDIFLHIM@@$ f@$@f@$EfMFIMMN IMHZ&&BE1E1H&HD$ HD$@`fH\$@HVHKH9tHtHfDH\$@DF DK D@D9A H{0LSHA@IDA LN0HHA@LD΃7A 9fHLE1HAIELT$XLL\$ P0LT$XL\$ UDIGLT$XLL\$ P0LT$XL\$ <DICLT$ LP0LT$ -IBLP0&HCHP0%Ho&U&AH>&HD$ 1E1E1HD$PHD$@fDIEL\$0LP0L\$0IELP0JHJ&&AH&HD$0HHLLT$`L$L\$XL$H$袛HIL\$XLT$`?H&q&A1HD$PHO&HD$ HD$@LNHH|$@HHICLT$XLP0LT$XH;z$HAHt$pLHfDH|$ H$ɚI7A MDH$L蛚I7A LNH7H\$@H{H7A 47A (H;z$L$H;z$IWB$E1 LbuMwsL\y$H QA;P g$L\$0LLAIDL\$0P rAp BR9|M$MD@$H$L舙IH;LsIz%HJcHHC8H$HC0H$HC(H$HC H$HCH$L!IIHJcHH&y&@HD$PHD$H1HN&HD$ IE11E1HD$0HD$8HD$@ IH|$(LHYI &&@1E1H&HD$ E1E1E1HD$PHD$0HD$81HD$@HD$H?H&&@Hu&E1HD$PHD$H1HD$ IE11E1HD$0HD$8HD$@H|$IHz/&&z@E1E1HD$PH&HD$H1HD$ IE11E1HD$0HD$8HD$@`H&&ZB1E1E1H&HD$ HD$@'HI&q&@MHD$8HN&HD$ 1E1HD$PHD$0HD$H1HD$@Hw,&&@MHD$PHD$HH&1HD$ IE11E1HD$0HD$8HD$@@H|$I&H&&@HD$PHD$HHr&XILT$0&HLT$0!HIT&:&@1E1H&HD$ 1HD$PHD$0HD$8HD$HHD$@qH=L\$8LT$0LT$0L\$8~tI]H.IMHHImuIEHL$@LP0HL$@HT$8HHHL$@3 H+IHL$@HCHL$@HP0HL$@zHIT&:&@1E1H&HD$ HD$PHD$0HD$8HD$HHD$@sHT$ HZH@LzHIHHD$0HHHu HBHP0LHLa H+IHCHP0H&z&@MHD$PHD$HHN&e4LT$0IHIC&)&@HD$01H&HD$ E1HD$PHD$8HD$HHD$@bH=c&IIH=O&HX&H5a&I'M}MMuIIImu IELP0LLL,I/H3IGLP0$H;r$.LHII.u IFLP0IELHHHD$HELHHD$8(LHHD$0LHj ImFIELP07H&&A1HD$PHD$HHp&HD$ E1E1HD$0HD$8HD$@1LLLT$0wHHLT$06H{I-&&@HD$01H&HD$ 1HD$PHD$8HD$HHD$@=ME1ME1E1H&&@HD$PHD$H1HX&Hb&H&@H1&H;&!&@HD$PHD$H1H&HD$(I H5&H=}&舐HIHI.u IFLP0H&&?H&/hIH&e&N?1HD$PHD$HH:&HD$ 1HD$(HD$HD$@HD$0E1E1HD$0HD$8HD$H=~&IH=j&HӤ&H5ܤ&IHn$H80tHOH&&@?1E1HD$PHt&HD$01HD$HHD$(E1HD$HD$@E1HD$HD$0HD$8HD$ Hr'& &=?1E1HD$PH&HD$H1HD$(HD$HD$@HD$0E1E1HD$0HD$8HD$CH&&8?1HD$PHD$HHe&1HD$(HD$HD$@'HR&8&J@HD$PHD$H1H &HD$(H|$IHG&&L@E1HD$PHD$HH&1HD$(H&&Q@HD$PHD$H1Hp&HD$(~Hq&W&@HD$PHD$H1H,&CH|$@Ht$XxHt$XHe&&\AH&HD$ 1E1E1HD$PHD$@`HHxH&&A1E1E1H&HD$ E1E1HD$PHD$0HD$8HD$HHD$@Ha&G&@H0&IeMoMI_IEHI/u IGLP0HCI1һD$@H.&&]B1E1E1H&HD$ HD$@H&&WB1IE1Hq&HD$ E1HD$@Hd&J&BE1E1H-&HD$ HD$@Hx-&&BHH&HD$ 1E1E1HD$@yLT$@HLT$@H$&&B1E1H&HD$ HD$@H&&HB1E1Hm&HD$ HD$@H=&HP&H5Y&MIaHK&1&CB1E1E1H&HD$ E1HD$@IHM&&ABH&H=U&IkH=A&Hʝ&H5ӝ&IIH&&FB1E1Ho&HD$ HD$@H=&Iq7LT$@IHI&/&B1E1H&HD$ HD$@H^&&?H&7H7&&?HD$PHD$H1H&HD$(KH|$I\HI&y&?1E1H]&HD$ E1E1HD$PHD$0HD$8HD$H1HD$@HD$(HD$IfH]&&?H&HD$PHD$H1HD$(HD$hH=?&tIH=+&HT&H5]&IH=L\$XLT$@zLT$@L\$X1LLLT$@HHLT$@aH:& &}?E1E1HD$PH&HD$H1HD$(HD$HD$ E1E1HD$0HD$8HD$@^Hſ&&n?1HD$PHD$HH&1HD$(HD$RIdHi&O&l?1HD$PHD$HH$&HD$ 1HD$(HD$E1E1HD$0HD$8HD$@H=r&I鳾H=^&H&H5&I鑾H ¾&&_?1MHD$PH&HD$ 1HD$HHD$(E1HD$E1HD$8HD$@HD$0HD$0HD$I]HMuHIImu IELP0HT$0HLMHD$HHHHWHCHP0HH+&ƽ&P?1E1HD$PH&HD$ 1HD$HHD$(HD$HD$@H&j&O@HD$PHD$H1H?&HD$(MIH5&H=ƻ&уHIHWI.u IFLP0HG&&f@H˼&xH ռ&&T@HD$PHD$H1H&HD$($H5&LHVHH$ IMH5&LHVNHtH$IM~ZH5&LHV%HtH$IM~1H5إ&LHVHIH$IM4H$L$HD$@H$HD$PH$HD$H$HD$0¹LLIeIfLLH)CIHZ&@&@E1HD$PHD$HH&1HD$( H|$ L9I HI&&A1HD$PHº&HD$ HD$@JH=<&LT$XlLT$XIH=&H&H5&LT$XLT$XIHx&^&A1E1E1H?&HD$ E1HD$PHD$@IHq&& &AH&HD$ 1HD$PE1E1HD$@lH=^&IfH=J&H3&H5<&IDHt$(LIKIfyH&5&7`HtNE1H=L\$0L\$0{بH$LkIHS$H5_H8}H|1&&?HD$PHD$H1H&HD$(H8&ӯ&AE1E1H&HD$ HD$@>IH&&AE1E1Hr&HD$ HD$@HuImu IELP0 uH HL\$8L|$H/&&KA1H&HD$ E1HD$PHD$0HD$8HD$HHD$@Np1HD$8`HLT$0L\$8L|$H&1H&HD$ &CAHD$PHD$0HD$8HD$@HD$HH$LhIZH=*L\$0 L\$0E14HuHQ$H5H8H3&έ&A1HD$PH&HD$ HD$@*Ht$pLChHLL飰HQ$H5H8=LT$0 Hb&H&9A1E1HD$PH#&HD$H8I~H>IFHH\$HHXH@H\$8HD$0PH=L\$0L\$0H|$ H$bgI鴹H$L2H53&LLH˸&f&>HO&HY&?&b@HD$PHD$H1H&HD$(HHO$H5H8H=v&HH=b&H&H5&HH5&H=I&TrHIt?HI.u IFLP0Hη&i&$BHR&H\&B& BH+&-H5&&AH&nffffff.AWAVAUATUHSHHhHzO$HH|$`HDŽ$@H$HHwO$H$PHHO$H$X6|HFH!nH4H!Hn0HC(HD$HC LsHD$ HDŽ$HDŽ$HDŽ$IHH&HEHI&H9XCvH0&HUvHH=&HH$MvHGH5&HHvHHtH$H/HDŽ$HH$ uILpHH$vHM$H5&H5mIHCL$L$LMwH QH gM$P ;WxHL$LLHAISH qHL$p BR9M;xL$H+H$H/H$HDŽ$H/H$HDŽ$I.HD$HH|$HHDŽ$H5&HGHHwHH$wH5&H9HPH;M$UxHxHJL$HHH$HHSHHHH$H;=qL$HDŽ$H;=L$HHPHHHDŽ$D'HD$H fHL8Mt L;=K$6HPHuML`HXtIMtI$HtHHd&H5 &H9p1H~&H HH=~&HH$fHGH5&HHAHH$tH$H/:H|$HHDŽ$H5ϙ&HGHH$IMH I$I@H9HL$eMpMXMhIIEI(`:LLmH$I.3<H$HIm:H$HD$H9GH$SmH$H$H/:H$HDŽ$H$H/9H$MHDŽ$HDŽ$HD$pt I/;Mt I,$H;Ht H+I;H5&H|$pSHH$H;I$HH;>I$5HӃHPHH5HDŽ$H&H|&H9XHh|&HwHH=T|&HH$HGH5X&HHHH$CH$H/KH$HD$HDŽ$H9GHt$ kfDH$H$HtH/FNH$HHDŽ$5H$H/KH5&H$HDŽ$H9N9HGH;sH$H29HH$HH$H/%KH$H;=G$HDŽ$H;=G$uEÃHHPHHJHDŽ$H;-zG$H4HHD$H&Hgz&H9X&HFz&H8HH=2z&HH$0HGH5&HHHH$H$H/1H&H5y&HDŽ$H9p"Hy&HyHHy&HyHCH5&HHHIMH+1H&H%y&H9XHy&HmHHx&HmHCH5&HHHIMH+1HD$I9FHD$LLhH$I,$0H$JI.0H$H5&HGHHXHHXH$H/Q0H$HD$HDŽ$H9GvyH6hfDH$H$Ht H/4HDŽ$H+/H$H$H//H$H &HDŽ$HDŽ$HD$XHEH9HXHIHrH~,H;J1f.H;LHH9uH5& H(hE111AHHHH$H$HH$H/?/HDŽ$L$Hm/L;=C$HDŽ$IGI_LH5u&HHY{HH$P{H5ˆ&H9rHPH;C$QHxu xPH5qC$HHH$H0HVHH.H$H;=@C$HDŽ$H;=B$G+HHPHHf+HDŽ$IGH5&LHHfHH$_Ht$pHHHH$-H$H/.H$H;=~B$HDŽ$H;=B$*HHPHH*HDŽ$UHHt$&Hĝ&H5t&D$H9XHt&H9HH=t&HH$1HGH5&HH=HH<H$H/-D$HDŽ$HH$LHL$H9KnHHDdH$H$H/,H$HDŽ$H+e,H$H;=A$H;=@$)HHPHH)HDŽ$Hn&H5r&H9p]Hr&HoHHr&HoHCH5&HHHͫHH$īH+,H$H5&HGHHHHsH$H/+H5D&1LHDŽ$HIH$qHCH;D$rHkHrLcHEI$H+F+H$HLH$Hm.H$H/*H$HDŽ$sI,$+H$H;=A?$H;=>$(HHPHH)HDŽ$uD$ \ʤfTiHH$Ht$XHVHHtH$H/x*H;>$HDŽ$H;+>$x'HHPHHJ*HD$ HH;*>$-H&H p&H9HHo&HHHo&HHCH5E&HHH"HH$H+'[HHHD$ HHCHH$YH5&H5No&H9prH-o&HHL5o&MIFH5U&LHHiIMhI.:'H5&H$L3MNIm`'H$L$HELMqwH QH Z<$P ;HL$LHHAHD$0Dp HL$VP =H @9&H|$0ZH$H/&HDŽ$H+&H$H/v&H\$ HDŽ$HHD$HHH=&H\$H;;$H;;$| L;=;$.IGH5&LHHHH$H|:$H9XH\$HhHH@HEHH$H$H/Y*H$H$HWH;>;$OH;;$ШHOQШE1 HY 覾H :$p V;P HL$HLHyH qHL$p BZ 9+HxHm*HpH$H/)HCH;`;$HDŽ$BH;_9$ KHhhHH}HEHHHСHpHUIt@H-9$@H 9$HHJDH|$HH5|&HGHHHH$H5|&H9>HPH;9$Hxu xt>H5q9$HHH$HHSHH')H$H;=@9$HDŽ$H;=8$_%HHPHH~%HDŽ$AsH|$HH5&HGHHЀHH$̀HPH;9$;H;7$6>HRh1HHpHRHpHH$pH$H/F(H$H;{&HDŽ$HDŽ$HD$pH͓&H6k&H9X1Hk&H HH=k&HH$zHGH5%&HHzHH$yH$H/:H$H6$HDŽ$H9G9yHt$ aZH$H$HtH/=H$HHDŽ$_H$H/:H5[z&H$HDŽ$H9.(HGH;C7$H(H6$HH$H/%:H$H;=6$HDŽ$H;=P6$u4ÃHHPHH:HDŽ$H5Rx&H=K&VXHH$HH$H/uHGP0HHDŽ$k&Q&H:&;xH; 66$|H&H5rh&H9pHQh&HHH==h&HH$HGH5Q&HHIMH$H/a%HEHDŽ$HH5&HHoHH$dH͐&H g&H9HHug&HHH=ag&HH$HGH5&HHoIMnH$H/$IFH;D$HDŽ$AE1H;4$FH;;5$$HHMmH$HtHCHDŽ$H$IcHDŽ$HHTNlIFLMm衷H QH 3$P ;W1HL$(HLAIqH qHL$(p Br9$M/L$H+$I.#H$H;=n3$H;= 3$HHPHH HDŽ$HΎ&H we&H9H/qHVe&H qHL5Be&M]pIFH5^y&LHH2pHHoI.7H\&H d&H9HHoHd&H$oHL-d&MxnIEH5l&LHHpHH$ŁIm6HEH5Ѓ&HHHIMH$HD$HDŽ$H9GLTIƐH$Ht H/7HDŽ$I,$5MH$H/5IFHDŽ$LH5݂&HHHH$I.05HD$H9C3H$H!TH$H$H/4H$HDŽ$H+4HD$XHHH$tHIH;0$L;5g0$.IHPHIF4>"H$H\$XHH$H$HHD$(HHH4H$H/s4H$H$HH$H/=4HL$XHDŽ$H$HHD$(HHH3HDŽ$H\$XjfDHH/$H-/$HD$HH;=/$SfXH$HHPHHAHGP05DH;A/$wHjHݖ&&x&BE11E1HY&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$*@HGP0L@L=.$HD$XAHCHP0H$H/'HGP0 @$fIFLP05HGP0@HPHR0HCDHH$L HϖH]H _H5LOHK-$HNH8LDRHř1sH]&&99H܈&H 6H=ΰU1fHh[]A\A]A^A_fDHi-$H-B-$HD$3RDLg<RDH ,$HHDHt$pH|$0蔭HIH;,$L;-,$DIEHPHIU.&]H5o&H|$019HI\H;,$L;-,,$AIEHPHIU.ZL;=2,$<@H&H]&H9XuH]&HfuHH=]&HH$tHGH5u~&HHtHH$xH$H/P.H5n&LHDŽ$@HH$bxH$Hp*$H9_H\$wHYNIH$H/-MHDŽ$.wH$H/-Ht$01LHDŽ$貫HH$lvIm-H$H;=*$H;=*$R(ÃHHPHH-HDŽ$tH-m&LHEIGH5}&HHtHHsHD$H9CHDŽ$:HCHH$:LkHIEH+'-H$H:LLH$H$HtH//H$HHDŽ$PIm,H$I/HD$hp,HY&H[&HDŽ$H9XHZ&HHH=Z&HH$HGH5l&HH~IM~|H$H/,HDŽ$诬HH${Ht$ HH$HpDHH$g{H)$H5ez&H <IEL$L$HHlHGH5u&HH>HH$ GH$H/H$HDŽ$HGH;D$nFH;$HL$hH$8H;#$$=uHWB>E1 HZuLwҦL"$p VA;P LD$PHt$hLH袦LD$Pp ANH BR9HH$Ht H/ HHDŽ$FEH$H/HL$HDŽ$HtHHD$PHHHHCH;9#$H;D!$^LhhM{9I}p9IEHiHH,tHpHAUHuNIoH;!$"H蓦AHRLt$}&?|& L|$hE1H|&E1H$HD$E1HD$P@H;A!$HAHڈ|&Au|&%!L|$hE1E1HS|&HD$E1H$HD$PHCHP0OHGP0@HGP09@HGP0@HD$(H@HXpH|H{|1HI|H] $HH:I/I=M|LH|$(SI.Hu IFLP0Hj|Hfc&H|$hH虞{H+HCHP0HCHP0HGP0D@HGP0J@IFLP0AHCHP0HAHP0HCH; $JHSHCLtI@LHաHH$@I.: H$H+HD$ H|$HDŽ$H5[f&HGHH/@HH$?芢HHf?HD$HHC,HH$=H4f&H5me&Hդ@%L$L$IFLM*>$L $H A;H =LD$PLLHAILD$PH AH BR9 Mf>H$H/- HDŽ$H+ H$H/ MHDŽ$t I,$) Hby&H N&H9H=HN&H=HL-N&MM=IEH5a&LHH;HH$;Im נHI2;ILp~HH:H$H5d&H,#L$ID$LM6肠Lk$H QA;P BLD$PHLLAIPLD$PH Aqp BR9 MMBL$H$H/ HDŽ$Im H+ H$HPH;/$8HxH8HXLx HIH$H/9 HDŽ$HL$@HtHHD$PHHH; HL$8HtHHD$@HHH) IGH5b&LHHv7IM 7IAH;D$2MQM2MiIIEI)IEH;$L$H;$2IUB>HJE1 HL$8uMeLT$@薞L$p LT$@VA;P >LLD$PLT$@LHD$8IYLD$PH LT$@Aqp BR9: M @LH$I*H$H?ImH$H/IFHDŽ$LH5d_&HH7?IM>IAH;D$w2MaMj2MiI$IEI)LLL贰H$I,$QH$H=ImeL$I.oID$HDŽ$LH5_&HH>HH$=HHʘHI2H$H/,HD$(HDŽ$H@L@pM+ IxLD$8 H$LH蘟HI LD$8LHH|$(APIHQHIuIVD$8LR0D$8ImID$H5_&LHH2IM3LH輗HH$2Im`L$HmjLHDŽ$L|$8H\$@Lt$ f.HGP03@H;=$莜rH$HHPHHHGP0DH;=i$&F rH$HHPHHHGP0DH;=!$B(qH$HHPHH0HGP0$DH;${H賛lHL$ Hn~#r& r&E11Hq&E1H$HL$0HD$E1HD$8HD$@E1HD$HD$(HD$xHD$PHD$HD$ ^H;=!$H$HHPHHHGP0DHCHP0$fIFLP0L`HXHCHP0HGP0~@HCHP0YIELP0HGP0&@@$fHCHP0HGP0S@HGP0J@HCHP0HGP0@IFLP0MID$LP0#HCHP0HEHP0HGP0@HPHR0jHCHP0HGP0Z@HGP0@HGP0@HGP0@HCHP0HGP09@HCHP0ID$LP0HGP0|@HCHP0H;$p辘H$HHPHH^HGP0RDH;=$vH$HHPHHHGP0vDH;=Q$.4H$HHPHHHGP0DHCHP0fIFLP0論@$fHGP0@HCHP0HGP0@IELP0pHGP0@HCHP0_IELP0EHGP0!@@$fIALT$8LP0LT$8 HGP0@IELP0IELP0L$I.IFLP0DIALP0HGP0@IELP0MIELP0L$HmHEHP0@ID$LP0HAHP0HAHP0IBLP0ID$LP0LT$8LT$8@$IGLP0HGP0@HEHP0qHGP0@HGP0a@HCLtINfDHHS&HHD$0HHD$HHHHAHP0fDIELP0fI@LP0HGP0 @HGP0@HGP0@HPHR0HGP0@HGP0@IFLP0lHGP0/@HEHP03IF@PH$L$PH@H$@H$H$HIFPLH1 uIFkHHAHH$NaH$Ht H/$H$HDŽ$H/$HDŽ$ImyIELP0jfH$HHy$Hk@$f[@$fHCHP0ID$LP0HCHP0IFLP0IGLP0iHD$XHHH$L;-$LHu`i&5Fi&8 1E11H(i&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$ DL;-i $LCHuh&2h& 1E11Hh&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$ D苐@$ fH5U&H|$`"HHjIHH$iHO&HL$pHH$HBHH$HH ǑHH$hHT$ H5R&Hr"HCL$L$HHTiH $p V;P iHL$LLHHD$菏H LL$QHL$P =H+9MIH+qH$H/IH$HDŽ$H/HDŽ$1HD$8HD$@E1HD$HD$(HD$xHD$PHD$HD$ H; $.H|$HH5V&LL$HGHHP`LL$IMOH5N&L9IEH; $NI}HS $HH$ImH$H;= $H;=# $HHPHH1HDŽ$,ILHD$HL$pHtHHD$`HHHHL$XHtHHD$`HHHHL$ HtHHD$XHHHHL$HtHHD$ HHHHL$PHtHHD$HHHMt I)Ht Hm#HL$xHtHHD$HHHHL$(HtHHD$HHHHL$HtHHD$HHH]Mt I,$]HL$@HtHHD$HHHKHL$8HtHHD$HHH9HL$HtHHD$HHHWHt$HHHD$HHHHt$0HtHHD$HHH(MtI/u IGLP0HH)$HyHD$ H;$H|$HLHGH@pH{OH@HnOLL$LL$HHOHD$fIALP0.HAHP0ID$LP0HAHP0HAHP0HAHP0HAHP0"HEHP0HAHP0HFHP0HALL$`HP0LL$`HALL$XHP0LL$XHALL$ HP0LL$ HALL$HP0LL$HFHP0HALL$`HP0LL$`]H;=A$LL$LL$@MH$HHPHHHGLL$P0LL$fIELL$LP0LL$[LL$`H `&IyH9t?HXHLHrHH;Jt1fDHH9H;LuHH5.T&LLL$HELLL$HH$KHPH;:$JHXHJH@HHH$H$H/AHJH&H$HH+ImM JH$H/Ht$`HDŽ$HHD$HHHHFLL$HP0LL$H*lHt$ ILt$H_&E1H_&H$1_&Ht$0E1HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pHtH0HVHHHt H+H$Ht H/H$Ht H/MtI.tCMtImtWH ^&^&H=5^&LL$`1a+LL$`IFLL$`LP0LL$`f.IELL$`LP0LL$`f.HPLL$`HR0LL$`HCLL$`HP0LL$` HGLL$`P0LL$`f.HGLL$`P0LL$`f.H;=a$>CH$H;=1$~BH$gH;=$~ކAH$gL;5$7L諆(H\$ HfiI]& \&E1H\&1H$H\$0HD$E1H\$XHD$8E1HD$@HD$HD$(HD$xHD$PHD$HD$ Q@H$LLT$8f!LT$8@IAH5L&LLL$HHx@LL$HHH$@H5D&H9tHGH;$?HH$HIŸH7HVHHHDŽ$AIEHPHIUHH[&H5H1&H9pRH'1&HzsHL-1&M)sIEH5Q&LLL$HHtLL$HH$sImLL$HILL$/MH|$HH5=Q&LL$HGHHoLL$HHroH5 Q&HLLL$芅LL$H+=H$H5@&HCLMjXHt$`LL$H LL$Ht$`QH #P ;XHL$hLL$`LHAHD$肂p HL$hLL$`VP =H @9H|$ UH$H/HDŽ$ImH|$HLHGH@pHsH@HsLL$`LL$`HHrH5Y&H|$HLL$`|LL$`VH+HD$HHHGLL$P0LL$f.HGP0@IELP0IELP0HH@HHH$ HGP0 @HGP0@IELP0[HGP0@IGLP0IELP0ZHGP0Z@HGP0@HCHP0HGP0D@HGP0@HGP0ϴ@HGP0b@HGP0@HGP0@HGP0b@HCLL$HP0LL$zHGP0@IFLP0HCHP0?HGP0 @IFLP0HGP0m@ID$LP0>HAHP0HGP0@HGP0@HCHP0\IELP0fIFLP0 @H/#1L-&#HHs#H9#HGLL$P0LL$HGLL$P0LL$HCLL$HP0LL$vLL$~LL$@$KH#HHHHH9ufHGP0@HGP0^@HGP0@HGP0@IELP0f+~@$@~@$H@HHGP0\HGP0@HGP0@骱IELL$LP0LL$NHGP0=HCLL$HP0LL$HCLL$`HP0LL$`IELL$`LP0LL$`KHGLL$`P0LL$`LL$`K}LL$`@$HGP0HD$xLt$L|$hHD$PHI=H`T&ET&{!L|$hE1E1HpT&HD$E1H$HD$P+H`MZT&F@T&!L|$hE1H!T&HD$E1H$HD$PHPH#H dH5|H81LH6`L|$8H\$@S&IS&"E1HS&L|$h1H$HD$E1HD$Pa@HSHCLDIM@LHzHH$pImH$H+HD$H|$`HDŽ$H52@&HGHHoqHHpHD$H9CxLHkHkLLkHEIEH+,HT$ HLlH$HmH$&HD$PHGHHXHH$ YzHIXHD$PHIE+|HHWH8>&H5q=&H|H$HELMs0zH QH #P ;LsHL$HLHAHyHL$p p BR9FHerH$H$H/HDŽ$ImH+HQ&H '&H$HDŽ$H9HqHO'&HiJHH=;'&HH$IHGH5I&HHIHH/IH$H//HDŽ$xHH$JHEH$HhrzHITH#H5G&H {HCL$LMpwxH `#p V;P ZpHL$LLHAIFxH qHL$p BR9M'nL$H+H$H/HDŽ$ImiH$H5H&HGHHpIMWnH$H/fHDŽ$pwHH$oH#HHP yHH$knH7&H5F&HyIEL$L$HHSwH QH #P ;THL$LLLHD$vX HL$LL$SP =H @94MSImH$H/H$HDŽ$H/HDŽ$Hm)1HD$8HD$@E1HD$HD$(HD$xBfIELP0HCHP0HCHP0GIELP0 HGP0@HCHP0IELP0HGP0@u@$fHEHP0hIELP0HGP0d@HCHP0?;u@$fHGP0@HELL$HE11P0HD$8HD$@HD$HD$(HD$xLL$DHGLL$P0LL$Zf.HGLL$P0LL$f.IELL$LP0LL$LL$ftLL$@$HBXK&+K&1E1HD$HK&HD$8E1H$HD$@E1HD$HD$(HD$xUHWIK&.jK&1E1HNK&HD$E1H$HD$8HD$@HD$HD$(HD$xHbWIK&.J&1E1HJ&1H$HD$HD$8E1HD$@HD$HD$(HD$xsIL8fDHCLDIMH$H,#HGH$H9H;#^HWB^1ۨ LbuH_rH QH k#P ;^HL$1HAHt$ HCVI&!I&1E1HI&HD$E1H$Ht$0E1HD$8HD$@HD$HD$(HD$xHD$PHD$?LLL$rLL$HUUI&Y;I&"E11HD$HI&H$fH$H@HLL$PH$@H$H$H HH$0HUH& H&^HH&HD$ I1HD$0HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ +HWD$`LL$R0D$`LL$KIELL$LP0LL$[HCTG&=G& L|$hE11HG&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$?H$` HoH56&H|$`'HH^H@H;#]HkH]LkHEIEH+{HT$pHL襂H$HmH$H[Im-L$ID$HhpHIH}IH2#Ht$0H rHHIHLUH+IuHD$HCHP0LL$MIH$H/HT$ H;#HDŽ$IAH51&HH*_LLL$LL$1HD$8HD$@E1HD$HD$(HD$xHD$PHD$IH$ HHGP0"HGP0HQtE&0ZE&E11E1H;E&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$H:QD&_D&"E1HD$HD&H$H$ HD$(IELP0HCHP0vLL$`1HD$8HD$@E1HD$HD$(HD$xHD$PHD$HGLL$P0LL$HEHP0&H HD$HHvLLLT$8LT$8 H;$H;;#AIQBAE1 LbuMiLL$8kL#H LL$8QA;P @1LD$@LL$8LAIkLD$@p LL$8ANH BR9|"M{/LH$MbfDLL$8VkLL$8@$L11LL$8LL$811HD$(H;$L$ H;+#FIQBFE1 LbuMiLL$8jL#H LL$8QA;P FLD$@LL$8LLAIjLD$@p LL$8ANH BR9|!MELH$M DLL$8FjLL$8@$H$LϺLL$8LL$8HNL|$8H\$@A&IA&"1H|A&HD$E1H$L|$hE1HD$P/HLLlHH$HMM?A&F%A&!L|$hE1HA&HD$E1H$HD$PlIGH1ML|$8H\$@@&J@&"E1H@&L|$h1H$HD$E1HD$P\HLL|$8H\$@@&Jj@&"1HQ@&HD$E1H$L|$hE1HD$Pl*HwL,@&C@&E!H?&L|$hE1E1HD$E1HD$PH=_/&qHH=K/&H&H5&qHHKL|$8H\$@M?&G?&!Hq?&E1H$HD$1L|$hE1HD$P"0kIH?XHxlH~KM0?&F?&!L|$hE1H>&E1H$1HD$E1HD$PH;#$\HkiHH$[H$H/[H$HDŽ$HGLAHH[H$AHIZH$AHZ}jZH$H/LZHDŽ$MHfJ>&O>&i"E11E1H=&1H$HD$HD$8E1HD$@HD$HD$(HD$xHD$PHD$eHIM=&Fz=&!HD$E1HW=&L|$hE1H$HD$PHIME=&F+=&!1HD$H =&E1H$L|$hE1HD$PHBIM<&F<&!L|$hE1H<&HD$E1HD$PhHHLt$<&?<& E1HD$Hd<&E1H$L|$hE1HD$P HHR<&E8<&y!L|$hE1E1H<&HD$E1HD$PH=SLD$PcLD$PCH8H;&E;&|!L|$hE1E1H;&HD$E1H$HD$PlLHLfHtI%@HGM|;&Fb;&!1HD$H@;&E1H$L|$hE1HD$PH=*&lIEH=*&H&H5&lI#cHHk#H5QH8`HG:&E:&t!E1HD$E1H:&L|$hE1H$HD$PFHFx:&E^:&r!L|$hE1E1H<:&1H$HD$E1HD$PfɿHhFH\$:&DL9&e!L|$hH9&E1H$E1HD$E1HD$PHFLt$9&@9&!L|$hE1H9&E1H$1HD$E1HD$P>HEp9&AV9&$!E1HD$E1H09&L|$hE1H$HD$PHlELt$9&@9&!E11H8&HD$E1H$L|$hE1HD$PHE8&@8&!Lt$H8&{d߷HD8&C{8&V!E1HD$E1HU8&L|$hE1HD$PCHWHH$}HGHHH$H$H/<;H$H;HT$hH$sHH3D7&C7&G!L|$hE1E1H7&1H$HD$E1HD$PeH=NLD$PLT$@_LT$@LD$PX1H$LLT$8LT$8DHCL|$8H\$@M*7&H7&!H6&L|$hE1H$1HD$E1HD$PH'CL|$8H\$@6&I6& "E1H6&L|$hE1H$1HD$E1HD$PO]bHBL|$8H\$@Mj6&HP6&!H96&E1H$HD$1L|$hE1HD$PaIHZBL|$8H\$@M6&G5&!H5&L|$hE1H$1HD$E1HD$PLT$8k^HLT$8-H#H5LHD$@H:R[LT$8HD$@鵿+^H3HDŽ$H=JLLD$P@]LD$P*ϐHL$ HuAILt$H"5&E1H4&4&wE1H$HL$0E1HD$HD$81HD$@HD$E1HD$(HD$xHD$HD$ HD$XHD$PHD$pKH@ILt$Hu4&[4&zE1HA4&HD$ 1E1HD$HD$8HD$@E1HD$HD$0HD$(E1HD$xHD$PHD$HD$ HD$XHD$pH=M#&H &H5 &eH鶉H=+#&`eH颉H?ILt$H3&{3&uE1Ha3&HD$ 1E1HD$HD$8HD$@E1HD$HD$0HD$(E1HD$xHD$PHD$HD$ HD$XHD$p^HHL$ H,?ILt$H2&E1H2&2&1H$HL$0E1HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pH\$ Hz>I,2&2&E1H1&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pSLLH\HH$HL$ H=ILt$HY1&E1H/1&51&1H$HL$0E1HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pH=GHL$XHL$HDŽ$AYHuH#H5GH86V@;\(H\$ H<IM0&30&E1H0&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$ptH;X#&HTHHH$H$H\$ H;Ih/&N/&E1H4/&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pH ;H\$.&D.&c!L|$hE1H.&E1H$1HD$E1HD$P9LfIHoaJcHHF0H$XHC(H$PHC H$HHCH$@HQIII Iu-M~1H5&HHVVHH$XIMH$PH$XL$@HD$H$HHD$ .H5&H= ,&+HHHiH+u HCHP0H9V-&6<-&G E11E1H-&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$H9,&6,&C E1HD$HD$8H,&HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$PM|H5%&HIHV+UHH$@MTH5Z&HHVTHtH$HIM'H5]&HHVTHH$PIH$@LS<H5a%LH eH7+&s+&##HW+&vLH7Y+&5?+&7 1HD$HD$8H+&HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$PH5&H=h)&sHHHfH+u HCHP0H6*&3*&% E11E1He*&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$Hb6*&3)&! E1HD$HD$8H)&HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$P`H5)&x)&E11E1HY)&HD$ HD$HD$8HD$@HD$0HD$HD$(E1HD$xHD$PHD$HD$ H;#L$H;r#HSBE1 HjuLk!QH #p V;P tHL$LLHPH qHL$p BR9|HtHH$I鋍P@$H$H;H=2?HL$(PHL$n1묨u LH:eH$HPHuHf#H5>HD$H:MHD$UHL$ H4'&'&E1HD$H}'&HD$8E1H$HL$0E1HD$@HD$1HD$(HD$xE1HD$HD$ HD$PHGHH$uHWHHH$H$H/uHGP0H$H H$Hyb4H3&&&&LH&&HD$ HD$0E11E1HD$HD$8E1HD$@&LHHQHHD$0Ht$ H2H&&!.&&E11H&&E1H$Ht$0HD$E1HD$8HD$@E1HD$HD$(HD$xHD$PHD$H 2%&(%&eE1HD$HD$8Hx%&HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$PH5 &H=#&HH$HXaH$H/uHGP0H\$ H>1HDŽ$$&$&E1H$&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ H\$ H0M$&3$&E11H$&E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ H$O韄H\$ H/#&#&E11Hf#&E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ U5H\$ HC/I"&"&E1H"&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pHL$ H.IF"& ,"&pE1H"&HD$E1H$HL$01HD$8HD$@HD$HD$(HD$xHD$HD$ HD$P1HLLHH$ÒHt$ H-I!& y!&{E1H_!&1H$Ht$0HD$E1HD$8HD$@E1HD$HD$(HD$xHD$PHD$HD$ LuH5&H=&HH$H]H$H/uHGP0H\$ H,IHDŽ$ &E1Hz & &1H\$0H$E11HD$HD$8HD$@E1HD$HD$(HD$xE1HD$PHD$HD$ HD$XHD$pH\$ HC,I&&~E1H&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pHt$ H+IF& ,&E1H&HD$E1H$Ht$01HD$8HD$@E1HD$HD$(HD$xHD$HD$ HD$P鄿H=0&ePIӐH=&Hu%H5~%PI鱐HL$ H*Ix& ^&E1HD&HD$E1H$HL$0E1HD$8HD$@1HD$HD$(HD$xHD$HD$ HD$P鶾IHƏH\$ H!*I& &E1H&1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ H= &NIH= &H %H5)% OIʎEHuH#H54H8BH6)&0&E11E1H&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$4H;#LL$ALL$IMH(9&Y&"1HD$E1H&H$ʼHG(&Y&"E1E11H&HD$H$銼GLL$H逿L;-\#H$L;-# L;-#ƒ 響1MLL$I"H\$ H'I\&B&E1H(&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$X錻H\$ H'I&&AE1H&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHc&&9&| E11E1H&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$_HGHH$HWHHH$H$H/uHGP0H$HHT$ H$TlHv%+&&H&HD$ IE11E1HD$HD$8HD$@E1HD$0HD$E1HD$(HD$xHD$PHD$HD$ HD$X鄹H$鸅^DfH\$ H$Ip&V&E1H<&1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$X頸H=.HL$?HL$H#&=& L|$hE11Hy&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$LLLPBHHD$x]闓H;#LL$L>PH&9h&d E11HL&E1HD$HD$8HD$@E1HD$HD$(HD$xE1HD$PHD$H=&CH鑊H=k&H%H5%CHoH&<& E1HD$HD$8H&HD$@E1H$HD$E1HD$(HD$xE1HD$HD$P(=HyH5Y%H=&HH$H^MH$H/uHGP0HIHDŽ$&:& E11H&E1H$1HD$HD$8HD$@E1HD$HD$(HD$xE1HD$PHD$9Hk&:Q& E11E1H2&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$鲰H/&9&z 1E11H&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$.H`&9F&w HD$HD$8E1H&HD$@E1HD$HD$(1HD$xHD$E1HD$PۯH_HHGHHH$H$H/uHGP0H$H$HIJH+IևHCHP0LJH|&9b&i E11HF&HP&96&f E11E1H&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$问H &_ &"1HD$E1H &H$ZHGHH$HE & + &hH &}H#H8/F0H鳋1HC;H^H=a%H%H5%LL$:LL$IYH&=& L|$hH&4H&=u& L|$hE11HT&HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$֨HS&=& 1HD$HD$8H&HD$@E1H$HD$E1HD$(HD$xE1HD$L|$hHD$POHI~&.d&E1HD$HA&HD$8E1H$HD$@1HD$HD$(E1HD$xܧ2HHHLI&.&E11H&E1H$1HD$HD$8HD$@E1HD$HD$(HD$xZH=%;8H鎵Ht$ HI H$鳳HIX&.>&E11H"&E1H$HD$HD$8E1HD$@HD$HD$(HD$x鶦H|$H1LL$I食H&<& H&O1IH&=& L|$hE1E1Ha&1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$H=%6H?H=y%H%H5 %6HLL$-HLL$uHK#H5H8*LL$H&_&#E11HD$Ho&H$?--HuH#H5zH8"*HD$(qHC&2)& 1HD$HD$8H&HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$P鍤H &>& E11HD$H&HD$8E1H$HD$@E1HD$HD$E1L|$hHD$P,HH#H5LH8(jH=HL$+HL$uL@@HD$(H$HD$(H=LD$@LL$8*LL$8LD$@6LLL$8?LL$8kH&`f&#E1E1HI&H$H|$x".0H=6HL$hHt$`LL$"*LL$Ht$`HL$ḩWLHLL$`&-HHD$LL$`4H(&>& L|$hE1E1H&HD$E1HD$8HD$@E1HD$HD$(HD$PHD$[H#H5yH8!'H\$ H F&,&kE11H&E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ H\$ H &&*E11Hv&E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ H\$ H] &%E11H%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ KH }%Bc%2!L|$hE1E1HA%HD$E1H$HD$PHPH<#H5$H81s*H] %B%0!L|$hE1E1H%1H$HD$E1HD$P鏟H1HA H %0%H%E11E1HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$H=.HL$$&HL$Ζ&LLH4)HI H= %0%E11E1H%HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$;H m%0S%E1HD$HD$8H'%HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$P鶝H$HG~HGP0HPH٠#H5z"H81(H%M%Q"E11E1Hv%1H$HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$LL$8$HLL$8t!1 LLLL$809LL$8Hu#H5LL$@HD$8H:!HD$8LL$@H=LD$@LL$8#LL$8LD$@F놨tH$LϺLL$8-LL$8nHIo%.U%HD$E1H2%HD$81H$HD$@E1HD$HD$(HD$xЛLLL%&HIH3I%.%1E1H%1H$HD$HD$8E1HD$@HD$HD$(HD$xDH=pHL$f"HL$ΫkH|$*&#HNH#H5IH83Hf%+%HD$HD$8E1H%HD$@E1H$HD$1HD$(HD$xE1yH%+%1HD$HD$8Hf%HD$@E1H$HD$E1HD$(HD$x1E1H9%+%E11E1H%HD$E1HD$8HD$@E1HD$HD$(HD$xÙH;#H;C#IPBE1 LruMhLD$( H ֜#p LD$(V;P 1HL$0LD$(LAI HL$0p LD$(p BR9|MLH$M%RLD$(f LD$(@$L11LD$(LD$(H=HL$0LD$(LD$(HL$0K1LLD$(4LD$(LD$(Y HLD$(uH#H5LD$0HD$(H:?HD$(LD$0@H_%E%H.%H$Ht H/, MHDŽ$t I(' H$Ht H/H$HDŽ$Ht H/HD$H5F%HDŽ$HxX6HD$HLLE1IE11E1HH\$ H$E1HD$HD$8HD$@HD$H\$0HD$(1HD$xHD$PHD$HD$ HD$XHD$pϖHGP0HGP0H %%H=5%H|$H$H$H$H5j%H=3%>HIt?H1I.u IFLP0Hm%S%H<%HF%,%H%wHj%%H%PHH'If.M_H!H\$%)%rE11H%E1H$1HD$HD$8HD$@E1HD$HD$(HD$xE1HD$P!H|$H* ?_H\$ HI<%"%nE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pcH#H8:H^,Ht)1w]H=%H%H5%?%HYH#H5P H8:]H5l%H=%HHHF/H+u HCHP0H\$ H1%%E11H%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ Ht$ HL%2%E1HD$H%HD$8E1H$Ht$0E1HD$@HD$1HD$(HD$xE1HD$HD$ HD$P釒H\$ H%%(E11H~%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ H\$ He%%E11H%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ SHt$ H%f%E1HD$HC%HD$8E1H$Ht$0E1HD$@HD$1HD$(HD$xE1HD$HD$ HD$P黐+TH.%%H%HD$ HD$0H=,%a!HFVHL$ H%!% E1HD$H\%HD$8E1H$HL$0E1HD$@HD$1HD$(HD$xE1HD$HD$PݏUHt$ HK%!% E11H%E1H$Ht$0HD$E1HD$8HD$@E1HD$HD$(HD$xHD$PHD$DH YH=%H%H5%M HO]H=%H;]H\$ H}I/% %CE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ hH*HWtH$$HWHk% Q%+H:%;H;#H{HH$zH\$ H_I%%pE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$p8FEH`%F%E1H,%H|$H IEHo$% %E1H%HGLD$P0LD$I@LP0H=%HDH=%H%H5%HDH$VHVH=zHL$pHL$S (HD$(|iHN%_4%"HD$E1H%H$H|$HLL$H3HG%M%N"1E11H%HD$E1H$HD$8E1HD$@HD$HD$(HD$xHD$PHD$F4HtI1`lH=aLD$PWLD$Pk٨H$ޤHlH#H58H8lH;Ď#HL$pH$0!H;r#HSB1 LbuHk"H QH #P ;HL$Ht$pHAHp HL$p =P@9|HtjHH$I|@$ݨuHt$pHl&H$0HӣH=HL$HL$Y1HuHv#H5HD$H:HD$jH$0H軭PH%M%@"E1HD$HD$8Ho%HD$@E1H$HD$E1HD$(HD$x1HD$E1HD$PH{0%_%"1HD$E1H%H$H=m%LL$LL$IsH %%H%H;`# HH$usH%p%HY%ZHc%_I%"E11HD$H$%H$LL$H$T1{gH#H5H81B驧HT$ LLL${LL$ɠH %`%#E1E1H%H$YH|$HLL$`LL$`HH\$ HIg% M%E1H3%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ 順H\$ HI%%sE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XHD$pH\$ HiI%%#E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XKH\$ Hx%^%E11HB%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ 鱄HGP0騥H"M%F%!L|$hE1H%HD$E1H$HD$PVH-AH$H/uHGP0HDŽ$"uLHM;%F!%!L|$hE1H%E1H$HD$E1HD$P麃E1tHGP01H#%F%!MH%餢HxHYH@HLx>kH%)v%tH\$HZ%1E1HD$HD$8HD$@E1HD$HD$(E1HD$xHD$PHe%*%E1HD$HD$8H%HD$@E1H$HD$E1HD$(HD$x1E1HD$PlH|$`u H鄎H HuH#H5H8=HDŽ$HI]%.C%1E1H'%HD$E1H$HD$8HD$@HD$HD$(HD$x龁H;I%.%1HD$H%HD$8E1H$HD$@1HD$HD$(E1HD$xLHI{%.a%1E1HE%1H$HD$HD$8E1HD$@HD$HD$(HD$xڀHWI %.%1E1H%HD$E1HD$8HD$@HD$HD$(HD$x陀H=HL$HL$LLH HH$鲏H]%*C%H,% IُH=%Hl%H5u% HHuH#H5H8HDŽ$H&%+%1E1HD$H%HD$8E1H$HD$@E1HD$HD$(HD$x9H=eHL$[HL$aHLHk HH$NH\$ HjI%%E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XL~H~%d%;HM%NHGHH$C9HWHHH$H$H/uHGP0H$HHT$ H$9H\$ H7I%%,E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$X}H$?8H=% HHH=%Hݳ%H5% HHH5%H=%覢HH$H'H$H/uHGP0H\$ H IHDŽ$%E1H%%R1H\$0H$E11HD$HD$8HD$@E1HD$HD$(HD$xE1HD$PHD$HD$ HD$X{H\$ H[I %%NE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$X={H;!~#HH$vH\$ HI?%%%>E1H %1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$Xoz}R5H%}%*Hf%gH\$ HIh%N%"E1H4%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XyH%%E1H%cLwM2HGIHH$H$H/uHGP0H$H$LH$I.2IFLP02H|1%%MH%H=% H3H=m%HƯ%H5ϯ% H^3H$v415 `H=2%g I>Ht$ H%!%E11Hi%HD$E1H$Ht$0E1HD$8HD$@HD$HD$(HD$xHD$PHD$wI>HL$ HQ%!%HD$E1H%HD$8E1H$HL$01HD$@HD$HD$(HD$xHD$HD$PPwH%!h%HQ%HD$ HD$0H=%H%H5%1I=HL$ Hu*%!%E1HD$H%HD$8E1H$HL$0E1HD$@HD$1HD$(HD$xE1HD$HD$Pnv|H:H= %BH~3HL$ HIw% ]%E1HC%HD$E1H$HL$0E1HD$8HD$@1HD$HD$(E1HD$xHD$HD$ HD$XHD$PuI2Ht$ HI% %E1H%1H$Ht$0HD$E1HD$8HD$@E1HD$HD$(HD$xHD$PHD$HD$ HD$XtH=%H2HL$ H_I% %E1H%HD$E1H$HL$0E1HD$8HD$@1HD$HD$(HD$xHD$HD$ HD$XHD$PFtH=rHL$hHL$\;HHv#H5ZH8߬H\$ HrI$% %E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XTsH=%H%H5"%fH/H=%H/H\$ HIH% .%E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$Xxr=/H\$ HI% ~%E1Hd%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XqH=t%Hm%H5v%H.H=R%H+%H54%H'/f2H%%&Hy%HD$ E11E1HD$0߇Hq%W%YH@%HD$ HD$0鬩HkH3LcHEI$H+u HCHP0H$HLL H$HEHHHEG3HEHP083Ic.Ht$ H I% %E1H%1H$Ht$0HD$E1HD$8HD$@HD$HD$(HD$xHD$PHD$HD$ HD$XoI^H-MnHIEI.u IFLP0LHL H$HMHHH-HCHP0-H\$ H I% %E1H%1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ HD$XnH5%H=%辔HH$H? H$H/uHGP0H\$ H%HDŽ$%%zE1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ nH\$ H4%%vE11H%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ mmH=%HB%H5K%H0H=%,H0Ht$ Hd%J%E1HD$H'%HD$8E1H$Ht$0E1HD$@HD$1HD$(HD$xE1HD$HD$ HD$PlH=HL$(HL$(%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ HD$XhHI%%E11H%HD$ E1HD$0H5%IZ(H\$ H{%a%E11HE%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ gI6H\$ HI% %EE1H%1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ gH?%(%%WE11H %鸳HH&0H=}%H(H:%%TH%@H(HL$ H%%VE1HD$Hy%HD$8E1H$HL$0E1HD$@HD$1HD$(HD$xE1HD$HD$ HD$PeH5%H=%HH$HBH$H/uHGP0H\$ H(HDŽ$%%9E1H%1H$H\$0E11HD$HD$8E1HD$@HD$E1HD$(HD$xHD$PHD$HD$ eH\$ H7%%5E11H%E1H$H\$0HD$1HD$8HD$@E1HD$HD$(E1HD$xHD$PHD$HD$ pdH=%He%H5f%HO&H5 %H=%HH$tPHH$H/uHGP0HHDŽ$7%%H%H[%%H%aH4%%hH%HD$ HD$0$fAWAVAUIATUSHHH*g#HH|$(HDŽ$HDŽ$H$#HFH H-Hn(I] MmH% HD$PHD$`HD$pL(hE111AHHAHHD$H8 DpHS%L(hE111AHLAHHD$ H8D EfHD$ PVHf.D$ IEH I]HSH0H`HcHH"HHH$H*H!e#H H5L pHOH81LBH5H% %55H%H H= V1Hĸ[]A\A]A^A_A]HcHu.H]HH=B%D$%H*þH=%v%&H;-d#Hi%H=™%H9xH%HHH%HHD$P#HPH5%HHH#HHD$`T%H|$PH/ HD$`H=&c#HD$PHpH|$0H9V&AE1L=d#L9mH;5d# HHIy#HD$PHt IEHD$PIcHELHH|$`IlHc#HKD蒅HHD$p>%Im H|$`H/s HD$pHD$`HH|$pH/J Ld$`H%HD$pHD$`At$I|$ HD$8HD$(L5N%Ml$HLHQHL$HHHT$@HH[$H@HT$@HL$HHH HHHH;$HD$(L5%HLHQHL$HHHT$@_HHH@HT$@HL$HLM: HAHHHD$pH@H;D$05LwM(HGIHH|$pHD$pH/ H|$pL$HGL9H;b#"HWB}"Hr HD$0Ht$@]L=Fa#x WA;P !H|$0LHD$@HD$0+x OH A=P9H|$0!HD$0HD$`I.^ HD$`H"H|$pH/ H|$`HD$pH/ HD$`E1HD$0HD$(Lp`H H|$8~ELd$@Ld$8Hl$(HD$LHHKDIM9uHl$(Ld$@H|$0H5Ӣ%H{HmH HH+I$E1HI$LHHHMt I.H|$tH\$HHD$HHHH\$ HtHHD$HHHu HCHP0LH5%H|$M%H5ȫ%H|$ -% H;-u_# H0%Hɔ%H9XH%HHH%HHCH5а%HHHHHD$P>H+HD$PH]#HxH\$0H9AE11L=^#L9" H;=_#H[HHD$`#HtHXIcHEHHH|$PHlH^#HJTvHHH|$`H/xHD$`H|$PH/THl$PH}I-HD$P1H%At$I|$ L׹%HD$L1HL$ HT$AHH;]#HD$`L5]#Ht H+}HD$(H-%HD$`HHHSHHT$8fHIH@HT$8HHTLHHIuHD$(H-%HHHSHHT$8HlHHHT$8LMHHAHHD$PWHHH;L$0HD$p9HPHHT$p'H@HHH|$PHD$PH/XHl$pH|$PHHGH$L9 H;L]#XHWBEHZH\$01ۨ {L=[#x WA;P HHHD$0Hx OH A=P#9HHH|$pHD$`HtH/gHD$`HHD$pH|$PH/1H|$`HD$PH/HD$`E1HD$0HD$(HX`H H|$ Hl$Ll$(MLd$MIHf.I0LHL0I@H0I8H0H6IAGE1IG -yH(H0H0H@(AE;O}NIcI4H0H@H0Pt8H(AHR8HcR H0E;O|II9)Ld$Ll$(MH|$0H5%LC|ImHjH\H+I$HI$1HcHH$I H=kaH;% !%n5n5H%bIEHQ% %p6E1E1HϜ%iH$ٜ% %e6E1E1H%HTH=x<\R%<%\RHHg%I/iHHD$`e% K%6H4%H>%# $%m8E1E1H%YHR% %&6E1E1HЛ%jH%ڛ% %/6E1E1H%=H%# %8E1E1Hv%H5 %HxtLt$`N>HX% >%6IH$%Hy.% %E6E1E1H%gH= 1OH=UHuHE>#H5ֱHD$0H:yHD$0uLH$)UHs% Y%7HB%HL%# 2%o8E1E1H%Hj% %k7H%HC%' ޙ%8HǙ%aH ?#LH8谾H %' %8E1H%%H%# {%81E1H_%u HH$SHA% '%7E1E1H %HPHHT$PH@HHH|$`HD$`H/uHGP0HD$`A1ɺAHpgH % %_6E1E1H%1AHHGP0\HGP0f1HGP0@ HZ% @%6E1H&%AWIAVAUATUSHH|$HHD$PHD$`HD$pTHHD$1IGHZ%H9HH9HXHHqH~(H9Q1fDH9THH9uHD$L%h%HLLmLHHD$0H@HH LHH|$HHD$0HD$H-9%LHMl$LH/HHLM LLHAHHD$P/HHH; `:#HD$`H/HPHHT$`6/H@HHH|$PHD$PH/Ht$`H|$PH$!^H|$`HD$pHtH/HD$pHHD$`w.H|$PH/H|$pHD$PH/jHD$p¹HD$8H@HHHt H;v:#HHHuHHH@HHT$ HL$(HD$0t HD$ HHD$(HtHHD$0HtHH\$HH Lt$L,H-;#I nfIGHD$pHT$PH9 H@hLLH!H@(Hz!Ѕr%H|$PH/K IHHD$P HL9IIGH9) H;8# H@hLLH8(H@H+(HHD$p'IGH9H;H8# H@hHLH'H@H'HHD$Pt'IGHT$pH9H@hHLH H@(H Ѕ 'H|$pH/HGP0HH5J%LH-HHH|$P2H5{%H9`HGH;8#m-Hu >L-7#HC8#1IEI9HD$@@AHHPHH EHD$Pt-IEHPHIU  H%IGSL蜼yH`%%rHH|$PE11Hڒ%H Hj-HH9uHH5%LHd5HHH|$`5HL7#H9HD$@H;=6#HHPHHHD$`IGH5}%LHH2HHH|$`+*H;|$@@H;=o6#@@HHPHHHD$`WH4%H n%H9HS-Hn%H-HH=n%HH|$pL-HGH5%HH*HHD$Ph*H|$pH/IGHD$pLH5iv%H@pHn*H@Ha*HHH\$p&H|$PL%4#HGL9&H;5#H$%H;o6#%HWB&1 LjuHoL55#H QA;P &HHAHH Aqp BR94H&HHD$`H|$pH/dH|$`HD$p+H|$PH/4HD$L-%Hl$`HD$PHD$`HLLsL胹HHD$ T,H@HHLHH|$ HHD$ 7,HD$L-ʅ%HLLsL$H+HHLMcLHHAHHD$P+HHL9HD$p&/HPHHT$p/H@HHH|$PHD$PH/:Ll$pH|$PMHWH;3#L$H;j4#_*HOQ*.1ۃ LauH_L53#H QA;P -LHAIH qp ABR9MZ*LH|$pIHD$`HtH/Ld$`MHD$pi'H|$PH/`H|$`HD$PH/XHD$`赱HD$HH HHHt H;f2#HHHuHHH@HHT$(HL$0HD$8t HD$(HHD$0HtHHD$8HtHH\$HHHD$L4H HD$IGHD$`L9*H;0#H@hHLHH@HHHHT$`IGL9H@hLLHdH@(HWЅH|$`H/|IGHD$`L9H@hHHLHH@(HЅmIHH|$H覶H9ItIGL-1#L9H;/#H@hLLHH@HwHHHT$`H5{0#HH|$`H/HGP0xHGP0@IGJHHD$pIGH9IGJ(HHD$PIGHT$pH9/IGJ<(HIGJ(H/;HGP0/DIGJHAHP0 HAHP0 HAHP03HAHP0螟@$HOH; #I H; #}HWBnE1 LjuLgTL5=#H QA;P 1LA8HHD$PHD$HHGP0EHGP0HGP0cHGP0@HGP0@HAHP0HAHP0HAHP0L;-#L覟HfH|$Pv%u%{HE11Hu%Ht H/Mt ImH|$`Ht H/Mt I/H|$pHt H/H u%u%H=5u%;B1HAHP0y@$EIELP04HOH; # H; #HWB1 LbuHohL5Q#H QA;P 1HAH?H qp A=P@9HHCHt%t%HH|$PE11Hnt%H$g9H;=#RН H|$`=藜@$H$9HGP0IGLP0MHGP0@QHGP0@IELP0HGP0@@$f~ڦxfDAH{躦fD誦fDHKHRs%8s%0JH!s%H|$pHt H/H|$PHD$pHt H/H|$`HD$PHt H/H r%r%H=G5r%HD$`{?H|$HHL$pHT$PHt$`1HL$pHT$P1Ht$`HHJHD$ H@LM赚L5#H QA;P 1HH|$ AI臚H qp A=P@9} b@$M_HL$ HHD$HHHu HAHP0H+u HCHP0ML;d$@L;% #I,$u ID$LP0H|$`Ht H/H|$PHD$`Ht H/H|$pHD$PHt H/HD$HHL$(HD$pHH8HHL$0L`HXHHHHL$8HHtH/tBMtI,$t?H[L;%`##L:HGP0?HGP0ID$LP0HGP0:HGP0KH|xp%^p%JHo%HN|p%o%HJHo%H'|o%o%2JHo%114H{H|$po% o%JHqo%Ht H/uHGP0H|$PHD$pHt H/uHGP0H|$`HD$PHt H/uHGP0H o%2o%H=5o%HD$`;H|$8HL$`HT$pHt$P^-oHL$`HT$p1Ht$P[HH HD$H@HH L5#H QA;P  1HH|$HԖH qp A=P@9} 诖@$HB HL$HHD$HHHu HAHP0H+u HCHP0HH)HEHPHHUu HEHP0H|$PHt H/H|$pHD$PHt H/H|$`HD$pHt H/zHD$8HL$ HD$`HH8HHL$(HhHXHHHHL$0HHt H/AHt HmAHJH+@HCHP01HTy m% l%JH|$pHl%]H(yl% l%JH|$pHl%1cHHxl% l%JHvl%2Hxvl% \l%KHEl%HD$8HL$0E1HT$(Ht$ E11Hm/H|$P3HGP0XHGP0iHGP0@vHGP0@HEHP0110fnHxk%k%`JHk%HD$HHL$(HH8HHL$0L`HXHHHHL$8HHt H/gMt I,$ HtH+tH|$PE1E1NHCHE1E1P0H|$P4110H$0H)HoHHGHEHH|$PHD$PH/uHGP0HT$pH|$PH_HD$`Hm@HEHP01Hvj%uj%IH|$PE1E1HSj%1lH=UP E1KH|$ 1HaI4Hsv(j%j%dJHi%YHGP0H=<1wH$q$XwH@uH/ #H5HD$H:cHD$%Hui%ni%IH|$PE1E1HLi%1eHuTi%:i%{IH|$PE1E1Hi%3ޑHHt41H=tH|$ 1LHHc #H5H8蜎Huh%h%HHh%HL$ HHD$HHH:HAHE1E1P0H|$P~)HtK1fH=TOAu HgpH$"YH #H5+HD$(H:΍HD$(4H>tg%g%IH|$PE1E1Hg%1H tg% g%JHg%HL$HHD$HHHu HAHP0H|$PE1E11yHH #HH8?HD$PHsEg% +g%JHg%H=~31HQsg%f%IE11Hf%E1賒QHH sf%f%IHf%軣3H #LH8nHr}f% cf%JH|$PE1E1HAf%1Z%HdH; #vIMueHhrf%f%oHH|$PE11He%H7re%e%\HH|$PE1E1He%1Hj #H|$PI9HD$@L;-3 #AA L;- #A ȗIJH;^ #HqZe% @e%KH)e%H~q3e%e%IH|$PE1E1Hd%1軍HHt1H={PHW#H5{H8萊yH|$1H܏HbHpd% d% KHrd%(L觡H=S%HRA%H5[A%OHHpMd%3d%IH|$PE1E1Hd%1*H=S%ȕH^HHy#H5 {HD$H:證HD$vH #LH8豈HD$PHpc%c%IHc%H#LH8oHo~c%dc%IH|$PE1E1HBc%]HoLc%2c%H1Hc%DHdoc%b%HH|$PE11Hb%ĎILnHD$8Hob%b%HH|$PE11Hb%JIHnb%qb%HE11HUb%;9H#H5hwH8HuVH|$PHD$HHtH%HMHQHHUHUHD$HR0HD${H*na%a%HH|$PE1E1Ha%1Hma%a%H1Hxa%^Hmxa%^a%HH|$PE11H=a%X#IRID$LP0LfDHema%a%mHE11H`%H9m`%`%IH|$PE1E1H`%1H=w诈H$4"H=xwsfD;IHlR`%8`%JH|$PE1E1H`%1HԈHH1bHKl`% _%6KH|$PE1E1H_%1H=vn1H|$1HӊHVHHuH#H5vH8HjH#H5vH8-3HLd$`Hl$pH\$P藇LHHHHpkHD$PHD$pHD$` _% H^%^%KH.k^% ^%KH^%hHk^%^%iJH^%QHI=H#H5uH8?uLd$pH\$PLl$`趆LHHLHjHD$`HD$PHD$p)^%H^%^%uJZHMj^%]%mJH]%3HU]%If{HHi]%]%HH|$PE1E1Hu]%1Hi}]%c]%IH|$PE1E1HA]%1Z%HH=6t1HH|$ 1LEHnHWi ]%\%yHH|$PE11H\%藅Ht?1dHi\%\%HH|$P1H\%xH#H5sHD$ H:HHD$ Hhm\%S\%HH|$P1H5\%PH=K%IH=K%H.9%H579% I`HTh \%[%H1H[%H+h[%[%HH|$PE11H[%Hg[%[%H1H|[%Hg[%l[%HH|$PE11HK[%f1IHgH[%.[%HE11H[%=H=J%ˌHH=J%H+8%H548%Hh|IH=q΂LHLHHD$pHfZ%Z%HH|$PE11HiZ%HEH"LH8JHD$pHfPZ%6Z%HHZ%Hc"LH8HbfZ%Y%HH|$PE1E1HY%HW"H5nH8苂HH|$PIHeY%Y%HH|$PE1E1HtY%Z-D+HuH"H5xpH8 HD$pH=;p67Hve+Y%Y%HE1HX%"݄HIHIHQHIIWHD$ LR0HD$ HdX%X%HH|$PE1E1HnX%fSHH GDHH8Pf(HXH8\bT$Pf(T$Xf(Y\ bf(YXf.bsfWf.ztf(L$T$\$u~Yb\$T$L$^Qf.z?Yf(CYSH [GGHGH [L$T$ML$f(T$ff.HHH8P a\f(} FbHfWffff.SHH0f.aD$4fW|$f.=`af.|$|$a\=vaY|$(Qf.%a^d$@H {L$fWYX `f.sf(HD$YH8YL$PT$ af(5`YYY\f.wZT$ |D$D$|T$  `YYa`\T$XYT$(Xf.L$1D$(YD$H0[D$`L$ \^D$ |t$L$ f(D$Yf( _^\{T$\$\f.sHH8PHD${ _T$\L$f._ _D$f(^L$R{\$f.rH0[fWH0[H0[z苀f(fHL$1~L$HYfHD$qz^D$x\^Hff(HfWf.zu HT$%z ^T$H^zzf.HD$y _fWx `^f(^L$H\f(-zffff.HY|^?}HXfDSf(HHf. ,^]f.vX\HL$f(wH$wL$f(Qf.XYX$H[f.f(H;L$Y]$QxH$H*HX8wL$$f(v$f(t]H[f$H[vf(\$a~\$IfDSf(HH $f(\$~$$Hf(f(Y$v\$$HY[^f(Df(Sf(Hf(H XL$T$^d$}vT$L$f(Y \YYf(YYXQf.z_\L$HT$YH8XL$PT$L$f(f(X^f.s Y^f(H f([f(T$\$}T$\${fffff.HL$$uL$YX$HHuHtfffff.SHHD$MuL$H$Y o[f(L$(zL$f(Qf.zQf.z.$H[Y^D$f((|\$f(f(T$ |T$f(뷐ZSH\^f(3zH;[Zuf.SHHtHD$utL$H[^f(ÐSHH0-8ZD$f.L$s>D$H0yD$HD$yL$H0[X^f(@f.rf.HH8PHD$ H8P YD$(^L$D$ u YD$^L$D$(juXD$%tYf.rf.Yv|$H0[^f(D$ Euf(D$(^T$T$*uf(T$^L$f(_L$ \\$f(T$r\$L$ D$\f(trXD$tT$H0[\f(QrSf(HH\$ $dr $Hf(f(Y$Fr\$$HY[^f(fHD$sYD$HfD pXSHf.rH*qXYf.r?[y WPX\H*Yf.f(srH)H[@[qfxH)H[AWAVIAUATUSHHXH Ht$@HT$H1HHD$HII)HL$@IH9H*\$@\$f(fWLf(f.\$w@f.L$vD $H;SJD% $H*f(^X}wH,H $H*\uD$HT$H\H,I)H9T$@IOHX[]A\A]A^A_DH*d$PH9IHLNHHI*H9H*IHMI)I9H$HLO=VI*L) HVf(^H*HEf(\YXH*|$YYYH*^X OVQf.ID$M}H\$ f(H*HD$8I*Y3VT$d$(X'VYH*\$^vH,HUH*sHT$8D$0H)H*sd$0LH)XH*d$0rL<$XD$0IM)LD$0H*rd$0M9T$X\$ d$0d$(YuUXTD$X$au$]\$ fWd$H;SH;$S\T $t$YD$^XD$f.wf.D$ sL$(MtH,HEI)H*qHD$8$H)H*q,$ID$XH*,$qX$JD=$H*qX$T$0L$(\HT\Y\`Tf.sBf(\Yf.Sf($oX$f.HD$@HL$HH9LNL)M9INHX[]A\A]A^A_YSX%VSD$X$$s$$]d$ df(If(d$\$htd$f(\$ kmff.mff.Kqff.+tff.nf.H}HCSDH*Hf(L$nL$Wf(RYX%NRYYf(^\^ V\YXVHXf.ATL%jUH-rSHH H;SHH H*HHcH;DAY sH f([]A\ÐHqbL$HcH;\$\T$SL$$f(fW%Qf(kT$\$Y$Xf.OL$H []f(A\H;S Q\f(mf(ɝH []\A\fff.AUATL%YUH-]SHHH;S *Hc;DAY sH([]A\A]@HQUL$ HcH;$\d$\$SL$ A(A W~mI*\$d$YpYX.JL$ H[]A\(A]H;S ;H*Y *\1o(H[]A\\A]HHH?P H*YHfffff.HGH?HHH?P cO\f(^k OHfWffff.AUATIUSHH~BHI1fDH}U O\f(kfWOADHL9uH[]A\A]ÐHHH?P  H*Y \n ڜHWfAUIATIUHS1HH~fDH}UADHL9uH[]A\A]fffff.AUATL%gUH-nSHH(H?SHH H*HHcH;DAY sH(f([]A\A]D@L-^L$HcH;A\AT\$\T$SL$$f(fW-2Nf(9gT$\$Y$L$Xf.hH;SHH H*HHcH;DAY ;AdHcL$H;ALd$\L$ST$$f(fW5Mf(fL$$d$YT$f(Xf.H(H[]A\A]H;S L\f(h MH([\]A\A]f(f.AWIAVL5"mAUL-eATIUHS1HHHA HH9I?AWHH L dH*HLlHcI;AYLr]H\LD$8HcLL$0L$HT$(\$ I?\T$AWL$D$f(fW%Lf(!eT$HT$(\$ LL$0YT$LD$8L$Xf.HT$LD$LL$I?AWHH LD$H*H@LL$HT$HcI;AY @HcLD$8LL$0HT$(\$ I?\L$T$AWL$D$f(fW-3Kf(:dT$HT$(\$ LL$0YT$LD$8L$Xf.-HT$LD$LL$I?AWHH LD$H*H@LL$HT$HcI;AY @ GL$I?H\$ \T$AWL$D$f(fW=\Jf(ccT$\$ YT$L$Xf.eLf(T@I?AW qI\f(le $\A HH9(DHH[]A\A]A^A_fI?AW5I\f(e ̕\I?AW=H\f(d \fDAVAUATL%QUH-{USHHH?S *Hc;DAY sH([]A\A]A^ÄL-1ML$HcH;AdA\\d$ \$SL$A(A WZeI*\$d$ L$YFYX.eH;S *Hc;DAY >FAdHcd$ H;A\\L$\$SL$A(A WeI*\$d$ L$YYX.H;S *Hc;DAY AAdL$H;Hd$ AL\L$S\$( WrdL$H*d$ \$YY(X. HH[]A\A]A^fH;S H*Y \e H[\]A\A](A^ffff.AVAUL-ATL%܊UHSHH @HzL$HcH;\$\T$SL$%$Yf(YA_T$\$Y$L$Xf.w\$\T$AVL$%ΐ$Yf(Y]T$\$Y$L$Xf.wAVII HcLH!H*YLtfW DI;<CHD$(B IL;l$ H8[]A\A]A^A_f.I>AV-9C\f(4_ I>Y $AV5 C\f(_fWC $f(XYf.vAX PfW [CCfDAUATL%uoUH-msSHHHQkT$HcH;$\d$ \$ST$AA %ZYY[I*\$d$ T$Y ^YXZf.w8H;SAA DH*HcAYtW D;l2(H[]A\A]@H;S -H*Y\(`ڏH;YT$S 5H*Y\(`WT$(YX.yAXQWIH[]A\A]fffff.SHH0f.@D$1fW|$f. =@f.|$|$@\=@Y|$(Qf.%~@^d$@H[L$fWYX R@f.sf(D$H;YYL$ST$ h@f(5@YYY\f.wZT$ [D$D$[T$  $@YY?\T$XYT$(Xf.L$4D$(YD$H0[f.D$z?L$ \^D$m[t$L$ f(D$Yf( ??^\[T$\$\f.sH;SHD$\ ?T$\L$f.b >D$f(^L$Z\$f.rH0[fWH0[H0[p\_f(fSHH .ŌD$hW|$.I=.|$N|$\=Y|$Q.&%_^5Ot$d$HWL$YWX '.s(D$H;YYL$ ST$ (H*Y 5YYYD$\.wYT$\D$D$ \T$ YY\T$ XYT$X.L$,D$YD$ H [Wt=Q.|$5:t$@H;S HH*YT$T$ \ \L$T$ .r5 ^L$D$ (I[\$ .rifD$\L$^D$[t$(L$D$ Y( }^\ZT$ \$\.#H [H [[HZ(HHH?PHHff.HHH?PHfff.HHH?PHHff.HGH?f.Xf(D„f.Q;D„{USH(-%f.Cf(1f(l$5;Y\$ $^f(YX Y\ YX Y\ ܇YX ؇Y\ ԇYX ЇY\ ̇YL$VL$$X ?\$f(l$\%:f.^YX X\DH~?fD\ :L$Hf($VL$H9$\}H(f([]Ðf(\H,H*XDfWff.HL$$LTL$YX$HAUATL%ERUH-=ZSHH8H?D$SHH H*HHcH;DAY sD$H8[]A\YA]Ð@L-IL$HcH;A\AT\$(\T$ SL$D$f(fW%i9f(pRT$ \$(YT$L$Xf.dH;SHH H*HHcH;DAY 7A\HcL$H;AT\$(\T$ SL$D$f(fW-8f(QT$ \$(YT$L$Xf.Hf(DH;S 7\f(S \vfff.HHH?L$$PL$YX$H@HL$qTL$HYfHL$ SL$ HYfSHH 5(7D$f.L$s>D$HT$HD$S $H [X^f(fDf.rf.H;SH;$S 6$^L$D$f(}R 6T$^L$$f([RX$%f6f.rfWf.v<$H [^f(ff.HY|6/SHXfDSf(HH\$ $dU $Hf(f(Y$FU\$$HY[^f(fSHHSPHD$EPL$H[^f(ÐAUATL%ENUH-=VSHH8H?D$SHH H*HHcH;DAY s6%65d$^L$f(N\D$H8[]A\A]XL-EL$HcH;A\AT\$(\T$ SL$D$f(fW-I5f(PNT$ \$(YT$L$Xf.v=~4|$CH;SHH H*HHcH;DAY rA\HcL$H;AT\$(\T$ SL$D$f(fW=4f(MT$ \$(YT$L$Xf.BH=3f(|$yH;S53t$\f(O G\FfDH;S=b3|$\f(WO \fDAUfWATUSHH8f.zuH8f([]A\A]%3H;H-SL%K^d$SHH H*HHcH;DAYsL$H8[]A\A]f(NfD@L-YCT$HcH;A\AL\$(\L$ ST$D$f(fW-2f(KL$ \$(YL$T$Xf.[H;SHH H*HHcH;DAY.FA\T$H;H\$(AL\L$ ST$D$f(fW562f(=KL$ \$(YL$T$Xf.H_f(fDH;S J1\f(EM}\m@AUATL%IUH-QSHH8H?%1^d$SHH H*HHcH;DAY s:b1fWf(eJ0L$H8[]\A\A]f(LL-QAL$HcH;A\AT\$(\T$ SL$D$fW 0f(L$IT$ \$(YT$L$Xf.JH;SHH H*HHcH;DAY s?fW w0fH;S-/\f(K }|\@A\HcL$H;AT\$(\T$ SL$D$fW /f(L$HT$ \$(YT$L$Xf.aHf(/fDH;S5/\f(J {\fW y/@SHH$L$ fWf.wFH;Sf..r {\\f(JYD$$H[\f(@XoJYD$X$H[fffff.SHH$L$DH;S"..\f.f(vJ .fWIYD$$$H[\f(DSHH$L$DH;SfWf.v -\^IYD$X$H[fHJHGfffff.HHH?D$P M-\f(HIYh-Qf.zD$HYrNf(fff.SHHD$GL$H$Y /-f(L$IL$f(Qf.zQf.z.$H[Y^D$f(M\$f(f(T$MT$f(뷐USHHXf.yD$sf.o,zuHX[],1t$fWf(E ,D$H $H;S $Yf.L$wHXH[]fDQf.D$ $G $D$8Y x5x=yX xf(YL$\ Yx\xf(5x\-x^l$@x^X5xt$H\|$0f(X|$ H;Sf(H;\S+$S$D$f(4+fT*\D$ ^$XD$YXD$XIx4K$H,f.:xd$r|$0f.Ha-xf.v f.If(\$(ZFD$D$HIF\$(t$@Y$D$^X!FH*HEL$X $\H*YT$8L$\T$$xG$L$\f.Kf(Ȑff.)SH\^f(GH[ZDf.AWAVAUIATIUSHH$t H9r; =)Me$AEf(A}\f.t$X$t$P|$Xf(I*AM|$PT$A} YX\$AM(f(L$9I\$H,Y\$PL$T$Qf.\$pIm0? \$PYvT$YvL$\Hf(H*=(L$XT$|$(fD(t$Au8f(XXuf($f(Au@5uAXA\^f(l$x\d$0AeHAmPX5ufD(t$@AuXt$XYf(f(\f(^f(Yf(f(XYfA(AXf(D$`AE`f(\L$PYfA(^^f(fA(YXXYAY^D$hXAEhT$AUpt$8AuxXl$ AMI)IEH$DH;SL$ H;YL$SL$f(f.L$^f.L$bt$f(|$@H*\f(]&Y^XXD$0\X\$(fTQ&^\f.gT$Hd$FL,d$T$HMI)LH?HL1H)H~D$pH*YD$(\f.\$XID$I9^\$PH*YHUI9|(fDH*Hf(I9^f(\Y}f.@$M)f.|$(MGH[]A\A]A^LA_f(L$X\|$P3@f.L$8L$HT$wtA^D$`XD$0~EL,T$L$HLH?fWf.D„f(\d$Y$Yd$`@^D$h|$x\f(EL,T$L$HM9fWf.D„f(\d$8Y1$Yd$h!fDIGH9DH*Hf(H9^f(\^~f.of(H|$pH^@$f(H^X|qYH*Xsq^XD$(Yf(XT$H^f(L$l?L$f(T$Hf(\f.Xf.tIGH*$fD($H*HEDY|$HL*ID$L)D$H*$fA(D$fE(^f(f(l$YEYY$D$$>|$H$f($^D$l>|$X$Y|$D$Hd$PYf(^:>I*$D-pY$D$D%oDofA(DoD$D$$Xd$($$$Yd$HXI*YfA(A^XfA(\f(fA(A^\f(A^\aof(A^\f(fA(A^D EoA^XfA(A^\f(fA(A^\f(fA(A^\f(f(A^\f($^fA(A^XfA(D^^E\D^\f(fA(^E\D^\f(fA(^E\D^\f(f(^A\^D$\f(^A^A^XXf.y@YT$$\X@L,f.BzHj0f(|$Xz f(|$Pz8|$z@$zH|$0zP|$xzX|$@z`|$`zh|$hzp|$zx|$8|$ H*YY|$p=|$(ff(T$@T$L$DAUf(IATIUHSHHt H9rH*Im%AEA]\\$ Ae f(d$L$:L$YF8\$ L$f(d$D$YAEf(AUXYX5bQf.f(M=kYXf.H,I]0\$I<$d$AT$t$1d$f.f(\$w/eH\H)HH*YYH*Y^f.v8HPH9}\$I<$d$AT$L$1d$f.\$wHH[]A\A]f.f(z@YXH,;@f.BlfzHZ0b |$f(|$(\$ T$d$u>|$(\$ T$d$f(l$8\$0T$(L$ t$4>l$8\$0T$(L$ d$t$cff.HSHt|fWf.Duj f.r$H*Yf.rM[w= P\H*Yf.f(s)d6H)H[@1[@[J6f.=H)H[SHH$f(L$T5upL$f. {p$f.vu\HL$f(;H$:6L$f(Qf.zlXYX$H[H[fu$HH[:@Y Hf(6HHH*X$H[z:f(\$[<\$zSf(HH $f(\$:$$Hf(f(Y$":\$$HY[^f(Df(Sf(Hf(H XL$T$^d$ 5T$L$f(Y YYf(YYXQf.z\\L$T$H;YXL$ST$L$f(f(X^f.s Y^f(H f([f(T$\$;T$\$@SHH@D$0f(L$3f.D$gt$f.=O|$ ^X|$(@f(T$L$^f(#5XL$fWT$\f.syH;SYg^5L$(H;f(YXXT$ ^\T$YL$L$SL$efW\T$Y\f.HT$H;ST$D$f('5 f.L$v  fWT$0MXSff(fTX 3fL$D$u\$8D$8f.fW\ef.H@[fD H@[f.H;SX\YeH@[=Y|$ YXQf.znL$ Xf(XQf.|$\f(X^f(YXX|$ ^|$(D H@[fWf(M8fTT$d eX3T$L$8L$f(_SHH0%D$ \f(2D$(H;Sf.D$ H;D$SYD$(/NL$\f(Yf.r~f(L$T$)2T$D$f(2\$^Xy6H,L$H[fWf.DфEH0[fDf.r fHHH?D$\$PL$$f.f(vfYHXf.wHfHHH?$P\f(1 D$\$f(0L$^f(j6HH,f.s-3ff.Sf(HH \=af(|$u0D$H3H$3 [%[^L$D$\$$f()04f.dbf(w5&f.wf($L$^X/f(L$\$l$Y^Yf(\^f.AH H,[fffff.f(H8f(H\T$(H?\L$ D$f(l$d$^4$P4$d$f.l$\$L$ T$(s7/\f(\YYQf.zA\H8f(@YYQf.z XH8f($/4$f($4$AT1HUHSt`HHHH HHH HHH HHH HHH II I ĸH9w"f.H;SD!H9r[]A\DH;SL!H9sH;SL!H9rf.AWAVIAUATIUHSHHt.HIH9w4EH;SD!A9rL4(HL[]A\A]A^A_@HEt!H;SL!I9sH;SL!I9rfLjH?SII9IIv)L1HII9IsDH;SII9IwMIn@JH?L$ SL$ AAMD9v*D1A9AsH;SAME9wI If.H?SIfAWAVAAUAATUSHt'Ht~EAt.fDH;SD!9rF4(HD[]A\A]A^A_DDzH?SEIA9v!1A9AsH;SIA9wH Et @H?SADAWAVAAUATUSHfH\$PtcfILtgEAAA+EPDUf#fA9s%uI?AWEDf#fA9rDH[]A\A]A^A_ÐA+A)DfH[]A\A]A^A_fADj+AHA ;EAfA9vR™Af9AsA"DEHMAfA9vuI?AWEH[]A\A]A6A^A_f.H?AWE-T$ H?AWT$ EAfDAWAVAAUATUSHH\$Pt`ILtiEAAAD+EPDU"A8s#uI?AWED"A8rDH[]A\A]A^A_DA+A)DH[]A\A]A^A_f.ADb+AHA DDAA8ĉvUE™A@8As@DEHMDA8ʼnvuI?AWEאHf[]A\A]A6A^A_fH?AWE-T$ H?AWT$ EAfDSHH\$ uH[f.At+A)H[HLL$H?QLL$AfAWAVAUMATUHSHH(HHt$HLHAVt$I9v$D$19щsDI>AVI9wH HL$KLII9uH([]A\A]A^A_ÐHE2E1HHLbH\$)DI>AVIL9IIs-HD$1II9HsfI>AVIH9IwLHD$KDII9uHH HHH HHH HHH III HE1fI>AVD!9wHD$KDII9uH([]A\A]A^A_HK1DI>AVHD$IDHH9u%H11HHH HHH HHH HHH HHH II I HE1@I>AVL!H9rHD$KDII9uC9/%Hffffff.AWAVAUMATIUSH҉t$HLHʃHH؃H9HGH D$HAE-HAEHAEHAE HAEAEI9toMI)LHH<Ht,fnL$IL1fpHHfAH9rHI9t)t$HPI9At~HAtI9~ T$ATH[]A\A]A^A_IEuuBE1Hɉ\$ D$~I>AVt$H9v$D$ 19щsDI>AVH9wH L$CLIM9uH[]A\A]A^A_ÉHHH HHH HHH HHH HH H-E1@I>AV!9rD$CDIM9uH[]A\A]A^A_H1I>AVD$ADHL9uH[]A\A]A^A_Hu;11A2( HfH_LȃHH؃H9HGH HH+HfA1}HfAqFHfAqAHfAq<HfAq7HfAq HfAq HfAqH fAqfAq H9II)MINMt1fnI 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> s = np.random.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() unknown dtype code in numpy.pxd (%d) uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() tomaxint(size=None) Return a sample of uniformly distributed random integers in the interval [0, ``np.iinfo(np.int).max``]. The np.int type translates to the C long integer type and its precision is platform dependent. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray Drawn samples, with shape `size`. See Also -------- randint : Uniform sampling over a given half-open interval of integers. random_integers : Uniform sampling over a given closed interval of integers. Examples -------- >>> rs = np.random.RandomState() # need a RandomState object >>> rs.tomaxint((2,2,2)) array([[[1170048599, 1600360186], # random [ 739731006, 1947757578]], [[1871712945, 752307660], [1601631370, 1479324245]]]) >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int).max array([[[ True, True], [ True, True]], [[ True, True], [ True, True]]]) state must be a dict or a tuple. standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> from numpy.random import MT19937 >>> from numpy.random import RandomState, SeedSequence >>> rs = RandomState(MT19937(SeedSequence(123456789))) # Later, you want to restart the stream >>> rs = RandomState(MT19937(SeedSequence(987654321))) rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random random_integers(low, high=None, size=None) Random integers of type np.int between `low` and `high`, inclusive. Return random integers of type np.int from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. The np.int type translates to the C long integer type and its precision is platform dependent. This function has been deprecated. Use randint instead. .. deprecated:: 1.11.0 Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 # random >>> type(np.random.random_integers(5)) >>> np.random.random_integers(5, size=(3,2)) array([[5, 4], # random [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, density=True) >>> plt.show() randint(low, high=None, size=None, dtype='l') Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is one above the *highest* such integer). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. .. versionadded:: 1.11.0 Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]]) Generate a 1 x 3 array with 3 different upper bounds >>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() numpy.core.multiarray failed to import normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that `numpy.random.normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> np.random.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> np.random.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], # random [2, 4, 3, 4, 0, 7]]) For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a)*count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + np.random.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative. nsample : int or array_like of ints Number of items sampled. Must be at least 1 and at most ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution Examples -------- Draw samples from the distribution: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = np.random.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ---------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also -------- randint, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype=' 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random bytes(length) Return random bytes. Parameters ---------- length : int Number of random bytes. Returns ------- out : str String of length `length`. Examples -------- >>> np.random.bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random binomial(n, p, size=None) Draw samples from a binomial distribution. Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer in use) Parameters ---------- n : int or array_like of ints Parameter of the distribution, >= 0. Floats are also accepted, but they will be truncated to integers. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized binomial distribution, where each sample is equal to the number of successes over the n trials. See Also -------- scipy.stats.binom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the binomial distribution is .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N}, where :math:`n` is the number of trials, :math:`p` is the probability of success, and :math:`N` is the number of successes. When estimating the standard error of a proportion in a population by using a random sample, the normal distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002. .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BinomialDistribution.html .. [5] Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution Examples -------- Draw samples from the distribution: >>> n, p = 10, .5 # number of trials, probability of each trial >>> s = np.random.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. a must be greater than 0 unless no samples are taken'a' cannot be empty unless no samples are takenUnsupported dtype "%s" for randintRandomState.standard_gamma (line 1341)RandomState.multivariate_normal (line 3614)RandomState.logseries (line 3531)RandomState.lognormal (line 2626)RandomState.hypergeometric (line 3403)RandomState.geometric (line 3350)RandomState.dirichlet (line 3892)RandomState.chisquare (line 1659) wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use one of:: mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...) See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Examples -------- >>> np.random.standard_normal() 2.1923875335537315 #random >>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_exponential(size=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) standard_cauchy(size=None) Draw samples from a standard Cauchy distribution with mode = 0. Also known as the Lorentz distribution. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray or scalar The drawn samples. Notes ----- The probability density function for the full Cauchy distribution is .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+ (\frac{x-x_0}{\gamma})^2 \bigr] } and the Standard Cauchy distribution just sets :math:`x_0=0` and :math:`\gamma=1` The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will cut the x axis. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very much like a Gaussian distribution, but with heavier tails. References ---------- .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy Distribution", https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CauchyDistribution.html .. [3] Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution Examples -------- Draw samples and plot the distribution: >>> import matplotlib.pyplot as plt >>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random_sample() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> np.random.random_sample() 0.47108547995356098 # random >>> type(np.random.random_sample()) >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal" distribution. .. note:: This is a convenience function for users porting code from Matlab, and wraps `numpy.random.standard_normal`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. If positive int_like arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- standard_normal : Similar, but takes a tuple as its argument. normal : Also accepts mu and sigma arguments. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 # random Two-by-four array of samples from N(3, 6.25): >>> 3 + 2.5 * np.random.randn(2, 4) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random rand(d0, d1, ..., dn) Random values in a given shape. .. note:: This is a convenience function for users porting code from Matlab, and wraps `numpy.random.random_sample`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. Create an array of the given shape and populate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Raises ------- ValueError If any value in alpha is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") RandomState.vonmises (line 1965)RandomState.rayleigh (line 2736)RandomState.logistic (line 2546)RandomState.binomial (line 2972)state dictionary is not valid.probabilities do not sum to 1RandomState.weibull (line 2145)RandomState.tomaxint (line 472)RandomState.shuffle (line 4031)RandomState.poisson (line 3196)RandomState.laplace (line 2343)RandomState.uniform (line 869)RandomState.randint (line 530)RandomState.pareto (line 2048)RandomState.normal (line 1239)RandomState.gumbel (line 2428)ndarray is not C contiguous'a' and 'p' must have same sizeRandomState.randn (line 1024)RandomState.power (line 2243)RandomState.gamma (line 1416)RandomState.choice (line 680)mean must be 1 dimensionalRange exceeds valid boundsRandomState.zipf (line 3269)RandomState.wald (line 2804)RandomState.bytes (line 651)probabilities contain NaNRandomState.seed (line 141)RandomState.rand (line 980)'p' must be 1-dimensionala must be 1-dimensionalRandomState.f (line 1494)standard_exponentialnoncentral_chisquarenumpy.random.mtrandmultivariate_normalngood + nbad < nsamplecline_in_tracebackDeprecationWarningnegative_binomial__randomstate_ctormay_share_memorybounded_integerssum(pvals[:-1]) > 1.0standard_normalstandard_cauchyrandom_integers_poisson_lam_maxstandard_gamma_legacy_seeding_integers_typeshypergeometricRuntimeWarningrandom_samplecount_nonzerobit_generatorOverflowErrorsearchsortedreturn_indexnoncentral_fRuntimeErrorpermutationmultinomialexponentialcheck_validRandomStateImportErrortriangularstandard_t__pyx_vtable__numpy.dualmtrand.pyxmode > rightlogical_orless_equalleft == rightissubdtypeempty_likeValueErrorIndexErrorset_statelogserieslognormalleft > modehas_gaussget_stategeometricdirichletchisquareTypeErrorMT19937warningsvonmisessubtractreversedrayleighoperatorlogisticitemsizeisscalarisnativeisfinitefloatingbinomialallcloseweibulluniformtobytesstridesshufflereshapereplacerandintpoissonnsamplemt19937laplaceintegergreaterfloat64castingcapsule at 0x{:X}asarrayalpha <= 0_MT19937unsafeuniqueuint64uint32uint16samplereducerandom_rand_pickleparetonormalnamelegacykwargs__import__ignoregumbelformatdoublecumsumctypeschoiceastypearangezerosuint8statesigmashapescalerightravelrangerandnraisepvalspowernumpyngoodkappaisnanint64int32int16indexgaussgammafinfoequal__enter__emptydtypedfnumdfden__class__bytesarrayalpha__all__zipfwarnwald__test__takesqrtsortsizesideseedrtolranfrandprodnoncndimnbad__name__modemean__main__longlocklessleftitemintpint8high__exit__datacopyboolbetaatolargstolsvd__str__poslowloclamkeyintgetepsdotcovanyalladd?UUUUUU?"@m{??@>@3?r?q?0@@9B.? * ?,|l @yD@:5/?@@R2B@96SC@wz*E@r4dF@OOfq]@Ob^@+NT_@ݭC#`@~{`@kbba@YSȐa@n b@1Ib@5ca c@c@ͦ3 d@\>d@nz e@s9Je@FGGʪ f@yyuf@IJC g@Y&g@oFh@·h@aQL i@ai@ F~x*j@&Pj@7k@!+k@VFl@ l@tVm@pZNm@k9ihn@HQOUn@a,~|o@b4nʼnp@+e Ip@cp@)Vp@*q@6Gaq@q@>m#FJq@FK.5r@b)C|r@Wrr@V] s@rRs@GIqs@ >6qs@jB*t@ A=rt@fIw|t@d'-u@X+{ Mu@# u@ZGDu@;#(v@b%rv@iv{Իv@w@Ow@\&әw@}6-#w@h͙.x@k?7yx@–'x@_*y@Yy@1*y@^TTy@,{L ?A?Į?"?ʝ?G??i>l>7>>*J>>>^>>F>>7P>>K{>>>u>;->>>|>eO>4(>8>L>N>ȿ>>>>·>ε>߳>>>0>U>~>|>ަ>Y>IP>w>ҟ>B>e>)>~>_>>C>{>>J>﷍>X(>'>N>Í>x >b>x>>!>^}>;z>Хw>@t>wr>byl>i>g>Sd>3a>^>]\>&Y>z)W>T>P R>O>L>5~J>3H>E>nC>@>VK>>;>9>07>4>2>>0>p->+>s)>7'>%>"> >s>L>*>= >T>T>4>>y >ϣ > >>L>>l>=+==0 =C==8==hp==0== =n==|===;=ں=Z=o,=ް=ߗ=.W===%==r=W= C=4=M,=4*=D.=y8=H=~=x=3E3lM3FT3/[3b3i34p3fw3&~3[3B3ψ3g37!3>3T3d3n3r3Fq3j3_31P3r<3$3k 33ȸ3q3|{3P3#3C333dY3"3+3®3r35333x37333p3-33731b33l44(44h4C44 4` 4M 47 44?4nB44L4 i4a4T044542`44p. 4!4"4i$4%4@'4t(4>*4+4,4j.4/4'P1424):4454&)7484c:4;4$=4+>4@4A4KC4vD4B(F4G4:I4J4rTL4M4GuO4Q4R44T4U4EiW4Y4 Z4G\4]4_4:a4b4d4Bf4\g4ji4bk4m4n4p4\r4}"t4Yu4Hw4[y4X{46.}4 4q4a4]S4F4N<434,4+(4{%4$4o&4,*4'04m84 C4P4_4q474{4w4>ԕ44s4<4d444$4 (4a44lߢ4$4l44x 4_444{4 4EP4±4{:4귴4);4nķ4S444<*4տ44A4.44ע44f4RW4R4*Y4Fk44δ444444g44k4<444y44u4_45555@5ó 5 5]5^555q5v 5!5%5V*5s/5;S55:<5D5NO5^5Nv5QHqoMֻanjDotTrotou$w'xx,jyy7\z׻z{W{S{{.|3|]|ȃ|||I||}C0}F}Z}m}}S}(}}-}}"}}|}M}~i ~~~B(~o0~C8~?~F~M~T~Z~a~f~l~r~]w~v|~`~ ~~$~m~~~w~:~ަ~f~ѭ~#~Z~y~~q~K~~~^~~a~~~`~~~~~~~~f~*~~~-~~J~~=~~~\~~~$~U~}~~~~~pH`  i   6  H  A!B+m 5XttW3 `wK\ L   s   G {V~~~d~~x~~K~~~~~~~~~)~~~a~~~{~;~~A~~~m~~z~~~"~k~]~~~ԃ~|~s~j~Ua~W~K~?~2~$~~~ }}} }}i}A}}|Q|D|{3N{zeyww7ms?7E?P?'{{?*!?bv?mU?9U1T?/v?x]?&1$-?~ n?cK[!?I?\Omg?f?uLi=?sڂl?x?Qf?ij?%ᨯC?+?Dܻ?z?cE#;?^E#?$O?2m?P"K?>?{s?%;?omo?3;?J9?++?*T[?};1s?HeC?$`?vE!=?ſ-r?MBц?K=?Q}6Ei?7u? !?z}k? ~?@?`x?*?8? Qi?oTC?_(4?ָ?@je?!u v?7Zi?{ ?I?]T?9]??}?8aD:?Yζi?Ɲҷ?r^sSw?ꍰ07?d>[?%۹? Ə{?'HB>?vX#?l1&?:l?磽!O?ލ?&?ڋ?タ+ j?A1?N0Z?0H?}G?(V?5$1!?pB9 ?b"FS?)vEW(?vG}rO?~ /? {^?Z? ?ބS?i"?lR?3Sn?>N?Ґ]b?,|y2?jG>?TLҫ?~>\O??@YH?/֎@?9O"H?>?1 7?8?Ox?]4?5D9g?r|?>ܸ$8? [B/?I䠟?O?y%d?bPޱ?c?PR?j?F}?9(Q1?c?(ڦ^w?0U^Q?1j?T ξ?x.BTv?Imb.??6YJ?)ِ?\C}?%d?w?SN?эv?pa?,Q&?@oű?SuFe?PV?;?I?viׯ?4D?.g?X1Iα?Jy?!dJ?پz?j»?8G;?L|{ʎ?mwn?k9:9??Ry?A&E?U?Ŗ<?k&_?G??~#? V#?_?S?Q| z? Y&?$?htQz? 3Tݜ?pXP?N梚?H*g?gS(u?1c?w@rT?Q=I?QA?]1%? RD?lj?W'n?-BU؊?h?t4? n?boQ?qvi?_)N?]tQW}?6H#z? 67w?"Ηs?C@Wi=q?ḰXl?f?$ka?%> T+Y? O?K 2=?]d<A]X`<+M[Ij<[5q&<.8eG< h#ឪV <;LC%K<ꆭh NVeΙVn6nvK zicp%E tQ)2U1WQ9Lin?23F:L"3\LQ V f[_rWDdx h+*k2=Ko:qr Mu\x?A{FS~8;b=ZV`bBtu9=JE>XدGwdO 8cx AFẙi&zqVYםΡag6 X83:뇡koɣj_ۤ| Mg^ݧt|Ψ_ΓXp2X^ttH蟿W;ޭl~$\z[߁İPp:J+N!X ɦ֬ ᆴX7(. Ɉ?5}h.G{tr&oya=cA/˺DH0⤮<)9O@ᣩTrVj֋@?˷dsI^i@(0߾ta&⊂l1EA1T[n&mi#d)B}QJwt}B < EOvpc/F<Ң"Ae އ0~ Rfq(*QtH3D@M`P}hwx%ƿ8*JG+[EliPIw+ E>ҙ02yΩ4A (Nt.Ȱ--̕^&܌z#;ޖu~g6X .pmF 3n bH޵LaEZvpR(-x_b˿ӰdyQӶVg<7܆ut7$MH𯋉ld"rqտH)݄ /0 wپ}2}K D5z&R cM,}uc?Ѡp5.bJ3ʸT[vv+\[U@ضBi"7oLeiFγ>SR(D2Z> B0$y1gWr-ެ @樫(afoeW-|&aY +M?V#z?u?q?}n?k?Lh?e?Rc?`?Zw^?*+\?Y?RW?U?_S?XQ?߱O?M?3K?J?GH?F?jD?`C?(`A?j??>?x,>N>>q>>>j>>k>>Π>>F>>>'>\>#>u>J>*>_F>d>+>$>w>>>JK>y>|>iݿ>>I>;>ʾ>t>5<> ~>>>O>>>~3>T>ե>(>g~>ՠ>G/>>>F>J> >:n>bԓ>Q<>>x>~>>>^>Ј>D>l>1>>%>\D>@|>?y>Bv>Hs>Qp>#^m>mj>|g>md>a>^>$[> Y>=3V>[S>P>M>J>~H>UE>B>?>=>S:>7>"4>=22>T/>d,>m+*>m'>c$>N?">,>>m>t>F>>1*> > >Y>>ʗ>>I=_={==^==&=_=g=='0===P6=˙=\= s==d= =yo=/=6=.=fЍ=x=i'=܀=a1y=p=xIh=_==W=TO=G=>=N6=.=&===-H==<א<̀<<<.4V?4=3@4A4A4qB4C4D4udE4-CF4K"G4H4H41I4J4vK4\fL4HM4+N4aO4O4bP4ٽQ4R4ԊS4crT4ZU4CV4-W4ZX4Y4UY4Z4[4(\4_]4^4_4C`4va4alb40cc47[d4~Te4Of4Jg42Hh4Fi4Fj4Hk4Kl4MPm4Vn4^o48hp4sq4r4s4 t4u4v4Cw4x4 z42{40S|4u}4~44v4@ 4L4>4ق4v444lV44R4F44p4 I44"4_44Ќ4l4L4`4ԏ4坐4y4ݖ4%44r&4k44(4444.4Q4N4t44\۶4H94̻4p44~X4w4p_4~444wE`mru\zw8xky5zz/ {ԃ{{7|3}|&|H|}C}g}ۇ}}a}g}]}~~4%~5~C~Q~g^~ij~u~>~2~~r~դ~Ƭ~N~u~C~~~~k~~~~~~t~~~6 < :#%](*.-z/13579;=?EABD:FGNIJ8LMNLPQR T=UdVWXYZ[\]^~__`;abbcod.eefLggh~~7~~/~7~~ ~ ~w~G]~>~Y~,}6}b}|O|06{x?yjD?l[T?w'??o?Wp?xI?-3?x^j??N?R:e?4:>?l?*?%z?PՋt?4?e;?$"?zaWF}?Gz‘B?Oq1? OU?ߺH?7a?nV,? K?Xhw?հ<?Vp\?m?)?zP?ZcX?*;Q^?#*'g? U7?e&$ ?jJo?\Ȭ)?L&?FS?leZ&?g ?NIO??xRr!?P_hy?y6IJO?_5%?[X~?1>?bU?+À?PX?5:pɗ0?8d?;U?J?͓?)m?ېZ]G?/|!? ?iT??Wq?PF9 ?ߓ^??ۮY?3???i?Z8o? O5?ٸ?P?R9?igP?La;?L?!ވ?%o?{7=8?Ҁt?DvC?6?=p\?;So&?mj?W?j?$O?z5Ѽ?Ҏ?C|P?yh|?%H?/ZM?f!w;??>ǭ?MAz?G?y?.?P9կ?TT}?g4K?#$O? Y?BM?6C;?B"_U?~t$?œ߉?52?Ҙl'?DɤT?<(i?qE8 ? Uī?OQM?o^?Sq͒?Gط5?zx?1zd}?:R!?Wg?~& ~k?=~-2?ZҿҶ?'|j_]?it?[?8R?uqb?#h?z|J?G~`?\!>?GF?vJ?l󈬚?5hȩmE?㭍?-l ?uG?1i%?調?M?e*|?zè?^V?4<%F?B}u?c-@c?n? R=?Kr?*}T#?,"k>?R) ?K{o?vaӽ?命8? t;I_? h?3xk?3Ӻ?b3?vZ9S?LJisk?M$a.?ftW?+ ?"@|?&#?p>_?1fҲ? DE?} ?/?%,?0?5nl+,&?QG?b. ?,*(>?p_8?cU)?h*?'wާ?dИۦ?ԭ<ڥ?]']ۤ?ݣ?=|?j?.?ĥׁ?u? ̓0?"NR? y? ڥ?d֔?^8 ?0`4I?IrO*?O'?x A?B?/)?7h`|?] ٨v?p?gC_e?T?yx;I< <[,L< Ŀk<4xV<=A[<'?}y<NG<~;[xo6xu{fUY>9>{ppCBwS(:5^dܓAN}8) YfHqն&|s f2,2Ztզޗ .n ZR'ӯB)[l@u Pҍ'TȈt(5wI'L/$;nXMØT`OArW,+jtȳRfARnqӊ<KZW$eKs) 4<=>)G'QA@Y.(5bX jz>lq{2Xx{~JH҄Cc`Qz%~ )Q\HsrUb'Bkq-hnק Ψ;3Kd)P^٨Tv$Hx"$ 5..&$ŗ: ٬ @r鷯?Q?Q?9v?(\@ffffff@.@4@x&??UUUUUU?a@X@`@|@@MA-DT! @h㈵>-DT!@C4?N@Si@>Aޓ=?;  L  O< sT l ; K | = M r\F".L`4^\(__ ,`D`t`Gs4&5BBED D(F0f(A ABB\&5BBH H(GPm (E ABBF : (D ABBE g(A EBBL\'7BEI I(D0D8F 8A0A(B BBBJ l'h:BBB H(H0G@g 0D(A BBBA  0D(A BBBN s0A(E BBET(<BBI H(K0GP 0A(A BBBD 0A(A BBBLt(=BBE E(H0H8Dp  8A0A(B BBBK L(`?BBH H(G@ (A ABBE (A ABB<)@nAG@\ AK  AA N AA M AE 4T)CAG0l AA   AA J AE )hEDM)pEDM)xEDM)E 4)xEvAD@M EAB `$*G(D c<<*GBBH H(G`y (A ABFB |*H,D g*HD U*HD U,*HAG0D AS A*IDQ +IWAK }E,+I/AG ]A<L+JJBBH H(G`V (A ABBI L+L BFA A(G`L (E ABBI S (A ABBO <+MLBBH H(G`b (A AFBI ,,OAG R AM XAL,HPkAG YAl,PNAG DA,PDI,PTD @ E $,QAG W AI 4,QAAGpe AAH T DAG $-T&IXLD- T[ BBB E(D0A8J 8A0A(B BBEA <-0^eBID D(Dpr (A ABBA 4-``D@ L s E C E A O L< .`AG  AD L AC K DI h AE L.a[AK AE$l.aEO0 EA <.bAGP AG L AK ^ AA  AE $.`eAG@ AG .HfWD R/f`D V,/fD/fAK0F$d/gH@ I Z A ,/hBFD c ABF L/iNBBE B(D0D8DPw 8D0A(B BBBE L 0jBBE E(A0C8D@o 8D0A(B BBBF |\0hjBDE B(A0A8DPq 8A0A(B BBBB \ 8A0A(B BBBJ  8D0A(B BFBK |0kBDE B(A0A8DPm 8A0A(B BBBF [ 8A0A(B BBBK  8E0A(B BFBJ ,\1l^AF M AK S AL |1lBBB E(A0D8G` 8A0A(B BBBF  8A0A(B BBBB  8A0A(B BBBA 2oBBB E(D0A8FP 8A0A(B BBBD { 8A0A(B BBBA e 8A0A(B BBBA o 8A0A(B BBBA 2rEB B(A0C8DP8A0A(B BBBDP 8A0A(B BBBE ^\,3Xu`PV8A0A(B BBBJBB E(A0C8DP43vfbID _ABG \3wBEB B(E0D8D`p 8A0A(B BBBA [8A0A(B BBBGF0(Q[k x ̙0(0(oX  04(h1q o(1oo"/ou 0(Ʊֱ&6FVfvƲֲ&6FVfvƳֳ&6FVfvƴִ&6FVfvƵֵ&6FVfvƶֶ&6FVfvƷַ&6FVfvƸָ&6FVfvƹֹ&6FVfvƺֺ&6F This is an alias of `random_sample`. See `random_sample` for the complete documentation. This is an alias of `random_sample`. See `random_sample` for the complete documentation. permutation(x) Randomly permute a sequence, or return a permuted range. If `x` is a multi-dimensional array, it is only shuffled along its first index. Parameters ---------- x : int or array_like If `x` is an integer, randomly permute ``np.arange(x)``. If `x` is an array, make a copy and shuffle the elements randomly. Returns ------- out : ndarray Permuted sequence or array range. Examples -------- >>> np.random.permutation(10) array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random >>> np.random.permutation([1, 4, 9, 12, 15]) array([15, 1, 9, 4, 12]) # random >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.permutation(arr) array([[6, 7, 8], # random [0, 1, 2], [3, 4, 5]]) shuffle(x) Modify a sequence in-place by shuffling its contents. This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same. Parameters ---------- x : array_like The array or list to be shuffled. Returns ------- None Examples -------- >>> arr = np.arange(10) >>> np.random.shuffle(arr) >>> arr [1 7 5 2 9 4 3 6 0 8] # random Multi-dimensional arrays are only shuffled along the first axis: >>> arr = np.arange(9).reshape((3, 3)) >>> np.random.shuffle(arr) >>> arr array([[3, 4, 5], # random [6, 7, 8], [0, 1, 2]]) dirichlet(alpha, size=None) Draw samples from the Dirichlet distribution. Draw `size` samples of dimension k from a Dirichlet distribution. A Dirichlet-distributed random variable can be seen as a multivariate generalization of a Beta distribution. The Dirichlet distribution is a conjugate prior of a multinomial distribution in Bayesian inference. Parameters ---------- alpha : array Parameter of the distribution (k dimension for sample of dimension k). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- samples : ndarray, The drawn samples, of shape (size, alpha.ndim). Raises ------- ValueError If any value in alpha is less than or equal to zero Notes ----- The Dirichlet distribution is a distribution over vectors :math:`x` that fulfil the conditions :math:`x_i>0` and :math:`\sum_{i=1}^k x_i = 1`. The probability density function :math:`p` of a Dirichlet-distributed random vector :math:`X` is proportional to .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i}, where :math:`\alpha` is a vector containing the positive concentration parameters. The method uses the following property for computation: let :math:`Y` be a random vector which has components that follow a standard gamma distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y` is Dirichlet-distributed References ---------- .. [1] David McKay, "Information Theory, Inference and Learning Algorithms," chapter 23, http://www.inference.org.uk/mackay/itila/ .. [2] Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution Examples -------- Taking an example cited in Wikipedia, this distribution can be used if one wanted to cut strings (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average, a designated average length, but allowing some variation in the relative sizes of the pieces. >>> s = np.random.dirichlet((10, 5, 3), 20).transpose() >>> import matplotlib.pyplot as plt >>> plt.barh(range(20), s[0]) >>> plt.barh(range(20), s[1], left=s[0], color='g') >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r') >>> plt.title("Lengths of Strings") multinomial(n, pvals, size=None) Draw samples from a multinomial distribution. The multinomial distribution is a multivariate generalization of the binomial distribution. Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. Each sample drawn from the distribution represents `n` such experiments. Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``. Parameters ---------- n : int Number of experiments. pvals : sequence of floats, length p Probabilities of each of the ``p`` different outcomes. These must sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as ``sum(pvals[:-1]) <= 1)``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Examples -------- Throw a dice 20 times: >>> np.random.multinomial(20, [1/6.]*6, size=1) array([[4, 1, 7, 5, 2, 1]]) # random It landed 4 times on 1, once on 2, etc. Now, throw the dice 20 times, and 20 times again: >>> np.random.multinomial(20, [1/6.]*6, size=2) array([[3, 4, 3, 3, 4, 3], # random [2, 4, 3, 4, 0, 7]]) For the first run, we threw 3 times 1, 4 times 2, etc. For the second, we threw 2 times 1, 4 times 2, etc. A loaded die is more likely to land on number 6: >>> np.random.multinomial(100, [1/7.]*5 + [2/7.]) array([11, 16, 14, 17, 16, 26]) # random The probability inputs should be normalized. As an implementation detail, the value of the last entry is ignored and assumed to take up any leftover probability mass, but this should not be relied on. A biased coin which has twice as much weight on one side as on the other should be sampled like so: >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT array([38, 62]) # random not like: >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG Traceback (most recent call last): ValueError: pvals < 0, pvals > 1 or pvals contains NaNs multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8) Draw random samples from a multivariate normal distribution. The multivariate normal, multinormal or Gaussian distribution is a generalization of the one-dimensional normal distribution to higher dimensions. Such a distribution is specified by its mean and covariance matrix. These parameters are analogous to the mean (average or "center") and variance (standard deviation, or "width," squared) of the one-dimensional normal distribution. Parameters ---------- mean : 1-D array_like, of length N Mean of the N-dimensional distribution. cov : 2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling. size : int or tuple of ints, optional Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``. If no shape is specified, a single (`N`-D) sample is returned. check_valid : { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive semidefinite. tol : float, optional Tolerance when checking the singular values in covariance matrix. cov is cast to double before the check. Returns ------- out : ndarray The drawn samples, of shape *size*, if that was provided. If not, the shape is ``(N,)``. In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution. Notes ----- The mean is a coordinate in N-dimensional space, which represents the location where samples are most likely to be generated. This is analogous to the peak of the bell curve for the one-dimensional or univariate normal distribution. Covariance indicates the level to which two variables vary together. From the multivariate normal distribution, we draw N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its "spread"). Instead of specifying the full covariance matrix, popular approximations include: - Spherical covariance (`cov` is a multiple of the identity matrix) - Diagonal covariance (`cov` has non-negative elements, and only on the diagonal) This geometrical property can be seen in two dimensions by plotting generated data-points: >>> mean = [0, 0] >>> cov = [[1, 0], [0, 100]] # diagonal covariance Diagonal covariance means that points are oriented along x or y-axis: >>> import matplotlib.pyplot as plt >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T >>> plt.plot(x, y, 'x') >>> plt.axis('equal') >>> plt.show() Note that the covariance matrix must be positive semidefinite (a.k.a. nonnegative-definite). Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed. References ---------- .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic Processes," 3rd ed., New York: McGraw-Hill, 1991. .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification," 2nd ed., New York: Wiley, 2001. Examples -------- >>> mean = (1, 2) >>> cov = [[1, 0], [0, 1]] >>> x = np.random.multivariate_normal(mean, cov, (3, 3)) >>> x.shape (3, 3, 2) The following is probably true, given that 0.6 is roughly twice the standard deviation: >>> list((x[0,0,:] - mean) < 0.6) [True, True] # random logseries(p, size=None) Draw samples from a logarithmic series distribution. Samples are drawn from a log series distribution with specified shape parameter, 0 < ``p`` < 1. Parameters ---------- p : float or array_like of floats Shape parameter for the distribution. Must be in the range (0, 1). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logarithmic series distribution. See Also -------- scipy.stats.logser : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Log Series distribution is .. math:: P(k) = \frac{-p^k}{k \ln(1-p)}, where p = probability. The log series distribution is frequently used to represent species richness and occurrence, first proposed by Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars [3]. References ---------- .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September 1999 , pp. 187-195(9). .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58. .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994. .. [4] Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution Examples -------- Draw samples from the distribution: >>> a = .6 >>> s = np.random.logseries(a, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s) # plot against distribution >>> def logseries(k, p): ... return -p**k/(k*np.log(1-p)) >>> plt.plot(bins, logseries(bins, a)*count.max()/ ... logseries(bins, a).max(), 'r') >>> plt.show() hypergeometric(ngood, nbad, nsample, size=None) Draw samples from a Hypergeometric distribution. Samples are drawn from a hypergeometric distribution with specified parameters, `ngood` (ways to make a good selection), `nbad` (ways to make a bad selection), and `nsample` (number of items sampled, which is less than or equal to the sum ``ngood + nbad``). Parameters ---------- ngood : int or array_like of ints Number of ways to make a good selection. Must be nonnegative. nbad : int or array_like of ints Number of ways to make a bad selection. Must be nonnegative. nsample : int or array_like of ints Number of items sampled. Must be at least 1 and at most ``ngood + nbad``. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if `ngood`, `nbad`, and `nsample` are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized hypergeometric distribution. Each sample is the number of good items within a randomly selected subset of size `nsample` taken from a set of `ngood` good items and `nbad` bad items. See Also -------- scipy.stats.hypergeom : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Hypergeometric distribution is .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}}, where :math:`0 \le x \le n` and :math:`n-b \le x \le g` for P(x) the probability of ``x`` good results in the drawn sample, g = `ngood`, b = `nbad`, and n = `nsample`. Consider an urn with black and white marbles in it, `ngood` of them are black and `nbad` are white. If you draw `nsample` balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the drawn sample. Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is infinite). As the sample space becomes large, this distribution approaches the binomial. References ---------- .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972. .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HypergeometricDistribution.html .. [3] Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution Examples -------- Draw samples from the distribution: >>> ngood, nbad, nsamp = 100, 2, 10 # number of good, number of bad, and number of samples >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) >>> from matplotlib.pyplot import hist >>> hist(s) # note that it is very unlikely to grab both bad items Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is it that 12 or more of them are one color? >>> s = np.random.hypergeometric(15, 15, 15, 100000) >>> sum(s>=12)/100000. + sum(s<=3)/100000. # answer = 0.003 ... pretty unlikely! geometric(p, size=None) Draw samples from the geometric distribution. Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve success. It is therefore supported on the positive integers, ``k = 1, 2, ...``. The probability mass function of the geometric distribution is .. math:: f(k) = (1 - p)^{k - 1} p where `p` is the probability of success of an individual trial. Parameters ---------- p : float or array_like of floats The probability of success of an individual trial. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``p`` is a scalar. Otherwise, ``np.array(p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized geometric distribution. Examples -------- Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to 0.35: >>> z = np.random.geometric(p=0.35, size=10000) How many trials succeeded after a single run? >>> (z == 1).sum() / 10000. 0.34889999999999999 #random zipf(a, size=None) Draw samples from a Zipf distribution. Samples are drawn from a Zipf distribution with specified parameter `a` > 1. The Zipf distribution (also known as the zeta distribution) is a continuous probability distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to its rank in a frequency table. Parameters ---------- a : float or array_like of floats Distribution parameter. Must be greater than 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Zipf distribution. See Also -------- scipy.stats.zipf : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the Zipf distribution is .. math:: p(x) = \frac{x^{-a}}{\zeta(a)}, where :math:`\zeta` is the Riemann Zeta function. It is named for the American linguist George Kingsley Zipf, who noted that the frequency of any word in a sample of a language is inversely proportional to its rank in the frequency table. References ---------- .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language," Cambridge, MA: Harvard Univ. Press, 1932. Examples -------- Draw samples from the distribution: >>> a = 2. # parameter >>> s = np.random.zipf(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy import special # doctest: +SKIP Truncate s values at 50 so plot is interesting: >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True) >>> x = np.arange(1., 50.) >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP >>> plt.show() poisson(lam=1.0, size=None) Draw samples from a Poisson distribution. The Poisson distribution is the limit of the binomial distribution for large N. Parameters ---------- lam : float or array_like of floats Expectation of interval, must be >= 0. A sequence of expectation intervals must be broadcastable over the requested size. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``lam`` is a scalar. Otherwise, ``np.array(lam).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Poisson distribution. Notes ----- The Poisson distribution .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!} For events with an expected separation :math:`\lambda` the Poisson distribution :math:`f(k; \lambda)` describes the probability of :math:`k` events occurring within the observed interval :math:`\lambda`. Because the output is limited to the range of the C int64 type, a ValueError is raised when `lam` is within 10 sigma of the maximum representable value. References ---------- .. [1] Weisstein, Eric W. "Poisson Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/PoissonDistribution.html .. [2] Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution Examples -------- Draw samples from the distribution: >>> import numpy as np >>> s = np.random.poisson(5, 10000) Display histogram of the sample: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 14, density=True) >>> plt.show() Draw each 100 values for lambda 100 and 500: >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) negative_binomial(n, p, size=None) Draw samples from a negative binomial distribution. Samples are drawn from a negative binomial distribution with specified parameters, `n` successes and `p` probability of success where `n` is > 0 and `p` is in the interval [0, 1]. Parameters ---------- n : float or array_like of floats Parameter of the distribution, > 0. p : float or array_like of floats Parameter of the distribution, >= 0 and <=1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``n`` and ``p`` are both scalars. Otherwise, ``np.broadcast(n, p).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized negative binomial distribution, where each sample is equal to N, the number of failures that occurred before a total of n successes was reached. Notes ----- The probability mass function of the negative binomial distribution is .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N}, where :math:`n` is the number of successes, :math:`p` is the probability of success, :math:`N+n` is the number of trials, and :math:`\Gamma` is the gamma function. When :math:`n` is an integer, :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is the more common form of this term in the the pmf. The negative binomial distribution gives the probability of N failures given n successes, with a success on the last trial. If one throws a die repeatedly until the third time a "1" appears, then the probability distribution of the number of non-"1"s that appear before the third "1" is a negative binomial distribution. References ---------- .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NegativeBinomialDistribution.html .. [2] Wikipedia, "Negative binomial distribution", https://en.wikipedia.org/wiki/Negative_binomial_distribution Examples -------- Draw samples from the distribution: A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability of success of 0.1. What is the probability of having one success for each successive well, that is what is the probability of a single success after drilling 5 wells, after 6 wells, etc.? >>> s = np.random.negative_binomial(1, 0.1, 100000) >>> for i in range(1, 11): # doctest: +SKIP ... probability = sum(s>> n, p = 10, .5 # number of trials, probability of each trial >>> s = np.random.binomial(n, p, 1000) # result of flipping a coin 10 times, tested 1000 times. A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of success of 0.1. All nine wells fail. What is the probability of that happening? Let's do 20,000 trials of the model, and count the number that generate zero positive results. >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # answer = 0.38885, or 38%. triangular(left, mode, right, size=None) Draw samples from the triangular distribution over the interval ``[left, right]``. The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper limit right. Unlike the other distributions, these parameters directly define the shape of the pdf. Parameters ---------- left : float or array_like of floats Lower limit. mode : float or array_like of floats The value where the peak of the distribution occurs. The value must fulfill the condition ``left <= mode <= right``. right : float or array_like of floats Upper limit, must be larger than `left`. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``left``, ``mode``, and ``right`` are all scalars. Otherwise, ``np.broadcast(left, mode, right).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized triangular distribution. Notes ----- The probability density function for the triangular distribution is .. math:: P(x;l, m, r) = \begin{cases} \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\ 0& \text{otherwise}. \end{cases} The triangular distribution is often used in ill-defined problems where the underlying distribution is not known, but some knowledge of the limits and mode exists. Often it is used in simulations. References ---------- .. [1] Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, ... density=True) >>> plt.show() wald(mean, scale, size=None) Draw samples from a Wald, or inverse Gaussian, distribution. As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal. The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance and distance covered in unit time. Parameters ---------- mean : float or array_like of floats Distribution mean, must be > 0. scale : float or array_like of floats Scale parameter, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Wald distribution. Notes ----- The probability density function for the Wald distribution is .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^ \frac{-scale(x-mean)^2}{2\cdotp mean^2x} As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes. References ---------- .. [1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and Applications", CRC Press, 1988. .. [3] Wikipedia, "Inverse Gaussian distribution" https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution Examples -------- Draw values from the distribution and plot the histogram: >>> import matplotlib.pyplot as plt >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True) >>> plt.show() rayleigh(scale=1.0, size=None) Draw samples from a Rayleigh distribution. The :math:`\chi` and Weibull distributions are generalizations of the Rayleigh. Parameters ---------- scale : float or array_like of floats, optional Scale, also equals the mode. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Rayleigh distribution. Notes ----- The probability density function for the Rayleigh distribution is .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}} The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution. References ---------- .. [1] Brighton Webs Ltd., "Rayleigh Distribution," https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp .. [2] Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution Examples -------- Draw values from the distribution and plot the histogram >>> from matplotlib.pyplot import hist >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves are likely to be larger than 3 meters? >>> meanvalue = 1 >>> modevalue = np.sqrt(2 / np.pi) * meanvalue >>> s = np.random.rayleigh(modevalue, 1000000) The percentage of waves larger than 3 meters is: >>> 100.*sum(s>3)/1000000. 0.087300000000000003 # random lognormal(mean=0.0, sigma=1.0, size=None) Draw samples from a log-normal distribution. Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal distribution it is derived from. Parameters ---------- mean : float or array_like of floats, optional Mean value of the underlying normal distribution. Default is 0. sigma : float or array_like of floats, optional Standard deviation of the underlying normal distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mean`` and ``sigma`` are both scalars. Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized log-normal distribution. See Also -------- scipy.stats.lognorm : probability density function, distribution, cumulative density function, etc. Notes ----- A variable `x` has a log-normal distribution if `log(x)` is normally distributed. The probability density function for the log-normal distribution is: .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})} where :math:`\mu` is the mean and :math:`\sigma` is the standard deviation of the normally distributed logarithm of the variable. A log-normal distribution results if a random variable is the *product* of a large number of independent, identically-distributed variables in the same way that a normal distribution results if the variable is the *sum* of a large number of independent, identically-distributed variables. References ---------- .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the Sciences: Keys and Clues," BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme Values," Basel: Birkhauser Verlag, 2001, pp. 31-32. Examples -------- Draw samples from the distribution: >>> mu, sigma = 3., 1. # mean and standard deviation >>> s = np.random.lognormal(mu, sigma, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, linewidth=2, color='r') >>> plt.axis('tight') >>> plt.show() Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-normal probability density function. >>> # Generate a thousand samples: each is the product of 100 random >>> # values, drawn from a normal distribution. >>> b = [] >>> for i in range(1000): ... a = 10. + np.random.standard_normal(100) ... b.append(np.product(a)) >>> b = np.array(b) / np.min(b) # scale values to be positive >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') >>> sigma = np.std(np.log(b)) >>> mu = np.mean(np.log(b)) >>> x = np.linspace(min(bins), max(bins), 10000) >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) ... / (x * sigma * np.sqrt(2 * np.pi))) >>> plt.plot(x, pdf, color='r', linewidth=2) >>> plt.show() logistic(loc=0.0, scale=1.0, size=None) Draw samples from a logistic distribution. Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median), and scale (>0). Parameters ---------- loc : float or array_like of floats, optional Parameter of the distribution. Default is 0. scale : float or array_like of floats, optional Parameter of the distribution. Must be non-negative. Default is 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized logistic distribution. See Also -------- scipy.stats.logistic : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Logistic distribution is .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2}, where :math:`\mu` = location and :math:`s` = scale. The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distributions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system, assuming the performance of each player is a logistically distributed random variable. References ---------- .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133. .. [2] Weisstein, Eric W. "Logistic Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticDistribution.html .. [3] Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution Examples -------- Draw samples from the distribution: >>> loc, scale = 10, 1 >>> s = np.random.logistic(loc, scale, 10000) >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=50) # plot against distribution >>> def logist(x, loc, scale): ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2) >>> lgst_val = logist(bins, loc, scale) >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max()) >>> plt.show() gumbel(loc=0.0, scale=1.0, size=None) Draw samples from a Gumbel distribution. Draw samples from a Gumbel distribution with specified location and scale. For more information on the Gumbel distribution, see Notes and References below. Parameters ---------- loc : float or array_like of floats, optional The location of the mode of the distribution. Default is 0. scale : float or array_like of floats, optional The scale parameter of the distribution. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Gumbel distribution. See Also -------- scipy.stats.gumbel_l scipy.stats.gumbel_r scipy.stats.genextreme weibull Notes ----- The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel is a special case of the Extreme Value Type I distribution for maximums from distributions with "exponential-like" tails. The probability density for the Gumbel distribution is .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/ \beta}}, where :math:`\mu` is the mode, a location parameter, and :math:`\beta` is the scale parameter. The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and rainfall rates. It is a "fat-tailed" distribution - the probability of an event in the tail of the distribution is larger than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as a Gaussian process, which underestimated the frequency of extreme events. It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which also includes the Weibull and Frechet. The function has a mean of :math:`\mu + 0.57721\beta` and a variance of :math:`\frac{\pi^2}{6}\beta^2`. References ---------- .. [1] Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958. .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001. Examples -------- Draw samples from the distribution: >>> mu, beta = 0, 0.1 # location and scale >>> s = np.random.gumbel(mu, beta, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp( -np.exp( -(bins - mu) /beta) ), ... linewidth=2, color='r') >>> plt.show() Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian: >>> means = [] >>> maxima = [] >>> for i in range(0,1000) : ... a = np.random.normal(mu, beta, 1000) ... means.append(a.mean()) ... maxima.append(a.max()) >>> count, bins, ignored = plt.hist(maxima, 30, density=True) >>> beta = np.std(maxima) * np.sqrt(6) / np.pi >>> mu = np.mean(maxima) - 0.57721*beta >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) ... * np.exp(-np.exp(-(bins - mu)/beta)), ... linewidth=2, color='r') >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) ... * np.exp(-(bins - mu)**2 / (2 * beta**2)), ... linewidth=2, color='g') >>> plt.show() laplace(loc=0.0, scale=1.0, size=None) Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay). The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter tails. It represents the difference between two independent, identically distributed exponential random variables. Parameters ---------- loc : float or array_like of floats, optional The position, :math:`\mu`, of the distribution peak. Default is 0. scale : float or array_like of floats, optional :math:`\lambda`, the exponential decay. Default is 1. Must be non- negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Laplace distribution. Notes ----- It has the probability density function .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|x - \mu|}{\lambda}\right). The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems in economics and health sciences, this distribution seems to model the data better than the standard Gaussian distribution. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001. .. [3] Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/LaplaceDistribution.html .. [4] Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution Examples -------- Draw samples from the distribution >>> loc, scale = 0., 1. >>> s = np.random.laplace(loc, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> x = np.arange(-8., 8., .01) >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) >>> plt.plot(x, pdf) Plot Gaussian for comparison: >>> g = (1/(scale * np.sqrt(2 * np.pi)) * ... np.exp(-(x - loc)**2 / (2 * scale**2))) >>> plt.plot(x,g) power(a, size=None) Draws samples in [0, 1] from a power distribution with positive exponent a - 1. Also known as the power function distribution. Parameters ---------- a : float or array_like of floats Parameter of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized power distribution. Raises ------ ValueError If a < 1. Notes ----- The probability density function is .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0. The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special case of the Beta distribution. It is used, for example, in modeling the over-reporting of insurance claims. References ---------- .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions in economics and actuarial sciences", Wiley, 2003. .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Subcommands and Library Functions", National Institute of Standards and Technology Handbook Series, June 2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> samples = 1000 >>> s = np.random.power(a, samples) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, bins=30) >>> x = np.linspace(0, 1, 100) >>> y = a*x**(a-1.) >>> normed_y = samples*np.diff(bins)[0]*y >>> plt.plot(x, normed_y) >>> plt.show() Compare the power function distribution to the inverse of the Pareto. >>> from scipy import stats # doctest: +SKIP >>> rvs = np.random.power(5, 1000000) >>> rvsp = np.random.pareto(5, 1000000) >>> xx = np.linspace(0,1,100) >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP >>> plt.figure() >>> plt.hist(rvs, bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('np.random.power(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of 1 + np.random.pareto(5)') >>> plt.figure() >>> plt.hist(1./(1.+rvsp), bins=50, density=True) >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP >>> plt.title('inverse of stats.pareto(5)') weibull(a, size=None) Draw samples from a Weibull distribution. Draw samples from a 1-parameter Weibull distribution with the given shape parameter `a`. .. math:: X = (-ln(U))^{1/a} Here, U is drawn from the uniform distribution over (0,1]. The more common 2-parameter Weibull, including a scale parameter :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`. Parameters ---------- a : float or array_like of floats Shape parameter of the distribution. Must be nonnegative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Weibull distribution. See Also -------- scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme gumbel Notes ----- The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. The probability density for the Weibull distribution is .. math:: p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a}, where :math:`a` is the shape and :math:`\lambda` the scale. The function has its peak (the mode) at :math:`\lambda(\frac{a-1}{a})^{1/a}`. When ``a = 1``, the Weibull distribution reduces to the exponential distribution. References ---------- .. [1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of The Strength Of Materials", Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. .. [2] Waloddi Weibull, "A Statistical Distribution Function of Wide Applicability", Journal Of Applied Mechanics ASME Paper 1951. .. [3] Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution Examples -------- Draw samples from the distribution: >>> a = 5. # shape >>> s = np.random.weibull(a, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> x = np.arange(1,100.)/50. >>> def weib(x,n,a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) >>> x = np.arange(1,100.)/50. >>> scale = count.max()/weib(x, 1., 5.).max() >>> plt.plot(x, weib(x, 1., 5.)*scale) >>> plt.show() pareto(a, size=None) Draw samples from a Pareto II or Lomax distribution with specified shape. The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter ``m`` (see Notes). The smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is ``mu``, where the standard Pareto distribution has location ``mu = 1``. Lomax can also be considered as a simplified version of the Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero. The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the "80-20 rule". In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent fill the remaining 80 percent of the range. Parameters ---------- a : float or array_like of floats Shape of the distribution. Must be positive. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` is a scalar. Otherwise, ``np.array(a).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Pareto distribution. See Also -------- scipy.stats.lomax : probability density function, distribution or cumulative density function, etc. scipy.stats.genpareto : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Pareto distribution is .. math:: p(x) = \frac{am^a}{x^{a+1}} where :math:`a` is the shape and :math:`m` the scale. The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the download frequency for projects in Sourceforge [1]_. It is one of the so-called "fat-tailed" distributions. References ---------- .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects. .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne. .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30. .. [4] Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution Examples -------- Draw samples from the distribution: >>> a, m = 3., 2. # shape and mode >>> s = (np.random.pareto(a, 1000) + 1) * m Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, _ = plt.hist(s, 100, density=True) >>> fit = a*m**a / bins**(a+1) >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') >>> plt.show() vonmises(mu, kappa, size=None) Draw samples from a von Mises distribution. Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the interval [-pi, pi]. The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribution on the unit circle. It may be thought of as the circular analogue of the normal distribution. Parameters ---------- mu : float or array_like of floats Mode ("center") of the distribution. kappa : float or array_like of floats Dispersion of the distribution, has to be >=0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``mu`` and ``kappa`` are both scalars. Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized von Mises distribution. See Also -------- scipy.stats.vonmises : probability density function, distribution, or cumulative density function, etc. Notes ----- The probability density for the von Mises distribution is .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)}, where :math:`\mu` is the mode and :math:`\kappa` the dispersion, and :math:`I_0(\kappa)` is the modified Bessel function of order 0. The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science. References ---------- .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing," New York: Dover, 1972. .. [2] von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964. Examples -------- Draw samples from the distribution: >>> mu, kappa = 0.0, 4.0 # mean and dispersion >>> s = np.random.vonmises(mu, kappa, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> from scipy.special import i0 # doctest: +SKIP >>> plt.hist(s, 50, density=True) >>> x = np.linspace(-np.pi, np.pi, num=51) >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_t(df, size=None) Draw samples from a standard Student's t distribution with `df` degrees of freedom. A special case of the hyperbolic distribution. As `df` gets large, the result resembles that of the standard normal distribution (`standard_normal`). Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard Student's t distribution. Notes ----- The probability density function for the t distribution is .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df} \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2} The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean. The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name Student. References ---------- .. [1] Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002. .. [2] Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution Examples -------- From Dalgaard page 83 [1]_, suppose the daily energy intake for 11 women in kilojoules (kJ) is: >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ ... 7515, 8230, 8770]) Does their energy intake deviate systematically from the recommended value of 7725 kJ? We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value? >>> s = np.random.standard_t(10, size=100000) >>> np.mean(intake) 6753.636363636364 >>> intake.std(ddof=1) 1142.1232221373727 Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation will be degrees of freedom, N-1. >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) >>> import matplotlib.pyplot as plt >>> h = plt.hist(s, bins=100, density=True) For a one-sided t-test, how far out in the distribution does the t statistic appear? >>> np.sum(s>> import matplotlib.pyplot as plt >>> s = np.random.standard_cauchy(1000000) >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well >>> plt.hist(s, bins=100) >>> plt.show() noncentral_chisquare(df, nonc, size=None) Draw samples from a noncentral chi-square distribution. The noncentral :math:`\chi^2` distribution is a generalization of the :math:`\chi^2` distribution. Parameters ---------- df : float or array_like of floats Degrees of freedom, must be > 0. .. versionchanged:: 1.10.0 Earlier NumPy versions required dfnum > 1. nonc : float or array_like of floats Non-centrality, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` and ``nonc`` are both scalars. Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution. Notes ----- The probability density function for the noncentral Chi-square distribution is .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x), where :math:`Y_{q}` is the Chi-square with q degrees of freedom. References ---------- .. [1] Wikipedia, "Noncentral chi-squared distribution" https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution Examples -------- Draw values from the distribution and plot the histogram >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show() Demonstrate how large values of non-centrality lead to a more symmetric distribution. >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() chisquare(df, size=None) Draw samples from a chi-square distribution. When `df` independent random variables, each with standard normal distributions (mean 0, variance 1), are squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in hypothesis testing. Parameters ---------- df : float or array_like of floats Number of degrees of freedom, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``df`` is a scalar. Otherwise, ``np.array(df).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized chi-square distribution. Raises ------ ValueError When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``) is given. Notes ----- The variable obtained by summing the squares of `df` independent, standard normally distributed random variables: .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i is chi-square distributed, denoted .. math:: Q \sim \chi^2_k. The probability density function of the chi-squared distribution is .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}, where :math:`\Gamma` is the gamma function, .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt. References ---------- .. [1] NIST "Engineering Statistics Handbook" https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm Examples -------- >>> np.random.chisquare(2,4) array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random noncentral_f(dfnum, dfden, nonc, size=None) Draw samples from the noncentral F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters > 1. `nonc` is the non-centrality parameter. Parameters ---------- dfnum : float or array_like of floats Numerator degrees of freedom, must be > 0. .. versionchanged:: 1.14.0 Earlier NumPy versions required dfnum > 1. dfden : float or array_like of floats Denominator degrees of freedom, must be > 0. nonc : float or array_like of floats Non-centrality parameter, the sum of the squares of the numerator means, must be >= 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum``, ``dfden``, and ``nonc`` are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution. Notes ----- When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F statistic. References ---------- .. [1] Weisstein, Eric W. "Noncentral F-Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/NoncentralF-Distribution.html .. [2] Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution Examples -------- In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution. We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null hypothesis. We'll plot the two probability distributions for comparison. >>> dfnum = 3 # between group deg of freedom >>> dfden = 20 # within groups degrees of freedom >>> nonc = 3.0 >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) >>> NF = np.histogram(nc_vals, bins=50, density=True) >>> c_vals = np.random.f(dfnum, dfden, 1000000) >>> F = np.histogram(c_vals, bins=50, density=True) >>> import matplotlib.pyplot as plt >>> plt.plot(F[1][1:], F[0]) >>> plt.plot(NF[1][1:], NF[0]) >>> plt.show() f(dfnum, dfden, size=None) Draw samples from an F distribution. Samples are drawn from an F distribution with specified parameters, `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of freedom in denominator), where both parameters must be greater than zero. The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates. Parameters ---------- dfnum : float or array_like of floats Degrees of freedom in numerator, must be > 0. dfden : float or array_like of float Degrees of freedom in denominator, must be > 0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``dfnum`` and ``dfden`` are both scalars. Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized Fisher distribution. See Also -------- scipy.stats.f : probability density function, distribution or cumulative density function, etc. Notes ----- The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The variable `dfnum` is the number of samples minus one, the between-groups degrees of freedom, while `dfden` is the within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups. References ---------- .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002. .. [2] Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution Examples -------- An example from Glantz[1], pp 47-40: Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents diabetic status does not affect their children's blood glucose levels? Calculating the F statistic from the data gives a value of 36.01. Draw samples from the distribution: >>> dfnum = 1. # between group degrees of freedom >>> dfden = 48. # within groups degrees of freedom >>> s = np.random.f(dfnum, dfden, 1000) The lower bound for the top 1% of the samples is : >>> np.sort(s)[-10] 7.61988120985 # random So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis is rejected at the 1% level. gamma(shape, scale=1.0, size=None) Draw samples from a Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, `shape` (sometimes designated "k") and `scale` (sometimes designated "theta"), where both parameters are > 0. Parameters ---------- shape : float or array_like of floats The shape of the gamma distribution. Must be non-negative. scale : float or array_like of floats, optional The scale of the gamma distribution. Must be non-negative. Default is equal to 1. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) >>> s = np.random.gamma(shape, scale, 1000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP ... (sps.gamma(shape)*scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() standard_gamma(shape, size=None) Draw samples from a standard Gamma distribution. Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated "k") and scale=1. Parameters ---------- shape : float or array_like of floats Parameter, must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``shape`` is a scalar. Otherwise, ``np.array(shape).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized standard gamma distribution. See Also -------- scipy.stats.gamma : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gamma distribution is .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)}, where :math:`k` is the shape and :math:`\theta` the scale, and :math:`\Gamma` is the Gamma function. The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. References ---------- .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/GammaDistribution.html .. [2] Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution Examples -------- Draw samples from the distribution: >>> shape, scale = 2., 1. # mean and width >>> s = np.random.standard_gamma(shape, 1000000) Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> import scipy.special as sps # doctest: +SKIP >>> count, bins, ignored = plt.hist(s, 50, density=True) >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP ... (sps.gamma(shape) * scale**shape)) >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP >>> plt.show() normal(loc=0.0, scale=1.0, size=None) Draw random samples from a normal (Gaussian) distribution. The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [2]_, is often called the bell curve because of its characteristic shape (see the example below). The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2]_. Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized normal distribution. See Also -------- scipy.stats.norm : probability density function, distribution or cumulative density function, etc. Notes ----- The probability density for the Gaussian distribution is .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }} e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} }, where :math:`\mu` is the mean and :math:`\sigma` the standard deviation. The square of the standard deviation, :math:`\sigma^2`, is called the variance. The function has its peak at the mean, and its "spread" increases with the standard deviation (the function reaches 0.607 times its maximum at :math:`x + \sigma` and :math:`x - \sigma` [2]_). This implies that `numpy.random.normal` is more likely to return samples lying close to the mean, rather than those far away. References ---------- .. [1] Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability, Random Variables and Random Signal Principles", 4th ed., 2001, pp. 51, 51, 125. Examples -------- Draw samples from the distribution: >>> mu, sigma = 0, 0.1 # mean and standard deviation >>> s = np.random.normal(mu, sigma, 1000) Verify the mean and the variance: >>> abs(mu - np.mean(s)) 0.0 # may vary >>> abs(sigma - np.std(s, ddof=1)) 0.1 # may vary Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 30, density=True) >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ), ... linewidth=2, color='r') >>> plt.show() Two-by-four array of samples from N(3, 6.25): >>> np.random.normal(3, 2.5, size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random standard_normal(size=None) Draw samples from a standard Normal distribution (mean=0, stdev=1). Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray A floating-point array of shape ``size`` of drawn samples, or a single sample if ``size`` was not specified. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use one of:: mu + sigma * np.random.standard_normal(size=...) np.random.normal(mu, sigma, size=...) See Also -------- normal : Equivalent function with additional ``loc`` and ``scale`` arguments for setting the mean and standard deviation. Examples -------- >>> np.random.standard_normal() 2.1923875335537315 #random >>> s = np.random.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = np.random.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) Two-by-four array of samples from :math:`N(3, 6.25)`: >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random random_integers(low, high=None, size=None) Random integers of type np.int between `low` and `high`, inclusive. Return random integers of type np.int from the "discrete uniform" distribution in the closed interval [`low`, `high`]. If `high` is None (the default), then results are from [1, `low`]. The np.int type translates to the C long integer type and its precision is platform dependent. This function has been deprecated. Use randint instead. .. deprecated:: 1.11.0 Parameters ---------- low : int Lowest (signed) integer to be drawn from the distribution (unless ``high=None``, in which case this parameter is the *highest* such integer). high : int, optional If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- randint : Similar to `random_integers`, only for the half-open interval [`low`, `high`), and 0 is the lowest value if `high` is omitted. Notes ----- To sample from N evenly spaced floating-point numbers between a and b, use:: a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.) Examples -------- >>> np.random.random_integers(5) 4 # random >>> type(np.random.random_integers(5)) >>> np.random.random_integers(5, size=(3,2)) array([[5, 4], # random [3, 3], [4, 5]]) Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (*i.e.*, from the set :math:`{0, 5/8, 10/8, 15/8, 20/8}`): >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4. array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random Roll two six sided dice 1000 times and sum the results: >>> d1 = np.random.random_integers(1, 6, 1000) >>> d2 = np.random.random_integers(1, 6, 1000) >>> dsums = d1 + d2 Display results as a histogram: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(dsums, 11, density=True) >>> plt.show() randn(d0, d1, ..., dn) Return a sample (or samples) from the "standard normal" distribution. .. note:: This is a convenience function for users porting code from Matlab, and wraps `numpy.random.standard_normal`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. If positive int_like arguments are provided, `randn` generates an array of shape ``(d0, d1, ..., dn)``, filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and variance 1. A single float randomly sampled from the distribution is returned if no argument is provided. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- Z : ndarray or float A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied. See Also -------- standard_normal : Similar, but takes a tuple as its argument. normal : Also accepts mu and sigma arguments. Notes ----- For random samples from :math:`N(\mu, \sigma^2)`, use: ``sigma * np.random.randn(...) + mu`` Examples -------- >>> np.random.randn() 2.1923875335537315 # random Two-by-four array of samples from N(3, 6.25): >>> 3 + 2.5 * np.random.randn(2, 4) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random rand(d0, d1, ..., dn) Random values in a given shape. .. note:: This is a convenience function for users porting code from Matlab, and wraps `numpy.random.random_sample`. That function takes a tuple to specify the size of the output, which is consistent with other NumPy functions like `numpy.zeros` and `numpy.ones`. Create an array of the given shape and populate it with random samples from a uniform distribution over ``[0, 1)``. Parameters ---------- d0, d1, ..., dn : int, optional The dimensions of the returned array, must be non-negative. If no argument is given a single Python float is returned. Returns ------- out : ndarray, shape ``(d0, d1, ..., dn)`` Random values. See Also -------- random Examples -------- >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random uniform(low=0.0, high=1.0, size=None) Draw samples from a uniform distribution. Samples are uniformly distributed over the half-open interval ``[low, high)`` (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by `uniform`. Parameters ---------- low : float or array_like of floats, optional Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``low`` and ``high`` are both scalars. Otherwise, ``np.broadcast(low, high).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized uniform distribution. See Also -------- randint : Discrete uniform distribution, yielding integers. random_integers : Discrete uniform distribution over the closed interval ``[low, high]``. random_sample : Floats uniformly distributed over ``[0, 1)``. random : Alias for `random_sample`. rand : Convenience function that accepts dimensions as input, e.g., ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly distributed over ``[0, 1)``. Notes ----- The probability density function of the uniform distribution is .. math:: p(x) = \frac{1}{b - a} anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. If ``high`` < ``low``, the results are officially undefined and may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that inequality condition. Examples -------- Draw samples from the distribution: >>> s = np.random.uniform(-1,0,1000) All values are within the given interval: >>> np.all(s >= -1) True >>> np.all(s < 0) True Display the histogram of the samples, along with the probability density function: >>> import matplotlib.pyplot as plt >>> count, bins, ignored = plt.hist(s, 15, density=True) >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') >>> plt.show() choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ---------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a were np.arange(a) size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribution over all entries in a. Returns ------- samples : single item or ndarray The generated random samples Raises ------ ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also -------- randint, shuffle, permutation Examples -------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='>> np.random.bytes(10) ' eh\x85\x022SZ\xbf\xa4' #random randint(low, high=None, size=None, dtype='l') Return random integers from `low` (inclusive) to `high` (exclusive). Return random integers from the "discrete uniform" distribution of the specified dtype in the "half-open" interval [`low`, `high`). If `high` is None (the default), then results are from [0, `low`). Parameters ---------- low : int or array-like of ints Lowest (signed) integers to be drawn from the distribution (unless ``high=None``, in which case this parameter is one above the *highest* such integer). high : int or array-like of ints, optional If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if ``high=None``). If array-like, must contain integer values size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. dtype : dtype, optional Desired dtype of the result. All dtypes are determined by their name, i.e., 'int64', 'int', etc, so byteorder is not available and a specific precision may have different C types depending on the platform. The default value is 'np.int'. .. versionadded:: 1.11.0 Returns ------- out : int or ndarray of ints `size`-shaped array of random integers from the appropriate distribution, or a single such random int if `size` not provided. See Also -------- random.random_integers : similar to `randint`, only for the closed interval [`low`, `high`], and 1 is the lowest value if `high` is omitted. Examples -------- >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) Generate a 2 x 4 array of ints between 0 and 4, inclusive: >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]]) Generate a 1 x 3 array with 3 different upper bounds >>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random Generate a 1 by 3 array with 3 different lower bounds >>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random Generate a 2 by 4 array using broadcasting with dtype of uint8 >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8) tomaxint(size=None) Return a sample of uniformly distributed random integers in the interval [0, ``np.iinfo(np.int).max``]. The np.int type translates to the C long integer type and its precision is platform dependent. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : ndarray Drawn samples, with shape `size`. See Also -------- randint : Uniform sampling over a given half-open interval of integers. random_integers : Uniform sampling over a given closed interval of integers. Examples -------- >>> rs = np.random.RandomState() # need a RandomState object >>> rs.tomaxint((2,2,2)) array([[[1170048599, 1600360186], # random [ 739731006, 1947757578]], [[1871712945, 752307660], [1601631370, 1479324245]]]) >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int).max array([[[ True, True], [ True, True]], [[ True, True], [ True, True]]]) standard_exponential(size=None) Draw samples from the standard exponential distribution. `standard_exponential` is identical to the exponential distribution with a scale parameter of 1. Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray Drawn samples. Examples -------- Output a 3x8000 array: >>> n = np.random.standard_exponential((3, 8000)) exponential(scale=1.0, size=None) Draw samples from an exponential distribution. Its probability density function is .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}), for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter, which is the inverse of the rate parameter :math:`\lambda = 1/\beta`. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3]_. The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1]_, or the time between page requests to Wikipedia [2]_. Parameters ---------- scale : float or array_like of floats The scale parameter, :math:`\beta = 1/\lambda`. Must be non-negative. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``scale`` is a scalar. Otherwise, ``np.array(scale).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized exponential distribution. References ---------- .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001, p. 57. .. [2] Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process .. [3] Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution beta(a, b, size=None) Draw samples from a Beta distribution. The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, where the normalization, B, is the beta function, .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt. It is often seen in Bayesian inference and order statistics. Parameters ---------- a : float or array_like of floats Alpha, positive (>0). b : float or array_like of floats Beta, positive (>0). size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``a`` and ``b`` are both scalars. Otherwise, ``np.broadcast(a, b).size`` samples are drawn. Returns ------- out : ndarray or scalar Drawn samples from the parameterized beta distribution. random(size=None) Return random floats in the half-open interval [0.0, 1.0). Alias for `random_sample` to ease forward-porting to the new random API. random_sample(size=None) Return random floats in the half-open interval [0.0, 1.0). Results are from the "continuous uniform" distribution over the stated interval. To sample :math:`Unif[a, b), b > a` multiply the output of `random_sample` by `(b-a)` and add `a`:: (b - a) * random_sample() + a Parameters ---------- size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. Default is None, in which case a single value is returned. Returns ------- out : float or ndarray of floats Array of random floats of shape `size` (unless ``size=None``, in which case a single float is returned). Examples -------- >>> np.random.random_sample() 0.47108547995356098 # random >>> type(np.random.random_sample()) >>> np.random.random_sample((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random Three-by-two array of random numbers from [-5, 0): >>> 5 * np.random.random_sample((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]]) set_state(state) Set the internal state of the generator from a tuple. For use if one has reason to manually (re-)set the internal state of the bit generator used by the RandomState instance. By default, RandomState uses the "Mersenne Twister"[1]_ pseudo-random number generating algorithm. Parameters ---------- state : {tuple(str, ndarray of 624 uints, int, int, float), dict} The `state` tuple has the following items: 1. the string 'MT19937', specifying the Mersenne Twister algorithm. 2. a 1-D array of 624 unsigned integers ``keys``. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. If state is a dictionary, it is directly set using the BitGenerators `state` property. Returns ------- out : None Returns 'None' on success. See Also -------- get_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. For backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it is missing some information about the cached Gaussian value: ``state = ('MT19937', keys, pos)``. References ---------- .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator," *ACM Trans. on Modeling and Computer Simulation*, Vol. 8, No. 1, pp. 3-30, Jan. 1998. get_state() Return a tuple representing the internal state of the generator. For more details, see `set_state`. Returns ------- out : {tuple(str, ndarray of 624 uints, int, int, float), dict} The returned tuple has the following items: 1. the string 'MT19937'. 2. a 1-D array of 624 unsigned integer keys. 3. an integer ``pos``. 4. an integer ``has_gauss``. 5. a float ``cached_gaussian``. If `legacy` is False, or the BitGenerator is not NT19937, then state is returned as a dictionary. legacy : bool Flag indicating the return a legacy tuple state when the BitGenerator is MT19937. See Also -------- set_state Notes ----- `set_state` and `get_state` are not needed to work with any of the random distributions in NumPy. If the internal state is manually altered, the user should know exactly what he/she is doing. seed(self, seed=None) Reseed a legacy MT19937 BitGenerator Notes ----- This is a convenience, legacy function. The best practice is to **not** reseed a BitGenerator, rather to recreate a new one. This method is here for legacy reasons. This example demonstrates best practice. >>> from numpy.random import MT19937 >>> from numpy.random import RandomState, SeedSequence >>> rs = RandomState(MT19937(SeedSequence(123456789))) # Later, you want to restart the stream >>> rs = RandomState(MT19937(SeedSequence(987654321))) `z* *y*y*0**y*z*y*y*y*@*0*y*Є*0*y*{*}*@*0*y*@*0*y*y**z*y* z*y* z*z*y* *0*y* *0*p~*y*@*y*@*p~*y*y*@*y***y*0*y*0*y*0*y**z*y**z*y**z*y**y*y*z*y**z*y*P**z*y*`*}*y*`*}*y**y*0*y*}*y*~* *}*y*}*y***y*@*Px*`*p|*y**y*`z** A* *&p*<`*`#P* @* 0*`> *L * * * $*Ћ*@*  *  *!**@,"*p*,"`*@P*@*+"0*  *+'* *@!*@+"*+"Њ*$**,***-*@%*p*`*$P*` @*0* ***(*%*!Љ**@ *@(*,**'*(p*#`*  P*@#@*0*! *`* *@* *͓ Ј*_* *G*L* *@*#p* `*P*@*0* (*  *` **0* *&*)5Ї***ڗ* *ԗ*A *ޘp*`*P*Η@*90* *. ****** ؆* І* *****ȗ*ȗ*@ep*`(h*&`*&P*@* 0* 4 *  *  *@*** * Ѕ***|*ژ*%*)p*`*P*@*8*0*(* *** * * *֘*ܖЄ*** * *Ҙ*p* `* X* P*H*@* 0* ** *Ֆ*** Ѓ** * *@<*Θ* * * up*`*ΖX*ΖP*  @* 0*z *P*P*<**ǖ* *~Ђ*ʘ*x*r*l*l*up*u`*P*@@*p0*  *f*y *p * *kЁ*g *`*`*Ƙ***˜x*˜p*h*`*u P*f@*ؔ 0* **0*a*u *؀*Ѐ*\*j *^ *^ *V *Δ *Δ *p*Ĕ h*Ĕ `* P*W@*0*N  **I*I*#**D*] **R *** * * *x*p*@r`*P*@*; 0* *6*6*@~*"~*1~*@~*@~*y) ~*`$~*Z~*Z~*p~*,h~*,`~*X~*P~*`n @~* 8~* 0~*@b  ~*~*~*S~*}*}*}*T}*`S'}* "}*G }*}*U }*p}*`}*P}*H}*@}*`D0}*ړ (}*ړ  }*@q}*}*}*}*h|*|*|*N|*N|*7 |*#|*|*Ѝ|*'p|*H`|*HP|*8@|*B0|*"(|*" |*|*d~|*ޕ{*ޕ{*, {*<{*<{*`\{*{*{*{*{*`! {*n{*n{*V{p{*``{*X{*P{*6@{*00{*L ({*L  {*`{*{*֕z*Εz* z*C z**z**z*z*xz*xz*$xz*$pz* `z*Xz*Pz*}@z* 8z* 0z*? z*z*z*ƕz*ƕz*SSy*y*y*y* y*y*y*y*y*Jy*`xy*`py*G`y*!Xy*!Py*= @y*8y*0y*6 y*- y*- y* y*y*x*x*!x*x*x*: x*x*x*px* `x*Px*@x* N0x*" (x*"  x*K x*x*qw*jw*jw*cw* w*w*w*`A w*\w* %w*Upw*1 hw*1 `w*  Pw*Hw*@w*,6 0w* w*w*( w*v*v*@ v*/v*v*v*v* Qs*Y*P` N#@dD@`GG[*`[*P,Hu H@Q`v` *l **Úa)ԛ @)ZЊ))j))d`)<)+@)ʞb)S`)ۛ`)H)ܚg) )v )%Р )sPv)hi)K0pa)@P@W)pm@N)`s`A)_`5)+y`&)2|):  ) )~ (Ы(0(uP(U(ޞ@(@(p(@( (@(s({ h(ЋW(Ҟ~L(p`A(P>(g@:(@9(͛@9(GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55)GCC: (GNU) 4.8.2 20140120 (Red Hat 4.8.2-15)GCC: (GNU) 4.1.2 20080704 (Red Hat 4.1.2-55) @GP1f]n:?yZ$$6Y0[=P% cf{F|`w!F ,76U,XpF,.YGR7]J f[fintzm8f8ڍ8f8. [u t#`H#6#h_#s# J#(:#0N=#8[#@7#H<1#P|#X#`!#h}#t#pUI't#txy){#x-X#T'.f#c/#O3.#|y<#"E#)F#0G#7H#>I?#}Kt#M4# "Dt    GC#d#Xt# .  D tT tt ܍n} t8  '  /    ob 1Q 2X| 4_@ 8J M Tf$N ]-s j]` l#/ m^# Z^ " [#B \# ]# } ]#(| a#0D\ b"#80 cT#@, d#HQ] e#P g#X[S k#`^7 l#h(w m#p:[ q#xP r#R s#د t{# u# x#& {J#Ґ }# , #F #*_ #w #` #-x %#.  # #1 p# ^#ǥ #: 1#Y =# #' I#c #S U#(  #sq #d # #E # #C # #I _#w #](} n4 p " qd#ª r# sod  !+ 0 "(t8qd CIY= dj t_ tP | buf #obj #len #̿ #/" t# Э t#$-t #(G | #0Z | #8 | #@p ˜#H% 4 Ř  t  t 0    ~  t [   t, + 7 = tW     #:/ #p #' #6: # Y #( #0l #8/ #@ #H 4 #Pc #X #`e #h #pܱ #xT # #@ #A #m # #( # 1>  3 QD 4#n 5#w# 6# 7 7  9 4f : # ; # CM < s ? : @ " D F.4tNNt QM H`f{ @G I  Jt ( K ^Q L jO M" Y Nt 9 O o P < Q 7 R S ʍ Tag^  U^  2 u   8  9#v :`#Yu ;t# =#p( p& #get 6 #set \ #doc # #  ' ]p#y\##?z gc ^i]pqr_#ME7_#G<_#J.@_#%E_#0 "d#|b#=["#MI%# XJ#( KHP5 "Q#wbR#0=VT#8YU#@ zW^{any_`{X(a](bP\ "]5#cA#H ,dZj ?' ը  B } U "V#W1#-A.q A f "d#"V1#A  "#j#   1!q( "#j#%'# (@0O "d#\#l#!O# z(#(#,),  v|  N  ?0 f6 " gd#, h6#6 i#& j# s+ k#(UU lf(+ ",d#il-#:.#%/# !f0G<x=t#>#?hJb=\K#FL#(=M#0LN#8O6#@MIPb#HnQ, #Pd4R#XlS #`Tp2 "d#eb#H#N# #(#0ya#8!#@#Hq#P3e #Xz!#`}"#h)s( ~ " d# #6#r+# ;=REO:t"$)p "#m#m0# l#(lf#08#8 #@#H~#P\#X#Y"#` $t#hY*t#l+t#pd,#tِ-0#x ;.#?t## t#f!t#j"J###$t# P%t#$&t#(0't#,N[(t#0 )t#4!*t#8+t#<4=,t#@-t#Dy.t#H@0#PM1t#X3#`>4#hq6t#pJ7#x9t#5:#V)=#*S>#8iBt#P.D#h/E#O}F#%G#J}H#E}I#{Lt#- MP`m?at#b#h/c#O}d#%e# J}f#(E}g#05h#8Ji#@9ij#H=$k#_is qUsU#7tq#idv|#w|#x# 'z#({#0|#8l}#@~#Ht#P08#X՝?#`Q#hՋ#pQ#xHt#t#7#<m#pWt#c#Ü# )#P#%w#A#`#x#;###x#_tsq|\q#q#P #%)#XRt# ݫ#$o߫#%t#(t#,t#0(#8IU#@5#HM#PA#X#`#hM #pc ##t##o!J#t#w#q### t# "# #t#M0%#&#(#)#$id,#[   xĸttq  D͟#͟#͟#M # 0[$  A G \ c g m t v ! "d#*t#t#t#-[t#tt# ot#$o#($u#0_^#8y #@Ѹ!#Hb"#Pz(| #X)#`S*#hB+#p-#xw.#o2#3 %! ˂  :c~  PQ py"&A" F/  W  ^ i | gW 8 ʩ F + , ` h   B[ t  I m B   Q %" m[ w  '%" 5 a #" > #8 DH#lE##F##H## vAT# `#`## UBr#`##`#H#f# #  o## ?#t# W# $!!!t '$ B$t >AN$!c$ zo$t$ b+$t$!$! Y$ $!!! $ %! N(%tG%NG%M%"`XI& "Yd#s/` #MEb#/d#6i#\uk#Ymt#|ot# Ԗqt#$c'w)#(۪}#0b^#8$f*#@#H`##P=[!#X $U&tt&t&G% &t&! տ& vo&t&$! &t'! D u' :'! KF' f'!! r't'$!!!!"'x) )#.J5)#D;)#{ A)#<G)#1_M)#S)#(Y)#p_)#$e)#k)#q)#(w)#q})#e)#i#GE$)# %)#(Y&Y#_s()#̣))#**)#]0S)# /)/) $###$c$$$%I&B$z&& )) & )) &'Y':'f' *o2'*) "*#G#)) #M% *ʪP* "d##$ndt#/X$# Z$#( "#0**#8\ut#@q#H ͪ* ** jhD*/H L+ "Md#@:Nt#+O!#M;O!# P,#(enQ,#ZR,#UJS,#GT,#$aoU*# qV# W!# Y!,# Z!,#Le[,#(\+# -J++ , ,$* !!,  !7,  '0, "d#t#M;!#+!# $ndt#(/X,#0,# ,,  7,(,X( "-M # 2-#$ H-# ^-## 2-# 2-"-H-8-1^-N-) ,y!+[.ӓ!,t#r!-1#0!.8#r!/1#q!01# fm!11#(m!28#0p1!31#8xm!41#@xl!51#Hxr!61#Pc!71#X#}!81#`@}!91#hp2!:1#pp3!;1#xp4!<1#y!=o-X".L".#e" t#`" 1#d-%" f.(g/$pg#$sg#$ng/#mng#,h# (h#!Ih#"  h.O5d|/ e   d + f  B K * $% Qy,/1}0 "d#f20#L#Xd-# 5G .#HE![.#`5"#v'20ۈ(N0#Dž)}0#0H0H0/80}0H0!!!T0  0/ t#z  t# t#/0! 00 //_1 2? 9x *1)s 0#C t#  1>q1t#6t#q1#*1)gM1*\MH0+t'M,6JM-+̟M-+1M)xFMt 2*\MH0*ݸM+t'Mt-+1M)(MtD2*\MH0+t'Mt-+1M)Mo2*\M+t'M)cMt2*\M*ݸM+t'Mt).CMt2*\M+t'Mt)# g 2*,hg0 +cg .?Jg3*,hg0 */g*g/tbg+l~g+g+g+cg 03+̟g-+1g03+̟g-+1g-+̟g-+1g)<qt3/aq /bq )|qt64/aq /bq 1mroq-1iq1nq)8it4* (i*2ni*rit1keyi1posi,~i,ei) it4/obj i*/ i )i5/op1i/op2i*Hai8*vit*it, cj0v51bj51aj81xj81llbj51llaj_1llxj_+ j5+M;j/-1blj51amj1+munj1 8 _5 .46d5*!d*:d)ec6*&ec+mufc)cC6*&c* cC6*rc+muc)M:eh6*:e)hnh6/op1nh/op2nh*Hanh8*vnh806+${ht+Ga|hJ+M;}h+ ~h5-1bh51ah1)`h7/op1h/op2h*Hah8*vh80o7+$ht+GahJ+M;h+ h5-1bi51ai1)D#ff7*8eff*&ff+gf); h 9/obj h*=h*2 h*4~h*h*D=h*=ht*. ht*ht1mph2badih-+mu/xn+n;>+W+n;>+Q{nT,^Wo,So0>+ n50=+n&0=+n0=+n80>+nJ-+)o8-1valLo|1tmpMo-+1Po |);{p?>/xp+p>+W+p>+Q{pT,^q,q0>+ p50>+p0>+pJ-+qJ-1valq?1tmpq-+1q ?)(zft?/s1f/s2f*>ft+,ft+ft,g,ng0?+|bf+MEft+hf+Xf0?+f"+f"-+muft-+mugt+ju g-+1g)uf:@/duf/keyuf+vf-+{f-+1~f)XO^t@*O^*O^*dO^*O^*O^t+P^+muQ^t-+1V^.{e@*,h{e0 */{e*{e/tb{e)aNA*aN*!{aN*aN+t'bN+dN+eN,N,6JN0wA+̟oN-+1oN0A+ pN+rpN0A+1tN0A+1wN0A+̟N-+1N-+̟N-+1N)NB*N*!{N*N+t'N+N+N,2N,6J7N0B+̟N-+1N0B+ N+rN0B+1!N0B+1$N0B+̟3N-+13N-+̟4N-+14N)rlBC*rl +slU=+W+slU=+Q{tlT)3lC*l8+l5+W+l5+Q{lT)SlC*Sl|+Tl;>+W+Tl;>+Q{UlT)A2D*\2*62+Z3!+t'4,X;,ʊ?)[2t]D*j2/seq2/eq2t+mu3t.C hxD*Ϝh)24lD*4lt+5lT+W+5lT+Q{6lT36k]t3@]t3]t)*v^tS*Xv^+z^+{^+|^t,.c,6J9c0IE+'^0[E+1^0mE+1^0E+1_0E+1_0E+1_0E+1_0E+1,_0E+10_0E+11_0E+1F_0F+1^_0-F+ g_+rg_0?F+1k_0QF+1m_0oF+ v_+rv_0F+1z_0F+1|_0F+ _+r_0F+1_0F+1_0F+ _+r_0G+1_0G+1_05G+ _+r_0GG+1_0YG+1_0wG+ _+r_0G+1_0G+1_0G+ _+r_0G+1_0G+1_0G+ _+r_0 H+1_0H+1_0=H+ _+r_0OH+1_0aH+1_0H+ _+r_0H+1_0H+1_0H+ _+r_0H+1`0H+1`0I+  `+r `0I+1`0'I+1`0EI+ `+r`0WI+1`0iI+1!`0I+ *`+r*`0I+1.`0I+10`0I+ 9`+r9`0I+1=`0I+1?`0 J+ H`+rH`0J+1L`0/J+1N`0MJ+ W`+rW`0_J+1[`0qJ+1]`0J+ f`+rf`0J+1j`0J+1l`0J+ u`+ru`0J+1y`0J+1{`0K+ `+r`0%K+1`07K+1`0UK+ `+r`0gK+1`0yK+1`0K+ `+r`0K+1`0K+1`0K+ `+r`0K+1`0K+1`0L+ `+r`0-L+1`0?L+1`0]L+ `+r`0oL+1`0L+1`0L+ `+r`0L+1`0L+1`0L+ `+r`0L+1`0M+1`0#M+ `+r`05M+1a0GM+1a0eM+  a+r a0wM+1a0M+1a0M+ a+ra0M+1a0M+1 a0M+ )a+r)a0M+1-a0 N+1/a0+N+ 8a+r8a0=N+1a0mN+ Ga+rGa0N+1Ka0N+1Ma0N+ Va+rVa0N+1Za0N+1\a0N+ ea+rea0O+1ia0O+1ka03O+ ta+rta0EO+1xa0WO+1za0uO+ a+ra0O+1a0O+1a0O+ a+ra0O+1a0O+1a0O+ a+ra0 P+1a0P+1a0;P+ a+ra0MP+1a0_P+1a0}P+ a+ra0P+1a0P+1a0P+ a+ra0P+1a0P+1a0Q+ a+ra0Q+1a0%Q+1a0CQ+ a+ra0UQ+1a0gQ+1a0Q+ a+ra0Q+1a0Q+1b0Q+  b+r b0Q+1b0Q+1b0 R+ b+rb0R+1b0-R+1b0KR+ (b+r(b0]R+1,b0oR+1.b0R+1:b0R+1Fb0R+1b0R+1!c0R+̟/c-+1/c0R+̟0c-+10c-+5c-+15c)Vl^^S*^^/def^^S+8e_^+_^+6_^2badp^0|S+1g^-+̟q^-+1q^h)?dS*?d/arg?d/kw?d+mu@d+SAd)tqt0T/errq*q*q1resqt)Dc0U*c*c*ic*c1coc0+Hc+%c+c+c+c1kc1dc1ndc1nkc+muc,6d0U1pos d1i d-+̟5d-+15d.1eU*! e*<!et*ҍ"e*#e*ށ$e+C&e+'e. eV*/e*e/tbe*ٶe+Oe2badf0$V+e0V+et-+e-+1e06V+Ӷe0pV+,hf0 +f-+̟f-+1f-+̟f-+1f)rdtrW*|d*drW*6d*}d*d*2nd1keyd+d1posd+&drW+.{drW2bade,B e,~ e,ee0UW1cmpdt-+!drW-1cmpdt)ԅprtW/tprW /4@G[GwW5\H0U6t'7Xt`GG$yX8oX8vX 8aX 9eXt9pXH0:{GvbX;T|X6̟X?@61XF@GH6̟X|@GH61X4LX H-HwYAoXUAxXTBD2 H(HXCV2U@ H(HDb2Bw1 H(HME1@ H(HD1F1(H.oeZ*,hoe0 */oe*oe/tboe+l~pe+pe+pe0Z+̟we-+1we0Z+̟xe-+1xe-+̟ye-+1yeGY0HH[H ZHZH%ZH1ZWDp;[DeZ?DrZ>m[DZ ?DZI IH;Uv?0DZ ?pDZ 7XH!I "\8tX q 8aX 8kXH 9pXH0 9oX JH\;UU;T0II;Q0)c\*)Oc*c*ic+c\+vc`+6c+\uct<K"\0IXIw\H4\ H@\e HL\ DX\ Dd\) Dp\_ D|\ LXI;R0MR iPwp]N+ i O.+;T П;QU;RšU1.()U#Xc]/objXc*Xc1tpYc Pp]`IwIw ^H]H]yD]QrI];UU;TTRwIM+7XcI;J4_8coc0=Nc8nac$NHc9fc4_6,hc0 Q6c9ic6muc>^61c>I0J;U|SIk+TIz+_;U};T|;Q~;R0UI+;U|;T00)/rtc_/xr+5rtP:_@JnJw_HL_tDV_OnJ+;UU)+r_*mur*@r0_+1r-+1r=mrfa8xr!9mrZ6&r9resrV_һ: s`H_WH_>`D_T+`;T1;Q U'.+;T ;Q ʜ;R ʜS?+U],;T )ƾp8a/xp+p5+W+p5+Q{pT,^p,p0a+ ep50a+hp&0a+ip0a+mp80a+vpJ-+p8-1valp81tmpp-+1pGapJ0K(bC,aUW6aWBaWNaXZaXba>bWoaYJJabWaYJJ|bWaYJJbWaYJJbWa@JJWa?@ZaPWa?pZaS)ʺ^otc/x^o+_oT+W+_oT+Q{`oT,^p,p0c+ o50]c+o&0oc+o0c+o80c+oJ-+o8-+]+o8-1val pt1tmp p-+1 p[b0KeLeHb\c]c]cX*cF2cK>dD?c> IdDPcYKKhdDcXYKKdDbc{YKKdDtc@L&LDcYL&LdDcSL+SL!,Y&LeLqeDc Dc@Y;LeLOeZcSI\L;UsS+L_U;Lb;UsUK,;T Р)Xe/objX*X1resY1tpZ -1fa1[epLLvufHeHeMDeDe>PBfDe{LL;TUTL9,`f;Uv;T|ULW,;T|=6.gtLN`iN,hg0 N/gNgq8tbg^`g^g^\ng@6l~g/ 6ge 6g _badgGNYqMMog6g YMMg6g >g6g!>g6cg b!>g6̟g!?061g!>`9h6̟g"?61g:"I*N;Uv>yh6̟gp"?61g"IN;Us> h6̟h"@hNuN61h"YuNNh6̟h"#@NN61hE#>P-i6̟hh#?61h#TJMp,Ri;Uw;T;Q@SiM,`XNHO#Aj8oXH$9pXH0H$>i6X$?61X%>i6X<%?@61Xr%TN,j;UsQO,j;UUU>O,;Us)iKj*\iKH0* iK!*iK!*e>iK!*?piK*fiK+jK!+kK!+t'lK+nK![AjPOP%kHSj&H_j8'Hkjq'Hwj'Hj (HjA(Dj(Dj(Dj(Dj )TO,dk;U;TTO,k;U|;T~;QvTO,k;U~;Ts;QvUO,;Us;T|;Qv7j f]W)mN8ejl*Nj*N3j*NM;j?=+Nnj0+6muj+^o#jm~6j ,2bad)kY7Fl6̟*kS,@7F61*kS,IF;UsT-l;UU;TvT.+m;T ;Q};RvT.+Nm;T  ;Q};Rv;X|T'5-m;U~;T;Q ;R};Xv;Y|U3Y-;U0;T~;Q0 m 7 rt]nv,oN8e r-N& r-8p rK.8sig r.9d r.6O r-/2bad3r>pnn611r/IG;UsYM\n6̟4r/@M\614r/I\;UsT-n;U|;T T{- o;Us;T~T-!o;U|TȽ.+Fo;T ;R~Tؽ-do;Uv;T}T-|o;UvT-o;U|T.+o;T @;R~;X};YvU -;Uv;T}7hr2?rpfp@r,pAr9tmpBrbp032badir>p61grk3IX;UsY^mq6̟jr3@^m61jr3Im;UsT-@q;U|;T T{-^q;Us;T~T-vq;U|Tپ.+q;T ;R~T-q;Uv;T}T-q;UvT-q;U|T$.+r;T Ȣ;R~;X};YvU1-;Uv;T},73%fP:Q35tN&%f5NF%f5N%ft66&f668e'fk76[(f86D5)f86K*fF9_bad\fxP>1s6̟`f9?61`f9IP;UvYPPs6̟af9@PP61af:IP;UsS>P.SOP.TuP(.s;U;T~;Qs;R};X|TPT.s;UvTP(.t;U;T~;Qs;R};X1SQl.SQ.=Xt@QQA:u8oX:8vXP;8xX;Vo2NQzQX$uH2z<H2<@NQzQW2B1NQzQME1H1z<@NQzQW1@RQvQD1<a2Q0XC2S?0W2a 2Q0ME2?0D)2 =?`D62D=G2QBRz=_vH3z>H"3>H.3>?C 3 3D93?DE3?DQ3@D]3{@>vDn3@?D{3@>@vD30A?0D3yAI2R;Uv?`D3A?D3A[64:ABwHH4~CHT4CH`4DZl4Zx4F4ֿF4YֿDwHH4bDH`4DHT4D@ֿWl4Wx4F4ֿX4U.+;T ;QT.mw;U};Tv;Qw;R0U".+;T @;Q[5:yD+xH5gED5EYWrxH5F@WrW5Ur.+;T ;QvUOp];Tv[6y2FxH6GH6GH*6HD66H>xE6H*6HH6H?W66S+O5;UUU.;TsPh6w0yCz6UC6TE6C66@Z6TD6^IP6wyC 7UC!7TE-7C77@Zp7TDz7IP76wyH7IW7C77O6.+;T ;QU)|!g)z/o!g/j!g1r"g-+1%g[:6J{H:JH:KC::C::C::byG tg{Hz;KHyK? DzKYZxzDzLIx;UsUZ.;Uv;TsUG.;UT[k;=L{H};LH;L>@ j{D;LI;UUBP;MiH^;MU.+;T p;Qs)myjt{/oyj/jyj/vyj1rzjt-+1}j[;GM|H; NH;WNH<NC#<#<C<<C < <b{p j|H{NH{OH{qO?p D{OY|D{OI;UsU /;Uv;Ts;Q|U.;UT[t<P~H<xPW<W<W<X<X<@W-=D9=PVt<0n~H< Q@0D<CQD<hQD<hQX<X<> p~D<QY[d}D<QYdi~D<RYi{%~D<%RY{D~D=^R@W=U!,;UsU|;UsY~DF=RI;UsU$_;UU[Z=RHl=/SWv=W=W=X=X=@~W>D>hSVZ=UOoVHl=S@UDv=SD=TD=TX=X=> @D=CTYD=}TYD=TY0D=TY0?D=U@?IW>UG!,;UsUQ~;UsYUzD,>OUIs;UsU_;UU[@>PRSrUGHR>V\\>]h>]t>F>RX>> eD>bWY~RR*W>OR0/;UUYRRID>W@RRD>XYRR݁D>BXD>yXYRRD>XIR;UsSR_UR@>;Us@RSHR>X@RSW\>Wh>Wt>F>RX>U S,;T [? YH@WYW@C??@D@YYȂD+@YI;UsTH/;U1;TUUW,;Ts[:@PYBHL@ZHX@"[Hd@n[Hp@[H|@[D@?\D@\Y&D@Z]I ;UsY&EHL@}]HX@]Hd@}]Hp@]H|@]@&EW@W@S5l.S>.T-!;UU;TQUa/;U|;T};Qs)$8^tm+]{:^|+;^|[SP ^H&S^H2S_]>SWJSWVSXbSVB[`^.@[D`U_ZT  9(S`/Si/U,;T ȣ@H2S_H&S_@D>S_DJS`DVST`XbS>P DoS`I;Uv> ׅD}S`? DS`I;U|T-;Us;T 3T/;UvT.,;U|T-:@i;Us;Tv;Q C;R 8;X1TP:@;Us;Tv;Q S;R J;X1Ts:@;Us;Tv;Q f;R Z;X1U:@;Us;Tv;Q v;R m;X0)v)s~/b)s+_*s1x+s0o+ 6s5+M;7s/-+1ds7PiaT8objibN+ic6qiDe+ski9mizeb iH1Nf? D;~gDGg> VDVhDbhU}/;Uv> yDpuiI;U|T/;UvU/;U|b:@ iH:iH:iH:iH:iH:jY&D:k@D:kY/`D:k@"/D;k> ƉD ;l> D;OlJW;UsSzl.S.L;UUO)z;UUc:0c:1c:1T.+;T (S+S/S.U.+;T P[VrlNHVmHVmHVpnHVnHVnZVZVZVD WoDWuoX#WF+WF3WF;WdVYQDHWoS0SG0S{00S+YDVWo@DcWoS0S70Se00Sn+V5 eH5pH5ApTX.;U;Tw;Q};R~T.+@;T ;QS.+GUfpHUqDUrFUdUdUHUr> ?DU s? DVAs>P DVsI+;U|TN0;U0Tf0;Uv;T|;Q0UX.+;T ;Qv> aDqVs? D~V tet,;T UW,;Tv[0U SzS?tH>UtHVUtHbUuHnUIuDzUuDUudJUUuS.+;T @;QU;wR[0TS(UuHBTAwHNTxHZTxDrTyD}T6yDTlyDTyDT&zDTzDTzDT {WT]TDTB{FTTdfTSS/TT0 ;U;T};Q0;R~;X|;Y0;w0ST/SdT/TT0C;U TU ^g;U;Tv;R}U U ^;U;T~;Q|;R}[S0UV{|HS,}HS}DSO~DS~dSSYU/JyU;Us;T};Q0SU/SU/SU+TU0H;U eUf0`;Q0UV,;T PI6wH[6 O;UU7׹dBNd8argdR6mud6dՀY U61d1I;UsTN0l;U1U;U|;Ts)>d*d/argd)Rpd*pd/argpd+6qd+muqd+rd`[ VoWTIHVH b]V dHБރHđ`? DܑDJDSsV/JV;U};T|SV/SV/SW+T'W0;U UfW,;T TV";TH;Q1S WUGW"\;TH;Q1GI6pWXC[6UaW@ GeEБEđ?@ Zܑ\ZVZV[?XZH?>H?WH*?D6?~WB?FN?@ZFV?X> Dc?֊Do?dD{?D?YpYY^D?ND?یYZ@ZD?:SZ0SZ 1UZ 1;UX? H*?pH?H?? W6?WB?XN?XV?? W?D?Db:_(Y g>HL_? DV_֎UiZ+;UsYGYpYmD?IdY;UsUY%1;Us;TT;Qv[7Z4[9TH7H7KW7bp]ZPgf)H]KH]?PD]JZ;UU;TvS[M+S&[l.U2[y;Uvc7U)t1kt*,h1k0 *a1kt+X2k+M3k+03k+3k+5k0ؖ+ >k+r>k-+sDk-+1Gk)sok0,*Cokt+)spk01posqkt)8Zkt*Zkq1*Zkt*CZkt+)[kt1mid[kt1end[kt)ik0V*1k*akt*kt*k+ipk0+mk+1k2badk0+1k0+1k09+̟k-+1k-+̟k-+1k.]}k͘*C}kt*)s}k01pos~kt1i~kt+kq101tmpk0-+1k-+` ktfik@[aN1kԒNaktRNktzNk6ipk06k4_i6,hk0 2badkbh[kH?DWa,[ukHV)HJ_H>?Db˚DnDz>-6̟k?61kI^;U|>]6̟kB?P61kxbp\kHHHHZ?Dɗ'D՗2DX>DԡI,`;U~Y\]D VI];U}Y_`JD@_`D+Tx\H1b;U|T\H1z;U}T\a1;U0;T0;Q0;R0;X0;w(~;w0};w8vT<_1;U ;T};Q ;RsU`H1;U|bV]0k/HpHd1?0W|DƣDb,0]kHVڤHJIH>?DbDnDzYW``ޜD2Uj`1;T s $ &4$Y``DU@``DxUa1;U bT]kLHrHfG?D~ܩD`DDD$V@]]:k̝H@H@MH@H@>`Z b*Z˖ b*S`.bYV^TkH1ZRH%ZHZ¯H Z?DDeZ?DrZ4>0DZj?`DZ?DZֱ?DZ >#DٖBYtaaDS6`.SKap]Uaa2;US]'2SL^2SR`@2S][k+T+\z+|;U;T|;R0U>\c2;Us)F3>*\3H0*A3+t'4+6+7,T,6JY0+1F0!+̟U-+1U-+̟V-+1V7Aa2dŲN\|NPNv6A6t'sg'%`bgX'bgʊ+a> ݡ^ *^}@?p6x6/Yccq6PUc.;UsT8c{2;UsTc{2;UsUcT;Us;T *;Q@;R};X Úba,HH?DDǟTDӟFߟfcFGbY.bGbpD!IGb;UsYmccDD@mccDDIc;UsJ"bڢ;T| ;Rs;XvUc͘;U ХV0U`bb&HJUgHnUHbUºHVUgH>U@`bbWzUZURUb.+;T @;Q ÚUb͘;U Х;Q !;R њ ǣ )R?-*\-H0+.+t'/+1+2,q,6Jv07+1@0I+1O0[+1R0m+1U0+1X01tmpY-+1Y0+̟r-+1r0ߤ+̟s-+1s-+̟w-+1w="@dgN\"»6t'#aǣBd&H٣»?DѼDDD XFsfbp]Nd@<H]H]?@D]Jdd;UvSgM+bp]pdp>PH]H] ?pD]xJdA;UsSgM+>oW*Ie;Usbp]dKH]H]?D]/SfM+bp]dMH]gH]?D] Jd;UvS*fM+>P0W<Ie;Uv>OWNIe;Us>rD`WIe;Uv>DrIe;Us>W?WIf;U|>@D@eeDIe;UvYffGDĤB@ffDѤBIf;UvYggDe@ggDIg;UsTe2;TsT>e2;UvT`e2ߨ;U|;TsTsf͘;U Uf͘;U ){((ɩ*\((H0*A((+t')(++(+,(,Q(,6JV(0+1C(0+̟R(-+1R(-+̟S(-+1S(7E,'gjTN\':N'$Nv'6A'6t''Gg'(hgX(igʊ (h>ph^' *^}'@?6x'6'/Y j:j6($U"j.;UsTui{2;UsTi{2,;UsU]jT;Us;T *;Q@;R|;X ܚbh!(H:[H.~?DFDR+D^uFjiFrhYshhDIh;UsYiiED@iiDIi;UsJghw;Tv;Rs;X0;w0;w 0;w80Ui͘;U (V0Uhh($HJU>HnUbHbUHVU>H>U@hhWzUZURUh.+;T @;Q ܚU2i͘;U (;Q ;R њ)*\H0*A+t'+!+",G,6JL0ĭ+190+̟H-+1H-+̟I-+1I7jfmN\dNNNv6A6t'qg'pkgXkgʊj>@^ *^}@?6x6/Yl m46NUl.;UsTEl{2L;UsTl{2d;UsU-mT;Us;T *;Q@;R|;X bTj̰HrHf?D~DUDFxlF\kYCk\k3D"I\k;UsYll}DɭE@llD֭EIl;UsJ7k;Tv;Rs;X0;w0;w 0;w80Ul͘;U XV0Upkk\HJUhHnUHbUHVUhH>U@pkkWzUZURUk.+;T @;Q Ul͘;U X;Q ;R њ)M2Y,9*\Y,H0*AY,+t'Z,+\,+],,,,6J,0+1t,0+̟,-+1,-+̟,-+1,7=#,pm*p̵N\#,N#,Nv#,R6A$,b6t'%,g'K,XngXM,ngʊQ,m>س^), *^}*,@?`6x-,6.,/UYool69,Uo.;UsT0o{2;UsTo{2;UsUoT;Us;T *;Q@;R};X bmR, HH?DDD±DαFڱ^oF>nY%n>nkDoI>n;UsYeo~oD@eo~oDI~o;UsJn;T|;Rs;X0;w0;w 0;w80;wvUo͘;U V0UXnnL,HJUHnUHbUHVUH>U4@XnnWzUZURUn.+;T @;Q Un͘;U ;Q ;R њ)[+*\[+H0*q[+*A[++t'\++^++_+,+,6J+0H+1v+0h+̟+-+1+-+̟+-+1+7]+0pXs`3N\+SN+Nv+6q+6A+ 6t'+jg'M+`qgXO+qgʊS+p>6^#+3 *^}$+C?06x'+6(+/YSrxrɷ69+IUfr.;U}TDq.;U}TU@`qqWzUZURUq.+;T @;Q KUq͘;U ;Q {;R њ C  S );, *\,H0*q,*A,+t',+,+,,-,6J-0Ϻ+1,0+̟--+1--+̟--+1-7-,`sv>N\,1N,Nv,6q,6A,6t',Hg',tgX, ugʊ,s>^,3 *^},C?6x,6,/YuuP6,'Uu.;U}Ttt.h;U}Tlu{2;U}UTvT;U};T *;Q;R~;X bSsP,H}JHqmHe?PDD:DFuFKtY2tKtYDºIKt;UsYuuDԺ*@uuD*Iu;UsJ&tݽ;T|;Rs;X1;w2;w 0;w80;wvUv͘;U V0Utt,HJUMHnUqHbUHVUH>U@ttWzUZURUt.+;T @;Q U#u͘;U ;Q O;R њ)e5)s*\5)H0*W5)*A5)+t'6)+8)+9),^),6Jc)06+1P)0V+̟_)-+1_)-+̟`)-+1`)7a(vy!N\(N(Nv(6W(h6A(6t'(&g'')wgX));xgʊ-)v>$^(3 *^}(C?6x)^6)/Yxx6)Ux.;U}Tw.;U}Tx{2;U}UyT;U};T *;Q;R~;X bv .)aH(HؾKH̾n? DDDbF yF{wYbw{wD)I{w;UsYy+y D;@y+yDHI+y;UsJVwD;T|;Rs;X1;w1;w 0;w80;wvUJy͘;U  V0Uwx()HJU+HnUOHbUHVUH>U@wxWzUZURUx.+;T @;Q USx͘;U  ;Q =;R њ)<-*\-H0*-*A-+t'-+-+-,.,6J .0+1-0+̟.-+1.-+̟ .-+1 .7-y|N\-N-Nv-_6-F6A-6t'-g'-zgX-k{gʊ-z>P^-3 @*^}-C?6x-<6-/Y{|6-U{.;U}Tz.6;U}T{{2N;U}U|T;U};T @*;Q;R~;X +b!z-HKH?)H3L?DWDcDo@F{;|FzYzz'DIz;UsYB|[|qD@B|[|DI[|;UsJz;T|;Rs;X1;w2;w 0;w80;wvUz|͘;U PV0UzD{-XHJU HnU-HbUdHVUH>U@zD{WzUZURUD{.+;T @;Q +U{͘;U P;Q ;R њ)U\.A*\\.H0*\.*A\.+t'].+_.+`.,.,6J.0+1w.0$+̟.-+1.-+̟.-+1.7hs.|N\.N.Nv.=6.$6A.6t' .g'N. ~gXP.~gʊT.E}> ^$.3 `*^}%.C?p6x(.6)./xY86:.U&.;U}T~.;U}T~{2;U}UT;U};T `*;Q;R~;X 2bE}U./HHH*?DvDD FkF}Y}}D I};UsYrD @rD I;UsJ};T|;Rs;X1;w1;w 0;w80;wvU͘;U xV0U ~t~O.HJU HnU HbUB HVUf H>U @ ~t~WzUZURUt~.+;T @;Q 2U~͘;U x;Q a;R њ).*\.H0*.*A.+t'.+.+.,/,6J/0k+1.0+̟/-+1/-+̟/-+1/7W. H VN\. N.j Nv.6.6A.a6t'.g'.PgX.ˁgʊ.u>Y^.3 *^}.C?@6x.6./VYCh6.UV.;U}T4.;U}T,{2;U}UT;U};T *;Q;R~;X :bu.HH H?D%TD1D=FIFQ Y D^I ;UsY?Dp@D}I;UsJy;T|;Rs;X1;w2;w 0;w80;wvUڂ͘;U V0UP.&HJUHnUHbU HVUDH>Uh@PWzUZURU.+;T @;Q :U͘;U ;Q ;R њ)+*\+H0*q+*G+*A++t'+++++, ,,6J,0+1+0+̟,-+1,-+̟,-+1,7vf+P ;N\+N+HNv+6q+6G+?6A+6t'+g'+gX+gʊ+>"^+; *^}+K?6x+J6+/YAgo6+UT.;U}Tx.;U}T{{2;U}T*.;U}T;U @;T2;Q3;R1UކT;U};T *;Q;R~;X @bVP+hH:H]HtHh?PDDbDFӅFOY6OD/IO;UsYڅDR@څDRI;UsJ*K;T|;Rs;X2;w2;w 1;w80;wvU͘;U ȧV0Uڄ+ HJUuHnUHbUHVUH>U@ڄDzUDDU|Uڄ.+;T @;Q @;Y U͘;U ȧ;Q ;R њ K  [ )!2 *\!2H0*!2*!2*A!2+t'"2+$2+%2,J2,6JO20+1<20+̟K2-+1K2-+̟L2-+1L27>1ʊ@N\1N1S Nv1!61!61J"6A1"6t'1#g'2PgX2gʊ2r>'^1; @*^}1K?6x1U#61/#Y't61"$U.;U}T8.;U}T;{2;U}T.;U}TS;U U;T2;Q3;R1UT;U};T @*;Q;R~;X Ub[r2mHE$Hh$Hy$Hm$?D%Dm%D%FFYD:&I;UsYD]&@D]&I;UsJP;T|;Rs;X2;w2;w 2;w80;wvU҉͘;U V0UP2HJU&HnU&HbU&HVU&H>U#'@PDzUO'DU'U.+;T @;Q U;Y Uو͘;U ;Q ;R њ),'*\'H0*'*'*A'+t'(+*++,P,6JU0+1B0+̟Q-+1Q-+̟R-+1R7|Њ'%N\)N^*Nv+6+6U,6A,6t'(-g'gXgʊ2>@ ^; *^}K?6x`-6/-YY6-.Uԍ.;U}T.q;U}T{2;U}T.;U}T;U Z;T2;Q3;R1U^T;U};T *;Q;R~;X Zb@2 RHvP.Hjs.H^.HR.?D/Dx/D/FSFϋYϋDE0Iϋ;UsYZsDh0@ZsDh0Is;UsJ5;T|;Rs;X2;w2;w 2;w80;wvU͘;U (V0UZHJU0HnU0HbU0HVU 1H>U.1@ZDzUZ1DU1UZ.+;T @;Q Z;Y U͘;U (;Q W;R њ)#`-*\`-H0*`-*L`-*A`-+t'a-+c-+d-,-,6J-0+1{-0+̟--+1--+̟--+1-7L-J1 N\-3N-i4Nv-56-66L-`66A-66t'-37g'R-ЏgXT-AgʊX-> ^-;  *^}-K?P 6x"-k76#-/7Y>6<-88U.;U}T.V;U}T{2n;U}Tj.;U}Tӑ;U _;T2;Q3;R1UT;U};T  *;Q;R~;X _b% Y-6H[[8HO~8HC8H78? Dg%9Ds9D9FFYvDP:I;UsY3Ds:@3Ds:I3;UsJj;T| ;Rs;X2;w0;w 1;w80;wvUR͘;U PV0UЏS-HJU:HnU:HbU:HVU;H>U9;@ЏDzUe;DU;U.+;T @;Q _;Y UY͘;U P;Q ;R њ)jI**\I*H0*I**+I**AI*+t'J*+L*+M*,r*,6Jw*0+1d*0+̟s*-+1s*-+̟t*-+1t*7 )P ;N\)=N)t>Nv)%?6* @6+*k@6A*@6t'*>Ag';*gX=*gʊA*> ^*; @*^}*K?!6x *vA6 */AYAg"6%*CBUT.;U}Tx.:;U}T{{2R;U}T*.j;U}T;U s;T2;Q3;R1UޕT;U};T @*;Q;R~;X sb P!B*H?fBH3BH'BHB?P!DK0CDWCDcCFoӔFwOY6OzD[DIO;UsYڔD~D@ڔD~DI;UsJ*;T|;Rs;X2;w2;w 2;w80;wvU͘;U V0Uړ<*HJUDHnUDHbUDHVU EH>UDE@ړDzUpEDUEUړ.+;T @;Q s;Y U͘;U ;Q ;R њ)EP**\*H0***+**G**A*+t'*+*+*,+,6J +0+1*0+̟+-+1+-+̟+-+1+7O*EE>N\*GN*HNv*0I6*J6+*vJ6G*J6A*^K6t'*Kg'*0gX*gʊ*>!^*> `*^}*N?!6x*K6*/LYJo#6*LU].;U}T"{2;;U}T.S;U}T1.k;U}TV.;U}TT;U};T `*;Q;R;X hTߙ;U h;T3;Q4;R2U;U h;T3;Q4;R1b!*kH0LH$MHUMH MHM?!D<MDHZNDTNF`FhYDu'OI;UsY̘DJO@̘DJOI̘;UsJN;T|;Rs;X3;w2;w 2;w81;wvU͘;U V0U0z*HJUmOHnUOHbUOHVUOH>UP@0zDzU "^\13  *^}]1C@?p"6xa1V6b1/^VYKpZ6u1VU^.;UsY16o1VU.;UsT4{2;UsUOT;Us;T  *;Q@;R};X uV0U1HJUVHnUVHbUHWHVUVH>UlW@DzUWDUWU.+;T @;Q u;Y b^H"1HWH|XHp;X?"DXDXD/YFFޛYśޛ'DYIޛ;UsYÜqDY@ÜDYIÜ;UsJ;T| ;Rs;X1;w1;w 0;w80;wvU͘;U بU0͘;U ب;Q ;R њ)[x*\H0**A+t'++,,6J0s+10+̟-+1-+̟-+173!fàYN\f[Nf\Nvf7]6gm^6Ah^6t'i+_g'gXXgʊ>"^m3 *^}nC@?0#6xrc_6s/_Y6_U.;UsYGq-6`UZ.;UsTt{2E;UsUT;Us;T *;Q@;R};X V0U1$HJU;`HnU_`HbU`HVU;`H>U`@1DzU`DU3aU1.+;T @;Q ;Y bp#aH!VaHyaH a?p#D-aD9FbDEbFQFYYDfcI;UsY Dx6c@D6cI;UsJD;T|;Rs;X1;w1;w 0;w80;wvU"͘;U Up͘;U ;Q ;R њ))V*\)H0*W)*)*A)+t')+)+),),6J)0+1)09+̟)-+1)-+̟)-+1)7t)Р}YcWN\t)LeNt) fNvt)f6Wu)g6v)Ph6Aw)h6t'x)#ig')3gX)gʊ)>#Q^|);  *^}})K?#6x)[i6)/iY6)jU.;U}Yƣ6)%jU٣.;U}T{2;U}T.;U}UIT;U};T  *;Q;R~;X %V0U3)HJUHjHnUljHbUjHVUjH>Uj@3WzUZURU.+;T @;Q %b0$)'HkH:kHrkHk?0$DkD?lDlFSFYpD mI;UsYZsD/m@ZsD+/mIs;UsJd ;T|;Rs;X2;w1;w 1;w80;wvU͘;U 8Uǡ͘;U 8;Q ;R њ)(*\(H0*d(*(*A(+t'(+(+(,(,6J(0+1(0+̟(-+1(-+̟(-+1(72*g( RmRN\g( oNg(oNvg(p6dh(q6i(9r6Aj(r6t'k( sg'(gX(gʊ(>`$9^o(; *^}p(K?$6xu(Ds6v(/sYCdp6(sUV.;UsYm6(sU.;UsY6(tU.;UsT{2;UsUT;Us;T *;Q;R~;X bW$(H?tHbtHutHit?$D uDguDuFFYiD4vI;UsY(DWv@DWvI;UsJ]b;T|;Rs;X2;w0;w 1;w80;wvU9͘;U `V0U("HJUzvHnUvHbUvHVUzvH>U w@DzU8wDUrwU.+;T @;Q ;Y U3͘;U `;Q ;R њ)7/*\/H0*d/*/*A/+t'/+/+/,!0,6J&00+100+̟"0-+1"0-+̟#0-+1#07H/ ЫwLN\/LyN/ zNv/z6d/|6/||6A/|6t'/O}g'/OgX/égʊ/> %4^/; *^}/K?p%6x/}6//}Yk6/~U.;UsY>6/<~U0.;UsYGm6/_~UZ.;UsTK{2;UsUT;Us;T *;Q;R~;X ~bR%/yH~H|~Hp~Hd?%DLDDFF)Y)DwI);UsYʪ#D@ʪDIʪ;UsJ\;T| ;Rs;X2;w0;w 1;w80;wvU͘;U V0UO/HJUHnUHbU+HVUH>UO@ODzU{DUU.+;T @;Q ~;Y U۩͘;U ;Q | ;R њ)!0*\0H0*d0*0*A0+t'0+0+0,0,6J00+100+̟0-+10-+̟0-+107Z70Ы؁F N\70N70cNv706d80`6906A:036t';0g'y0gX{0sgʊ0C>%. ^?0; *^}@0K?0&6xE0ʇ6F0/&YĮe6U0\U.;UsYͮ6[0U.;UsY6a0U .;UsT{2;UsULT;Us;T *;Q;R~;X bLCp&0s HňHvHj H^C?p&DDD7FZF٬Y٬ DI٬;UsYaz D݊@azD݊Iz;UsJV ;T| ;Rs;X2;w0;w 1;w80;wvU͘;U V0ULz0 HJUHnU$HbUnHVUH>U@LDzUDUUL.+;T @;Q ;Y U͘;U ;Q ;R њ)#i/ *\i/H0*di/*i/*Ai/+t'j/+l/+m/,/,6J/0 +1/0 +̟/-+1/-+̟/-+1/7-/0@N\/ҍN/Nv/Z6d/6/6A/v6t'/Ցg'[/gX]/#gʊa/>&(^!/; *^}"/K?&6x'/ 6(//iYSt_ 67/Uf.;UsY} 6=/’U.;UsYͲ 6C/U.;UsT{2 ;UsUT;Us;T *;Q;R~;X bF 0'b/mH| Hp +Hd cHX ?0'D ғD 0D zF  F YpD I;UsY*D  @*D  I*;UsJdP;T| ;Rs;X2;w0;w 1;w80;wvUI͘;U V0U\/HJUCHnUgHbUHVUCH>UՕ@DzUDU;U.+;T @;Q ;Y U;͘;U ;Q ' ;R њ)%^1*\1H0*1*Q1*A1+t'1+1+1,?1,6JD10+1110+̟@1-+1@1-+̟A1-+1A17a00^;N\0N0Nv0606Q0E6A06t'0g'1_gX 1Ӵgʊ1>`'"^0; *^}0K?'6x0P60/Y$Y60U.;UsY-N60U@.;UsYW}60(Uj.;UsT[{2;UsUT;Us;T *;Q;R~;X b@'1hHvKHjnH^HRɝ?'DDsDFF9Y 9D@I9;UsYڵDc@ڵDcIڵ;UsJK;T|;Rs;X2;w0;w 1;w80;wvU͘;U V0U_ 1 HJUHnUHbUHVUH>U@_DzUDDU~U.+;T @;Q ;Y U͘;U ;Q B ;R њ7jYIN3jNINNINGNvIN 6!{JNϤ6KN6t'LNb@ (XNH@bHAH A? (D#AD/AWD;AfXGAFOA>p(Z|A l*ZA l*S 5U+6;T l*;Q l*bp]?(rNH]H]?(D]VJ_;UvSιM+>(DAIR;UvbSv )uNHSתHS3HS? )DSDSGS/Jx;Us;T|;Q}S/S?/T0;U TYf0;Us;T|;Q}Sl+U,;T Y߷*WAI;Us>)\DA?)DAǬI%;Us>)DA?)DA5IĹ;UvUF͘;U >)6̟[NX?)61[NXI;U|> *+6̟\Nͭ?p*61\NIo;U}T64U;Us;T ;Q1U̸2;Us7 #M@LNMNMNvM6!{Mz6M*6t'MbA^*NHB H B_HB?*D,BCD8BDDBXPBFXBO>+ZB l*ZB l*Si5U6;T l*;Q l*bp]@+N H]\H]?@+D]J;UvS.M+>+0DBLI;UvbSֺ+"N.HSHS޸HS:?+DSDSS/J;Us;T|;Q}S/S/TK0;U Tf0;Us;T|;Q}S̼+U,;T Y?OYWBIO;Us> ,DB;? ,DBrI;Us>P,DB?P,DBI$;UvU͘;U >,6̟N?,61NI;U|>,Z6̟ Nx?-61 NIϻ;U}T 64;Us;T ͛;Q1U,2;Us)x*\H0+t'+++,,6J0 +10+10;+̟-+10[+̟-+1-+̟-+17tm!N\NBY6t'a@-H?@-D޽D=DDGXFbp]-H]H]ݿ?-D]?JŽs;UUSM+bS- HScHSHS?-DS>DSS /JF;Uv;T~;QsSN/S/TJf07 ;Uv;T~;QsS+T,c ;T U0;U > . WI;UvYy DI;Us>P. W ?P.W-I*;Uv>.*!D@?.DMPI:;UsSֽ.T2O!;UsU͘;U 8)3hX"*\H0*A+t'+++,,6J0!+10!+10"+̟-+10;"+̟-+1-+̟-+17[j Wg'N\j=Nj@Nvj6Ak6t'l/g'pgXgʊb>.#^p *^}q@?P/6xtg6u/Yb#6Uu.;UvT{2#;UvTZ{2#;UvU#T;Uv;T *;Q@;R|;X ԛbm!b/&H!VH!?/D!@D!D!D!X!F!Sbp]b0$H]kH]?0D]BJ$;UsSJM+bS@0%HSHSHS?@0DShDSS/J.%;Uv;T~;QsS /S%/Tf0l%;Uv;T~;QsS+T,%;T U0;U >0%W!I:;UvYCS&D! IS;Us>0-&W"?0W "I;Uv>1_&D "0?@1D-"zI;UsS.T2&;Us;Q|U͘;U hV0Up7'HJUHnUHbU HVUH>U/@pWzUZURU.+;T @;Q ԛU͘;U h;Q N;R њ)ow'(*\'H0+0(+gZ)+t'*+,+-+.,,6J0'+1?0(+1@0(+1R0%(+1W07(+1X0W(+̟-+10w(+̟-+10(+̟-+10(+̟-+1-+̟-+179`)[.N\[NB6t'ag'bp1 Hy'[?p1D'.D'D'D'^D' D'_X'F'bp]o18)H]DH]z?1D]J);UUS;M+bS1=*HSHS\HS?1DSDSS/Jg*;Uv;T~;QsS/S/Sr+T0*;U Tf0*;Uv;T~;QsU$,;T >`2 +W'I;Uv>20+D'I;Us>2S+D(I;Uvb72S,H78H7?2W7bp]@3gf+H]8H]?@3D])J+;Us;TvSM+SCl.UOy;Uvc7s>32,W(I ;U|>3U,D*(tI;Usb?3b,H@H??3D@OT 3,;U};TvS+T W,,;TvUG;Uvc?}> 4 -D(?`4D(I;U}Yzj-D(*@D(MI;U|>4-D<(p?4DI(pI;Uv>4-D\(?4Di(I;UsY.D|(@D(5I;UvS.T2=.;UsTYT.T.;U1T;rq.;Tv;Q1T3N0.;U1TMN0.;U3T͘.;U U.;U}7pRd0QX1NRdNERd[NJRd[6Sdq6muSd,jdbS 5gdO0HSRHSHS!? 5DSDSS/J/;Us;Tv;Q0S/S?/T00;U Tf0%0;Us;Tv;Q0S+U2,;T >p5y061hdKI;Uv>5061idI;Us>5C1^\dC@a"\]6]dHL\H@\H4\a?6DX\aDd\Dp\D|\J,1;Tw;Q2II;Q2;R0Y1^VdC@U;Tw;Q2UkN0;U2)D&2*\&H0*!{&+t'&+&+&t+ &+ǻ &+ѻ &,_&,6Je&0E2+'&-1tmp*&-+1*&0e2+̟.&-+1.&0w2+11&02+1O&02+1P&02+̟`&-+1`&02+̟a&-+1a&-+̟b&-+1b&=%`9:N\%,N%Nv%6!{%26t'%b1@6%9H1H1v?@6D1iD1D1D13D1D1ZX2F2bp]6!&84H]E]?6W]J)4;UsSM+>6q4D2?7W)2?7W62I ;Usb@7-&5HHmb27do5HБHđq?7DܑDDSG/Jh 5;U~;T}Sp/SE/S3+T0R5;U U,;T T5;U|;T;Q1T5;U|;T}U["\;U|;T;Q1> 86DJ2? 8DW2>I:;U}Y36Dj2tI;U|bp]P8H&r6H]E]?P8W]SM+bS8M&p7HSHSHS_?8DSDSS</Ja6;U|;T~;QsSi/S%/Tqf0'7;U|;T~;QsT0F7;U S+U,;T >87W|2I;U|Y7D2MI;Us> 97D2p? 9D2pI;U|>P9"8D2?9D2I;UsbI69-&M9H[6b 9Ge9HБ[Hđ?9DܑDsDS /JA8;U};T0SI/S/T08;U S+U,;T T89;Us;T0;Q0U|;UsS.T2x9;Us;QvU͘;U >0:96̟%+?0:61%+I;UvT{29;U|U64;U|;T ۛ;Q0)X%w;*\%H0*!{%+t'%+%+%t+%+ǻ%+ѻ%,%,6J%0:+%-1tmp%-+1%0:+̟%-+1%0:+1%0;+1%0;+1%0:;+̟%-+1%0Z;+̟%-+1%-+̟%-+1%=r%wBN\r%jNr%ZNvr%6!{s%p6t't% b: p:z%BH2:BH&:?p:D>:DJ:ADV:Db:q Dn: Dz: X:F:Pbp]6:%<H]E]?:W]J\<;UsSM+>;<D:>?@;W:?@;W:I;Usbp;%Q>HHb;d=HБ@Hđ?;DܑDTDS/J=;U~;T}S/S/S+T!0=;U Up,;T Tb>;U|;T;Q1T0>;U|;T}U"\;U|;T;Q1>P<>D:2?P<D:|I;U}YRp>D:Ih;U|bp]p<%>H]E]?<W]SM+bS<%?HS HSTHS?<DSDSBS/Jh?;U|;T~;QsS /S/Tf0?;U|;T~;QsTP0?;U Se+U,;T > =@W:I;U|Y=P=@D ;IM;Us>P=o@D;?P=D,;I;U|>=@D?;?=DL;It;UsbI6=%AH[6Pb >GeAHБHđ? >DܑUDD S/J2A;U};T0S/S%/TJ0kA;U Sz+U,;T T7A;Us;T0;Q0U6|;UsS.T2A;Us;QvUF͘;U >`>TB6̟}%i?`>61}%iI;UvTk{2lB;U|U64;U|;T S;Q0)HE*\H0*0+i+ݸ+t'+t+t+t+ǻ+ѻ+ۻ++1+t,,+,aJ,G,6J0C+10C+1%0C+1;0C+1H0C+1`0C+1n0C+1r0D+1t0D+10)D+10;D+10MD+10_D+10qD+10D+̟-+10D+̟-+10D+̟-+10D+̟-+1-+̟-+1)DygtPE/objyg*yg*yg1tpzg 7BVXN\N06t'#aB>HB@#HBP'?>DBA-DBQ1DB[3DB3DB4DB:5DC5DCQ:DC=D)C>D5C?WACXMCFUC/F]CFeC@FmC0b:>8GH:R?H:R?H:R?H:R?H:>@YFD ; CI;U|;T0Y%GD:^C@D:CY 0_GD:C@ 0D;CU)zc:0c:0c:0b?% ?:aIH*?CH?EH?^E? ?D6?FWB?XN?XV?>?HH*?qFH?FH?F??W6?WB?XN?XV???W?D?Gb:_?ghHHL_KG??DV_GU+;U~YHD?GI;U~Uw%1;Uv;Q3??Dc?GDo?@HD{?HD?IY@`ID?PID?IY0ID?IS0TD 1HI;UvUc 1;U>@@IDvDJ?@@DDgJI;Uv>p@IDDJ?@DDJI;Us>@IDD/K?ADDxKI;U~>0A)JDDK?ADD LI?;UvYsXJDC@LI;U}>AwJWCI;Uvb:A]KH:cLH:cLH:cLH:cLH:MY<`JD ;OI];U|;T0Y*KD:LP@D:pPY0@dKD:P@0@D;PUe)zc:0c:0c:0>0BKWCIZ;Usb:`BkLH:PH:PH:PH:QH:RY LD ;TI;U|;T1YZLD:)U@D:MUYLD:pU@D;UU)zc:0c:0c:0>BLWCIj;U~b:BoMH:UH:UH:UH:VH:gWY3ZPMD ;YIW;U|;T2Y MD:WY@ D:{YYH`MD:Y@H`D;YUU)zc:0c:0c:0>0CNWCIz;U~>`C*NDCYI;Usbp]CNH]ZH]Z?CD]\JvN;UvSM+bSCuOHS ]HS]HSE^?CDS^DS^S/JAN;U|;Q0SI/Su/TEf0,O;U|;Q0T0KO;U S+U,;T >@DOW.DIK;U|>pDOW@DI`;Usbp]DPH]3_H]i_?DD]`JO;UvSM+bSDPHS.aHSbHSfb?DDSGcDScS /J/~P;Us;Q0S7/S/Su+TUf0P;Us;Q0Tw0P;U U,;T >pEQWRDI;UsbbnERHbc?EDcdDc7eDc7eX*cF2c>FZRD?ceYPUQDbcLfYQDcpfYQDPcfYQDtcf@DcfYDRDcgS+U!,;U|YRDc6gDclg>FRDcgI;U~T_R;U|Ub;U~U,;T РVDUSHEDgH9D9hH-Dh@DPDhU&3;U|>FxSDzC/iI;U}>FSWdDI#;U|bEGSH8EeiH,EiH E j?GDDE@jJS;QvSF@2Y=ETDDxj@=DDjI8;U}b:PGVUH:jH:jH:jH:2kH:kYTD ;lI;U|;T3YPhTD:l@PhD:"mY2UD:Em@D;imU)zc:0c:0c:0>GuUW DIz;U}b:GVH:mH:mH:mH:nH:tnY#JUD ;oIG;U|;T4Yh(VD:mo@hD:oYbVD:o@D;oU)zc:0c:0c:0> HVWDI;U}VD/ WHEDoH9D3pH-Dip@/DPDpU'&3;U|Y;WDCpI;U}T0͘ZW;U S_TsNW;U}S.T{2W;Uv;QsS.T2W;Us;Q~Tu2W;Us;Q~T2X;Uv;QsTD3)X;U|T]3AX;UsSTNfX;U}Sc+T /X;Uv;Q}Te /X;Uv;Q}S+SUN;U}P3`w}YH3pC 4TD4&qYq>YD 4\qD*4q?PHE 4E3?PHW4a3PHqE3H3q[4{q#ZH4rC44Y!;YH4rE4U9,;T TF3Z;U|Um.+;T @)qtnZ*Dq*(Jq1iq1nq-1tq[%;{Fs[H7;tHC;uVSq[H TovHTvHSv@D#TovO3;UU;TTV#Z,q[HAZwH5Zdw@,DMZwDWZw@DbZ0xBSqH TSxHTwxHSx@D#TxU3;UsO>/;UU;TT7!'itFx]6,h)i0 y6D*izb%;hH,i\HC;9zH7;ozUnZ;Us>H]6-iz6 X-izY\613izI;UsY9]6̟4i4{@614iW{I;U}@6̟5iz{@615i{I;U|SRk+)6ht]*Dh*(Jh1ih1nh[;`{^H;$}C;;D;}V] Ch^H]~H]>~@ CD]t~D]~B%;-:hHC;~H7;U:nZ;UsB%;JOhHC;'H7;`OOnZ;TT)2qt$_+q+1q-+fqm){s]t?_,}])E%[tZ_,2[)6[tu_,n])p]t_,])Wjt_*j*j1obj2badj0_+1j-+̟j-+1j)v]t`+],]04`+1]0F`+1]0X`+1]0j`+1]-+̟]-+1])]t`+],]0`+1]-+̟]-+1])C]toa+]+],^0 a+1 ^02a+1^0Ra+̟^-+1^-+̟^-+1^)Vtc+t'Vt+V+V+V+ǻVt+ѻV+ۻV+V+V,XV,V,|V,V,6JV0b+&hV0 0Fb+̟V-+1V0fb+̟V-+1V0b+̟V-+1V-+1V0b+̟V-+1V0b+̟V-+1V0b+̟V-+1V-+̟V-+1V.ygc*,hg0 */g*g/tbg+cg 0mc+g0c+g-+g)-tc1stt++0c+10c+1-+1hD`!FHDӀ]E]EWEX'EX/E>HqHD?HDEXDEWEX'EF/E\V^=^e@=Z^}Z _}Y=8eZ_}T.5-e;U};T;Q ;Rv;X D;Y|U=Y-;U0;T};Q1T5-le;Uv;T4;Q ;R3;X7Su3U5-;U|;T4;Q V$_R^g@RX6_VxWRt]DfHWSi3S3T3)f;R0S3S3T4ef;a 1T4f;a 1?T4f;a 1:0yE>T-04f;U0TG04f;U1TgH4f;U #;T0;Q0U04;U Y<BgDR?IDSY gDmoD'`I>;UsYoD9`)I;UsYkzoDK`LIz;UsYSdoD]`oIb;UsYd|DpDk`@d|Dx`Iw;UsT4cp;U Tkp;Us;T ;Q h;R `;X1TJ4p;U Tkp;Us;T ;Q ;R ;X1T4q;U T8kYq;Us;T ;Q Y;R ;X1T4xq;U aTkq;Us;T a;Q g;R`;X2T*kq;Us;T a;Q m;R H ;X1T~k1r;Us;T a;Q v;R 0;X1Tknr;Us;T a;Q ;RP;X2U#k;Us;T a;Q ;R;X1V`|^7t@|D`ȤX`YsD`8I;UsY]sD`n@D`I;UsT4|s;U XTms;Us;T ;Q *;R Tms;Us;T ;Q *;R Uam;Us;T ;Q ؍*;R b`I^y?ID`ȥD`sXaY-<tDaVI<;UsYtD%ayI;UsY(uD7a@(DDaI#;UsYEF]uDSaB@EFD`aBI F;UsT4|u;U XT ou;Us;T ;Q Ѝ*;R TRou;Us;T Μ;Q *;R PTo9v;Us;T ;Q *;R Toxv;Us;T  ;Q *;R T*ov;Us;T ;Q *;R Trov;Us;T ;Q *;R To5w;Us;T !;Q *;R (Totw;Us;T 2;Q *;R (TH4w;U ITow;Us;T g;Q x*;R HTox;Us;T t;Q p*;R HT$oPx;Us;T ;Q h*;R HTlox;Us;T ;Q `*;R HTox;Us;T ;Q X*;R HTo y;Us;T ;Q P*;R HTDoLy;Us;T ;Q H*;R HToy;Us;T ;Q @*;R HUo;Us;T ɝ;Q 8*;R HYyDNEeI;UvY<L&zD`EIL;UvYUzDrEI;UvYrzDEΨI;UvYzDEI;UvY zDEI ;UsY{DE7I;UsYBQ@{DEZIQ;UsYQao{DE}Ia;UvboaaJ:_?JDaDaũDa^DaDahZa}Za}Za}DaFaXaFaFbF bB>PJˀDb#VcV|HDclH8cH,cH c#@WOcb2Jg|E2?JD2D>J|D`czY|Drc@DcVcfV~@fDcUDcDcԮ>Ke}Dc1I;U~YJc}DcgI^;Uv>0K}DcI;UvT4};U ԝT-};U~;T T",~;T TJ,9~;T Tm-V~;Uv;T0T,u~;T T.+~;T Ȱ;Q T.+~;T ;Q=T?.+~;T hUd.+;T Y,DbI;UvYvD+b@D8b,I;UsYDKbO@DXbI;U|Y Dkb@DxbްI;U}Sk+T ]1c;T3͘P;U ,TJuf};U;T};Q};R}STN;UvUu;Ts;Q|;R}c 3YDb@ Db$Y,?DbG@ ,DbjY,ByDb@6BDbUa͘;U ,YfvŁD2FӱIv;UvYDR @DR,I;UsYP`>DEOI`;UvY mDFrI ;UvY eւZF r*Z F r*SC5Ub6;T r*;Q r*YDDFI;UsY<nZVF r*ZbF r*S5U96;T r*;Q r*YDtFI;UsỸDF:I;UvYb5ZF r*ZF r*S@5U_6;T r*;Q r*YdDFI;UvY,DFI,;UsY,ZF r*ZF r*Sd5U6;T r*;Q r*Y+DFI;UsYBRZD G%IR;UvYRÅZG pr*Z(G `r*S5U6;T pr*;Q `r*Y&D:GnI&;UvYgv!DLGIv;UsYvZ^G Pr*ZjG @r*S5U6;T Pr*;Q @r*Y:ID|GڴII;UsYDGI;UvYQZG 0r*ZG  r*S5U6;T 0r*;Q  r*Y`pDGYIp;UvYDG|I;UsYZG r*ZG r*S5U6;T r*;Q r*YGDHŵI;UsYvDHI;UvY@߈Z$H q*Z0H q*S5U=6;T q*;Q q*YDBHDI;UvY =DTHgI ;UsY dZfH q*ZrH q*SB5Ua6;T q*;Q q*YՉDHI;UsY 0DHI0;UvY0mZH q*ZH q*Sh5U6;T q*;Q q*YDH/I;UvYETˊDHRIT;UsYT4ZH q*ZH q*S5U6;T q*;Q q*Y ' cDII' ;UsYj z DIѷIz ;UvYz  Z,I pq*Z8I `q*S 5U 6;T pq*;Q `q*Y> N *DJIIN ;UvY  YD\I=I ;UsY  ŒZnI Pq*ZzI @q*S 5U 6;T Pq*;Q @q*Yb q DIIq ;UsY   DII ;UvY  ZI 0q*ZI  q*S 5U 6;T 0q*;Q  q*Y  DII ;UvY  DI(I ;UsY B PZI q*ZI q*S 5U? 6;T q*;Q q*Y  DJqI ;UsY D"JI;UvYhZ4J p*Z@J p*SF5Ue6;T p*;Q p*YFDRJI;UvY#2uDdJI2;UsY2ޏZvJ p*ZJ p*Sj5U6;T p*;Q p*Y DJ\I;UsYHX<DJIX;UvYXZJ p*ZJ p*S5U6;T p*;Q p*Y,ԐDJۺI,;UvYm|DJI|;UsY|lZJ p*ZK p*S5U6;T p*;Q p*Y@ODKGIO;UsYʑD*K}I;UvY3ZI;UvYݖZL o*ZL o*S5U6;T o*;Q o*YDT DLIT;UvY;DLI;UsYZ M o*ZM o*S5U6;T o*;Q o*YhwӗD(MIw;UsYD:M)I;UvY$kZLM po*ZXM `o*S5U!6;T po*;Q `o*YDjMrI;UvYɘD|MI;UsYH2ZM Po*ZM @o*S&5UE6;T Po*;Q @o*YaDM޿I;UsYDMI;UvYnZM 0o*ZM  o*SL5Uk6;T 0o*;Q  o*Y(DM]I;UvY)8WDNI8;UsY8ZN o*ZN o*Sp5U6;T o*;Q o*Y D0NI ;UsYN ^ DBNI^ ;UvY^  ZTN n*Z`N n*S 5U 6;T n*;Q n*Y"!2!DrNHI2!;UvYs!!DNkI!;UsY!!NZN n*ZN n*S!5U!6;T n*;Q n*YF"U"}DNIU";UsY""DNI";UvY"#ZN n*ZN n*S"5U"6;T n*;Q n*Yl#|#DDN3I|#;UvY##sDOVI#;UsY#&$ܝZO n*Z&O n*S$5U#$6;T n*;Q n*Y$$ D8OI$;UsY$$:DJOI$;UvY$L%Z\O pn*ZhO `n*S*%5UI%6;T pn*;Q `n*Y%%ҞDzOI%;UvY&&DOAI&;UsY&p&jZO Pn*ZO @n*SN&5Um&6;T Pn*;Q @n*Y&&DOI&;UsY,'<'ȟDOI<';UvY<''1ZO 0n*ZO  n*St'5U'6;T 0n*;Q  n*Y((`DO I(;UvYQ(`(DP,I`(;UsY`((Z"P n*Z.P n*S(5U(6;T n*;Q n*Y$)3)'D@PuI3);UsYv))VDRPI);UvY))ZdP m*ZpP m*S)5U)6;T m*;Q m*YJ*Z*DPIZ*;UvY**DPI*;UsY*+ZP m*ZP m*S*5U+6;T m*;Q m*Yn+}+DP`I}+;UsY++DPI+;UvY+*,MZP m*ZP m*S,5U',6;T m*;Q m*Y,,|DQI,;UvY,,DQI,;UsY,N-Z*Q m*Z6Q m*S,-5UK-6;T m*;Q m*Y--CDHQKI-;UsY ..rDZQI.;UvY.t.ۤZlQ pm*ZxQ `m*SR.5Uq.6;T pm*;Q `m*Y.. DQI.;UvY//>/9DQI>/;UsY>//ZQ Pm*ZQ @m*Sv/5U/6;T Pm*;Q @m*Y00ѥDQ6I0;UsYT0d0DQlId0;UvYd00iZQ 0m*ZQ  m*S05U06;T 0m*;Q  m*Y(181DRI81;UvYy11ǦD RI1;UsY110Z2R m*Z>R m*S15U16;T m*;Q m*YL2[2_DPR!I[2;UsY22DbRI2;UvY53E3DtR IE3;UvY33DR-I3;UvY99DRPI9;UvYEEJDRsIE;UvYEEDR@EEDRIE;UvTN0;U0T3Ϩ;U š;T0T3;U š;T0TL. ;UsT4*;U T4I;U T'5h;T S@2T͘;U ?SA+T\,;T ?T8;rܩ;T0;Q0T}2;QvT;r;T0;Q0T2(;QvT\;rD;T0;Q0T2\;QvTT.s;U1TC;r;Tv;Q1T7;UsT2;QvT*T.ת;U1T;r;Ts;Q1T7 ;UvT2$;QsT2<;QsS4T#2a;QvSl(5SI6T2;QvTp];UvTwp]ë;UsT2۫;QvTp];UvT2 ;QsTp]#;UsT2;;QvTp]S;UvT<2k;QsT p];UsT_2;QvT1p];UvT2ˬ;QsTUp];UsT2;QvT{p];UvT2+;QsTp]C;UsT2[;QvTp]s;UvT2;QsTp];UsT= 2;QvT p]ӭ;UvTd 2;QsT3 p];UsT 2;QvTY p]3;UvT 2K;QsT} p]c;UsT 2{;QvTp];UvT2;QsTp]î;UsT2ۮ;QvTp];UvTB2 ;QsTp]#;UsTe2;;QvT7p]S;UvT2k;QsT[p];UsT2;QvTp];UvT2˯;QsTp];UsT2;QvTp];UvT 2+;QsTp]C;UsTC2[;QvTp]s;UvTj2;QsT9p];UsT2;QvT_p]Ӱ;UvT2;QsTp];UsT2;QvTp]3;UvT2K;QsTp]c;UsT! 2{;QvT p];UvTH!2;QsT"p]ñ;UsTk"2۱;QvT=#p];UvT#2 ;QsTa$p]#;UsT$2;;QvT%p]S;UvT%2k;QsT&p];UsT&2;QvT'p];UvT&(2˲;QsT(p];UsTI)2;QvT*p];UvTp*2+;QsT?+p]C;UsT+2[;QvTe,p]s;UvT,2;QsT-p];UsT-2;QvT.p]ӳ;UvT/2;QsT/p];UsT'02;QvT0p]3;UvTN12K;QsT2p]c;UsTq22{;QvT2=5;U b*;T0T32;QvTZ3=5۴;U `b*;T0T32;QvT3T. ;U3T92#;QvT9_5;;U,T:2S;UvT]:2k;UvT:2;UvT:2;UvT&;2;UvTi;2˵;UvT;2;UvT;2;UvT2<2;UvTu<2+;UvT<2C;UvT<2[;UvT>=2s;UvT=2;UvT=2;UvT>2;UvTJ>2Ӷ;UvT>2;UvT>2;UvT?2;UvTV?23;UvT?2K;UvT?2c;UvT@2{;UvTb@2;UvT@2;UvT@2÷;UvT+A2۷;UvTnA2;UvTA2 ;UvTA2#;UvT7B2;;UvTzB2S;UvTB2k;UvTC2;UvTCC2;UvTC2;UvTC2˸;UvT D2;UvTOD2;UvTD2;UvTD2+;UvTE2C;UvT[E2[;UvUE2;QvU,;T `)h*\H0*_+i+t'++t+t+ǻ+ѻ+ۻ++,,,6J0Y+10w+ +r0+10+10+10ͺ1tmp-+10ߺ+10+10+180+1=05+̟-+10U+̟-+10u+̟-+10+̟-+10+̟-+10ջ+̟-+10+̟-+1-+̟-+1=vN\vNvlNvvI6_w6t'x0g'gX"gʊ>`K^| p*^}}?K6xh6/YF6 U.;UsTA{2^;UsT{2v;UsUDT;Us;T p*;Q;Rv;X lb0LHXH?0LD8DùDϹD۹WD1DD [DD#DX/F7_F?bp]$LH]@H]v?LD]SM+b?^L7H@H?-?LD@vTi 3;Us;TS+TW,;TUG;Uc?sb?MH*?H?H??MD6?WB?XN?XV?>pM7Dc?Do?=D{?D?YPpܿD?MD?YD?S 0T\ 1 ;U~U{ 1;U?MH*?H?RH?u?MW6?WB?XN?XV??MW?D?b:_MgHL_ ?MDV_gU+;UYD?U~%1;U~;Q3> N*DLI;U~bxDPNzHDL?PNDDqDDSDDSS04>NDҺ+I;U~>NDaI;U~b:_nN'HL_?NDV_eU+;Uvb? O2H@H?? OD@7T 3[;Us;T}S+TW,;T}U G;U}c?sb?`O47H@H??`OD@%T 3;Us;T}S+T+W,;T}UG;U}c?sb?O6H@H??OD@T 3;U;T}Se+TW,;T}UG;U}c?>ODsIJ;Ub?TP9H@H??PD@NT_ 3I;Us;T}S>+TfW,n;T}UG;U}c?sb?PP;+H@H? ?PPD@UT 3;U;TS+TW, ;TUG;Uc?>PNDI:;Ub?PFH@H?\?PD@T 3;Us;TS+TW,;TUG;Uc?sb? QHH@H?]? QD@T 3C;Us;T|S+TCW,h;T|UG;U|c?s>`QDڻ?QDuI;UsY{D@{DI;UvYLD@D'I;U~>Q~D:;?RDGqI;U>0RDZ?`RDgI;U>RDzA?RDwI;U}>RD? SDb:_@PSKHL_?PSDV_U-+;Uv>SZ^ c*Zj c*S5U16;T c*;Q c*bp]SH]H]?SD]mJ;U~SM+>S&D|I;U~bS THSHSNHS? TDS DSfS/J#;U;Q0S+/S%/Tf0;U;Q0S+T,;T U0;U >T5WI;U>TTWI ;U~>TD? UDI;UvT! /;Us;Q~S>4T\ /;Us;Q~T:N0;U5T͘;U T.;UsT.5;UT~.M;UsT.e;UsT.};UsTG.;UsT.;UsU.;UV0USHJUHnU HbU@HVUH>Ud@WzUZURU.+;T @;Q lU:͘;U ;Q;R њ)y^*\H0*0+t'+++,,6J 0+-1tmp-+10:+̟-+10L+10^+10~+̟-+1-+̟-+17`t^FN\N06t'^aPUHH?PUDDKDXDFFbp]UH]uH]?UD] J;UUSM+>UDX?UW?UW I;Us> V!D? VD,I;Uv>`VDD? I{;U|YBSsDQD IS;U}bVHg H' bVdqHБ] Hđ ?VDܑ Dg D S/J;U~;T}S/SE/T0G;U S&+UA,;T T[;Us;Tw;Q1T;Us;T}UV"\;Us;Tw;Q1>VD ?VDC I;U|T(.(;U|;Tv;Q}U͘;U  )b*\H0*]O+t'+++t+ǻt+ѻ,_,6Je0+ +r0+10 +10+1#0J+<-1tmp?-+1?0j+̟C-+1C0|+1F0+1G0+1R0+̟`-+1`-+̟a-+1a=M` f 4N\YNSNv06]O6t'_g'gXgʊ> W~^ `*^}?W6x6/Y+6OU.;UsT*{2);UsT{2A;UsUT;Us;T `*;Q;Rv;X vbFWuHdHX?WDpD|DDDfDXF>PXVZ b*Z b*T6H;T b*;Q b*S5>XyDI;Us>XD{I;Uvbp]-X6H]6H]l?XD]SM+> YD!?PYW.?PYW;I;U|>YNDO#?YD\mI*;U>YqDoI;Us>YDI ;UvYD5b/ ZBHXHbc`ZdHБfHđ?`ZDܑ9 D D Sx/JP;U;TS/S/SE+T`,;T U0;U T;U|;T;Q1T8;U|;TU "\;U|;T;Q1YGD'!I;UsYAQDJ!@AQDJ!IQ;UsYQtDm!@ZtD!Io;UvTw5;Us;TvT.;Us;T;QJ3;U~T͘R;U PSUN;UsV0UcHJU!HnU!HbU"HVU!H>U2"@cWzUZURUc.+;T @;Q vU͘;U P;Q;R њ7;  ^"N $+ |6t' %6 8&6 '6 B)+ǻ t+ѻ |,E g6JK " >ZQ^   `i*^r  Pi*SC5U6;T `i*;Q Pi*bp]k Z H]+H]+?ZD]v,J ;UsS/M+> [61 ,I ;Usb P[ 5HV-H.b [dHБ.Hđ.?[Dܑ=/D/D0S /J q;Uv;T|S /S /Sh+T0;U U,;T T ;U};T|T";U};T@;Q1U"\;U};T@;Q1>\_61 >0IZ ;Uvb:_a 0\ HL_0?0\DV_/1U +;Us>p\61 o1Ij ;UsbZ= \ Hl=2?\Dv=2D=3D=3X=X=>]D=3Y  JD=4Y`  iD=@4Y  D=y4Y  D=4@  W>U !,;U|U~;U|bBC p] 5ETC?p]D`C4DlC5DxC5S 04bp] ]/ H]I5H]5?]D]V6J ;U|SLM+bS ]4 HS6HS6HSG7?]DS7DS7S/ /JT ;Us;T};QvS\ /S /TQ0@;U Tf0d;Us;T};QvS+U,;T >`^+16 Iz ;UsY  617 58I ;Uv>^*6̟F X8?^61F 8I ;Us>^j6̟H 8?^61H 9I;Uv> _6̟G D9? _61G D9I;Us>P_6 g9?_1tmp ?_+1 I^;U}>_86̟ 9?_61 9I;U~S* +S .T 2j;UvTD ͘;U xU.;Uv;T~;Q|)ˀd>*\d>H0*d>*Ad>+e>+t'f>+h>+i>,>,6J>02+1>0R+̟>-+1>0r+̟>-+1>-+̟>-+1>7F:%>z9N\%>;N%><Nv%>=6&>o>6A'> ?6t'(>?g'V>0gXX>gʊ\>3>_>^,>3 p*^}->C@?@`6x0>?61>/'@Y2W6B>p@UE.;U|T.;U|T{2;U|UFT;U|;T p*;Q@;R};X {b3`]>H@H@H@?`DRADAD8BDBXX>`D%CI;UsYDsD@DJDI;Uv>aCD7mD?aDDDI;UsJz;Tv ;Rs;X1;Y0;w4;w(0;w0T4;UvT͘;U ;T >;Q ;R њU ͘;U V0U0W>yHJUDHnUDHbU"EHVUFEH>UjE@0WzUZURU.+;T @;Q {U͘;U ;Q ;R њ)m`C;*\C;H0*C;*AC;+D;+t'E;+G;+H;,y;,6J~;01+1^;0Q+̟z;-+1z;0q+̟{;-+1{;-+̟;-+1;7b(;EN\;MGN;MHNv;'I6;J6A;J6t';0Kg'5;gX7;Kgʊ;;>0a=^ ;3  *^} ;C@?a6x;hK6;/KY6!;LU.;U|T.;U|T{2;U|UT;U|;T  *;Q@;R};X ba<;H2LHULHL?aDLDcMDMD\NXX> bD$VOI;UsYlDrO@lDOI;Uv>PbBD6 P?PbDCCPI;UsJEy;Tv ;Rs;X1;Y0;w6;w(0;w0Tc4;UvTO͘;U в;T j;;Q I ;R њU͘;U вV0U$6;xHJUfPHnUPHbUPHVUPH>U Q@$WzUZURU$.+;T @;Q Uc͘;U в;Q  ;R њ)m:*\:H0*:*A:+:+t':+:+:,:,6J:00+1:0P+̟:-+1:0p+̟:-+1:-+̟:-+1:7&x: 5QN\x:RNx:SNvx:T6y:U6Az:HV6t'{:Vg':pgX:gʊ:s>b<^:3 *^}:C@?b6x:W6:/eWYr6:WU.;U|TY.;U|T[{2;U|UT;U|;T *;Q@;R};X bs0c:HWHWH+X?0cDXDYDvYDYXX>pcD#ZI*;UsY 5Dq>[@ 5D~[I0;Uv>cAD5[?cDB[I+;UsJx;Tv ;Rs;X1;Y0;w7;w(0;w0T4;UvT͘;U ;T :;Q  ;R њUJ͘;U V0Up:wHJU\HnU)\HbU`\HVU\H>U\@pWzUZURU.+;T @;Q U͘;U ;Q ;R њ)<+:*\+:H0*+:*A+:+,:+t'-:+/:+0:,a:,6Jf:0/+1F:0O+̟b:-+1b:0o+̟c:-+1c:-+̟g:-+1g:7]9j\N\9O^N9b_Nv9?`69a6A9&b6t'9bg':gX:gʊ#:>c]^93 *^}9C@?0d6x9b69/AcY6:wcU.;UsY 6:cU.;UsT{2!;UsU6T;Us;T *;Q@;R|;X V0U_:HJUcHnUcHbU+dHVUcH>UOd@_DzU{dDUdU_.+;T @;Q ;Y bpd$:HdHdH2e?pdDeD fD}fDgX X>dD"gI;UsYMvDpEh@MvD}hIq;Uv>dD4h?dDAhI^;UsJ*<;Tv ;Rs;X1;Y0;w:;w(0;w0TD4T;UvT}͘s;U (U͘;U (;T R:;Q ;R њU͘;U (;Q | ;R њ)س9*\9H0* 9*9*A9+9+t'9+9+9,9,6J90o+190+̟9-+190+̟9-+19-+̟9-+197 Q9p# i[N\Q9jNQ9kNvQ9l6 R9m6S9n6AT9n6t'U9Aog'9 gX9A!gʊ9>e^Y9; *^}Z9K?pe6x]9yo6^9/oY"# 6w9FpU".;U|T .8;U|T!{2P;U|T".h;U|T-#;U ;T2;Q3;R1Ux#T;U|;T *;Q;R};X be9HipHpHpHp?eDLqD)qD52rDArXMXU>eeDbsI!;UsYp  Ds@p  DDtI ;Uv> fDtgt? fDtI";UsJI ;Tv;Rs;X2;Y0;w2;w(4;w0Tg 41;UvTO"͘k;U P;T 9;Q z ;R њU"͘;U PV0U !9+HJUtHnUtHbUuHVU@uH>Udu@ !DzUuDUuU!.+;T @;Q ;Y UY!͘;U P;Q . ;R њ)< D*\ H0+t' + + + +ǻ +ѻ , ,6J0+ -1tmp -+1 0+̟ -+1 01+1 0_+ -1tmp -+1 0+̟ -+1 0+1 0+1 0+1 0+1 0+̟ -+1 0+̟ -+1 0'+̟ -+1 -+̟-+1=_v #B,umN\ =w6t'  ya[#Pf Hm=w?PfDyYyDyD;{D}D3DXF)bp]#f OH]|H]?fD]J#@;U}S)M+>fD̓?fW?fWI&;Usb$ g HbH:bY$gdHБHđ?gDܑtDDSm$/J$#;U|;TvS$/S&/T+0\;U SU++Up+,;T T';U;T;Q1T=);U;TvUH+"\;U;T;Q1>gDb?gDIJ';Uv>h>D$I&;Ubp]$0h H]wH]?0hD]S1*M+b%`h HHGbH%hdHБHđ?hDܑHDDS]%/J~% ;U;T}S%/S&/Sb*+T}*,f;T U*0;U To';T;Q1T*);T}U)"\;T;Q1>0i D6I?`iWC?`iWPI*';Uv>i?Dd?iDq܌IZ';U}>i^WI ';U>jDI';U~>0jDnI;';U|YO&_&DI_&;UsbI6'`j H[6Ǎb'jGeHБHđp?jDܑ̎DDqS'/J'd;U|;T0S(/SE(/Sz++T+0;U U#,,;T TW(;Us;T0;Q0U+|;Usb\(j _H͏Hhb(0kdHБHđ?0kDܑCDDS(/J(;U};TS(/S)/T+0;U S++U,,;T T) ;Uv;T;Q1T+>;Uv;TU:,"\;Uv;T;Q1>pkD?kDAI);Us>kD w?lDI);UvY*,* D@*,*DI'*;U|T&.1;U~;T};QT8&2O;U|;TsU)͘;U )p tZ *\ H0*]O +r +v_ +$ +t' t+ t+ t+ +ǻ +ѻ +ۻ , ,aJ$ ,6J 0E+  +r 0s+ -1tmp -+1 0+̟ -+1 0+1 0+  +r 0+ -1tmp -+1 0 +̟ -+1 0# +1 0Q + -1tmp -+1 0q +̟ -+1 0 +1 0 +1 0 +10 0 +1\ 0 +1 0 +1 0 +̟ -+1 0 +̟ -+1 0= +̟ -+1 -+̟ -+1 )\et /o\e/n\e1r]e-+1he)wOe /oOe/nOe=R[ tP, <=N\[ 0N[ \Nv[ 6]O\ ^t'] tSg' `.gX .gʊ ,>0l_ ^a  *^}b ?l6xe Ǚ6f /#YQ2{2 6q Ud2.;UvT0{2 ;UvTE2{2" ;UvU;T;Uv;T  *;Q;R};X bm,l DHH ?lD#DDDNDWDDMD~DȩF7F,F61bZ ,Pm Hv JHl ?PmW b ,mce H H 7ap],mVeH]H]7?mD]wJ, ;UvS2M+Y,, W T2, ;T S2.>mD bp]-n: xH]H]?nD]J6-i;UvS1M+>@nD Zbp]-pn H]H]Ư?pnD][J-;UvS42M+>nD >n+D" ? oD/ LIz0;Uv>Po]D> ?oDK I/;U|>oZ, l*Z8 l*Tu86;T l*;Q l*S95bI6v/o H[6b/@pGeHБJHđ?@pDܑDbDѳS//J/O;U};T0S//S0/S:+T:0;U U:,;T T0;U|;T0;Q0U:|;U|>p DI0;UY11;D =I1;Us>pZ l*Z l*S 65U,66;T l*;Q l*bI63p H[6`bJ30qGeHБHđ]?0qDܑDDbSc3/J3);U};T0S3/S4/TD:0b;U S}:+U:,;T T4;U;T0;Q0Uf:|;U>qD I4;Ubp]3q EH]H]P?qD]J46;U|S8M+>q~D( }? rW5 ? rWB I4;U}>PrDV ?PrDc I4;U~>rDv 3I4;U>rD iI4;Uvb5r \HHyb25 sdHБHđ? sDܑADDSK5/:q5;U;TvSy5/S5/T;0;U SJ;+Ue;,;T T5;U};T;Q1T#;;;U};TvU=;"\;U};T;Q1>`sDp?sD?sDbX6s HܼHOb6tdHБHđ?tDܑ=DsDϾS6/:6-;U|;T}S6/S7/TF70f;U Sp7+U7,;T T57;U;T;Q1Tf7;U;T}U|;"\;U;T;Q1Y67=DF@67D }I7;U}Y77D @77D ׿I7;U>PtDJ?tDW0?tDd0I.:;U|b8t )HHb8tdHБHHđ?tDܑD#DS8/J9c;U|;T}S9/SU9/T~90;U S9+U9,;T Tm9;U;T;Q1T9;U;T}U:"\;U;T;Q1Y59P9sDx@59P9DIJ9;U}TQ--;U|;T Th--;U|;T J-;UsT61͘;U S{1T1N;UsS1+UO4.;U;T~;QvV0U`.. HJUHnU3HbUjHVUH>U@`..WzUZURU..+;T @;Q U.͘;U ;Qa;R њ)G*\GH0*ZG!+ElH+t'I+K+L+M+ǻN+ѻO+ۻP,,6J0+1{0+ +r0+10+10+10+10'+10U+-1tmp-+10u+̟-+10+10+10+-1tmp-+10+̟-+10+10 +10++̟-+10K+̟-+10k+̟-+10+̟-+10+̟-+1-+̟-+1[C<H],HC HCWCDCX DFD`<bt<!<0u8,H<?0u\<]<]<X<X<>uD<sYpAzAD<YAAD=YAAD<<YAAD<`@AAW=UA!,;UTUSE|;UTb`<u@+H!H?uD-D9DEiDQD]Di~Du2DXF]@bp]`< vl H]H]? vD]xJ< ;UsS`EM+>`v3 DIz@;Uv>v Z  d*Z d*T`F6 ;T  d*;Q d*SF5bp]=v H] H]B?vD]J6= ;UvSEM+>w!DI@;Uv>@w1!WI@;U|bSr=pw/"HSEHSHS?pwDSlDSS=/J=!;U~;T|;QsS=/S@/TGf0!;U~;T|;QsTJG0";U SYG+UxG,;T >wN"WI@;U~>xq"D$I@;Usbp]=@x"H]mH]?@xD]qJ >";U|SGM+>x"WI@;U|>x$#D,?xW9?xWFI@;Us>yV#DZ?yDgOI:A;Uv>Pyy#DzI@;U~bp]>y#H]yH]?yD]jJ>#;U|SDM+>y#DI A;U|>y0$D8? zW? zWI*A;Usb ?Pz%HH}bA?zd.%HБHđH?zDܑDD#SV?/Jw?$;U~;TvS?/SeA/TG0%;U SG+UG,;T TBR%;U|;T;Q1TDp%;U|;TvUH"\;U|;T;Q1>z%Dl?zDIJA;Uv> {%DIA;U|b7?P{\'H7"H7"H/8"H#8nH8"H 8"H7"H7H7?P{D;8LXF8>{?'DO8D[8Wg8Ds8'>{'D8pD8>{&D8?{D8IZA;UvT?.&;U}U@x4;Tv>0|('D8;ID@;UsI1@;U~;TsUD.+;T @YM@]@'D^I]@;U~>`|'DP?|D]IB;U~>|'Dp?|D}JIB;Us> }!(D?P}DIB;UvY;BRBk(D@@BRBDIRB;U|bB})H2Hb3C}di)HБHđ5?}Dܑ~DD#SGC/JiC);U~;TvSqC/SC/TH0?);U SH+UH,;T TC);Us;Tw;Q1TwH);Us;TvUH"\;Us;Tw;Q1bI6C}*H[6YbC ~Ge*HБHđ? ~Dܑ$DmDSD/J%D[*;U|;T0S-D/SeD/T3H0*;U SHH+UcH,;T TwD*;Us;T0;Q0UH|;Us>P~'+D?P~DqID;U~S<.T<.L+;UvT<2j+;Us;QvT_=2+;Us;Q|T~>.+;U~;TvUsB͘;U Y{FFO,HCHC@{FFWCWCF DFXDUF͘;U ;T 8;Q ;R њSmF+)&0*\&H0*&*&*A&+t'&+&t+&t+&+ǻ&+ѻ&+ۻ&+&+&t,',aJ',6J'0A-+ &+r&0S-+1&0e-+1&0w-+1&0-+'-1tmp '-+1 '0-+ d'K0-+̟'-+1'-+1'0%.+ d'K0.+̟'-+1'-+1'07.+1-'0I.+1/'0[.+10'0{.1tmp:'-+1:'0.1tmpD'-+1D'0.+ X'+rX'0.+1\'0.+1m'0.+1n'0/+|'-1tmp'-+1'0]/+ d'K0N/+̟'-+1'-+1'0/+ d'K0/+̟'-+1'-+1'0/+1'0/+1'0/+1'0/+1'0/+1'0 0+1'00+1'0;0+̟'-+1'0[0+̟'-+1'0{0+̟'-+1'00+̟'-+1'00+̟'-+1'00+̟'-+1'-+̟'-+1'=qv&HbCN\v&Nv&Nvv&6w&=6x&T6Ay&26t'z&wg'&~2^~&; *^}&K?6x&6&/3Y[[L26&U[.;UvY[ \26&U[.;UvT#Y{22;UvTl^.2;UvU^T;Uv;T *;Q;R|;X V0UUx@4Z(- `g*Z4- Pg*Sa5U1a6;T `g*;Q Pg*>4Z. @g*Z. 0g*T~[64;T @g*;Q 0g*S[5bp]HJ@Z'E5H]XH]?@D]JhJ65;USYM+>h5D.[IO;Ubp]Je'5H]H]?D]SYM+bSJk'6HSHHSHS?DSDSSK/JOK 6;U;Q}SYK/SUO/T[\f0X6;U;Q}S\+T\,6;T U#^0;U >`6W.IJO;U>6D.[I:O;U}bS-L'7HSHSHS`?DSDS SFL/JoLY7;Us;T;Q0SyL/SP/T\07;U S]+T,],7;T U]f0;Us;T;Q0>08D/xIP;U>`%8D/IO;Us>88D/bp]L'8H]H]P?D]JL8;U~SYM+b4*M'9H4RH4f H5f H4z!H4""?X5>`I9D5"D%5*#D/5#D95"WE5WQ5D]5#Di5$$ShM04I^;UsYaa9Dw5$D5%D5+%Sa4UZ2;Us>9D/r%I*O;UsbSM':HS%HS&HS&?DS&DSQ'SN/J/N7:;U~;Ts;QS7N/SO/T\0p:;U T<]f0:;U~;Ts;QS]+U^,;T >P:W/IO;U~>;D/'IO;Us>#;D0'IO;U>U;D0(?D0(IO;U|YNN;D0<(@NND0_(IN;Uv>z<Zb/b"\O`'<HL\(H@\(H4\)?`DX\)Dd\J)Dp\)D|\)I`;R0>P<Ds/)?ЅD/"*IX;U}@VPPW/IP;U~bp]Q&<H]X*H]*?D]*J*Q<;UsSbM+>@<DF-5+I'V;Usbp]XQp&?=H]~+H]+?pD]+S;bM+bSQ&5>HS",HS,HS,?DS}-DS-SQ/J"R=;Us;Q~S*R/SV/TYa0=;U Taf0 >;Us;Q~SMb+Ulb,;T > T>WX-IgV;Us>Py>Dj-".IGV;U~bS'S+'u?HS.HS.HSg/?DS/DS80S@S/JsS>;U;Ts;Q0S}S/SW/S._+TI_,5?;T T_0T?;U U_f0;U;Ts;Q0>?D*.0IW;Us> ?D<.0IV;U>P?DN.1>?W`.?Wm.>@D.I1?D.I1IV;Uv>L@D@01?DM01IT;Us>@~@D`0$2?pDm0Z2IT;U>@D02?ЉD02IT;U~>@D0*3?0D0`3IT;U}YU8U.AD 03@U8UD-03I+U;U~>`UAZ"/UU;Us>AZ->ЊAD-3?D.4IX;U~Y~WWAW.IW;U}UKW"\;UYJXXBZ-UzX;UY]]kBD.S4@]]W/@]]W/I];Us>0BD|-v4?`W-?`W-SJ.TJ2B;U};Q|TJ2B;U};QvSKN0TM5C;UvTMN0C;U2SM.TM2FC;U;QTM2^C;USQ.TQ2C;U~;Q|SRN0UT͘;U `UI͘;U `;Q ;;R њ)4#I*\#H0*#*#*A#+}#t+.L#*+#*+#*+#1+#1+#1+!#+t'#+#+#+#t+ǻ#t+ѻ#t+ۻ#1+#+#+#,U%,6J]%0!E+1#03E+1#0QE+ *$+r*$0cE+1.$0E+5$-1tmp8$-+18$0E+̟<$-+1<$0E+1=$0E+1@$0E+1B$0E+1P$0 F+1$0F+1$0/F+1$0MF+ $+r$0_F+1$0F+$-1tmp$-+1$0F+ d$K-+̟$-+1$0F+ d$K-+̟$-+1$0F+1$0 G+1$0G+1$0=G+ $+r$0OG+1$0mG+ $+r$0G+1$0G+$-1tmp%-+1%0G+̟%-+1%0G+1%0 H+ %-1tmp%-+1%0-H+̟%-+1%0?H+1%0QH+1%0cH+1%0uH+1'%0H+1G%0H+̟V%-+1V%0H+̟W%-+1W%0H+̟X%-+1X%0I+̟Y%-+1Y%0'I+̟Z%-+1Z%0GI+̟^%-+1^%0gI+̟_%-+1_%0I+̟`%-+1`%-+̟a%-+1a%= Rj#b~4H_N\j#5Nj#:Nvj#l;6k#<6l#=6Am#?6t'n#@g'#fgX#4ggʊ#c>K^r#; *^}s#K?6xx#A6y#/pAYr sJ6#AUr.;UvYs6s2K6#AU%s.;UvY?slslK6#BURs.;UvTr{2K;UvU{T;Uv;T *;Q;R|;X ʞbCcp#u^HD5BHDCHD/DHCD?pD'DGD3DGD?DHDKDpIDWDKDcDLDoDLD{DMDDPDDUQDD WDD\DD]DD^DD5_DD_DDdDDiXDFEzm>LDElIl;U|>LD&EMmIl;Uv>@YMZ8E  g*ZDE g*SH{5Uj{6;T  g*;Q g*bp]d,$MH]mH]+n?D]nJdM;U~SzM+>ЍMDVEnIo;U~>MDEoIo;U~>0NDEoI p;Usb:_&e`A$bNHL_o?`DV_{pUUo+;U>NDEpIp;U>ЎNDE=qI*p;U~>NDFqIJp;Us>0ND"FqI:p;U~>p"OD,Iq?D9ITrIl;U|>TODLIr?DYIrIm;Uv>@ODlIr?pDyI,sIm;UYffODIbs@ffDIsIf;U}>-PZ4F g*Z@F f*Swx5Ux6;T g*;Q f*bp]gА$PH]sH]s?АD]`tJgyP;U~SPDRFtIm;U~bSLh@$QHStHShuHSu?@DSYvDSvSeh/Jh!Q;Us;T;Q0Sh/S5o/Sxu+Tu0gQ;U Tuf0Q;Us;T;Q0U},;T >QDFvI*o;U>QDG4wIn;Us>RDGwI n;U>@mRZ$G f*Z0G f*Su5U8u6;T f*;Q f*bp]Cip$RH] yH]?y?pD]zJhiR;UStM+>RDBGhz>:SZTG f*Z`G f*Sjt5Ut6;T f*;Q f*bp]i$SH]zH]z?D]{JiS;U~S%tM+>PSDrG{I:n;U~b j%UH\|HI}b9jdTHБ}HđM~?Dܑ~D~DaSRj/:}jXT;U~;TSj/Sq/T|0T;U S}+U>},;T T2qT;Us;T;Q1TxT;Us;TUN|"\;Us;T;Q1>`1UDGbj%VH6H#bk d4VHБہHđ]? DܑD!DS0k/:[kU;Us;T~Sck/Sq/SH}+T}0V;U U},;T TWqZV;U~;T;Q1TxzV;U~;T~U}"\;U~;T;Q1>VDHW?DHIv;U>ЕVD2HۄI_n;U~>WDDH7b:_k0%LWHL_m?0DV_ɅUl+;Us>oWDVH In;UsY|llWDzHRIl;Us>WDHu?DHIsq;U~>XDH?@DHIq;Us>p$XDHM?DH>ЗFXD I?DI>0 YZFb"\n$XHL\%H@\H4\?DX\Dd\Dp\6D|\lI};R0@n oDF@n oDFʼnIo;U~YooXYDH@ooDH!Io;U~>ИYZFUp;UsYyssYDGF@ssWG@ssWGIs;Us>ZDG~?DGʊIs;UY0[DEI`|;U>`W[DhEɋ?WuE?WEI|;UsY2z^z[DE@2z^zDEIYz;U}Jc[;U<:cv[;Us;Q0;R0;X ;Y0Jc[;U<:cv!\;U};Q0;R0;X ;Y0T+d]39\;UsTGd]3Q\;U}Td4m\;a1Te\;Us;T~Te4\;a1Te4\;a1Jf];T~# ;Q~;R~;X2;Ys;w0;w~;w 0;w80ShN0Jh0];U}Jnlz];T~# ;Q~;Rs;X2;Y|;w0;w;w 0;w80Tzm͘];U Ts.];U;T;QTv.];U~;T;Q~SvTwN^;UsSmyTyN3^;UT/z.Y^;U~;T};Q~Sz+S{+V0Uf g#_HJU7HnU[HbUHVU7H>UɌ@f gDzUDU/U g.+;T @;Q ʞ;Y ULg͘;U ;Q e;R њ)-Ce*\-CH0* -C!*-C*A-C+.C!+/C!+d0C!+M1C!+2C*+ 3C*+c 4C/+\5Ce+V6C8+W7C+E98C+t'9C+;C+Ct+ѻ?Ct+ۻ@Ct+AC+BC+CC+WDC+bEC+mFC+xGC+HC+IC!+JC!+KC!,%E,jJHD,D,ED,2D,=@D, E,D,BE,؃ E,6J.E0Pa+1cC0ba+1C0Vc+&hC0 0a+ C+rC0a+1C0a+C-1tmpC-+1C0a+̟C-+1C0b+1C0#b+̟D-+1D0Cb+̟D-+1D0cb+̟D-+1D0b+̟D-+1D0b+̟D-+1D0b+̟D-+1D0b+1)D0b+1*D0b1tmp+D0c+̟-D-+1-D09c+̟.D-+1.D-+̟/D-+1/D0tc+ QD+rQD0c+1UD0c+1`D0c+1aD0c+1bD0c+D-1tmpD-+1D0 d+̟D-+1D0d+1D0.d+1D0@d+D0 0Rd+1E0dd+1E0vd+1 E0d+̟&E-+1&E0d+̟'E-+1'E0d+̟(E-+1(E0d+̟)E-+1)E0e+̟*E-+1*E06e+̟+E-+1+E0Ve+̟/E-+1/E0ve+̟0E-+10E0e+̟1E-+11E-+̟2E-+12E8=B~R}N\BNBnNvBӑ+ B!6B86AB6t'Bg'Cr~gX!C~gʊ%C>h^B; *^}BKbt<.@CgH<?@D<RD<D<X<X<>gD<YЈ&gD<QYЈEgD<uY0@dgD<Y@`gD=ؘ@W=S!,S|>h6xB6B/Y5bh6 CUH.;U|Tߍ{22h;U|TTqh;U|;T *;Q;R~;X ҞT.h;U|T.h;U|U};U Ҟ;T2;Q3;R1S+V0Ur~~ C}iHJUHnU(HbU_HVUH>U@r~~DzUӚDU U~.+;T @;Q Ҟ;Y bH_ &C}H~_.Hr_Hf_uHZ_? D_֟D_ D_BD_aD_uD_D_D_ȧD_D_D`D`ED`Z&`~Z2`~D>`bWJ`WV`Db`Dn`>Dz`Z`D`ӶD`DD`D`ȼD`D`D`սF`F`F`F`FaFaFa_FaF&aGF.aGF6a>]kDCa4>FrDgajbcCAlHDcH8cH,cIH cj?WOcV2gkE2@D2>lD`cYȀ$lDrc@ȀрDc>@lZxa j*Za j*SO5Uq6;T j*;Q j*bp]ClH]H]?D]MSM+>lDabkCLnHHbpdmHБHđ?pDܑDDS/:ށ~m;Uv;T~S/SC/S+T,m;T U0;U Tn;T;Q1T̖1n;T~U"\;T;Q1>nnDa;? Daq>PnDabB_CnHC?DCiD)CD5CUr04;U~> oDbV?DbI;U> >oD(b?PD5b I;U|>poDHbA?DUbwIʊ;Us>oDhb?Dub>@oDb?DbO>oDb?DbbB_  D/pHC? DC@D)CD5CUi04;U~>PRpDbIa;U~>epDb>pDbG?D c}>pDc?PD+c>pD:c?DGcUYB qDa@+BDa@5BDaSk+TN0Dq;U2T)͘cq;U TBufq;U~;T~;Q;R~TN0q;U1T2q;U~;T~T)uq;T;Q|;Rsc 3~Tur;Tc 3~T51r;U~UY.;Q~>rZ[c j*Zgc j*S5U6;T j*;Q j*bp]7@SDrH]H]*?@D]`SM+>rDycbS^DsHSHS*HS?DS.DSS/J"ts;U~;T|;QsS*/S/T0s;U Tf0s;U~;T|;QsSf+U,;T > tDc>P!tDc>4tDcRbeХDtHeHe?ХDeDe> tDeI:;U~;T|;Q~T 9,t;U~;T~UW,;T~beV`DuHe;He ?`DeDeI>JuDeSI;T|;Q~Tk9,ju;U~;T~U4W,;T~>ЦuDc?Dc?0Dcb `DvH+Hb9davHБtHđ?DܑZ^DSS/J{Dv;U|U0;U T^v;T;Q1SU"\;T;Q1bI6{DwH[6Pb{pGewHБHđ?pDܑ.DdDS/S%/S/JՋRw;U~;T0Tϑ0qw;U S+UǗ,;T Tow;T0;Q0S|>wDc ?Dc?>@wDdu>pxD!dI ;U~YxD3dS5Tt5~x;U};T~;R~;X~;Y~U6;U~bSDyHSCHSHS?DS:DSS/J܇ y;U~;T};Q0S/SՊ/S+T;0Sy;U TYf0xy;U~;T};Q0Uw,;T >yDEdI;U~> yWWdI;U|>P zD;eC?DHeIJ;U~>?zD[e?DhePI:;Us> qzD{e?PDeIZ;UvYzDe@DeI;UsVBC${HC8@DCrD)CD5CU04;U~>F{D{d?Dd>h{DdP?Dd>@{Dd?pDd>{Dd(?ЬDd^I;U~>{Dd?0DeIٌ;U|>`|De?D(e6Y_A|DidlI;U~Y`|DUaTD3x|;UvJ|;U<:||;Uv;Q0;R0;X ;Y0JI|;U~;Q4Jf|;U~;T~1TN0 };U1S.SɃ2J݄C};a~81;T1T2N0Z};U1T͘y};U SSNU~͘;U ;Q ;R њ)l2օ*\2H0*J2*q2*(2*A2+}2t+MS21+y21+G21+X2*+E2*+D2*+t'2+2+2+2t+ǻ2t+ѻ2t+ۻ2t+21+2+2+W2+b2,05,6J950+120++120=+120O+1G30a+1g30s+130+130+130+130+130+ 3+r30+130 + 3+r30+130I+3-1tmp3-+130w+ d3K-+̟3-+130+ d3K-+̟3-+130+140ɀ+140+4-1tmp4-+140+̟4-+140)+1 40;+1#40M+1%40_+1240}+ E4+rE40+1I40+ J4+rJ40+1N40+T4-1tmpW4-+1W40+ d]4K-+̟_4-+1_40I+ de4K-+̟g4-+1g40[+1y40m+1{40+4-1tmp4-+140+̟4-+140͂+140߂+140+140+140!+ 4+r403+140Q+ 4+r40c+140+4-1tmp4-+140+ d4K-+̟4-+140+ d4K-+̟4-+140+140+140?+4-1tmp4-+140_+̟4-+140q+140+140+140+150+1"50ل+̟15-+1150+̟25-+1250+̟35-+13509+̟45-+1450Y+̟55-+1550y+̟65-+1650+̟:5-+1:50+̟;5-+1;5-+̟<5-+1<5= `2bN\`2N`2Nv`26Ja2 6qb26(c2T6Ad26t'e2g'2gX2gʊ2%>3^i2> `*^}j2N?6xm246n2/Y:62uU.;UsTƱ{2R;UsT`.j;UsT.;UsT.;UsTȇ;U ޞ;T3;Q4;R1T;U ޞ;T3;Q4;R2UyT;Us;T `*;Q;R};X ޞb}%`2H~H}H}H}H}?`D~/D~D+~D7~DC~,DO~rD[~|Dg~sDs~rD~D~D~mD~D~D~D~[D~"D~z(D~-F~8F~>gD 3I;U~> D4I*;Uv>PD05I:;U|>Z  h*Z h*T6;T  h*;Q h*S5bp]H3iH]6H]7?D]7JhZ;U~SM+>D 8I©;U~> Z h*Z g*T6ߊ;T h*;Q g*S-5bp]P3JH]8H]8?PD]t9Jߛ;;U~SbM+>]D9bS{4]HS9HSi:HS:?DSM;DS;S/JǜՋ;U};T~;Q0SϜ/S*/TN0;U S+T&,:;T UGf0;U};T~;Q0>0pD;>`D(<I;U}b'4H<H=bXdHБ,>Hđ>?Dܑ ?D@?D?Sq/:~3;U};T~S/S/S]+Tx,y;T U&0;U T;Us;T;Q1T؍;Us;T~UP"\;Us;T;Q1>pDN@I;U~>?D.@I ;U}b:_в$4HL_A?вDV_lBUU+;U>D@BI;U>@Zd g*Zp g*Sv5U6;T g*;Q g*bp]epG4_H]zCH]C?pD]EDJP;UsS5M+>DDI*;Us>ߏZ g*Z g*Sm5U6;T g*;Q g*bp]מL4:H]%EH][E?D]EJ+;U}S%M+>P]D(FI?;U}bSw4aHSqFHSFHSYG?DSGDS=HS/Jא;U~;T~;Q0S/So/SX+T0;U Tػf0D;U~;T~;Q0U,;T >tDNsH> D`HbHP4HHHIbyеdHБNJHđJ?еDܑ,KDbKDKS/:~';U};TsS/S/T0`;U SF+Ue,;T Tհ;U~;T;Q1TC̒;U~;TsU`"\;U~;T;Q1>0DpLIo;Us>`#D҂Lb:_4hHL_M?DV_ NU+;U>жDINI;U>Z g*Z g*S 5U96;T g*;Q g*bp]@4CH]=OH]sO?@D].PJ4;U~S̶M+>fD&yPI;U~>ÔZ8 g*ZD pg*Sp5U6;T g*;Q pg*bp]4 H]QH]DQ?D]QJ;U~S*M+> 3DVRbS¢P43HSORHSRHS2S?PDS%TDSTS/J;U~;T};Q0S/S/Sʵ+T0;U T'f0;U~;T};Q0U,;T >иVDTI;U}>iDUbn04ϗHIUH6VbdlHБVHđ:W?DܑWDWDNXS/:ޣ~ ;U};T~S/S®/S5+TP,O;T U0;U T;Us;T;Q1Ts;Us;T~U1"\;Us;T;Q1>DdXI;U~>@DvoYb:_5p4JHL_Y?pDV_ZU=+;U>mDTZI;UYؤDZI;U>DxZI4;U}>ҘD [>@D?[I;Us>pDu[Iϭ;U~>LD~[?D"\I;U~>~Do\?@D\I;UvY˧șD\@ԧDDž\I;U|>pD>!]?DKW]If;U>мD^]?Dk]>0ҚZ|b"\@`3HL\]H@\U^H4\^?`DX\^Dd\^Dp\^D|\-_I;R0@Dc_@D_>Z b"\f4QHL\_H@\`H4\;`?DX\;`Dd\`Dp\`D|\aIm;R0@1`D-ma@:`D:aIT;U}>NZăb"\@4HL\aH@\bH4\Eb?@DX\EbDd\bDp\bD|\&cI;R0@߬Dу\c@DރcYЮ8ZNU;U}>Dc?D˄c>՜Dބ!d? DWdI ;U}>PDd?D dI>;UsY|QDd@D+eI;U~>zZU;U~Y ZUZ;U~Y  D΀?e@ Wۀ@ WI;Us>@Dbe?D eI;;U~YoDeI;UsYgDā f@tWс@tWށ>Dh?f?@Wu?@WYHxBDf@TxW#@TxW0In;Us>pvDDf?pDQgI;U~>D Wg?W-?W:Yǹ׹ΟDRgI׹;UsYѺ+Drg@ݺW@ݺWI;U~>_Dh?DZhI?;U~YhxDhIx;Us>@DfhIt;U}>pԠDThI;U}>DB!iI;U}J> ;U<:Sv7;U;Q0;R0;X ;Y0JJ;U<:vw;Us;Q0;R0;X ;Y0JȚ;U<:ޚ|;U~;Q0;R0;X ;Y0SEN0SXN0SN0JϤ,;T~# ;Q~;R;X~;w0;wv;w0;w |;w00Tإ]3D;UT]3\;U~T ]3t;UsSz4S4T4;a~1J8;Q~;R};X3;Y~;w0;ws;w 0;w(~;w80T͘;U T.8;U};T~;Q~SٳTN];UsT.;U~;T~;Q~STǹN;UsT.ң;U~;T~;QsSTThN;UsSGT[N;U}STNA;U}STNf;U}Sb+S+S+V0UZ22HJUWiHnU{iHbUiHVUiH>Ui@ZDzU&jDU^jUZ.+;T @;Q ޞ;Y U͘;U ;Q 8 ;R њ);ӭ*\;H0*Y;*;*Y;*A;+};t+p;*+Lp;*+i*;*+C;|+;|+P;|+;+t';+;+;+;t+ǻ;t+ѻ;t+ۻ;t+;|+;+;+W;+b;+m;+x;,>,6J>0ڦ+1<0+1"<0+11<0+1z<0"+1<04+1<0F+1<0X+1<0v+ <+r<0+1<0+ <+r<0+1<0֧+ <+r<0+1<0+<-1tmp<-+1<0D+ d+̟=-+1=0P+1=0b+1=01tmp=-+1=0+ =+r=0+1=0+=-1tmp=-+1=0+̟=-+1=0+1=0$+1=0D1tmp=-+1=0V+1=0v+̟>-+1>0+̟>-+1>0+̟>-+1>0֬+̟ >-+1 >0+̟ >-+1 >0+̟ >-+1 >06+̟ >-+1 >0V+̟ >-+1 >0v+̟>-+1>0+̟>-+1>0+̟>-+1>-+̟>-+1>=";dj[N\;kN;mNv;Bo6Y;p6;r6Y;t6A;:v6t';wg';gX;Agʊ;8>0^;> @*^};N?6x;x6;/xY76;6yU.;UsT{2O;UsT\.g;UsT.;UsT.;UsT9ů;U ;T3;Q4;R1T;U ;T3;Q4;R2UT;Us;T @*;Q;R};X bb8`;HYyH;zH{H|Ht}?`D~D}Dȥ/DԥyWWWD_DdDvD(}D4D@DL6DXWdDp+D|fDD9DjDƷXF>eDͦeI;U|>DߦwI;U~>@DbI;U~>p Z] @i*Zi 0i*S5U6;T @i*;Q 0i*bp]^D{HI;U> Z  i*Z i*T 6۲;T  i*;Q i*S!5bp]PgDRI;Uv>ȳZ i*Zɧ h*T56;T i*;Q h*SI5bp]C<%H]H]?D]Jh;U~SM+>08DۧbS`=<HS(HSHS?`DSoDSS+/Jg;U~;T~;Q0So/S/S8+T:f0;U~;T~;Q0Tp0;U U,;T >ODw'>bD]bSB@B=bHSHSHST?@DSDSS`/Jڵ;U};T~;Q0S/Sb/T)f0;U};T~;Q0T08;U S+U,;T >uDIU>D[IJ;U}bQ=H Hb(dHБHđ?DܑmDDKS</Jb3;U};TSj/SA/T0l;U S+U,;T T;Us;T~;Q1T=ط;Us;TUq"\;Us;T~;Q1>DI:;U>?DͩOIZ;U}b:_@W=HL_?@DV_U+;Uv>DߩQIj;Uvbp]x=H]XH]?D]J;U|SM+>_Z h*Z h*S5U6;T h*;Q h*bp]a |=H]-H]c? D] J;USM+>`ݹD!VI;U>D3?W@?WMI;Us>HDa?DnXI;U}>0WW>`zDI;U>D?DI;U|bp]'=H]H]?D]AJG;U~SQM+>dZŪ h*ZѪ h*S5U46;T h*;Q h*bp]0=H]H]?0D]kJ;U}SM+>pDI;U}>D%?W?WI*;Us>MD#n?D0I;U|>@lWCI ;U>pDUI;U}>Dg?DtI;U~bp]W='H]wH]?D]Jy;U~UM+;U~>Z h*Z h*SW5Uy6;T h*;Q h*bp]@=߽H]H]?@D]Jн;USM+>DI?;U>;Dz?Wī?WѫI;Us>mD?D I;U}>P|W>DCIj;U~>ӾD)?D6I;U~>DII;Us>(D[9?PDhIt;Uv>ZD{?DI;Us>DP?DI;U|YƿD@DĭbZ=@O<Hl=?@Dv=D=MD=MX=X=>D=YBD=bYaD=Y(D=Y(<D=@W>U!,;U}U~;U}>ZIb"\`=`HL\4H@\H4\?`DX\Dd\;Dp\qD|\I ;R0@:pDV@CpDc>dZ b"\0=HL\#H@\H4\?DX\Dd\Dp\!D|\WI;R0>08D?`D'@D6I ;UvbZ=Y<Hl=?Dv=D=?D=?X=X=>iD=YD=@YD={YD=Y=D=@W>U!,;UvU~;UvbZ=8`c<Hl=?`Dv=D="D="X=X=>D=YD=YH`D=IY`p9D=YpXD=@(W>U!,;UsU~;UsbC<EC?DCDC/DC/S04bCP<;EC?PDC{DCDCU04;U~bC<EC?DCDCeDCeU04;U>DI;U}>D'I;Uv>D9CI;Us>@DKI_;U>pLD۬?D I;Uv>nDA?Dw>0D?`D(>D;?DHOY(ZU];U~>D{? DI@;U}>PKD?D'I;UsY0D]@0DȬI;UY0ZɨUe;U}>D[?DhbC=OHHbtdHБHđ4?DܑDD[S/J;U};T~S/S /S.+Tr,;T U0;U T0;Us;T;Q1TO.;Us;T~U"\;Us;T;Q1b:P=HHAbkdOHБwHđ?Dܑ DVDS/J;U};T~S/S/TQ0%;U Su+U,;T T(s;Us;T;Q1T;Us;T~U."\;Us;T;Q1b2=HHbcdHБHđ*?DܑDD>Sw/JO;U};TS/S/Tw0;U S+U,;T T;Us;T;Q1T;Us;TU"\;Us;T;Q1YrDmt@Wz@WI;Us>0D?0DIF;U~Y(8DI8;Us>`D>?W?W>'D?W?W> JDI;UsJQ];U7:g|;U};Q0;R0;X ;Y0J;U7:~;Uv;Q0;R0;X ;Y0J;U7: ;Us;Q0;R0;X ;Y0SN0S N0T.J;U;T};Q~T .n;U};T|;QT?.;U~;T};Q~J ;T~# ;Q~;Rs;Xv;w1;w~;w1;w |;w08T-4;U~JMT;T~# ;Q~;R};X0;Y3;wv;w1;ws;w(1;w0;w8T4n;U~S+T͘;U S +S+T*.;U};T~;QT"}Y;U~#c4~ST(N%;UsTi}YE;Uvc4vTI}Ye;U|c4|SWUkN;UsV0U;+HJU,HnUPHbUHVUH>U@DzUDU3U.+;T @;Q ;Y UY͘;U ;Q K ;R њ)ED*\EH0*ǨE*AE+E!+plE!+E!+E!+@ E*+9E*+E/+wE/+E1+E1+WE+E+t'E+E+E+E+ǻE+ѻE+ۻE+Et+E+Et+WEt+bE+mE+xE+E+E!+E!+E!,H,jJF,F,F,F,=F,G,G,BG,G,6JH0c+1E0+ E+rE0+1E0+ E+rE0+1E0+E-1tmpE-+1E0+ dEK-+̟E-+1E0M+ dEK-+̟E-+1E0_+1E0q+1E0+E-1tmpF-+1F0+̟F-+1F0+1F0+1 F0+1 F0+1F0+&h]F0 06+ lF+rlF0H+1pF0v+uF-1tmpxF-+1xF0+̟|F-+1|F0+1F0+̟F-+1F0+̟F-+1F0+̟F-+1F0(+̟F-+1F0H+̟F-+1F0h+̟F-+1F0+̟F-+1F0+1F0+1F01tmpF0+̟F-+1F0+̟F-+1F-+̟F-+1F09+ F+rF0K+1F0i+ F+rF0{+1F0+F-1tmpF-+1F0+ dGK0+̟G-+1G-+1G0)+ d GK0+̟ G-+1 G-+1G0;+1G0M+1!G0{+\G-1tmp_G-+1_G0+̟cG-+1cG0+1fG0+1gG0+nG0 0+1G0+1G0+1G0'+̟H-+1H0G+̟H-+1H0g+̟H-+1H0+̟H-+1H0+̟H-+1H0+̟H-+1H0+̟H-+1H0+̟H-+1H0'+̟H-+1H-+̟H-+1H=jXCEpVxN\CENCE4NvCE6ǨDE 6AEE 6t'FE5 g'tE>gXvEgʊzE>P^JE3 *^}KEC?6xNE 6OE/ YUy6`E& Uh.;UvTB{2;UvT.;UvUT;Uv;T *;Q;R};X b[{EHI HyHm?DWDqDDD+DDDDDD D D!W#D-#Z9~ZE~ZQD]$Di)Du,Db.WDJ1D2D4D&6DG9D:D:D:FFF .FFF!F)] F1F9FAFI!> DVd;>P6Zh `k*Zt Pk*S5U36;T `k*;Q Pk*bp]E}H];H];?D]<SM+>DQ<> Z @k*Z 0k*T#6;T @k*;Q 0k*S75bp]<`ELH]<H]<?`D],=J\=;U~SM+>oDw=I;U~bSEkHS=HS4>HS>?DS?DSn?S/J:;Uv;T};Q0SB/ST/S +T ,+;T Tf0N;Uv;T};Q0U0;U >0DR?Iu;U}>`Dd?I;UvbFH#@H@bdHБAHđxA?DܑADAD-BS/JL;Uv;TS/S /T0;U S+U,;T T ;T;Q1T;TU"\;T;Q1>`DB>&DBb:_ FdHL_B?DV_+CS#+> wDkC>`D Cbc_F[HDc6DH8cDH,cEH cC?WOcV2-g E2@-D2^F> D`cFYDR>Drc)G@R\DcG>PZ  k*Z) k*S65UX6;T  k*;Q k*bp]nFH]HH]GH?D]}HSM+>D;H>4D{H?PD4I>GDjIbBHFHCI?DCJD)CsJD5CsJUY04;Us>DJ? DKI;U}>PDRK?DKI;U~>6DL?D7LI ;U|Y.@pD mL@3@DL>D-L@S`D:L>@DML@vDZMbBpF#HC?M?pDCuMD)CMD5CMU04;UsY:]TDMI];U~Y]mD NIm;U~YmD/N@wDRN>DuN@DN>DN@D NY8nDMO@!8DZ$O@+8DgGOSk+T;T~TqN0;U2T͘;U HTuf;U;T~;Q~;RT N0;U1T,2/;U~;T~Tu];T};Q~;R|c 3T(u;T};Q~;R|c 3T5;U~UQ.;Q~>Z  k*Z, j*SZ5U|6;T k*;Q j*bp]=@F`H]jOH]O?@D]OSM+>sD>!P>ZP j*Z\ j*S5U6;T j*;Q j*bp]FH]WPH]P?D]PSM+>@*DnQbSpG&HSDQHSQHSR?pDS6RDSRS/J;U|;T~;Q0S/Sb/S+T,;T T0;U Uf0;U|;T~;Q0>ID.SIJ;U~>\D@7Sbe TGHemSHeS? DeSDeU>pDeUI;U~;T};Q~T9,;U~;T|UMW,;T|beVGHeVHeV?DeWDePX>lDeXI+;T};Q~T9,;U~;T|U W,;T|> DRX?PD_Y?Dl;YbbG HqYH#ZbdHБZHđZ?DܑZD4[D[S/Jl;U|;T~S/S/S +T ,;T U 0;U T ;T;Q1T ;T~U "\;T;Q1>`RD[?`DI\I;U~>eD\>xD\>D\S5T6;U}U6;U~bS@GHSw]HS]HS^?@DS^DS^S/JD>;U~;Tv;Q0SL/S*/S +T7 0;U TU f0;U~;Tv;Q0Us ,;T >D_IN;U~> WI?;Us>>D_?@D_I;U~>prD9`?D`I;U~>D `?D5aI;U~Y0D(a@ 0D5aI0;Us>0Z$b"\dEoHL\aH@\$bH4\Zb?DX\ZbDd\bDp\bD|\bI;R0@s  D1Mc@|  D>pcI ;U~>Zb"\ G5HL\cH@\cH4\%d?DX\%dDd\[dDp\dD|\dI;R0>0WDe?`D Ne@ . WI) ;U}>ZS>D e?De>PD,f?D9:f>DLpf?DYf> 7Dlf?PDy%gIO;U~>iD[g?DgI;Uv>Dg?DgI;U}VBU]@FHC3h@U]DC|hD)ChD5ChU]04;Us>@)ZUe ;Uv>NDiI ;U~bI6x bGlH[6dib GeBHБiHđ j?Dܑ0jDfjDjS /J ;U|;T0S /S /TC 0;U Se +U ,;T T0 ^;T0;Q0S\ |Y!KDvk@.KDAk@>KDdkYe Dk@eDkIz;UvYXhDk@)NW@)NWI:;UvYDkYDk@Dl@D6lTD3;UvJ!;U<:7}4;Uv;Q0;R0;X ;Y0SN0SMN0T!͘m;U HTuN0;U1T`.;TvSsSNV0U>uEHHJUYlHnU}lHbUlHVUlH>Ul@>WzUZURU.+;T @;Q U͘;U H;Q 4;R њ)*\H0*A+ !+w*+#+!+t'+t+t++ǻ+ѻ+ۻ++++W+b+m+x!+!+!,,^C,}k,,0, ,m2,|J@,6J,LF,,,,"00+-1tmp-+10P+̟-+10b+10t+10x+&h0 0+̟-+10+̟-+10+̟-+10+10 +10+10;+̟-+10[+̟-+1-+̟-+10+170+1:0+1D0+ Y+rY0+1]0+ e+re0+1i0 +1k02+1n0D+1o0V+1p0h+1s0+-1tmp-+10+̟-+10+10+10+0 0+10+10"+10B+̟-+10b+̟-+10+̟ -+1 0+̟ -+1 0+̟ -+1 -+̟-+1|=l4]2(mN\]znN]pNv]p6A^r6t'_\sg'p!gX!gʊ>0^c *^}d?6xgs6h/tY226sMtU2.;UvT1{21;UvTe2Tp;Uv;T *;Q;R};X U2{2;UvbxHtHu?DvDvD,xDOxDZyWD.zDwzZ~ZZD&{D2!}D>|~DJDVvDbDnvDzvDF'F+F,Fa&F.FN.Fm&FF'FFB)F| F!F!>0|Z Pc*Z @c*T+6n;T Pc*;Q @c*S+5bp]Op[H]H]#?pD]YS0M+>D>7Z 0c*Z  c*T06);T 0c*;Q  c*S15bp]gH]چH]?D]J";UsSS1M+>PD݇I&;Us>WI&;U~bSmlHS9HSHS?DSMDSS/JK;Us;T~;Q}S/S-'/T0f0;Us;T~;Q}Tg00;U S1+U1,;T > D%>PD7;> DIq>*W[I&;Usbj%HHWbpdHБHđ?pDܑ6Z]DlS/U*0;U Tr#;U~;T~;Q1T7(;U~U)"\;U~;T~;Q1>sDS^ 5Tk ?6^;U~U| 6;U}beHeHe8?DeDe>0De0I;Us;T~;QTA!9,;U;T}Uj)W,;T}bepHefHe?pDejDe>DeI;T~;QT9,;U;T}U)W,;T}>Dmʑ?Wz?WbI6@ H[69bGeHБHđ͒?DܑD9D:~b;U}S/S"/S"/TB'0;U S(+U),;T T&;U~;T0;Q0U*|;U~> +D?`D>NDNIJ";U~>aDbS| ] HSHSHS?DSDSTS /J ;Us;T~;Q0S /S#/S%*+Tw*f0! ;Us;T~;Q0T*0@ ;U U,,;T >`| WI";Us> DI#;U}> DӖ@@#V#D!IV#;U~be# HeFHe?DeؗDe>PQ DezI#;U};T~;Q~T#9,q ;U~;TU+W,;Tbe $) HeHe2?DeDeL> DeIH$;T~;Q~T$9, ;U~;TUJ,W,;T>Z D#?0DY?`D!b$ HŜHb$ dW HБOHđ? DܑDDdS%/:-%~ ;U~S5%/S(/S*+TU+,: ;T U+0;U T*u ;T;Q1S+U?2"\;T;Q1> D5?DB&> DU\>0 Dg>pDyȠbc% HDc?H8cH,c?H cȠ?WOcV2%%gz E2@%%D2> D`cY&& Drcw@&*&DcӣbC4&@HC"?@DCEDCDCS<&04>pGD@,,D>uD&@,,DI>WI-;U}Y--DlY--DI-;UY--D ť@--D->JD@ @..DM.>0xD\Q@(.5.DitS%k+T4&?6;U| Tm&u;T~;Qs;R~c 3~T-͘;U xT8-uf;U~;T~;Q;RT[-H/2;U3Tt-R;U};T~T-:_j;UTZ.u;T~;Qs;R~c 3~Ss./T.Y;Tv;Q|;R}U.u;R~c 3~>` W}I*;U}Y&&:DI&;Us>\D'?D4>~DG:?0DTp>`Dg?Dtܧ>D?DHIo(;Us> D~?PDI(;U~>%ZSI*;Us>FZ]In+;U}TN0];U1S.TL2;Q~T|&;U}T'͘;U xS*I6V0Up!!XHJUHnUHbUEHVUH>Ui@p!!WzUZURU!.+;T @;Q U"͘;U x;Q ;R њ=y2d=N\yH0NyʲNyNAy[N!y6xrz6;{6|t60}t56~6t'6tc6tc66ǻ6ѻt6ۻ,gsJm9gG]<g|h@<g6JAIb$3YHHbW3pdHБHđ?pDܑDDJSl3/J3;U};T~S3/S8/TU0;U ShW+UW,;T TK$;T;Q1TU>;T~UV"\;T;Q1bp]3H]H]?D] J3;U}SXM+>^  d*^r c*S W5U-W6;T d*;Q c*VD44G4HEDTH9DTE-D@44G4DPDU?4&3;U;Ts>061GIA;Ubp]b4` H]H]?`D]J4;U}SVM+b:_4RHL_?DV_lU@+;U~>x+1I*A;U~>^  c*^r c*SX5UfY6;T c*;Q c*bp]5P >H]H]?PD]dJ&5/;U~S=ZM+>h61 IB;U~bS<5XHSHSlHS?DS;DSSf5/J5;U;Q0S5/Sh?/TY0;U TYf0.;U;Q0SY+UZ,;T >@~+1IB;U>p+1IB;U~b?5;xH*?H?LH??D6?DB?UXN?XV?>@Dc?Do?(D{?D?(YFGMD?qD?YGGyD?CSG0TV 1;UsU[ 1;U?H*?fH?H??W6?WB?XN?XV??W?D?b:_;9g;HL_U?DV_UzI+;UY[9k9ZD?U/9%1;Us;Q2b?Q6 ^@H*?H?~H?? D6?&DB?~XN?XV?>pDc?Do?dD{?D?d>@D?D?3YAAAD?SA0T^ 1Y;UsU^ 1;U?pH*?H?H?#?pW6?WB?XN?XV??pW?D?Yb:_?gHL_?DV_U:N+;UY??"D?UU?%1;Us;Q2b?6 H*?xH?H??D6?: DB? XN?XV?>pDDc? Do?e D{? D?e Y0LPLD? D?! YLMD? SL0T ` 1-;UsUb 1;U?H*? H? H? ?W6?WB?XN?XV??W?D?4 b:_B gHL_ ? DV_ UGP+;UYC+CD?0UB%1;Us;Q2b?6P !H*?SH?H??P D6?DB?FXN?XV?> !Dc?Do?D{?D?YII D?bD?Y/JLJ D?4SAJ0T` 1!;UsUc 1;U?p H*?WH?H??p W6?WB?XN?XV??p W?D?b:_[D g!HL_F? DV_UR+;UY{DD!D?UOD%1;Us;Q2b?;7 #H*?H? H?? D6?DB? XN?XV?>p "Dc?mDo?D{?D?YgNN"D?%D?YO0O"D? S!O0T9c 1";UsU=d 1;U~? H*?. H?f H? ? W6?WB?XN?XV?? W?D? b:_^H g}#HL_0!? DV_!UpT+;UY~HH#D?!URH%1;Us;T~;Q2b?7P %H*?!H?#H?`$?P D6?%DB?W&XN?XV?> $Dc?&Do?*'D{?'D?*(YsPPi$D?s(D?(YQ@Q$D?Y)S-Q0Ta 1$;U~Ub 1;Us?p H*?|)H?)H?)?p W6?WB?XN?XV??p W?D? *b:_^M gU%HL_~*? DV_*UU+;UY~MMt%D?+URM%1;Us;T~;Q2b?7  p'H*??+H?,H?K-? D6?.DB?.XN?XV?>`&Dc?Z/Do?/D{?Z0D?0YRRA&D?0D?81YqSSm&D?1SS0Ta 1&;UsUb 1;U~?H*?1H?1H?(2?W6?WB?XN?XV??W?D?^2b:_nOg-'HL_2?DV_3U^V+;UYOOL'D?Z3UbO%1;Us;T~;Q2b?(800H)H*?}3H?}4H?%5?0D6?6DB?q6XN?XV?>r(Dc?6Do?17D{?7D?8YTT(D?T8D?w8YOUiUE(D?8S^U0TO` 1](;U~U(d 1;Us?0H*?8H?8H?+9?0W6?WB?XN?XV??0W?D?a9b:_~Q`g)HL_9?`DV_:UZ+;UYQQ$)D?]:UrQ%1;Us;T~;Q2b?w8S.+H*?:H?;H?;?D6?F<DB?<XN?XV?>J*Dc?=Do?^=D{?>D?K>YLJiJ)D?>D?>YJJ*D?>SJ0T`a 15*;U~Uua 1;Us?pH*?>H?5?H?k??pW6?WB?XN?XV??pW?D??b:_Sg*HL_??DV_3@U^+;UYSS +D?s@IS;UUS%1;Us;T~;Q2>X+61a@IE;U~>+^  c*^r c*T\6+;T c*;Q c*S\5bp]:0",H]@H]A?0D]qAJ8:,;U~S,[M+>pL,61AIjF;U~>r,+1IzF;Ub:_v:,HL_A?DV_aBU5E+;U~>,61BIF;U~>@P-^  c*^r c*T_6B-;T c*;Q c*S_5bp]:p-H]BH]3C?pD]CJ;-;U~S]M+>-61CI D;U~>-+1ID;Ub:_E;@.HL_D?DV_DUC+;U~>Pj.61DIG;U~>.^  c*^r c*Tb6.;T c*;Q c*Sd5bp];4/H]EH]QE?D]EJ;%/;U~S|dM+>^/61 FI*L;U~>0/+1IL;Ub:_<`/HL_AF?`DV_FUK+;U~>/61FIG;U~>061GIF;U~>0^  pc*^r `c*TO[60;T pc*;Q `c*Sc[5bp]<00H]HH]H?0D]IJ<0;U~S[M+>p161JIF;U~b<s2HJHKb =0d2HБ-LHđL?0Dܑ MDXMDMS>=/:i=~1;TvSs=/S M/TCa01;U Sa+Ua,;T TRR42;U;T;Q1T}^R2;U;TvUc"\;U;T;Q1>261Nbp]=2H]PNH]N?D]0OJ=2;U~SZM+>361OIF;U~>083+1IF;Ub:_>`}3HL_O?`DV_!PUE+;U~>361aPIF;U~bs>5HPH\Qb>0d4HБQHđ1R?0DܑRDRD>SS>/J><4;TvS>/S^N/T`0u4;U S c+U,c,;T TLT4;U~;T;Q1T a4;U~;TvU(a"\;U~;T;Q1Y6?P?>561tSIJ?;U>~56̟S?61SIzB;U}>56̟+T? 61tTIB;Us>P56̟T?61TIjB;Uv>@66̟ U?61 UIZB;U~Yz@@66̟!cU@@@61!UI@;U|Y-BPB661>UYEE76̟U@EE61UIE;U~>P71tmp?+1IL;Us> 79tmpU? 61UIK;U|>`76̟:V?61pVIR;U~>86̟V?61VIR;U> :861WI^;U>Pd861HWI^;U~V]D{YY8HkD~WUY.+;T ;Q  V]D[[9HkDWU[.+;T ;Q  Y[,\r96W@\,\1tmp@\,\+1I"\;U>96̟X?61ZXIj\;U> :6X?9tmpX?61XIb;U~>L:6̟(Y?61_YIm^;U~J9:;U~;T|;Q~;R1;X0;Yv ;w~T`:%1:;U~;T;Q2T/;%1:;U~;T;Q2T;%1:;U~;T;Q2T>%1;;U;Q2JBP;;U~;T|;Q~;R1;X0;Yv ;wJkC;;U~;T|;Q~;R1;X0;Yv ;w~JD;;U~;T|;Q~;R1;X0;Yv ;wJH<;U~;T|;Q~;R1;X0;Yv ;w~TAI͘"<;U J5K]<;U~;T|;Q~;R1;X0;Yv ;w~JM<;U~;T|;Q~;R1;X0;Yv ;wJO<;U~;T|;Q~;R1;X0;Yv ;w~JQ=;U~;T|;Q~;R1;X0;Yv ;wT XW6*=;TsT;XB=;TTYXNZ=;U~TXu6r=;TsTD\.=;U~;T;QvUT^.;U;T~;Qv7| dgY@N\ 9[N  \Nv \6!i]6"]6A#]6!$J^6t'%^g'kaegXmegʊq@?^)> *^}*N?6x/^^0/^Yrff?6QS_Uf.;UvYfgW?6Ev_Uf.;UvY g=g?6K_Ug.;UvTNf{2?;UvTf.?;UvUcgT;Uv;T *;Q;R~;X V0Uaeel@HJU_HnU_HbU`HVU;`H>U_`@aeeWzUZURUe.+;T @;Q TDe@;U|Ue͘;U ;Q ;R њ)lKG*\KH0*K+K+W%K+t'K+K+K+Kt+ǻKt+ѻKt+ۻK+Kt+K+K,{M,K,6JM0A+ K+rK0A+1K0A+1K0B+ K+rK0B+1K0HB+L-1tmpL-+1L0hB+̟L-+1L0zB+1 L0B+L-1tmpL-+1L0B+̟"L-+1"L0B+1%L0B+1&L0 C+ DL+rDL0C+1HL0JC+ML-1tmpPL-+1PL0jC+̟TL-+1TL0|C+1WL0C+1eL0C+1gL0C+1tL0C+1L0C+1L0C+ L+rL0D+1L04D+L-1tmpL-+1L0bD+ dLK-+̟L-+1L0D+ dLK-+̟L-+1L0D+1L0D+1L0D+1L0D+ L+rL0D+1L0$E+L-1tmpL-+1L0DE+̟L-+1L0VE+1L0vE1tmpL-+1L0E+M-1tmpM-+1M0E+̟M-+1M0E+1 M0E+1 M0F+ *M+r*M0F+1.M0*F+13M0HF+ ;M+r;M0ZF+1?M0lF+1AM0~F+1DM0F+1EM0F+1FM0F+WM-1tmpZM-+1ZM0F+̟^M-+1^M0G+1aM0G+1bM04G+̟|M-+1|M0TG+̟}M-+1}M0tG+̟~M-+1~M0G+̟M-+1M0G+̟M-+1M0G+̟M-+1M-+̟M-+1M)i&H/obji/keyi1mi=KKgċ`iN\KaNKe6t'Kla@gKH@!mH@ u?DA/uD AyDAzD$A[{D0ADIZA l*ZA l*Tz6I;T l*;Q l*S{5bp]g@KIH]H]?@D]&JhI;U|S@{M+>JDAqI[p;U|>8JWAI*p;Us>JZA l*ZA pl*T6J;T l*;Q pl*SɁ5bp]h KJH]H]ݞ? D]JhJ;U|S~M+>`KD BПIu;U|bhLxLHeHRbi0 dLHБ Hđ?0 DܑDDS&i/JHiK;U~;TvSPi/S%y/Su+T,K;T U20;U Tbz9L;U};T~;Q1TWL;U};TvU"\;U};T~;Q1> LDmB8I:u;Usbp]i LMH]H]ʤ? D]JiL;U~U}M+;U~>!:MDB ?@!WB?@!WBIzu;U}>p!lMDBV?p!DBIu;Us>!MDB֦I[u;U|>!MDE Is;Uv>"MDGB?P"DGIs;UsYQjgj.NDG@VjgjDGIgj;Uv>"NZB `l*ZB Pl*T6N;T `l*;Q Pl*S5bp]j"FLNH]H]=?"D]}JjN;U}S }M+>" ODCȩIu;U}bk #SLnPHHb3k#d PHБOHđ?#DܑDcDҭSGk/JikO;U;TvSqk/Sy/TK0O;U Se+U,;T Tz/P;U~;T~;Q1TMP;U~;TvUň"\;U~;T~;Q1>#PDoCI+u;U|bp]k $bLPH]dH]? $D]JkP;UsSmM+>`$ QWCIJu;Ub:_l$fLPQHL_?$DV_eUs+;U|>$sQDCIku;U|bp]Fl%LQH]H]J?%D]JflQ;UsS,M+bh6yl@%L~RH6ZH6ҵH6JHz6Yll@RW6D6D68D6\T%1]R;U|;Q2Uށx;U|;T1c60>%RWCIu;U|b:_l%LRHL_?%DV_bUt+;U>&SWCIu;U>0&bSZC @l*ZC 0l*T6TS;T @l*;Q 0l*S5bp]Sm&LSH]H]κ?&D]PJtmS;U|SCM+>&SDCI+v;U|bSn&LTHSHSDHS?&DSDSXS!n/JEnVT;U};T~;Q0SMn/SUx/Tf0T;U};T~;Q0S$+TC,T;T UT0;U >P'TDDIJx;U~>'"UDDIv;U}b:_n'LgUHL_l?'DV_MUu+;U>'UDDIv;U> (UZD  l*ZD l*S5U6;T  l*;Q l*bp]oP(LBVH][H]?P(D]LJ&o3V;U}SM+>(eVDDIx;U}bLo(LWH,Hbzo0)dcWHБ^Hđ?0)DܑDrDSo/JoW;U;TsSo/Sy/S+T,FW;T UK0;U TzW;Uv;T;Q1TW;Uv;TsU7"\;Uv;T;Q1>)WDIEIx;U~Yp p3XD[E:@p pDhE:Ip;Us>)XZE l*ZE k*T6X;T l*;Q k*S'5bp]p),MXH]]H]?)D]JpX;USM+>0*YD F`Iv;Ubp]p`*/MmYH]H]?`*D]J q^Y;UsSM+b:q*1M~ZH: H: H: H: H: Y5qYqYD ;IVq;U;T0Yxx ZD:@xxD:YxyZZD:%@xyD;IUW)zc:0c:0c:0>*ZWFI:v;U>+ZZ/F k*Z;F k*S5U߂6;T k*;Q k*bp]q@+=MU[H]lH]?@+D]7JqF[;U|S}M+>+x[DMFI w;U|>+[W_FIw;U~bS9r+BM\HSHS`HS.?+DSDS2SRr/Jwr\;U~;T;Q}Sr/Sx/T0I\;U T5f0m\;U~;T;Q}S+UɄ,;T >P,\WqFIw;U~>,\DF{Iw;U>,\DF6Iw;U}bp]r,QMb]H]H]?,D]JrJ];U~UM+;U~> -]DF?P-WF?P-WFI:x;U}>-]DF,?-DFvI{x;U|>-]DFI*x;U~>-^DGIx;UbGgs .lMt^HHQHH? .DHJse^;Us;TvS~~>P.^DGG?.D&GIy;U|>.^D9G?/DFGI?z;U>@/ _DYGE?p/DfG{Iy;U}>/<_DyG?/DGIz;U~>0^_DG?00DGSbp]Cv`0L_H]H]?`0D]Jev_;U~UM+;U~>0_D{E?0WE?0WEI w;Us>1/`DE6?1DEIkx;U|Yvv^`DEIv;U~>@1$aZgDb"\Mwp1L`HL\H@\5H4\k?p1DX\kDd\Dp\D|\ I;R0@wwDtDC@wwDDfIw;U|Y.y~yWaZ9DUPy;U}bH{1!LbHH$bv{2dUbHБmHđ?2DܑD5DS{/J{a;Uv;TS{/S{/T0+b;U SNJ+U,;T T |yb;U};T~;Q1TCb;U};TU"\;U};T~;Q1bD|02MdHHbbr|`2dcHБHđ?`2Dܑ*DsDS|/J|Sc;U};TS|/S|/T,0c;U SE+U`,;T T}c;Us;T;Q1Tc;Us;TU"\;Us;T;Q1Y}<}vdD!C@,}<}W.C@,}<}W;CI<};U~>2dDOC(?2D\C_Ia};Ub}2]M fHHb ~2deHБ+Hđt?2DܑDDOS!~/JD~Ce;U~;TvSL~/S~/Ta0|e;U Sv+U,;T T~e;U};T;Q1Te;U};TvU"\;U};T;Q1Y+HffDB@7HW,B@7HW9BIH;U}> 3fDMB? 3DZBIm;U~Y[lfDC(Il;Uv>P3gD DK?3WD?3W%DI;U}>39gDD?3WE?3WEIk;Uv>4kgD)E?4D6EI{;U|Tj.g;U|;Ts;QTk%1g;U;Q0SmN0T>pw5g;Uv;TsTvqN0g;U1Sq.T"r2h;U};Q~Tp+̟A-+1A0Pp+1A0|p+d7A+M;A-+16A0p++8A0p+1;A0p+1EA-+1HA0p+1{A0p+ A+rA0q+1A0 q+ A+rA02q+1A0Dq+1A0rq+A-1tmpA-+1A0q+ dAK0q+̟A-+1A-+1A0q+ dAK0q+̟A-+1A-+1A0r+1A0r+1A0(r+1A0:r+1A0Lr+1A0jr+ A+rA0|r+1B0r+1 B0r+1 B0r+1#B0r+ AB+rAB0r+1EB0s+ FB+rFB0s+1JB0@s+OB-1tmpRB-+1RB0`s+̟VB-+1VB0rs+1YB0s+1\B0s+1_B0s+eB-1tmphB-+1hB0t+ dnBK0s+̟pB-+1pB-+1rB0Dt+ dwBK05t+̟yB-+1yB-+1{B0Vt+1B0ht+1B0t1tmpB-+1B0t1tmpB-+1B0t+1B0t+̟B-+1B0t+̟B-+1B0u+̟B-+1B0:u+̟B-+1B0Zu+̟B-+1B0zu+̟B-+1B0u+̟B-+1B0u+̟B-+1B0u+̟B-+1B0u+̟B-+1B0v+̟B-+1B0:v+̟B-+1B0Zv+̟B-+1B0zv+̟B-+1B0v+̟B-+1B-+̟B-+1B)ptv*K/x1Lv1len=>>ЋqڷN\>cN>Nv>6>6>)6A> 6>6=>6t'><g'?gX ?gʊ ?>@4y^>ڷ *^}>?46x>6>/ YCpx6>U2.;U|YHlx6>U[.;U|Yqx6>U.;U|T.x;U|Tϻ{2y;U|T.,y;U|TZy;U ;T2;Q5;R1UT;U|;T *;Q;R~;X bi@5?H`iHTiHHi-HDiO?DiQDi'_DijDj%lDj'mD jmW,jD8j=nDDjtDPjvD\j}DhjK~FtjF|j FjFjiFj$FjFjܜFjFjS>5D{Dj;IJ;U~b76@?|H7H7??6W7bp]`6gf{H]H]??`6D]J'{;U};TsSNM+Sl.Uy;Usc7}>6%|WjI\;U}>6H|DjYIq;U}>7|Zj j*Zk pj*S5U6;T j*;Q pj*bp]07P?}H]ȆH]?07D]J|;U~SM+>p7#}DkˇI;U~>7F}DukI;U}>7z}Dkp?7DkpI;U~>8}Zk `j*Zk Pj*S5U6;T `j*;Q Pj*bp]W08n?2~H]H]?08D]mJw#~;USM+>p8U~DkI;Ub8{?HHƌb̎ 9dSHБ[Hđ? 9DܑDoDˎS/J~;U~;T|S/S%/T0);U Ss+U,;T Tw;U};T~;Q1T;U};T|U"\;U};T~;Q1>p9D%lIڒ;U~>9 D7l?9DDlI˒;U|>9hZWl @j*Zcl 0j*S5U6;T @j*;Q 0j*bp]:?ÀH]H]N?:D]JЏ;U}SeM+>@:DulIʪ;U}>p:WlI ;U|bp] :?kH]>H]t?:D]JBS;U}UM+;U}>:WlI;U~bp]};@H] H]A?;D]yJց;UsSM+>P;WlI_;U~>;'D)mėIv;U~bp];@H]H]0?;D]/J s;UsSM+b:,;@H:zH:zH:zH:zH:YJnD ;NIk;U~;T0Y5D:@D:ßYP`oD:@P`D; U)zc:0c:0c:0>@<WlI ;U~bp]p<@ H]-H]c?p<D]bJ;UsSM+b:<!@H:H:H:H:=H:ͩY˓D ;bI;U~;T1Y D:@ D:תY`pD:@`pD;U)zc:0c:0c:0>==WlIJ;U~>0=\WlI:;U}>`={WmI;Ub:_6='@HL_A?=DV_Ue+;U~>=DmݫI*;U~bp]r>J@IH]&H]\?>D]J1;U}U{M+;U}b:@>L@ZH:`H:`H:`H:`H:Y†D ;Iߔ;U~;T0YXpD:@XpD: Y0@6D:0@0@D;TUE)zc:0c:0c:0>>yW;mIz;U~bp]>O@ԇH]wH]?>D]:JŇ;UsSDM+b:!?Q@H:H:H:H:H:eY?cMD ;I`;U~;T0Y@XD:K@@XD:oY@PD:@@PD;UU)zc:0c:0c:0>P?WMmI;U~>?#W_mI;U>?BWqmI;U}b:_?W@HL_ٹ??DV_HU+;U~> @DmI§;U~b7P@x@{H7H7H7H7H 8H8H#8H/8H7?P@D;8tXF8>@^DO8D[8Wg8Ws8I;U}U.+;T @>@WmIڧ;U~bp];@@H]H]?@D]J];U}UHM+;U}b:i0A@H:H:H:H:H:YyD ;!I;U};T0YpD:r@pD:YP`D:@P`D;Ue)zc:0c:0c:0>A0WmI;U}bvA@HvHv\?ADv\DvUh6;U};T~>AWmI;U~bp]B@ H]/H]e?BD]J";UvSSM+>PBBDm?BWm?BWmI;U~>BtD ne?BDnI;Uv>BD+nI ;Ubp] C@H]H]? CD]J;U}SJM+>`CD=nI*;U}bp]˗C@{H]_H]?CD]IJc;U}U¾M+;U}b:C@H:H:H:H:H:QY;D ;I8;U};T0Y.D:J@D:nY`phD:@`pD;U5)zc:0c:0c:0> DWOnI?;U}>PDDan?DWnn?DW{nIj;U~bSD@HSHSHS?DDSfDSS/JA\;U;T~;Q0SI/S/S+T0;U T9f0ǐ;U;T~;Q0U,;T >@EDo>pED!oTI;Ubp]E@uH]H]?ED]Jf;UsSM+>EґZ3o  j*Z?o j*S5U6;T  j*;Q j*bp]F@/H]8H]n?FD]vJ! ;U~S,M+>PFBDQo>F{Dco?FWpo?FW}oI;U>FDoB?FDoI;U~> G̒WoIר;U}>PGߒDo>GDo?GDoI;UsbךGAxHAHb  HdHБHđ? HDܑTDD S&/JL;U~;T|ST/S5/S+T,;T U0;U T5;U};T~;Q1TyU;U};T|U"\;U};T~;Q1>pHDCpBI;U>H-DUp@Dap>0IٔDnpI*;U~VP;AH^;TU.+;T p;Q3S\b?`I\AH*?xH?H?f?`ID6?DB?#XN?XV?>J3Dc?Do?D{?D?Yp֕D??D?Y*PD?!S<0TX 1;U~U 1;U~?JH*?DH?|H??JW6?WB?XN?XV??JW?D?b:_2JgĖHL_"?JDV_kU8+;U~YTdD?Id;U~U&%1;U~;Q3b?lJfAH*?H?H??JD6?DB?IXN?XV?>`KDc?Do?D{?D?YصD?D?YYbD?St0TF 1;U~U 1;U~?KH*?H?H?6?KW6?WB?XN?XV??KW?D?pb:_KgHL_?KDV_Uu+;UsY٘D?BI;UsU֭%1;U~;Q3> LVZp j*Zp i*S5U6;T j*;Q i*bp]PLAH]eH]?PLD]VJ>;U~SQM+>LԙDpI_;U~>L1Zq i*Zq i*S5U6;T i*;Q i*bp]LAH]6H]l?LD]J;U~S%M+>0MD%qAbp]ڝ`MAH]wH]?`MD]] J;U~UM+;U~>MW7qbS۞MAHS HS HSB ?MDS DS S/J';U;Ts;Q0S//S/S+T+0қ;U TLf0;U;Ts;Q0Ux,;T >@N5DqC I;Us>pNXD ry I;UbSNAZHS HSj HSK ?NDS DS" S,/J_ќ;U~;T;Q~Si/Sʱ/Tf0;U~;T;Q~S#+TG,=;T Ug0;U >OiWr>0OD-rk I;U>`OD?r& I;U~b:_OAHL_ ?ODV_ U+;Us>OQZr i*Zr i*S5U6;T i*;Q i*bp],OCBH] H]5 ?OD] JL;U~SuM+>0PϞDrN I;U~>`P0Zr i*Zr pi*T,6";T i*;Q pi*S5bp]PHBH] H], ?PD] Já~;U~S)M+>PDsj bQUBH HP b%QdHБ Hđ\ ?QDܑ D Dp S9/Ja=;U~;T~Si/SE/T0v;U Sd+U,;T TĠ;U};T;Q1Tx;U};T~U""\;U};T;Q1>QDes bGRZBsHH HH ?RDH Jߢd;U~S%~>PRDws I;U~>RWsI:;U}bSRBHS. HS HS* ?RDS DS S/J-;U;T~;Q0S/S/S+T0s;U T/f0;U;T~;Q0U,;T > SȢDIt> >PSD[tt Ij;U>SDmt ?SDzt IZ;Uv>SODt ?SDt IJ;UsbEwSBH8EO H,E H E ?SDDE J;Uv;QsS@2> TܣDt I;Us>PTDu ?TDu IZ;Us>TBDu ?UDu Ij;U}>0UvDuT ?`UDu I;U}>UDu ?UDuL I;Uv>UܤDu ? VD v I;U~>PVDv1 ?VD,v I;Us>VBD?v ?VDLv- Iʬ;U~>WtD_vz ?@WDlv Iڬ;Us>pWDv ?pWDv Iz;U}Y̥ޥDvJ @̥ޥDvJ Iޥ;U|YP<Dtm @!PDt I?;U~>WZn>WDn ? XDn Ig;U}YWnUz"\;U>PXDt ?XDtU I;U}>XDt ?XD u I;U>Y6Du ?@YD,u- >pYXD?uc ?YDLu >YD_u ?ZDlu I ;Us>0ZZ t>ZΧDt; ?ZD'tq I{;U}YʫD6t Iޫ;U~U"\;U>ZZq>0[FDq ?`[Dq YBpuDq6 I\;U}U"\;U>[ZQr i*Z]r i*S5U6;T i*;Q i*bp]`[ABH]Y H] ?[D] J3;UsSM+>\eDor# IJ;UsbS0\ BaHSY HS HSO ?0\DS DS-! S/J޲۩;U~;T};Q0S/ST/T0;U Tpf07;U~;T};Q0So+U,;T >\WrIg;U~Y!@WrI5;Us>\ҪZnU׳;U> ]ZsU;U>P] ZwqU޷;Ub(]@Hv! H&" bY]dHБo" Hđ" ?]Dܑ'# D# D# Sm/J;U~;T}S/Sݹ/S+T0;U UI,;T TB;U;T~;Q1T`;U;T}U+"\;U;T~;Q1b^@H($ H$ b3@^dHБ$ HđJ% ?@^Dܑ% D% D8& SG/Jo;U|;T}Sw/S/T`0W;U Sz+U,;T Tغ;U~;T~;Q1Tŭ;U~;T}UG"\;U~;T~;Q1YCDsn& @ͿW$s@ͿW1sI;U}>p^uDEs& ?p^DRs& I;UsYԮDo' @Wp@WpI;U}>^D#p#' ?^D0pZ' I;UsYcDk}' @Wk@WkI;U}>^Dl' ?^Dl' I;U>_Dp' YAQ֯Dp( IQ;U~bk;_CA!H; ) H};U) S[U{;T3YPDp) I;U}Y$5Dp) I5;U}T56;U~:as;U}:tsŰ;U}:sܰ;U}:s;U}S:[UF\;UsYDDl) I;U~Y_Ds) @lWs@lWsI|;UYHeD'k** @TeW4k@TeWAkIe;U}>_0DUk`* ?_Dbk`* I;UsYs_Dm* I;U~> `DIq* ?P`WVq?P`Wcq>`Dp* I;U~YڲDr+ I;U~TT.;U1T;r;T~;Q0T.;U};T~TVD3F;U~TD3^;U~STN;U~T%1;U};T;Q3T%1ɳ;U;T};Q3T#6;U~Ts.;U;Tv;Q}SN0T.:;U~;T~;Q}TԜ?Y;U~;Q3T)6{;U~;T~SN0TN0;U2S.T۟2̴;U~;Q~T2;U~;Q~T6 ;U};T~ScN0TK29;Us;T}Tk7S;U}TS͘r;U 8TڪT.;U1T w5;U};T|T?ȵ;U~;Q2TGT.ߵ;U0T.;U~;Ts;Q~T.+;U;Ts;Q|T.O;U~;T;Q|STNt;U~Tx.;U~;Ts;Q~S_TsN;U~STN;U~SUN;U~V0U?HJU5+ HnUY+ HbU+ HVU+ H>U+ @DzU, DUC, U.+;T @;Q ;Y U*͘;U 8;Q ;R њ    )c%F*\FH0*F*AF*F*F+G+H+I+c J/+K1+WL+M+JN+W%O+AP+sOQ+^GR+S+kT+U+BVV+"W+t'X+Z+[+\+ǻ]+ѻ^t+ۻ_+`+a+b+Wct+bdt+met+xf+g+h,?#,^,H,В ,fD,aJ,,ă9,؃ ,΃v",M!,Y-!,r1t",",6JH#,Ƥ"0r+ u+ru0+1y0+10+10+10ں1tmp-+10+10+10+&h0 0-+ +r0?+10m+-1tmp-+10+̟-+10+10ͻ+-1tmp-+10+̟-+10+10+101+̟-+10Q+̟-+10q+̟-+10+̟-+10+̟-+10Ѽ+̟-+10+̟-+1-+10+1$00+ *+r*0B+1.0p+3-1tmp6-+160+̟:-+1:0+1=0+1@0ƽ+1B0ؽ+1Q0+1r0+1t0+10 +10>+ +r0P+10~+-1tmp-+10+̟-+10+10¾+10Ծ+10+10+ +r0+104+ +r0F+10d+ +r0v+1 0+-1tmp-+10Ŀ+̟-+10ֿ+10+10+10(+"-1tmp%-+1%0H+̟)-+1)0Z+1*0l+1-0+ C+rC0+1G0+ J+rJ0+1N0+T-1tmpW-+1W0L+ d]K0++̟_-+1_0=+1a-+1b0+ dgK0}+̟i-+1i0+1k-+1l0+1}0+10+10+ +r0+10"+ +r04+10b+-1tmp-+10+̟-+10+10+10+10+-1tmp-+10+̟-+10+10*+10<+10N+10`+10r+101tmp-+10+101tmp-+10+10+10+10 +1)0+1+00+180N+ T+rT0`+1X0+_-1tmpb-+1b0+̟f-+1f0+1g0+1j0+1l0+1y0+ +r0&+108+10f+-1tmp-+10+̟-+10+10+10+10+10+10+10+10"+  +r 04+1 0R+ +r0d+10v+10+10+10+1 01tmp!-+1!01tmp7-+170+]-1tmp`-+1`0:+̟d-+1d0L+1g0^+1v0~1tmpw-+1w0+-1tmp-+10+̟-+10+10+10+10+102+ +r0D+10V+10h+10z+10+10+10+10+101tmp-+10+10+10+10*+1 0<+1$ 0N+19 0`+1F 0~+ d +rd 0+1h 0+n -1tmpq -+1q 0+̟u -+1u 0+1v 0+1y 0+1{ 0&+1} 08+1 0f+ -1tmp -+1 0+̟ -+1 0+1 01tmp -+1 0+  +r 0+1 0+1 0 +1 0+1 0L+ -1tmp -+1 0l+̟ -+1 0~+1 0+1 0+!-1tmp!-+1!0+̟!-+1!0+1!0+1!001tmp!-+̟!-+1!0B+1&!0T+13!0r+ E!+rE!0+1I!0+N!-1tmpQ!-+1Q!0+̟U!-+1U!0+1X!01tmpY!-+̟Y!-+1Y!0$+1g!0D1tmph!-+1h!0V+1~!0h+1!0z+1!01tmp!-+̟!-+1!0+ !+r!0+1!0+1!0+1!0+1!0:+d7!+M;!-+1!0~++!0]+1!0o+1!-+1!01tmp!-+̟!-+1!01tmp!-+̟!-+1!0+!-1tmp!-+1!0(+̟!-+1!0:+1!0L+1!0z+!-1tmp!-+1!0+̟!-+1!0+1"01tmp"-+1"0+1"0+1"0+1"0"1tmp "-+1 "0P+F"-1tmpI"-+1I"0p+̟M"-+1M"0+1P"0+1S"0+"-1tmp"-+1"0+̟"-+1"0+1"01tmp"-+1"0&+1"08+1"0J+1"0\+1"0z+ "+r"0+1"0+1"0+1#0+1#0+1#0+̟@#-+1@#0+̟A#-+1A#04+̟B#-+1B#0T+̟C#-+1C#0t+̟D#-+1D#0+̟E#-+1E#0+̟I#-+1I#0+̟J#-+1J#0+̟K#-+1K#0+̟L#-+1L#04+̟M#-+1M#0T+̟N#-+1N#0t+̟O#-+1O#0+̟P#-+1P#0+̟Q#-+1Q#0+̟R#-+1R#0+̟S#-+1S#0+̟T#-+1T#04+̟U#-+1U#0T+̟V#-+1V#0t+̟W#-+1W#0+̟X#-+1X#-+̟Y#-+1Y#=5f, NN\- N3 Nv4 66 6A: 6> 6'C 6t'1O g'8gX:gʊ> >`^> @*^}N?@a6x}O 6/P Y``6LP U`.;UvYobbO6oP Ub.;UvYbb6P Ub.;UvTj`{2;UvTUb.;UvUbT;Uv;T @*;Q;R|;X +b a?NH<P H0b H$tf Hn H s ?aDHxu DT<{ D`)~ Dl' DxT D Dɓ Dל D0 D D D̸/ Dظ D D" DO D DG Z ~D,D Z8~ZD~DP D\ Dh Dt" D D D D D. DC Dȹ' FԹM/FܹBFgFחFFFF 3F(F(F$F,SF4(F<-FD)FL2>bZY f*Ze f*TZ6;T f*;Q f*SZ5bp]`bwH]C( H]y( ?`bD]( S[M+>bDw( bS3bHS0) HS^, HS/ ?bDS/ DS/ S\/Jk;Us;T;Q}S/S/T]f0;Us;T;Q}T]0;U S]+U^,;T >@cWI;Us>pc$D.0 >c7Dd0 >ciD0 ? dD̺3 I;U~bp]$`dH]6 H]6 ?`dD]<9 JR;U}S%^M+bh6jdfH6t9 H6t9 H6: Hz6: Y4W6W6D6[; D6; T^%1K;Q2Ux;T0c60>dyDߺ; b:_ eHL_; ? eDV_< S+>eDP< >eD< bc0@gHDcb> H8c@ H,cA H c< ?@gWOcV20Qg_E2@0QD2~C >pgrD`cC YblDrcfE @luDcG >g Z f*Z  f*S5Uآ6;T f*;Q f*bp]gRH]G H]G ?gD],H SM+> heD2wH bp]PhH]H H]H ?PhD]TJ J';U}USM+;U}>hDDJ ?hWQ?hW^>h&DrJ ?hD7K I$;U~> iIDmK I";U}>Pi\DL >ioD/M >iDeM ?iD#N I$;U> jD6N ?PjDC.P I$;U|>jDVdP ?jDcP I$;UsbI6j4H[6P bڕkGeHБ~Q HđQ ?kDܑ+R DR DR S/J";U};T0S*/Sz/T0;U S+U,;T T;U};T0;Q0U֖|;U}>`kVDvS ?kDOS >kxDS ?lDS >0lDS ?`lDü'T >lDּ]T ?lDT YDT I;U~Y@DT @DU @D2U Y5NDһUU @5ND߻UU II;U~Sk+T{;U};T~STϗ]c;|Tu;Rsc 3|T͘;U pTטufN;U|;T~;Q~;R~STNs;U~U-.;T~b:_m#HL_xU ?mDV_U SB+>PmDV >m6Z pf*Z# `f*S5U6;T pf*;Q `f*bp]m,}H]7V H]mV ?mD]V SM+>nD5V >@nDu$W ?nDZW >nDW b6n>eH-7W H!7W H7vX H 7X Y)3W>7WJ7DV7IY Db7mY T'%1J;Q3U¶0y;T0c-70>0oxDY b:_C`oAHL_Y ?`oDV_Y S0+>oD>Z >o*Z 0f*Z  f*T6;T 0f*;Q  f*S'5bp] pqH]tZ H]Z ? pD]Z SڼM+>`pD +[ >pZ f*Z' f*S5U6;T f*;Q f*bp]p<H]a[ H][ ?pD][ J-;UsSM+> q_D9+\ I;Us>PqZK e*ZW e*S^5U6;T e*;Q e*bp]qH]a\ H]\ ?qD]\ J;UsSM+>q:Di+] IJ;Us>r]Dɿt] I;;U|>0rDۿ^ I*;U~bp]`rH]_ H]` ?`rD]:` SM+>rDr` >rD-` ?sD:` >0sWMI ;Us>`s.D_a b3vs8H 4Ja H3a ?sD4@b YD 4b D*4b @D8`8E 4C3P@D8`8W4B3D8`8qE3H3b >sDc >s1DOc ? tD d IZ;Uvbp]YPtH]d H]d ?PtD]f J}};USjM+b6t0H-7g H!7h H7j H 7j YW>7DJ7j DV7 k Db7Dk T%1;Q3Un0y;T1c-70>tCDik b:_ uHL_k ? uDV_k Sr+>uDl bp]Eu&H]Kl H]l ?uD] n Je;USνM+>vDln b:_0v*@HL_n ?0vDV_n S+>vSDo >vZ5 Xe*ZA Pe*S5U6;T Xe*;Q Pe*bp]_0wVH]No H]o ?0wD]o SM+>pw DSp >wD;p >w@Dqp I;Usb:_#xk~HL_p ?xDV_p S+>PxD0q >xZ @e*Z 0e*T6;T @e*;Q 0e*S5bp]xMH]fq H]q ?xD]q J>;UsSM+>ypDCr I;Usbp]0yH]r H]r ?0yD]r SM+>`yD+0s >yD=fs ?yWJ?yWWI;Us>y5Dks ?yDxs I:";Uv> zHD/t >PzkDet I ;U|b:_zHL_Fu ?zDV_|u S+>zDu >{Du b:_@{HL_(v ?@{DV_v UM+;Us>{7Dv I*;Us>{Z   e*Z e*T:6;T  e*;Q e*Sٞ5bp]0| H] w H]Cw ?|D]w JP;UsSuM+>@|D'w IB;Us>p|sZ9 e*ZE d*SӶ5UH6;T e*;Q d*bp]|H] x H]Cx ?|D]x J;U~SlM+>|DW6y IZ;U~> }Diy I;U}bSPP}HSy HS]z HSz ?P}DS;{ DS{ Si/J;Uv;Ts;Q}S/S/T$hf0;Uv;Ts;Q}T0;U S/+UN,;T >}%D{ | >}HDB| I;Us>~[Dx| >@~D| ?@~D| Iz;Usb:_3~BHL_| ?~DV_~ U+;Usbp]l~W-H] H] ?~D] J;US5M+>~^D ? DN ?PD  bcH H b%d\HБ Hđ ?DܑІ DR Dԇ S:/J_;U|;TvSg/Su$/S+TX,?;T U0;U T Gz;T~;Q1T;TvU "\;T~;Q1>D ?D,g Ij#;Uv>D? b:r?H:ӈ H:ӈ H: H:[ H: >`D ;̋ >D;( Jo;UsSl.S.I$;UsY:;D:^ @:;D: YCDD: @CDD; U)z;Us;T c:0c:1c:0bp]XЁnH] H]T ?ЁD] Jz;U}U6M+;U}b6pIH-7 H!7 H7 H 7 YW>7DJ7 DV7 Db7) TU%1.;Q3U0y;T1c-70>`\DݽN b:_sHL_ ?DV_ S+>D bp]E0H]0 H]f ?0D] Jg;U}U?{M+;U}b:xpH:U H:U H:U H:U H:͗ YD ;S I;T0Y55D: @55D:Ș Y88D: @88D; U}k)zc:0c:0c:0>1D2 >Z% Pf*Z1 @f*SM5Uo6;T Pf*;Q @f*bp]P0H]h H] ?0D]ԙ SvM+>pDC > DU ?D >D b6)@H-7 H!7 H7 H 7 YCYW>7WJ7DV7z Db7 T%1;Q3U|0y;T0c-70>DÜ b:_sHL_ ?DV_/ S"1+>!DǾo Y@Dپ >@Zq e*Z} e*T,6;T e*;Q e*S@5bp]EH]ȝ H] ?D]4 SM+>D bp]HVH] H] ?D] JG;UvSmM+>@Z e*Z e*T$6;T e*;Q e*S85bp]PLH]5 H]k ?D] SM+>D bS&{ HS" HS HS, ?DS DS S?/Jg;U~;Ts;Q0So/S$/Tlf0;U~;Ts;Q0T0;U S+U,;T >`0Df I$;Us>SD IJ#;U~b:_HL_ ?DV_T S+>D >PZ e*Z e*SJq5Ulq6;T e*;Q e*bp]G\H]ʧ H] ?D]Ψ JgM;U~SpM+>D I7;U~>Z  pe*Z `e*So5Uo6;T pe*;Q `e*bp] 7H] H] ? D]ت J(;U}SLM+>`ZD'# I7;U}bp]H]ޫ H] ?D]z J;UvSM+>ЊDg٭ ?Dt >0DE I;7;U|>` D bp]hH] H] ?D] JY;U~S_M+>D I7;U~>D 6 >@Dl I6;Usb:_hpHL_Ȱ ?pDV_J UU1+;U~>)D/ I6;U~>LDA Iz7;Us>_DS >@rDeV >pDw ?D IJ7;U}b:_H HL_L ?DV_γ U%+;U}>@D Iz5;U}b:_p8 SHL_j ?pDV_ U%+;U}>vDA׵ I5;U}>Ze d*Zq d*S|5U|6;T d*;Q d*bp]0 f H]޶ H] ? D]J S{M+>`-D >@D˷ >SD >vD7 I5;U}b:_B | HL_ ? DV_( S0+>pDh bp] "H] H]Թ ?D] J;US8}M+>cD=C ? DJy ? DWy I:6;Us>PDk ?Dx >D I 6;U}>D ?D< I5;U>07Z d*Z d*Sx5U6;T d*;Q d*bp]  ~H] H]$ ?D]Z SڈM+>D bS{  HS HSp HS ?DSk DS S /J ;U};T~;Q|S /S8/Tv0A;U T`wf0e;U};T~;Q|S=+U\,;T >pD I8;U}>D >ЖD bp]E  > H]= H]s ?D]f Js & ;U}U>M+;U}>Po D# ?D0 ?D=" b  v HX H b4  d% HБ HđH ? Dܑk ZSD SI /Jn  ;U};T|Ur0;U TIC ;T~;Q1T[ ;T|U"\;T~;Q1bI6n P H[6 bn Gej HБ HđX ?Dܑ{ D D Sv /S8/SXD/J}D! ;Us;T0S+T.,M ;T U0;U TK ;T0;Q0S'|>  DQC ?PD^y > Dq b T! H H b0d HБ Hđ ?0Dܑ D D S/J6f ;U~;T}S>/SU&/S +T)0 ;U Up,;T TH ;T};Q1T2 ;T}UR"\;T};Q1b" !H H b,d#HБO Hđ ?Dܑ D. D SJ/:} ;U|;T}S/S!/TV0 ;U SX+UX,;T T2H;U};T};Q1TJh;U};T}U9W"\;U};T};Q1b; `!H H bKdHБa Hđ ?Dܑ Df D S L/J@[D IJ;Usbp] p!H]O H] ?pD]_ J ;U}SUM+>D ?D ?D >@D9 ?@D I;Us>.D >AD >D% ?D% ? D! Iz;U~b:_P%!HL_ ?PDV_& U+;Us>D5f IJ;Us>GZY d*Ze pd*SN5UN6;T d*;Q pd*bp]`G!H] H] ?D] SNNM+>@Dwf >pD ?D >ПD >D> ?D> ?@D I;U|b:pc!fH:R H:R H: H: H:3 >D ;+ > D; J,;UsSpl.S}.I@;UsYD: @D: Y`"{"6D: @`"{"D;X UJ)z;Us;T c:0c:1c:0b7P0!H7{ H7{ H/8 H#8{ H8 H 8{ H7 H7{ H7w ?PD;8 XF8>DO8 D[8X Dg8 Ds8# >D8l D8 >\D8( ?D8( I";UT.s;U0Ux4;U;Tv>0D8q I;U~I;U};T~Um.+;T @Y@WGI3;Us>`1WI* ;U~>cD) ?D6 I ;Usbp]r!H]_ H] ?D]E J+;U|S]TM+bS@|!HS} HS% HS ?@DS DS_ S/J7;U~;Ts;Q}S/S5 /TR0p;U TRf0;U~;Ts;Q}SS+US,;T >DI@ >УD[v IZ ;Us>Dm >0HDT ?0DT ?pD" I!;U|>Z `d*Z Pd*S]S5US6;T `d*;Q Pd*bp]Ф!H]X H] ?ФD] J;U}SQM+>#DH Iz ;U}bSD@!!HS~ HS9 HS ?@DS= DS S^/J;U|;T};QsS/S /T,Mf0;U|;T};QsSY+T@Y0;U U/,;T >4D >WD I ;U}>zDE I ;Us>@D Db >D, VP;!H^; U.+;T p;Q2SLO\>?D ?D ?De I!;U}>@D ?@D ?pD} I!;U}bp]!H] H] ?D] J;US0OM+>D ?D ?D >@0D  ?@D >pSD-? I !;U}>fD? bp]Ш!H] H]S ?ШD]m J.;U~ShXM+> DQ ?PD^ ?PDk >$D7 ?D I!;U|>GD I!;U}>yD ?D I6!;U~bp]@ "H]= H]s ?@D]g J;U|SXM+>D b 9$"_H39 H?9 Hc9 Ho9 H{9 H9H HW9 HK9( H'9 H9= ?D9 X9YV5D9 D97 D9 D9 YVtD98 D98 Uhx4;Uv;T}YDR: I;U~I;U};T~;Q|U:.+;T ;R 2>D Ij!;U}bp]0"H]) H]_ ?0D] J;U|SMM+>p D@ Iz!;U}>2 Dv ?ЫD I!;UvY""v W@""WI";U}>V!ZQb"\#ph HL\ H@\> H4\t ?pDX\t Dd\ Dp\ D|\) Iɏ;R0>!Dbz ?ЬDo >*!D @-$P$D IB$;U}bS&@T"HS? HS HS ?@DS DS S'/JG'!;Us;T};Q|SQ'/S#8/Syq+Tq,";T T\02";U U|f0;Us;T};Q|>w"D] I8;Us>"D > "D  bp]"(`"#H] H]5 ?`D]c JI(";U}UM+;U}bh6a("#H6 H6 H6 Hz6 Y{((q#W6W6D6 D62 Tw%1#;U};Q2U,xx;U};T0c60>#DW I?-;U}b:_( "$HL_% ? DV_[ S,+>p#$D+ >W$D ?D3 I,;U}>$D ?@D I/,;U}>p$D ?Dg IO,;U}>а$D ?D Io,;U|>0'%DN ?`D& I,;U}>I%D9 ?DF3 >{%DYi ? Df I+;Uv>P%Dy ?Dt I+;U}>%D ?DM I+;U}>&D ?@D I+;U|>pI&D4 ?D I+;U|>г}&D ?D= I+;U}>0&D ?`D& I+;U}>&D9N ?DF I ,;U|>'DY ?Df I,;U}> M'DyJ! ?PD! I,;U}Y**'D! @**D" I*;UbG2+0#(HH*" HH" ?DH# J_+';U};T|Uz~;U}b3`-"(H 4q# H3# ?D4R$ Yu--e(D 4$ D*4$ @ z6zE 4E3@ z6zW4B3 z6zqE3H3$ bp]-")H]+% H]a% ?D]& J-);U}S zM+> O)Dr& ?PD& ?D& >)D' ?D^' I6;Us>)D' > )D' ? D' I.;U}>P)D( ?D8( >*Dn( ?D( I_0;Us>>*D( ?@D&) >p`*D9F) ?DF|) >и*DY) ?Df) I/;U~>0*Dy * ?`DA* I0;U}bp](2"!+H]w* H]* ?D]L+ JM2+;U|SrM+bh6m2й"+H6+ H6+ H6- Hz6- > +W6W6D6- D6. T5r%1+;Q2Usx;T0c60>P+D=T. b:_2" ,HL_. ?DV_. UE+;U}>к0,DO// I}F;U}>,Za @d*Zm 0d*T6,;T @d*;Q 0d*S5bp]&3@",H]/ H]/ ?@D]00 JK3,;U}S^M+>-D{0 I9;U}bp]3"u-H]0 H]0 ?D]1 J3]-;U}UvM+;U}>-WI99;UsbS3 #.HS*2 HS2 HS3 ? DS3 DS3 S4/JT4.;Us;Q}S^4/S9/S+T̉,K.;T T^0j.;U Uf0;Us;Q}>.D4 >.D4 Ik9;U}bG4#*/HH*5 HH5 ?DH+6 J4/;U};T}U~;U}>I/WIR9;Us>@l/DQ6 I A;U}>p/Dc 7 ?DpS7 I@;Usbp]F;0H]7 H]7 ?D]8 Jt;/;U}UM+;U}> E0D8 ?PD9 ?PD9 I@;Us>w0Dh9 ?D9 IjA;Uv>0D9 I@;U}bp];1H]D: H]z: ?D]m; J,<0;U|U6M+;U|bS< 1HS; HS?< HS< ? DS = DSf= S</J<w1;Uv;T};QsS</SUA/S}+T,1;T T%01;U UEf0;Uv;T};Qs>p2D4> >42Dj> I:A;U}>пW2D> I*A;Us>2Z d*Z% d*S5Up6;T d*;Q d*bp]=`2H]? H]? ?`D]? SvM+>3D78@ bSH> 4HSn@ HS@ HSA ?DS-B DSB Si>/J>3;Us;T~;Q}S>/SA/S+T,3;T T03;U U f0;Us;T~;Q}>0+4WIIA;Us>`>4D[B >a4DmB IzA;U}bp]?4H]>C H]tC ?D]C SNM+>4DC bS? 5HSD HSD HS E ? DSeE DSE S?/J@25;U};T~;Q|S@/SzB/Tf0p5;U};T~;Q|T05;U S@+U_,;T >5DE I_B;U}>5D1F >6DgF >@$6DF ?@DF YpEEW6ZUE;U~>6D'F ?D4/G ?DA/G IJ;Us>6DUxG ?DbG IsJ;Uv>6DuG II;U}b7G@Q"38H7zH H7zH H/8H H#8zH H8zH H 8zH H7bI H7zH H7I ?@D;8J XF8YG%H8DO8K D[8MK Wg8Ds8K YGG7D8 L D8 L UGx4;T}>p7D8L I H;UsIH;U|;TsUБ.+;T @>F8DL bE^Hi"8H8EM H,EM H EM ?DDE2N JH8;U|;Q}U@2;U|;Q}bI6J!9H[6}N bJpGe9HБO HđO ?pDܑO DJP DP SJ/J+KV9;U};T0S3K/SK/Sz+T&{,9;T Uы0;U TK9;U};T0;Q0U|;U}>:D?P >P:DPQ bk;(P!d:H;Q H};Q S6P[U{;T2>w:Db0R Y$:DpfR SO6iO|iP|i(P|S5[UA\;U|>;DR ?DR ?@DR Ya)aI;DS+S I)a;UsYccx;D/NS Ic;Usbzep<HqS HS bedv<HБ T HđeT ?DܑT DU DyU Se/Je<;U};T|Se/S*f/TXf0L<;U Sf+Uf,;T TEf<;Us;T~;Q1Txf<;Us;T|Uf"\;Us;T~;Q1Ymgg.=DU @yggD U @ggDU YriiM=DV Ymml=D;V Yu,u=DU^V @u,uDbV @u,uDoV b6x"?HV HV b6x0d>HБ[W HđW ?0DܑW DW DFX S;x+TVx,a>;T Sx/J y>;Us;T}Sy/SMy/Uy0;U Thy>;T;Q1Ty>;T}Uy"\;T;Q1Yl}}/?D+X Y?DX @DX @DX >p?DY ?pDY I;UsY1 @D9>Y @1DFaY @$1DSY Y/Mh@DY @=MW@=MWIM;Us>@DY ?DY I;U|Y@DZ I;UsbuL".BH#Z HZ bdAHБZ HđX[ ?Dܑ[ D[ D3\ S/JfA;Uv;T}S/S//Tp0A;U S+U,;T TFA;Us;T}T]"\ B;Us;T;Q1Uť;Us;T;Q1Y=fBDG|\ @IfDT\ @YfDa\ YBD˽\ YLjBDe] @ZjWr@ZjWIj;Us>@1CD>] ?@D>] I;UvYdCD{a] @qW@qWI;U~YCD] @D] I;UsYCD] YTDD] @W@WI;U~YsDD#] Y'<DD^ TN0D;U1S.S+2T}%1D;U};Q1TD;T}TD3E;UvTP2E;U~;T|TJE;TsJ]E;U<:sE;Uv;Q0;R0;X ;Y0T%1E;T};Q3JE;Us;T|T4E;a|1TE;UsTB%1F;U;Q0T.4F;U|;TvSW4Tz%1`F;T};Q4TuN0wF;U1S.T-2F;Q}TF;T}SSNSN0TLF;T|T G;UsT\%1,G;T};Q4T<%1SG;U};T};Q4T%1rG;U};Q0T%1G;U;Q4ST%1G;U};T};Q0T" G;U}T! N0G;U1SL .Ss 2T_ %1/H;Uv;T};Q0T 7OH;U};TvTZ.gH;TsT%1H;Uv;Q4T /H;U};TsT67H;Us;T~TFN0H;U1Sd.S2TN0 I;U1S.T42/I;UsT|.SI;U};T|;QT2kI;UvT2I;Uv;T}Tq&p]I;U}T&N0I;U2S&.T&2I;Q}T6..I;TsT/͘J;U pSv3.T32CJ;U};QsT5 /cJ;U|;QsT;67J;Us;T}T;.J;U};Tv;Q}TG<N0J;U1Se<.T<2J;UsT=N0J;U1S>.T@>2K;U}T`?N06K;U1S?.S?2TCI6hK;U}T9Gp]K;U}TG.K;U};Tv;Q}SJTV.K;Q}SaTaNK;UsScTcNL;UsTg.1L;QsSYiSriNSmSmNTOu.L;Q}SS}Sl}NT.L;TsTR.L;Q|Tc.L;U};T|TM;Us;T}SpTN,M;UsT.FM;Q}SSNT.~M;U|;TvT.M;U};Ts;Q|SrSNT}YM;Uc4StI6SoSNSS'NV0Um9NHJU3^ HnUW^ HbU^ HVU^ H>U^ @mWzUZURUm.+;T @;Q +U͘;U p;Q ;R њ)ɇ5X*\5H0* 5*5*A5+51+\58+}5t+5!++5!+w5*+#5e+E5X+i5*+)'5*+t'5+5+5+5t+ǻ5t+ѻ5t+ۻ5+5+5+5+W5+b5+m5+x5!+5!+5!+51+58+5,49,15,+6,J6,<t7,`7,*q7,w7,6J<9,W8,8,O.8,O(8,b48,/F8,T8,"Z8,I-9,9,9,8907Q+150IQ+150gQ+ C6+rC60yQ+1G60Q+M6-1tmpP6-+1P60Q+ dV6K-+̟X6-+1X60R+ d^6K-+̟`6-+1`60R+1r60'R+1t609R+1w60WR+ 6+r60iR+160R+6-1tmp6-+160R+ d6K0R+̟6-+16-+160S+ d6K0S+̟6-+16-+160)S+160;S+160MS+160{S1tmp6-+̟6-+160S+7-1tmp 7-+1 70S+̟7-+170S+170S+170T+70 -+%HM7t-+ -M7t0-T+1j70?T+1m70QT+1u70T+7-1tmp7-+170T+̟7-+170T+170T+170U+&h70 0T+̟8-+180U+̟8-+1804U+̟ 8-+1 80FU+180XU+180jU+180U+̟#8-+1#80U+̟$8-+1$8-+̟%8-+1%80U+1K80U+1N80U+1X80V+ m8+rm80-V+1q80[V+w8-1tmpz8-+1z80V+ d8K-+̟8-+180V+ d8K-+̟8-+180V+180V+180V+180W+8-1tmp8-+180;W+̟8-+180MW+180_W+180qW+80 0W+190W+190W+190W+̟59-+1590W+̟69-+1690X+̟79-+1790'X+̟89-+1890GX+̟99-+1990gX+̟=9-+1=90X+̟>9-+1>90X+̟?9-+1?9-+̟@9-+1@9,)R9Y*R*R+t' R+"R,p[^U5; *^}V5K?6xY5k 6Z5/2l Y)[6s5{l U.;UsT{2 [;UsTwT_[;Us;T *;Q;Rv;X T.w[;UsT.[;UsUD;U ;T2;Q3;R1bN@56{HOl H O!o HNo HNhq ?D!Os D-Ow D9Oy DEOdz DQOz D]OD} DiOt DuOi DOV DOF DO5 DOk DO DO DO DOE ZO~ZO~ZODP DP DP~ D)PY D5Pȥ DAPȥ DMPg DYPئ WePDqPܨ X}PFPFPFP FPFPFPFPFPsFPFPFPFPFPFPFPpFPpFQF QFQFQ>p+^D*Q IJ;U~>P^D0U_Doa4 Y^Da Y^DaӲ Y _Da Y)_DaF @uWaU}!,;U}@{Daj Da >_Daֳ I;U}T__;U}Ua;U}>+`ZV @h*ZV 0h*T/6`;T @h*;Q 0h*S@5bp]o8r`H] H]/ ?D]e SsM+>0`D V >``DV IO;U}>`DV >`DVR be.8xaHe Heѵ ?De3 Deb >@BaDeķ Iy;Uv;T~;Q~TG9,ba;U~;T~UW,;T~be8bHe HeC ?DeM De/ >aDeк I;T~;Q~T9,b;U~;T~UW,;T~>MbDV ?@DV< ?pD Wr b;8cH H bddRcHБ HđM ?Dܑ D D4 S/:~b;U~;T~S/S/T0(c;U S+U,;T T"pc;T;Q1Tc;T~U"\;T;Q1>PcD WӾ ?PD-W I_;U~>cD@WS >cDRW Y5kdDdW S=5TT7Td;Uv;a~1;Ts;Q~U6;U~>dWvWI;Uv>0dDW6 I;Us>`dDLXl ?DYX >eDlX% ?DyXo I;U~>03eDX ?`DX I;UsY,TeDX* @6TDXO IT;U~>eZNQ h*ZZQ ph*Se5U6;T h*;Q ph*bp]E67fH]t H] ?D] J(f;UsS"M+>ZfDlQQ I;Us>@mfDR >pfDR >fD,R I7;Uvb9Y"6`gHcY> HWY HKY ?DoYS D{Y FYXYJI(g;U3;T|;Q~;R~U͘;U Y;T \R;Q <;R .> gDRS ? D_S ?PDlSD I;Usbe6IhHez He ?De Det >hDe I;U};Ts;Q~T9,3h;U~;TvUXW,;Tvbe7hHe He{ ?De De >PhDe I5;Ts;Q~T 9,h;U~;TvUW,;Tv>iDS ?DS3 ?DSi b 7pjH Hd bdjHБ HđU ?Dܑ D DC S/:~i;Us;TvS/S/SJ+T,j;T U0;U TR=j;T;Q1T"Uj;TvU9"\;T;Q1>0jDS ?pDS >jDSP >jDS >:kDS >@jDS @)D T> S5T,T7#k;Us;Q|U6;U~>pYkW TIo;U}>|kD2Ta I;Us>BlZQb"\{ _6kHL\ H@\ H4\ ? DX\ Dd\9 Dp\o D|\ I;R0@DQ @DQ I;Us>`lZVb"\&8lHL\< H@\r H4\ ?DX\ Dd\ Dp\ D|\J I;R0?DV ?DV >@mZ`VSY&:mDW @&DW* Y&=tmD XM @0=DXp Y=TmD,X @GTD9X bXp6\nHX HX| ?pDX DY} F YXYJ$n;U2;T~;Q~U͘;U =;T -R;Q 9;R .>nZ>R `h*ZJR Ph*S5U46;T `h*;Q Ph*bp]6oH] H] ?D] J5o;U}SM+>07oD\R I;U}bp]N`6oH] H]I ?`D] Jno;U~SM+>oDSc >oD.S >oD@S >0oZQSY5pDW @DW( I;Us>`fpDVTK ?DcT ?DpT >pDT ?0DT# >`pDTY >pDT >uDT bcP07qHDc' H8c H,c H c ?0WOcV2PqgCqE2@PqD2S >`VqD`c YuqDrc @DcE bBC7qHTC{ ?D`C DlC DxC S04>rDT @DTF Y JrDTi @ DU >xrDU @,D&U > rD9U I;U}YrDKU? >PrD]Ub I";U~Y1HsDoU @;HD|U >GsDU @[hDU >usDU; @{DU^ S:k+TT7s;U~# ;a~1;Ts;Q~#`Tus;T~;Q~;Rc 3~TT͘t;U ȶTmuf6t;U~;T~;Q~;RTH/Mt;U3Tmt;U};T~T:_t;U~Tut;T~;Q~;Rc 3~S/TYt;Tv;Q};RsU3u;Q~;Rc 3~>2uDU I;U}Y@auDU I1;Us> uDU I;U}Y%vZRYOduDR @TdDR Id;UsYd~vW SIy;U}SE"\YovDWC @DWC I;U}Y(vZRSY1tvDnRf @=eD{R @GeDR >PwZWVI1;UvbI6680xH[6 b[Ge xHБ Hđd ?Dܑ D D St/:~w;U~;T0S/S/T0w;U S+U,;T S|U-;T0;Q0Y.xD~Qh @DQ @DQ YxZDT]Y}xD2V @D?V @DLV Jt y;U<:~7y;Us;Q0;R0;X ;Y0JJy;U7:wy;U};Q0;R0;X ;Y0T]3y;UsS+J:y;a~1;T4JZy;as81;T1SMN0Ty;T}Tz;UvJs.z;U~;Q4JIz;U~;Q1SuN0ST{z;U}SI6Ts͘z;U ȶSN0SS?eSceST{;U}S I6SL}YSE+S}YV0Ua5{HJU: HnU^ HbU HVU H>U @aDzU DUA U.+;T @;Q ;Y U͘;U ȶ;Q ;R њ)w8H*\8HH0*8H+9H!+:H!+ ;H!+e>H+$?H+f@H+t'AH+CH+DHt+EHt+ǻFHt+ѻGH+ۻHH+IH?+JH!+KH+WLH+bMH+mNH+xOH+PH+QH+RH,RK,~H,UI,ADI,L6I,6sI,3yhI, nI,I,I,aJEK,)I,=2J,BIJ,XJ,eJ,|J,J,؃J,J,; ?K, _J,P.K,#K,^m)K,( Hec> ?De> De.@ >0Dew@ IM;U~;Tv;Q}T9,;U};T|U(W,;T|benpJZHe@ He^A ?pDeA DexB >&DeC I;T|;Q}T~9,D;U};TvU1'W,;Tv>D؄C ?DC ?@D!D >pDWD ?DD >D&D >ӌD8D >P!DJ/E bc0JHDc|E H8cF H,c`{D`cI YDrcJ @DcK b; JH <(K H<(K H#<(K H<K H;K H;L Y;]:D\<5M I];U;T|Y@pD4<M @@pD?<M @TpDL<M U{c <0c<0c#<0>ƎDmM b:J؏H:%N H:%N H:%N H:N H:P Y@D ;R I;U;T|YzD:TR @D:wR YpD:R @pD;R U")zc:0c:0c:0b:`JH:R H:R H:R H:S H:MT Y RD ;U I ;U;TsYD:U @D: V YƐD:/V @D;RV U!)zc:0c:0c:0b;.JH <uV H<uV H#<uV H<W H;ZW H;X Y@bmD\<Y Ib;U;TsY@‘D4<AY @@D?<dY @%@DL<Y U{c <0c<0c#<0YjD[Y >9DY ?@DYZ I;U~>pmDZ ?DG[ I?;U~>D[ ?D̅ \ I/;U~YےD߅m\ @D\ >0 D\ @$1D \ >`7D ] @DQD,0] bS K7HSS] HS] HS#^ ?DS^ DS^ S/J ;U~;Ts;Q0S /S1 /S)+T)0;U T),;T U)f0;U~;Ts;Q0Y> a dW?Ia ;U~Ya q DQ._ Iq ;UsY  WcI ;Uv>Dud_ ?D_ > D_ ?`D` >$D<` ?Dr` b2!-K!E 3H.3` H"3` H3/a ?D93|a DE3a DQ3a D]3b >@Dn3Tb ?D{3b >ٕD3b ?D3b I";Uv@T!v!D3,c @]!v!D3Oc Iq!;UsS~k+T,L;U~;TsTy͘k;U Tuf;U~;T~;Q;R~TH/;U3T :_ɖ;UvTS"u;T~;Q~;R~SI//UZ/Y;Ts;Qv;R|bp]mHxH]rc H]c ?W]Ji;US;(M+bh6PoHH6i H6Ck H6l Hz6Zm YW6D6m D6m D6m TZ(%1;Q2U )x;T1c60>/DD~#n b:_!rHtHL_Yn ?DV_n Ud+;U}> WV~I ;U}bp]PIH]n H]o ?PD]s Jߘ;US;1M+b:_I,HL_t ?DV_Et S+>?Dt bp]0IH]t H]t ?D]y JP;US-/M+b:_a@IؙHL_}y ?@DV_y S0+>Dy >LZ k*Z pk*T**6>;T k*;Q pk*Sr*5bp]IH])z H]_z ?D]z S'M+>@D$z bG pIHH{ HHL{ ?pDH~ JS;US'~b}IPH H bdHБ$ Hđ ?Dܑ Dـ D5 S/J;Uv;TsS/SI/T$0՛;U S$+U$,;T T|#;T;Q1T#5;TsU$"\;T;Q1>`cD >vDǁ be~IHe HeF ?De De >DeZ I;U~;Ts;Q~T9,;U~;T}U+W,;T}bePIHe He ?PDe De >De I;Ts;Q~T9,;U~;T}U*W,;T}>D ?D ? D‚* b~PIH` Hш bdHБ- Hđc ?Dܑ Z\D S/J;Us;T}U-0;U Td;T;Q1T *מ;T}U-"\;T;Q1bI6IH[6 bpGeHБ; Hđs ?pDܑ D̊ D( S/S/S/J;U|;T0Tj'0;U S*+U*,;T T";T0;Q0S'|>2Dւ^ ?D >@EDʋ >pXD >SD6 bcI<HDc H8c H,c{ H c6 ?WOcV2gE2@D2 >D`c- YDrcc @Dc b:0 JJH <6 H<6 H#<6 H< H; H; YѢD\< I;U;T|Y&D4<Ř @D?< @DL< U{c <0c<0c#<0>]D=. b;HJ_H <d H<d H#<d H<ę H;Y H;ʚ YD\<_ I;U;Ts;QvY;D4< @D?< @DL< U{c <0c<0c#<0b:2P0JqH:. H:. H:. H: H: YSx٤D ;! Iu;U;T|YXdD:r @XdD: Y0@MD: @0@D;۠ U)zc:0c:0c:0YD+ >ĥDO! ?D\¡ I ;U~>Do ?0D| I;U~>`,D ?D I);U~>ND ?D! > pDσW ?`D܃ >Dä ?D bS fJHS/ HS{ HSץ ?DS& DSo S+/JQ ;U~;Ts;Q0SY/S~/T0$0C;U TO$f0h;U~;Ts;Q0S/+U0,;T YWI;U~YD! I;Usb:_@kJ3HL_ ?@DV_] U+;U|Y^W3I;U|>pDE. ?DRd >De ?DrШ >@ĨD ?D< b2WJE 3H.3r H"3 H3 ?D93F DE3| DQ3 D]3 >GDn3 ?0D{3T >`yD3 ?D3 I;U|@D3 b2"J{E 3H.3 H"3 H3 ?D93k DE3 DQ3 D]3Y >@Dn3 ?D{3Ů >KD3 ?D3D IP-;U|?D3z ?`D3 IR#;UsSk+T*,;U~;TsT /;UvT͘ߪ;U Tuf;U~;T~;Q~;RTH/%;U3S*0/U;0Y;T};Qs;R|bS4KSHS HSF HS ?DS DSu S/JA˫;U~;Tv;Q0SI/S /T.0;U T.f0);U~;Tv;Q0S.+U/,;T >xD҆ I;U~>0D5 I;UsYDk @D I;Uvbp]pyH@H] H] ?pD] J.1;US%.M+b:_:{HHL_} ?DV_ UZ+;U}>Wh~I3;U}bp]t HH] H] ? D]f J;US=-M+bp]`HZH]ž H] ?`D]ܿ JK;U}S-M+>yWz~I;U}b@>H$HR>' ?D\> Dh> Dt> F>*,X>> AD> YW>S0/Y%D> @D> Y*,@,HR> @*,@,W\>Wh>Wt>F>*,X>U@,,;T @],,D> D>T Yr,,D> I,;UvSb,_Ur,@>;Uv>P7D~ bp]:HH] H] ?D] Jc;US%,M+b:qHH:& H:& H:& H:& H:b YD ; I;T0YDY?D:$ @DYD:H YyD:k @D; U+)zc:0c:0c:0> D~ bt<PH˲H< ?PD<j D< D< X<X<>D< Y,D<~ Y7KD< Y7EjD< YEbD= @2DW=U:!,;U}U+|;U}>W~I;U}bp]@HEH]? H]u ?@D] J;6;US+M+bp]GHH] H]. ?D]" Jg;U}Sa+M+>W~I;U}bt<H̴H<m ?D< D<O D<O X<X<>`D< Yz;D< YZD<S YbkyD< YkD= @%2W=S*!,S3|>ߴD~ ><Z~ k*Z~ k*So35U36;T k*;Q k*bp]@HH] H]V ?@D] S/3M+>D bBGHEC?DC D)Cm D5Cm UX04;U|>FZ k*Z" k*SL25Un26;T k*;Q k*bp]HH] H] ?D] J;US1M+>PĶD4 I;U>׶DF/ bSD HշHSe HS HS ?DSp DS Sp /J N;U};Ts;QS /S5/T3f0;U};Ts;QS5+T05,;T UJ50;U > WXI;U}>PDj >D|K bp] HuH] H] ?D]m J8 f;UvS5M+bp]F HH] H] ?D] S5M+>0ϸD\ b@> `HzHR> ?`D\> Dh>c Dt> F>4X>>D> Y  \W>S 0/Y{D>k @D> Y44HR> @44W\>Wh>Wt>F>4X>U4,;T @55D> D>9 Y55VD>o I5;US5_U5@>;U>D be H3He He ?DeZ De >`De IK ;U~;Ts;Q~T 9,;U~;TUh4W,;Tbel HѻHeb He ?Dey De >De I ;Ts;Q~T{ 9,;U~;TU&4W,;T>D ?@D8 ?pDn b HH H bG dHБ^ Hđ ?Dܑ Z_D Sa /: ~;U;TsU1&0;U Tۼ;T;Q1TK&;TsUb&"\;T;Q1bI6 0 H,H[6: b  GeHБ Hđ ? Dܑ DN D S /Sj/S/J;U;T0S&+T&,;T U .0;U T;T0;Q0S0|>P ND ? D< > aDr > tD >0 D$ bc@  IXHDc H8c H,c H c ? WOcV2@ ] g E2@@ ] D2} > D`c Yx  ;Drc& @  Dc VAj Q2IiHjU Hjx Hwj Hkj H_j HSjX @ QDj Dj Dj Dj T ,;U~;TsT,#;U};Tv;Q|T&,G;Uv;T~;Q|U4,;U~;T};Q|> WGI;U>@ DYt ? Df I;Us> Dy ? DU I;U~> "D ?@ D I;U~VAjeIHjQ Hj Hwj Hkj H_j HSjj @eDj Dj Dj< Dj` U+,;U};TS( k+bSp yIHS HS  HSS ?p DS DS S/JK;U~;T|;Q0S /S/Sb%+T}%0;U T%f0;U~;T|;Q0U%,;T > D4 I;U~Yaz'D Iu;UsbSa J'HS HSA HS ? DSQ DS S/J;U~;T|;Q0S/SB/Sl.+T#/,;T TO10;U Uk1f0;U~;T|;Q0>pLD I8;U~Y0{DE I;Us>Dh ?D >D( ?0D51 I;U}>`DHg ?DU >#Dh ?Du  I;U> ED? ?PDu bI6<JcH[6 beGe9HБ Hđh ?Dܑ D D0 Sx/J;Uv;T0S/S/S1+T2,;T U30;U Te#U;T0;Q0SZ-|Y##D6 @##DC @##DP Y##Dd @##Dq I#;Uv>`WƄ>2WI';U~TD3J;USTpN0n;U1S.S- 2S+T͘;U T#.;TvSE,+S0+S4+j3^!F-Fw9O-F{7;U Y*^iz *k#i^l'! *^7'" *^!'# Ў*^0,$ *^fF% *^y& *^' *^m9(t *^)t *^* 7^ A+ p* ^ +yDj N^ +20 `*^_? P*^961 @*^ 8*^ 0*^ (*^P  *^S *^ *^ *^B *^!/ *^gU#/ *^5%C6 ؍*t1|/^y' Ѝ*t*|/^vC(  *1$/!^ -): *d.^X*z *@t|/|/|/^(+ *Htt|/|/|/^",^ **|/*|/*|/^r- *d^a. *tt.^1& x*^2& p*^S 3& h*^{4& `*^5& X*^ K6& P*^^7& H*^\B8& @*^c9& 8*^lK@ 0*^KLG  *^vH *^I *^CHJ *^cK *^tL *^ M Ќ*^JyN Ȍ*^)O *^OP *^{Q *  ^R    ^S%   ^^T@  ^xU[  ^Vv  ^W  ^X  ^{Y  ^{Z    ^[   ^2Y\(  ^]C  ^^^  ^_y  ^(`  ^a  ^!b  ^M&c ޘ ^;d ژ ^e ֘ ^Rf6 Ҙ ^QTgQ Θ ^whl ʘ ^|i Ƙ ^j ˜ ^ߗk  ^-l  ^Wm  ^n  ^o)  ^u~pD   Y ^qo  I^Ar  I^˯s  I^[=t  I^u  I^Nv  I  ^YFw!  ^(5x< z I^yW u I^vzr p I^{ k I^0| f I^t} a I^P~ \ I^?e W I^• N ^~/ I I^J D I^.e ; ^ 6 I^ȭ 1 I^ , I^ ' I^( " I^  I^p"  I^>=  I^bX  I^_s   I^q  I^  I^o  I^  ^  I^:E  I^60  I^EK ڗ  ` ^~v ԗ P^? Η P^P7 ȗ P  ^נ  ^Ӽ  P^    P^B(  P^C  P^^  ^iy  P^  P^v  P^`  P^` ~ P^ x P^i r P^G 6 l P^Q f P^t>l ` P^Nn Z P^i T P^ N P^p H P^ B P^& < P^*) 6 P^#D 0 P^_ * P^?z $ P^G  P^C  P^  P^n   P^y  P  ^,  ^G  ^b  ^}  ^T  ^ ܖ ^%t Ֆ ^) Ζ ^y ǖ   ^/  ^J  ^Pe  ^q  I^   ^<  ^  ^B  P^a  ^"  ^1}= x ^X q ^߶s j ^ c ^7 \ ^7 U ^  L ^z A ^ 9 ^p0 . ^K & ^zf  ^l   ^^  ^Os  ^=  ^  ^8  ^#  ^L> ޕ ^Y ֕ ^st Ε ^ ƕ ^Z  ^{[  ^  ^*  ^8  ^v1  ^L  ^g  ^/ y ^2 p ^Ŀ g ^& ^ ^0 U ^~  L ^$ C ^B? : ^Z 1 ^u ( ^n   ^h  ^;&   ^  ^  ^2#  ^]2   G ^] ؔ 7^x Δ ^v Ĕ ^  ^hS  ^_   ^   ^`|    / ^s E  ^- ` u ^T { j   ^  ] ^k  R ^-  G   ^  8 ^6 " - ^ = " ^L X  7^n s   7^yd   7^   7^"k   7^#  ړ 7^?  ͓ ^b   ^1 0  ^ K  ^2 f  ^o   ^  | ^;  n ^  _ ^t  P   ^t;  @ ^v 3 0 ^? N !  c ^U y  S^b   ^[!   ^"     ^I#   ^$   S^|c% +  S @ ^& V ` 0 k ^A'  @ [^ߦ(    0^)   0  ^<+*   ^j+   4^U,   4 - ^ie- C  ^2. ^ `  s ^@/  @ c  ^"0    ^w1   c  ^/2   ^R;3   ^4 0  c E ^95 [  5^Ø6 v ` 5^7  @ 5  ^8    ^ 9     ^:   ^(;   ^< 8  ^= S  ^f> n ` ^ّ?  @   ^a@    ^&A   ^B   ^#C   ^>~D   ^E ;  ^ F V ` ^b"G q @ ^ΧH    ^[I   ^J  Ѝ ^K     ^{/L   ^M # @ ^PN >  ^9O Y   ol ^/P   ^ l ^Y&Q  u  l^\R  @q  l^GS  h  l}^nT 5 d  Kl^YU a `\ : wlz^YV  V f lR^@ZW  S  l^iVX  J  l^Y  G  'l ^Z = =  Sl^k[ i 6 B l5 ^@W\  , n  !^%0]  @, ^^  , ^ _  +   &^a` ! + ^Ca < @+ ^_b W +  l +^@c  * \^d  *   "^qGe  @* ^$f  *   4^zg  )  $l ^Ph :   Pld^i f @ ? |l^Ȳj  @ k l ^z*k    l ^l    l ^^m) t  N l ^r-   y^J    lM^]     lJ ^]    )l@ ^ϥ ? `  T $^  j   D l ^    o l ^  @  l ^UN     @^l     . %^ D   Y ;^Ͻ o  I  =^a0  ` t  #^.      ^5  @ ^r     )^ 6   K ,^ a  ;^Y | @ D^;   ^%8   ^   D^]T  @ ^h   \^   ^v 9  ^%  T @  i F^   Y^   ^z9  `   3^Z    ^   D  (^ &   ; t^n Q   +^I l  ^f3   ^  ` ^ھ    ^'7     .^,   ^O  `  3 K^[< I  #^  *^y  *^H  *^K  p*^jD  `*^9_  P*^.  @*^  0*^   *^  *^\  *^S  *^  *^Jo  Ћ*^>  *^W  *^!  *^p  *^  *^  *^!  p*^y  `*^Ϋ  P*^+)  @*^f  0*^   *^:  *^]]  *^.u  *^,  *^.  Њ*^Af  *^3  *^F  *^  *^yi  *^D  p*^&  `*^N  P*^g  @*^  0*^ij   *^u  *^k  *^<  *^*  *^  Љ*^/  *^  *^A  *^K  *^N  *^N   p*^_  `*^4t  P*^   @*^  0*^   *^-  *^  *^L1  *^Z  *^O_  Ј*^P  *^  *^  *^r  *^x  *^y  p*^^  `*^@  P*^N  @*^Q  0*^g  (*^.N   *^zA  *^  *^A  *^  *^0  Ї*^q{  *^  *^j  *^K  *^  *^~  *^n  p*^r  `*^][  P*^  @*^[  0*^S6   *^  *^Q  *^!g  *^2  *^ͱ  *^*V  *^ˁ  ؆*^2O  І*^x  *^i  *^ @  *^v  *^  *^x  *^  *^p  p*^  h*^o  `*^E  P*^Z  @*^  0*^q   *^G`  *^  *^  *^:!  *^o"  *^}5#  *^3$  Ѕ*^%  *^&  *^A'  *^]I(  *^8)  *^*  p*^+  `*^h,  P*^̑-  @*^x.  8*^/  0*^ia0  (*^W1   *^2  *^U 3  *^p4  *^w5  *^T6  *^7  *^;8  Є*^9  *^:  *^=;  *^<  *^=  *^З>  p*^?  `*^a@  X*^RQA  P*^-gB  H*^@@C  @*^zD  0*^E   *^#F  *^R G  *^ H  *^LBI  *^%J  *^IK  Ѓ*^^L  *^iM  *^(bN  *^hO  *^+pP  *^Q  *^dR  *^[`S  p*^"T  `*^0U  X*^V  P*^mW  @*^_X  0*^!Y   *^#Z  *^[  *^ \  *^]  *^^  *^_  *^m`  Ђ*^'Aa  *^ZDb  *^nc  *^Id  *^;e  *^(f  p*^vg  `*^Eh  P*^-+i  @*^tuj  0*^&k   *^h l  *^խm  *^n  *^No  *^Zp  Ё*^q  *^~r  *^>Bs  *^!t  *^Ru  *^3v  *^>w  x*^x  p*^My  h*^Oz  `*^r{  P*^[|  @*^J}  0*^;~   *^T9  *^  *^ k  *^+  *^<  ؀*^  Ѐ*^0  *^x  *^1  *^)  *^  *^  *^~  *^   p*^g  h*^  `*^  P*^,  @*^  0*^y!   *^  *^J  *^  *^D  *^j  *^`  *^   *^!  *^  *^~  *^;  *^7I  *^  *^  *^X  x*^M  p*^wQ  `*^9g  P*^  @*^z  0*^a   *^  *^3j  *^  ~*^0  ~*^`c  ~*^  ~*^N8  ~*^S  ~*^  ~*^6  ~*^  ~*^>  p~*^  h~*^  `~*^p  X~*^   P~*^  @~*^F  8~*^L  0~*^h   ~*^:  ~*^3m  ~*^ʌ  ~*^  }*^ծ  }*^  }*^-  }*^M\  }*^   }*^  }*^  }*^Q  }*^Eg  p}*^  `}*^ j  P}*^p  H}*^r  @}*^  0}*^I  (}*^    }*^2  }*^  }*^Sb  }*^8"  }*^  |*^  |*^+  |*^&  |*^T  |*^.  |*^d  |*^5  |*^R  |*^gQ  p|*^d  `|*^s  P|*^I  @|*^Uk  0|*^  (|*^O   |*^vn  |*^/  |*^h}  {*^}  {*^`  {*^h  {*^  {*^o  {*^$  {*^  {*^5s  {*^  {*^4  {*^  {*^  {*^  p{*^dk  `{*^  X{*^ŋ  P{*^\   @{*^,T  0{*^  ({*^'Q   {*^1  {*^   {*^?T  z*^׌  z*^  z*^  z*^\  z*^ļ  z*^  z*^C  z*^|'  z*^  xz*^>  pz*^G  `z*^H  Xz*^G  Pz*^'&  @z*^u  8z*^[  0z*^   z*^  z*^/  z*^s  z*^3  z*^$  y*^أ  y*^  y*^d  y*^g  y*^  y*^  y*^n  y*^ۆ  y*^  y*^  xy*^[  py*^  `y*^s  Xy*^ݺ!  Py*^p"  @y*^e#  8y*^E$  0y*^2`%   y*^y&  y*^a'  y*^Ye(  y*^>)  y*^@*  x*^Tz+  x*^@n,  x*^m7-  x*^.  x*^h/  x*^qp0  x*^1  x*^.$2  px*^&3  `x*^cd4  Px*^5  @x*^T6  0x*^ 7  (x*^ 8   x*^9  x*^:  x*^;  w*^<  w*^&I=  w*^>  w*^Ɇ?  w*^Q@  w*^ A  w*^kB  w*^AKC  w*^"jD  w*^JE  pw*^F  hw*^qG  `w*^55H  Pw*^I  Hw*^oJ  @w*^VK  0w*^NL   w*^kM  w*^N  w*^ܟO  v*^FP  v*^ Q  v*^{ R  v*^dS  v*^9T  v*^2U  v*^S  v*^*E  v*^  v*^  pv*^  `v*^.H  Pv*^  @v*^Hz  0v*^ة   v*^  v*^*  v*^9  u*^H  u*^W  u*^W  u*^>  u*^`  u*^O  u*^  u*^O  pu*^O  `u*^O  Pu*^O  @u*^P  0u*^Q   u*^R  u*^R  u*^z  t*^  t*^hR  t*^xR  t*^R  t*^R  t*^R  t*^ x  t*^x  pt*^T  `t*^T  Pt*^T  @t*^T  0t*^T   t*^  t*^T  t*^YV  s*^|  s*^V  s*^V  s*^V  s*^V  s*^V  s*^V  s*^V  s*^W  xs*^:X  ps*^JX  hs*^ZX  `s*^  Ps*^X  Hs*^X  @s*^  8s*^   0s*^.4"  * O#l2^&u>#  * v#l ^De# *^gf ) # ^4i# @) #l?^-d# ) $l4^e# )^2 )^,\ )^ɬ `)^1? )^] @)^y8i# )^q% `)^%: )^ޖu& )^u'B )^f(  )^(  )^ss)  )^|1) v)^r* i)^\+k a)^ + @W)^d.", @N)^Z,y `A)^-o `5)^-F `&)^Z. )^/3.r  )^L/  )^/G (^S60 (^^0 (^ T1 (^V$1n (^m_2 @(^L5 @(^yEP9{ (^d9 @(^Tw: (^'; @(^{S;s s(^|$>  h(^q>O W(^JB# L(^$BE^ `A(^,,H >(^f6K @:( ' g^?M' 9(^ !M b*^}GN' @9(^gHN `b*^"X0  s* @( 4^X0( [* f( ^YV( `[*^QgYv Y* ( ^KY( s* ( ^|qSY( Y*^ZY Y* /)l^>xY( @*m5mon vn dm$"v i)omOa$8^)m%,vngvm vm^&m2&m8vm$vmS+vmk2vm vm+vmivm *vmMG'vm( dm)mڢ)mH)m])mA )m)m)m9U)m\)m2)m'U)m1)mAF)m$)ŸmLi)m:*htm"4vp7Dt b*q/S)M+rqc k+sP_0 tb84_+0 0t *+tq5 8t+t+t+ru)Wv;L)S!,tr89,q W, v.B)Np,v)u,tO/)xt,weiU,qP ?t,t!,.x.G-q 5-q3)tY-?rt+ t{-t-t~-tڡ)t-tV}%-tK|!.tI.utEta,JT.tt4l.t7)tt.y4W)Xt_t.| twH."q-.t] /q-t0/tcJH/t3a/rtgt/sZ0 qQY9|/ t4/tל/qP-/t)st0q=Y*0*0q)tN0t/+f0t-0t. 0tttt+*ct0t7A/>t 1?q0Xt%1q3 H1tq a1tEh01ttttttqzo1rt&90g1?tA0c2?qŐ 9t'2qI *@2q` tc2tdz't{2tk2qR-i2qdr-2tl2tZpRt 3tJK&3qe-tD3q -]3t4911u3ub1q3qO 6"3qK 3q3t%34ts=-041t2H48t_j4t&tu,(tV(!4t4q2 t4 t,<4t,95qHv t(5w` =5 tmH B_56t rw5q^-8t5qŶ-5qh^-5u%*0 v"1"26.8e/!6[.v~*60 t"%196961.ts|!X|W6.q8u6q]-6tp9t6q -O6q-6q7-s7t;o>7qgE-n67q[- T7tay"'|{7.1|6t)'77znumpy/random/mtrand.cN s6eF]F intf)4f[| 4@8Fx4zm4f4f [u M#`H#6#h_#s# J#(:#0N=#8[#@7#H<1#P|#X#`!#h}#M#pUI'M#txy)#x-t#T'.T#c/#O3#|y<#"E#)F#0G#7H#>I;#}KM#M# G C # d# XM#     Mc~.n-b X(  M # # $ # # # # {-) V y+ ӓ,M# r--# 0.4#r/-#q0-# fm1-#(m24#0p13-#8xm4-#@xl5-#Hxr6-#Pc7-#X #}8-#` @}9-#hp2:-#pp3;-#xp4<-#y= X $ L $# e M# ` -#%  L-RmL$?-o6Go*-6Go! f-x1-x2-r2--%-16G%oG%-b&-c&-U'-V'-X'-Y'-N &r (a__i (J__f (A (lBu657+ \ @ !t ! ! ! "R+656cd #R<6c $61%aX-'6 7! ( -@7s7 )6G ok "RG7M7"c &b779    *** ***'0   0! ! * ! ! !', #R=8Icl #R_90c $8u%Us&8$8%aP-$9 %a-?P-H-$F9O %a`-H-P-%b-?H-$s9\g %Us$9 %b-?H-&9+9\,zR-9:  )6GRo' )GR-` )GR- -9%UU%a-,GV-:7:  )6GVo .aV-W $:\y %UU&*:,Z-@::  )6GZo .aZ-; &k:\/:%b-?h-,ma-::  )6Gao .aa-  $:\V %UU&:/:%b-?h-,e-::A  )6Geo .dfe- -:%UU%a--?,i-;< W )6Gio .dfi- )'j-} 0outk-J  1p 0nq $>; %Us%a--?$K;u %Us&<2;;H 0itW  $; %ah--?$; 0 %Us-;%ah-+< 4,- <{<%  )6Go )(- )ۼ- )'-k 0t- $@< %Us%ah-%b--^< %Us(z-<r= )6Goy )- )G-f U-0X- 0Y-! 19-u! #R= c! $<u%Us&a=,Y-==" ?)6Goi" .loc-" )G-" -=u%UU,-==$# )6Gop# )-# )C-# $=%UU%a-%b-+=,-=o>$ )6Go$ .df-% 0num-U% 1-% $=uE%Us$>f%Us%ah-&H>&c>,bp>>& ()6Go]& .n-& .p-& 0Y-' $> %Us%a-%b-?--+>,->>B' )6Go' $>uu%Us->u%Us(->o@( )6Go( .a-) .b-* 0Ga-* 0Gb-* PU-V-0X-* 0Y-+ #RC?Kc4+ #RR?lc+ 01-+ 1-V, 1-, $?%a`-$?%ah-$-@%aP-$L@%a `-X-&W@+o@$w?`%a`-%b-?P--?%ah-%b-?H-$?%Us%aP--?%Us%aH-,-p@@, U)6Go\- )(-- )ۼ-- $@ @%Us%ah--@ %Us,-@@.. )6Goz. )G-. -@\%UU4m$3p-3n4 q-,ayb@mA. )m$/ .p-b0 .nb0 ) 1 4@1 0 b0 / !n2 5A7%UU%TT%a-%QQ$LA^%Ts%a-?-+^A^&eA76/T4Z7mT$7WnU48badV47,!W46&4W7m$7Wn48bad47,!494949?4:m4:d94:d4-:d5-:d6-:d7-:d8-:d10-:d11-:Z4:T-:W-:X-:Y-H4m$Wn43bad4,!4d14k4z4d2-u-y-;kbpAF2 -A`mM7 A8 59 )'9 ?WA\9 ~G: s: h; !_; !; !< !)< *!c< @5ABFF&#B>ZBZ< o= x= l= !B> !> !U? !? !s@ !@ !A !C !D !SD ! D !D !$D !.E !8UE *B*L?5`D/FF?5fD@0)FF$CU%a4-4-v4-$Cq%av4-$C%a v4-$C%a v4-$C%av4-$?D%a~--0@-"&D$D%%av4-$DF%a v4-$Db%a|4-$E%a v"4-$nE%a-$E%a~--0@-"-F%aKv}4-~4-~-v4--?~-v4-v4--?"Atb F%FwIP#}K[#M+# G C   # d# X[# %  ;  Mc~BP.n-b X(  M # # $ # # # # - )  y+ ӓ,[# r--# 0.;#r/-#q0-# fm1-#(m2;#0p13-#8xm4-#@xl5-#Hxr6-#Pc7-#X #}8-#` @}9-#hp2:-#pp3;-#xp4<-#y=*$@>m@>DamD> L-~mL>wm>rng bufval[m> bufSm> buffm>offfrngff bufO!mP>rngP PbufP[!m]n^h!H4CmH>N &4 (s__i (~__f (4A (~Tm>rngval"m>rng bufvalQ}m>rng bufvalmaxl-ml>rimidxnxo-^- m^>idx_x_- G$H#I  !J "PK "K "K #D)G/Gp !UL !UL $`Gpx! L !L %&a{Gc %r%r#aGGb %r%r'G"i' H:i#4M m>riidxx44~ m>idxx4  0HYIM  !# N ". O "8 O "C P #!KHQH !2YP !2YP $M H!t P !i P %^ &&H0W !7%Q $!HI%2%2&&I !7^Q (!III%2%2'HRi'?Iji) 4`IIQ / *m >Q (&gI}I !7Q (!gImII%2%2+ -IIw *m >/R (aII !r/R !r/R - m>)*-IIhR 0 *m>R $ I! R #aII! %r%r'I:i,lI?JS  *m>S -cnt[8T -out T .i[T ( J$J! U #aJJ %r%r'J:i-)S 4@J~J*U m*m >vU &&GJ@!_!7vU (!GJMJI%2%2'nJji,$JJU *m$>V -cnt$[V -out$ FW .i%[W (aJJ'!rW !rW ){-JLW *m{>Y $Jp|!Y /p"|Z "Z "Z #DJJp%U%U$(Kx! T[ ![ ![ &aCKc%r%r&K0h!$\ /0"p\ "\ 0c#DKKp?%U%U$Kx% !\ !\ &aKc%r%r#apLvLb%r%r'1L"i1pL2UU'L:i'K"i,[LJP%] U*m>w^ -cnt[^ -out 5_ .i[_ $L!_ /"` "J` "` #DLMp%U%U$3M@x! a !_a !a &amMpc%r%r&Mh!a /")b "_b "b #DMMpm%U%U$ Nx! b !+c !ac &aNNc%r%r&NPh!c /P"c "d "9d #DNNp#%U%U$Ox! d !d !e &aOcs%r%r#aP$Pb%r%r']O"i3O2U'9P:i#aOOb%r%r'N"i' P:i#aOOb7%r%r'M"i'O:i)4PPR;e *m>jg $ VP!# jg /". h "8 Qh "C h #!mPsP%2%2$M P !t i !i >i !^ ai &&PpY!7i $!PI%2%2& +Q !# "j / ". nj "8 j "C j #!+Q1Q%2%2$M RQp!t k !i 7k !^ ok &&mQ,!7k $!mQ0I%2%2& Qps!# l /p". Sl "8 vl 0C d#!QQ%2%2$M Q%t !i l !^ l &&R !7m $!R I%2%2&&R <!7Tm (!RRI%2%2'NRRi1R c2UU'Rji'QRi'PRiM-m>r[{idx[x-xx-yy-)-RTm i*m>/o $S!!o /!"p "Wp "p "Uq "q "q "7r &a;S@!Ư%r%r#DSS%U%U#aSS%r%r&aT!%r%r3S"iL2a---' T:i'7T:i,TZV^r *m>s -cnt[t -out Gt .i[t $T!!t /!"t "=u "u "u "Hv "v "v &aT!G%r%r#DaUhUm%U%U#aUU%r%r&aU "%r%r3@U"i2a---'U:i'V:i)4`VXv *m>Wx r٪4[x 4{۪y .idx[Wy .x4y .xx4y .yy4#z &&VP"!7Jz $!V"I%2%2#!WW!2mz !2mz &&`W#E!7z (!`WfWI%2%2&&W0#!7z $!Wp#I%2%2'V"i'Wji'WjiX-mX>GY-bZ-cZ-U[-V[-X[-Y[-5- XZ{ 6m>V| 6G-@} 7(X#!@} !V| /#"} "O~ 8"s~ "3 " 9aX$|%r%r9aY@$c%r%r3X2Us'%Y:i36Y:i=2aP-3Y:ij2a-?P-H-3Yi2a`-H-P-2b-?H-3Z2Us3KZi2b-?H-:Z'ZiE4jm>G4b4c4U4V4X4Y45>4Z0] !6m>Ѐ 6G4 7Zp$!! !Ѐ /p$"-1 "7 8A"K "Uo "_̃ 9&K[$N !7 $!K[0%I%2%29&0\`% !7/ (!0\6\I%2%23([ 2Us'[ji3[ji 2a\43R\U 2Us3\i !2b 4?X43\ji6!2a4?\4X43\in!2ah4X4\42b 4?X4:#]U'(]i5{0]E]h !6m> ;D7]=]!U !U 5pP]d] R"6m>L ;!W]]]!2L !2L 5s|{p]] "6m> ;Dw]}]!U !U <f]]w#6m>0 ;D]]!U0 !U0 5-]U_i #=x-dx0->x2-axp->gl-bgl0->k;S>n;V?a $PUUUUUU?llfJ?88C$+K?<ٰj_AAz?SˆB8?5gG - $ #@-`__/ {$6m>{ Aloc- 6G- Bt_2UU5-_da6 &6m>8 6G- 7_% !8 /%"ω " "; &D_%p!%%U%U(_dax! ! CS&a ` &cs%%r%r#v`dah&! Dv`da" "' "J #Dv`|`p%%U%U(`dax! ! !݋ &a``&c=&%r%r#a8a>abc&%r%r'`"i3*a&2Us'Sa:i'P`"i5 -paa ('6m >L 6 - 6* - 7awa& !rL !rL @3-aa '6m>f 6G- 6G-ڍ Ba2UU2a-@4aa (6m>] 6G4 6G4ю Baj2UU2a45-ab )6m> Aa-- Ab- EGa- EGb-4 F&)U-V-EX-W EY-{ EXpY- 9aPb' (!r !r 9aVb0'!$)!r !r 3biT)2aw-2b-?h-Bbi2aX-2b-?`-3b)2Us2ah-B#b2Us2a`-@;-bb3 1*6m;> Adf;- Bb2UU2a--?@r?-cWc *6m?>g 6(?- 6ۼ?- 3c)*2Us2ah-B:c)2Us@D-`cc9 "+6mD> 3mc +2UsB{c2Us5H-ce ~-6mH> AaH-Z 9cp'Ip-! /p'" "ۖ "$ &Dc'p+%U%U(dex! !! CS&a+d(c,%r%r&d@(h--!W /@(" "Ø " #Dddp,%U%U$dp(x! D ! !ř &ad(c,%r%r#aeeb,%r%r'*e"i3Xe-2Us'e:i#apevebS-%r%r'pd"i'e:i'c"i5L-eg /6mL>v AaL-՛ 9f(P/!; /(" " " &Df )p&.%U%U(xfgx! _ ! CS&afP)cx.%r%r#fgh/! Dfg"ݝ " "# #Dfgp.%U%U(+ggx! [ ! ! &aCg)cB/%r%r#aggbh/%r%r'g"i3g/2Us'g:i'f"iGrfi2b-5ES-g۟ AaS-: 9g)T12%/)"u " " &D h0*pk0%U%U(h= AlocW- 6GW-% EUX-\ HabjhjZ2!r !r 'j:i'j:i5of-j;k 36mf>h Alocf- 6Gf- EUg-6 Hajji3!rY !rY 'k:i'"k:i5q-@kk T46mq> Alocq-R 6Gq- Ur-HaXk^ktF4!rԨ !rԨ '}k:i@|-kk 46m|>Y 6|- 6C|-ͩ 3k$42UU2a-2b-:k"i55-kl r56m>h 6~- 9ak+W5!rh !rh 'k:i'ki@-ll ,66m>s Adf-ҫ Enum-! I- 3#l52Us3Hl62Us2ah-'li'liL;6m>lam-k;U-V--E-a-b-l-vr-us-;7m>lam-X;-U--5;leoݬ {96m> Alam-? 96l@+7!6Ǯ !6 /@+"6 "6Y 87" 7ү Ha!m'm7%r%r'm"i;,6HmeoCJ6C>6SDHmeo"V6 "`6- 8j6"t6d "6 "6Ұ "6 "6A "6x "6 Han n8%r%r9a np+8%r%r3fm:i82a-'lni3n:i92a-3n:i92aX-3n:iO92aP----"38o#k92av;-'[oi@;poo /:6m>G An- Ap- EY- 3o(':2Us2a-2b-?--Go72UU5;oy? f>6m> An; Ap- 6 f> Er- Eq- Efm- Ep1- Exm-~ Exl- Exr-{ Ec- I#}-y I@}- Ep2-v Ep3- Ep4-` Ea-ռ Eu- Ev-D Es- EF- Erho-Y Et- EA- Enrq- Ex1- Ex2-L Ef1- Ef2- >z-hEz2- Ew-, Ew2-d Ex- Em; Ey; Ek;w Ei; JK@ rKe[sKsK &sK}tK;HuHaXr^r'=!r !r 9adr+R=!r !r 3gpin=2a}-'pj'si't:i'"ti't:i'ti'u:i3v:i=2a -~-3v:i>2a ~-}-3v:i@>2a~-}-~-~-'yiByi2a~-5c;ze|" ?6mc>$ Anc; Apd-. 6 df> Eqe-n Eqne- Enpe- Epxe-L EUe- EXf; If;d Haz{ye?!r !r Ha\{k{?!r !r 3kz:i?2a-'zz"i'{iB<|i2a-@hy{p|} @6m> Ap- An{' 6 f> Eq- 1|l>@2UU2TT2a-2QQ3|/:@2Ts2a-?-:}/:'}l>@- } ~F 4B6m> Adf- 6'-a F+AI4BQ En4B 3y})xA2Us2aw--?3}A2Us'~iF ,AEi9B 3}7A2Us2ah--?G~)2UU3<} jB2ah-G})2UU2a`--;@q- ~{~ B6m>j 6(- 6ۼ- 6'-< Et-w 3@~@B2Us2ah-2b-B^~)2Us5<-~l C6m>J 6- 6G-7 U-EX- EY- I9-F 9a~P,C!r !r 3~C2Us'^i5%-pm (F6m>/ Amu- 6|>-@ Es- U-V-EW-7 EY- EZ- Imu- Emod-P neg[Ha%D!r !r 9a8,D!rG !rG 9a,#E!r !r Ha`fRE!rD !rD F,EEr-} Erho- 3#iE2aH--@H-P-"'^i3 jE2aH-':i'28j3Pj F2a@-BHhj2b --DT!@5;pw G6m>u Ap- Eq- >r-hU-V-Imu;h Ha F!r !r Ha G!r !r 3:i1G2a-?`-'‚"i3:iYG2aH-3 :itG2aX-''i5";׃ 5H6m">l Ap"- U#-EX$; Esum%-N I%- Eq%- 7a -*!r- !r- 53;@f H6m3> Ap3- 9aP-4H!r !r ':i3#:iH2a-?w-'6jL\7;@Uw]I6m7>I Ap7- 1O5HNI2UU2a-:UG@n?;`b J6m?> Aa?- Eam1@- >b@-hF-JETE-C EUE-f EVE- EXE- 3/ J2Us3/ 0J2Us3ׄilJ2a-?w-2b-X-'܄jBi2a-?w--?"2bX-Bi2a -@2bX-53[-p]/ K6m[> 68[- 6~[-= 6\-t I "]- Io]- I4]- I]- I]-L U^-9a-fK!r !r 'Ai'Vi5o` L6mo> Amaxo IpE Ip H!ƆvL!26 !26 7D؆-CUSCUSLm>rngLm Bn L5PNY P6m> Aoff Arng 6 6P H~8FM%%%%%D8F" ;!8>%2%2HpKN%%%Dp" 7Dp.%U%UHLԇ O!L !L; Dԇ"L^ "L "L HD N%U%UDч"L/ ;DƇ%U%UH.O!e !e ! ! D." " "h 9!@.aO%2%2D*" ;!k%2%2;D@FCUSCUSG5P R6m>> Aoff Arng5 6 6P~ 6  =bufH~Q%%%%%D" ;!%2%2HQ! ! ! !J D"m " " H!aQ%2%2D", ;!Јֈk%2%2;!C2SC2SuuRmv>rngv vbufv}RmnR5Mb  U6m>AoffArng66P6 =bufH@}S% %%%%D@}";7@p.%%%;!\c%2%29. T!q!!;!`g%2%27R.!ERy!9R!-R!!Rq/."QR"]R, "gR 90/T! !% !q ;!|%2%2D@"tR 7p/%%%;!)0%2%2Um>rng bufUmnU5 : 1X6m > Aoff Arng 6 t6 Pd6  A=bufH"V%d%X%L%@%4D"p7/%F%:%.;!%2%290/W!F(!:r!.;!%2%27 U` 0!VU0!JUz!>U!2U(/ 0"bU"nU"xU]9``0W!F!:!.g;!#%2%2D"U70%F%:%.;!ȋϋ%2%25f@gY6m>AofffHArngf6f 6 Pn6  =buf!7SA0"CR!0!!}!qc%e/@1!q!}'%!!%e;!%2%2M)13V]6m)> Aoff)!Arng*8#Acnt*[s$6*P%Aout+V]&Ei,[D(F1[Ebuf3/*I 4[/*HԍBZ!g*!*!*!*Dԍ"+"C+"+F1Z"+;!k%2%2;!a%2%2D͎1N9\H}͎9H[!,D͎"a,;~<%%%%%D"-;!%2%29LV1T_\!L-!L./1"L1."LT."L.F 2:\"L/;D%U%U;Dpw %U%UHDPWH\!U8/!U8/DNM\H}M\![/D"/;ЏߏP%%%DЏߏ"&0;DЏ׏%U%UM^@I0_6m^>~3Aoff^~4Arng_A5Acnt_[266_P~7Aout`E8Eia[9ObufbP c[9`2z^!:! ;!7;!a;/`2";";" <F2^"[<;!k%2%2;!a%2%2QO_Iq<H}q$_!?D"@;~0=t%%%%%D0="C;!07%2%2;!pwl!2C!2CMDdbRm>_=offV=rng\=cnt[RRPX=outdbYi[buf [9R29a%ER%9R%-R%!R/28QR0]RR8gRF 3`0tR\7`3%%%;!%2%27Ȕ3%%%7!03%2%2F3bN^H}X|a%DX|8;Õ% %%%%DÕ0Q7 4%%%;!%2%27p4%%%;!%%2%2S3F eRm>]=offV=rng^=cnt[RRPX=out eYi[buf [F4cN_H} Rc%D 8;"(O%d%X%L%@%4D(O0pR7(4%F%:%.;!@H%2%29 U95d%VU%JU%>U%2U/58bU0nUU8xUFP5d0U^75%F%:%.;!%2%27L5%F%:%.7!ۗ6%2%27h@6%F%:%.;!%2%2S:kG5fRm>V=offfT=rngfQ=cnt[RRPX=out5fYfi[>bufPN [Q7SҘp6%%%%}%q%e/p6%q%}%%%%e;!%2%2fT)1əH g6m>IAn;YJ6d gJApix CKAd[K6 f>LI-LEj[MEdn;]MB?2U2T2Q~; g U 5g g -Jg UZ Y_g :gUd yg :g g N\ ]g ~g 4g N* g gN g gN h gNF  h :gN q;h :gNH Vh ~gNR )qh gN! kh gV 4B3 ; @V 4B l?V$ 4B~)@V hi@4V hS>V+ hN@W5 Wo Xexp e-:i-Xlog n-Ri-Y e4ji4Y n4i4Xpow -i--Y& -i-Yx 4i44Y 4i4Zz-j-Y - j-Y [8j-Xcos @-Pj-Y 7-hj-Y -j--[--% UR$ > : ; I$ >   I : ; : ;I8 : ;I I !I/ &I ' I: ;  : ;  : ; I8 ' I& : ; : ;  : ; I8  : ;  : ;<  : ;  : ;I : ;I : ;I 8  : ; : ; ( !' I" : ; # : ; $ : ;I8 % : ; & : ; ' : ;(' ).: ;' I *: ;I+4: ;I, : ;- ..: ;' /: ;I0 14: ;I2 : ;3.: ;' I 4.: ;' I@ B 5: ;I 64: ;I7.: ;' I@B 8: ;I94: ;I:B ; B <B B =.: ;' I@B > U? U@ A: ;I B1X YC1 D41E1F 1G.1@H1IJK.1@ LB M.: ;' @ B N: ;IOB 1P.1@ B QB RB 1S1T1U1V1X YW41X 1Y Z41 [.1@B \41 ]41 ^4: ;I _ : ;`.: ;' @B a1RUX Yb1RUX Yc1B d1 eB 1f.: ;' @g : ;h.1@B iB j.? : ;' I@ B k4: ; I l!I/m4: ; I? < n4: ;I? < o!p4: ;I?  q.? : ;' I< rs.? : ;' I< t.? : ; ' I< u.? : ; ' I< v.? : ; ' < w.? : ;' < x.? ' I4 < y.? : ; ' < z6 % $ > : ; I$ >   I : ; : ;I8 : ;  : ;  : ; I8 I !I/ : ;I' II : ; I8 .: ; ' I : ; I.? : ; ' I  4: ; I 4: ; I&I : ;  : ; I.1@B 1 U1 U!41"1X Y #1RUX Y $1% B &1' (.? : ; ' I@B ): ; I*41+B 1,.? : ; ' I@B -1.: ; I/B 104: ; I14: ; I2 3: ; I41RUX Y 5B 16.: ;' I 7: ;I8: ;I94: ;I:4: ;I;.? : ;' I@B <: ;I=: ;I>1RUX Y?1RUX Y@1X YA.? : ;' I@ B B.? : ;' @ B C4: ; I? < D.? : ; ' I< E.? : ; ' I< F.? : ; @' I< G.? : ; ' < % $ > $ > : ; I.? : ; ' I@B : ; I4: ; I 1  B &I I !I/ 4: ; I .? : ; ' I< I% $ > : ; I$ >   I : ; : ;I8 : ;  : ;  : ; I8 I !I/ : ;I' II : ; I8 .: ; ' I : ; I.: ;' I : ;I: ;I4: ;I4: ;I &I : ;  : ; I4: ; I4: ; I: ; I .1@B !1"41#1X Y $1RUX Y %1&1RUX Y '1(1X Y ).? : ; ' I@B *: ; I+.? : ; ' I@ ,.? : ; ' @B -: ; I.4: ; I/ U041 1B 12 B 3144: ; I5.? : ;' I@B 6: ;I71RUX Y84191RUX Y:B 1;1X Y<.? : ;' I@ =: ;I >4: ;I ?4: ;I @.? : ;' I@B A: ;IB1C1 D E4: ;IF UGB 1H1X YI4: ;IJ : ;K : ;L.? : ;' I@ B M.? : ;' @B N4: ;I O4: ;I P4: ;I Q R: ;I S.? : ;' @T.? : ;' @B U4: ; I V4: ;I W4: ; I? < X.? : ; ' I< Y.? : ; ' I< Z.? : ; @' I< [.? : ; @' I< C numpy/randombuild/src.linux-x86_64-3.7/numpy/core/include/numpy/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/bits/usr/include/usr/include/sys/opt/python/cp37-cp37m/include/python3.7mnumpy/core/include/numpynumpy/core/include/numpy/randomnumpy/random/src/distributionsnumpy/random/src/legacymtrand.c__multiarray_api.hstddef.htypes.hstdio.hlibio.htypes.hunistd.hstdint.hpyport.hobject.hmethodobject.hdescrobject.hobjimpl.hunicodeobject.hlongobject.hlongintrepr.hfloatobject.htupleobject.hlistobject.hdictobject.hmoduleobject.hfuncobject.hclassobject.hpycapsule.hpythread.hpystate.hframeobject.hcode.hnpy_common.hndarraytypes.hbitgen.h distributions.h legacy-distributions.h __ufunc_api.hbytearrayobject.hbytesobject.hboolobject.htraceback.hsliceobject.hpyerrors.hceval.hwarnings.himport.habstract.heval.hstring.hpymem.hpylifecycle.h @G lt t Nf?w+\i9sK;=.uXiKJKKKKKKXgXuXgesftMq?/Zu;KxX'K;Kt JMd3v Xv gha,eXjXM$JjwG[gJjf3t=KK=K JestX!J.XX~.~<rf`g)t <>r3sB5}gKK JH+8LLR 3)dDt\YLT=-3wL]!LQ^tKx.yKI JuJ .uf^(Zj_"f]XK/%Z.p \I="JYa<$t~.<~f;K/~p~=M.ГJ?<քe8@fh<W)KOYW=;=;=;=Xihe1 OyX Xy )wY-=fMgt\/7K- J M=XBz/ IoJ:Ldu>tQ~^/K=;us==#X:>7uK=/-~(u;Yf/&JKLkI=W~'' tyJ5jmK/O7]`-."$9?//X&v:.ftX=~X~Jt;~X =~X~Jt;~Xhg f~)"<^ "b"['n$'~r<u;Yfg&J tw JJcI=Wtf'' tyJ5jmK/O}]5."$9?u0Y6u;Yfg&J tw JJcI=Wtf~'' tyJ5jmK/O}]5."$9?u0.6(u;Yfg&J wX JQcI=W'' tyJ5jmK/O7]`5."$9?//X&}2 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$&4 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$&x4 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$& 4 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$&4 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$&4 fu:YfuL&J w JXcI=[3Dx x J' tyJ5hgKe=n;=Y/7t"$&y4 fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|xJ' tyJ5f_KI=9"$P/Xg֏ H& * fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|xJ' tyJ5f_KI=9"$P/Xg֏ H&C* fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|x~J' tyJ5f_KI=9"$P/Xg֏ H&2* fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|xJ' tyJ5f_KI=9"$P/Xg֏ H&y* fu:!Y#fuLK'J w  JfcI=S/RxJ|xt|xJ' tyJ5f_KI=9"$P/Xg֏ H&* fu:Y+fuLKK(J w JfcI=<RxJ|xt|xJ' tyJ5dWKI=Y/;""$%Pf&&v-z? M  uu:YYfDxJDxtxxD٘' tyJ5hL'J w JXcI=getKe=n;=Y/8t"$ޑ/ &E9  uu:YYfDxJDxtxxD~' tyJ5hL'J w JXcI=getKe=n;=Y/8t"$ޑ/ &)9 fuu9YY#f"AX' tyJ5f.LL'J w  JfcI=e_tKI=:"$Y/X/Xg֏.&}/  uuu9YYY%f(LL(J w J^cI=dDxJDxtxxD' tyJ5d]KI=;$"$Y/X/X/Xe֏ &,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxD' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxDȖ' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &},  uuu9YYY%f(LL(J w JecI=dDxJDxtxxD' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &,  uuu9YYY%f(LL(J w JecI=dDxJDxtxxDח' tyJ5d]tKI=;$"$Y/X/X/Xe֏ &:,&<ftX)5VJ)t;VX+TdK:+Ttht?8I=pv:+tT<nJ"-+T+<T<+TlX")JVj&<ftX*5UJ*t;UX,SdK:,Stht?8I=pv:,tS<nJ"-,S,<S<,SlX"*JUj.etөf=~X~Jtu~uf~t"u;~<~<-o~X~' 4(u;YfgџJ~Jt;~X~Jtu+~fI=Wx ~'' tyJ5j~"u;K/O7]`,.''~ȅ9?//¡~<~<-o~X&w5.dtf=~X~Jtu(~ Zw9L~Jt;u;X~ t;=f~J[LZZLKZJf~1"g-[z.u_fȟ~ '~'"`#V''q;<~^"<~'W~<~<Y'< "1͟;=gYKY\J%J[Ju K[<t~JJ~K f/;iTnmJ=O ~keJX<DžJt;tfƅXKKYYj_WKuʭ*XXtu)u.:9?(<%ԃ"u;Ѓ~WKgʭ&W؁d'*t.'"K<<-~tg'*'=keJX<ńJt;tfĄXKKYYj_WKuʭ*XXtu)u.:9?(<%҂"u;΂~WKgʭ&Wրd'*t.'"K<<-~tg'*'=~"< JuX X~XtJ*>8@.h<~~#;y.<~tَ~t ؃y.;<>K<~XK( JuX X~X ( Ju X~X( Ju X~X ~ <١~Jt;~X~Xtu#)~'f~Jt;~X~Jtu#)~; ~(f؃Oy.;9<X~~~ wJJ~<t=~.  K}*.~XE~(t~ܩ( Ju X~Xé( Ju X~X ĺn8YYKOyYW=;=I=;=ij*Y׽~.fY.~ pt .~x<;<~;<~~;<~<;<YYh䏒ty/~*;=g=-f9~,~<~<8~tJ~*~<~<~#~x<;<O~;D.#~;D.~;<~;<V؃~y.;<~x<;<"u~.<ި~>j. "Z<&<\<~.J$^".~gy.;!<KD-.D.C~D.~`y.;(<:YuZKYesn8@.;hJ~f$-;ct<&"~#̼~0-~< <~Jt;~Xڦ~JѦtu"0~/ T< Ivզ~KOyYW=;=I=;K#ij8~\&$< h~}K/O7]`.-~ e<~kB<-; --;f9?g/~Ӧ<~<u0Q-;1~P0<~#6~ ~-<f_~<~.'~q'f`'ff_~<~.f>~ -Ūf~ -;Ū~ -<~y&|d~Jt~XKKYYiW=/u S! y_WKgʻ&s~JnX"]t$yX.=~Du;Yfg(LsK$g=~X!YYKKI=g " XI=Wڪ~'' tyJ5j.*ͨj_WKu&~fK/O7]`t";6؃ '"#$ͦ$~'9?g/X\J~C'&,#~t~Jt;~X$_IKgʭ*~~</; ~#z~X<~<7ff~, h~Xt;~X~Jtu)~Jt~.~.f/X;3j~tŰ(~ɰ.}~<J"JKKKYI=fp"'Ű'~<'~<~<~t7''~"t\=x* Ju:YfuL&J tw< J_ B)[.Dx x J'v5h.5Ke=n;=Y/tnn<bJ"t&y2 Ju:YfuL&J tw< J_ B)[.Dx x J'v5h.5Ke=n;=Y/tnn<bJ"t&~2 Ju:YfuL&J tw< J_ B)[.Dx x J'v5h.5Ke=n;=Y/tnn<bJ"t&~2 uu:YYfDxJDxtxxD'v5hL'J tw Je fB)g 6tKe=n;=Y/tbJ"mtnn<ޑ/ &~2 Ju:!Y#fuLK'J tw Jm B)S*RxJ|xt|xܨJ'v5fJ7KI="tnn<bJ"tP/Xg֏ H&0~Jt~XKKYK_WKgʭ(~=~X_eKgʭ(~KKYKW=ghD~ytx f:Q~WKgʟ&s~_WKgʭ& f~#"~.-Ӫȭ~f/&tժ~$~X1*~X*="`#'OX.=w6~(Du;Yfg.J.t{K;.~ JK~<t~XJn< $ ֫.~JΫt;~. t .K}/Wıx ~'' tyJ_J}#< ~WKuʟ*~֒f ~~K/O7]`.~"t/W[$؃'~5ޫ'~9?g/~;ͱ.~'~X<ذQ~WK(/~~X߬t;~XKKKKwI=/gdyf~^KWYg&W~f;.BKKYK^KWYg&~Xdf="X\~.t~<~'r'"YYYK֯\_WKg&~Xdf=O~.a/.~'s&="tO*`~~'&0§;+j<~Jt;~X > ֑<~JՑt;~X~Jtu)~đ~Xt;~XKKYK!W=g~Xt;~XKKYYՓj_WKuʭ*~J;=m"V>gEA~~=6 ~ y yrx~&s6t~V*<tg- /.~~tj_WKgʻ&WJ~WKgʟ&~oJ"ɓJ}.~'m[<8.~d< Z;'.L4<ܑ~r'X(< ".x@8x<'~<~<u$ .\~t~Z&.Ǔ=\*=OX.=˟݃ fv9YY#f"AX' tyJ5f M#JXlt X5Jt;X =XJtu0-. # <  YMUXK3ۆ؈Jt;׈X)ׄtK׻K~Z\HNȭ#.u}XI=eJZ*.~t߆#tƆ/ۇ  Xwt fw f*ҁJt;сXi ؟~<0  XvfuI X  f~<8<|XCDxJDxtxxD~'v5 <ÂJt;‚X#; <YQSZZX/.wt XN <Jt<Jt;X$^KWYg#-XN^AAJ>tA.W0Z0?䭒=-@WW `t Jwt JfntX];YgKWu<Xh]KWu#sgK;YgKKK??_eK'.@=;hu :> 7vt tvX">AX>tK.At{+rKȷJ?@?A}q~gA|[X~eKg"}+.===廭;[>JAWW>X~ fӼK=I=dXW +>?@}+t@?<@-Łl@?'#-]!sm'h'h";;r<*-#^5 fut< X$+fuKKJ< : ; V>[<Jt;X<Jt; <(ZYLZHLYZX#/.ɟN^KWYg(䟒̂</<Jt;X<Jt;X- <(ZYLZZX0(g3N^KWYg(䟒</<բJt;ԢX<ڢJt٢= <nYLZHLYZX#/.N^KWYg(䟒</  Xv twJ JD8RxJ|xt|xJ'v5dJt   ( &    Xvu X <  }K//.z3.tɂ.ɂ.+0J..A...7}y:s$- $-~/ɠ< +/K;K //< #X~1J*%.(/Y8%~4-uG19<YWK]zKI=Y/3O;2<q^;t</<q` <;<_ttKKKY/W=|($P$؃=n=~KKYK$]#<fKKKKtY$~}=<6̟ <̟< }"~_t  L#4._  *\fR~N<.K~~<ŝh~t"~:r.~%~t:.~6##~ g:.Wta 0~pXqt!W"Y$W=YngW!W mg%s  <~$$ ''~p<!~<~˛~כ<~<)1~t~X~<~~<~Vp<~~<~~K/O7` ~~<%w,9?g/XK~tuJ>K~œtuJ>K~tuJ>K~tuJLK~ٛtuJLK~tuJLK~tuJLK~tuJLK~8@fhJ~ vKX%tۓ~Jړt;~XԲ-~Jt͓~J̓t;~XƲ-~Jt~Jt;~X-~J t~Jt;~X֕$^KWY#!-~~Jt;~X~J/ $_x<t X<.~'~.<~(s'"~,~<~<~~.ז~,~~/y~6, ~,KKKKfuW=qJ,|6,},~<Ǐx~,~KKKwIYf~.he~>~<f, 6x,~}.ܜ~|.~}.їOb\{-t~|.Л~}.}x<..~Jš"{5~}.,ge&~+Ó,~x{ Jvu8YYY+fuLLLJb<ћDx x ~X' tyJ5KI=tY/i"ZY/XY/df&&5"<^"X..QX.t;QXL . <wt f.5QX.t;QX1$_WKgح)O.QX.t=QXKKKYI=g }f.t|X.5QJ.t;QX0$_WKgح)O.RJ-t;RXJK-RJ-t;RX7t   e<$'GfJ/ <wt f-5RX-t;RXՁ <YNVL:Z.X*P</ -<RJ-t;RX/$_WKgػ+P䒟~g;Yw 9I,5SJ,t;SX,SJ,t;SX4 JuX XKX[L,<SX,t;SX$.*Q,SX,t=SXKKYKW=g8LdKYGX$.<~<<=t?ٸ.<~;<8<~tt@..~<;=}t~t-<SX,t=SXKKYKiW=g<;~/.Q<.RJ.XK Q+y.Ry~/Q~/P4uKz<Pȫ!3D}..R.NTv=;v<.jtt>s:</$_IKgح'Of;<t1t$_WKgح'}fQKKKYI=OJ</Q Ju<.t .1$_WKgػ'; fD[;v<0.Ot/tQX<Z<3.KKKKI=?Ju<-.Q;v<.tt~;<<~tt~u< .<-Q~<=8G~$<5<~;v<.-R؃~;v<.1KP&}u<./Q.X(<+S}u<..BQ<}..Q.<Q<}L'}<"}<}t/tS w8 <e<P}u<.,Q}u<.}u<.}u<.~KKYK/Q.<Q<~u<.u`'~< <-R~;v<."}<~<.,S}u< .<KKYKW=rX}<-R}<}<..BQ/#)O*\=P.'Q.T~;<0:-˟\=wR.ȃ\*tO*& uuu8u3f$ 2  JwX Xw9LJt;u;tܱ <Jt;X " <Jt;X$_WKg#/  <ӸJt;ҸXZdL Ȯ#Xt=X!0Jt;X!؃}*>*u<.}X5RxJ|xt|xֳX'v5,< $Jt;X JuX XXŹJt;ĹX Ju XXϚJ1Xt=X JuX XXJt;X JuX XXJ/%X<*<=}<}X/z8;$ty  e&^t/u|@,r<~.zZZVLq;Y<th0u-|tJz{%żuuuuZ8@f-hJִ.KKKKYIPYWY"ءj8<̚.̚<6=*W.<{f 4h/Y-.%J f<Jt;XȻJtu!-û{0.tJu XĻ|<ug,<uz0KK˶@YIPYWYءj8((~"z}~T$Y-{6q.Xc.?{{tN_WKg#+W_WKg#+'MKI=X}.~t~>*t<~}',<}<6<}<.}X"|<.}>.|< [%<}<}t.}>*t<@||},s<.|ȍ|t.|<.|< | .|.=|2-KKKKKI=}$|.|䏏 KKKI=gJ|ȍ |.|䎏}@KKKKI=J >K;u00XXQ|q.d<|< <<u|.|2e;X}.'~.~t؃'^q.4K-7\:t<3@رlv.7#Y/m<<\Xݷov.7 ]t-:ZX:t<5htq.at-}.}t }ȍ}t-}.}t|. "{X.:{<|.< <yC{<'KKYK#tyCz=t7A¼.66<]J z6'~.~t͸ ~,<~<<.~X˸~"-6-Ǽ <Ǽ<y=<t-AX<|<|q.t-@q.-:t<s@M3.</m<s<vKKKK;r"\$.M<3I/9}.}t؃n'}.}t@$P/XY/XY/J}.}.~<}t-J{q.`{.:<{{'q.:=<@1}.}t}.}t.<Xd2zdXKKKKt{q.V{q.Xf{q.Xf}'~.}t~<}t-'zJݰ"؃,/-z.zX*<<0-'=e%O'^"<ŻQ/<R.<ƻ<ƻ<~'{"t}.}t֟H#a~.~t\$<^"<~+_rX{<.{䏏tX..{.{X{Xփ\́tzq.X{.|<{tK KIY##״)'}.}t$6'R'6 fwr< X+f(LM, K Jwt X,~Jt~X!WZLKZ~Ju".~!ӏ~X ɏt=~.ܙt ~/î~tĮ=~<î<~<- fx 9KIXy'~ <~X-kD~Jt~."Ƽ g;h! ~X~t=~f1+f  fތD~J܌t~.!ջٌ.~J،t;~XԌ<~Jӌt;~X X0=~X"Ƽ ׁ! ut XJuKY׫~?K .wt f~JJ~<ڊt~.ɕt  te~ք/ԩ~tթ=~<ԩ<~<-ӊf~Jt;~.#!~t=~<<~<-f w f6~Jt~X!e[ 0!h~<<~<-fΉ<~J͉t;~.ɉ=~X!KKYY!h~<<~<-f0 ~t=~</(  ш<~JЈt;~.ZKZň<~JĈt;~X׭"-~ɟ!Wt~< ~Jt;~.YKKYK_eKg",~ ~nK=YQ~ ʚut~Xt=~.ۘt  te~ք/~t=~<<~<-f~Xōt=~. JuX X~.! st XkD~Jt~." g;h! ~X~t=~f1+ f$Ks JD~Jt~X ~J~<t~.D~Jt~X#h <  ɍX/,~٪~<٪<~<- fϋ<~J΋t;~Xʋ<~Jɋt;~.Ƌ~JƋt;~Xǻ # ~J~<t~. v!hZVL~</u!K!Wz(~XŮ.~.î$~x&.x<=?, |t;‘&~tA~X'vQbtҒtS ~tĥ~<K֟~<K! D~Jt~.!Z Ȯ!;h!Yݤ~f/-ft~<X~Jt~XgK;gKKYg;h fw 6~Jt~X!WZZ~Ju"-~!~X t=~.gK;gKKK$_eKg".~geh ~t;ƒ<~̒~ߣ~J/݄~XԄt=~.gKKKKuIYg!eh!; ~J/D~Jt~."ņ_WKg#/~g;h!WK=YQ~tt~.~<&XtJx; ~.~<X<tx xz@~X.~.$ tK~~-ssqQw%~X.~.$~X.~.$~X۪.~.$s~&g~x& ~&J~~ y-ytv!'8O|/̌tK;K ~hY#wO~|_<~.~.v .vyB.~ť.~.v .vyB.~wULLZɈ~JȈu"0~!vX4;ف ~X=~t ~X~<<~<- fqt""""""""""""oJ~t Z:Y~pr r!~X.~./2F]YuKeKct~tȁt~tKKKKgI=g!Wq1f<O1.au<=?ugg-V~Xߤ.~.ޤ~X.~.~X.~.~.~.f)<{t{X<{XyBŒ }(~Jt~t Xp~.Z.~.~fM <~Jt~tX~Xހ=~$012~ɍZ:Y~&  yz"u~JJr?Fjw~ ts(N~*WẄ ..u~yl1K~x~ u rł~.}uX ~~X<sx ~Xsx~#}/Xrx; ~f~X هt=~XKKYYuȇ~X vtȇX=~.ZK".~ɭ vփ 6~Jt~X!WZZ~Ju".~ɭ=~X!WZKZ~Ju"2~!Yv4;ymq~8~v8 .v< t%~.w.w<wtz@w.w v .sw=~<.~҈~IKg"~x.=xtxXC~.~.p+t 8{.{X=?J{jX<.utyBĒ~KKYYu/<?9?iEA~X  s f~Jt~q4;Ē~v .vyBp<~yqX4;zX}&~WK#K0~~+\_WK-0~~p%.rtx Xr<~~/Xsx~}/Xrx; c%.rtx Xr<~~"X<s<x; 6s: }.Xr<~ȟ~XDy s.x; !h~X&lq<.dr= sx <~tXs os. st Xs< ~Xsx;~t# tt Xt< ~X<sx;~~Xsx~ts. st Xs< 6~"t<x <~tXs ~X<usx;~~#Xts<x; XtJt.x; qt<x <tXt >tx Xt< ڄ,~t<x <~tXs< K;gKKKs+~X2<t<x;("t~)}/Xr.x; u% <}tXrr.x;~r: }.Xr<~}/Xr.x;./N-~~p<]#XXDz3p<y3m#<V.u<;'XX>.rY<[.u<;"]X>~h<Q/cXu<=?Q#/<tLX"<S.=?~e/<N2`Xu<=?~Ƒ~~V#*<tQX"<S.=?~T<,<tOX"<S.=? ~X<s<x;KI=Y/ 8؃v< .v<=? vȏ vt?+ v<֒(/X/ )Z, v vt?+ v< ؃v< .v<=? vȏ vt?+ v<y..<yyX>ĒN_WKgʭ*~ًdf"JO`f~%y#ytyXB0y<K;gKKK&y2.y<=~<~Xx).qxX>z@wȏwt?+w<$KylX@y.=?y#.ptyXy.;>~z#.zfz.;>t}#<}t}X"<S.=?{#<{tx{X4~4={t{X>z@~$K}<}.}"<S.;;}#<}t}X"<S.=?{#<{tx{X4{<6{-{XC1~{-{X{.;>6~Xv .vyBښ%~ p&dX(<pX~:s}#<}t}X"<S.=?~#<~tX<.=? u< .yu=?K;gKKKs("~i<.<<~X?~}#<}t}X"<S.=?~iXuyB~<~X؏%~ q1:qƒ+~Xq.~tj_WKgʻ*d##]*~q*XuYu~=qX pfutz}/~}#<}t}X"<S.=?~Uv< .tu<;; 6uȏ ut? u<~$Ksp<u< .j u.;; tu< .nu=? u .73utyB u <utz@/ u< KKKKuI=tJPv< .Sv< .u<=?pufK;gKKK)~#={t{X>z@{-zX{<z@~{#.q{X>z@~g#<{t{X<{XyBu4KKYY;r%#@{t{X>z@ђ~ 'h~{,lXqX<.utyB u. ut? u< uXtt <r<w<wt1w<~vt <t<w<.u w.;X<-qt<o<w<.w =~f'~vW <u=? ;~p<~$v vt?+ v< e<t. ttz@z L<uX,##]T\~Ds <Ѐf7~Â<~X{ZX <t>z@~y#.oyXy.;>z#.zfz.;>z#.zfz.;> X<tx~X<t<x;~v% .v<=?#~ʈ<~<uv .vyB vȏ vt?+ v< ~q.r=?.'t]/ #*K~$wȍ<wtzw<~<~<v$ .w<=~#~w<wtz0}pw.wt?.uw<.w>z@~WK"K/~J~t(~/1"g;g v !~<U<~<2<~D~X~.ֻ  *'t'@w,.r w.;;~}#<}t}X"<S.=?hz֛~t"~؃x#.Gt9xXx.;>y#ytxXB0y<z#.zfz.;>y#.Zt&yXy.;>y#ytyXB0y<~1x7xtxXB0x<~x#.xf>z@~TY,<|tgXl<|.=?ђY~ؗ'~}4<}t}X"<S.=?~S-<~ Q/<4YIđU~2pf~fr .;/rtyB֛s#a_IKg")~ O\fM%~rȏ rt?+ r<ps5'~ 4p< (|"~u <f~{-W={.=?}#<}t}X"<S.=?~#<~tX<.=?y#.oyXy.;> ָ}Xsx m}XsJx; րg*K u{w'.w<;>wȏwt?.w< ~Xw*.ww.wt1w<w.uw=w.w>#~MXч'~"~Xw'.w<wtz@#~zX}#<}t}X"<S.=?v'K;gKKKs(~#<~tX<.=?6$K~<}.~<.;;~#<~t~X<.=?~~4<~tX<.=?~x'~#<~tX<.=?>uKKKKr*Ox7.xtxXC~x<xtyxX31y"x#xtxXB0x<~|7<|t|XC1|<~|#<|t|X>z@|7<|t|XC1#~|#<|t|=?|Y<|t|=?~|#<|t|=?"ڌ"~."y.1KKYY;$~|-|XxCKKKYY%#=|t|X|.;>$KylX@y.=?y#.ptyXy.;>yYytyXB0y<~ #~ފ~~6O#1<|t|X|.;>MY3<|t|X|.;>~|#<|tx<J|.1K;gKKK$~~#@|t}|.=?z.z;.zfz.;>~R#.<|t|X|.;>w. };~z#ztyXB0y<$Kzz=?z#.zfz.;>"Ks'-: fuu< Xu#fuLKJO/1 J= ;"<RxJ|xt|xؠJ'v5    AJt;.緓" <>:^8NTYY0K Xut Jv Xt7;=gKu<%x(   <Jt;.ء.; .ZYN:^8NTYYvZ~.6fIt6XI$rZ v t7O;=gKWu<KYȽ~J~ַW05J83 ~WKg~ЈJ~†y;..Q&t<;.t==\t2H9.~IKgʭ)H~<.7fҭX.ҭ.5Jf2Kh*"=WVY3'.L#<!n=WW~;XEX~;t?=UK Jv|t8ts]zMf3'J}B<}t5<~% ~0 |<<}.5Jt<.5Jt<.t<.5XY;=/.<=tt.5JDt<.5A[x<-.}<}8t#\f}N32OMtz-8t=rk~6O%sx~'3'L%sx|C.<=tt}<}6tHfSt<9.8Ht~.5H%~.B~.t<..t<.5Jt<.7ONI.~<.7~ ~0 ]A<ҮXnA <5IX6IXq<5 Y;=gڮ,iA<  P= ʮ J6\H< &"-.XoXy<Y;=h1 J_u0(Xu qY;=h;=/&[70p<<0u-?X=ytY;=h;=/&[70;=0u-?X=nnyX<\XQq.Xr!;Y;=/"t\8X@u;/Y=IoX. X<# <#z q?(JX<(XX<O8X&Z<&XUX+<U/J3=/yX J?]u X;=gI=;=g###%-/Xu!-XK;= ʃ;=/I=lff<h.ɻgYK/YZvJ{J<{J.{.0*Yu uJ t!.) J=H//[://. "= t`zzYnXKKXy< JTXX.~0:/YqLusYXmI Xu2kBY&WY>(Y+v,8AA <v< t8=?=?='Lg fJ I/ʯU.ugD%]w< '4=xA??????????? F F F M F F F M M O M M F F F F F F F F F F F F F F F F F F F F F A F M F I F F M F F F F F F F FM M:wqu0!tet\8@0ieJ'E tst t4y<{);;u);;u);;u);u);u);u&;u& t;HEE t;HHHHHHHH;HHHHHHHHHt?5. ?5. ?~5. 9w9>@>A 9w9>@>An !uty5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ >A >5/ Ds5 . Dg5. 9נ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! twt>!!su~'.9~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.~5.u tu   numpy/random/src/legacynumpy/random/src/legacy/../distributions/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/usr/include/bits/opt/python/cp37-cp37m/include/python3.7mnumpy/core/include/numpynumpy/core/include/numpy/randomlegacy-distributions.cdistributions.hstddef.hstdint.htypes.hlibio.hpyport.hnpy_common.hbitgen.hlegacy-distributions.hnpy_math.hstdio.hmathcalls.h 69 <sJ <steK[CLIuH\lYuz "Je<fIK؆~ji>Jgu؃/I1Jg(IKIKwY;Y wdZU1G/ofpX\Y=;KIIKh\F@FNYgeKy$C~<~<"y 4J=KYI1iYYgeKWs1 ==W0iGi.=hVcX~<f~<~fg=foXqeegסd XwX ֻeY;KIZIKJgn nW;KeO8M:IKWg+-KgFIgghLdh~Qc@;JWYbN($A -~ numpy/random/src/distributions/usr/include/usr/include/bitslogfactorial.cstdint.hmathcalls.h pFh erXJiIKR numpy/random/src/distributions/opt/rh/devtoolset-2/root/usr/lib/gcc/x86_64-CentOS-linux/4.8.2/include/usr/include/usr/include/bits/opt/python/cp37-cp37m/include/python3.7mnumpy/core/include/numpynumpy/core/include/numpy/randomdistributions.cdistributions.hstddef.hstdint.htypes.hlibio.hpyport.hnpy_common.hbitgen.hnpy_math.hziggurat_constants.hstdio.hmathcalls.h GY,f>KUMgWg2EOgfj.<j<hfXHkaOTffifJf0=G[=Ig2EAg.<<f<<JXk}Afn<<iJ~7tnA0G9tDfEO2.Dt s!tnX<(XI=>,L'ZtsyJ{z zJ,f>KUMgYe6c<j.<j<hfXHb%,f>KUMgWgkfj.<jf<hfXHMkJ<kfeXfeXJ?,LeC,t>KM=s=Ksk.j2<jJhffHbD,t>LWUMW=Igkfj%<jJhffHbD,t>LWUMW=Igkfj<jfJhffH&eJt!e#Httk&t,yf{z zf0=G[=Ke6c.<<f<<JX f0=G[=Igkf.<f<f<<JX f0=G[=Igkf<<f.<<.fXifM9kJ<kn<eXJ%tiJo .<<X~f9?K;h;/  J~f<<gsK :Z:cz .<JX~t9?K;h;/~t<Jhs ~.<~<~f<~<J~tX~ e~ff:>L;/u~n<~~<<~D<~/sKfh>| u JuX fK5yXQGKKKKKKKKVhVeKeIugXK;I4EOnJ+JJ=|Jt| t|<|f,<>KUMgWg.gK|Jj.<j<hffH#cb,f>KUMgWgkfj.<jf<hffH&eXf2J|<<|JgIK>iGi./ZVbt||.f;YZXoXKIKveY;KIZIKW0|Jt| t{<{f,<>KUMgWgK|.j.<j<hffHb8,f>KUMgWgk.j.<jf<hffH&efk2f2/Ie{0KUMgYe.g|j.<j<hffHb&,f>KUMgWgkfj<j<hffH&eff*|Jt| t{<{ ,<>KUMgWggeKI|j.<j<hffdb&,f>KUMgWgXf*j.<jf<hffd&eff2{f$xXzXB>{tfKIK/Th{tfKYI1J{<<{f<-IKiiYYgeKWs;1g0W3Dփ-0{f6JJ6<]WgIIiKIh{{<{Xfu,WYHgIgIl& ==)JKHh-Vg!=eYK5WaPzfgIiWZKHhGgYIKH"YGMKUIKZGhHg.zffzf<z<zfJWKKIgZYfgZ9ggWKI=6&\2 vf01#.'g!WKI=2^K;g;IWLhLHhYeKvLzYOZ]q[EKMcKZG,Ige؎4znz/LAV-MTVWMZVLVWLyJ.QX[G׭f4%jfTMh$dgIhIg8Xye1L;KxgKye jx ZGY;[9 ?i ft KI1pf.vt[Y1/Y;Ys u/ XvJ <v =VT Y=;KIIKh\F@FNYgeKy*<y<"y 'kEk@yx?fxf<YxX<x4fxffhMe1IO1xf.<\f6,&SO\ d*+f~jx.fx/eKJ (tfJx<<xfvt f;=;4<u< <uJ u fs^Jt  fPzu. fe^Jt f0,;Y0}f=9fG<9<BwJt/~Y.s~fwJtW/J}Y.W=-}.wJtW/JJcMtt/w.tWg } .}J.}X.}x/L.}X<t fW/i9[g"O9 (Z< ~u t3EOL,0ut tePJm}<<}tXs tA7k0:>v t;=;4<|gtJ ttost tht|st`1I])OgN> IuWgWYk  }<.}<s. t3EOL,0ut tePJs|.t0s tf ms th< C&CWKWWWWWWy . }f}~=~t=o/|:<G<9.BwJ tD<}t=o/{t=9<BwJt{=<{wJ zi/*|N/>[r tF8 zȑ;Z`ɠ__pyx_k_itemlong long int__pyx_tuple__37__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_float_0_0nb_lshift__pyx_n_s_int_disable_importlib__pyx_n_s_standard_cauchy__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto__pyx_n_s_ngooditers__pyx_e_5numpy_6random_6common_CONS_POSITIVE__pad1__pad2__pad3__pad4__pad5__Pyx_InitCachedBuiltins__pyx_k_bdata1return_ne__pyx_k_f__Pyx_StringTabEntry__pyx_k_l__pyx_k_n__pyx_k_p__pyx_n_s_meanNPY_CHAR__pyx_k_state__pyx_k_prodsuboffsets__pyx_k_triangular__pyx_n_s_lognormal__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_vonmises_mu_kappa_size_None_Dra_Py_NoneStructallocfunc__Pyx_ErrFetchInState__pyx_n_s_numpy_random_mtrand__pyx_n_s_noncentral_fasync_gen_finalizer__pyx_k_int16_PyArray_DescrPyExc_TypeError__pyx_k_negative_binomial__pyx_k_RandomState_weibull_line_2145__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial__pyx_pf_5numpy_6random_6mtrand_2ranfPyLong_TypePyByteArray_Type__pyx_L4_bool_binop_done__pyx_kp_u_RandomState_wald_line_2804type_name__Pyx_PyInt_As_Py_intptr_tnb_and__pyx_v_c__pyx_k_gamma__pyx_n_s_operator__pyx_v_x64_PyType_Lookup__pyx_v_k__pyx_tuple__53PyVarObject__pyx_n_s_random_integers__pyx_v_x__pyx_n_s_count_nonzero__pyx_n_u_scale__pyx_n_s_sidePyObject_RichCompare__pyx_L9_try_endPyArray_DotFunc__pyx_k_int32__Pyx_GetAttr__pyx_n_s_sqrt__pyx_k_copy__pyx_v____pyx_v_a__pyx_v_bboundscheck__pyx_v_dpyexitmodule__pyx_v_i__pyx_v_jmp_subscriptkwdefs__pyx_v_n__pyx_v_p__Pyx_PyInt_AddObjC__pyx_k_OverflowError__pyx_v_s__pyx_v_u__pyx_v_v__pyx_vtabrunerr__pyx_n_u_df__pyx_k_warnings__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_statefunc_kwdefaultsgc_nextNpyAuxData__pyx_ptype_5numpy_broadcast__pyx_n_u_random_sample__pyx_k_rand__pyx_k_Providing_a_dtype_with_a_non_natPyGC_Head__Pyx_ImportFunction__pyx_doc_5numpy_6random_6mtrand_2ranfNPY_OBJECT__pyx_n_s_nsample__pyx_int_neg_1__Pyx_CodeObjectCacheEntry__pyx_kp_u_bytes_length_Return_random_bytePyModuleDef_Slot__pyx_k_RandomState_gamma_line_1416__pyx_k_randint__pyx_v_mnixPy_UNICODE__pyx_k_lessml_name__pyx_v_meanPyErr_WarnFormat__pyx_k_empty__pyx_n_u_sigma__pyx_clineno__pyx_kp_u_RandomState_choice_line_680PyModuleDef__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangularPyExc_ImportError__pyx_f_5numpy_6random_16bounded_integers__rand_uint16__pyx_k_mean_must_be_1_dimensional__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_k_MT19937__pyx_kp_u_RandomState_uniform_line_869__pyx_n_s_gammaPyASCIIObjecthas_cstopNpyAuxData_tag__pyx_k_int64__pyx_n_s_dirichletsq_inplace_repeat__pyx_n_s_zeroslong_long__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_triangular_left_mode_right_size__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial_PyCoreConfig__pyx_L42_errorPyUnicode_Decode__pyx_n_s_ravel__pyx_k_float64tp_dealloc__pyx_n_s_numpy_dual__pyx_k_normalPyInterpreterState__pyx_n_s_mt19937__pyx_kp_u_permutation_x_Randomly_permute__pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare__pyx_v_alpha_arr__pyx_n_s_format__pyx_v_pixiternextfuncuint32_t__pyx_n_u_triangular__pyx_L12_exception_handled__pyx_k_RandomState_geometric_line_3350in_coroutine_wrapper__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f__pyx_k_RandomState_triangular_line_2872__pyx_kp_u_RandomState_standard_t_line_1871b_handler__pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleighnext_double__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_dict_version__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_v_state__Pyx_CodeObjectCache__pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf__pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_1__get__co_filename__Pyx_HasAttr__pyx_n_u_dfnumsetattrfunc__pyx_v_lnbadlong double__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric__pyx_n_s_nbad__pyx_pf_5numpy_6random_6mtrand_11RandomState___init____pyx_pf_5numpy_6random_6mtrand_11RandomState_56chisquare__pyx_float_1eneg_8PyObject_SetItem__pyx_pf_5numpy_6random_6mtrand_11RandomState_50gamma__pyx_L9_error__pyx_n_s_alpha__Pyx_PySequence_ContainsTFNPY_HEAPSORT__pyx_v_diric__pyx_L16_bool_binop_donenpy_bool__Pyx_ImportTypePyCFunction_Type__pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises__pyx_kp_u_alpha_0__pyx_k_a_cannot_be_empty_unless_no_sam__Pyx_PyErr_ExceptionMatchesInStateinternal__pyx_f_5numpy_6random_6common_check_constraintuse_tracing__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_isfiniteNPY_STRINGcurexc_value__pyx_n_s_cumsumcontext_ver__pyx_pf_5numpy_6random_6mtrand_11RandomState_72laplacePyNumber_InPlaceTrueDivide__pyx_n_s_integerid_mutex__pyx_n_s_randomstate_ctor__pyx_pf_5numpy_6random_6mtrand_11RandomState_26standard_exponential__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand__pyx_k_logistictstate_headtp_weaklist__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f__pyx_tuple__13__pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel__pyx_kp_u_RandomState_seed_line_141__pyx_k_standard_gamma_shape_size_NonePyObject_GetIter__Pyx_RaiseArgtupleInvalidm_sizetp_new__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh__pyx_k_ctypesPyTuple_Pack__pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState__pyx_k_choiceco_kwonlyargcount__pyx_k_str__pyx_kp_u_RandomState_vonmises_line_1965m_indexPyLongObject__pyx_k_Format_string_allocated_too_shor_2ma_values_PyErr_StackItemPyArray_FastTakeFunc__pyx_k_add__pyx_L1_error__pyx_kp_u_tomaxint_size_None_Return_a_sam__pyx_moduledef__pyx_kp_u_chisquare_df_size_None_Draw_samnb_inplace_xor__pyx_n_u_choice__pyx_kp_u_RandomState_standard_gamma_lineinplace__pyx_n_u_mu__pyx_k_reduce__pyx_n_s_reversed__pyx_k_seed_self_seed_None_Reseed_a_le__pyx_k_finfo__pyx_n_s_multivariate_normal__pyx_k_lamcancastscalarkindtodump_refs__pyx_n_s_power__pyx_n_s_legacy__pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace__pyx_ptype_7cpython_4type_type__pyx_n_u_uint16__pyx_L9_exception_handledPyThreadStatePyUnicode_2BYTE_KIND__pyx_v_nbad__pyx_k_empty_like__pyx_k_mode__pyx_kp_u_RandomState_dirichlet_line_3892__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle__pyx_k_svdinterned__pyx_v_itemsize__pyx_k_ranf__pyx_kp_u_RandomState_noncentral_f_line_15tp_baseargdefs__pyx_kp_u_numpy_core_multiarray_failed_todata2__pyx_kp_u__12f_backPyDict_Newkwtuple_py_tmp__pyx_v_retclonehash1hash2return_eqc_apiPyBytes_FromStringAndSize_unused2__pyx_n_u_uint32PyList_NewNPY_SHORT__pyx_pf_5numpy_6random_6mtrand_11RandomState_46normal__pyx_k_laplace__Pyx_PyObject_CallNoArgPyModuleDef_Base__pyx_v_val_data__pyx_k_nbad__pyx_kp_u_multinomial_n_pvals_size_None_Dtp_basicsizectversiontp_members__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_k_right__pyx_k_multivariate_normal_mean_cov_si__Pyx_PyFunction_FastCallDict__pyx_k_side__pyx_n_s_randomempty_list__Pyx_PyObject_GetItembufferinfoPyBytes_TypePyLong_FromStringwas_sq_slice__pyx_v_psdPyImport_GetModuleDict__pyx_kp_u_RandomState_chisquare_line_1659__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_L34_try_return__pyx_f_5numpy_PyArray_MultiIterNew3__pyx_v_parr__pyx_k_standard_normaltmp_value__pyx_n_s_laplace__pyx_n_u_pos__pyx_L48_except_error__pyx_doc_5numpy_6random_6mtrand_11RandomState_40randntp_flagsPyTryBlockdestructorPyCode_New__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_n_u_bit_generator__pyx_n_s_indexlocal_value__pyx_kp_u_This_function_is_deprecated_Pleatp_setattroPyArray_FillWithScalarFunc__pyx_k_doublePyArray_CopySwapFunc__pyx_k_ravel__pyx_n_u_logistic__pyx_v_oright__pyx_kp_u_negative_dimensions_are_not_allodev_modemodules_by_index__pyx_v_range__pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str____pyx_v_p_sum__Pyx_TypeTest__pyx_n_s_poissondigits__Pyx_PyObject_Callis_str__pyx_k_RandomState_rand_line_980codec_error_registry__pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1_NOTNANexc_type2__pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator__pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial__Pyx_PyErr_GetTopmostException__Pyx_RaiseUnboundLocalErrornew_max__pyx_n_s_isnativecopyswapnf_lasti__pyx_builtin_OverflowError__pyx_kp_u_x_must_be_an_integer_or_at_least__pyx_k_power_a_size_None_Draws_samples__Pyx_Raise__pyx_mdef_5numpy_6random_6mtrand_1sample__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponentialthread_id__pyx_n_s_may_share_memory__pyx_v_temp__Pyx_IterFinish__pyx_k_allargname__pyx_kp_u_RandomState_binomial_line_2972__pyx_n_s_hypergeometricob_basePyFrame_Type__pyx_n_s_gumbelreadonly__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_k_RandomState_shuffle_line_4031__pyx_k_a_must_be_1_dimensional__pyx_vtable_5numpy_6random_6mtrand_RandomState__pyx_tp_clear_5numpy_6random_6mtrand_RandomState__pyx_pw_5numpy_6random_6mtrand_1sample__pyx_k_get_state__Pyx_ImportFrom__Pyx_PyObject_GetAttrStrwarningam_anext__pyx_n_u_hypergeometric__pyx_k_permutationignore_environmentNPY_CLIPMODE__pyx_v_randoms_data__pyx_n_s_floating__pyx_pf_5numpy_6random_6mtrand_11RandomState_64vonmises__pyx_n_s_test_PyMainInterpreterConfig__pyx_doc_5numpy_6random_6mtrand_11RandomState_82waldPyArray_FromStrFuncfromstrPyExc_ValueError__pyx_v_buf_ptr__Pyx_check_single_interpreter__pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet__pyx_e_5numpy_6random_6common_LEGACY_CONS_POISSON__pyx_v_idx__pyx_pf_5numpy_6random_6mtrand_11RandomState_34choicePyEval_SaveThreadco_extra_freefuncsPy_buffer__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial__pyx_k_RandomState_normal_line_1239__pyx_n_s_set_state__pyx_k_chisquare__pyx_k_any__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_RandomState_permutation_line_411__pyx_n_u_power__pyx_k_randn__pyx_n_s_isnan__pyx_n_s_tobytes__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf__pyx_b__pyx_v_n_arr__pyx_dPyUnicode_WCHAR_KIND_vtable_offsetsubarray__pyx_m__pyx_r__pyx_n_s_scale__pyx_L5_argtuple_error__pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometrictp_initPyTypeObjectnb_remaindertp_freekwdict__pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_4__del__ucs2ucs4__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric__pyx_f_5numpy_6random_6common_contnb_inplace_remainder__pyx_k__12dotfunc__pyx_v_rightfillwithscalar__pyx_L22_bool_binop_doneeval_frame__pyx_kp_u_RandomState_geometric_line_3350module_search_path_env__pyx_k_set_state_can_only_be_used_with__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_builtin_IndexErrorPyUnicode_ComparePyModuleDef_Init__pyx_k_gumbelPyCapsule_Type__pyx_pymod_exec_mtrand__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal__pyx_v_onsample__pyx_k_choice_a_size_None_replace_True__pyx_k_weibull_arr_descr__pyx_e_5numpy_6random_6common_CONS_POISSON__pyx_k_range__pyx_kp_u_RandomState_rayleigh_line_2736ternaryfunc__pyx_n_s_intp__pyx_k_ngood_nbad_nsampleconst_zeroPyArray_ArgFuncim_weakreflistnb_index__pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1limit__Pyx_PyNumber_IntOrLongWrongResultTyperetvalNPY_LONGDOUBLE__pyx_v_dfdensq_containstp_setattrPyDictObject__pyx_cython_runtime__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normalm_ml__pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxints1_is_unicode__pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle__npy_i__pyx_k_low__pyx_f_5numpy_6random_6common_kahan_sum__pyx_L40_error__pyx_L36_unpacking_done__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_numpy_dual__pyx_kp_u_RandomState_weibull_line_2145__pyx_k_geometric_p_size_None_Draw_samp__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace__Pyx__GetExceptionasciimodule_search_paths__pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy__pyx_n_s_IndexError__pyx_k_Non_native_byte_order_not_suppor__pyx_k_name__pyx_kp_u_RandomState_multinomial_line_378__Pyx_RaiseTooManyValuesErrornb_subtractNPY_BOOLPyException_SetTracebackexecutabletypeobj__pyx_k_RandomState_binomial_line_2972nb_absolute__pyx_k_dirichlet_alpha_size_None_DrawPyFrameObjectPyArrayIterObject_tagob_type__pyx_n_s_logical_or__pyx_n_s_ndim__pyx_k_RandomState_chisquare_line_1659async_gen_firstiter__pyx_k_Invalid_bit_generator_The_bit_geinquirynum_threadsimport_time_PyUnicode_Ready__pyx_L10_except_errortp_getattr__pyx_n_s_addnsavepvalue__pyx_v__endpointPyTupleObjectrtversionlegacy_random_multinomial_IO_backup_base__pyx_kp_u_Range_exceeds_valid_bounds__pyx_L30__pyx_doc_5numpy_6random_6mtrand_11RandomState_52f__pyx_L11_unpacking_failedpy_funcname__pyx_L3_bool_binop_done__pyx_k_return_indexPyExc_RuntimeError__pyx_k_isscalar__Pyx_is_valid_index__pyx_L25_error__pyx_pf_5numpy_6random_6mtrand_11RandomState_60standard_cauchy__pyx_n_s_beta__Pyx_PyInt_From_int__Pyx_check_binary_version__pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential__pyx_n_s_cline_in_traceback__pyx_doc_5numpy_6random_6mtrand_11RandomState_70power__pyx_k_ndarray_is_not_Fortran_contiguouclass_name__pyx_n_s_lam__pyx_kp_u_RandomState_negative_binomial_liPyOS_snprintf__pyx_kp_u_shuffle_x_Modify_a_sequence_innb_invert__pyx_n_s_random_sample__pyx_doc_5numpy_6random_6mtrand_11RandomState_12seedm_clear__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint__pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniformPyModule_NewObject__pyx_doc_5numpy_6random_6mtrand_11RandomState_20random__pyx_k_high__pyx_n_s_waldempty_dict__pyx_t_5numpy_6random_6common_ConstraintType__pyx_n_s_classc_profileobjwarnoptionsnb_inplace_floor_divide__pyx_k_rayleigh_scale_1_0_size_None_Dris_trueNPY_CLIPstdin__pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice__Pyx_RaiseDoubleKeywordsError__pyx_kp_u_at_0x_X__pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutationbyteorder__pyx_L16_try_endim_self__pyx_arg_length__pyx_k_zipfkwds2max_count_IO_read_endPyErr_ExceptionMatchesdescrsetfunc__pyx_k_probabilities_are_not_non_negati__pyx_k_bytestp_as_sequence__pyx_n_s_strides__pyx_k_unsafe__Pyx_SetItemInt_Fast__pyx_pf_5numpy_6random_6mtrand_11RandomState_74gumbel_IO_save_base__pyx_module_is_main_numpy__random__mtrand__pyx_k_allclose__pyx_k_RandomState_random_integers_line__pyx_kp_u_negative_binomial_n_p_size_None__pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniformNPY_ULONG__Pyx_CheckKeywordStringsPyFloat_Type__pyx_L55__pyx_k_nsample__pyx_bisect_code_objects__pyx_n_u_zipfPyMem_ReallocPyFloat_AsDouble__pyx_v_multin__pyx_n_s_legacy_seeding__pyx_lineno__pyx_k_can_only_re_seed_a_MT19937_BitGe__pyx_k_RandomState_bytes_line_651__pyx_code_cache__pyx_k_RandomState_vonmises_line_1965__pyx_v_val_arr__pyx_k_normal_loc_0_0_scale_1_0_size_Nnb_divmodnd_m1__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseriesNPY_CPU_BIG_IO_write_end__pyx_kp_u_RandomState_laplace_line_2343_Py_CheckRecursionLimit__pyx_n_u_normal_PyFrameEvalFunction__pyx_v_keyf_localsplus__pyx_n_s_dtype__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_RandomState_seed_line_141__pyx_k_integers_types__pyx_k_random_samplepyexitfunc__pyx_n_s_multinomial__pyx_k_cov__pyx_n_s_int8__pyx_pf_5numpy_6random_6mtrand_11RandomState_62standard_t__pyx_kp_u_RandomState_random_sample_line_2__Pyx_PyInt_As_int64_t__pyx_k_This_function_is_deprecated_Plea_2__pyx_pf_5numpy_6random_6mtrand_11RandomState_90poisson__pyx_k_paretoexact__Pyx_InBases__pyx_n_u_locdescrgetfunc__pyx_pf_5numpy_6random_6mtrand_11RandomState_2__repr__coerce_c_locale_py_slice_IO_buf_base__pyx_k_boolowned_stopPyFloat_FromDoublem_docssizeargfunc__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy__pyx_v_tol__pyx_n_s_enterhas_cstart__pyx_n_u_lam__pyx_string_tab__pyx_pw_5numpy_6random_6mtrand_11RandomState_83waldPyMappingMethods__pyx_v_stride__pyx_k_kappa__pyx_n_s_searchsorted__pyx_n_s_nonc__pyx_n_u_stateprogramequals__pyx_n_s_RandomState__pyx_slice__38__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal__Pyx_ImportType_CheckSize_Warn__pyx_pf_5numpy_6random_6mtrand_11RandomState_4__str____pyx_doc_5numpy_6random_6mtrand_samplePyArray_SetItemFunc__pyx_k_standard_gammainstall_signal_handlers__pyx_k_RuntimeError__pyx_n_u_bool__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_L15_bool_binop_donenb_float__pyx_k_RandomState_multivariate_normalnb_inplace_rshift__pyx_kp_u_state_dictionary_is_not_validuint64_tPyDictKeysObject__pyx_filenamePyMem_Malloc__pyx_n_u_int16memcmpPyArray_NonzeroFunc__pyx_k_pareto_a_size_None_Draw_samples__pyx_kp_u_a_cannot_be_empty_unless_no_samsdigit__pyx_k_atol__pyx_L11_errorsq_lengthbefore_forkers__pyx_kp_u_a_must_be_1_dimensional_or_an_in__pyx_k_subtract__pyx_k_rand_2PyErr_SetObject__pyx_n_u_key__pyx_n_u_gamma__pyx_f_5numpy_6random_16bounded_integers__rand_int16__pyx_L35_continueNPY_NTYPES__pyx_e_5numpy_6random_6common_CONS_GT_1co_lnotabarg_passed_twice__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state__pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_5__del____pyx_f_5numpy_6random_6common_check_array_constraintnum_expectedcode_line_IO_marker__pyx_k_sigma__pyx_k_RandomState_lognormal_line_2626printfuncsetitem__pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_stateam_await__pyx_n_u_int32__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_kp_u_mean_must_be_1_dimensional__pyx_pf_5numpy_6random_6mtrand_11RandomState_40randn__pyx_kp_u_RandomState_pareto_line_2048__pyx_k_all_2__pyx_float_1_0__pyx_k_warnscalarkindPyCapsule_DestructorPyNumber_Subtract__pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial__pyx_kp_u_standard_normal_size_None_Draw__pyx_n_s_casting__pyx_v_it__pyx_pf_5numpy_6random_6mtrand_11RandomState_18random_samplePyExc_UnboundLocalError__pyx_k_exit__pyx_empty_tuple__pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_2__set____pyx_n_u_noncentral_f__pyx_kp_u_RandomState_noncentral_chisquare__pyx_kp_u_seed_self_seed_None_Reseed_a_lememcpy_aug_stategetattrofuncPyTraceBack_Type__pyx_v_flat_found__pyx_k_Unsupported_dtype_s_for_randint__pyx_v_nonc__pyx_v_fright__pyx_L8_bool_binop_done__pyx_n_s_seedcompact__pyx_k_shape_IO_lock_t__pyx_k_poisson_lam_1_0_size_None_Draw__npy_mi__pyx_int_4294967296__pyx_builtin_RuntimeWarning_IO_read_ptrPyCFunction_NewEx__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_n_u_seedfunc_globals__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbelcodecs_initialized_PyObject_GetDictPtr__pyx_n_u_uint64__pyx_n_u_multinomialm_slots_flags2__pyx_kp_u_cov_must_be_2_dimensional_and_sqtp_version_tag__pyx_k_sum_pvals_1_1_0__pyx_k_mean_and_cov_must_have_same_leng__pyx_n_u_int64sq_ass_itemPyModule_GetDict__pyx_k_state_must_be_a_dict_or_a_tuplegetitem__pyx_L0__Pyx__ExceptionResetbackstrides__pyx_L3__pyx_L4__pyx_L6__pyx_L7__pyx_L8__pyx_v_uniform_samplesPyDict_GetItemWithError__pyx_kp_u_left_right__pyx_v_left__pyx_n_s_vonmisesxoptions_IO_write_ptr__pyx_f_5numpy_6random_16bounded_integers__rand_int64__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_ptype_5numpy_6random_6mtrand_RandomState__pyx_kp_u_Format_string_allocated_too_shor__pyx_e_5numpy_6random_6common_CONS_GTE_1__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation__pyx_v_alowPyErr_SetString__pyx_builtin_ValueError__pyx_k_randint_low_high_None_size_None__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_v_kappa__pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generatorc_traceobjptype__pyx_kp_u_multivariate_normal_mean_cov_siPyBufferProcsgetattrfunc__pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_L35_unpacking_failedexc_state__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seedPy_hash_t__pyx_kp_u_a_and_p_must_have_same_size__pyx_k_zipf_a_size_None_Draw_samples_fsq_inplace_concat__pyx_n_s_item__pyx_kp_u_RandomState_standard_normal_linesq_repeatfunc_defaults__pyx_n_u_warn_PyCFunctionFastWithKeywords__pyx_builtin_RuntimeErrorfunc_obj__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_v_seedhashfunc__pyx_v_found__pyx_tuple__11PyThread_type_lock__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_tuple__15__pyx_tuple__16__pyx_tuple__17__pyx_tuple__18__pyx_tuple__19__pyx_k_RandomState_rayleigh_line_2736__pyx_pf_5numpy_6random_6mtrand_11RandomState_54noncentral_f__pyx_n_s_T__pyx_L51_try_endPyNumber_Index__pyx_k_lockfaulthandler_PyThreadState_UncheckedGet__pyx_ptype_5numpy_dtype__pyx_v_lnsample__pyx_n_s_a__pyx_n_s_b__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_n_s_freprfunc__pyx_n_s_pvals__pyx_n_s_n__pyx_n_s_p__pyx_t_5numpy_6random_6common_constraint_typecodec_search_path__pyx_n_u_uniform__pyx_v_sigma__pyx_tuple__20__pyx_tuple__21__pyx_tuple__22__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniformrecursion_depth__pyx_tuple__25__pyx_tuple__26__pyx_tuple__27__pyx_tuple__28__pyx_tuple__29__Pyx_RaiseNeedMoreValuesError__pyx_n_s_prod__pyx_k_eps__pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__homePyErr_Formatnb_inplace_power__pyx_v_flefttp_as_number__pyx_k_IndexError__pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_76logisticPyList_Type__pyx_kp_u_power_a_size_None_Draws_samples__pyx_n_s_rayleigh__pyx_n_s_reshape__pyx_k_get__pyx_k_RandomState_standard_cauchy_line__pyx_tuple__32__pyx_tuple__33__pyx_tuple__34__pyx_tuple__35__pyx_tuple__36__pyx_k_cumsum__pyx_tuple__39nb_int__pyx_k_logical_or__pyx_k_poisson_lam_maxPyExc_SystemErrorPyExc_NameErrorc_tracefuncPyCFunctionObject__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX__pyx_pf_5numpy_6random_6mtrand_11RandomState_68weibullNpyAuxData_CloneFunc__pyx_k_numpy_random_mtrandPySlice_New__pyx_n_s_warnob_fval__pyx_n_s_binomialutf8__pyx_v_unique_indices__pyx_tuple__40__pyx_k_standard_cauchy_size_None_Draw__pyx_tuple__42__pyx_tuple__43__pyx_tuple__44__pyx_tuple__45__pyx_tuple__46__pyx_tuple__47__pyx_tuple__48__pyx_tuple__49__pyx_v_shape__pyx_n_u_RandomStatePyErr_Clear__pyx_k_wald_mean_scale_size_None_DrawNPY_LONGdlopenflagsnb_inplace_true_divide__pyx_tuple__9__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power__pyx_n_s_dfnumPyArray_CopySwapNFunc__pyx_k_posexc_tb__Pyx_PyFunction_FastCallNoKwdimensions__pyx_tuple__50__pyx_tuple__51__pyx_tuple__52__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet__pyx_tuple__54__pyx_tuple__56use_cline__pyx_pyinit_modulewstraug_bitgen__pyx_pf_5numpy_6random_6mtrand_11RandomState_38randcancastto__pyx_k_idPyUnicode_AsUnicodePyInterpreterState_GetID__pyx_pw_5numpy_6random_6mtrand_3ranftype_numwstr_lengthtp_descr_set__pyx_k_random_sample_size_None_Returnnb_power__pyx_v_ngood__pyx_k_randn_d0_d1_dn_Return_a_sample__pyx_k_check_valid_must_equal_warn_rais__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_v___randomstate_ctor__pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull__pyx_k_strides__pyx_n_s_check_valid__pyx_n_s_itemsize__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logisticco_stacksizetp_hashNPY_UNICODEshow_ref_count__pyx_n_s_arrayNPY_QUICKSORT__pyx_k_tobytes_IO_buf_endvisitprocshort unsigned int__pyx_n_s_astype__pyx_k_standard_cauchy__pyx_kp_u_set_state_can_only_be_used_withf_trace_lines__pyx_k_permutation_x_Randomly_permutem_basetp_print__pyx_kp_u_numpy_core_umath_failed_to_imporgc_prevma_used__pyx_n_u_right__pyx_n_u_MT19937_2__pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare__pyx_v_selfnb_inplace_lshiftPyExc_BufferError__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poissontp_as_async__pyx_kp_u_RandomState_logistic_line_2546__pyx_k_tomaxint_size_None_Return_a_sam__pyx_insert_code_objectPyLong_FromSsize_t__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare__pyx_k_greater__pyx_pf_5numpy_6random_6mtrand_11RandomState_78lognormalco_namesPySequence_Tuple__pyx_pf_5numpy_6random_6mtrand_11RandomState_8__setstate__raise_neg_overflow__pyx_f_5numpy_6random_16bounded_integers__rand_int32nb_true_divide__pyx_L46_error__pyx_k_sizetp_richcompare__pyx_n_s_ImportError__pyx_n_s_RuntimeWarning_IO_read_base__pyx_v_capsule__pyx_pyframe_localsplus_offset__pyx_v_legacy__pyx_kp_u_RandomState_tomaxint_line_472__pyx_k_RandomState_logseries_line_3531PyObject_SetAttrtp_iter__Pyx_PyInt_NeObjC__pyx_n_s_standard_t__pyx_n_u_chisquare__pyx_n_s_greater__pyx_pf_5numpy_6random_6mtrand_11RandomState_94geometriclocal_type__pyx_kp_u_mode_rightPyType_ModifiedNPY_CDOUBLE__pyx_k_gaussob_refcntafter_forkers_parent__pyx_f_5numpy_6random_6common_discrete_broadcast_iiiuintval_PyByteArray_empty_string__pyx_n_u_dfdenfunc_doc__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_k_RandomState_hypergeometric_lineNPY_WRAPPyImport_ImportModuleLevelObject__pyx_k_randomco_cellvarsPy_GetVersion__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_n_u_poissonfunc_codeuint8_tutf8_length__pyx_k_random_integers__pyx_k_random_integers_low_high_None_s__pyx_L31_exception_handlednb_inplace_matrix_multiply__pyx_k_noncentral_ftp_alloc__pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_3__set____pyx_n_s_negative_binomial__pyx_k_may_share_memoryPyObject_GetAttrbuiltins_copysetter__pyx_f_5numpy_6random_16bounded_integers__rand_int8exc_info_shortbuf_sbuf__pyx_temptp_bases__pyx_n_u_pvals__pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta__pyx_n_s_tollenfunc__pyx_k_check_valid__pyx_kp_u_get_state_and_legacy_can_only_bef_executing__pyx_e_5numpy_6random_6common_CONS_POSITIVE_NOT_NAN__pyx_doc_5numpy_6random_6mtrand_11RandomState_90poissonfunc_module__pyx_k_longlimits_sizes__pyx_n_s_state__pyx_k_noncentral_chisquareinvalid_keywordargsort__pyx_e_5numpy_6random_6common_CONS_NONE__pyx_n_u_standard_normalPySequence_Contains__pyx_pf_5numpy_6random_6mtrand_11RandomState_48standard_gammabf_getbuffer__pyx_kp_u_RandomState_multivariate_normalf_globals__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquareunsigned charmessage__pyx_k_a_and_p_must_have_same_size__pyx_v_buf__pyx_n_u_logseries__pyx_n_u_a__pyx_n_u_b__pyx_n_u_f__pyx_n_u_n__pyx_n_u_p__pyx_type_5numpy_6random_6mtrand_RandomStatePyDict_SetItemString__pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator___get____pyx_mdef_5numpy_6random_6mtrand_3ranf__Pyx_PyInt_EqObjCNPY_CLONGDOUBLE__pyx_tstate__pyx_pf_5numpy_6random_6mtrand_11RandomState_20randomPyArrayIterObject__pyx_L10_bool_binop_done__pyx_n_u_randn__pyx_k_TypeError__pyx_n_s_data__pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state__pyx_n_u_geometric__Pyx_CreateCodeObjectForTracebacknmodule_search_pathPyExc_DeprecationWarningPyObject_GC_UnTrack__pyx_kp_u_RandomState_normal_line_1239__pyx_k_equal__pyx_k_numpy__pyx_v_p_arrPyMethod_Typenargs__Pyx_AddTraceback__pyx_v_stPyArray_API__pyx_n_s_paretoob_item__pyx_n_u_unsafe__pyx_kp_u_ndarray_is_not_C_contiguousPyUnicode_Kind__pyx_kp_u_RandomState_randint_line_530__pyx_pf_5numpy_6random_6mtrand_11RandomState_52f__pyx_n_s_mode__pyx_n_s_allclose__pyx_k_multivariate_normal__pyx_v_new__pyx_n_s_less_equal__pyx_k_multinomial__Pyx_modinit_global_init_code__pyx_n_s_rand__pyx_n_s_ranfkey_value__pyx_L8_error__pyx_n_s_warningsPyDict_Type__pyx_kp_u_RandomState_random_integers_line__pyx_k_standard_normal_size_None_Draw__pyx_k_mtrand_pyxf_builtins__pyx_k_Cannot_take_a_larger_sample_than__pyx_v_n_uint32__pyx_pymod_createm_init__pyx_v_totsizema_version_tagm_free__pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangularnb_positive__pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation__Pyx_PyNumber_IntOrLong__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_L47_exception_handled__off_t__pyx_n_u_has_gauss__pyx_L5_returnf_code__pyx_pf_5numpy_6random_6mtrand_11RandomState_92zipfnb_inplace_subtract__pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangularfunction_name__pyx_n_s_str__pyx_k_ngoodlocal_tbdims_m1encoding__pyx_kp_u_rand_d0_d1_dn_Random_values_in__pyx_n_s_arange__pyx_k_uint8__pyx_k_RandomState__pyx_n_u_standard_cauchy__pyx_k_MT19937_2__pyx_n_s_int64co_coderecursion_criticalPyArray_ArrFuncsPyList_AsTuple__pyx_kp_u_Providing_a_dtype_with_a_non_natPyArray_ArgSortFunc__pyx_k_take__pyx_k_bit_generatorco_firstlineno__pyx_n_u_capsule__pyx_kp_u_wald_mean_scale_size_None_Drawco_extra__Pyx_PyObject_Call2Args__pyx_n_u_pareto__pyx_n_s_get_state__pyx_v_data__pyx_v_onbadPyDict_SetItempy_code__pyx_n_s_svdnb_multiply__Pyx_PyList_Append__Pyx_modinit_type_init_code__pyx_k_rtolnpy_hash_t__pyx_v_ongoodscanfunc_dictkeysobject__pyx_n_u_noncentral_chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normalPySequenceMethodstp_is_gc__pyx_moduledef_slotsfunc_weakreflist__pyx_k_sort__pyx_v_modedataptr__pyx_n_s_chisquarenxoption_err_stackitem__pyx_v_df__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers__pyx_k_gamma_shape_scale_1_0_size_NonePyNumber_InPlaceAdd__pyx_v_dtpsavekw_allowed__pyx_n_s_args__pyx_n_s_left__pyx_k_RandomState_multinomial_line_378__pyx_dict_cached_value__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_find_code_object__pyx_n_u_random_integers__pyx_k_integerfastclip__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibulluse_cline_objfreefunc__pyx_n_u_shuffle__pyx_n_s_pyx_vtable__pyx_k_reshape__pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma__pyx_k_format__pyx_kp_u_RandomState_triangular_line_2872__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate__NPY_VOID__Pyx_inner_PyErr_GivenExceptionMatches2co_flags__pyx_k_hypergeometric__pyx_builtin_DeprecationWarningPyArray_FastClipFuncco_consts__pyx_kp_u_RandomState_lognormal_line_2626ml_flagsis_listpy_result__pyx_n_s_isfinite__pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal__pyx_kp_u_RandomState_randn_line_1024__pyx_n_u_set_state__pyx_k_binomial__pyx_vtabstruct_5numpy_6random_6mtrand_RandomStatePyObject_SetAttrString__pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr__NpyAuxData_FreeFunc__Pyx_modinit_type_import_code__pyx_k_logseries__pyx_n_s_bounded_integersml_meth__pyx_k_RandomState_standard_t_line_1871tp_as_mapping__pyx_pf_5numpy_6random_6mtrand_11RandomState_80rayleigh__pyx_pf_5numpy_6random_6mtrand_11RandomState_10__reduce____pyx_k_int__pyx_kp_u_dirichlet_alpha_size_None_Drawtrash_delete_latertp_weaklistoffsetkw_args__pyx_tuple__30__pyx_tuple__31tp_iternext__Pyx_ImportType_CheckSize_Ignore__pyx_pf_5numpy_6random_6mtrand_11RandomState_24exponential__Pyx_IternextUnpackEndCheck__pyx_n_u_bytes__pyx_n_s_logistic__pyx_kp_u_Unsupported_dtype_s_for_randint__pyx_k_zeros__pyx_v_fmode__Pyx__ExceptionSave__pyx_L13_except_error__pyx_builtin_reversedlegacy_random_binomial_old_offsetco_varnames__pyx_empty_bytess_binomial_t__pyx_kp_u_RandomState_f_line_1494__pyx_n_s_ValueError__pyx_n_s_DeprecationWarningPyArray_CompareFunc__pyx_n_s_finfo__Pyx_PyUnicode_Equals_gc_head__pyx_k__14__pyx_kp_u_state_must_be_a_dict_or_a_tuplefunc_annotations__pyx_n_s_name_2co_cell2argPyUnicode_FromFormatPyCompactUnicodeObject__pyx_k_alpha_0__pyx_k_casting__pyx_k_a_must_be_greater_than_0_unless__pyx_v_argsfirst_kw_arg__Pyx_PyInt_As_size_tis_unsignedmain_interpreter_id__pyx_n_s_all__pyx_builtin_ImportError__pyx_pf_5numpy_6random_6mtrand_11RandomState_44standard_normal__pyx_k__3__pyx_k__4__Pyx_InitGlobals__pyx_k_keyNPY_UINT__pyx_pw_5numpy_6random_6mtrand_11RandomState_23betaPyCapsule_GetPointer__pyx_k_issubdtyperandom_positive_int__pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries__pyx_tuple__41_IO_save_end__pyx_L5_except_errorelsize__Pyx_GetItemInt_Genericfunc_qualnamelamlPyObject__pyx_k_samplelamrbase_exec_prefixPyCapsule_GetName__pyx_n_u_randintmp_length__pyx_obj_5numpy_6random_6mtrand_RandomState__pyx_kp_u_randint_low_high_None_size_None_longobject__pyx_v_is_scalartp_itemsizeobjobjproc__pyx_k_alphainvalid_keyword_type_py_start__pyx_k_RandomState_uniform_line_869npy_intptmp_type__pyx_k_tolPyEval_RestoreThreadPyModule_GetName__pyx_n_u_kappa__pyx_n_s_anyf_trace__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_k_mean__pyx_n_s_right__pyx_v_out__pyx_n_s_kwargs__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_k_has_gaussPyArray_GetItemFuncnum_pos_args__pyx_k_testraise_overflowoverflowedtp_del__pyx_n_u_lognormalPyArrayObjectnum_maxstackcheck_counter__pyx_L8_try_end__pyx_n_s_replace__pyx_n_s_OverflowError__pyx_k_standard_tinterninterpNPY_UBYTE__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal__pyx_tp_new_5numpy_6random_6mtrand_RandomState__pyx_pf_5numpy_6random_6mtrand_11RandomState_98logseries__pyx_v_muNPY_CPU_LITTLE__pyx_f_5numpy_import_arrayPyMethodObject__pyx_n_u_mean__pyx_k_RandomState_noncentral_f_line_15__pyx_kp_u_RandomState_zipf_line_3269__pyx_empty_unicode__pyx_n_s_name__pyx_n_u_binomialnum_found__pyx_n_s_emptyattr_name__pyx_n_s_exponential__pyx_L10wchar_t__pyx_L12getbufferproc__pyx_L16__pyx_L17__pyx_v_ni__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma__pyx_n_s_dfdenPyFloatObjectPyTuple_TypeNPY_CPU_UNKNOWN_ENDIANnb_xorPyThreadState_Get__pyx_k_geometricPyEval_EvalFrameEx__pyx_n_s_idnpy_iter_get_dataptr_t__Pyx_PyObject_SetAttrStrPyObject_IsInstancePyLong_AsLong__pyx_ptype_7cpython_7complex_complex__pyx_L21__pyx_L24__pyx_L25__pyx_L26__pyx_L27__pyx_L28__pyx_L29ssizeobjargprocpy_frame__Pyx_PyInt_From_int64_t__pyx_k_sqrtPyNumberMethods__Pyx_PyObject_GetSlice__pyx_ptype_5numpy_flatiter__pyx_kp_u_choice_a_size_None_replace_True__pyx_L12_try_return__pyx_pf_5numpy_6random_6mtrand_11RandomState_82wald__pyx_k_df__pyx_builtin_TypeError__pyx_n_s_longPyExc_KeyErrorready__pyx_n_s_loc__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce____Pyx_CLineForTraceback__pyx_v__high__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw__Pyx_InitStrings__pyx_L32dummyargmaxPyUnicode_InternFromString__pyx_L38__pyx_L39__pyx_n_s_lowkw_nameunused__pyx_n_u_permutation__pyx_n_s_higham_aitertp_finalizeNPY_NTYPES_ABI_COMPATIBLEshort int__pyx_n_u_shape__pyx_k_set_state__pyx_n_s_uniform__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_L41on_delete_data__pyx_L43__pyx_L45__pyx_n_s_pickle__pyx_v_lngood__Pyx_PyObject_CallMethO__pyx_n_s_unique__Pyx_IsSubtypetp_mro__pyx_k_This_function_is_deprecated_Plea__pyx_v_high__pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomialPyFunction_Type__pyx_k_negative_dimensions_are_not_allo__pyx_k_RandomState_permutation_line_411__pyx_n_s_zipf__pyx_k_left_right__pyx_n_s_main__pyx_L52__pyx_n_s_copy__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss__Pyx_GetBuiltinName__pyx_L57NPY_RAISE__pyx_k_pyx_vtable__pyx_v_nametp_getsetwas_sq_ass_slice__pyx_k_ImportError__pyx_n_s_randn__pyx_n_u_dirichlet__pyx_k_searchsorted__pyx_n_u_rand__pyx_n_u_ranfPyGetSetDef__pyx_k_negative_binomial_n_p_size_None_markers__pyx_k_RandomState_logistic_line_2546__pyx_k_RandomState_laplace_line_2343__pyx_kp_u_RandomState_standard_exponentialpy_srcfileslot_fileno__pyx_n_s_import__pyx_n_s_mu__pyx_n_s_uint32tstate_next_unique_id__pyx_L4_argument_unpacking_doneco_zombieframe__pyx_n_s_issubdtype__Pyx_ImportVoidPtrnext_raw__pyx_k_x_must_be_an_integer_or_at_least__pyx_L7_error__pyx_v_szstdout__pyx_k_legacy_seeding__pyx_k_RandomState_choice_line_680_typeobjectnumiter__pyx_n_s_rangecodec_search_cache__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential__pyx_k_less_equal__pyx_k_RandomState_f_line_1494__pyx_k_indexcheck_size__pyx_n_u_standard_t__pyx_k_reversedPyDict_Size__pyx_n_s_standard_exponential__pyx_n_s_np__pyx_n_s_return_index__pyx_v_invacc__pyx_k_covariance_is_not_positive_semidm_module__pyx_k_isnative__pyx_kp_u__3__pyx_kp_u__4PyExc_OverflowError__pyx_n_s_standard_normal__pyx_L31_except_error__pyx_L12_unpacking_done__pyx_L20_errornewfuncnum_min__ssize_t__pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto__pyx_v__masked__pyx_kp_u_RandomState_logseries_line_3531__pyx_t_10__pyx_t_11__pyx_t_12__pyx_t_13__pyx_t_14__pyx_t_15__pyx_t_16__pyx_t_17__pyx_t_18__pyx_kp_u_RandomState_hypergeometric_lineptracebackPyUnicode_4BYTE_KIND__pyx_k_raise_PyCFunctionFast__pyx_n_u_random__pyx_kp_u_probabilities_do_not_sum_to_1NPY_USHORT__pyx_n_s_boolafter_forkers_child__pyx_kp_u_RandomState_rand_line_980/io/numpy__pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential__pyx_k_state_dictionary_is_not_valid__pyx_k_wald_Py_CheckRecursiveCalltp_name__pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial__pyx_kp_u_ngood_nbad_nsample__pyx_n_u_nbadPySequence_ListPyObject_Nottp_docf_blockstack__Pyx_PyErr_GivenExceptionMatches__pyx_kp_u_random_integers_low_high_None_s__Pyx_Importprogram_name__pyx_n_u_laplaceobjobjargproc__Pyx_SetItemInt_Genericexc_type1PyMethodDef__pyx_v__dp__pyx_k_floatingzerodivision_check__pyx_n_s_df__pyx_k_ndarray_is_not_C_contiguouswraparoundlatin1sq_concat__pyx_n_u_waldsetattrofunc__pyx_vp_5numpy_6random_6common_MAXSIZEargmin__pyx_n_s_size_IO_write_base__pyx_k_lognormal__pyx_pf_5numpy_6random_6mtrand_11RandomState_6__getstate____pyx_L6_except_errorco_nlocalsPyArray_ScalarKindFunc__pyx_n_s_atol__pyx_k_randomstate_ctor__pyx_k_operator__pyx_n_s_covcobj__pyx_n_s_dot__pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed__pyx_kp_u_random_sample_size_None_Return__pyx_k_dirichlethas_binomial__pyx_k_isnan__pyx_n_s_capsule__pyx_k_mu_PyDict_NewPresizedsizetypec_profilefuncmodname__pyx_k_seedPyArray_FastPutmaskFunc__pyx_builtin_range__pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma__pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes__pyx_kp_u_p_must_be_1_dimensional__pyx_k_scaleprevious_item__pyx_kp_u_standard_exponential_size_None__pyx_k_RandomState_zipf_line_3269__pyx_L39_bool_binop_done__pyx_k_mainmp_ass_subscript__pyx_k_np__pyx_k_shuffle__Pyx_ImportType_CheckSize_Error__pyx_f_5numpy_6random_16bounded_integers__rand_uint32__pyx_kp_u_Non_native_byte_order_not_supporcoerce_c_locale_warngetter__pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxintalignment__pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integersPyImport_AddModule__pyx_k_standard_exponential__pyx_L32_except_error__pyx_kp_u_RandomState_gumbel_line_2428__Pyx__GetModuleGlobalName__pyx_pf_5numpy_6random_6mtrand_sample__pyx_n_s_exit__pyx_k_loc__pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_cfilenmaug_bitgen_tPyLong_FromLong__pyx_ptype_5numpy_ufuncglobal_dict__pyx_kp_u_RandomState_power_line_2243__pyx_tp_traverse_5numpy_6random_6mtrand_RandomState__pyx_k_RandomState_wald_line_2804context__pyx_L30_exception_handledf_valuestack__pyx_k_mt19937modules__pyx_n_s_shufflecurexc_type__pyx_v_offset__pyx_v__in__pyx_n_s_normalutf8_mode__pyx_self__pyx_v_pop_sizetrash_delete_nesting__pyx_kp_u_ndarray_is_not_Fortran_contiguou_cur_columnma_keys__pyx_n_s_bytestp_traverse__pyx_methods_5numpy_6random_6mtrand_RandomState__pyx_v_sizePyArray_ScanFunc__pyx_k_ValueError__pyx_v_bit_generator__pyx_kp_u_randn_d0_d1_dn_Return_a_sample__pyx_f_5numpy_6random_16bounded_integers__rand_uint64__pyx_v_atol__pyx_n_s_asarray__pyx_k_mode_right__pyx_k_astypeco_argcount__Pyx_PyErr_ExceptionMatchesTuple__Pyx_copy_spec_to_module__Pyx_ParseOptionalKeywordsPyDict_GetItemStringtmp_tb__pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integersbinaryfuncNPY_BYTEPyUnicode_Typeshow_alloc_countPyDict_Nextfasttake__Pyx_PyInt_From_long__pyx_n_u_gauss__pyx_v_nsamplecastdict__pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_fPy_ssize_tgc_refsimport_funcvarnamePyLong_AsSsize_t__pyx_L5_error__pyx_n_s_less__Pyx_InitCachedConstants__pyx_k_dfnum__pyx_kp_u_probabilities_are_not_non_negati__pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t__pyx_L26_errorcoordinates__Pyx_modinit_function_export_codepythread_stacksize__pyx_k_RandomState_randn_line_1024PyUnicode_FromStringfunc_nametraverseprocf_locals__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes_PyDict_GetItem_KnownHash__pyx_k_weibull_a_size_None_Draw_sample__pyx_pf_5numpy_6random_6mtrand_11RandomState_70powernb_floor_divide__pyx_n_s_sample__pyx_k_u4__pyx_tuple__2__pyx_tuple__5__pyx_tuple__6__pyx_tuple__7__pyx_tuple__8__off64_t__pyx_kp_u_can_only_re_seed_a_MT19937_BitGespecentries__pyx_v_alpha_data__pyx_n_s_kappa_py_xdecref_tmp__pyx_n_u_weibull__pyx_n_s_lock__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_gamma_shape_scale_1_0_size_Nonetp_call__pyx_v_oleft__pyx_L13_bool_binop_done__Pyx_PyErr_GivenExceptionMatchesTuple__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX__pyx_k_class__pyx_n_s_ctypesPyArray_FillFuncsysdict__pyx_v_scalef_genowned_start__pyx_n_s_randintnb_inplace_addPyObject_CallFinalizerFromDealloc__pyx_n_s_TypeErrortp_repr__pyx_v_acc__Pyx_PyCFunction_FastCall__pyx_k_RandomState_pareto_line_2048PyCapsule_IsValidPyArray_VectorUnaryFuncnwarnoptioncurrent_idasync_excallocated__pyx_kp_u_RandomState_shuffle_line_4031__pyx_n_u_multivariate_normal__pyx_kwds__Pyx_PyInt_From_Py_intptr_tis_subclassbf_releasebuffer__pyx_n_u_standard_exponentialPyExc_StopIterationpy_linetracemalloc__pyx_k_RandomState_random_sample_line_2__pyx_L5_bool_binop_done__pyx_L18__pyx_kp_u_RandomState_poisson_line_3196co_weakreflist__pyx_v_lamPyBaseObject_Type__pyx_k_bytes_length_Return_random_bytefastputmask__pyx_n_s_sigmainstance_class__pyx_k_probabilities_do_not_sum_to_1__pyx_n_s_MT19937__pyx_L27_return__Pyx_modinit_variable_export_codePyLong_AsUnsignedLong__pyx_k_ignore__pyx_k_asarrayob_digit__pyx_v__strnb_inplace_orm_methods__pyx_L43_bool_binop_donetp_as_buffer__pyx_v_final_shape__pyx_k_exponential__pyx_n_s_all_2m_copyNPY_CFLOATPyAsyncMethods__pyx_v_svd__pyx_n_u_l__pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormalPyUnicode_FromStringAndSize__pyx_n_s_float64tp_dict__pyx_k_uniform_low_0_0_high_1_0_size_NPyDict_Copyrandom_interval__pyx_pyargnamesnext_uint32releasebufferproc__pyx_k_dtype__Pyx_PyObject_GetIndex__pyx_kp_u_sum_pvals_1_1_0uint16_t__pyx_k_int8__pyx_n_s_eps__pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint__pyx_k_DeprecationWarningPyFunctionObject__pyx_v_mnarr__pyx_f_5numpy_PyArray_MultiIterNew2__Pyx_PyObject_CallOneArg__pyx_k_noncentral_chisquare_df_nonc_si__pyx_n_s_MT19937_2nb_matrix_multiplyto_name__pyx_n_s_shapePyErr_Occurred__pyx_k_RandomState_tomaxint_line_472__pyx_k_uniformlong long unsigned int__pyx_L10_try_end__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t__pyx_n_s_get__pyx_k_intp__pyx_L7_except_errornb_inplace_multiplyinitproc__pyx_n_s_double__pyx_v_alphaPyUnicode_1BYTE_KIND__pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomialNPY_STABLESORT__pyx_n_u_ngoodtp_clearPyObject_Hash__pyx_k_triangular_left_mode_right_sizePyCapsule_New__pyx_k_enter__pyx_k_a_must_be_1_dimensional_or_an_inNPY_ULONGLONG__pyx_tuple___pyx_e_5numpy_6random_6common_CONS_BOUNDED_GT_0_1__pyx_n_u_uint8__pyx_n_u_int8core_config__Pyx_modinit_function_import_codeuse_hash_seed__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate__PyEval_EvalCodeExob_sizetagPyArrayObject_fields__pyx_v_dfnum__pyx_kp_u_hypergeometric_ngood_nbad_nsampPyExc_IndexErrorPyUnicodeObjectcopyswap__pyx_v_omodeco_name__pyx_kp_u_left_mode__pyx_k_at_0x_X__pyx_k_logseries_p_size_None_Draw_samp__Pyx_ErrRestoreInStates2_is_unicode__pyx_kp_u_RandomState_gamma_line_1416__pyx_kp_u_This_function_is_deprecated_Plea_2coroutine_origin_tracking_depth__pyx_n_u_sample__pyx_n_s_triangularNPY_INTon_delete__pyx_f_5numpy_6random_16bounded_integers__rand_uint8next_uint64nb_negative__pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint__pyx_k_arange__pyx_k_dotcython_runtime_dict_py_decref_tmpsq_itemPyExc_AttributeErrorPyNumber_Remainder__pyx_kp_u_RandomState_bytes_line_651__pyx_k_cline_in_traceback__pyx_k_RuntimeWarning__pyx_k_ndim__pyx_n_s_isscalar__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_RandomState_noncentral_chisquaretp_descr_getfactorsowned_instance__pyx_L4_errorNPY_HALF__pyx_builtin_idnb_reserved__pyx_n_s_permutation__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_n_u_nsample__Pyx_modinit_variable_import_code__pyx_k_RandomState_poisson_line_3196__pyx_n_u_gumbel__pyx_v_n_uniq__pyx_k_legacyival__pyx_kp_u_probabilities_contain_NaNPyExc_Exception__pyx_n_u_ignore__pyx_k_poissoncurexc_traceback__pyx_k_betatp_getattro__pyx_kp_u_u4fastlocals__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state__pyx_n_u_exponential__pyx_v_randomsPyCFunctionWithKeywords__pyx_k_replace__pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVEnb_rshiftNPY_FLOATmoddict__pyx_n_u_get_stategilstate_counter__pyx_kp_s_mtrand_pyxPyNumber_MultiplyNPY_TIMEDELTA__Pyx_SetVtable__pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_samplenb_inplace_and__intptr_tPyErr_WarnEx__pyx_n_u_betanb_or__pyx_k_RandomState_standard_gamma_line__pyx_n_s_logseries__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_n_u_raiserichcmpfunc__pyx_L34_try_end__pyx_k_p_must_be_1_dimensionallegacy_standard_gammaallocator__pyx_k_vonmises__pyx_k_chisquare_df_size_None_Draw_samPyUnicode_Format__pyx_ptype_7cpython_4bool_bool__pyx_v_dtype__Pyx_PyObject_IsTruetp_cache__pyx_k_data__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random__pyx_k_bounded_integers__pyx_k_uint16malloc_statsPyTraceBack_Here__pyx_pf_5numpy_6random_6mtrand_11RandomState_88negative_binomial__pyx_k_powertranslate_Py_TrueStruct__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample__pyx_k_RandomState_standard_normal_linefunc_dict__pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal__pyx_k_RandomState_dirichlet_line_3892_py_xincref_tmp__pyx_v_restp_methodsgetiterfunc__pyx_n_s_integers_types_Py_FalseStruct__pyx_k_rand_d0_d1_dn_Random_values_in__pyx_args__pyx_v_cdf__pyx_L13_error__pyx_k_numpy_core_multiarray_failed_toid_refcountml_doc__pyx_k_standard_exponential_size_None__pyx_n_s_choicePyTuple_New__pyx_f_5numpy_6random_6mtrand_int64_to_long__pyx_k_RandomState_standard_exponential__pyx_kp_u_RandomState_standard_cauchy_linenb_boolPyNumber_Longfixed_cause__pyx_k_uint32f_iblock__pyx_k_count_nonzerob_level__pyx_pf_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare__pyx_n_s_RuntimeError__pyx_k_name_2check_intervalf_trace_opcodes__pyx_v_replace__pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes__pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet__pyx_pf_5numpy_6random_6mtrand_11RandomState_76logistic__pyx_v_length__pyx_k_multinomial_n_pvals_size_None_Dneg_one__pyx_L29_error__pyx_ptype_5numpy_ndarrayPy_tracefuncco_freevars__pyx_v_value__pyx_n_s_standard_gamma_chainim_func__pyx_v_arr__pyx_k_noncPyCFunction__pyx_kp_u_covariance_is_not_positive_semid__pyx_v_loc__pyx_k_pvals__pyx_k_rayleightp_dictoffsetPyListObjectPyImport_ImportModulePyArrayMultiIterObject__Pyx__PyObject_CallOneArgfunc_closure__pyx_v_low__pyx_vtabptr_5numpy_6random_6mtrand_RandomState__pyx_pf_5numpy_6random_6mtrand_11RandomState_66pareto__pyx_n_u_standard_gamma__pyx_k_a_py_stop__pyx_n_s_take__pyx_n_u_negative_binomial__Pyx_PyInt_As_int__pyx_kp_u_standard_gamma_shape_size_NonePyInit_mtrand__pyx_k_uint64unequal__pyx_pf_5numpy_6random_6mtrand_11RandomState_22beta__pyx_k_RandomState_gumbel_line_2428__pyx_k_kwargsfscodec_initialized__pyx_t_1__pyx_t_2__pyx_t_3__pyx_t_4__pyx_t_5__pyx_t_6__pyx_t_7__pyx_t_8__pyx_t_9__pyx_n_u_noncPyCodeObject__pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric__pyx_n_s_geometric__pyx_f_5numpy_6random_6common_cont_broadcast_3__pyx_v__low__Pyx_PyDict_GetItem__pyx_n_s_rtol__pyx_k_dfdenmore_or_less__Pyx_PyObject_SetSlice_saveNPY_LONGLONGPyObject_GetAttrString__pyx_k_left__pyx_L6_exception_handled__pyx_L3_error__pyx_n_s_sort__Pyx_PyIndex_AsSsize_tnb_addPyErr_NormalizeExceptiontp_subclasses__pyx_n_u_vonmises__pyx_k_Format_string_allocated_too_shormodule_namec_metadata__pyx_n_s_subtract__pyx_f_5numpy_6random_6common_discNPY_DOUBLENPY_USERDEF__pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice__pyx_int_0__pyx_int_1__pyx_v_kwargsNPY_TYPES__Pyx_PyInt_As_long__pyx_k_numpy_core_umath_failed_to_imporGNU C 4.8.2 20140120 (Red Hat 4.8.2-15) -msse2 -mtune=generic -march=x86-64 -g -O3 -std=c99 -std=c99 -fwrapv -fno-strict-aliasing -fPIC__pyx_n_s_empty_like__pyx_k_RandomState_power_line_2243__pyx_k_itemsizePyArray_SortFunc_IO_FILE__pyx_kp_u_a_must_be_greater_than_0_unlessf_stacktopbase_prefix__pyx_n_s_reduce__Pyx_GetItemInt_Fast__pyx_f_5numpy_6random_6common_double_fillNPY_DATETIMEPy_UCS1Py_UCS2Py_UCS4__pyx_kp_u_a_must_be_1_dimensional__pyx_v_ahigh__pyx_n_s_noncentral_chisquare__pyx_v_arangefunction__pyx_f_5numpy_6random_16bounded_integers__rand_boolarg1arg2__pyx_n_s_rand_2__pyx_tuple__10PyMemberDef__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint__pyx_k_T__pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma__pyx_L30_error__pyx_codeobj__55__pyx_codeobj__57PyType_Ready__pyx_k_arrayargctp_strf_linenoPyFrame_Newm_traverse__pyx_fnumpy/random/mtrand.cargvunaryfunclimitsNPY_MERGESORT__pyx_getsets_5numpy_6random_6mtrand_RandomState__pyx_n_s_poisson_lam_max__pyx_n_s_weibullallow_none__pyx_k_RandomState_randint_line_530__pyx_pf_5numpy_6random_6mtrand_11RandomState_16set_state__pyx_k_RandomState_negative_binomial_li__pyx_k_Range_exceeds_valid_bounds__pyx_k_capsule__pyx_v_x_ptr__pyx_k_pickle__pyx_v_check_valid__pyx_k_args__pyx_doc_5numpy_6random_6mtrand_11RandomState_38randPyNumber_Add__Pyx_ImportType_CheckSize__pyx_tuple__23__pyx_tuple__24__pyx_methodsPyUFunc_API__pyx_n_s_equal__pyx_n_s_numpy__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randnPyObject_Size__pyx_n_u_rayleigh__pyx_v_cnt__pyx_k_uniquefrom_listco_extra_user_countfrom_name__pyx_k_get_state_and_legacy_can_only_be_Py_EllipsisObject__pyx_k_probabilities_contain_NaN__pyx_v_pvals__pyx_k_left_modeNPY_NOTYPE__pyx_k_import__pyx_v_cov__Pyx_PyObject_LookupSpecialrandom_hypergeometric_original__npy_nanflegacy_normallegacy_random_zipf__builtin_floorlegacy_weibulllegacy_standard_tdenommingoodbadlegacy_exponentialChi2legacy_random_binomial_originallogMlogXlegacy_floggamlegacy_random_logseriesrandom_hypergeometric_hrua__bintrandom_hypergeometric_hypnpy_uint32bitgen_statelegacy_gammalegacy_chisquarelegacy_negative_binomialrandom_binomial_inversionlegacy_random_hypergeometricmaxgoodbadlegacy_standard_cauchy__isnanlegacy_noncentral_chisquarenpy_doublemu_2lpopsizelegacy_paretolegacy_random_geometriclegacy_powerlegacy_waldrandom_binomial_btpelegacy_standard_exponentiallegacy_random_poissonlegacy_gausslegacy_noncentral_flegacy_lognormallogYlegacy_betanumpy/random/src/legacy/legacy-distributions.clegacy_doublelogfacthalfln2pinumpy/random/src/distributions/logfactorial.clogfactorialnext_floatrandom_logisticfmodrandom_bounded_uint32_fillrng_exclrightprodrandom_betabuffered_uint16random_chisquarerandom_buffered_bounded_uint32ratiorandom_bounded_bool_fillrandom_standard_exponential_frandom_noncentral_fslamrandom_doublerandom_geometric_inversionrandom_geometric_searchbounded_lemire_uint64acosrandom_poisson_multrandom_negative_binomialrandom_standard_cauchyrandom_standard_exponentialwe_doublerandom_bounded_uint64random_uintrandom_frabssqrtfziggurat_nor_r_frandom_gamma_floatStep10random_buffered_bounded_boolki_doublerandom_positive_int32random_standard_gamma_ziglowerrandom_gauss_zigsignziggurat_exp_rrandom_gammaStep20_Boolrandom_buffered_bounded_uint16invalphabuffered_bounded_lemire_uint16random_paretorandom_bounded_uint16_fillrandom_normal_ziguse_maskedrandom_standard_tziggurat_nor_inv_rrandom_gauss_zig_fillStep30random_uniformziggurat_exp_r_frandom_waldke_floatbuffered_bounded_masked_uint8random_gumbelStep40buffered_bounded_lemire_uint32buffered_uint8leftprodfe_doublerandom_double_fillrandom_standard_exponential_zigenlamziggurat_nor_rStep50Step52boundfe_floatwi_floatrandom_bounded_uint8_fillnext_gauss_zigki_floatStep60random_standard_exponential_fillnext_standard_exponentialstandard_exponential_zig_unlikely_fgen_maskbounded_masked_uint64random_weibullrandom_positive_int64random_lognormalbcntrandom_vonmisesrandom_rayleighrandom_powerwe_floatrandom_standard_exponential_zig_fillrandom_gauss_zig_fbuffered_bounded_masked_uint16buffered_bounded_lemire_uint8logfrandom_noncentral_chisquareziggurat_nor_inv_r_fke_doubleremaining_prandom_standard_exponential_zig_frandom_standard_gamma_zig_fwi_doublefi_doubleleftoverbuffered_bounded_masked_uint32__builtin_ceilexpfstandard_exponential_zig_unlikelynumpy/random/src/distributions/distributions.crandom_exponentialthresholdrandom_bounded_uint64_fillrandom_triangularloglamrandom_poisson_ptrsrandom_laplaceleftbasepowf__int128 unsignedrandom_buffered_bounded_uint8random_floatfi_float@GVG0`GbGwbGfGwfGjGwjGGw GGwGGwGGwGGw GGwGGwGGw`GqGUqGGSGGUGGSGGU`GyGTyGGVGGPGGTGGVGGT`GzGQzGG\GGTGGQGG\GGQ{GGPGGwGGwGGwG Hw HHwHHwHHwHHw GGUGHVHHUHHVGGUGHUHHUGGUHHUGGUHHUGHUGHU H(H0 H(H0(H-Hu0H1Hw1H5Hw5H9Hw9HwHw wHxHwxHyHwyHHwHHw HHwHHwHHwHHw 0H=HU=H\HP\HHUHHPHHU0H\HT\HHTHHTHHT0H\HQ\HHQHHQHHQ0H\HR\HHRHHRHHR=H\HUHHUAHyHVzHHVHHVEHxHSzHHSHHUHHSQH\HUHHUVH\HUHHU\HyHVzHHVHHVaHhHVHHVhHxHSzHHSHHUmHsHSzHHSHHUHHwHIwI Iw I!IwHHUH IU IIPIIUI!IUHHTH IT IITI!ITHHQH IQ IIQI!IQHIPH IPI!IP0IMIUMIPIUPIUIUUIXIU0IOITOIPITPIWITWIXIT0IOIQOIPIQPIWIQWIXIQ;IOIYPIWIYFIOIXPIWIXFIOIPPIWIPPzUzQU`IqIUqIrIUrIvIUvIwIU`IqITqIrITrIvITvIwIT`IqIurIvIuIIwIIwIIwIIw IIw(IIw0IJwJJw0JJw(JJw JJwJJwJ Jw J;JwIIUII\I;JUIITIISIIr3$s"II r3$s"#II r3$s"#7J;JSIIQIJVJJQJ;JVIIRIJ^JJRJ;J^IIPIJ\J7J\7J9JP9J;J\IIPIJ]J;J]IIQII0IIRI JPJ/JP/J7JHIJ\J7J\@JmJUmJnJUJJmJpwewefwUfUPu#`0: ʜ0PS P 5S57Uһ: ʜһPS P 5S57U'5S57UpJJwJJwJKw KKwKKwK0Kw 0K1Kw1K5Kw5KvKw vKwKwwKKwKKw KKwKKwKKw KKwKKwKKw KKwKLwLeLw 0KrKUrKxKUxKKUKKUKLUL&LU&L*LU*LeLUFKrKuxKKuKKU#KLuL&LU#KKpKKPKKQKKuKKQLLPL&L0;L[LP[LeLl1L:LP:LeLSpLrLwrLvLwvLwLwwL~Lw ~LLw0LLw LLwLLwLLwLLw0LLw LLwLLwLLwLLw0pLLULLSLLTLLULLSLLULLSpLLTLL\LLTLL\LLTLL\LLPLLPLLXLLVLLQLLVLLVLLRLLRLLwLLwLLwLLw LMw(MNwNNw(N Nw N Nw N Nw NNwNNwL@MU@MMSM9NU9NNSLMTM N] NNTNN]LMQM N\ NNQNN\LIMRIMMVM9NR9NNVMMU,N6NUMNVN9NVMNSN9NSvMMPMMPMMP9NBNPBNGNMMP,N4NPMMU,N6NUMMU,N6NUMNVN,NVMMVN,NVMNSNNSMNSNNSKNtNUhNtNUzNNUNNUNNUNNUNNUNNUNNwNOwOOwOGOwGOHOwNNUNOSO OU OOUOGOSGOHOUNNUOOUNNUOOUNNUO&OUNNUO&OUPOROwROXOwXOZOwZO\Ow \O]Ow(]O^Ow0^ObOw8bOOwOOw8OOw0OOw(OOw OOwOPwPPwPOOUOO OPUPOOTOPTPOOQOOVOPQPOOROO]OPRPOOXOPPOOYOO\OPYOO_OOOOPPOO0VOO_OOOP_fhwhmwmuwuyw y}w(}w0TwTUw0UVw(VXw XZwZ\w\]wfU]UfsTsZ]Z]TfQVVV]QfRX\X]RfX^f0PUSƼYY&w7FS]_w_dwdpwpuw uyw(yzw0z~w8~cwcdw8dew0egw(giw ikwkmwmnw]Ug\gnU]nTnk^knT]Qm_mnQ]Ri]inR]0PdS]0PͽVͽ׽P׽VMV(MSM\Snpwpuwuww w(w0w8twtuw8uvw0vxw(xzw z|w|~w~wnUx\xUnT|^|TnQ~_~QnRz]zRn0PuSn0P޾V޾PV&^V1<P<H9^S^mSPPwPPwPPwPPw P"Pw("P%Pw0%P)Pw8)PPwPPw8PPw0PPw(PPw PPwPPwPPwP:QwP2PU2PP_PPUPP_PPUP:Q_P2PT2PPTPPTPP]P2QT2Q:Q]P2PQ2PxP\PPQPP\P%QQ%Q-Q\-Q2QQ2Q5Q\5Q:QQP2P02PPVPPVPP0PPPP2QV2Q:QPPxP0xPP\PP\PP0P QP Q%Q\%Q:Q0PDP0DPNPPNPP^PP^PP0P2Q^2Q:Q0PUP0UPaPPaPPSPPSPP0PPPP%QS2Q:Q02PP]PP]P2Q]xPPVPPV}PPVPPVPPSPPS@QAQwAQBQwBQIQwIQ~Qw0~QQwQQwQQwQQw0@QVQUVQQSQQUQQS@QpQTpQvQXvQQTQQTQQTQQTQQT@Q]QQ]QQQQQQQQQQQQQQQNQpQTpQvQXvQzQTNQVQUVQzQSVQpQUQQ0QQUQQUQQwQQwQQwQRw RRwRRwRRwRRw R Rw R!Rw!R(Rw(RBRw QQTQ4RT4R>RT>RBRTQQQQ4RQ4R>RQ>RBRQQQRQ4RR4R>RR>RBRRQQU4R>RUQRVR!RV#RBRVQRSR RS R"RU#RBRSQQUQQP4RRUQQU4R>RUQRVR!RV#R4RVQQV#R4RVQRSR RS R"RUQRSR RS R"RUwwww w(w0w8-w-0w801w013w(35w 57w79w9:wU5]5:UT9_9:TQ7^7:Qֿ]ֿ^ֿ_:;w;BwBCwCsw swwwxwxyw:JUJNTNxVxyUU^P^wSwyPWrVy{w{www wwww wwwyUSUUSUyT\T\TyQVQVQPVQVSUUSuuuu/U/5Q56U67w7>w>BwBw0www6=U=VU6FTFTMYPYSSMVUZwPwXPZSSwwwUUTSTSTwwww w0w wwwUVUTTQ\Q\QPSPSVUP\Swww ww#U#U*4P4SPS04P4S0 00=ss[`s`dPdisvypy{P{s N$s !Swww wwUUPzSz~P~SPzSz z0IsSUssPs+.p.0P0?s N$s !UzSPRQRwQRURwUR}Rw }R~Rw~RRwRRw RRwRRwRRw RRwRRwRRw RRwRRwRSw PRRURRURRURRURRURRURSUSSUbRRuRRU#RRuRRuRSuSSU#RRpq!RRuRRPRRhRRPRRSRRSRSUSSUwwwUTUPSSwwww w(IwIJw(JKw KMwMOwOPwUPUTM\MPTQPQRO]OPRXKVKPXPSP&S&-P-JS0P0P&L&E0EPP&S&EU&E\&E]&EVPRwRSwSTwT[w [w0w wwwP_U_SUP_T_TiPPTSP\0,P,VPVV\0\wwww w0w wwww0w wwww0w wwwUUSU'S'/U/SUUSUUSUSUTT@T@HVHWTWcVcfTfuVu|T|VTVT3V3TVTPPPqu#h U##hP+q+|s#hqs#h!#V#@T@HVHWTWcVcfTfuVu|T|VTVT3V3TV@HTPTXP\#@t@HvHWtWcvcftfuvu|t|vt'=PHZPZcvciPipvu|PP\01TPVTVdXdfTfrXTTSU'S'/U/SUUSUUSUPS/P'/S3VVWmPwwww w(w0w8ww8w0w(w wwwFUF_UFTFSTSTFQF~FRFRFXFhPVV\V R3$T"{PSemP}www[w [jwjlwltwtw wwww wwwUjVjtUt~V~U0%P%ZSZx0xSU000ZSZx0x~S~VZ0x~0PZ\x~\Z\x~\XZSSUSU S'Sw'SySw ySzSw SnSUnStSQtSzSU S`ST`SzST SYSQYSzSQ S4SR4SRSPRStSwtSzSR@StSX@StSRSSwSSwSSwSSw SSw(SSw0SSw8SETwETITw8ITJTw0JTLTw(LTNTw NTPTwPTRTwRTXTwXT(UwSSUSTSTjTUjTTSTTUT US UUUU#US#U(UUSSTST^jTT^TTvTUTUUvU(U^SSQSLT\LTSTQST(U\SRT_ST(U_SNT]ST(U]SJTVST(UVS TT TTTTTTTTTTTTTTS TQ TTTTQTTQTTQTTQST0TT0TT0TT0STRTTTTPTATSSTjTS UUP#U(UP0U2Uw2U7Uw7U8Uw8U9Uw 9U@Uw(@UUwUUw(UUw UUwUUwUUwUUwUUw(UUw UUwUUwUUwUVw0UXUUXU|US|UUUUUSUUUUVU0UXUTXUU]UUTUU]UUTUUTUV]|UUPUUSUUSUVSKUUVUUVUUpUVVUUwwww w0w wwwU\UTVTP XP S P S S V"Vw"V$Vw$V%Vw%V&Vw &V*Vw(*VVwVVw(VVw VVwVVwVVwVoWw VrVUrVVUVVUVWUW WU W3WU3WFWUFWoWU VrVTrVVHVVTVVtVWHWWTW3WH3W=WT=WFWtFWoWHhVrVTrVV\VV\VVT W3W\LWoW\hVrVUrVVUVVUVVU W3WULWoWUnVV]VV] W3W]LWoW]VVPVVVVVV WWVLWoWVlVVVVVVW3WVpWWwWWwWWwWWw WXw0XXw XXwXXwXXwX0Xw00X>Xw>XXw0XXwXXwXXwXXw XXw0XXw XXwXXwXXwXLZw0LZMZw MZNZwNZPZwPZXZwXZZw0XXUXXSXXUX"YS"YjYUjYYSYYsYnZUnZyZSyZZUZZSZZUZZSXXTXXTXYTYZTZZTZZXZZTXXQXXVXXQXNZVNZQZQQZZVXXqXYqZZqXXsjYYsYYsHYZU#nZyZsyZZU#YYqYYUYZqnZtZUtZZqYZUyZZUYZYZZYtYYRYYsYYsPYZU#nZyZsyZZU#xYYQYYtYYtPnZZt!Z#ZP#Z=ZQYjYVQZnZVYYTYjYTQZnZTY"YS"YjYUQZnZU"Y2YP2YjYSQZnZS(Y2YP2YjYSQZnZS2YGYpQZhZpGYjYSZZwZZwZZwZ[w [ [w [ [w [ [w [4[w ZZUZ [U [[U[4[UZZTZ [V [ [T [[T[4[VZZu@[B[wB[D[wD[F[wF[K[w K[O[w(O[R[w0R[X[w8X[\\w\\]\w8]\^\w0^\`\w(`\b\w b\d\wd\f\wf\p\wp\]w]]w8]]w0]]w(]]w ]]w]]w]]w]aw@[\[U\[\]\g\Ug\\]\]U]^]^^U^?_]?__U__]_`U``]`1`U1`W`]W``U``]`8aU8aa]@[\[T\[h[Sh[u[0]V^SV^^T^^S^"_T__S__T1`F`SF`W`T``0``S8aaS@[\[Q\[^\V^\g\Qg\]V]]Q]aV@[\[R\[\\\g\Rg\\\\]R]^\^^R^D_\D__R_`\``R``\`1`R1`W`\W``R``\`8aR8aa\@[\0\X\\]]\]^0^^\^"_0__0``01`W`0``08aa0@[1\01\=\P=\X\Sg\]0]]S]^0^^S^a0b[h[Ph[f\_g\]_]]P]a_h[u[Vu[\Xg\w\X^^X``X``V\\\[\X``X[\Y``Y[\U``U[[0[[Q``0[[0[[R[[0[[R``0[[y[[T[[R[\T``T>\X\\]]\^^\I\X\S]]SN\X\S]]Sg\\\\]R"_D_\D__R_`\``R`1`RW``R``\`8aRg\]V"__V_`V`1`VW``V`8aVg\\S"_D_S``0g\\]\]U"_?_]?__U_`U`1`UW``U``]`8aUg\\0\\P\]\"_D_0D__\_`0``\`"`\"`&`P&`1`\W``\``0`8a\g\~\0~\\P\]^"_7_P7_c_^_ `^``^"`1`^``0``P`8a^g\\0\\P\ ]]"_?_0?_D_PD_V_]_`0"`1`]``0\]^D_c_^` `^``^"`1`^`8a^\ ]]D_V_]_`^ ]]\D__\``\`"`\W``\`8a\ ]]]D_[_V[__]``]`"`]W``]`8a]__U__T ]]PM__P__ H*``P`"`PW`i`Pj``P`` H*`aPa8aP0]]][__]``]`"`]W``]0]]X[__X``X`"`XW`^`U^`i`Xi``s@``X0]]P[__P``P`"`PW`i`P``P`` H*0]Z]0Z]]R[_`_0``0`"`R0]Z]0Z]i]Tq]]0]]T[_`_0``0`"`T0]6]x6]]U]]T[__U``U`"`U``U[``S``U``U]^S^"_S__S__T1`6`S6`W`0``S8aaS]]P]^_^"_____1`W`_``_8aa_"^K^Q__Q``P``QtaaQaa]]P]^____1`W```8aa]^^^"_^__^1`W`^``^8aa^]]P]^_ ___1`W```8aa^^P^"^R``R``8aJaP]^ y^"_ y__ y1`W` y`` y8aa y]^ p^"_ p__ p1`W` p`` p8aa p]^ g^"_ g__ g1`W` g`` g8aa g]]P]^_^"_____1`W`_``_8aa_V^^_ _V^^^^"_^V^^__V^^_^"___^^U__Uc^^Q__Q_"_g^^P__P_"_{^^U__U}^^U__U^^Q^^Q^^Q^^Q^^P^^P^^P^^P1`5`PKa`aP`aaaataaTaawaawaawaaw aaw(aaw0aKbwKbObw0ObPbw(PbRbw RbTbwTbVbwVbWbwWbbwbbw0bbw(bbw bbwbcwccwc2dwaaUaRb\RbWbUWbbUbb\bcUc.cU.cc\ccUc2d\aaTaWbTWbbTbcTc7cT7ccTccTc2dTaaQabSbWbQWbgbQgbbSbcQc cQ ccSc7cQ7cKcSKccQccQc2dSaa0a!bQWbKc0c2d0aGb0Wb2d08cAcPccPcc^ccPWbZb]cKc]c2d]ccPcc@a!bQaRb\RbWbUKcc\aGb0GbPbVPbWbPKcc0ab0bObSKccSa(b0(b1bP1bPbVPbWbPKcRcPRccV.bGbSfccSZbb0ZbbPbbwZbb1Zbb Ú@dBdwBdJdwJdNdwNdew eeweeweewegw @dcdUcddVdeUeeVefUffVfegUeggVggUggV@de0eg0@dd0re}eP}eeVee0efVsff\ffVff\gg\egg0@de0ee\eg0@dgd0dd0/eDe0DeUePUereSree0eePeeSeTf0ffPffSff0fgSgg0@dd0dd0 ee0e/eP/eUeVUefe0fe}eP}ee0eePeeVeePefVf%f0ffVffPfgVgg0AgHgPHgegVgg0IdcdTggTIdcdUcddVdeUeeVefUffVfegUeggVggUggVIdJdu{ddTggT{ddSeeSf-fS2fTfSeggS{ddPddsggsddTffTddUffUdduffuddT%f)fTdeVeeV%f)fU)f2fVgAgVddPddv%f)fuJefeVeeVleeSefSeeVsff\ffVff\eeVffVff0ggSggSggwggwggwggw ggw(ghwhhw(hhw hhwhhwhhwh6iw6i9iw(9i:iw :iiw>i@iw@ijwghUhmhVmhhUhhUh:iV:i?iU?ifiUfiiViiUiiUijVghThhThhTh?iT?itiTtiiTiiTijTghQhhShhQhhQh9iS9i?iQ?iCiQCiHiSHitiQtiiSiiQiiQijSgh0hfhQhi0ij0gh0hj0uiiPi!jP!j5j]5j:jPhh\Lii\ij\"j5jP5j:j@hfhQhmhVmhhUiiUhh0hhVhhPii0hh0hhSiiShmh0mhvhPvhhVhhPiiPiiVshhSiiShi0hhPhhwhi1hi ܚjjwjjwjjwjjw jjw(j`kw`kdkw(dkekw ekgkwgkikwikjkwjklwl lw( l lw l lw llwllwlfmwjjUj=kV=kjkUjkkUk lV llUl6lU6l]lV]llUllUlfmVjjTjjkTjkkTklTlDlTDllTllTlfmTjjQjjSjjkQjkwkQwk lS llQllQllSlDlQDl]lS]llQllQlfmSjj0j6kQjk]l0lfm0j\k0jkfm0ElSlPllPlm]m mPjkmk\l]l\lfm\lmPm m@j6kQj=kV=kjkU]llUj\k0\kekVekjkP]ll0jj0jdkS]llSj=k0=kFkPFkekVekjkP]ldlPdllVCk\kSxllSmkk0mkkPkkwmkk1mkk pmrmwrmtmwtmvmwvmzmw zm{mw({mmw0mBnwBnFnw0FnGnw(GnInw InKnwKnMnwMnNnwNnnwnnw0nnw(nnw nnwnnwnowo*pwpmmUmIn\InNnUNnnUnn\nnUn&oU&oo\ooUo*p\pmmTmNnTNn{nT{nnTn/oT/ooTooTo*pTpmmQmmSmNnQNn_nQ_nnSnnQnoQooSo/oQ/oCoSCooQooQo*pSpmm0mnQNnCo0o*p0pm>n0Nn*p00o9oPooPoo^ooPNnQn] oCo]o*p]ooPoo@mnQmIn\InNnUCoo\m>n0>nGnVGnNnPCoo0mm0mFnSCooSmn0n(nP(nGnVGnNnPCoJoPJooV%n>nS^ooSQnn0QnnPnnwQnn1Qnn 0p2pw2p4pw4p6pw6p;pw ;p?pw(?p@pw0@pGpw8Gpqwq#qw8#q$qw0$q&qw(&q(qw (q*qw*q,qw,q-qw-qqwqqw8qqw0qqw(qqw qrwrrwrrwrXsw0ppUp&q\&q-qU-qq\qrUr7rU7rr\rsUsXs\0ppTppSp-qT-qqSqrTrrSrrTrXsS0ppQp(q](q-qQ-qq]qrQr rQ rr]r;rQ;rr]rsQsXs]0pp0ppY-qr0rXs00pp0ppQ-qr0rXs00pq0-qXs0-qCqPCqVqBrNrPNrr_-qVq^rr^rXs^frxrPppQppYp&q\&q-qUrr\pq0q$qV$q-qPrr0pp0p#qSrrSpp0pqPq$qV$q-qPrrPrrVqqSrrSVqq0VquqPuqqwVqq2Vqq1Vqq K`sbswbsdswdsfswfsksw ksosw(ospsw0pswsw8wsOtwOtStw8StTtw0TtVtw(VtXtw XtZtwZt\tw\t]tw]t'uw'u*uw8*u+uw0+u-uw(-u/uw /u1uw1u3uw3u8uw8uvw`ssUsVt\Vt]tU]t-u\-u4uU4uguUguv\v6vU6vv\`ssTssSs]tT]t*uS*u4uT4uuSuvTvvS`ssQsXt]Xt]tQ]t/u]/u4uQ4u;uQ;u@u]@ukuQkuv]v6vQ6vv]`ss0s%tY]tu0vv0`ss0s%tQ]tu0vv0`sKt0]tv0]tstPsttru~uP~uu_]tt^Duu^vv^uuPs%tQs%tYsVt\Vt]tUuv\sKt0KtTtVTt]tPuv0ss0sStSuvSs,t0,t5tP5tTtVTt]tPuuPuvV2tKtSuvSt u0ttPttwt u2t u1t u vvwvvwvvwvvw vvw(vvw0vvw8vwwwww8www0www(www wwwwwwwwwwWxwWxZxw8Zx[xw0[x]xw(]x_xw _xaxwaxcxwcxhxwhxywvvUvw\wwUw]x\]xdxUdxxUxOy\OyfyUfyy\vvTvvSvwTwZxSZxdxTdxxSxOyTOyySvvQvw]wwQw_x]_xdxQdxkxQkxpx]pxxQxOy]OyfyQfyy]vv0vUwYwx0Oyy0vv0vUwQwx0Oyy0v{w0wy0wwPwwxxPxx_ww^txx^Oyy^xxPvUwQvUwYvw\wwUxOy\v{w0{wwVwwPxOy0vv0vwSxOySv\w0\wewPewwVwwPxxPxOyVbw{wS yOySw;x0wwPwxww;x2w;x1w;x yywyywyywyyw yyw(yyw0yyw8yzwzzw8zzw0zzw(zzw zzwzzwzzwz{w{{w8{{w0{{w({{w {{w{{w{{w{|wyzUzz\zzUz{\{{U{{U{|\||U||\yzTzzSzzTz{S{{T{ |S ||T||SyzQzz]zzQz{]{{Q{{Q{{]{{Q{|]||Q||]yz0zzYz |0||0yz0zzQz |0||0yz0z|0zzPzz{{P{|_zz^{ |^||^{|PzzQzzYzz\zzU ||\zz0zzVzzP ||0zz0zzS ||Szz0zzPzzVzzP |'|P'||VzzS;||Szk{0z{P{C{wzk{2zk{1zk{ +||w||w||w||w ||w(|}w0}}w8}}w}}w8}}w0}}w(}}w }}w}}w}}w}~w~~w8~~w0~~w(~~w ~~w~~w~~w~w|E}UE}}\}}U}~\~~U~~U~\U\|E}TE}M}SM}}T}~S~~T~PSPTS|A}QA}}]}}Q}~]~~Q~~Q~~]~~Q~]Q]|E}0E}}Y}P00|E}0E}}Q}P00|}0}0}~P~~PA_}~^~P^^&8PE}}QE}}YE}}\}}UP\E}}0}}V}}PP0E}M}0M}}SPSE}}0}}P}}V}}PPWPWV}}SkS~~0~5~P5~s~w~~2~~1~~ 2 "w"$w$&w&+w +/w(/0w007w87ww8w0w(w wwwww8w0w(w wwwHw uUu\U\U'U'߂\߂UH\ uTu}S}TSTS߂T߂HS qQq]Q]QQ]+Q+߂]߂QH] u0uY0߂H0 u0uQ0߂H0  0H03P3F2>P>q_F^^߂H^VhPuQuYu\U߂\u 0 VP߂0u}0}S߂Su0PVPP߂V S߂SFˁ0FePewFˁ2Fˁ1Fˁ :PRwRTwTVwV[w [_w(_`w0`gw8gSwSWw8WXw0XZw(Z\w \^w^`w`awaw w8 !w0!#w(#%w %'w')w)0w0 wPUZ\ZaUa#\#*U*vUvg\gxUx \PTSaTa S *T*ST SPQ\]\aQa%]%*Q*3Q38]8zQzg]gxQx ]P0)Ya0 0P0P)~a0 0P0)Qa0 0PO0a 0awPwP_g_x_a^<^ ^TgP)QP)~)YZ\ZaU\O0OXVXaP00WSS0009P9XVXaPPV6OSӅS0Pلw32 @ń΄q΄لXńلRwwww w( w0 'w8'ww8w0w(w w w !w!݈w݈w8w0w(w wwwʊwrUr\!U!\U6U6'\'8U8ʊ\rTrzSz!T!STxSx׉T׉ʊSjQj]!Q!]QQ]:Q:']'8Q8ʊ]r0rY!x0׉ʊ0r0rP~!x0׉ʊ0r0rQ!x0׉ʊ00!ʊ0!7P7JB[P[d_׉'_8u_!J^x^׉ʊ^'PrQrP~rYr\!Ux׉\r0V!Px׉0rz0zSx׉Sr0PV!PxP׉VS׉SJ0JfPfwJ3J2J UqXRЊҊwҊԊwԊ֊w֊ۊw ۊߊw(ߊw0w8ӋwӋ׋w8׋؋w0؋ڋw(ڋ܋w ܋ދwދwwww8w0w(w wwwwЊ2U2ڋ\ڋU\UU\U\Њ2T2:S:TST8S8TSЊ*Q*܋]܋Q]QQ]Q]Q]Њ202Y800Њ202cPc~800Њ202Q800Њϋ00P P$__5_ ^8^^ԍP2Q2cPc~2Y2ڋ\ڋU8\2ϋ0ϋ؋V؋P802:0:׋S8S20P؋V؋P8?P?VϋSSS 0 &P&Yw 3 2  ZENqNYXEYRwwww w(w0w8ww8w0w(w www]w]`w8`aw0acw(cew egwgiwipwpJwU\Uc\cjUjU\UJ\TST`S`jTjSWTWJSQ]Qe]ejQjsQsx]xQ]QJ]0iY0WJ00#P#i~0WJ00iQ0WJ00J0PʏېPې_W__ʏ^|^WJ^PiQ#P#i~iY\UW\0VPW00SWSp0pyPyVPPWVvSWSʏA0ʏPwʏA3ʏA2ʏA _qXRPRwRTwTVwV[w [_w(_`w0`gw8gSwSWw8WXw0XZw(Z\w \^w^`w`awaw w8 !w0!#w(#%w %'w')w)0w0 wPUZ\ZaUa#\#*U*vUvg\gxUx \PTSaTa S *T*ST SPQ\]\aQa%]%*Q*3Q38]8zQzg]gxQx ]P0)Ya0 0P0P)~a0 0P0)Qa0 0PO0a 0awPwP_g_x_a^<^ ^TgP)QP)~)YZ\ZaU\O0OXVXaP00WSS0009P9XVXaPPV6OSӔS0Pٓw32 sœΓqΓٓXœٓRwwww w( w0 'w8'ww8w0 w( "w "$w$&w&'w'ww8w0×w(×ŗw ŗǗwǗɗwɗЗwЗEwU \ 'U'×\×ʗUʗUi\iqUqE\TS'T'SʗTʗSTESsQs"]"'Q'ŗ]ŗʗQʗӗQӗؗ]ؗQi]iqQqE]0Y'0E00P~'0E00R~'0E00Q'0E00'E0'+~)EPEx^P~i^ęE^'+_ܗ_E_]oPQR~P~Y \ 'U\0V'P00SS0PV'PPVSS+0+FPFyw+4+3+ henqnyXeyRPRwRTwTVwVZw Z[w([bw0b4w47w078w(8:w :<w<>w>@w@ww0w(w wwwwPU:\:?U?HUH\U/U/\U\PʚTʚ?T?HTHT3T3TTTPQ7S7?Q?DQDPSPQQSQS3Q3SQQSPH0HY00PH0HQ00Pޛ00:FPFy^P1^ ]]^pP1P0PٚXٚw2 ux2XRHQHYH\U\Hޛ0ޛVP0HP0PSSH0țPțVPPVśޛSSwwww w(w0twtww0wxw(xzw z|w|~w~w"w"&w0&'w(')w )+w+-w-0w0àw#U#z\zUU)\).U.oUo'\'>U>à\ T TT.T.sTs'T'>T>àTQwSwQQS.Q.3Q38S8CQCHSHsQsȟSȟ'Q'>Q>àS0Y.ȟ0'à00Q.ȟ0'à00.à0zP^>YPYq^Lȟ]'à]PZqPX0PX0wX2X &,x2,0X&0RQY)\).Uȟ'\0'V'.Pȟ'00&Sȟ'S0P'V'.PȟϟPϟ'VS'SРҠwҠԠwԠ֠w֠۠w ۠ߠw(ߠw0w8ˡwˡΡw8Ρϡw0ϡѡw(ѡӡw ӡաwաסwסwww8w0w(w www}wР3U3ѡ\ѡءUءU\UU\U}\Р3T3ΡSΡءTءST8S8T}SР3Q3ӡ]ӡءQءQ]QQ]Q]Q]Q}]Р0cY80}0Р0Rc~80}0Р0cQ80}0Р0}0P$__P+8^}^P٣P303HPHw33313 %cQRc~cY\U8\0VP800S8Sj0jsPsVP8?P?VpSSSwwww w(w0ww0w(w www7w7:w0:;w(;=w =?w?AwAHwH wU\UU=\=BUBU\ΧUΧ \TTͥTͥBTBTTΧTΧ TQSQQ:S:BQBKQKPSPSQSXSXQߦSߦ>Q>SΧQΧ S0\Yߦ0> 00.X.\~ߦ0> 00\Qߦ0> 00 0PĦ]>UPU]\ߦ^> ^VdPPP\Q.X.\~\Y\Uߦ>\0VPߦ>00Sߦ>Sc0clPlVPߦP>ViS>S0PܥXܥw3 x3XR "w"$w$&w&*w *+w(+2w02-w-1w012w(24w 46w68w8@w@ߩwߩw0w(w wwwЫw U4\49U9U\UFUFm\m~U~Ы\ T9T9uTuTJTJmTm~T~ЫT QS9Q9IQISQQSQSJQJSQmSm~Q~ЫS 0Y90Ы0 0ҨXҨ~90Ы0 0Q90Ы0 )09Ы0RkPkt]Pm] ^Ы^P0>PZmPQҨXҨ~Y4\49U\)0)2V29P001SS 0 P2V29PPV)SSOé0O`P`XwOé3Oé ~x3XRЫҫwҫԫwԫ֫w֫ګw ګ۫w(۫w0ݬwݬw0w(w wwwww0w(w wwwwЫCUC\U>U>\UU\.U.\ЫCTCT%T%TTT.T.TЫ;Q;KSKQQSQQSQSQ?S?QS.Q.SЫC0CY?00ЫC0CX~?00ЫC0CQ?00Ы٬00P$]P]?^^ĮPP PCQCX~CYC\U?\C٬0٬VP?0CK0KS?SC0ìPìVP?FPFV٬SZSs0P4X4Kws3s AGx3GKXAKRwwww w(w0ww0w(w www?w?Bw0BCw(CEw EGwGIwIPwP0wU\UUE\EJUJUͲ\Ͳ޲U޲0\TTհTհJTJTͲTͲ޲T޲0TQSQQBSBJQJSQSXSXcQchShQSNQNͲSͲ޲Q޲0S0cY0N0002X2c~0N000cQ0N00000˱P˱Ա]NePeͲ]l^N0^ftPPͲPcQ2X2c~cY\UN\0VPN00SNSj0jsPsVPPNVpS NS#0PXw#3# x3XR02w24w46w6:w :;w(;Bw0B=w=Aw0ABw(BDw DFwFHwHPwPww0w(w wwww0UD\DIUIU\UVUV}\}U\0TITITTZTZ}T}TT0QSIQIYQYSQQSQSZQZSQ}S}QS00YI0000X~I0000QI00090I0b{P{]P}]^^$P@NPj}PQX~YD\DIU\909BVBIP00ASS0#P#BVBIPPV 9SS_Ӵ0_pPpXw_Ӵ3_Ӵ x3XRwwww w(w0%w%&w0&'w(')w )+w+-w-0w0xwxyw0yzw(z|w |~w~wwww0w(w www3wUUU3UT)\).T.|\|T\TT3\QbSbQQ߸S߸ɹQɹѹSѹֹQֹ3S 0 !\.|\|T\T߸0߸3\0!].~]]Ҹ0ҸظP߸3]0.W030 !U.U߸3U !].~]]߸3] !\.|\|T\T߸3\ 0!V.W0WnPnzVzHVP߸30 606vVv߷0.E0EWV߸0%0K_0g0ɹVɹ͹U͹V30 b0%S30J^Tɹ͹TJVEWVɹVɹ͹U͹ֹVJTPT^vɹ͹ukVEWVv].E]߸%]K]v\.E\߸%\K\vS.ES߸%SKSP߷V.EVgVV߸VK_V%S0%S%0ɹV0ɹV!\W|\|T\T!]W~]] !]W~]@BwBDwDFwFJw JKw(KRw0Rww0w(w wwwػwػٻw0ٻڻw(ڻܻw ܻ޻w޻wwww0w(w  w  w  w w@^U^ U UU@^T^\Tܻ\ܻT\ T T\@^Q^ºSº Q Q?S?)Q)1S16Q6S@j0j\ܻ\ܻT\ T ?0?\@^0^]޻] ] 2028P?]@O00 0jU U?Uj]޻] ]?]j\ܻ\ܻT\ T?\jO0OV0λPλڻVڻHV P?0j0ֺVֺ?00V?S0r00Ǽ0)V)-U-QVQ0jº0rS 0T)-TVV)V)-U-6VPv)-u˺VVֺO]]?]]ֺO\\?\\ֺOSS?SSP?VVǼVV?SVVrSQ]0rSr0 )VQ]0 )VO\ܻ\ܻT\ Td]޻] ]m]޻]wwww w(w0w(w wwww0ĽUĽUUUTT00000\0Ƚ0y0ſ0ܽ0ܽPSSSſ0ſ̿P̿S0r00P0}0ĽTTĽUĽUUUu SS<S ^^<^ VV<VIMPMr\\}\I\<P\\ySS,<S0S,<S "w"$w$&w&'w '+w(+2w02WwW[w0[\w(\^w ^`w`bwbcwcw w0  w(  w wwwWw bUbScUc S U S USEUESUWS bTbcTcTT T TTRTRYTYWT bQbVcQcwQw V Q Q QQVEQEMVMRQRYQYVQWV b0b\c 0?b\0R\R0W0 S0cW0P`tPt]Pcf\\R\W\uP@b\?b\R\bScU USEUERSUbS0S^\^cP 0R00b0CS0ER0b0PSS tSS0%P%ESER0Sb80 .0?0R000mTEITmScU USEUERSUmwPwsEIsSS ?SSS^ ?^^SV ?VVP8\ .\\\\\CSSitSS0ntSSf0fPwf1f ԛ`bwbkwkmwmnw now(ow0w(w www)w0`U6U6:U:)U`iTi)T`0)0`O0o]0]Y0]0C0m0)0`0o\0\Y0\004v00)0`o0ozS0S)0`0Eo000BYVV06m00`0POSO0PS 0 CSCS0SoPSPSdSS0S 04vSv}P}SP S m0mSPS0)S`:0O_0_lPlV0909LPLoV0V0Y00O0vVPVC0CJPJmVm{00V)0iT6:TiU6U6:U:)UikuSSCS)So^^^C)^_VVmV)V  P :]]m{])] ]]ESSCmSVVVVVTV4vVSSSS4vSPssSSS V VV ] ]] PP S So]]]oz]]z\\BYVVYdSS^dSSVV02w27w7;w;<w <Cw(C w $w($%w %'w')w)0w0ww(w wwwQw0fUf$S$*U*SUQS0jTj\ETEyTy\TT\T\7T7Q\0aQa]EQELQL]QQ]7Q7:]:?Q?L]LQQqPV*EVVV7V7?P00*0Q00*E0070V*EVVV7VS*ESSUS7SP]*E]]]] ]VVV SSUj2?Q2jW?HTHQWjS?QSnX?HXtU?HUtP?HP`bwbdwdfwfhw hlw(lpw0pww8www8w0w(w wwwww8w0w(w wwww`USUSUSUSU$S$U`TVTVTVTV`Q\Q\Q\Q\Q\Q.\.Q\Q\Q`0VVTV0V`00VVTVVSUSUUSUSU$S$U0^P^00PvvPvvvp0) v0) v0) v0) v0)0^000.?^?N0ry\0\s0s{^{0c00$N^u00\0PS\.S.N\NS\S0\.c\cS$0$N\NUPUuSu\S\S0]0] .0.N]N0]0].0.c]cw0u0u]0]0TT\\.N\\\.c\u\\].N]].EEc]u\.N\\\.c\u\\2]?N].E]u]]2\?N\.E\u\\Bk^u^koPo^?N^.<^^;S?NS.ESuSS].?]s{0].?]\TT'S.ScS'd^cw^^'\.\c\dhPh^ .^^.].]c]Sry\\ySS~SSSSS s0{000 sS{SSSs]{]]]DHPHs^{^^s\{\\\VVTwwww  w( w0w8hwhiw8ijw0jlw(lnw npwprwrxwxww8w0w(w wwww U _S_mUmS<U<SUSUSU T jVjsTsVTcVcjTjV Q \mQm\Q\+Q+c\cjQj\Q\Q\.Q.>\>Q)0)dVsVTcVc0VM00)dVsVTcVV)_S_mUmSdUs<U<cSUSUSU)M0Md^sP^c00):P:[vmv<CPCcvvv3:p0):[ v0)m v0) v0) v0))>0>m^m0=M00^0\Kj0v\0^c000^0)_0m\m0PMS\S\$SKj\j<S<c0\\S0\PS.\.ZSZu\uS)}0}I]I60]0]K0Kj]jc0]0]0D0.].Z0Zu]u0Q[TTI\\\Kj\\\.\Zu\>]>IKj]]].ZuI\\Kj\\\.\Zu\>]]].]Zu]>\\\.\Zu\ ^.^ P>^^^Zu^>SSS.SZuS>I]]0>I]]Rm\mTTMSSS^^DZ^M\\\P6^^Z^M]]]=MS\v\$SjvS$SjvS<S.ZSuS0+0>Z0u0S+S>ZSuS]+]>Z]u]P^+^u^\+\>Z\u\MdVsVTwwww w(w0w8AwABw8BCw0CEw(EGw GIwIKwKPwPVwU_@U@ZUZ_U_U_&U&_LULy_yU(_(IUI_U_/U/_U_U_ U A_AMUM_U_U_U-_-;U;[_[U_U?_?KUK_U_U _ U8_8DUDe_eqUq_U_U&_&7U7_U_U2_2@U@c_coUo_U_U_U@_@VUT\U\@T@STS\TN\N\U\\UH\HVUV\TT&\&T\ITI\U8\8FUF\TT\/T/\TA\AKTKTUT]\]dUdm\mTU\U \ T\U\U\TL\LVT80LV0T\U\@T@STS\TN\N\U\\UH\HVUV\TT&\&T\ITI\U8\8FUF\TT\/T/\TA\AKTKTUT]\]dUdm\mTU\U \ T\U\U\TL\LVTU_@U@ZUZ_U_U_&U&_LULy_yU(_(IUI_U_/U/_U_U_ U A_AMUM_U_U_U-_-;U;[_[U_U?_?KUK_U_U _ U8_8DUDe_eqUq_U_U&_&7U7_U_U2_2@U@c_coUo_U_U_U@_@VU0@_@0_0VUVUV&0&V0VQVLV_IVI0V:0:E\Eg0gV_VM0M{V{0VA0AEQEKVKm0mV0UrVr_VUV07V7u0uV_@V@0VL0LV_0@]@0]0]&0&]0G]LI]I}0}V]0]A0AK]Km0m]0]0]L0LV]0PL(0(>P>IIV0 q@I$0. q@F$0.@^q@E$0. $0)p#+ q@I$0.p#+ q@I$0.@^ q@E$0. q@I$0. q@F$0.@^ q@E$0.0V@e0erPr]00"P"V0d00P]:0Pk000IV0J0x00V/0/>VVE0EYVV0MVM{0{V0AK0KmVm~00V0[0f0VPqVq0P]0V7000@o0ovPv]P]P]L00@S@0S`00PSv00n&0k~00L(0_S0S0SE0EYSY0S0 MSM{0{SK0K]S]m00SK00!0PS0qSq00L0LVS0^@0Z00L(0I_00^ 0M{00qL0PPPaa000I00E0A0Km00@00T\U\N\N\U\\UH\HVUV\\I\U8\8FUF\T\/T/\E\A\KTUT]\]dUdm\U\U\\U\U@\\Pu#hu#h0V/0%/V%333I33/3E3A3Km333@33%vTT7CTCV%VVV>VYgVAVqV7uVV<oqq7Cqj33jvTjVV}P^^P^^ss^P>PAPRq0R05q5<R<AqU U)AUY)AYDRvAvHmQmttP)tPV0VVV@SSSLVSSS@^^LV^^^0@_V(IVLV_V(IVs]0I00/>00EY0g00Km000q070u@0N\N\U\\UH\HVUV\I\U8\8FUF\\/>\\EY\g\\KTUT]\]dUdm\U\\q\7\u\U\U@\@RPR\u#h]du#h0S/>05>S0_000EY0g0 0K]00q070u@01_111EY1g1 1K]11q171u@1\UH\HVUV\_\U8\8FUF\\\EY\g\ \KTUT]\U\q\7\u\U\U@\Pu#hu#h1R1R0o00EY0g0M0K]0Dq070u@02o22EY2g2M2K]2Dq272u@2H\HVUV\o\U8\8FUF\\EY\g\M\KTUT]\Dq\7\u\U\U@\7LPLVu#hKTu#h2REY2MYRSSgSM{SS(SuSS4STTVUVUV&VVQVLV_(VVVAEQEKVmVUrVr_VUVVPvuu0&00L(000AK0m0;00T:;DT\&~\;K\DHPHvSk~SS DS;KSSTTVUV~VVQVLV_(VVVAEQEKVmVUVVPvuu0~00L(000AK0m0K00T'KTTfrS~SSLUSSS SSmSKSS26P6d\\m~\\2\K[\f\n\\L(\\\AK\\n  L(   AK  n00L(000AK00||LU|||LU|PsSPP0PSP^^&3E3@33L3T&\E\@\\L\ *P&P@GP]]QVVAEQEKVTAETUAEUuAEuG]=]0g0M{00u@03g3M{33u@3\U8\8FUF\g\M{\\u\U\U@\Pu#hu#hMc3Yc]3]00c{00@044c{44@48\8FUF\\c{\\U@\'<P<Fu#hu#hc{4q{]4]E3L3E\L\& y*'EP$P]`UUlQQu0PuRUUwwwww wxwxzwz{w/T/;V;ETExVx{T!;0{}w}www w(w0w(w www-w0-4w(45w 57w79w9>w>?w0?@w(@Aw ACwCEwEFw{UU4S4=U=>U>@S@FU{TTT,V,3T35V5=T=>T>AVAFT0TTUUT,V>AVAFT,S>@S@FU0P%\,]>E]T0TS0PFHwHJwJKwKLw LMw(Mw0w(w wwwYePeVYShmTThSq]]u\\SS]]\\wwww w(Dw0DEw(EFw FHwHJwJOwOYw0YZw(Z[w []w]_w_`w#T#CVCNTNOTO[V[`T U ESENUOZS #T#CV U CS 0#P#C\ C]-9T-CSCNTNOTCESENU`bwbdwdfwfhw hiw(ijw0jtw8tFwFFw8FFw0FFw(FFw FFwF Fw F!Fw`U"S"!FU"S"FU>GPGgVg|P|V0PVPLVLb0bkPkVPV0PVPV0PVPV0PVPaVaf0fvVv00PV P `V`0PVP V e0eV}0}PVPVb0bV0PVPRVR0&V&0P:V:CPCV0pVp[0[dPdVPV@0@V0PVP0V00V0P V ! P! z Vz  0 N VN 9 09 B PB b Vb k Pk  V  0  V  0  P  V  P Vh0hV0PVPXVX0,V,0 P @V@IPIV0vVva0ajPjVPVF0FV0PVP6V60 V 0PV'P'V0TVT?0?HPHhVhqPqV$0$V0PVPVn0nV0PV P ^ V^  0 2!V2!"0"&"P&"F"VF"O"PO""V"#0#|#V|#g$0g$p$Pp$$V$$P$$V$L%0L%%V%&0&&P&&V&&P&<'V<''0'(V((0()P)$)V$)-)P-))V))0)Z*VZ*E+0E+N+PN+n+Vn+w+Pw++V+*,0*,,V,-0--P--V--P-.V.t.0t..V./0//P/0V0 0P 0d0Vd000081V81#20#2,2P,2L2VL2U2PU22V22022P22V23P3E3VE3`30`3i3Pi33V33P33V33033P34V44P49V99099P9:V::P:EVIRPRrSr|P| S 0009P9YSY`P`S0PSPQSQf0fpPpS0PS<0<S0PSP,S,0S0PS P vSv0ISI707@P@`S`jPjS0S0PSP S d0dS0PSPTST0' S'  0  P > S> H PH  S  0 q Sq _ 0_ h Ph  S  P  S B 0B  S 0PSP2S20S0PS&P&|S|0OSO=0=FPFfSfpPpS 0 S0PSPSj0jS0PSPZSZ0-S-0$P$DSDNPNS0wSwe0enPnSPSH0HS0PSP8S80 S  0 !P!"!S"!,!P,!!S!!0!U"SU"C#0C#L#PL#l#Sl#v#Pv##S#&$0&$$S$%0%%P%%S%%P%&S&p&0p&&S&'0''P'(S( (P (`(S`((0(3)S3)!*0!***P**J*SJ*T*PT**S*+0+}+S}+k,0k,t,Pt,,S,,P,,S,N-0N--S-.0..P..S..P.>/S>//0/0S00001P1(1S(121P211S1101[2S[2E0EESRSpS9U19UPSPgSU>VEFVPSSMS&S0PSP>S>P0PYPYySyPS0PS7P7zSz0PSPS/PSSkSSdS|Sd|S|0PSPSSS0SS0PS P <S<0(S(F0N0NWPWwSwPS(0(S0S<SISEFS-NSS(S0S<SIS(SEF0(SEFSV<bVVrVV0SSBSQVa a0S0fSf0SE0a0\0f\f0\E0a0]0]E] 2P|00PVPVE0P_E_ {E { {E { {E {PPSfSDSPSS\E\]E]#.PDFPP^E^0PfVV^E^JcVxfVVVDSPSSSf\E\\f]E]]U U+U +U1AU6AUfV}VSSPV5V7FVHeV SS<SSS2V4CVEbVVVSXgSiS6SBSB|V~VVVgSSS:S7SVVV`[VSSSSSV!V#@VV4S6ESGdSS S ZV\kVmVVE~SSS ^ Sj  Sj  V  V  V> 9 V  S  S  Sb  S _ S  V  V  V  V  S # S% B S  S S 8V:IVKhVV#\S^mSoS<SHSHVVVVmSSS@S=SVVVfaVSS SSSV'V)FVV:S<KSMjSS&S&`VbqVsVVKSSSdSpSpVVVD?VSSShSeSVV$VVS)S+HSSS>V@OVQnVV)bSdsSuSB SN  SN  V  V  V"!"Vs!!S!!S!!SF""S"C#S""V""V"#Vl#g$V##S#$S $&$S$$S$%S$%V%-%V/%L%V%&V&@&SB&Q&SS&p&S& 'S,''S,'f'Vh'w'Vy''V((VQ((S((S((S$)j)Sv)!*Sv))V))V))VJ*E+V**S**S*+Sn++S+k,S++V+ ,V ,*,V,-V,-S -/-S1-N-S--S ..S .D.VF.U.VW.t.V./V//h/Sj/y/S{//S0H0ST00ST00V00V00V(1#2Vy11S11S11SL22S2)3S533S39S9;:SG:~:S::S:;S;G;SS;;S;;S;<S<S<S_<<S<<S<=S(=_=Sk==S==S=(>S4>k>Sw>>S>>S>4?S@?w?S??S??S @@@SL@@S@@S@ ASALASXAASAASABS!BXBSdBBSBBSB!CS-CdCSpCCSCCSC-DS9DpDS|DDSDDSE9ESEE|ESEESEES22V53`3V33V99VEEVEEVwwww w(w0w8ww8w0w(w www>w>Aw8ABw0BDw(DFw FHwHJwJPwPwU]UUF]FKUK]UU]U-]-@U@.].OUO]U7U75]5MUM]U]Uh]h}U}9]9U]OUO]&U&]UTTTTTT@T@TTTQ=S=QQASAQQQ@Q@TSTQSQQS&Q&xSxQ0VK0KV0@VVV.VOVT0VV09VOV&x0xV00AJPP\PVOVV&xVPVKVVVVTV&VxV]UK]U]U-]-@U@.].OUO]UT5]5MUM]U]h]h}U}9]9U]OUO]&Ux]UF0k{SS\S\S-@\\0c0c{\K00\0T0&0x0=0Fy0y^ 03D0D[P[n^n0c^ck0K^00^_00^^0.0.^b0b^00MTPT^00H}^}U^909^0^0^0&^x0^_nP0C_Co0o_0c_ck0K0_0-0-@_@0r00.O_O0_T0}0f0o_o0_08O_O+0`_0&_x0_-0-cck0K00.0.OO0T09090OO00&0x00c]ck0K0]0.0.?]?0T00o]o0]0O]O0]&0x0]"0"9Q9cck0K0Q00T0H0o0&0x0@0@TPTc\c0K00T00P\&0x0$9TT9UU$9uu^y__x_^ySSxSoyPP^x^k3K33-3@3T33&33TK}TO[T[n^K^@^^O^^4^O^qKvqO[qPOPPXqXqXqUUUZZTU~~X}Q}ttPt Pq3p3q}Tq^p^PQpQPQpQpppQ^@^^b^^4^}k  -  .O T  9O &  k00-00.O0T009O0&00)D^^d^^-^^^nkVV-V.OV9OV&VVxpp]]]SSSPP^^]+]]S+SSPP+__-]`]&]-_`_&_#-P`dPd!9e_?O_o_To]9f]]ToS9fSSeoP9=P=f__P___PP]]_.?__PUSSSPP__"\H\\"SHSS"PP;k{S\S\Sk{S\S{V^-@0^__)__)[R3KRK]]P[] ][jQ Q`jQ Q@VV.VbV9VJ_p,pT}T^^H}^}U^P~}u^^0.0H00TT_._H__&*P*_^.^^&^^^VV"0Pw"1" lwwww w(w0bwbcw0cdw(dfw fhwhjwjpwp^wUUU^UT0]0}T}]T]KTK^]^T]T]FTFY]Y^T^0k0^0T0]0}T}]T]KTK^]^T]T]FTFY]Y^TS0k0P^00002P2S]Sk0k}]}0P]1019]9`0`]^00B\B^0k\`S`\0^S02V2}0}V^0TTUUU^UPuu 2\}\02VV19002VV;^\k}\B^]w]KwK^]^`w]FwFY]Y^w`S^S]1T9KT]FT1S9KSFS1^9K^F^P1]9K]!F]1\9K\F\\0\`bwbdwdiwikw klw(lmw0mtw8tww8w0w(w wwwww8w0w(w www w`U^U\U\^UU^ U ^U ^`TT3T3TTT)T)TT T`QSQQSQQQ)Q)BSBQQ+S+QS Q`00B0B+0+0 `0 0*3PP&\&+PVBV+VV&P&+B+ ^U^B^+^ ^0]P0B0+0 00SF0|S0S0S0/S/\Bd0S0S0+g\g0 \0V0PV0P0V0V$P$/V/0V0BIP0PS0V0+g0gnPnS 0PF\P\\P\g\F | $0) | $0) | $0)g | $0)f0f_00_0/_/0B0+0 0tSS/lSSSS+@S SVV/VVVV+;VgV V-BTT&BUU-BuutSS/S_/_0_/_SSBdSVVBdVP@wRwR+7R7g R  /\+g\ \cwRw@gc\\@g\\s__@g__PSS@`SlSSSAtSQtVZtV0CPCbw1 v " w" $ w$ & w& * w * + w(+ / w0/  w  w0  w(  w   w  w  w  w  w0  w(  w  w  w  w w b Ub  \  U  \  U ! \!  U  \ I UI o \o  U  \  U 7\7>U>\UE\EUG\GKUK\  0 D 0D I \I 0 J 0J  S  0  0  0 " SI o S  0  0  S 0PS0ES0G0 b 0b  S  0  S  0  0 " 0I o 0 *0*7S7K0KS0^0SY00T0Tc^c0  0 M ]M a Va  0  0  0  P  V  0 " VI _ V_ o 0o  V  0  ]  V  ]  V *]*K0j0V0V0P V T0TcVc]v  T*.Tv  S  S  S %S*7SKSTcSySv  P  s*.s  S  S  S %SSTcSyS  @ J \J M @  \  @ *\cy@y\@ M ]  ]  ] *]c] J \  \cy\\ J ]  ]cy]] J V  VcyVV  P J S  SctSS  SSV  V  VI _ Va  S  S  S  S_ o S  SSGOSk  p  p  S  S  S_ o S  SSGOS  \  \  U  \  \U\           0  0  0  00  |  |  |[  |  |  |  Uq t ut v Uv  |  | N$| !     00  TGKT  \  U ! \!  Uo  U  \EUG\GKUKT\  P  |  uGKu  Vo  VEV  ]o  ]E]  So  SESW [ P[  \  \\! W \EY\\  V  S  Sj0  S  S " V  V " V  VjSVTcVJ M 0^^wwww w(w0ww0w(w wwwww0w(w wwwzw3U3VUVUUUUoVoU(U(zV3T3:S:TSTSToSoTzS/Q/\Q\QQ\Q\(Q(z\303qRqw00o0z0303Q00o0z00z0P+~!-P-`^+]o]z]EWP3Q3qRqw3VUUoU30V0oV030P0o03:0:S0So0S30P0PPVo{P{0PV0SSoSVV 0V0SS+0+EPEw+2+1+ {wwww w(w0ww0w(w wwwiwijw0jkw(kmw mowoqwqxwxwUKVKUeVerUrUUUVUUVTSTeSerTrSTSTSQ\Qm\mrQr{Q{\Q\Q\0RDwe0r0000DQe0r00000P~P^]]]PDQRDwKVKUUU[0[V0YVY0l0lP000[S[0SY0YSK0K[P[c0clPPVPJJY0YdPdxVx0QSSYSlVOYV0lVJY0xSxSK0P#wK2K1K  "w"$w$&w&*w *.w(.5w059w9:w0:;w(;=w =?w?AwABwB w  w0  w(  w wwww sUsVBUBVU U /U/VUVVQUQhUhV sTszSzBTBST S /T/SQTQS oQo=\=BQB \ QQ/\/ZQZQ\QhQh\ s0sRwB0 0/0Q0 s0sQB0 0/0Q0 50B0BXPXk~amPm^Bk]3]Q]PsQsRwsVBU /UQUs0;V /0VQ0s 0 /P/B /0Q0sz0zSB0 /S0QSs0P0 P $P$/VP0PVQ0:S /SS ;VVJQ0 ;V0QSQSk0kPwk2k1k wwww w(ww(w wwwzwz{w({|w |~w~wwjwQUQVUU0V0UUUU,V,UUjV8T8TTTTTTTTjT*Q*SQQSQQSQSQQ,S,QQjS00X)w0,0j000)Q0,0j0v0j0P]P],\j\PP0#P#GXG^w2 TZx2Z^XT^R)QX)w0V0UU,U<0<|V0,0VM0MpPp0,00<S<0S,S0000<P<D0DMPPV,7P7KVK0P06{SSSM|V}0VM|VKS0KSprwrtwtvwvzw z~w(~w0 w  w0  w(  w  w  w  w _!w_!`!w0`!a!w(a!c!w c!e!we!g!wg!p!wp!#wpUO VO  U [!V[!h!Uh!x!Ux!!U!!U!"V""U"#V##U##VpTS T [!S[!h!Th!x!Sx!!T!"S""T"#SpQ \  Q c!\c!h!Qh!s!Qs!!\!!Q!#\##Q##\p0H P [!0h!x!0!"0"#0p0RH ~ [!0h!x!0!"0"#0p0H Q [!0h!x!0!"0"#0p 0 #0  P  ~!!P!!^"#^#O#^  ]!"]"#]"#PH QRH ~H PO VO  Ux!!U""U_ 0_  Vx!!0"Y"VY""0p 0p  P  x!!0""00_ S_  0x!!S"Y"0Y""SO 0O _ P_ g 0g p Px!!P!!V""P"J"J"Y"0Y"d"Pd"x"Vx""0U  Sx!!S"Y"Sp  VO"Y"V""0p  VJ"Y"0x""Sx""S A!0  P !w A!3 A!2 A! !!q!!X!!R##w##w##w##w ##w(##w0##w8#c&wc&g&w8g&h&w0h&j&w(j&l&w l&n&wn&p&wp&x&wx&B,w##U#%]%q&Uq&&]&@'U@'O']O'_'U_'\(]\(")U")i)]i))U))U)*]*,*U,*9*]9*]*U]**]**U*+]+ ,U ,(,](,B,U#_&0q&)0)B,0#_&0q&)0))V)B,0#$0$O&\O&_&0q&&\&&0&&\&&0&w'\w'1(01(9(\9(\(0\(2)\2)i)0))0)+\++0+ ,\ ,(,0(,B,\##0$$_$ &0 &&P&g&Sq&&0&&_&'S'/'0/'@'S@'O'_O'T'PT'_'S_'w'0w''_'\(S\((0((S(2)02)E)_g))S)*0*,*S,*9*09*]*S]**0**S**0*u+_u++S+ ,0 ,(,S(,B,0##0#$V$%0%-&^-&>&0>&O&PO&_&V&&V&&0&&V&/'^/'5'P5'O'VO'_'^w''V'\(0\(")V2)E)VE)i)0))0*,*V,*9*09*@*P@*]*V**^*+0+u+Vu++0+ ,V ,(,0(,B,V#%0&&0''0/'O'0_'\(0")}*0*+0 ,(,0#%0%&]&'0'/']/'O'0O'_']_'B,0##T))T##U#%]%q&Uq&&]&@'U@'O']O'_'U_'\(]\(")U")i)]i))U))U)*]*,*U,*9*]9*]*U]**]**U*+]+ ,U ,(,](,B,U##P##u))u $$_&&_&&_@'O'_w''_2)E)_+u+_/$$V$$&&&&V@'O'w''V2)E)V+,+,+P+VP+u+$$_&&_@'O'_w''_2)E)_+u+_Y$$V&&V+,+VP+u+VY$$_&&_+,+_P+u+_h$$\+$+\$$P$$\&&\P+u+\b$$S&&S+,+SP+u+S$$V@'O'V1(9(0$$V@'O'V$K%_&&__'r'_")-)_))_)*_,*9*_$%T,*0*T$%U,*0*U$%u,*0*u%+%+%%]%_&q&&&&]&@'O'_'_'w']\(")")2)]))]9**+ ,(,B,%\%U&&U_'n'U")))U))UH%%]q&&]]*}*]**]H%\%U&&UX%%_q&&_]*}*_**_%%P%%Sq&&S]*}*SR%%S&&S**S%&^'/'^O'_'^ &&]O'_']((0 &&]O'_']#&_&^''^/'@'^9*]*^D&_&\/'@'\O&_&S'\(Su++S ,(,S'1(09(K(0u++0 ,(,0'1(S9(K(Su++S ,(,S'(\++\((P(1(\9(K(\u++\ ,(,\'1(V9(K(Vu++V ,(,Vf(l(l((_( ) )")_++_+ ,(,B,_\(")V+ ,V(,B,V((_( )_+ ,_((V( )V+ ,V((]( )]+ ,]((P((S( )S+ ,S((S++Si))Sn)t)S))St))V))Vy))V))Vg)i)0*,*\*,*\P,R,wR,T,wT,V,wV,X,w X,Y,w(Y,],w0],d,w8d,J.wJ.K.w8K.L.w0L.N.w(N.P.w P.R.wR.T.wT.U.wU..w..w8..w0..w(./w //w//w//w/ <wP,,U,.S.U.UU..S."/U"/f0Sf00U01S1D1UD11S11U1;S;;U; <SP,,T,U.TU..T.0T00T092T92D2TD2 <TP,,Q,U.QU.g.Qg..V.0Q00Q00V092Q92D2QD2{2V{2;Q; <VP,,0,,VU./000092{20{22V22U2V4Vz44V44V4t5V55V55V57V77V8 8V3::V: ;V;&;V+;@;Vj;;V; <000PK2c2Pc2v2^v2{2PU.X.]00]92{2]; <]d2v2Pv2{2,,V{22V22U2V4Vz44V44V4t5V55V55V57V77V8 8V3::V: ;V;&;V+;@;Vj;;V,.S.U.U/"/U"/f0Sf00U00S01S1D1UD11S11U192S{2;S;;U,,0,4-V4-5-U5--V--U-L.V/"/V"/(00(00V00001V11U1/2V/232U3292V{23034\44U4z4\z44044\45055\57077V77\78V88U848\48:0:j;\j;;0;;V,B-0.N.\/"/\"/<00f00\00011\61D1\D1h10110{2;0B-. <0f0 01 h11 192 ;; ..0.*.Sf00S61D1 Q-g- p $0)h1z1 p $0),,0B--0--P--0.U.0/ 00 0(0V<0I0Pf00000V0001D10h11011P11S11012022P/2920{23033\3V40V4X4PX4u4Vz44\44V44044P44V45055V56067\77077\7 80 8+8V48[8V[859059O9VO9;0;;P;;S,.0"/[/0[/0\0(0_(0f0000\00_00\010D1920{2202b3Xb33340:4g4_g4z4044044_44X4555]55X546046N6XN67_77_8 80 8[8_[8}80}88\89_9909 :\ :3:_3:?:Y:e:Xe:s:::\:j;]j;;_;;0,U.0/000920{2%40%4X4^X44044^4860867]78089]9 :0 :3:]3:j;0j;;];;0n-t-Pt-.]<0f0]01]11P192],,T{22T22 `*22T,,V{22V22U2V4Vz44V44V4t5V55V55V57V77V8 8V3::V: ;V;&;V+;@;Vj;;V,,T22T,,V22U2V4Vz44V44V4t5V55V55V57V77V8 8V3::V: ;V;&;V+;@;Vj;;V,,v22u--U(060U$-5-T11T$-5-U5--V--U-.V<0f0V01VD11V11U1/2V/232U3292V;;V$-+-P+-5-u11u--P<0I0P--T/232T--V--U-.VO0f0V01V/232U3292V--P--v--u/232u- .UO0[0U.L.V/"/Vf00V61D1V.*.Vf00V*.N.\/"/\/.D.\/"/\v/0\00\00\::\/ 00000::0::0/ 0\00\::\::\/ 0]00]::]::]//P/ 0V00V::V::V//V::V0(0_00_11S3b3Xb3344X453:?:Y:e:Xe:s:J3304403:Y:0s::0J3b3Xb333:?:^33]44]3:Y:]s::]33P33\44\s::\S33\3:Q:\324_z44_595_55_7 8_;E;_34T88T34\44U4z4\44\55\77\78V88U848\:j;\33P34|44u88u24X4_44_V4X4^44^550V4X4^44^a4z4_44_g4u4V44V555t5Vt5555V55:;;&;V&;+;+;@;V@;j;55]:j;]25t5V: ;V255]55]:;]E;j;]F55_55_:;_E;j;_t5x5Px55V55VE;j;V@5J5RJ5555:;E;j;E67_j;;_N6X6X;;Xh66]6#7#7k7]k77j;;]X67_j;;_66]7#7]:7S7]k77]66_7#7_:7S7_k77_66\:7N7\66P66\7#7\k77\66R667#7:7S7k7733067]67]11077_77_89_ :3:_88\[9r9\99\ :3:\859]59[9[99]9999] :#:]89_ :#:_859]O9[9]r99]859_O9[9_r99_859\O9[9\r99\ 99P959VO9[9V99V8 9Vr99V 00059O9]59O9]X..0X..P..wX..1X.. <<w<<w<<w<<w <<w(<<w0<!<w8!<d@wd@e@w8e@f@w0f@h@w(h@j@w j@l@wl@n@wn@p@wp@Hw<`<U`<<S<nAUnAASAKEUKEESEhFUhFFSFHU<`<T`<nATnAzATzAATAATAKETKERETREHT<]@0o@H0<`<T`<nATnAzATzAATAATAKETKERETREHT2<`<tnAzAtAAtAAT#nAzAtAAt N$t !AAtAA}AA]`<`@]o@nA]AKE][EhF]FH]`<<S<`@Uo@nAUAKEU[EESEhFUFHU`<<V[EEV`<]@0]@`@Vo@nA0AKE0[EhF0FH0`<?0?]@^o@A0A A^ A?A0?A_A^_AnA0AB0xBB0BB0BWD0WD_D^_D|D0|DD^DE0EKE^[EhF0FH0`<>0>>P>>\>>U>>\>>0>?V?]@0o@@0@@\@@0@A\A A0 A/AV/A4AP4A?A\?AOAVOA_A0_AnAVAB0xBB0BBVBB0BC0CC\CD0DDVDDUDE\EKE0[EhF0FG0GG\GHVHH0`<<0=]@0@@0@nA0 BB^BB0BB^BKE0[EhE0FF0zGH0`<<0<<P<=S=#>0b>>^>>0??\?D@0o@@S@@^A/A\/A?A^?AOA\OA_A0_AnA\A;BSxBBSBB\B|DS|DD0DD0DD\DD0EE0E=E\=EKES[EE0EEPEhFSFFSFzGSzGG0GG^GH\HHS`<<0<<P<<V< =0 =M=VM=]@0o@@V@nA0ABVxBB0BBVBKE0[EE0EEVEEUEFVF#FP#FFFVFFhF0FH0`<9=0r==07>L>0L>>V>]@0o@@0@@0@@0@@V@/A0/A?AV?AnA0A B0 BB\BB0BB\BKE0[EE0FhF0FF0F G0>GzG0GH0k<<T[E_ETk<<S<`@Uo@nAUAKEU[EESEhFUFHUk<<s[E_Es< =Vo@@VFFcFVFFV!=5=TEET!==V@@VxBBVEEUEFV!=+=P+=5=vEEuB==V@@VxBBV}=#>S@@SFGS}==\F G\>GTG\}=Y>^@@^B6C^CC^FG^hHH^HH^==P==\@@\TGzG\=L>V@@VF2GV>GGV=#>S@@SzGGS >>TzG~GT >>\@@\@@\B>P>>|zG~GuY>>^@@^/A?A^>>V/A?AVCC0>>V/A?AV>D?^@@^@A^ A/A^BB^C(D^kDzD^DD^DE^GH^H"H^'H;H^>>TDDT>>\>>U>>\@A\CC\kD|D\DDUDE\H'H\>>P>>|>>uDDu>>\@A\CC\kD|D\H'H\>?\ A/A\?AOA\_AnA\BB\DD\GH\??V???AOA_AnABBVDDVGGGHV ??\?AOA\_AnA\BB\DD\GH\A??V_AnAVGGVA??\_AnA\GG\Q?z?^GG^z?~?P~??^_AnA^GG^J??S_AnASGGS??V?AOAVWD_D0??V?AOAV??\A A\?]@0OA_A0|DD0?]@1OA_A1|DD1?]@]OA_A]|DD]?]@^OA_A^|DD^?]@\OA_A\|DD\8@>@P>@]@V@@P@]@SOATAPTA_AS?@P@8@VOA_AV?]@0OA_A0??0?@P@8@VOA_AV@8@VOA_AV8@]@SM@]@^ BB^BB^DD0BB^BB^B;BSBBSBBS!B+BSBBS+B;BVBBV0B;BVBBV;B@B\@BRB\CCVCCwCCVhHHVHHwHHV CCShHHS3CCVCCVHHV3CCSCCSHHSBCC^CC^HH^lCpCPpCC\CC\HH\a0aaS6bHb0qbbSI?J0?J~J_~JJ0KK0K LP LL_LkM0MM0MMPMN_NN0OO_/O?O0^OO0OO_OP0PP_P2Q0RS_ST0T5U_hUU_UV0VV0VW_WX0JXX_jYY_YYUYY_YY0ZKZ_KZZ0ZZPZZ_][[0 \P\_\M]_M]T]PT]]_]]0]^_^^0)___`:`S:`a`_a``S`>a0aa0bb0IK0-LiN0NN0O/O0OOO0OO0PQ0QQPQR~RR0RR~R3T0TU0V1V01VV~VW0W~W~~WW0XX~jY[0 \)\0P\c\0\B]0t]]0]?^0^^0)_|_0|__~__0_:`R:`a`~a`r`Rr``~``R`>a0>aa~aa0aaPab~bHb0Hbqb~qbb0IJ0JJPJK]KK0KL]LN0NN0O/O0/O^O]^OO0OVP]VPaR0'ST0T3T]T5U05UhU]hUU0UV]V1V0qVW0WW0WX]XJX0jY[0[ [P [6[]6[[0 \P\0P\\]\M]0M]t]]t]]0]]]]^0^?^]^^0^^])_|_0__0``]`pa0aa0ab0KK0KfLOVPRR0R^SUVW0WW XJX_X\\M]]]]0^^0|_____:`0a``0``SJgJTYYTSJJ_OO_YYUYY_YY_ZKZ_SJ]JP]JgJYYutJJ_OO_YY_JJTYYTJJUYYUJJuYYuKK]/O^O]P\\]]]]^?^]KKTKBK~P\Z\T^^~KK_/O^O_P\\_]]_^?^_^^_TKXKPXKK~OO^O~\\~KKRKBKP\Z\R^^KK]/O?O]]]]-LL0PP0\.]0t]]0-LL_PP_\.]_t]]_-LLSPPS\.]St]]StLxLPxLL~PP~8LL]PP]\\] ].]]t]]]LL_PP_LLS^OOSLLQ^OiOQLLTYYTLL^LLULL^LNUNNUO/OUOOUT5UUhUUUYYUYY^YYUKZ[U6[d[U \P\U.]M]U]^U^^UaaULLPLL~LLuYYu*MN1NN1O/O1OO1TU1hUU1uZ[16[d[1 \P\1.]M]1]^1^^1aa1*MN0NN0O/O0OO0TU0hUU0uZ[06[d[0 \P\0.]M]0]^0^^0aa0*MgMTNNTuZZTZZT][d[T^^T^^TaaT*MMSNNVO/OSuZZSZ[S][d[S^^SaaS3MkM1ZZ1][d[1^^1QMcMUcMgMuZZU^^U_McMucMgMU3MkMsZZs][d[s^^s7M_MP_MgMsZZPZZs][d[P^^P^^s^^P^^saa1aasaas11?"aaatMMSO/OSMN_OO_ \P\_.]M]_]^_MNSOOS \P\S.]M]S]^SMN^OO^ \P\^.]M]^]^^2N6NP6NiN]OO]]^]M2N] \)\].]B]]sNNSOOS}NN_OO_NN\NO\NNVNNVP7PU7P9PQ``U``QP9PT``TPFPS``SP9PY``Y)P9PZ``Z)P9PP``PFPP]WX]KPVP]WX]Q)QTbbTQvQSV1VS6bCbSqbbSQQPQ)Qsbbs;QvQSV1VS6bCbSSQmQT6b:bTLQmQU6b:bUSQmQu6b:buQR~1VV~__~>aa~Hbqb~QQTQ R>aTaaaTQRS1VVS_ `S``S>aaSHbqbS%R)RP)RaR]qVV]Hbqb]Q%R]>apa]aa]kRR~1VFVRFVQV~__~'SS0UU0WW0)_|_0__0'SSSUUSWWS)_|_S__S'SS_UU_WW_)_|_____xS|SP|SS~UU~WW~2SS]UU]WW])_g_]__]SSSWWSST_VW_SSQVVQST\TTVVV\VVUVVV3T>TSTTS8T>TSTTS>TgT_TT_CTIT_TT_ITgT~TTRTT~STgT~TTRTT~gTT]TT]lTsT]TT]U5U^\WW~XXRXX~fW~W~XXRXX~]]_ `:`Sa``Sbbwbbwbbwbbw bbw(bbw0bbw8bUgwUgVgw8VgWgw0WgYgw(Yg[gw [g]gw]g_gw_g`gw`g~wbcUcf~ffUffUfNg~Ng`gU`gvl~vllUlm~mmUmmUmmUmo~ooUop~pOpUOpp~ppUp_q~_qqUqrUrr~rrUrr~rrUrt~ttUtt~t uU ubu~busuUsuv~v*vU*v?w~?wRwURww~wwUw#x~#x7xU7xx~xxUxy~yyUyy~yyUy~z~~zzUzz~zzUz|~||U||~||U|}~}}U}~~bcTcfTffTfmTmmTmqTqrTr~TbcQccVcfQffQfNgVNgmQmmQmqQqrQrdrVdrrQrlsVls{Q{|V|~Qbc0cdSfNg0`ggSllSmm0qdr0drrSrrSrls07x?xSDxxSzzSz{S{|0bc0cd]fNg0`gg]ll]mm0mm]oo]qdr0drr]rr]rls0ww]x(x]7xx]yy]^zz]zz]z{]{|0||]bc0c1f~fNg0`gl~lm~mm0mo~op~Op_q~qdr0drr~rls0ls{~{|0|~~bf0fNg0`g~0 r9rP9rBrSrrPrlsSff\qdr\rls\{|\r sP%s6sPRslsPc1f~`gl~lm~mo~op~Op_q~drr~ls{~|~~cd]`gg]ll]mm]oo]drr]rr]ww]x(x]7xx]yy]^zz]zz]z{]||]cdS`ggSllSdrrSrrS7x?xSDxxSzzSz{Scf~`gvl~lm~mo~op~Opp~p_q~drr~rr~lst~tt~ ubu~suv~*v?w~Rww~w#x~7xx~xy~yy~y~z~zz~z{~||~||~|}~}~~cf1`gm1mq1drr1ls{1|~1cc0cof\`gl\ll0lm\mm~mm\m_q\_qq~drr0rr\ls{\|~\c d0 dfV`glVll0lmVmqVdrr0ls{V|~Vcdf0dff_`gi0il_ll0lm_mm_mn0nn_no0oo_oOp0Opp_pp0pq_drr0ls@u_@u*v0*vw_wx0xx_x{0|V|_V||0||_|}0}]}_]}}0}}_}}0}~_?ddf>oooOpxxxyyz{{V||||Udbdasddaddf>oooOpxxxyyz{<{<{G{aG{P{P{i{ai{r{V||||cdf0dff]`gh0hl]ll0lm]mm]mm0mn]nn0nn]no0oo]oOp0Opp]pp0pq]drr0lssu]su*v0*vw]wx0xx]x{0|V|]V||0||]|}0}]}]]}}0}}]}}0}~]cdf0dfof~`gl0ll~lm0mq0drr0ls{0|~0cc0ccPcd0d dP d e0 eXe_Xe{e0{eePeAf~Afdf0`g h0 hPhPPhh_hri0jk~kvl0vllPll~llPll\llPllVlm0mn0no0oo_oo~oo0op_p/p~/pOp0Opnp~pp0qq~:q_q~drkrPkrr\rr0tsu0suu_uu~uu_uvPv*v_HvlvYlvwvwvvYvv~vRw0wwPww~wx0xx~xZy~Zysy0syyPyy_yy0yy_y2z02z6zP6z^z_^z{0V|e|_e|l|Pl||_||0|}_C}]}~]}}0}}~}}0}~~cc0ccPcc0c dP dd0dd^dd0ddPde^ee0eePedf^`gg0gg^gg0g/h^/hi0ii^il0llPll\llPllVlm0mm^mm^m/n0/n?n^?nn0no^oo0oo^op0pOp^Opp0pp^p_q0_qq^drr0rrPrrVlsps0pssRssssRsss t^ t$tU$t^t^^tu0u*v^*vw0w7x^7x;xU;xkx^kxx0xx^xx0xyPy3y^3yy0y^z^^zezPezz^zzUzz^z{0{<{^<{{0||0||^|]}0]}}^}}0}}^}~0d*dP`gggPgggvgg0g=h]nn]pp]uv]wx0kxvxvxxv||0}}]ddp $| $)d*d p $0)Xee s $0)Zyy s $0)V|| s $0)d*d p $0)kl ~ $0)vMw ~ $0)ww ~ $0)|| ~ $0)9d?da?dGdGdUdazzaz{r{{a{{~cd0d eS&ee0eePeKfSKfdf0`gg0ghShh0hiPik0kl0llSll0mmSmnPnn_nnSn?n0inn0n>oS>oo0ooSpp0p/pS/p?p0?pOpSOpp0ppSp_q0_qqSdrr0lssu0su*vS*vv0vvPvvSvw0wwPwwSwRw0wwSww]wxS7xx0xxSxx0xxPx3yS3y:yP:yZySZyy0z.zR.z^z~z{0||0||R||~||P|}S}]}0]}}S}}0}}S}~0cf0f,fP,fdf~`gh0hh]hh0hiPi:i0:igiQgiiij0jk^kl0lm0mmQmm0mnPnn_nn]n/n/nOn0Onn^nn0/op0pOp~Opnp^npp0ppPpp]pq0qq^q:q0:q_q^drr0lss0ssPss^st0ttttQttt uQ u@u0@uGuPGusu_suu0uu0u*v0*vv^vx0xxPxx~xx0xx^xy0y^z]^z{0||0||]|C}0C}]}^}}^}}0}~^cdf0`gi0 jjSjk0kl0lm0m/n0?nin0no0ooXooonp0nppSpp0pqSqq0q:qS:q_q0drr0ssXssssXss t3v03vlvXlvwvwvvXvvvx0xxSx{0|V|SV|}0}C}SC}~0ccPcdf\`gl\llPlm\m_q\rr\ls{\|~\d dP ddfV`glVllPlmVm_qVls{V|~VddTzzTdd^oo^zz^zzUzz^ddPdd~zzudd^oo^ ee^>oo^op^3yy^yy^V||^eEeS>oYoSopS&eTf_>oo_p/p_?pOp_xx_x"y_3ysy_0eEep>oTopEeTf_p/p_?pOp_xx_x"y_3ysy_$fdf~p)pR)pOp~AfdfS/pOpSKfdf^/p?p^dfof\ll\zmm~mm\dfof\ll\offVmmVtffVmmVff_mm_ff_mm_ff]ff]ggT7x;xTgg^mm^ww^x7x^7x;xU;xDx^ggPgg~7x;xugg^mm^ww^Lhh0o>o0suu0uu0|}0LhPhPPhh_o>o_suu_uu_|}_LhhSo>oSsuuSuuS|}ShhPhh]/o>o]suu]|}]Whh]uu]hh_o/o_hiSm/nS t(tS-tMtS^ttSttS uduShiPil_lm_mnPnn_nn_Opp_p_q_ls@u_*vw_xx_|V|_||_}]}_}}_}~_NigiTttTNigiQgiGjn?nq:qlssstttQttxx4|V|Ni]iP]igiqttq~iiQn)nQiiT t$tTi@j^/n?n^q5q^lss^s t^ t$tU$t-t^xx^4|Q|^iiPii~ t$tui@j^/n?n^q5q^lss^xx^4|Q|^jjjj_jjnp{p{pp_pqq:q_xx_|4|4|V|_}C} jjSnppSpqSq:qSxxS|V|S}C}S9jj_npp_pq_|4|_}C}_9jjSnppSpqS|4|S}C}SMjj^|,|^jjPjj^np{p^pq^}C}^GjQjRQjjnp{p{ppRpq|4|}C}jjXinynXjjjk^Op[p[pnp^qq:q_q^xx^C}]}}}}}^}~jk~Opnp~qq~:q_q~xx~C}]}~}}~}~~kk^Opnp^qq^C}]}^}}^}~^kk~Opnp~qq~C}]}~}}~}~~+k^kS}}S^kbkPbkkSOp[pSqqSC}V}S}~S%k/kR/kkOp[p[pnpRqqC}]}}}}~vvXvvxx0vvXvvkk^ll^?nin^Rwxw^kkY?nInYklSlmSnnSvwSkkpllpklSnnSvwS|llSmm^_qq^$m.m^_qq^.mmSqqS3m=mSqqS=mLmQqqQBmLmQqqQLm[mXqqXQm[mXqqXnnUnnQ}}U}}QnnT}}TnnS]}}S}}SnnX}}XnnY}}YnnP}}Pno^no^mm0oo~oo~}ssXssjj0ssRssssRss@vlvYlvwvwCwSww]wxSyy_V|e|_ zzR||R||~2z^z]f4g0ffPffXf gwf4g3f4g ʞggx3g gXg gR~~w~~w~~w~~w ~~w(~#~w0#~*~w8*~ww8w0w( w  w www~r~Ur~~]~U%U%+]+~U.]._U_ϊ]ϊU]U]>U>]ڍUڍ]"U"]|U|]~r~Tr~~V~T.T.VT[V[TVTލTލV"T"TVTV~r~Qr~~\~Q.Q.\Q[\[Q\QލQލ\"Q"Q\kQk\~~00V[0[|Vl|V08VwV"00;hV VV[VkV0~~00^[0[|^_|^ϊ^0c^^>L^w^"00^6^;f^_^^Hk^w^^ ^Y^k^0~~000.qUU,[UUU. "  .0"00?quu,[uu͈u͈؈~,5u5>P>[u N$u !P_P_"^Ր^^HbPr~~0r~~P~~wr~~3r~~2r~~ Ҟ~~q~~X~~R^[|^_|^ϊ^c^^>L^w^^6^;f^_^^Hk^w^^ ^Y^k^V[|Vl|V8VwV;hV VV[VkV~[~_|~ϊ~~~>~"_~~ܑ~~̗~+]+~U[.]._U_ϊ]ϊU]U]>U>]"]]|U|]P~[~_|~ϊ~~~>~"_~~ܑ~~~̗P~OlVl~v˄܄P܄~~~cڋ~~Lw~~"_~a~ܑ~ ~̗~O00.0|0cڋ00Lw00"0100 0|0;0;HPH~K~[m~m|0|~.?~?IRI|~ϊ~~"_~~ܑ~~̗.~.00KS[00._S_|0ϊ0c0ڋ0S0>S>L0w00a000 00CHRH~[m~|~_|~ϊ~~~>~"_~~ܑ~~̗.~._.L]LOS_._|_cڋ__Lw__"_a__ _|_˄~~~cڋ~~Lw~~"_~a~ܑ~ ~̗~ǂ0ǂ;V;~KV[|0|_V_|0|V0ϊVZ0ZV0>V>L0LwVw0V"V0Vo0oV07V7F0FRVR0V0 V 0|V00KS[00._S_|0ϊ0c0ڋ0S0>S>L0w00a000 00K0KNSNk\[.0?O\_00"00P~[~_|~ϊ~~~>~"_~~ܑ~~~̗k~krPr~IWP݄P18PP0ׂ_ׂ0[m_m|0_|__ϊ0c0_>L_w__ _ o0_ _y_y00\0[d0dm\m|0_|\\ϊ0c0\>L\w\\ \ o0\Q\ \y\y00SBHPH~3N0[h0hmSm|0~P~_|SϊSފ0c0cڋ~~S>LSLw~wS~"_~Sܑ~ S o0SRS ~ S0̗~ySy0N0[.0_00^0>^>0"0_0_^R0R^^0#P#H^H0[00^N0[0܉0^.0_|0|^00\0>\>0"00 0o00PV707FVFR0RVPVkVkrPrVV\|0|^0N0[.0_00Y0(3Y3>~>0"00P~70FR0R[~k~Y~ĔPĔY00[.0_ފ000>0"000$P$O\O_O0OlVltvt~VUmvUP~[m~_|~ϊ~~>L~w~~ ~~ ~y~ jj[m jj_| jjϊ jj jj>L jjw jj jj  jj jj  jjy jj aj[m aj_| ajϊ aj aj>L ajw aj aj  aj aj  ajy aj Xj[m Xj_| Xjϊ Xj Xj>L Xjw Xj Xj  Xj Xj  Xjy Xj؀P[mP_hm__|_ϊ__>L_w__ __ _y_\_|\ϊ\\>L\w\\ \\Q\ \y\ȀS_|SϊSS>LSwSS SSRS SyS.TT.UU$P$.uuBLUlvUz^^>Lw^ ^kUUwU˖UіU^^>L^^ ^^UUVVPVV>LVV VR~~R>L~~~~%9UU/9UUU_U_fUmqUq~~ϊ~~~m  ϊ   m00ϊ000ǂ__ϊ_ׂ͂__ׂ\ϊ\܂\\SϊSSϊSǒUUǒUU̒UUڒUUUw}UUw}U_~~~_   _000k^^Y7@YœԓUUʓԓUUٓUFLUUFLUU.4UU.4U#?P0AU5AUBSTTBSUUBIPISuugqU|U%SSS\\ݎ\ \1R\a\փ^^^ ^1U^a^%)P)[S܉SaS__ _a_`jỦ։UoUƉUUUV^^%^O\\"\PB~BHPH~~P~cڋ~~Lw~~"_~P~ܑ~ ~̗~Qf~~1~'9PP ~##VC^^^c^La^fr^^"_^^^O<\\\c\Lw\\"_\ \\kPԅPԅ؅~P")P4=0[jQjN~~~cȋ~~Lw~~"_~ʑ~ ~~YYԅPPUUUU RTR{LTTT]t]fT̗ T tRUL]UUU9RTRp~̗ݗ~9RUN{\̗\C{^̗^mUUfnUUڋ00ܑ0UUڋ^ܑ^~P^.^̗^ڋ\\ܑ\ɆU|UɆU|UUU(^^ P N~ϊ~|~N0ϊ0|0N]ϊ]|]PN~ϊ~|~߇P\ϊފ\ \߇\*\\N~ފ~R~~K~.?~?IRI_~~Nk~?IRIO~kS.?SO_SpzS.?SzVO_VVO_VSSc~ ]~c ] c0 ]0 U(3UU(3U /UU%/UU4CUU9CUUC^^HR^^R\\W^\Ɍ\^iYƌYciYƌY_~Uwwww w(w0w8ww8w0w(w wwww%U%~U~UU~U~ԨUԨq~qU~CUCG~GU~pUpUŵ~ŵU[~[U~0U0S~SU8~8bUb{~{U~U~U~%T%8V8TVTTpTpűTűIVI@T@ƳVƳT4V4TTTVXTXV%Q%QSQQpQpQ7S7@Q@ƳSƳQ4S4QQQSXQXS%0%_00_?_ߩ_C_pI0Ij_v_ʲ_@Ƴ0߷__W__Ҽ_5_]_Ͻ_.__E_Q_߿_,_8_40___j_00X0%0%kS00S?SpI0IزS@Ƴ0S)S.8S40SjS00X0%0%?^00^?^pI0Iز^@Ƴ0^^Ͻ^ ^.8^40^j^00X0%0%~00[~~Ԩq~~)~CG~~pI0I@~@Ƴ0ƳN~~404{~~0~0X~X0000|ͱP\@_P_q|qƳ\)\\]tI]@Ƴ]4]]]X]P%~[~~Ԩq~~)~CG~~I@~ƳN~~4{~~~X~%?^^?^Iز^^^Ͻ^ ^.8^^j^%kSS?SIزSS)S.8SSjS%__?_ߩ_C_Ij_v_ʲ_߷__W__Ҽ_5_]_Ͻ_.__E_Q_߿_,_8____j_%~~~Ԩq~~CG~~I@~Ƴŵ~[~~0S~8~b~4{~~~~X~%1p1I@1Ƴ1411X1c~~8yby~.~.Fbbb~C~Ͻ~8~~j~%k0k~~0~~RH~I~ز0ز@~Ƴ~4~~X~%0VV/0/VHVIvVvز0ز@VƳV4VVXV%0\\?0?\H\Iز0ز@\Ƴ\4\\X\%00Pq0P~p0I@0Ƴ0400X0%[0[kPk0P0P0ޛ[ޛ~!0!D[D_~_^0^P[П~-$0^[S~]0z0zP~n0P~$P$/V/4P4?\?0Ԩq0ǩ0ǩߩ~ߩ0ߪ0[~^0^Ȭ[Ȭ߬~ 80~0Cˮ0ˮ[8~8][0Y[Y~0$[IPPPv\v0Pز~ز@0Ƴ0̴~ ^ [;?0?mXmx~xX%~%0=~=000W~W[0[ʸ[ʸI0~׻[׻~P[]0]aUa~[Ͻ~Ͻ~P.80^[04{0[~0[~[~z0z~[~0X0%a0akPk0P0P0!]Ξ0Ξ]404r]r0PS]S0p0p[][0P~$P$/V/4P4?\?0Ԩq0ǩ0ߩ0]/0/I]I0T]T 0 8]80]0C]Cˮ0ˮm]]0/]Iv0v}P}Vܲ0ܲR ~ R@~Ƴ^0^]P̴]̴0%]%0]0W]p^]0 ] $U$-]-404a]a0]505]]]o0^.].M0MZPZf]f0Pž]ž 0 P$]$808]0400]0]P]P]j0jy]yP]]909z]z0]X0P8v!0!h_404{S7^0^^ץP_(S^֬^ˮG_S`^Z0^̴0vv0W_W0SϽ000__cuS^0p $r $) p $| $)ץ p $0) |ץ|ץ p $0)Ny1~1).F1~1)aa,~,8aQaaa~a~a8~%k0'ѝSѝ]\0\S#0-S0nS5Ϥ0ϤP~0PS00Ԩq0ߩ]]0/S/I0IySy0 0(0Y0٭0٭ˮS8]S0PSS/SIز0@]Ƴ*0Z0TmRmx~xR~Ƕ00ʸѸP-0-jSj04]40ISIk0޻0Ҽ0ϽֽPֽS808S04{S{0S000SA0AjSj0S9Scz00XS%?0?~^~0 ۝^۝0H^|0|^H0S"^"00ЦPЦ^0Ԩq0ǩ^ǩߩ0ߩ^00^ɪ0ɪߪ^ߪ0 ^ 0^֬0800ˮ^ˮ 0 P8^8G0G]^`0`wPw^/^Iز0ز@^ƳZ0;0;^ص00Ƕ^Ƕ˶U˶^-0=[00^U^0-40ݺR~R9~0Ҽ^M0]808b^biPi^04{^0^000^A0Aj^j0009^0X^%Ν0Ν!_!0A_A0g_g0_808[P?0?_Ԩq_ߩ0ߩ_0__0__ߪ0ߪ_03P3C~Cm0/0I'0'5P5@_Ƴ߳0߳PS*0*Z_Z0P_ʸ0ʸ_0ƹPƹ׹S׹04_4!0!4P4I_IZ0ZgPgxSx0Ҽ_Ҽ808?Pb0PS40 P 0S00PASA00X0%K0KdPdX~ 04WXW~70X7~7^0^X~000Ԩq0/0_0~ɪ0XN~^ȬXȬ߬~ 0G0G]X߯X߯~YXY~0$X$/~I@0ƳZ0tSX̴~̴д0дX;~;%0%)U)7~7dXd=0=I~007P7WXW0 Ⱥ0ȺX~XI~ӻ~~505FXF]~]0X~04{00X0909c~clXl~X~X0akPk~~P~Ԩq~H~I~ز@~Ƴ~4~~X~PVV$P$VԨqVHVIvVز@VƳV4VVXVP\\/4P4\Ԩq\H\ز@\Ƴ\4\\X\SgTTS^ߩ^U^Wh^^Ҽ5^]^^S]P]g~ut^ߩ^Wh^^5^]^^śޛT]aTśޛ[ޛ!~ǩߩ~W~]aUa~~śԛPԛޛ{]au[ǩ٩[{ 0 80=0005]0{X~=I~5FXF]~{ ] 8]=]0]5]]ʜΜPΜ^8^0^ʜ^=[^5M^ X X _]]ݰ]ز]]3X]6<<Ν^ΝѝCSSa^ݰ^^X33X^'ѝSCaSSݰSSXSXSXΝ^Ca^^X^3^XΝSCaSSXS3Sl]3]PΝ]CS]]Xx]fpTpΝ~CS~SaT~X~3~ѝ^?^ߩ^^-8^=(^0^Ξ]?]/]-]ap]u]ĺ]0]%_?_I_Z__ [_j_4U_a_!__p?Tp%_I_Z__ [_j_4U_a_!__pT-4Tp1SISZkSS =S4ĺSSpzPzs-4s1SISZkSS -S4SST $T4]/I]Z^] ] $U$-]P} $u4]/I]Z^]-080I0{0P[П~~׻[׻~XП~~׻X׻~P#SYSIkS{SS޻S#-[8N[-7XIYXW]]SassSݰS4hSAjH^a^^ݰ^4h^^Aj^ySaSSSAjSy^a^^^Aj^]]P]as]]Aj]R~as~sR~~Aj~.SԨS_SҼSRyRN_Ԩ!_ɪ_̴_,_%U_d_Ƕ_____2_.pԨp.N_ɪ_̴_,_%U_d_Ƕ_____2_TǶ˶T^^ɪ^̴ݴ^/^%X^dǶ^Ƕ˶U˶Զ^^P~Ƕ˶u^^ɪ^̴ݴ^/^%X^d^^T%)TX7~~;~%)U)7~Px%)u-7XX¢S00%0=00¢S]]%]=]]¢ߢ[ߢ~S~~~~%~&[&8~8=~~PH^^ص^^͢^%^-^HS]]S][ɪ٪[}^^ˮ^h{^0X9^nSSˮSSh{S0XS9S^^ˮ^0X^^SSˮS0XSS]]P]]ˮ]0P]R~~Rˮ~0X~~^!q^ߪ^ƳN^ʸ^^+5RߪR5_!q_ _Ƴ__?Tp!<pT_ _Ƴ__ؤ_F]C][n[[nS٭S^٭^~Ԩ~q~R~~R~VqV˧VqV˧\ԧ\Ԩ_Hp__Wp_XHQXXHQXSUQUQSTTS]]cXXnYYnPP[[UQckUklQTclTX1~9c~clXlz~PclP YclY  Q x#clx#1^]:^]ƬUƬȬQUQȬTTȬ[Ȭ߬~z~[~ȬYYȬZZȬPP߬XX8][$[[G][$[]m]]bm]]m|S/HSr|S/HS|^^@]Νѝ0':R:@~':R:@~*SkSXݴ ^ [^[LmRmx~0X~X~h^]^Ͻ]ǹSպR~0!>X>I~!>X>I~hS[]jy]]]Q]]0&P&Yw43 ޞENqNYXEYRwwww w(w0w8bwbcw8cdw0dfw(fhw hjwjlwlpwpdw8U8;~;U[~[mUmU^~^U ~ U~/U/~gUgU.~.U~U~Ud~8T8K\KT[\[mTmTgTgTC\C<T<\Tf\fTT\TJ\JdT8Q8Q[S[mQmQgQgQ9S9<Q<SQfSfQQSQJSJdQ808][0m0]]]]<]$]gC0 ]]]]])]<0]]D]f00$]J0808V[0m0VVVV<V$VgC0 &VHeVVVVV$V<0VVDVf00VJ08080S[0m0SSS<S$SgC0 S<0SSD]SSf00J0808;~[0m0^~ ~~/3~gC0C<~<0~f0f~0~J0Jd~0[0md0vPV<[P[mvmV[VV]k)]<]f]]J]P8;~^~ ~~/3~C<~~f~~Jd~80SSSS<S$S SSSD]SS8VVVVV<V$V &VHeVVVVV$VVVDVV8]]]]]<]$] ]]]]])]]]D]$]8;~^~ ~~/~C.~<~~f~~~Jd~81g1C<11f11Jd18}0}\U\PV\0I\I^P^V\V\V\V\V\ P~\P/\P \ ?P?^~C:\: V H0H|\|PK\KVPVt\t|P|\P\P\P\PVP V PdVdnPnVPVP<V\P\ P U\YVY\#P#\P\P\3V38P8yVy~P~VPV9\9DPD\fV\V\V\Jd\80E^EFUFM^M~^0I^^~^~/^/~^~ ^~^/^^C:^:2~2 ^ H0Ht^0K^K~~^^~<^L^LPUP^#^~^f^~^Jd^8 0 |~|\~0^~^\o~o\ ~\~/=~C ~ 0~<~~8\8~f~~Jd~8 0 ,[,;~;P[^0^s[s~0[~[ 0~0C0<00 0~V0V~0f00Jd08;0;PP^0^sPs~0Pg0C<00f00Jd08m0m}P}0P0 P 0V0BVB;00P\P^P~^00V0/V/10f V 20Q0o 00c0czPzV/VV0VUC 0 PH\HOPOt~0V0VUVK0<0@0U03V3u0uV!0!VVV0D00f0 V 00JdV8s0s}P}0P0 P 0]00]0\0\;00P\P^P~^00/?0?O]Oo00]0/\_0f]Q]\0d]d 00]$0/]0]2t0P^]0R~)R)K~K0]0)00]0U]<00 #0_]0!L_LV]V0D]D]0]jPjuSu0f0 ] E0\0SP$S0 )P)N~0V04_P~1Vf_~~<~~$cV/k__~V30~~V0V_E\0Jd0 p $| $)"p $~# $) p $0) ~0) ~0) ~0)< ~0) ~0) ~0)"~#~#~#~#<~#~#~# p $0) ~0) ~0)s"#rq"#+ ~0)< ~0) ~0) ~0)DV"#rq"#+80S]0_J0;];|0"o^o0 P -0-;P^0/?]O_]_o00_]0/]Io^oyPy~[~~0^_]^S0y 0<0<JSJi0$0SSC S 0K]0n0n]_0_] 0L0_0P P 8[8~0~^0V00fS ES\ySy0SS$0$S8U0U_0_X0X_0]0$0_ 0 R]R;0^0_/0/O_Oo0o_0]00/I_I0]0p0]]_00<0<J_0/k0k}P}__C20 0K_K0 _ U_/0|0_0U_<0_0U#_#0_00 0 E_E\0\y_y000_Jd080V0P'V'0PW~WG0GRPR\0 S ;00^V/0/?V?O0OoVo0V0~I0Io\oS\0PVP~P\S0SdP0P 0J0P[~0/^0C0V0\0~202@P@KVK00~<00'P'8S8_0_V0 Y0YV08S8\V0V]PP[0fy0yPS00Jd08:0:gYg~0Y~;0^00 ~0#Y#:~\ 0$0$\Y\~/0CQ0QYU~<00~~707uYu0Y!~!0~ Y ~fE0E\Y\00Jd08p0X!~0 X &~&;0^00/0#X#:~fX~0Q 0$0$\X\~/dXd~X~0X~C0~)0<0#0#0~~30MpVpuXuy0yX0V2X2V~V0~ X ~f0~X ~ E0\000JdX80 P *R*N~00P0_R_~~;0^00 00/0C0PR0(R(:~|~)0<0#0#9R9f~PR0f000Jd0s}P}\U\\PI\\\\V\ P\P/\P \ PC:\H|\|PK\t\t|P|\P\P\\P\\<\\P\ P U;\L\#\P\P\9\9DPD\\\\Jd\PE^EFUF^^PI^I^^ ^^/^^C^ ^Ht^^^<^L^LPUP^^f^^Jd^ P  ~~P^~u~ ~~/=~C ~~<~~~f~~Jd~i}T Ti__ U___)__'_3d__EK_isPs} u____)__'_3d__EK_TTVVVVUVVDVEWVPvuVVVVV3DVEWVNgTTNgYg~ ~U~~N]P]gyuyYY0Q0)0#00 P *R*N~#9R9f~*X*N~#9X9k~jnPnV2V)KVVjV#@VUVR2FRX)XB0Q00B_R_~~(R(:~|~B]Q]]P_Qp__MVQViV|VRpyR+]?O]]].E]\y] ~ _~~_<J~_ .~.E_\y_~SS<JSS ES\ySS(__<J_ .__(SS<JS .SS7]]<J] .]]eiPiVV<JVV1eVV 'VX_I_/?_Oo____ _y_]I]O]_]] ]]y]VIV_VVC}V8VV_VV VVyV?WVVppV_VVC}V8VV_VV VVyV?WVVT T\U\o\\C:\\\<\\P\ U;\L\$\P|u ulTTl_o_C_:__U_$_lvPvu_o_C_:_$____]]0]]____<__\\\\\<\;\LY\2FTLPT2E^EFUF^I^^:^ ^K^^<^L^LPUPY^^f^^^2E~EFuLPuTT]]2f] ]]U]]P}u]]2f] ]]]/]]\\0\\0 ]]]/I]K]]]n]]M^^/I^:^2^K^^^^^cxTTc ~/u~~~:2~K~~~~~cx~#~#TT;_/__:2_U___Pu;_/__:2___R^^^GR]]0GR]]e;^_^~^| ~ou~~8~;SoSS;PV^VV~;PV^VP~SSZr~Sr\\w\\[[]]]<]$]]D]$]  < J$  V $ 00<0J$00V0$0}}}<}}}QqQ!}!<} N$} !!U!#Q U  Q#T T#X#:~~ X ~#Z Z #[ [ #P P:[YC[YUQUQTT] ]YYZZPPXXXXVVVVV$VDVV  J $ V $ 00J0$0V0$0 2vvvvvvRrRvv N$v !2SS$SSD]SS2  J $ V $ 200J0$0V0$0IsssEs$ss_VYY[_[isis N$s ! J VD 0J0VD0 J V 0J0V0 J V 0J0V0Y]J]V]dVJVVsVoSJSVSy_Ji_V_ VgV%:V0V:RY0MY?RY0MYRjXXWjXXjRRoRR]^]]^]S^SS^S/_/_VVURR/R/:$??NRNRC:S$StR~|~tSS$?S\S]]$?]\]PVV$8V\|V}V|VIR'R'2R-R-:2SSkR~;L~kSS;S]];]P\\k\t\;c\AGG_ _f_2 SfSSc__f__cSSfSSr]]f]]P\\\l\f\K]02EREK~2EREK~(_SDpVpuXV!X_]!L_LV]kSSA0PwA4A3A qXRprwrtwtvwvxw xyw(y}w0}w8ww8w0w(w wwwwpU~:U:~UUUQ~QU~U~;U;z~zU~U%~%UUU ~ . U.  ~  U ; ~; " U"  ~  U o~o{U{~=U=~U;~;U~U ~ U$~$UUU~pTS:T:STST4S4TpQ:Q:VQQQAQAVQVQ4V4Qp0_V:00%V dVVV404YVVV;Vp0~:00Q~~O]~kz~~~~U~.  ~ ; ~I k ~  ~ o~{~~~*~404;~ ~~p00:00:>^HPPP~^P^:>]4]hyP~Q~~O]~kz~~~~U~.  ~ ; ~I k ~  ~ o~{~~~*~4;~ ~~_V%V dVVV4YVVV;V~Q~~~;z~~%~U ~.  ~ ; ~"  ~ o~{~4;~~ ~$~U~P SRS;S%SU Sx oS{SS S R$SUSP~~Q~~z~~%U~  ~; " ~  ~;~ ~v0^^Q00z00  0; " 0x  0;0 ^_--I0Id1dy2 0P~:~Q~~~%0%z~T~%~U ~.  ~ ; ~"  ~ ~40;~ ~~j0jqPq:~~Q0Q~0~0~!;~;z0z~0~%0%U~U 0  ~ ; 0; " ~"  0  ~ o0o{~{04;0;~0 0 ~$0U0VVQVV;OV]kVzV%VU. V  V;  V  V u V  Vx  V7VW`V;rVVQVoV $VUV?VNVv{Q{~~Q~~z~~%U~  ~; " ~  ~;~ ~ b~'b'3 ~11"3G~13$|"1" ~11"  ~11"'bdb b0Q~:~Q0~0O~O]0]k~kz0~0Q~0%~U0T ~.  0 ; 0" I ~I k 0  0 o0o{~{m0m~04;0~ 0~0F0FNPN~S~Q0Q~0~0;z0z~S0~%0%U~U 0  ~ ; 0; " ~"  0  ~ o0{04;0;~0 0 ~$0U00~0040P SRS;S%SU Sx oS{S4;P;S S R$SUS303r^r0^S0S^P^^N0NB^B0m0my^y0^%0%^0O^O]0]k^kz0z^0^. 0.  ^  0  ^  0  ^  0 " ^"  0 ^0^?0?^U^0{^{0Pm^m0W^W^P^{^{040/^/6P6o^o0^$0$U^U0_0V00V%0%V0;V;O0O]V]k0kzVz0. 0.  V  0 ; V;  0 V0 V 00)X]o{V{0]~]0~0P~040V$0$UVU0r0Q*~.0._Q__%kQx_;O_]k_z__. _. > Q  _; I _x  _~o0;o_o0$_0P]0000];];O0O]]]k0kz]z00)  0  0 ; ]; " 0I 0P ] o0o{]{0'404BPBm~m0PI~04/0]0$U]|0 ~0.!~#~#-!~#~#- !~#~#--0-]0]Q00O]0kz0]]0]%0U0.  0 ; 0I k 0  0 o0{0-]W`]`04;0 0]=0=?T?~00TQ00O]0kz0~~%0U0.  0 ; 0I k 0  0 o0{0`~`04;0 0~=0=\P~0~0\Q0Q_~hmPm~~0O]0kz0z~\~%\%5~5D0DU~U0.  0  ~ ; 0; " ~I k 0  0  ~ o0{0`\`04;0 0 ~\~00;050U 0 o0{040$0U0'-R-SRS RS0_'_'G0Gb1by20 0S]UUTTUUPuuU UG[TTG^^U^^GQPQ[~uh^^^0O]0kz0 ; 0 0]O]]kz] ; ] ]VO]VkzV ; V V=APAy_O]_  _=_ _y]kz]VVVS_SX    _{_U  UUUS_  _{__UV{VPSV  VVS]  ]{]]]gUUUUU"Up"pU2KUP___%_`__   % `     % `     % `  IPP=]]]%]-]W`]]D~~%~`~~R\\%\`\\T}TU}UPu}uUUU UU U>HUUTXUXSS%SST  %  T00%00]]%]]]~Q~%~~Q~\%\\%\.?U3?UE_US_UhUvUSWS W 0W0:~]^rUwUUUUU5P&7U+7UHYTTHYUUHOPOYuumwUUT|TU|UPu|uUU0;O0]k0/0^;O^]k^/^\/\P\]k\\];O]]k]]/]^;O^",UU\_m\;\]_m];p]P~P~~Qh~hmPm~~z~~%U~  ~; " ~  ~;BPBM~ ~^_m^;|^P_dPdh ~##\Q_\my\  \ " \x  \$ 2 \T ^ \  \]Q_]my]  ] " ]x  ]$ 2 ]T ^ ]  ]*P+[P[_~Q_Px  P$ / PT [ P  P  0N^Q_^  ^*XQ_X[wPmqPhwUmsUmwUmsU(^(Bz  ^     " ^|U  U  U  U(^^  ^  ^U\  \P(\\  \  \(]]  ]  ]0B^z^  00B^z^PZUyUbuUUP~~%U~ x ~ ~0%U0 x 0V%UV  V x VP~%U~ x ~GKPK~S%5S  S GS& X S~~5D~DMTMU~  ~:~!;~T~~T~:~~Q~~Q~:~Q~~Q~:S 0SMUQ U QMTTMVVoXXzPPz}Q}v#v#s  ^|  ^BUBDQUQDTTDRR(DXX3DPP36Q6Dr#r# U  U  U  U0UouUUouUU$*UU$*UU5;UU5;U;^^EU^^EU^;VVVV;]]]]USI k S  SU I k    U0I k 0  0]  ~  T  ~x  P$ / PT [ P  0 $ 02 T 0^  0  P  \2 P \  P  \ $ \^  \  ] $ ]2 T ]^  ]%HP6JU>JUeV X]UPUU>0>SPSw>2>1> wwww w(w0w8 "w " "w8 " "w0 ""w(""w ""w""w" "w "2wUj!\j!!U!"\""U"@#\@#^#U^#w#\w##U#'\'(U(<(\<((U(i.\i..U.1\11U12\22U22\Tj!Tj!!T!w#Tw##T#1T11T12T22T22TQj!Qj!w!Qw!"V"w#Qw##Q#1Q11Q11V1D2QD22V22Q22V0xVj!"0#&V&&VQ''V('(V((V**V**V*z,V,n.V.0Vq01V1101D2VD220"0"V#0^#2011P22P22^22Pj!m!]11]D22]22P22xV#&V&&VQ''V('(V((V**V**V*z,V,n.V.0Vq01V1D2Vj!\"@#\@#^#U^#w#\w##U#'\'(U(<(\<((U(i.\i..U.1\1D2\drPr~606~@#V#~w#&0&6'0Q''0''~'(~('(0<(H(~((0**0**0*z,0,101D20VS!V!#!v#!j!V"#V#)#v^#w#V&&V6'Q'V'(<(V(*V**V**Vz,,Vj!0"@#0@#V#_^#H&0H&M&PM&m&_m&&0&&_&101D20--P-d.]./]0!e!0#@#0w##0&&0&6'0Q''0((0X)j)09*j*0++0++0-.0.=/0/1010200 #!]""]#)#]#%0%&^('(^((09*j*]**^**0*+0+z,0,.^..T./^02D200#&0&&S&&P&&S((0('(S((0**P**S**0*+0+z,0,.S..Q./S02D200# &0 &&P&m&~m&&_&&0("(0"('(P((0**_**0*+0+z,0,/~//_02D2008S8j!0"@#0^#w#0#&0&&S&'0''S(<(0<(H(S([-0[-s-Ps--~-=/0=/D/Pd/101[1S[110102S02D20j!0"@#0^#w#0#'0(<(0(|-0|--P--_-.0./0/=/_=/101D20%0^060/A ^A j!0"$"0)"<"0<""^"@#0^#w#^#&0&&^&&0('6'06'Q'^''^('(0'(/(P/(H(^((0(X)^X))0)*^**0**^**0**^*00[01002D20d0j!V"#V##v#)#V^#w#V&&V6'Q'V'(<(V(*V**V**Vz,,VZkT/0TZkU/0UZaPaku/0uU&&U !TN1R1T cS&&S&&SQ's'SN1[1S102S P!sN1R1s.cS&&S&&SQ's'Sm]&6']0q0]11]m^&6'^0D0^[0q0^11^cS00S[0q0SPS('6'S11SxtV&6'V0q0V11VU'"'UU''U U' 'UXT^#e#Te#w#/(6(T6(<())T)*P^^#w#^/(<(^)*^T~)*~^)*^])*]R~)*~f j Pj  ]]2!j!]X))]^+!j!^X))^SP#!SG!Q!PQ!j!S")#S^#w#S&&S6'Q'S'(<(S(S)SX)_)P_)j)S)^*Sj**S**S**Sz,,S_6!j!_X))_PX!j!P]")"]O""]^#w#]&&]'(<(]))]**]'^")"^'(*(^))^PPP")"PO"Y"P'(/(P))P_")"_O""_^#w#_&&_'(<(_))_**_Y")"Y'^O"l"^^#w#^/(<(^)*^l""^&&^6'J'^**^""06'J'0""^6'J'^""]6'J']P ]""]()]""T""~6'J'~  U""U  U""U7  ^)"O"^F P U)"6"U #!0")#0**0z,,0 #!^")#^*\*^j**^z,,^ #!S")#S*^*Sj**Sz,,S  P  ]"#]*+*]  ]j*z*]**] !#!]#)#]@#V#~&&0'(~@#V#~# $_((_+8,_#$^((^+!,^##P##]##P#&]('(]((]**]**]*+]++]++P++]8,z,],-]//]02D2]##Q#$~((~+8,~##P((P $ %_((_**_++_8,z,_02D2_$$^((^**^++^8,z,^02D2^$G$PH$$P$$((P**P8,?,PJ,S,0 $$Q$$~((~**~++~8,z,~02D2~6$G$X((X$$P((P$$U((U$$U((U$%T%e%((**T******:+_+++++T++0252T52>2>2D2$%U**U++U02>2U$%T%#%~++~$%U%0%^++^0%4%P4%e%^((^**^:+_+^$%R%e%~((~**~:+M+~++~j%~%U((Ut%~%U((U%%U((U%%U((U%%P%&~('(~**~,/~%& &('( &** &,/ &%& ('( ** ,/ %& ('( ** ,/ %3&R('(R &&^"('(^**^,.^..T./^&&S,.S..Q./S&&~**~,/~4&;&P4&& ** ,/ 4&&0**0,/0,,U,,U,,U,,U--Q-._./_--U--U-.U..U.4.U(.4.U&&S''U<(B(U000''U<(B(U''UH(N(U''UH(N(U''UU([(U''UU([(U'(Se((S''Se(u(S'(^u((^''^u((^m!!0m!!P!!wm!!1m!! 22w22w22w22w 22w(22w022w82@w@@w8@@w0@@w(@@w @@w@@w@@w@dw23U38V88U89V9O?UO?@V@@U@@V@@U@"BV"BBUBqCVqCDUDDVDEUE*FU*F_FV_FFUFGVGGUGHVH`IU`I;KV;KKUKKVKKUKLVL/LU/LLVLMUMMVMNUNYNVYNgNUgNOVOPUPQVQZRUZRRVRRUR%TV%TVTUVTUVUVUV3VV3VDVUDVVVVVUVRWVRWcWUcWWVWWUWWVWWUWXVXXUXXVXXUX{YV{YYUY'ZV'Z8ZU8ZEZVEZqZUqZZVZ[U['[V'[]U]]V]]U]^V^^U^ _V __U_;`V;`G`UG`y`Vy``U``V`XaUXaaVaaUaaVaaUabVb&bU&bKbVKb\bU\bybVybbUbbVbbUbcVc1cU1cccVcccUcKdVKddU23T39~O?@~@1B~BC~DE~E*FT*F:F~:F_FSFG~GI~`IpK~KK~KKSKLTLL~/LL~MYN~gN9R~ZRR~R1T~VT{Y~YEZ~qZZ~['[~]]]~]^~^B_~_`~Xaa~ab~bc~1coc~cKd~23Q3@\@E\E FQ FZF~_FK\KK~KL~Ld\23R39~9O?RO?@~@@R@@~@@R@1B~1BBRBC~CDRDE~EERE*FR*F_F~_FFRFG~GGRGH~H`IR`IdK~dKKRKK~KLRLL~L/LR/LL~LMRMYN~YNgNRgN P~ PPRP9R~9RZRRZRR~RRRR#T~#TVTRVT V~ VVRV8V~8VDVRDVV~VVRVWW~WWcWRcWW~WWRWX~XXRXX~XXRX{Y~{YYRY,Z~,Z8ZR8ZEZ~EZqZRqZZ~Z[R['[~'[]]R]]]~]]R]]~]]R]^~^^R^B_~B__R_9`~9`G`RG`w`~w``R``~`XaRXaa~aaRaa~aaRab~b&bR&b~b~~bbRbb~bbRbc~c1cR1cac~accRcKd~KddR23X39~9O?XO?@~@@X@1B~1BBXBC~CDXDE~EEXE*FX*F_F~_FFXFG~GGXGI~I`IX`IpK~pKKXKK~KLXLL~L/LX/LL~LMXM N~ NNXNYN~YNgNXgN*R~*RZRXZRR~RRXR1T~1TVTXVTW~WWXW{Y~{YYXYEZ~EZqZXqZZ~Z[X['[~'[]]X]]]~]]X]^~^^X^3_~3__X_`~`XaXXaa~aaXa2b~2b\bX\bb~bbXbc~c1cX1coc~occXcKd~KddX2308803@>@]oBB]EE]E_F0AI[I~[I`I]KL0UU0UV0kVV0cWW02308803@@SFBBSEESE_F0AI`ISKL0UU0UV0kVV05WW0XX05818O?1v?3@1/AFB1BE1EE1_FI1`IK1LR1RU1UU1DVkV1VV1nYY1EZ^1^&b1bd15808O?0v?3@0/AFB0BE0EE0_FI0`IK0LR0RU0UU0DVkV0VV0nYY0EZ^0^&b0bd02909O?VO?@0@@V@FB0FBBVBC0CDVDE0EEVE_F0_FFVFG0GGVGI0AI`IV`IpK0pKKVKL0L/LV/LL0LMVMYN0YNgNVgN9R09RZRVZRR0R1T01TVTVVT{Y0{YYVYEZ0EZqZVqZZ0Z[V['[0'[]]V]]]0]]V]^0^^V^B_0B__V_`0`XaVXaa0aaVab0bbVbc0c1cV1coc0occVcKd0KddV2.@0.@3@V3@>@~@FB0oBB~Bd0]<<  $0.5[[  $0.2303303+40+4Z4_Z4)5059099P99099P9]<~]<=0==^==U==^= >0 >>P>P>^P>%?0%?O?~v?3@0@@0@A_AA0AB[BFBBB0BqC0qC~CP~CCVCD~DD0DD[DEElE~lEE^EE~EEPEEVE_F0_FF~FF0FF^FF~FF^FFPFF^FG0GG~GH0HHPHIV`I;K0;KHKPHKpKVpKK~KL0L/L~/LM0MM[MNNO0OOPOPVPQ0QQ[Q9R9RR0RU0VDV_DV5W0cWW0WW_W#X0#XQX_QXX0LYY08ZEZ0EZLZPLZqZ^qZZ0ZZ^ZZ~ZZUZ[^['[0'[5[~5[L\0L\_\P_\t\^t\\0\]]~]]d]Pd]]V]]0]]~]]^0]^g^Pg^r^~r^^0^^_^ _0 _B_B__~__~_&b0&bIb_Ib\b~\bb_bb0bb~boc0occ~cKd0Kdd~2404404<5^<55059099^9:0:N:^N:f:0f:v:Pv::^::0:;^;5;05;E;PE;q;^q;;0;;^;<0<<P<@<^@<<0<<^<3@0@A0/A"B0"B;BP;BFBVBB^BDC0DCD^DDPDD^DD0DDPDEVElE^lEE0EE^E_F0_FoF^oFtFPtFF^FG0GG^GH0HI^`IK0KK^KL0LLPL/L^/LM0MMPMNVNO0OP^PQ0Q RP R9RV9RR0RW0WW0WAX0AXQXPQXcX^cXX0XX^X%Y0LYY0Y Z0 Z8Z^8Zb>0b>f>Pf>*?~O?3@0@FB0BC0DE0EE_E_F0FF0FF0FG0GG_GI0`IL0/LL0LM_MYN0YNgN~gN9R09RZR_ZRR0R1T01TVT~VTEZ0qZZ0ZZ0[[0\!\R!\,\,\C\RC\d\~\]0]]]0]^0^.^~.^^_^B_0n__0_`0`2a~2aXa_Xaa0aa_ab0bb_bc0c1c~1coc0cc_cKd0wdd043k3Pk3888P8E_FKKKPKKLUUUPUkVkVVPVd3k3U88UKKUUUUkVVUW3k3Pk33~88~88PUU~cWW~W3k3U88Ug33]UU]33P33]88]cWW]a33S88SUUS33TXXT34]44U48]83@]@FB]BE]_F"I]`IK]LU]UU]VkV]VVUVcW]WX]XXUXd]33P33}XXu448383@3@FB3BE3_F"I3`IK3LU3UU3DVkV3VV3WX3Xd3444_@@_@A_VV_WW_W#X_XX_?4Z4P@ AP AAWWPG44_@@_@A_VV_WW_W#X_XX_m44TVVTm44]44U48]83@]@@]AFB]BE]EE]_FI]`IK]LR]RU]UU]DVkV]VVUVV]WW]X^]^&b]bd]m4w4Pw44}44uVVu44^@@^A/A^XX^LYiY^44p@@p5%5T8Zan=r=Pr==~GG~LM~.===R==n=~GGR2aPa~==RFFR==TZZT==^==U= >^FF^ZZ^ZZ~ZZUZZ^==P==~==uZZu= >^FF^>s>^lEE^FF^^^^'>=>plEEp=>s>^FF^^^^>>>%?V%?*?YNgN1TVTV```2aVc1cs>*?~YNgN~1TVT~`2a~c1c~>%?VYNgNV``Vc1cV>%?~YNgN~``~c1c~>>R>>~``~>>P>%?_YNgN_c1c_>>_``_6?O?_3@>@]oBB]AI[I~[I`I]3@>@]oBB]>@@SFBoBSBBSC@M@SBBSM@@VFBoBVR@]@V_BoBV]@@~FBYBRYB_B~z@@\@@\-B@B[EE~:F_FRKKRKK\II^RR^ II^RR^I"I_RR_I"I_RR_GXX_^^_YXX^^^^{YY  [[  \!\R!\,\==0L\i\Xi\t\L\i\Xi\t\&^r^_bb_.^F^RF^r^~bbRbb~%?*?0]^r^^]^r^^ddwddwddwddw ddw(ddw0dHewHeIew0IeJew(JeLew LeNewNePewPeXewXeeweew0eew(eew efwffwffwfgwd\>BUBz\z0͈^͈e0eˉ\ˉ҉P҉V&?0?^0\ċ0gh0Nhi0ii_i j0 jjPj2jV2jAj0|jk0kkSkk0ll0m{n0nn_no0op_`pp0pp_pq0lq|q0|qqPqr_r s0 sJs\Jss0ssVst0t5t_t u0 u0uS0u?u_Ou`uV`uu0uuPuuVuv_v0v0?vv0vvPvvVvv_v w0 w*w_*ww0ww_ww0wx_x/x0/x?x\Ox^x0^xexPexpxVpxx\xx0xx_yVy0VycyPcy~y_~yy0yy_yy0yy_Iz {0;{{0{{V{|0||V|Q}0Q}[}P[}f}Sf}}V}}0}}_}]0]gPgr_r0hu0uS€0 0 8_8x0xj_jVZ00_P&__00߆_߆U_j0juPu_e00&ċ0Dhh\|jNk\p/p\DpIp\tu\xx\jzz\}#}\r\\́\\͈\-hDhv#@D$0.Nhh | $0.|jNk | $0./p=pp@D$0.DpIp\tu | $0.xx | $0.jzz | $0.}#} | $0.r | $0. | $0.́ | $0. | $0.͈ | $0.-hDhv#@D$0./p=pp@D$0.>pIpPgh0hi]iiSii0i'j\|jj0jj]jwm0mn]nn0n=o]=oYq0qq0qqPqr]rr0#s]s^]ss0st0t5t]tt0tu] u0u00u?uS?uOu0Ou[u\[upu0puu\uu0uu\uv0?vv0vv\vv0vv]v w\ wx]xx0x?x^?x^x]^xpx\pxx^xx]xx0xx]xy0yy]yy0yy]Izjz]jzH{0H{|]D|}0} }U }}]}}0}f}_f}}\}}0}}S}~]~~07rSr]0]0 ] 808K]Kx0xj]j0*N^NZ]Z0΄]΄ՄPՄ]R_0y^]>303\]U]0a]ap\p]͈0͈]e0e]^ˉ&0&?]?0]0]U0Uċ]mm0mp~uv~?v w~*ww~?xpx~xx~xx~.yy~yy~zz~D|}~ 8~j~~_0~/p~~~ˉ0U~gAj0|jm0mmPmn^n)o0LooVop^pp0rs0st0t5t^tv0v0v0?vhv0vv^vv0v w^*ww0ww0x?x0?xpx^pxx0xx0xx^yy0yyVyy^Izz0zzVzD|0D|}S} 0 8^8x0j^0Z00_0^P^0߆/0I^0p^p0V0eSe0V0UVUċ0gAj0|jq09rr0rDs0DsJsPJsgs_gss0s5t0t w0*ww0wx0x/x_/xpx0pxuxPuxx_xy0yy0Izz~0z~~_~K0x0';0j*0*Z_Zċ0hhT;{?{Th7h\Ip`p\ {;{\;{?{U?{H{\h hP hh|;{?{u"h7h\Ip`p\hhT~~Th-i\u u\xx\Izjz\~~U~r\ \͈\hhPhh|~~uh-i\u u\xx\Izjz\r\ \͈\hh~hiVii~xx~xxVy.y~IzjzV Vp~͈V&?~hi]xx]xx]y.y]Izjz] ]p]͈]&?]iiVxxVxxVy.yVpV&?Vii]xx]xx]y.y]p]&?]!ii^xx^y.y^p^&?^KiOiPOiiSxxSy.ySpSiKiSxxS&?SiiS0u?uS|0|S}}SiiT}}TiiUi'j~Ou`u~puu~uu~H{D|~f}}~}}U}}~8K~~iiu}}u}}~#ij\puu\uu\ jjSuuS{{0 jjSuuSj'j\Ou`u\'j:jVssVAjrjSssSttSAjQjSssSQjsjVVjgjVjjT} }Tj(l]ss]tu] u0u]?uOu]xx]yy]jzz]} }U }f}]r]+]9]]͈]?]jjPjj}} }uj(l]ss]tu] u0u]?uOu]xx]yy]jzz]}f}]+]9]]͈]?]kk~kkVkk~xx~xxVyy~jzzVV͈V?~kk^xx^yy^jzz^^͈^?^3kkVxxVyyV?V3kk^xx^yy^?^Bkk_xx_yy_?_lkpkPpkkSxxSyySZS_*__ll^tt^_msmT>BT_mm\v0v\_c\>\>BUBK\_mimPimsm|>Bumm\v0v\_c\nn0?x^x00a0nn^?x^x^^a^nn]?x^x]]a]HnLnPLn{n_Ox^x_H_nnV?x^xVޅVaV{nn^?xOx^nn]uu]?vCv]vv]]]n}o_uv_?vCv_vv_xx_zz_/j__ap__:_nnpuupn}o_?vCv_vv_xx_zz_/j__ap__:_o%oTToo]xx]zz]/]U]ap]]?]ooPo%o}u2oo]xx]zz]/]ap]]?]Xo^o^ooSooyyzzSSUSLooVyyVzzVVVUVzooSyySS?USzooVyyVV?UVoo_yy_ _?U_ooPoo]yy]]oo]?U]op^xx^ppSppT߆Tpq_vv__߆_߆U_ppPpp߆upq_vv__p qTTpsS0v?vS w*wSw?xSpxxSxySyyS}~SKjS_SUċSpqPq qssqs00v?v0 w*w0w?x0pxx0xy0yy0}~0Kj0Z0_0Uċ0q|q_0v?v_xy_&R_RVUV__9qKqPKqUq#hRVu#hxx0xxZxy0xyZqqTx|TqYr\ w*w\ww\yy\x|U|\'j\qqPqq|x|urYr\ w*w\ww\yy\'C\9rr]wx]C]]΄]9rDs_wx_/x?x_}~_~~_C_*_΄___9rs^wx^}~^~~^C^^΄^ċ^zr~rP~rrVwxV΄VDrzrVV';VrDs_ww_/x?x_}~_~~_*____rr]ww]]rrTTrrUrs~x?x~pxx~}~~Kx~Z~U~Uċ~rruu~#sJs^/x?x^pxx^DsJs\pxx\z~~0DsJs\pxx\Sss^x/x^~~^Kl^]ss_xx_~~_gssV~~T~~VKxVgssS~~SKxSussPsss#p~~s#pt5t\~yy\yy\\t5t\yy\5tDt_0zIz_:tDt_0zIz_DtTt]yz]ItTt]yz]Wtt^z0z^\tft^z!z^ftutX!z*zXktutX!z*zXOvdvTTOvdvUdvv~v w~^xpx~D|}~j~~U~e~Ovdvuu~#vv^v w^^xpx^vv\^xpx\||0vv\^xpx\vv^aw~wU~wwQUQawwTTaww]e]ewwYYpww[[pwwPPww\ww\T{Z{~Z{{_{{~{|_8K_Š_Š~H{|]8K]]v{{_{{__v{{]{{]]{{VV{{P{{V{{VŠV~{{S{{SSP|V|V||_|||}_;_;eD|}SeSr||_||_ e_r||S||S eS||]||] e]||P||V||V;eV{||V 4V#}f}\kk0Q}f}_Q}f}_}z~Vz~~~~VUċV}~]Uċ] ~z~V~~VUV ~z~]~~]U]~G~^Ui^G~K~PK~z~^~~^q^~z~_~~_Ul_q_/rSii0]r^]r^[Vp^^@^ap^oo0j\j\Ћҋwҋԋwԋ֋w֋؋w ؋܋w(܋w0w83w34w845w057w(79w 9;w;=w=@w@qwЋUOVOkUk,V,>U> V !U!CVCUVNUNVU+V+(U(OUO?U?V+U+`V`GUGVUOVO:U:VlUl{V{U.V.NUNpVp}U}VݺUݺ V =U=mVmʻUʻVNUNRURƼVƼټUټV>U>VU V UVUsVsU=V={U{VIUIVU V -U-\V\qUqVUVlUlVUDVD`U`VUVEUEVUV U SVSUV;U;VU*V*?U?VUVU^V^U1V1FUFuVuzUzVUVU,V,UV*U*YVYnUnVNUN}V}UVUUUVUqUЋTSkTk,S,>T>OSO(T(OSOmTmSXTXuSuTSTSTSTST&S&qTЋQkQk,\,(Q(OQOmQmQ\Q\Q\QQQ&\&qQЋ0ϐ~k,0>w~Ni~+~(O0:~~.~NX~}~m0 ~h~{;~I~-~l0~`~E~t~1~;~0~%l~~z~,~~n~0N~~0&0Ћ0ӏ\k,0>ߒ\(O0:\.\}\m0 \-\`h\m\\E\\0\\n\0\0&0Ћ0 }k,0>ߒ}}+}(O0:O}.}}}m0 }O}{!}I}}[}`}}E}} e}};}0},}}n}0}0&0Ћ0ϐ~k,0>w~Ni~+~(O0:~~.~NX~}~m0 ~T~{*~I~(~lI~`~E~~#~;~0~%l~~z~,~~n~0N~~0&0Ћ0ϐ~k,0>w~Ni~+~(O0:y~~.~NX~}~m0 ~h~&~{~I~~l~'~`~~Eo~~ <~~;~0~%L~~z~,~~n~0Nr~~0&0Ћ,0>ޥ0q0ky]y}ֻP]]]k^q^^^^&^2CP[lPPϐ~>w~Ni~+~:y~~.~NX~}~ ~h~&~{~I~~l~'~`~~Eo~~ <~~;~~%L~~z~,~~n~Nr~~ϐ~>w~Ni~+~:~~.~NX~}~ ~T~{*~I~(~lI~`~E~~#~;~~%l~~z~,~~n~N~~ }>ߒ}}+}:O}.}}} }O}{!}I}}[}`}}E}} e}};}},}}n}}W\W/S/k\>\ВSВߒ\ߒS\צSצN\NSè\èS\S/\/ɩSɩ\+S+\(SO߬\߬ S ?\?S+\+mSmG\GS\OSO:\:Sl\l{S{\SN\NpSpR\RqSq(\( S -\-mS/S/N\NSټ\ټS>\>S\)S)S\SS\HSH\S(\(HSH\bSb\S'\'xSx\S-\-ISI\RSRl\l S `\`S\SS\lSl\Sz\z,S,\S*\*nSn\S*\*S\S\&jSjq\~ϐ}>~}~w}}i}Sz}+}O߬}:}}.}NX}}} }}h~{;~I~-~l}E}}1~;~}%l}}z},}}n}N}}OVOkU> V !U!CVCUVNUNVU+V+(UO?U?V+U+`V`GUGVUOVO:U:VlUl{V{U.V.NUNpVp}U}VݺUݺ V =U=mVVNUNRURƼVƼټUټV>U>VU V UVUsVsU=V={U{VIUIVU V -U-\V\qUqVUVlUlVUDVD`U`VUVEUEVUV U SVSUV;U;VU*V*?U?VUU^V^U1V1FUFuVuzUzVUVU,V,UV*U*YVYnUnVNUN}V}UVU&UVUqU80>O0Ӥ}N~Sm~mzPO_}0-0 0 ϐ}>ߒ0ߒw}}i}Sz}0^+0O߬}:0}.0NX}}0 0}-0l}0E00}0%l}}z},00n0N}0k0>;0;}}0N}Nߧ0Sz}+0O߬}?k0k{}+P0PX}G0O0:0l{0.0Np0}0ݺ 0=]0]m}ټ}>P}P0 0}0l0E00l00z,00*0N00&j0k0>03V3WSWaPaVUV0NVN0/V/0SV+0+?V?DPDOVO_S_V(0O߬V߬0?V?0+V+m0mGVG0VO0O:V:0lVl{0{V.0.NVNp0pVRVRq0q}V}0V 0 -V-m0"0N0V0ʾ0ʾV0V 0 V'I0IVR0RVURVRwSwlVl0EVE00Vl0lV0zVz,0,V0V0*V*0NVN0*V*0V00V&j0jqVk0>0~0N~N0S~+0+~(0O߬~߬ 0 ?~?0+~+m0mG~G0~O0O:~:0l~l{0{~>0>N~Np0p~R~Rq0q}~}0(~( 0 -~-m00~0(~(I0I~R0Rl~l0E~E00~0z~z,0,~0~0~0~0*~*00 ~ 0~00&j0jq~k0>0~0N~N0S~+0+~(0O߬~߬ 0 ?~?0+~+m0mG~G0~O0O:~:0l~l{0{~>0>N~Np0p~R~Rq0q}~}0(~( 0 -~-m00~0(~(I0I~R0Rl~l0E~E00~0z~z,0,~0~0~0~0*~*00 ~ 0~00&j0jq~k0>0~0N~N0S~+0+~(0O߬~߬ 0 ?~?0+~+m0mG~G0~O0O:~:0l~l{0{~>0>N~Np0p~R~Rq0q}~}0(~( 0 -~-m00~0(~(I0I~R0Rl~l0E~E00~0z~z,0,~0~0~0~0*~*00 ~ 0~00&j0jq~k0>0~0N~N0S~+0+~(0O߬~߬ 0 ?~?00:0#@0l{0{~>0>N~Np0p~0q0q~˸0˸~ 0 -~-m00~0(~(R0Rw~l~l0E~E0k0k~0~_0_~0~~~0*~*00 00&j0k0>0VӤ~(0O_~߬m00000&q00ˌPˌ^80G0č^čz0D]DW^Wӏ0E0s0Őϐ0P^"0>O^\v0v^0В0Вߒ^#000,P,^0v0Pڕ^ڕ0;00V0P\0^0T^Tf0p^0ڟPڟ^#0#b^b0Т^ТޢUޢ^0P^00ʦ^N^Pǧ^{0{V0\^0/^/0PVz^0^Ϫ0P^0+4P4?^?o0oޫ^ޫ0(0߬0P \ ?0k+0PG0G^0/^/4P4?^Oi^i0ɰ^ɰ#0#BPBf^0^0!ݳ0ݳPV#@0l^.].N0p0R^R\P\qVq^0P0^0G0GKPK`^`}0}]˹0˹ӹ\ӹ0 $U$-^-=0]m0"0N[0>P0^0(00P(^(0P^'\'0Q^Q0^'?0O00P^0U{^{0IX0X^P-^q~^0^R0R^P^w0404p^ptUt^606l^0`0E0E^ ?0?S^?e0erPr^0P^0]%0l0L^LPUP^0 P F^^z0 P ,^,3P3k^k0^0P^0^0R0b0^P^0PV^~^0]*0*1P1n^n]N0NUPU^0P^]0^0&-P-j^q00P%]%&U&R]R0}A0AbSb0]k0>DPDv]v0}0ߒSߒn0,c0+0+;P;`0{0{P]U˗]˗0Od0dؘ]ؘ/0/IPI͞]֞͞ ~3$s"#۞ˡ0]0D0Dx]x00N]N0ǧ0ǧԧPԧߧ}ߧ0]0/]I{]{/0/]z0Ϫ]Ϫ+0?o0oʫ]ʫ(0߬P]k0P0m0/0Oi0itPt]ɰ0ɰ\]\O0O\P\}]{0{]0>0>N]N`0p0R0R]00]0G0G`]`˸0˸]0]-0=]0"0Nټ0>P0PWPW}0ͿR~R~( 0 P S ;0;KPK]O0O]00I]IMUMX]X_P_]0I]I0E]EIUIR]RV0V]0606l]l0`]`dUd]E0ES0;};}0}P}00l00U]U\P\]0k0k]0]0]0]~0~]0*]*0 0 5]50*]*0]00$P$[][0&q00Ս]N0N_k0>v00]_060%0Y_0z_0fX~ƚ0ך}ʛ0ʛΛPΛ~ǝ0r_0P_O0D3_300N_Ni00_I_è0X~/~/_+0?_0__0(_߬_~ ?_S0@0P`0m0/0Oi0ر_ر0_0_{0{_.0.>}N00_0G0G`_`0}˸0(0(_ݺ^ݺ 0=M0]m0N0>00__0 _ i0isPs~'_00I_I0ER0lS_0_p06l_l0E_E0 _  U _0;]T^]L0_l0l}0^0_*US ,0,k_0~_~P_}0ES_~00*0N_N 0 ~~P%~*^_0_u0uySy~}&q0}##@D$0.  } $0.sp1.iǕ\\i\Ϫ } $0.p@D$0.&+]?k\+P\=]\p1.-\L\\, } $0. ]Őϐp2.p2.ԜPϪ]&+]+P,]PPPJQP}##@D$0.p@D$0. +PVsPŐPߒP}N^P^i}$PlsPk0>C0CV;0)0ӛ0ӛכPכ~0[ڝ~ڝ 0Ir0r[~00>[>N}N0V/0{0è00/~z(0߬V i0~ɰ0ɰ[B~B0 0R0q0ݷ[ݷ0~0G0GP~`(0m00S(00S|0|P~O000[0~0U[0 ~ $U$7~70"["E~E_[_00N 0 ~P0~*0~00S0&q0O0\Ir0r^D0D~I{0/\o~ɰ#^\{~Rq\q~^OY\0R06g~*~^U0_0\~~0k0>Ę0ĘߘPߘZ-~0 Z <~<Q0Q^ܛ0ܛ~A00¡Z¡ޡ~ޡi0iPẒ~)00>Z>N~N0~0^$P$/~/0z0~0߬0 ^?O0ر0R00G0`m00~0(S(i~'0'+U+9~9Z0P~'0'8Z8O~OVPVZ0 ~0Z$0$(U(6~6=P=lZl0~.Z.E~E00L07,0k00_00 0 ~$P$0~*000P0&q0_S0 $S50SSSk0>0ÞPÞpSp00)>S>Q0QaPaq0q{P{S00NSN0z?0?DPDOVOoSo0ʫPʫS(0߬(0?f0fSر0W0WS0:@0@OSO]0l0PSp0pS020Rq0quPuSm00QS"P"RSRYPYpV050E00PS0S0PS$0cv0~00 S 00&0P^#0#*P*J^Jq0^>v^{^^X^ՍSOSS{SIXS;?SS%]%&U&]Ov]]T]{I]IMUMX]P%}%&uIMuG]\v]]T]{]TT^v^U^;L^^P~u^v^;L^z]] ]]ϐ~Q~w~Ni~+~:~~.~NX~}~ ~~l0~`~E~t~~~%l~~z~,~~n~N~~bvT  Tb___ _  U _blPlv  u___~A\AD~.~}\\~n~\D].]}]]]n]]̎A\.\\n\̎A].]]n]ێA^.^^n^  P AS.SnSՎ SSM ^ߒ^^+^:^^^Wӏ\В\:\`h\m\\ϏT`dT]Ϫ]`]`dUdm]ŏPŏϏ}`du܏]Ϫ],ATT,AUAϐ}ߒw}Ni}}NX}}l}U}}%l}}z}N},Auu}#TT"SךSʦSNSS/ɩSɩ\(S߬ S?S+mSGSOSSl{SSNpSRqS( S-mS"SNSټ\ټS>\>S\)S)S\SS\HSH\S(HSH\SbSb\S'xSx\S-ISRSSSlSSzSS*nSNS*SS&jSPss"^l{^ TT ךSʦSiSS/ɩSɩ\(S߬ S?S+mSGSOSSSNpSRqS( S-mS"SNSټ\ټS>\>S\)S)S\SS\HSH\S(HSH\SbSb\S'xSx\S-ISRSSSlSSzSSNS*SS&jS Pss,0ʦ0i0z0+(0߬:0l0{0.0}0m0"0N0 0'0-l0E000z00,0*0N000&q0,^^^N`^ ^%l^U^N`P`j~#hu#h0XN`0T`XTTךSʦSiSS/ɩSɩ\(S߬ S?S+mSGSOSSS`pSRqS( S-mS"SNSټ\ټS>\>S)S)S\SS\HSH\S(HSH\SbSb\S'xSx\S-ISRSSS%SSSSSNS*SS&jSPss0ʦ0i0z0+(0߬0:0l0{00.N0`0}0m0"0N0>00 0'0-l0E000l0z0,0*0N000&q01ʦ1i1z1+(1߬1:1l1{11.N1`1}1m1"1N1>11 1'1-l1E111l1z1,1*1N111&q1^?O^^`p^U^F^ϓP~#hu#h1Y`p1dpY6^G^/^q~^@VpGdpV^/^q~^~TqzT~U}Sc}+8}=M}-q}qvUv}~uqvuvz}#0ʦ0i0z0+(0߬G00O:0l0{0.N0p0}0m0"0N0>00 0'0l0E000l0z0,0*0N000&q0^i^Sk^+@^=DUDM^^?G^”ԔPԔޔ~#h=Du#hSk0_kY+@04@YT?CTךSʦSSS/ɩSɩ\(S߬ S?SSkS@mSSRqS( S-=SMmS"SNSټ\ټS>S)S)S\SS\HSH\S(HSH\SbSb\S'xSx\SISRSSSSSNS*SS&jS P s?Cs!0ʦ00z0+(0߬S0k+0@G00O:0l0{0.N0p0}0=0Mm0"0N0>000 0'0l0E0L00l0z0,0*0N000&q0!^^?S^@P^MTUT]^^CUPU_~#hMTu#h?S0GSX@P0DPX^ʦ^ǧ^ݺ^Le^ǕqqǕ^ǧ^ݺ^Le^00ǧ0z0+(0߬?0k+0PG00O:0l0{0.N0p0}0=0]m0"0N0>000 0'0l0E00l0z0,0*0N000jq0 u* u*ǧ u*z u*+( u*߬? u*k+ u*PG u* u*O: u*l u*{ u*.N u*p u*} u*= u*]m u*" u*N u*> u* u* u*  u*' u*l u*E u* u*l u*z u*, u** u*N u* u* u*jq u*}ǧߧ}k{}PX}ݺU }]m}ټ}>}}Pqݺqu#p }##p"P"^ǧߧ^k~^P[^]h^>^^ u*G\T>GTG\U\}k{}PX}]m}ټ}>CUCP}}G\u>CuCG}#i00ߧ0z0+(0߬?0k+0PG00O:0l0{0.N0p0}0ݺ0 =0]m0"0N000 0'0l0E00l0z0,0*0N000jq0i{]ߧ]]k]P`]]ۺ]]dUdm]"]N]ټ]]*J]Op]u]P}#h]du#hk0wRP`0T`R%^ߧ^NV^[ټ^D}ߧ}/}߬}}`h}ݺ}-=}"}N[}[gRgټ}}ʾ}I}R}}*}̖Pp[gP !TNRT  V !U!CVCUUUzU+(U߬?U+U`GUUO:UlU{U.NUpU}UݺU =UV"UNRUR[VUU U'UlUEUUlUzU,U*UNUUUjqU P v !uNRuP__߬_{V߬V0{V߬Vq__I__`m_-=__Sq_ʾ___R_TEIT]U]/]ž]E]EIUIR]P}uEIu]/]ž]חTTחUD}}`h}-=}}Uʾ}חuu}#00/0z0+(0?0+0`G00O:0l0{0.N0p0}00 =0S0ʾ0 0'0I0Rl0E00l0z0,0*0N0*000jq0d]/I]]`m]-4U4=]S]]-P-7}#h-4u#h0[`m0dm[q_I{_0(00'O00Z-~~'8Z8O~_(__'O__DHPHV(V(VVDVV'?VZ Z_{_ _TTךSSS S(SʾS(HSH\SbSb\SSNSPss T'+T Z p~~ ~(~~(i~'+U+9~~~ 3~P z'+u2<ZZ^pXX~^ ^˹ӹ0^ ^XXךSèSS~\~.>~\l\~~\ך}.>}}l}}} \.>\\\ }.>}}}!^.>^^^OSPSS.>SSOSSǝ___/_+_mG_Oi_#@__0G_`}_˸_(_ _I_*_L_ -_7z____ W__=_[_^/^^^[^U'UUU_U^/^333z3+3 ?3+3mG33O:3l3{3>N3p3R3q}3(3 -33(3I3Rl3E33z3,3333*3 33jq3HT%TIWTWe~~~+~mG~~Oϲ~#O~~2~+~0}~˸~(~IWPW~~G~L~~~ ~~~~ z~,f~~~Q~~b~_~~c~~~~~~q~$>p>H~#s)%pIW ps)3H ts)% ts)IW ts)[ePm;P0GP˸PPR7q0GRƸRƸ˸qRq;U09U˸UU;Y˸YY}R;~#0G~#˸~#~#}QttP0Gt<GPm3#@3%Tm~#@~,GPGm^#@^2GPGm^#@^=T}#;}Tm^l3+33O:3#3@l33R303G}3(33z3,k33_3~33 33jq3lTխT7ETES~l~+~~Oϲ~@O~~2~+~G}~(~~G~L~~~ ~~~~ 7~7EPEz~,f~~Q~~b~_~~c~~~~~~q~}p~#s)խp7E ps) ts) ts)7E ts)PsP(PPRPoqRq#R#(qsUU(U9sY(YRs~#(~#Q1t19tPttPǭ3`}3ǭխTǭ~`}~ܭPS`}SPS`}S~`}~S)=TLPT)o^O^L^LPUPY^P^U7^ ^EZ^)3P3=~LPuJo^O^^P^U7^ ^EZ^T $T[ڝ~~ ~ $U$7~P{ $uНڝ[[TTU~~i~:~#~@l~R~0~G`~~U~,k~~_~~~ ~~jq~uu~#۞p0f00۞pSfSS۞p_f__*.P.f^^^b^p]f]]fpSfSp_ɰ_^߯^^^~^^ ^^Jq^__:_#_@l__~_V_c~_ _jq_+Z+J~Z~Qb~dhPh~ر~Q~lSSQ~S__ر:_#_@l_V_c~_ _jq_^߯^ر^^^ ^^Jq^~S~2S2:~#~@l~~~ ~j~qSРpp7KTptT7(^z^˸^^p^ptUt}^6^k{^%^7APAK~ptuX(^z^˸^^4^6^k{^%^¡T$(T¡Z¡R~~˸~ݿ~ ~$(U(6~k~~*~P¡z$(uԡޡZZ.S.~>N˸SkS_*S]>N]˸]k]]_]*]%.S.~>N~~_~%]>N]]_]4^>N^^_^dhPhS>NS_S.dSSRRޢT $TТ^ТޢUޢ^^ $U$-^^ǢԢPԢޢu#p $u#p^^)0 ?00E00PẒ~~.Z.E~)_ ?__E__PS (SSSS5S)Z(9Z)_?o__p_w_3QVO_VWqS?OSSSpSQSTTVUVVpVUVPvuuSSӤ}Sm~mzPO_}Ӥ}O_}Ӥ}_iRio}ݤ}_iRio}}o}R߬}}R}VoV߬V'VV'~o~R߬~1I~R~I~o~ϬSϬ߬~Sk~Sk~o~ɬRɬ߬~u~ɬRɬϬ~~oSϬ߬S~Ϭ߬S}oyRy}̥\N^!N^]Rq]]Rq]]]]]_˶__˶_[˶޶[ [˶޶[%ZZ%ZZ%uSS*4SS]q]ʫ]q]ʫ^3B[GU[8B[GU[Bf]kTTkS@OSSkuPussS@OS:0#0Ol0~0j0:]#]Ol]Y]c~]j]:^#^Ol^~^j^PS#SO]SjSS$ScvS7=~=˹]˹~]] ~ 3]3N~(__N_Y˹]ӹ] ]3N]Y˹_ӹ_ _3N_h˹^ӹ^ ^3N^P˹\ӹ\\3N\b\ \(Q(ú}úкQкݺ}}*}ݺ^^*^3}ú}O}3^ú^O^B\ú\O\rvPvVúVuV<rVOmVſR~0(S(S_0SS ^AD0  _  _-_ _o0o12 $2$mS10*2[ A^ *^3 3*3P P]$]^cS_L^]}Ss^"USES^^#^0Pw52 Ցߑ q1$q"#ߑXՑRwwww w(w0w8ww8w0w(w wwww U },U,<U<}ZUZU}tUt}U}UU_U_m}m/U/}"U"#}#G$UG$`$}`$$U$$}$.U.M/}M/0U0 1} 15U55}5L6UL66}618U18D8}D88U88}88U89}9OYUOY_}_`U`e`Ue``}`5bU5bc}c&cU&cxkUxk1l}1lmUm1o}1osUsgt}gt5{U5{{}{U}U},U,};U;}U}UA}AwUwǶ}ǶUT_S_,T,<S<ZTZSTSTS`T``S`5bT5b&cS&cT Q ,Q,<Q<ZQZQQVQQ`Q`-`Q-``V`5bQ5bcVc&cQ&cQ 0 P^,<0<;^Z0^t^^00_m^s^""^ #,#^`$p$^..^.M/} 191^55^?6L6^66^66^18D8^88^88^OYY^YZ}Z9Z^9ZZ}Z[^[[}[[^[K\}K\\^\]]^]]]}]i^^^N_^``05b&c0xkk^mn^nn^sZs^tvu^uFv^5{{^^ B^,z^;^^^^h^^[^Aw^ 0 },<0<}Z0}t}}00_m}/}"#}G$`$}$$}.;/}0 1}55}L66}18D8}88}89}OYY}ZZ}Zu[}[4\}K\\}\]}]^}^_}``05b&c0xkl}mkn}no}sYt}5{{}}g}~},Ӛ};}}E}\}&}4A}w\}j}д}޴}Ƕ} 0 |,<0<|Z0|t||00_m|/|"#|G$`$|$$|. /|0 1|55|L66|18D8|88|89|OYY|Z`Z|Z@[|[\|K\\|\]|]^|^w_|``05b&c0xkk|m;n|nn|s)t|5{{||3|~|,|;Ρ|||\ĩ||4A|w,|jҳ||޴w|Ƕ| 0 V,<0<VUVUZVZ0VtV00#V\vV_mVV/ V","V"\#Vo#p$V~$$V..V.M/_01V11_55V?66V67V18^8V88V89V9*9VgEEVEE_H IVOYYVYZ_Z6ZV6ZZ_Z[V[[_[[V[K\_K\z\Vz\\_\M]VM]]_]Y^VY^^_^>_V>___``05b&c0XggVjkVxkkVk1l_1lylVyll_lmVm|m_|mmUmnVnn_nnVn1o_1oyoVyoo_o\pV\pp_ppVp>q_>qtqVsJsVJss_ssVsgt_tuVuu_u6vV6vv_5{s{Vs{{_V_9V9_UԂVԂG_GV_V(_:aVVΏVV~_~V,jVj_wVw_V_VVhV?V?_ܨVܨ\_\V_[V_V4_4Vj_jV_gVg޴_޴>V>_ǶV]V]_VR_RúVú_SV_^V^ռ_ռV_ɽVVW_WV__V0V:V _ oVo_CVC~_~4V4_V_$VV@_0*0+0}q``P``]5bTbPTbfb}fbb]\``\5b&c\``PbbPbbP 5V5{_{|U|c_cdUd_U,_<VUVUZVVt_tV_ V _Uz _z  P  }\___mVm_OVO___lVl/_/ V","V,"\"_r""_"\#V\#o#_o#p$Vp$~$_~$$V$K&_^&._..V.e/_&0I0_00_01V11_$25_55V55_55P55}56_6,6},6?6_?66V66_67V718_18^8Vl88}88V88_89V99_9*9V*99_:D_DD}DgE_gEEVEF_FG}GH_H IV II_II}IxJ_KK}dPP_OYYVYZ_Z6ZV6ZZ_Z[V[[_[[V[K\_K\z\Vz\\_\M]VM]]_]Y^VY^^_^>_V>___`5b_&cXg_XggVgj_jjVjjUjxk_xkkVk1l_1lylVyll_lmVm|m_|mmUmnVnn_nnVn1o_1oyoVyoo_o\pV\pp_ppVp>q_>qtqVtqs_sJsVJss_ssVst_tuVuu_u6vV6vv_vsw}swz_5{s{Vs{$|_z|3}_3}7}U7}_V_9V9_UԂVԂG_GV_V(_:aVVą_ą}Ո_Ո}_<_8}4_4C}C_}4_ΏVΏ_W_ _V~_~V,_,jVj_wVw_V_V1}1_u_Vh_hV_?V?_ܨVܨ\_\V_[_[V_V4_4Vj_jV_gVg޴_޴>V>_ǶVǶ_]V]_VR_RúVúS_SV_^V^ռ_ռV_ɽVɽͽUͽ_VW_WV_V0_04U4p_pV _ oVo_CVC~_~4V4_V_V_ |<||t||_m|/|"#|G$`$|$$|. /|0 1|55|L66|18D8|88|89|OYY|Z`Z|Z@[|[\|K\\|\]|]^|^w_|xkk|m;n|nn|s)t|5{{||3|~|,|;Ρ|||\ĩ||4A|w,|jҳ||޴w|Ƕ| },}<}}t}t}}}# }_m}m}/}?"\"}""}"#}\#o#}G$`$}p$~$}$$}$K&}^&(})+}~+,}.;/}M/e/}&0I0}00}0 1}l55}55}5?6}L66}77}718}18D8}l88}88}88}89}:;}CC}DD}FH} II}IxJ}KK}dPP}OYY}ZZ}Zu[}[4\}K\\}\]}]^}^_}`5b}&cd}hFi}xkl}mkn}no}tqr}sYt}gtt}vsw}5{{}{}}ą}}<}8}4C}}Ώ}K}W}g}~},},Ӛ} }B]} }};}}1}}uO}}E}\}&}4A}w\}j}д}޴}Ƕ}}0:}@|} ^$P$}<}}t^^P}^}_m}/}"#}G$`$}$$})+}~+,}..^.e/}&0I0}0 1}55}L66}18D8}88}89}OYY^YZ}Z9Z^9ZZ}Z[^[[}[[^[\}\]]^]]]}]^^^_}xk1l}m1o}sgt}5{{}}},};}}A}wǶ} }<}}t}}_m}/}"#}G$`$}$$}.M/}0 1}55}L66}18D8}88}89}OY_}xk1l}m1o}sgt}5{{}}},};}}A}wǶ} <0<HPH}<0P}0t0}0 }_m0O}/s}s0","}",#0,#<#}O#\#}o##}G$p$}~$$}$$0$$P$$})+}~+,},,R,,}.M/0M/e/}&0I0}091}550?66}66}18D80D8^8}88089}gEE}OY_0Xgg}jj}xk1l01lm}m1o0sgt}tv}5{{0:a}0Ώ}0,0};};0}h}\0\}[}x0xǶ}}Sɽ}_}}p}@}P|;| |O|","|,#<#|O#\#|o##|~$$|D8^8|gEE|Xgg|jj|1ll|lnm||mm|:a|Ώ|נ|;||;|R||ռn|ɽ|@|WH||p| |g|~|2| r0rvPv,}<;0;},ZS0t}t0 }\_}_m0m}O0O/}/0","0,"\"}r""}",#0,#<#}O##}G$p$0p$$}$$0$K&}^&(})Z)},9,},,}.M/0M/e/}&0I0}00}0910l55}5505?6}?660660@7O7S77}718}18D80D8^8}l88}88088}890:;}CC}DE}gEIF}FH} II}IxJ}KK}dPP}OY_0`5b}&c0Y>0I0}0$20?5l5}l56066}6707909*909909d=0d=@V@A0AAVAoA0oAAV BBVBB0BCVChCYhCCVCCYCE0gEIF0FXH0XHHYHH|HI0IJ0JSJYSJdP0dPP|P`0`5b0&cr0ssw0sww|w x|6xz}z zU zz}z6zYvzzYz00ą0NVNqYqVYV$0$GVGY|004C0 0 IVI}Y}V Y ,V,;0;dVd10O00h0Y|0?V?YޭVޭY!V!sYsVۮYۮ"V"I0IxVx0 ,0<Z000VA^A\V\ 0 !V!!^!"V"\"0\"r"Vr"K&0K&^&V^&(0("(V)+V~+,VI-.V.M/0M/e/V&0I0V0101$2V?5l5Vl55056V6606?6V?66066V6707^80^88V88088V8909*909:V:C0CCVCD0DDVDE0gEIF0FGVGH0HHVHI0IIVIxJ0xJdPVdPP0POYVOY_0_`V`5b0&cr0sv0vswV6x6zVvzzVz5{V5{$|0z||0|@}V@}0(0(:V:a0aV0ąV0V<V<0V4CV4V40V0VW0W V 01V0uVuO00h0V00V0 ,0<Z00V 0\ 0"\"0r"K&0^&(0("(})+}~+,}I-.}.M/0M/e/}&0I0}010?5l5}l56066}6707^80|8808909*90:D0DE0gEIF0FH0HI0IxJ0dPP0OY_0`5b0&cr0ssw06x6z}vzz}5{0(0:a00ą00<08a0400W0 00uO00h0000 ,0<Z00 0 K }\ 0"\"0r"K&0^&(0("(})+}~+,}I-.}.M/0M/e/}&0I0}010?5l5}l56066}6707909*90990:E0gEIF0FH0HI0IxJ0KK0dPP0OY_0`5b0&cr0ssw06x6z}vzz}5{0(0:a00ą0004C00400W0 100uO00h0000 ,0<Z00K 0K ^Q|Q^?|?|^||^|F\|\ 0""|"\"0\"m"|r"K&0K&^&|^&(0("(|)U*|~++|++|,,|,,|I-.|.M/0M/e/|&0I0|010?5l5|l56066|6707909*9099099^:E0gEIF0FH0HH|HI0IxJ0xJJ^JJ|KK0INuN|NN|dPP0QR^R-R|TT^T^U|^UU^UU|UU^UV|OY_0_`|`5b0&cr0ssw06x6z|vzz|z{|5{0(0(:|:a0a|0ą0004C0040|0|W0 100u|uO00h0000 ,0<Z00K 0K j\j,^,-U-^\U\U\\\ 0 l \l "!^"!;!\;!O!^O!!\!"^""\"\"0\"r"\r"K&0K&^&\^&(0("(\)+\~+,\I-.\.M/0M/e/\&0I0\0101$2^?5l5\l56066\6707909*909909":\":H:^H::\:E0gEIF0FH0HH\HI0IxJ0xJJ\JK^KK0KL^LM\McM^cMM\MMUMN\NO^O+O\+O|O^|OO\OdP^dPP0P!Q^!Q7Q\7QzQ^zQQ\QQ^QQ\QQ^QR\RCS^CSQS\QSS^SV\VW^WW\WXUXX\XUX^UXcX\cXgXUgXX^XX\XOY^OY_0_`\`5b0&cr0ssw06x6z\vzz\zz^z{\{5{^5{0(0(:\:a0a\0ą000^4C004^40\0\W0W ^ 100u\uO00h0^00Ϊ^Ϊ\q^q\^0 ,0<Z00K 0K }SFSF\}\ 0 !S!"S""}"\"0\"m"}r"K&0K&^&}^&(0("(})+}~+,}I-.}.M/0M/e/}&0I0}0101$2S?5l5}l56066}6707909*9099099}q::S::}:E0gEIF0FH0HH}HI0IxJ0xJJ}JKSKK0KLSLM}MMSMM}MNSNuN}NN}NOSO+O}+O8OSdPP0Q-R}TV}VWSWW}WWSWW}WMXSMXcX}cXXSXX}X YSOY_0_`}`5b0&cr0ssw06x6z}vzz}zzSz{}{5{S5{0(0(:}:a0a}0ą000S4C0040}0}W0W S 100u}uO00h0000 ,0<Z00K 0K }u_UF_F\}\ 0 !_!"_""}"\"0\"m"}r"K&0K&^&}^&(0("(})+}~+,}I-.}.M/0M/e/}&0I0}0101$2_?5l5}l56066}6707909*9099099}q::_::}:E0gEIF0FH0HH}HI0IxJ0xJJ}JK_KK0K M_ MM}MM_MM}M8N_8NuN}NN}NO_O+O}+O/OU/O8O_dPP0Q-R}TV}V|W_|WW}WW_WW}WRX_RXcX}cXX_XX}X Y_OY_0_`}`5b0&cr0ssw06x6z}vzz}zz_z{}{5{_5{0(0(:}:a0a}0ą000_4C0040}0}W0W _ 100u}uO00h0000 ,0<Z00)0)*|+~+0~+,|,,|,,|,M/0M/e/|&0I0|040?5C90\9`0`5b0&c0400 ,0<Z00(0()Y)+S+~+0~+,S,750?5`0`5b0&c0,0*0f]~0~S0/S/0S0S 0\0PS'0'kSk{0{PS0V,0<0PSj0>S>L0L[P[}Z0t0000V S  0V  0  } e 0e u Pu  S c0ciPi|0PSq0qS@0QOSOl|l08OSO\0\lSl|P|S0L0LWPWISI03P3S)0)uSu0IZIh}M0M\F0F\S\303S303_S_0S@0@OSO0S0\S\P/S/ 0/ > S> L 0L l Sl  0  S  Z  } ;!0;!O!\O!!0!!S!!0!!\","0,"?"\?"L"VL""0""]"\#0\#o#Vo#p$0p$~$V~$$S$$0$$]$$0$$}$w&0w&&P&'S')0+g+0,-0-C.SC..0M/e/S&0I0S0910911}12Z2$2}$230340440.5V50V5l5Sl56066S66066}6 7S@7l70l77}77S780818S18^80^8l8}l8|8089099099}9909q:Sq:;0;;V;k<0k<<P<N=SN==0>E@0@@0@@V@A0A^AS^AoAVoAA0AA0iBB0BBShCD0DESEG0G(GV(GZG0ZGGVG I0 IISII0IJVJiJ0iJxJVxJJ0JJPJJ0JJZJJ}JM0MMSMP0PPPPdPSdPP0PPPP7QS7QQ0QQPQRSRS0SSSSSPSTSTbT0TU0UUPU^US^UU|UU0U1VS1VV0VV}W8WZ8WCW}CWX0 YOYSZ[0K\\0^_0`5b0&cd0zefSXgg0gg\hhSh1l01l=lP=l|mS|m1o0ptq0tqrSrv0Rwhw0swz0z0S0Q}"S=]S(0q$0щ008}804004S40Qm0Ώ0ΏSPS 0}0 d0dkPkԔSԔ0X}X}ɖՖXՖݖ}BYXt0P^909@P@`^`0 V B0B]V]v0vPS.0.:P:ƜSƜ0P͞S͞0 S 0V0X|10l00SP0S0ۮ0"x0x[S[0N^xǶ0ǶPSP\P\߸S߸0RSRf0fSSS0Z\WSW[0[S0SV0S0\0SS;S23S99SӀSąSl~SOlSѦS<SYhSwSjoSDQ0QH_H,0<Z00_0_m_m"0" #_ #$0$$_$)0+~+0,M/00`0`5b0&c0_T~_0_0x_x0DX0XX\X,0<Z00d0dm\m"0" #\ #$0$$\$$0$$\$)0+~+0,M/00`0`5b0&c0\Q~\0\0x\x0D\0\gSg,0<Z00h0hmSm"0" #S #$0$$S$)0+~+0,M/00`0`5b0&c0S~S0S0xSx0DP0P^0E|^|0%i0iV0^,0<0^>0>}^}O0O^U^b0brPr^Z000 ^ G0G_^_00@^O0V"0,"?"V?""0""^",#0<#O#^\#o#0o#G$^G$~$0~$$^$$0$$^$)0+~+0,M/0M/e/^&0I0^0910911^16066^6 70 7@7^@77077^7909*9^*9gE0gEE^IFH0H I^ I`0`5b0&cXg0gj0j1l01l|m^mo0op^ppUp>q^>qZ0Z^U^^Q0Q]P]^&0&\(^(:0:a^a0Ώ^Ώ۶0۶g^gkUk^00ɽC0CVq]_^_0^p0S^00@00Z_ _ _<#O#_o#G$_~$$_$$_91n1_67_9*9_gEE_H I_1l@l_ll_1o@o_op_pp_>qtq_t___G`_ _"_:a_Ώ_ϗחPP__~0_ppv*)?}pv*)AL}pv*)Un}pv*)P|;| |O|","|,#<#|O#\#|o##|~$$|D8^8|gEE|Xgg|jj|1ll|lnm||mm|:a|Ώ|נ|;||;|R|S_P_||ռn|ɽ|@|WH||p| |g|~|2|D0c\c0@]@03}30S,0<p0p]0]0~\~Z00B0BRPR|]|0P]0:]:0Si ]i  0  ] 0iSil0l|S|0S!0!w^w0]0P]-0-_0Y]101dYd] 0 $P$]0]G0G_]_m0m}]}/0/O\O> 0> l ^l  ]  _  0  ]  0!;!0;!O!]O!T!PT!z!]z!!0!!^!!_!"]"L"0L"\"S\"O#0O#\#]\#o#So#B$]B$$0$K&]K&'0''Y'"(0Q((]()0++]+~+0,'-0'-I-]I-=.0=.C.P.M/0M/e/]&0I0]0101$2]$22022]2303q3]q3|30|33P34]4?50V5l50l55]55055]55055]55056]6606?6]?66066P66Y66|6,70,7@7\@77077]77088Y88|88088]88088]89099]9*9\*9C9]C9\90\99]9":0"::]:;0;/;]/;w;0w;;S;;];M<0M<X<PX<D=]D=$>0$>?>P?>?]?/?0/?P@]P@@0@@]@@0@A]A/A0/AA]AFB0FBC]CCSCC]CD0DE]IFG]G?G0?GIGPIGqGSqGG]G%H0%H@HYXHH0H I] II0II]II0IJ]JSJ0SJ^JY^JiJ|iJxJ]xJJ0JJ]JJYJK}KKYKK}KK0K LY L)L}LLYLL}LLPLM]MM0MIN]INN0N+OY+OP0P'PP'PdP]dPP0P7Q]7Q>QP>QQ]QQUQQ]QR0RR0RRPRQS]QSV0VCW]WX0XcXYcXpX0XOY]OY`0` a0 aaPa)aS)aa0aaPa5bS&c-cP-cc]cc0ccPccSchd0hdodPoddSd,h0,h2hPhFiSFi1l01ll]l1o01oo]oq0r=r0=rr]rr0rs]sv0v6x]6xVx0xy0yyPyz0z{05{$|0z||0|3}S3}~0~]0P]0P]Z\Z0\0G]GKUKQ]Q:0:a]aą0ą]0$S$0Ո]Ո0]<0<CPC]808a]a0̋}Y}C0C]04]40Ώ]Ώ0PБ0rY}̒}Y } P,],;0;Ԕ]Ԕ۔P۔F]F0],101]u0uʥSʥѥPѥOSO]0Y]Y]U]h]h0 ] P0_e]eS0I]Ix0x[][t0t]0\0]w0w|P|0O>P\>PdP00\\00\T[[TU[[UPu[[uUt~UG]]<;]]]_m]s]""] #,#]`$p$] 191]55]?6L6]66]66]18D8]88]88]K\q\]\:]]]P^]^5_]xkk]mm]nn]sAs]tvu]u-v]5{j{]]ݕ]]ɖݖ] B],a];]]]]h]Ө][]Aw]G'_<;___s_ #,#_`$p$_ 191_55_?6L6_66_66_18D8_88_88_K\Z\_\(]_]9^_^__xkk_mm_nn_s*s_tvu_uv_5{S{__,J_;u___h__[j_Aw_GS<SSS\/^S^_SSP\\]^\N\\]\]]\UUUUP^<;^^^^_m^s^""^ #,#^`$p$^ 191^55^?6L6^66^66^18D8^88^88^K\\^^i^^^N_^xkk^mn^nn^sZs^tvu^uFv^5{{^^ B^,z^;^^^^h^^[^Aw^P^<;^^^^_m^s^""^ #,#^`$p$^ 191^55^?6L6^66^66^18D8^88^88^K\\^^i^^^N_^xkk^mn^nn^sZs^tvu^uFv^5{{^^ B^,z^;^^^^h^^[^Aw^<QT^$^T<QUQ}<}}}_m}/}"#}G$`$}$$}0 1}55}L66}18D8}88}89}K\\}^$^U$^_}xk1l}m1o}sgt}5{{}}},};}}A}wǶ}<Qu^$^uj,0<Z0t000)0+~+0,.00OY0K\\0^`0`5b0&c0jT<ST^^TT pv*jP<SP^^PPppP PUUppUU%P%|_m|/s|" #|G$`$|$$|0 1|L66|89|sPt|^|~||\||4A|wS|j|Ǵ|޴|Ƕ| !_m !/s !" # !G$`$ !$$ !0 1 !L66 !89 !sgt ! ! !\ !A !wǶ ! _m /s " # G$`$ $$ 0 1 L66 89 sgt   \ A wǶ  _m /s " # G$`$ $$ 0 1 L66 89 sgt   \ A wǶ %|P_mP\_hm_/s_" #_G$`$_$$_0 1_L66_89_ss__T~__\k__4A_wDz_jy_G_޴_Ƕ_b\/s\" #\G$`$\$$\0 1\L66\89\st\\Q~\\\\\4A\w#\j\\޴e\Ƕ\lS/FS" #S$$SS~SSSxSTTUUPuuU""U&TIRT&U&}/s}""}" #}G$`$}$$}0 1}L66}89}sgt}B}INUN[}\}A}wǶ}&uINuNR}#]]""]$$]^$$^hp0^$$^]/s]""]" #]G$`$]$$]$$]0 1]L66]89]ss]\]]4A]w]j]^]޴5]N]xǶ]U"#U U""U<_/s_G$`$_$$_$$_0 1_L66_89_ss_\k__4A_wDz_jy_G_޴_xǶ_>H_$$_H\/s\G$`$\$$\0 1\L66\89\st\\\\4A\w#\j\\޴e\xǶ\MX\$$\XS/FS$$SS]gS$$SX}X}ɖՖXՖݖ}ڕ`0p0ɖ0ݖ 0ڕX}}`]p]ɖ]ݖ ]%)P)`^p^ݖ ^%^Ŗ^JYUUOYUUhtXXjtXX|U~UU~UUUUU9^PUU5N^PU/APq/AqUTmU(9T޴T(9U޴U(/P/9u޴uS]UL6V6UU88UU88UUl6v6U0G$`$00 10\6l60|660sgt0w޴0Ƕ01TG$`$T&TT pv*1UG$`$U&UU)u)u1;U\6f6UCpU00UYpp00ppU|66U TռټT UռټU Puռټu5?UUTTSSRSPssSSTTES@OS[SPss%ES@OSW[SX\;\@\","\,#<#\O#\#\D8^8\Xgg\jj\|mm\\;\\p\ \ \~\[\\r^;^/^","^D8^8^Xgg^jj^^;^D^^TTUUuuUUU"&"UU"&"U<FUUvR;RD8^8R+R4?RvPv;|vD8^8v+v4?vQ;HQD8^8Q0PT;HPD8^8P!U_fU-V #V\vVO_VlVjkV0V:pV$V5V #V\vVO_VlVjkV0V:pV$Vk|TjjTk|U|c_cdUd_ #_\3_l/_,"?"_d{TQfUf}55}88}xk1l}5{:{U:{{}Qfu5{:{u:{>{}#x;0#,#0`$p$0 1910550?6L60660660880880xk1l0ss0tvu0uv00h0[0Aw0xP55P55~88P88~xk|kPQp#hxk|kp#h55055P88088PU#&#U[lTuvT[lUuvU[bPbluuvuU?6F6UU88UU88UU66U);0`$p$0 1910660660ss00h0)aT`$p$TѦTuwTw{ pv*)aU`$p$UѦUu{UCYuCYuakU66UsU 1!1Up 1!1pU66UUTTUUPuuU,#6#UT|mmTUVUZV V V<#\#Vo#G$V~$$V$$V911V11_67V9*9VgEEVEE_H IV1lylVyll_lmVm|m_|mmUmmV1oyoVyoo_o\pV\pp_ppVp>q_>qtqVV_9V9_UԂVԂG_GV_V(_:aVΏV?V?_VpV _ oVo_CVC~_~VPu|mmu[lTT[lUU[bPbluuUO#V#U0 0~$$0l|m000S S~$$Sl|mSSS^ ^~$$^l|m^^^jnPn\ \~$$\\1j\ll\\S$$S>^ ^<#O#^>qMq^Rqoq^O^UUppUURfTppTRO^77^1oo^op^ppUpp^U^I^ނ^GQ^R\P\f~ppusO^77^1oo^oo^U^I^ނ^GQ^TGKT] 7@7]77]9*9]]0]G]GKUKQ]"3]]P}GKu] 7@7]77]9*9]]0]]"3]]TTVUZV$$V911V11_67V9*9VV_9V9_UVQV_V(_ P vuuXgU9$9U]gU9$9Us\ 7@7\Z\"&\؄\U7&7UTZ^TUb^67^Z^U^e^(^PuZ^ub^67^^U67U4S91Y1S66SQVShrPrZ^$$^911^66^@77^rp91T1pZ^$$^66^@77^U}@77}U\7f7U UO7V7U$DRDU}@7I7RI7O7},DRDU}@7I7RI7O7}HRPR]%K&]l55]cc]hdd]Rgp%%pg]l55]cc]hdd]P]$%]55]55](GgG]`Ga]aa]{|]z||]]!]/M]u%]*]p$%p]55]55](GgG]`Ga]aa]{|]z||]]!]/M]u%]*];LT{{T;LU{{U;BPBLu{{ufpU55UU55UU55U/]00]55]66]CC]gtt]||]3}}]~2~]BcU00ULcp00pcvU66UT3}7}TUK _56_6?6_^88_88_99_CC_DD_FF_II_KK_vv_Rwsw_|3}_3}7}U7}@}_ą__w__l_<_*_8_4C_Œ_1_Pu3}7}u" ],6?6]" S,6?6S* A U88U7 A U88U^  ]56]Ո݈]]l]i K _55_6,6_^88_99_DD_FF_II_KK_vv_Rwsw_ą__w_Ո_l_<_*_8_4C_Œ_1_z K _55_6,6_^88_99_DD_FF_II_KK_vv_Rwsw_ą__w_Ո_l_<_*_8_4C_Œ_1_  TՈوT  UՈوU  P  uՈوu  U6&6U  \l88\vw\Rwsw\8a\4C\ی\  ^^88^99^DD^II^KK^vv^Rwsw^<^%^8^4C^Ȍ^1^ 7 ]l88]DD]II]KK]vsw]8a]]4C]Ō]1]  P  }88}8a}  SvvSRwswS 7 ]l88]DD]II]KK]]4C]Ō]1] ' U88U/ E U|88U] r T4=T] r Ur  }l8|8}DD}II}KK}a}49U9C}}1}] r u49u9=}#  Pl8t8P  Ul8v8U  Ul8v8U n \II\a~\ H UIIUUU4 n \a\4 H UD n ]a]> n SaS DWDUKKU"&UEDD0"0EDWDUSDDS"Sq u Pu  S88S.SMDD\"\  U99U  U99U  U^8f8U R q~K&^&~HHRHH~(1R1:~8~8QRQu~ UHHU(1U8QU R q}K&^&}8}Zu} U q^K&^&^8^Zu^9=P=qSK&^&SSZuS9S8S IZI~!!~!"~12Z2$2~JJZJJ~VW~W8WZ8WCW~X Y~]!!]!"]1$2]JJ]VCW]X Y],IZIh}VV},]!"]VW]X Y]E\VW\P\!"\X Y\:IRI}!!}VW}KKK{L_{LLLL_Wrr_ _K LY L)L}LLYLL}rY}̒}Y }K{L_LL_Wr__K LY L)L}̒}L{L]LL]Wr]]?LCLPCL{L\LL\Wk\\K?L\\k u Pu SQS?OS99STTSUUSu  pQlp S?OS99STTSUUS  TUUT  U Q}?}O}F\}""}\"m"}K&^&}HH}xJJ}INuN}NN}TU}UUUUV}_`}z{}(:}a}}}u}  uUUu BPltP0BUlvU8BUlvUciSSJJ0ciSSq{UOVUU\fU^^l^UHU^^l^PS?S|S8OSppS|S8OSk|TINMNTk|UINMNUkrPr|uINMNuUOVUUFVUUFVUU\fURQ|R|\"m"|JJ|__|z{|a|RR|Q0F0 "0\"r"01$209:0JK0KIN0NdP0PQ0-RT0VOY0_`0z5{0a0040W 000Q1F1 "1\"r"11$219:1JK1KIN1NdP1PQ1-RT1VOY1_`1z5{1a1141W 1119 9?T \"r" JJ z{ a QSLS / S\"r"SJJST6TSXT{TS{TT|__S_`|z{SaSQ]JJ]__]z{]a],9PahPs1^\"m"s1m"r"pi"r"^|80""00|81""11|8 ""  |8}""}}S""SQmSP8SQSP8^""P""^(^P8_""_"_8V""VQV0P8_""_"_80""0Q08_""_"_8^(^LS  ST6TSXTbTSLS  ST6TSXTbTS*TXT\TT*U*F|/ "|1$2|9:|JK|KIN|NdP|PQ|-RXT|XT\TU\TbT|VOY|zz|{5{||4|W |||*uXT\Tu]/ l ]!!]tRR]RR]QS`S]eSS]SS]S/  S!!S7QWQSQQStR SSQSSS^tRR^RR^P!^/ > ^SS^P_/  _!!_":E:_PQ_7QwQ_QQ_QQ_tRR_R@S_QSS_)3U_ f U?S> _ Sl  S!!S7QWQSQQSR SSQSSSQ[U> F UjD\l  \!!\":,:\PP\7QAQ\QQ\QQ\R S\QSS\lw\!!\TQQT]l  ]QQ]QQUQQ]P}QQu]l  ]D)S  SMMS8OOSOPS YOYS4SSSDS]  ]MM]8OrO]OP] YOY]4]]]D\M=M\/YOY\P\  \ YY\4\P-_  _M`M_8OoO_O_P_ YOY_4__˪_d__U  US]  ]8OrO]OP]]])S  S8OOSOPSSS-P-1~8OKOPP~ѫP~=U8OKOUUիU=GU  U2S}!!R!!}]u}!!R!!}u}  }!!R!!}JJ}KK}NN}+O8O}}}!!R!!}T+O/OT_UF_ !_!"_1$2_q::_::}JK_K M_ MM}MM_MM}M8N_8NIN}NO_O+O}+O/OU/O8O_V|W_|WW}WW_WW}WRX_RXcX}cXX_XX}X Y_zz_{5{__W _Pu+O/Ou]  ]!!]!"]1$2]JJ]VCW]X Y]Y  YZ!!ZrKzK0Z!!ZZ] !]KK]LL]X:X]cXpX]r] ]U  U-TcXgXT-U-n^!\!^!!^q::^KM^CWW^WW\WW^WUX^UXcX\cXgXUgXpX^W ^#P#-ucXgXuZ];!O!]!!]dnY;!I!Y\!!\LL0\!!\ ]!;!]WW]WX]n^!;!^O!\!^q::^LM^WW^WX^n^"!;!^O!\!^q::^LM^WW^WX^TWXTU\UF\O!!\q::\LM\MMUMIN\WW\WXUXX\PuWXu$UO!V!U5F0\!!0q::0MIN05F1\!!1q::1MIN15F W\!! Wq:: WMIN W5F \!! q:: MIN 5\UF\\!!\q::\MMUMIN\59P9F}\!!}q::}MIN}=gXg}q::XP}nP^\!!^MM^M;N^V&V\!!VMINVV]\!o!]MM]VF0\!!0MIN0^\!!^MM^M;N^]\!o!]MM]TMMT\UF\o!!\MMUMIN\P|uMMuF]o!!]&Vz!!V&V!!V##U##QƏUƏȏQ##TȏT##^:a^Ώ^##YȏY##PȏP##Q##~#ȏ~##$UHIU#$UHIU $!$UHHU-$G$] ''\77\718\tqq\K\ '(]77]718]tqq]K] '(S77S718StqrSKSL'P'PP'|'|77|88|''V77V718VtqqVKV'(S78S''U77U''U77U.(H(TT.(H(UH()}+~+},I-}$2?5}77}99}*99}EgE}IFF}II}rs}sw6x}6zvz}zz}}ą}U}}4}C}1}O}h}}.(H(uu}#a()0+~+0,I-0$2?50770990*990EgE0IFF0II0rs0sww0"x6x06zvz0zz00ą0040C010O0h00a((T++TswwT"x$xT$x+x pv*a()]+2+],I-]$22]77]r=r]rr]rr]ss]sww]"x6x]6zTz]{((}{((}()]+2+],I-]$22]77]r=r]rr]rr]ss]6zTz]((U,,U((p,,p((U,-U)+}~+,},,R,,})&)},,R,,}&)Z)},.,R.,9,}0)H)},.,R.,9,}H)|)}9,N,RN,Y,}R)j)}9,N,RN,Y,}j))|Y,n,Rn,y,|t))|Y,n,Rn,y,|)+}~+,}y,,R,,}))}y,,R,,}))Y~++Y))Y~++Y)+V+,V,,V))V++V)+}++}++R++}+,},,}))}++R++})+}++}++R++}+,},,})*}++R++}*U*|++R++|*3*|++R++|3*+\++\+,\,,\8*C*\++\C*+}++R++}+,},,}M*e*}++R++}e*+}++R++}+,},,}o**}++R++}**|+ ,R ,,|**|+ ,R ,,|*+},,},,T,,}*+},,T,,}**},,T,,}*+_**_2+^+Y^+y+|zz|zzTzz|2+~+}zz}zzUzz}B+O+PO+^+ }##pzzu#pzz }##p`--Rz zRz6zRvzzR`--U--y--uz zuz6zUvzzUl--Qz6zQvzzQy--0--Py--Tz6zPvzzP--Tz zT--Y--U-.}?5l5}66}6xz}z zU zz}--U--y--uz zu-.PV5d5P ..UV5f5U..UV5f5U=.C.S66Syy0=.C.S66ST.^.U?5K5Uo..T..}M/e/P&0>0PR/e/P&0>0Pe/t/SI0i0Sj/t/SI0i0S|//Ui0{0U//Ui0{0U//U00U//U00U/&0^//^/0^//]0&0]//]0&0]32L2TrrT32L2YL22|77|r%r|rr|rrUrr|32B2PB2L2yrrum2?50770990*990EgE0IFF0II0rr0rs00ą0040C010O0h00m22T77Tr4rTs sT s s pv*m22U77Ur4rUs sU22u77u22u77u22UIF_FU23]EgE]nFF]]]22SEES23]nFF]]]13J3TY]T13|3]99]Y]Y]U]h]13@3P@3J3}Y]ua3|3]99]33TluT33U3?5}*99}II}}4}C}1l}lqUq}}33ulququ}#3?5]C99]]]C]ݧ]]34T4A4}CT}zT34S\99SSCS SY4]4P]44|99||4?5^C99^^ ^C^^^44Uu99U4?5]C9u9]]ݧ]]44Y45}}T}4?5}C9\9}4}}U}44P44 }##pu#p }##p$;;]@A]]e]]/;w;S@@SS@;w;S@@SS^;s;TT^;s;Us;@}AC}} }e}U[}^;s;uu}#;;]@@]^AoA];;S@@S^AoAS;;V^AoAV$0;;V^AoAV;M<]@@],;]Fd]<+<T,5T<+<U+<@|A^A|oAC||$| ,|,1U1|"|I[|<+<u,1u15|#<=SA^ASqyS~SSV[S<$>]A^A]]q]]$E]V[]<<V[V<<P<=VLA^AVxV<[>\A^A\B.C\;\qӇ\\$n\ 7\V\[\#=-=U?AFAU9=$>]A?A]]q]]$E]Vx]D==SA/ASqyS~SSVxS==TquT==UquU==P==uquu==UAAUT>/?]oAA]]ۮ"]IQ]T>?^oAA^hCC^B^^$^s^ۮ"^IV^T>?SoAAShCCSS-Ss"SIVS>>P>>\AA\\[>>\ۮ"\>>UAAU>/?]oAA]IQ]?+?TIMT?+?UIMU?+?uIMu@?J?UAAU?@\AA\ BB\}\ ,\;d\?@^AB^}^ ,^;d^?@]AB]},];d] @@P@<@|iBuB|?@S}S ,SE@@]AiB]X@b@U&B;BUj@@U BBU@@VAAVAAUgGG]IJ]iJxJ]qGGSIJSiJxJSGGViJxJV"*0GGViJxJVGH]II]JiJ]dPP]]]GH0JiJ0dPP0W00GH1JiJ1dPP1W11GH JiJ dPP W  GH\J!J\SJiJ\dPP\\\GHVJ JVSJiJVdPPVVVHHPHHYH%H|GHPHHSJiJSdPPSSGH}JiJ}dPP}}GH0JiJ0dPP00HHSJiJSdPPSS6H@HUSJ^JUiHHQHH}dPP}Q}iHHTTiHHYHH|dPP|Y|iHpHPpHHyyJJYJK}KKYKK}̋}Y}JjK0zKK0zz0{5{00JJYJK}̋}JjK]zKK]zz]{5{]].K2KP2KjK\zKK\zz\{5{\J.K\\OO OP0PdP11K\0ѫ OOUU(PdP2 2(P5PPPFPPPUU#UJVlVPPZVlVUUbVlVUUaUaSc dSee~ef\f0f~0ff\ff~zefSef\%f0f\Gfif\ff\efS%f0fSGfifSffSef]%f0f]Gfif]ff]eePefV%f0fVffVeeVGfefVqggQggUggUziiUmmUu+uQu+uUu+uU6xVxxy]xxPSygyPyyPyyP6xVx]xSy]pyy]xxPx ySpyyS6xVxS yyPySyS6xVx^xSy^pyy^t}}UPUUS 0Q0U$0U3]Sk\SR55EREHH\R\ĥRĥʥuʥSR}*5}_}S*5S_SV_}VPV*5VV\*5\_\AeQQeUYeUUP\SVh]SUSU/;U0-P-lw41 +wwww w(w0w8ww8w0w(w wwwOw@U@U~UaUa~U~\U\~%U%1U1h~hU~U~U~EUEU~UuUu~U~U~'U'~U~/U/~U~U~~~U~ U `~`UO~@T@UTUaTa]%T%1T1TTA]AVTVy]yOT@Q@UQUaQaS%Q%1Q1QQISIVQVySyOQ@0@U]U0]\A]%101T]]]u] ]]7]<]x]]/]Ym]].4]y0x]']Q~]@0@7SU0\S%101TSS<SxSS/Sy0xS@0@UVU0MV\V%101TVVYVVV-UVuVVVV'6VWVV(^VtyVLVsV8V/VEVYmVFVy0VAV'VQ~V3`VV>VV0T0\O04P49^Py^UaVQVVyV)P@UVMV\V1TVVYVVV-UVuVVVV'6VWVV(^VtyVLVsV8V/VEVYmVFVVAV'VQ~V3`VV>VV@7S\S1TSS<SxSS/SxS@U]]\A]1T]]]u] ]]7]<]x]]/]Ym]].4]x]']Q~]@U~~\~1h~~~~EU~u~~~'~~/~~y~~~ `~O~g" "U~~\ +# 1h ~ ~~ EU~u~ ~ '6~6W W~~  L~Ls s~ ~x x~ /{ {~E~E yA Ax~x ~~   3 3`~~> >~O gU0"0\0+# 1h0000u0006W000Ls000/0E0yA0x0~00 30>0O0g1 ~ $0) ~#0)1@ ~ $0)@T1Bx1 ~ $0)i_]}%]P~.3P3~Th~h~-~~~-~Ue~~~'~6W~/~~EY~m~F~A~~'Q~~~~ ~ 3~~>~@U00a\a~\U\0\~1T0T\0U-\-0\0-\-U0Ue\u0\0s\Uh0h\0'\'606W\W00/\/0E0EY\Ym0m\F0F\y0A\A0\'0'Q\Q~0~3\3`0\0>\>O0'] !|h]-]Ue]]']/]]~] ]]@U00^\ 0 kSk^_^%_1T0Th^h0^0^-^-0^0^e0eu^u0^0s^0l^lmUm^0606W^W00^U^L0Ls^s0<^<E0EY^Ym0m^F0F^y0ASA0S'0'QSQ0^ 0 3^3`0`^0>^>0O^@0U~~~1@~@T0Th~~~EU~u~~s~'~B~Bx0x~/~~y~~~ `~O~@0U~~~1T0Th~~~EU~u~~s~'~B~Bx0x~0/~~y~~~ `~O~@U00\\0\%010\0P\1016\60yO0@0P0PU0S0S^P^]0^0\0PV%018P8@~@GPGT~Th0h^0-0-MVMQPQYVY0 0 ^E0EU]Ue^e0 0 N]Nq0 0PV'^'0y~0]0]U]L0s0P~0P0]B0BIPIx~x0yPV0P]~0~^0 ^ 0]0O0@0P0PU00\0SP0PS%018P8@~@GPGT~T0Y0YS0S00S0S0dSd~0~(S(,0,SL0LsSs0P~0S0FSF0y0S0'S'Q0Q~S~0SO0 ~ $0) ~#0) $0)1@ ~ $0)  P ]8\] ~ $0)1 ~ $0) ~#0)1@ ~ $0) ~ $0):YPZpP(0("^sPPP0P\A\^-U^^Pz0h\\',P\(\(0Ls\^^PF0y\\xPP^ ^>EPk0\C\gU000\001T00#(0-0#(0-U0u000'E0EPPP]60W^P^]]0L]L0]080]0/E0Ym0X0y~03000>O0gU0p0\%01h0000e000'0_1\10_0s0s\\_00/00E0yA0x0~00 30`0k0O0gU0p0\%01h0000e000'0U~P6S60U0s0sSPS~00/00E0yA0x0~00 30`0k0O0gU0p0PS\0PS%01h0S000eiPiuSu0PS00'q0q6^60^0s0s^'^'2T8^00/0S0E0yA0x0~00 30`Sk0O0B~~V%V~~~Bi0i_0]%]"a"U~~~~~EU~u~~'6~W~~L~s~~x~/DaD~E~Ax~~3`~~>~gU00\%01000PR~"08\00yO0PU~~\~1@~@GPGh~~~~EU~u~~~'~B~x~/~~y~~~ `~O~PU~~\~18P8@~Th~~~~EU~u~~~'~B~x~/~~y~~~ `~O~"U]]]u]{]"U  h   e u  6 W  L s  x / {E Ax  ~   3`  > "U00h000e0u0060W00L0s00x0/0{E0Ax00~0 03`00>03U}}}u}}S} N$} !sS}PSP]]TnrTPnrPQpnrpUU]EU]U9?UU-3U.^#-^^.FRF~#-~~MWPWVPiVi~hV-VUeV'V/V~V VVPV:FQF~#-~~hxP#-P^#^^R~h~#~Ue~~'~/~~~~ ~~PUPU#UPU06sUU$,UQx~ #~'~~6/~ ~X#X.P  P.U U$.U U;^hxx^Ue'^~ ^3UxU!UUUd^h^~^^dUxU~~~~P~hx~~~xT~hx~xT~~~~^Ue^0^Ue^ UU,UUBGPG~~~~SS\UUs\U160UU^^160^^\~S16~,~S,\~6T~T!T)SS'SQ~SPs!s)SSUMSUUAGU~ V-AV.~Th~-~~~~6W~EY~m~F~A~~'Q~~ 3~>~.~Th~-~~~~6W~EY~m~F~A~~'Q~~ 3~>~.\~Th\-\\\\6W\EY\m\F\A\\'Q\\ 3\>\.R0RkPA0P.I0IkPPPkSSpzSSV#-VFVS#-SFSP]P]~Th]-]]]6W]EY]m]FMPMX]]] 3]>]Q~#-~F~P#-PV#VVVVS#SSS6WSS>S 4P5qPqu~#PPP0 Q ~Th~#~~~6W~EY~m~~~ 3~>~#4Y#YqPP~UUUUEVT__hV6WVEYm>VU_hU6QU!U'8UEVThVVEYVmVVU_hUSSPEST_SSERSmSSE~Th~~EY~m~~J^UUT^UUzUUUUP~;A0AY%Y)QSSQQTTPPXXUURp#p#SSGfQQGfTTGfPPOfXX[fUU[^R^fp#p#zU UU U%U%U+<U0<UBSUGSU~~~Ls~~B~O~~~~Ls~~B~O~0P<KP^00P<KP^eP 4TT q]]]U] *P*4}uCq]]]YmTTYl^lmUm^^^U^Ls^O^YcPcl~lmuu$.UU<FU UYcUUSSPPUUUUUUUU UU,UU?FPF6~~s~?6 \ \s \?6 \ \s \?6 \ \s \FPP6^^s^'^'2T8^6~s~6_s_P6 s 60s0UUU U0 U+U+U ]\]Q !R!~8\~6GU;GUMgU[gUmU{U6]s]6S]O~STdS]5QPBSUGSU6sUU$,U[00$0[sUo^^P^$^isTs~~~ P U UPUUa0awPwwa3a2a qXRPRwRWwWYwY[w [\w(\]w0]dw8dww8w0w(w www6wPlUl~U~U~U~sUs~DUDP~PU~U~%U%B~BlUl~KUK~EUE~)U)~Uu~uU~"U""~"\#U\#$$~$$$U$+%~+%&U&&~&'U'r'~r'y'Uy''~''U''~''U'%)~%)L)UL))~)*U*z*~z**U*3+~3++U+E-~E-U-UU-.~..U.-.~-._.U_.g.~g.(/U(/5/~5/0U00~01U1C1~C1s1Us11~11U12~23U33~36UPTN_N\U\_U_US_SaUa_U_T_UN_NOUOD_DRURf_ftUt_U_Uf_ftUt_T,_,-U-_Ua_abUb9_9:U:_zTz_T~_~T_T_sTs_%T%U_UT_ T  _ %T%"_"'T'_ T _Tu_uT_U_U_U_U _ U_$U$_T!_!!U!!_!"U"8"_8"]"T]"2#_2#B#TB#L#_L#\#T\#$_$$$T$$%_%&T&&_&&T& '_ ''T''_''T''_''U'%(_%(6(T6(:(U:((_((T((_((T(o)_o))T)U*_U*f*Tf*$+_$+3+T3++_++T++U++_++T+ ,_ ,$,U$,,_,,T,*-_*-8-T8-<-U<--_--T-._..T.$.U$.P._P._.T_.._..T.(/_(/,/U,/0_00T00_01T1%1_%161T61:1U:11_11T11_11T12_2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36TP060dTN_N\U\_U_US_SaUa_U_T_UN_NOUOD_DRURf_ftUt_U_Uf_ftUt_T,_,-U-_Ua_abUb9_9:U:_zTz_T~_~T_T_sTs_%T%U_UT_ T  _ %T%"_"'T'_ T _Tu_uT_U_U_U_U _ U_$U$_T!_!!U!!_!"U"8"_8"]"T]"2#_2#B#TB#L#_L#\#T\#$_$$$T$$%_%&T&&_&&T& '_ ''T''_''T''_''U'%(_%(6(T6(:(U:((_((T((_((T(o)_o))T)U*_U*f*Tf*$+_$+3+T3++_++T++U++_++T+ ,_ ,$,U$,,_,,T,*-_*-8-T8-<-U<--_--T-._..T.$.U$.P._P._.T_.._..T.(/_(/,/U,/0_00T00_01T1%1_%161T61:1U:11_11T11_11T12_2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36Tdi~}S}sS/SsSBSs'NSSSSv!+"S""SN\N\T\\P\/\T\06P6\B\'N\T\T \ T\\!\!"T"+"\]""\""\W$~$\%)L)\)*\5/:/\//\P~~~~s~DP~~~%B~l~K~E~)~u~~""~\#$$~$+%~&r'~y''~''~'(~(%)~L))~*z*~*3+~+E-~U-.~.-.~_.g.~(/5/~00~1C1~s11~12~33~G~DP~~+*,~ N]~]-]JV]][Ses]]U] ]]]%%]&&]..]00] 44]de0eVQV0V 0  V N~z~0~V0-V-J0JuVu0Ve~esVs0VV%U0UV0 V B0BV0V0V0 V 0VR0RiViu0uV0VQV"0"\#V\#$$0$$$V$+%0%&V&^'0^'y'Vy''0''V''0''V'*0**V*z*0z*3+V3+E-0E-U-VU--0-.V.-.0-..V. /0 /(/V(//0/0V00000V0C10C1s1Vs1 40 45V55U5 5V 5T50T56Vd0P~60P~~~~s~DP~~~%B~l~K~E~)~u~~""~\#$$~$+%~&r'~y''~''~'(~((P(%)~L))~*z*~*3+~+E-~U-.~.-.~_.g.~(/5/~00~1C1~s11~12~33~0lVVsV*,@,V],h,V,,V,,-V8-E-V00Vp*) pq) q) uq)  P (!S]""S6(:( uq)5/D/S//Sp*) pq) q) uq)}V/ s|) st) s|) s|)06 sp)6 s|)B s|) s|)'N s|)V st)  s|)  st) s|) s|)"" s|)##V#$Vy''V''V6(:( uq)*a*Vf*z*Vu0D\0010l00>0/0 0b00-0J020DE0 ] )080u0u]0PS0Pq Sq #0##V#$$0$$W$SW$^$P^$~$S~$'0'']'](0((0))0))S))P)*S*3+0++0+,08-/0/0S0s10110120*330 4 50T560uSu}s}S SsSBSsxS'NS.SESSSSv!+"S""S~00 _ 0_0_ u0_1011_11U11_1202@2_@260U00~0S 0X~X~000-J0V0s0%~%U00 B0a~'0z000.K~00E0 )~)800R0iu00a v!0]""0j#$$0$]%0]%%~&&0y''0'(06()0*z*0*+03+E-0e--0._.0g..~..0. /~ /(/~(//00000C10C1s1~s1101102303 40V4h404600~0P~~0] 0]  S N~w~0~S00Se~e00~B0B~S'N~Ng0glPl0.~.=S=K~K0%~%0 u00~~0"~""0"2#~B#\#~\#$$0$$$~$%)0%)L)~L))0)*~*E-0E-U-~U--.0-._.S_.g.0g..~. /0 /(/~(/5/05//~/0~0C10C1s1~s1600R~0R~~0m 0m t Rt ~0R0~0e~e0~0~0RB0B?~?0'N~Nb0blRl0~0%~%505E~E0 u00~~0"~""0"2#~B#\#~\#$$0$$$~$%)0%)L)~L))0)*~*E-0E-U-~U-5/05//~/0~0600P~0~w~wSr 0r t Pt ~;0;zSz0P0~0e~e0~0~S0P 0 %S%B0B~0'N~N]0]l~l0~0E~E0 S)~)u00~~0"~""0"2#~B#\#~\#$$0$$$~$+%0+%]%S]%%)0%)L)~L))0)*~*E-0E-U-~U-.0..S. /~ /5/05//~/0~06000 u000> 0 +"0]""0\#~$0$%)0L)E-0U-/0/60QQ)%)Q61:1QUU)%)URR)%)R0PTP)%)Pn\\'6(\gVV'1(V&0P0U~U[P[~~~P~8~~\#j#~&^'~''P'(~U-e-~11~12~33~v]]'((]7LPP ~##nVVV8gV\#j#V'^'VU-e-Vn\\\8m\\#j#\'^'\U-e-\~PP~P'&'P1':'0v]]]]8]]\#j#]&']'^']U-e-]11]12]33]XXPPUUUU2U U(2U UNXUU]pUUP~~    % E  )  " %)L) )* . / 5//     % E  )  " %)L) )* . / 5//     % E  )  " %)L) )* . / 5// PP~~~ %~E~ )~~"~%)L)~)*~. /~5//~~~200;j0002\Q;dQQ2N\N\T\\\;j\T\\2N_N\U\__;j_U__?RPR\u#hu#h;j\HdUTdUkuUU0000"0%)L)0)*05//0N\N\T\\P\\T\!\!"T"+"\]""\%)L)\)*\5/:/\//\N_N\U\__U_US_SaUa__U_U_!_!!U!!_!"U"8"_8"]"T]""_%)L)_)*_5//_Pu#h!"u#h\Pj~\u~P000j0~000v!!0}S}sSSjS~SSSv!!SN_N\U\__US_SaUa__j_~_U_U__v!!_!!U!!_PSP~SP0700j000v!!07aQ5QQ}S}s7SSjSSSv!!SN_N\U\_7S_SaUa__j_U_U__v!!_DWP;S5U%5UoU~ %~RE~ )~. /~~R%~~ %~%5~5>R>E~ )~. /~~5>R>E~~ %~%.R.5~ )~. /~~%.R.5~U!!0U0U$0U?PUDPUv!0]""0%)L)0))05//0P S%)L)S))Sv!~]""~%)L)~))~5//~  P > V))V V))V))Va  S%)L)S  U]"c"U  U]"c"U  Ui"o"U  Ui"o"U  Uu"{"U  Uu"{"U!v!~""R""~!v!~""~! !R !v!~""~!D!U""U$!v!V""V(!v!S""S!D!P""P8!D!U""U:!D!U""UD!v!V""VI!T!V""VT!v!S]!v!ST6(:(T_U_T,_,-U-_Ua_abUb9_9:U:_zTz_T~_~T_T_sTs_%T%U_UT_ T%B_E_T)8_TT+%%T&&T6(:(U:((_((T()_3++_++T++U++_++T+ ,_ ,$,U$,,_,,T,*-_*-8-T8-<-U<-E-_e--_..T.$.U$.-._00_00T00_01Ts11_11T11T2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36T000 0%B0E0)8000+%%0&&0C((0()03+E-0.-.0010s110110230360111 1%B1E1)8111+%%1&&1C((1()13+E-1.-.1011s111111231361T%BTC(Y(T))T) ) `v*U%BUC(Y(U) )U1uu!UU-]1].(.]-/V\hVT61:1T_UN_NOUOD_DRURf_ftUt_U_Uf_ftUt__B"_"'T'__u_U_U _ U_$U$_"2#_B#L#_L#\#Tj#$_$$$T$$%_%+%T&&_&&T^''_''_''U''_L)o)_o))T*U*_U*f*Tf*$+_$+3+TE-U-_--_--T-._-.P._P._.T_.._ /(/_(/,/U,/5/_/0_1%1_%161T61:1U:1s1_U UU pp UU;OT(/,/T;N_NOUOD_DRURf_ftUt_U_Uf_ftUt_B"_"'T'_u_U_U _ U_$U$_"2#_B#L#_L#\#Tj#$_$$$T$$%_%+%T&&_&&T^''_''_''U''_L)o)_o))T*U*_U*f*Tf*$+_$+3+TE-U-_-._-.P._P._.T_.._ /(/_(/,/U,/5/_/0_C1s1_;EPENNOu(/,/uaU/Ujv4vUioUT''TU''UPu''u UU7RT''T7RURf_ftUt_U_Uf_ftUt_B"_"'T'__Di_U_U _ U_$U$_"2#_B#L#_L#\#Tj#$_$$$T$$$_^'y'_''U''_L)o)_o))T**_z*$+_$+3+TE-U-_-._-.P._P._.T_.._ /(/_/0_C1s1_;HPHRu#p''u#pS!DRj##S$$$$S$$}Uj#{#U##U$$USDRS$$S$$SUV$$VPVDRV$$V]DR]$$]$$]&0UUJTUU~]z]*'+]~SzS*3+SP~P~l~P~K~Ri~""~^'r'~''~**~**~**P*+~-.~_.g.~^z^*3+^PzP ~##p]lz]]**]_.g.]SlzSSKSRiS""S^'r'S''S**S**S-.S_.g.SPOPOS~lzP**P**0_.g.P^lz^^K^Ri^""^''^**^**^-.^_.g.^XlzXOkPP\kUUakUU]Ri]**]---.]~URcU* *U--U]--]US--S\--\OU""U''Ux0^'r'0xU\^'r'\P#\\z**\]^'r'](?UU5?UU[eUUj}UUP/~Nl~ Bl K  "2# B#\# $$$ E-U- -._. g..  /(/ /0 C1s1  Bl K  "2# B#\# $$$ E-U- -._. g..  /(/ /0 C1s1  Bl K  "2# B#\# $$$ E-U- -._. g..  /(/ /0 C1s1 PNXP~BN~gl~K~~"2#~B#\#~$$$~E-U-~-._.~g..~ /(/~/0~C1s1~/~/~=0BT0n0>N0-0.0U0=SBTSnSs>NS-S.SUS=f_ftUt_U_U_BT_n_>N_U _ U_$U$-_._U_WjPjtu#h$u#hn|Sx|Q>NSENQ0BT000U0QQ Q\T\BT\\ \ T\U\_U_U_BT__U _ U_U_P\UUUBNU00 0|0VQVVQ V|VSSs S|S_U__U _|_Pu#hu#hSsUU/020B0'N00"2#0B#\#0$$$0E-U-0/00/\T\26P6\B\'N\T \ T\\""\W$~$\/f_ftUt_U_U_2f_ftUt_B_'N_U_U _ U_$U$_"2#_B#L#_L#\#T$$$_E-U-_/0_WjPjtu#hu#hTd\`dQ'>\5>QU~ R K~-._.~g..~ /(/~C1s1~~ R ~~RK~-._.~g..~ /(/~C1s1~'?~R~?~(R(K~-._.~g..~ /(/~C1s1~Ia~(R(.~TcU.4UYcU.4UhU:@UvU:@UUFLUUFLU 0$$W$0/00 PS$$W$S/0S ~$$W$~/0~TXPX\//\T\$$8$\@$R$\S//S{\\\00\}00\s{ |~)s |~) |~)00 |~)}00 |~) UUUU5UU+5UU:RUUHRUUl~R~l~~lwRw~~oUU{\\SSlPPUUUU\\\\S"2#~B#\#~~$$R$$~E-U-~"2#~B#\#~~$$~E-U-~""R"2#~B#\#~~$$~E-U-~"#U~$$U"2#\B#\#\~$$\E-U-\"2#SB#\#S~$$SE-U-S"#P~$$P ##U~$$U ##U~$$U#2#\B#\#\E-U-\#'#\E-U-\'#2#SB#\#S,#2#SB#\#S0 %0 )0. /0V V )V..V. /V~ %~ )~. /~DHPHwS)S..SDS..S..Sw~ %~ R~..~S %SVV-T.$.T,_,-U-_Ua_abUb9_9:U:_zTz_T~_~T_T_sTs_%T%U_UT_ TE_T)8_TT+%%T&&T3++_++T++U++_++T+ ,_ ,$,U$,,_,,T,*-_*-8-T8-<-U<-E-_..T.$.U$.-._00_00T00_01Ts11_11T11T2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36T#P#,,-u.$.u:]E])8]8-@-]00]BWpW }~)EYpY }~))8 }~)8-@- }~)00 }~)T8-<-T_Ua_abUb9_9:U:_zTz_T~_~T_T_sTs_%T%U_UT_ TTT+%%T&&T3++_++T++U++_++T+ ,_ ,$,U$,,_,,T,*-_*-8-T8-<-U<-E-_..T00T00_01T11T2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36TPu8-<-uT,-T]]s]DK]]++]+,] ,,],,],-U--]P},-uUsU*,;,U;,?,~],a,U       +%% && 3+, .. 01 11 23 36 000 000+%%0&&03+,0..0010110230360111 111+%%1&&13+,1..1011111231361usu*,;,u;,?,~#u N$u !u*,;,U;,?,~r,,P,,~h,q,Pq,,Vr,,V0:UUQbT ,$,TQbUb9_9:U:_zTz_T~_~T_T_sT%T%U_UT_ TTT+%%T&&T3++_++T++U++_++T+ ,_ ,$,U$,*,_..T00T00_01T11T2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36TQXPXbu ,$,uq0s000 000+%%0&&03++0..0010110230360qPDHPHP~P++PQp#h++p#hDU0KU]0]UU>]b]]2D]++]++]  s D U     +%% && 3++ .. 01 11 23 36 00s0D0U0 000+%%0&&03++0..0010110230360}}b}2D}}P!~7E}Eb} N$} !&:T++T&9_9:U:_zTz_b~_~TT_sT%T%2_UT TTT+%%T&&T3++_++T++U++_..T00T00_01T11T2@2T@2O2_O2T2TT2q2_q2v2Tv22_22T23_3*3T*33_36T&0P099:u++uRfT\+`+TR/]z]b~]]%2]3+\+]\+`+U`+f+]00]*323]73U3]c33]R\P\f}\+`+uUzUUb~U%)U33U b  s 2 U     +%% && .. 01 11 23 36 0b00s020U0 000+%%0&&0..0010110230360uzuub~u%)uzu\|\bkuk~u N$u !UU+T*3.3T+U*3.3U!P!+u*3.3u=GUUSz ~  s % U     +%% && .. 00 11 22 36 Sz0~00s0%0U0 000+%%0&&0..0000110220360T11TV __>J__11_11U11_P11u V __>J__: D U>DU[  _->_e__33_44_44_55_[  S->SVSS3 4S46S[  ]->]e]]]]3 4]44]44]5r5]~55]  P  V->V 505Vb  V33V>5T5V  UU  Uu{U 7 T55T  V N~~V-VJuVVe~esVVVUV VVV%%V&&V..V00V 45V55U5 5VT56V 7 v55uQ e T~55TQ e P~55PQ [ Q[ e p~55py  UekU  UU44U44~55U z ~ - Je s % U     +%% && .. 00 44 56 z0~0-0Je0s0%0U0 000+%%0&&0..0000 440560 z1~1-1Je1s1%1U1 111+%%1&&1..1001 441561  uu44u44~#u N$u !u44U44~55P55~55P55_55_  UV\U e _!_V44_ l S!SV44S$ . P. S ~S Y PY  ~~!P!-~U~ ~~~%&g&~..~00~ 4V4~V4]4P]4h4~ s ^!^V44^5 J PP ~##l N __!-_U___;&g&_00_ 4V4_l  SS!-S 4V4S{  P  P  P 44P&4/40s h ^^!-^U^ ^^^;&g&^00^ 4V4^  YY  P!%P  U!'U  U!'U$  SS%&;&;&g&S ` UU;&J&UP&a&UG  S%&;&SG ` U\  _%&;&_V ` P`  ~%&;&~YU UU00U0 0..0U U_.._  P  _es_&&_g&&_S S..S  UU  UU  UJPU  UU( 6 P( z ~  e  % +%% ( z ~  e  % +%% ( z ~  e  % +%% 6 e P~Pr  S N~SSe~x z~~e~~%~+%%~ z~~Pe~~%~+%%~ N] N~  ~  ^  P N_ N\  ~  x  ~ N~  =S=Is P N0  X 4S4=s=IS_SSSmwSSwz~R%~+%%~~R~z~R%~+%%~~R~][Se~~Re^e8~~~P p` t`e}`O_O`+/Pe0^+_+OO`_z0%0+%%0z\%\+%%\z~%~+%%~ P ;S%S]%h%SSq%%S;z~R~+%]%~azSm0.K0-._.0g..0 /(/0C1s10m\.K\-._.\g..\ /(/\C1s1\m~.K~-._.~g..~ /(/~C1s1~PS=KSg.r.SxSC1n1S~.7R7=~-._.~'SUU''0UU ]u]]]]UUUU _u__u_UUUU<wU\#d#UU-Y-Ue00110120330ewUsV33VPVV11V12Vm\\11\12\33\##P##U##U##Vwww0www0ww%w0USUSU%Sd=?c?X^bh%hjdXXSU%S=SU%Sa04w4^w^cw0:U:cU7:U:cUpqwqxwxwwwwwwwwwwwwwpUSUSUSUSUUSpaH-HaHaHHHHUSUSUShhhhH4b4:H---?":<b<PaLXcaP<a<~X6Laa!-!LP-:SLSOSUww wUUa-bhw&w &'wU'Ua'h08w8Hw HPwPmw mvw0ZUZvU0<a<ZcZvhww wUUahwwwUUa-wwdw dewepwpw www ww w UeSefUfSUSUU Sacf-fcw-a --b-ShSf-fbhb-h -awc6:a:`w wW[aPww]w ]bwbkw/U/bSbkU/a/kh%b%IwIk-/c/k-IMcM]w]k`puwuw6w06;w;<w<bw0pU;S;<U<bSpyayc`<-<L`Lb-pbh<-<FhFb-b<Xad<PdPb`eX<---"<bX;S;<Uptwtw wpUUpaw`pbhwwwUUa-b-www  w )w)_w U S )U)_Sah_-aw)`)_w a)3a37d7Dh`iwiww`|U|SU`|a|-`xbx-}awww wwUSUww w  w w w w w Q wQ R wR _ wU S  U S U R SR _ UaP - & a& P _ -b H & b& / H/ _ -a P  ag u X a3 S U R SR _ U< S U R SR _ U c  P  c _ P  b  -- _ `-X-  d _ X` a wa l wl w w w` { U{ S U` { a{ h` { b{ w - w w w U U a h w w  w C wC H wH I wI P wP \ w\ ] w  U  U ; U; D UD M UM N UN T UT ] U  a  - ) a) D -D M aM ] -  T  T ? S? D TD I SI M TM N TN X SX ] T  Q  Q ; Q; D QD M QM N QN T QT ] Q$ ; b; D -?-N T aT ] -?-` b wb d wd i wi k w k l w(l m w0m t w8t P wP Q w8Q R w0R T w(T V w V X wX Z wZ ` w` ww8w0w(w www w` U Q SQ [ U[ SU S` T [ [ p Rp  T RT ` Q [ [ p Pp  Q PQ ` R ^ V C ^C [ R[ p ^p  R ^R^VR ^t R ^ V C ^C [ R[ p ^p  R ^R^VR ^t t } p U Q SQ [ U[ SU S R ^ V C ^C L R[ p ^V Q L [ p PP T L [ p RR U L S[ p SS L \[ p \\ ^  V * vV@ L P L   b b * w* L bp  R ^R^R ^p  p  p SUS S} H\H1\ \ P *w**(w*( w $ V$ v v~v  " V ]#"~~"~~,('"RR"RR,(] ]v V c  -v4- $ |4-v4-$ v |4-v~4-v H|4-"4-H14-"4-|4-"4- -v4- ~-v4- -?- b -?-  -?-v4- $ -?|4-v4-$ v -?|4-v~4-v H!-?|4-"4-H%-?14-"4-!-?|4-"4--?-v4- -?~-v4-  h h * p cp H~~h p dp  e>V\]c]qwaUUa- $U$%U $a$%-04U45U04a45-@DUDEU@DaDE-PTUTUUPTTTUTPTQTUQPTRTURPTXTUXPTYTUY!w!w w/U/Uw w ww FwFKw KLwLNwNPwPww www w  w  w wwUKSKOUOSU S U/_PP/RR@bXbKSKOUOSU S UObXbORR "w"$w$,w,4w 4;w(;bwbfw(fgw giwikwkpwpww(w www>w>?w(?@w @BwBHwHIw ;U;fSflUlSU?S?IULP PLRr R\bL b;fSflUlSlbL blR RSU?S?IUPWwWqwqrwPZUZ\P\rUUUwwwUPUwwww w((w0()w()*w *,w,.w./wU$V$/UT,\,/TQ$]$/Q0$S$V07w7jwjnw0:U:<P<nUprwrwww{w{w w(w0w(w wwwpUVUpT\TpQ]Qp0SVwwww w(w w( w wwwRwRVw(VWw WYwY[w[`w`ww(w wwwU S UVSV_U_`U`SUPVPRVR-q3$|"-bVbVVbVVRVSV_U_`U`SUVSV_U_`UPRRVSV_U_`Uwwww w(w0w8ww8w0w(w www: wU_U: _TVT: VQ\Q: \0S: S_: _ mPP 2Q25T5mtQ!-r3$y"-!mbmb#mbmb#2Q25T5mtQ#_: __: _TPPTTT TbTbTbTbTTT_: __ : _P  P+T  T+b+  b+b+  b+T  T_ : _@ B wB D wD F wF N w N V w(V ] w0] w w0 w( w w w w w ww { w0{ | w(| ~ w ~ w w w w w0 w( w w w w@ ` U` S U { S{ U U S Un P Pn R R rt ~ 4q2$|"4~ b b q D b q D R { S{ U U S U { S{ U U { S{ U U, y P, M RM y r< y by  DB y by  DB M RM y rB { S{ U Uw { S{ U U { S{ U U P # R # R { S{ U U! { S{ U U S U w w w w w(  w0 w w0 w( w w w w k wk l w0l m w(m o w o q wq s ws t w U S U l Sl t U U S U l Sl t U  p8% p8%  p8%1 p8%1 J TJ ~v T ~v ~ m ~vm s ~ " R" J r R J bJ  b  b k wk t ' / - w w w w w( w0 w8 ww8w0w(w wwwJw U ^UJ^ T J Q J 0 ]J] ^J^ p8%^p8% p8%1^p8%1 U QskUsJs T t^T b QybbJw -PRwRTwT\w\dw dkw(kEwEFw(FGw GIwIKwKPwPww(w wwwPpUpFSFLULSUpp8%1>p8%1p]>]L]pRr>RpcD*>ccD4SpS>SLSUSUwwtwtuwuwKwKLwLMwM[w[\w\]w]jwjkwkpwp~wUuSuvUvLSLMUM\S\]U]kSkoUopUp~S@a@Hv-vMHMQaQ]H]oao~Hthphptht~hpHbH---?"bpPvaX0a0MPaXa;Ma-P-www0www0ww w0 ww w0USUSUSUU Sa X 4aXa Xhlh l X-FbFLX444?"LNbN\Brar\adNaNdwaa4\4LS SU $w$1w15w *U*,P,5U@DwDQwQTw@JUJLPLTU`dwdqwquw`jUjlPluUUUwwwwww w @w@EwPTwTww wxwPcUcxUPcacwwwx`Pcbcxhwwww w(ww(w wwwTwUSUTSaTPPRRbbbRf#S|P|Rb#b#R#S`dwdw w`jUjwPwU`waww``wbwhww wUUa-bhww wUUa4blwww0w0w0w0wwUS*U*SUa*h*6a6hb*`*6b6`aw*P!aswaa6SUNSUwwwUUa-ww9w 9>w>Gw U >S>GU a Gh b %w%G-PQwQXwXuw uvwvwP\U\vSvUwwww w(ww(w wwwwUSUSaP>P_ePR>R_eRb>b>_eb>b>_eb>R_eR_SSPPRRb_bb_bRR_SSwwww w(ww(w wwwSwSTw(TUw UWwWYwYhwh wUTSTbUb Sa-%a% -#TSTbUb S6IPbP6IRbR<G-q3$|"-GIcbc3 bc3 bR S & P Q R Q cQ  Q cQ  Q R S w w w w w( ]!w]!^!w(^!_!w _!e!we!g!wg!p!wp!,#w U ^!S^!p!Up!,#S !a!,#-#!6!Pp!!P."5"P#!6!Rp!!R."5"R4!6!bp!!b!!."5"bp!!b!!."5"bp!!R."5"R!."S\",#S"!"P\""P""P"!"R\""R""R"!"b\""b""""b\""b""""b\""R""R0#1#w1#8#w8##w ##w##w##w ##w##w0#E#UE##S##U##S##U0#E#aE##w##`##w##`0#E#bE##h##a##aE##S##U##S##U##w##w#!$w !$"$w"$+$w##U#"$S"$+$U##a#!$w!$+$`##b#+$h#$a#"$S"$+$U0$1$w1$8$w8$|$w |$}$w}$~$w0$C$UC$}$S}$~$U0$C$aC$|$w|$~$`0$C$bC$~$hC$}$S}$~$U$$w$$w$$w$$U$$U$$a$$-$$b$$-$$w$$w $$w$$w $$U$$P$$U$$a$$h%%w%%w%_%w _%`%w`%i%wi%%w %%U%`%S`%i%Ui%%S%%a%3%h3%%-!%-%a-%_%w_%i%`i%%wB%L%ai%s%as%w%dw%%h%%w%%w%%w%%w%%w%%w%%w%,&w,&0&w0&1&w1&8&w8&U(w%%U%0&S0&2&U2&U(S%%a%2&2&F&aF&F(F(J(aJ(U(%(&%(&S&&0& &V&(&V&& ?& &b&&b& &w &(&b&&a&(&f'F(V ' 'c '?'wQ&U&bU&&wa&&a&F(H&&f&F(P&&a&F(&&g&F(X&&h&F(@0'['d[''w'F(`(i(wi((w((w`(|(U|((S((U((U`(|(a|((-`(x(bx((-}((a((w((w((w((w ((w(((w0((w8(,w,,w8,,w0,,w(,,w ,,w,,w,,w,2w(V)UV),S,,U,2S(V)TV),\,,T,,T,1\12T22\(L)aL),~,,a,1~12a22~(V)QV)4+]4+,Q,,Q,1Q12Q22].),~,1~"22g22~.)V)hV),~,1~122f22~B)V)bV))}122q(22b22}))g)1+i1+,},1}<2A2hA22} *#*f#*(*e(*,~,1~J2O2hO22~@**e*,~,1~U2Z2hZ22~@**f*,~,1~`2e2he22~_*k*gk*1+ 1+,~,1~k2p2hp22~**a*1+e1+,~,1~v2{2h{22~*1+a1+,~,1~22h22~ +1+c1+,},1}22h22}+1+g1+,~,1~22h22~(+1+f1+,~,1~22h22~**a**---~--**-~--~-~-**#}-~-}-~-~-**a*1+~-}--[,,a-1.aa+c+bc++},,}11}++e+,},,ed-i-e-.eR,,d-1.d[,j, ?j,,c-- ?-1.c..c./~/1r~?&~'~?&;--@-?"~?&~'~?&;--UUUUUU?"~-~-"~?&~'~?&;-~-..b.O/}O/10~?&~?&~'~?&~'~?&;-~-~-"..a.|/d|/1H+,~,1~.|/c|/1~e/|/g|/1 /|/j|/1o/|/o|/1o/|/i|/1E/\/f\/1}x/|/f|/1++ab),V,1V122V+,_,,P-i-_-1_11_,I,PI,, r~'r-1. r~'r1..P.1~?&~'~?&e,y,Qy,,q,,Q- .P . .p .1.PH+,S,,U,1Sa+,S,,U,1S22w22w22w23w 33w(3y4wy4z4w(z4{4w {4}4w}44w44w4U5w2Z3UZ3}4\}44U44\44U4U5\2Z3TZ3{4V{44T44V44T4U5V2J3aJ3Z3dZ3334-44a45-5!5!5U5-2Z3QZ34]44Q44]44Q4U5]@3Z3eZ3333-?-33e344444-?-44e4445-?-5U533a3444h4U533c44q5+5c+5U5344*4b74V4bs44b3Z4as44a340474Q74A4PA4V4QV4s40s4u4P3z4S44S3}4\}44UV4u4\`5d5wd55w55w55w55w55w55w55w56w6 6w 6 6w`55U55U55U55U55U55U56U6 6U`55a55-55a55-55a5 6-`55T55T55S55T55S55T55S55T55T56S6 6T`55Q55Q55Q55Q55Q55Q56Q6 6Q55b55-?-56a6 6-?-66w66w66w 66w66w66w 66w66w66w 66w66w66w 66w66w67w 6+6U+66S66U66S66U66S66U66U66S66U66U67S6!6a!6q6wq66-66w66`66w66`66w66`67-6+6b+6`6h`6h6bh66h66-66h66b66h66b67h77-q6u6au66w66`67w66a66P77w77w7]7w ]7b7wb7k7w7/7U/7b7Sb7k7U7/7a/7k7h7%7b%7I7wI7k7-7/7c/7k7-I7M7cM7]7w]7k7`p7u7wu77w738w03888w8898w98\8w0p77U788S8898U98\8Sp7y7ay77c77`798-98I8`I8\8-p77b77h798-98C8hC8\8-78b898X77a77d98M8dM8\8`77e77X798---"98\8X788S8898U`8a8wa8h8wh80:w0:1:w1:8:w8:D:wD:E:wE:P:wP:n:wn:o:wo:p:wp:;w;;w; ;w ;];w`8|8U|81:S1:2:U2:E:SE:F:UF:o:So:p:Up:;S; ;U ;];S`8r8ar8];``8|8b|8p:Hp::g: ;H ;;g;];H88h82:X::h: ;X;C;X88@A9Y9cY99@88W9Y9bY99"979a99a9:c;7;c7;C;9:-":2:a: ;-;7;-7;C;-81:S1:2:U:;S; ;U;C;S89SW91:S1:2:U:;S; ;U;C;S91:S1:2:U:;S; ;U;C;SF:o:So:p:U::bC;M;bM;];::b`;a;wa;h;wh;H<wH<I<wI<P<wP<g<w`;;U;I<SI<J<UJ<g<S`;~;a~;g<`;;c;D<XJ<V<c]<g<c<D<P;I<SI<J<UJ<g<S;D<SJ<V<S]<g<Sp<t<wt<<w <<wp<z<Uz<<P<<Up<<a<<hp<<1<<P<<p<<Pp<<a<<h<<bp<<a<<h<<c<<d<<w<<`<<P<<U<<w<*=w *=0=w<<U<<P<0=U<<a<*=w*=0=`0=>=U>=?=U?=D=UD=E=U0=>=a>=?=-?=D=aD=E=-P=Q=wQ=\=w\=K>w0K>Q>wQ>R>wP=z=Uz=Q>SQ>R>UP=l=al=R>-v=z=bz=R>X>)>a==-?w-==a=R>`==a=>c>K>wK>R>P`>h>wh>>w>?w?"?w"?#?w#?M?w`>|>U|>>P>M?U`>>a>M?X`>>b>M?``>>c>M?h>>e>M?H>>f>M?P>>g>>w>? P-H-??w?#? P-H-#?,?w,?8? P-H-8?A?wA?M? P-H->>-->M? P-H->> --->M?h-`-H->>P>M?UP?R?wR?X?wX?\?w\??w ??w??w??w??w P??U??S??U??SP??T??V??T??Vd?j?Tj?t?Pt?~?Q~??P??Q??P??\??\??P??P??P??S??w??w??w??w ??w(?@w0@@w8@>@w>@B@w8B@C@w0C@E@w(E@G@w G@I@wI@K@wK@P@wP@>Aw?%@U%@:@S:@L@UL@>AS?%@T%@C@VC@L@TL@_@T_@~@V~@@T@@V@@T@&AV&A5AT5A>AV?%@Q%@E@\E@L@QL@_@Q_@~@\~@@Q@@\@@Q@&A\&A5AQ5A>A\?%@R%@:@]:@L@RL@_@R_@~@]~@@R@@R@@R@@]@&AR&A5AR5A>A]?%@X%@L@XL@_@X_@~@X~@@X@@X@@X@&AX&A5AX5A>AX1@6@Pi@s@Pw@~@P~@@Q@@\~@@S@@]@@PQ@@pIB}IB@@PQ@@P@@p}@@P@@Q@@^@&A0@@Q@&A\@&AS@@R@&A@A^AA~}AA^@A^AA~}AA^@AQAA_@ABAwBADAwDAIAwIANAw NAOAw(OARAw0RAVAw8VAAwAAw8AAw0AAw(AAw AAwAAwAAwAAw@AjAUjAASAAUAAS@AjATjAA]AATAATAA]AATAA]@AjAQjAAVAAQAAQAAVAAQAAV@AjARjAA\AARAARAA\AARAARAAR@AjAXjAAXAAXAAXAAXAAX@AjAYjAAYAAYAAYAAYAAYyAAPAAYAAYAAAAQAAVAASAA_AARAAr|AARAARAAr|AARAAQAA^AAwAAwAAwAAw AAw(AAw0ABw8BtBwtBuBw8uBvBw0vBxBw(xBzBw zB|Bw|B~Bw~BBwBBwBBw8BBw0BBw(BBw BBwBBwBBwB4Cw4C8Cw88C9Cw09C;Cw(;C=Cw =CCCwCCECwECPCwPCCwA-BU-BpB_pBBUBBUBB_BBUBBUBEC_ECFCUFCSCUSCeC_eCoCUoCC_A-BT-BBTBBPBBTBBPBBTBFCTFCVCPVCeCTeCrCTrCCTA+BQ+BpB\pBBQBBQBBQBBQBeCQeCrCQrCCQA-BR-BpB]pBBRBBRBBRBBRBFCRFCVCRVCeCReCrCRrCCRA-BX-BBXBBXBBXBBXBFCXFCVCXVCeCXeCrCXrCCXA-BY-BpBVpBBYBBVBBYB9CV9CFCYFCCVBBHBPbBpBPBBSBBFCeCSBBVBBYFCeCVBBUBB_BBUFCSCUSCeC_B8CS8CFCeCCSB9CV9CFCYeCCVBBQBFCQeCrCQrCCQBBUBEC_ECFCUeCoCUoCC_BB]B;C\eCC]BCT CC|tCCT0C7CTBCT CC|tCCTB8CS8CFCeCCSB9CV9CFCYeCCVBBUBEC_ECFCUeCoCUoCC_BBQB0C]CCwCCwCCwCCw CCw(CCw0CCw8CDwDDw8DDw0DDw(DDw DDwDDwD Dw D;Dw;DEEESEEFEFEdESdEhEhEES>E]EY]EhEYhE}EY}EEh>E]EQ]EhEQhE}EQ}EEQ>E]ET]EhEThE}ET}EETFE]ET]EhEThE}ET}EETFE]EQ]EhEQhE}EQ}EEQFEdESdEhEhEESFE]EY]EhEYhE}EY}EEhEEwEEwEEwEEw EEw(EEw0EEw8EFwFFw8FFw0FFw(FFw FFwFFwFFwF$Gw$G%Gw8%G&Gw0&G(Gw((G*Gw *G,Gw,G.Gw.G0Gw0G%Hw%H&Hw8&H'Hw0'H)Hw()H+Hw +H-Hw-H/Hw/H0Hw0H!IwEEFUEFFUFFUF,G^,G/GU/G[GU[GG^GGUG-H^-H0HU0H;HU;H_H^_HHUHH^H!IUEETEFFFTF/G/G[GT[GGGGTG0H0H;HT;H_H_HmHTmHuHuHHTHII!ITEEQEFSFFQFFQF/GQ/G[GQ[GG|GGQG&HS&H0HQ0H;HQ;H_HQ_HuHSuHHQH!ISE?FR?FFRFFRF&GV&G/GR/G[GR[GGVGGRG'HV'H0HR0H;HR;H_HV_HkHPkHHRHHVHIRIIPI!IREFXFFXFFXF/GX/G[GX[GGXGGXG0HX0H;HX;H_HX_HHXHHXH!IXEFYFF]FFYFFYF*G]*G/GY/G[GY[GG]GGYG+H]+H0HY0H;HY;H_H]_HHYHH]H!IYEE0EE1E F2 FF3F%F4%F/F5/F4F6FF0F.G_CG[G0[GG_GG0H/H_0H;H0;H_HS_HuH0HH0HH_HH1HH5HI4II3II2I!I0F/G0G0H0F/G ?F/G /F/GQF,G^,G/GUF/GFFRGGr|G GRFFRGGr|G GRFFQF GSGGQG&HS&H0HQGGQGGSGGQGGPGGQGGPG)H\)H0HQ1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q!8%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q1%Q1%Q!2%!Q1%Q1%Q!2%!Q!4%!Q!8%!Q!@%!Q! HHP[GG|[GG^[GG\sGzGPQGGpIB|IBGGPQsGzGPGGp|GGPGGQGGS;H_H^uHHQHHSuH~HQ~HHPHHQHHPHHQHHPHH\HHP0I2Iw2I4Iw4I6Iw6I;Iw ;I?Iw(?I@Iw0@IFIw8FIJJwJJKJw8KJLJw0LJNJw(NJPJw PJRJwRJTJwTJXJwXJJwJJw8JJw0JJw(JJw JJwJJwJJwJCKwCKDKw8DKEKw0EKGKw(GKIKw IKKKwKKMKwMKNKwNK}Kw}K~Kw8~KKw0KKw(KKw KKwKKwKKwKKw0IIUIUJUUJJUJJ^JJUJKUKKK^KKNKUNKYKUYKK^KKUKKU0IITIUJUJJTJJJKTKNKNKYKTYKKKKT0IaIQaIFJSFJUJQUJJQJJ1JJQJDKSDKNKQNKYKQYKKQKKS0IIRINJ\NJUJRUJJRJJ\JJRJKRKGK\GKNKRNKYKRYKK\KKRKKQKKRKKQKKR0IIXIUJXUJJXJJXJKXKNKXNKYKXYKKXKKX0IJYJJ]JJYJKYKIK]IKNKYNKYKYYKK]KKYKKYRII0II1II2II3II4II5II6J%JP%J8JQiJJ0JJ_KK0:KMK_NKYK0YK~KSKK0KK5KK4KK3KK2KK1KK0JJ (JJ JJ1JJ^JJUJJJJRJJrvJJRJJRJJrvJJRJJQJJSKKp@%p!KDK^s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s !@%!s !DKNK~Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q !@%!Q !JJPJDK s DKNK Q JJPJJQJJPJKQKKPKKvp!KKp@%p!KDK^s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s 1%s 1%s !2%!s 1%s 1%s !2%!s !4%!s !8%!s !@%!s !DKNK~Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q 1%Q 1%Q !2%!Q 1%Q 1%Q !2%!Q !4%!Q !8%!Q !@%!Q !)K1KPYKK^KKUKbMwbMgMwgMiMwiMkMw kMlMw(lMoMw0oMsMw8sM7Nw7N8Nw88N9Nw09N;Nw(;N=Nw =N?Nw?NANwANENwENNwNNw8NNw0NNw(NNw NNwNNwNNwN3Ow3OOwOOwOOwOOw8OOw0OOw(OOw OOwOOwOOwOOwOOwOPw PPw(PPw0P Pw8 PQwQQwQQwQQwQQw QQwQQwQQwQQw RRwRRwR Rw R Rw RRw(RRw0RRw8RRwRRw8RRw0RRw(RRw RRwRRwRRwRRwRRw8RRw0RRw(RRw RRwRRwRRwR9RU9RRRRURRR9RT9RRTRRTRRTR9RQ9RRVRRQRRQRRVRRQR9RR9RR]RRRRRRRRRR9RX9RRRRXRRR9RY9RR^RRYRRYRRYR9R ?9RMRMRvRbvRRRR ?R9R09RRSRR0R9RT9RR_RRTRR_RR p3$Q"8GGGGHHGGHHQH\HHHVH\HHH\HhHHHaHhHHHhHsHHHHHmHsHHHHHI J J7J'35:}JJJJJKK0KJKK*KFKrKKKKKKKKKKKL&LKKKKLLLLLLMM@NGNMMMMMMMM0N@NMM0N@NMM N0NMM N0NMNN NMNN NGNKNcNuNNNNNNNNNNNO ONNO ONN O)ONN O)O(/1M9@B^xPPPP}PPPPQQQQQQQQQQQQ8RBRQQ8RBRQQ(R8RQQ(R8RQRRR!R(RQRRR!R(RGJM=ISUbRyR~RRRRRR#/RZx~+]VcVhVVVV W3WLWoWWWWWX0X>XXXXpY@ZpZZZZYpYXZpZZZ(YGYXZpZZZ [[h[\``[[``>\I\^^I\X\]]]]N\X\]]]]p\]"_D__`"`1```\\\\"`1`]] ]]D__```"`W```8a0]]^_m_`"`]^^"___1`W```8aa^"^``V^^^"_t^w^{^^_"_}^^_"_^^^_^^^_^^^^^^^^1`6`8aaaaWb`bcKcc2dWb`bcKcc!d&d2daGbKccBdIdNdeeffgNdgdggpdtd{ddggddeeddf%fdddd%f2fd eee%e/eeeJeUeeelereeere}eefeesffghhh@iiijhhHiiijjjhhiijjjkpkl]llfmjkpkl]llUmZmfmj\k]llmmNnXnoCoo*pNnXnoCoopp*pm>nCooGpp-q`qrrrXs-q`qrrrGsLsXspqrrwss]tt8uuvv]tt@uuvwv|vvsKtuvvvwwhxxOyywwpxxOyyyyv{wxOyyzzz{ |||zz{ |||||zz ||}E}} ~~P} ~~P E}}P7uP߂HP߂7<Hu ߂ga0 a8 O'r!Px׉ʊ!Px׉ʊrx׉2882ϋ8ЏpWJЏxWJWga0 a8 O'ЗEؗEb@HrwHޛ0ȟ'àHȟ'àȟ'38}8lq}8Hߦ> Xߦ> ߦ>2@OЫīЫ)C??otC٬?PN0hN$0NBP_϶Զ9 0`߸3 63?CJbɹֹkvH`v߷0H߸KY\_g%ɹ!`t !`t^ejO?^ej]º)6˺ֺֺ??SǼSWy)OdduxԻmuxԻȽſ r<JMP}ry 00<0<2bcp RWcpRFKWbS RbfmER8 08C0@biitntbio)o6C:m{):EEO4O  oz oz BYYd^d0H7  ]?Q]aj?Q@P.cu2@P.Eu0@ ' 0cqtw ryy~  $)Pc6:AKQ_>Pj.Zu>.Zu>Ip6D6=v$jv$jv<.Zu+>ZuPX[dx=PV 0%@`pA7uj@A7u090PLO0P`0@]mP` `pZ H`K]}pvp;EHKv@PPp!dm~KUX[fdnnPUPU0AKPhpJhmxhmmF#&1<5&|(EFafa|fmqxT&xT&glxPT&x$=^yxPPhOPOqpp )3dnn-@+-`&9C@PTo9f0@" Hk{k{)))K3KK[ P[ [j `j @_-g9}_ 0_r r^p^(-02;Bp`^KF`etB+B+B+ -Fo| / /+g c@g/ b 7Kk o v  *7     M     *c M   cyV a P ` a        ` p       `          `            GT      EY  p       "   "  KOqTcTc30tz0tinz3tx Q[Y]5sBp /QBp/Qs5 /Q /+,j,Y^jv,6<,0R^  p!!!""#  !""# !!""U _ !!Y"]"""#_&x&B,####))$$&'$$&'$$&&''2)E)+u+Y$$&&+,+P+u+$$@'P'$$&&$%,*9*%%x&&`''")2)))]*}***H%%x&&]*}***%% '0'%% '0'&& &&P'`'&&''#&-&' 'D&O&0'@''\(u++ ,(,'K(u++ ,(,\(")g)i)+ ,(,B,( )g)i)+ ,i)t)))n)t)))t))))y))))d,,U.`.0092{2; <U.`.0092{2;;< <,D.//(/0092{2;,,{222222,,22--00@0--$-9-11--@0P0----/292- .P0p0.*.p0061D1.*.p00*.D.///.D.//(/[/[8}899v/00000::/000::::000002254633453::J33443:Y:x::334433348 8.4A444:4A444O4S4V4X444a4g444g444455:j;255:;E;j;A6X6;;N6X6;;X6677j;;667#7:7S7k7788#:3:88#:3:859P99 :#:859P9[9r99!<`<pAzAAAKE[E2<`<pAzAAA`<]@p@pAAKE[EhFFH`<d<k<<[EhE<<p@@< =FFhFFF==!=9=EEB=M=@@g=r=@@r=v=}==@@FG G G>GzG==@@==@@=> >#>zGG,>7>@@U>l>@Ab>l>@A~>>>>0A@A>>@@>>>>DD>>AA> ? A0A? ? A0A ??`ApABBDDGHA??`ApAGG??@APA??A A?D@PA`A|DD?D@PA`A?&@PA`A@@@@PA`A1@5@8@D@ BBBBBBBBB+BBB!B+BBB+B;BBB0B;BBBBCCChHH3CCHHC|DHhHCkD'HhHDDDDHaJ?Jd[[HJLJSJkJYYtJ~JO OJJYYJJKKPO`OP\[\^\c\\\^?^KK@OPOKK0O@O-LLPP\\ ].]t]]]]LLPPLLpOOLL`OpOLLLLYY*MkMuZZ][d[^^aa3MkMZZ][d[^^tM~M O0OMiNOO \)\.]<]?]B]]^iNsNOOsN}NOO}NNOONNNOOPX X````OPP=P``FPVPX XKPVPX XQ QQ2Qbb;QEQV8VXQvQ6bHbQQQaR}VV>apaaaaaHbqbaRkRXV}VkRR8VXV'SSUUWW)_I_____SSWXSSVWSSVVSSVVSTVV3T>TTT8T>TTT>TITTTCTITTTITgTTTSTgTTTgTsTTTlTsTTTUVVVWWXX:`a`\W~WXXfW~WXX`:`a```-`a``b cccffmmqdrrls{|ffqdrrls{{||cf`gmmqdrrls{|~cclld dllUd\dbdmdsdd<{r{ddddzzddoo eeope&epp&eEe@oUoWoYoEeXep p$fAf p0pAfKf@pPpKfNfTfdf0p@pdfofllzmmdfoflloffmmtffmmffmmffmm`ggkxxgggg7xDxggmnLhh0o@osuuuuuu|}hh o0ohhn nhinni:i u@uCiGiNiritt~ii n0nii^ttiiii t-tii0n@n jjpppqq q@qxx|V|}C}9jjpppqq|4|}C}jjpnnjkPpppq q@q_qxxC}]}}}}~kkPpppq qC}]}}}}~kkvvvvkkPnpnkk@nPnkkllllmmkknnm.m_qq$m.m_qq.m=mqq3m=mqq=mLmqqBmLmqqLm[mqqQm[mqqn o]}z}}}}}}nnnnnn}}pppqssssyyV|e|zz||zz||*~r~`".x0`?x0`"`"p}`p`Њ>Lw 7<ck yр`pр Cy/=Lpk >Lw  >L  %*>/>P_`p_dmr˂ׂׂׂ͂܂ЊЊǒǒǒ̒Ւڒww_iloRk7FԓʓԓԓٓFRFR.7.7),1ۏo7;BTbq[a[jЉjoxЉ:=B:=BV"4tЅ܅ {Lf̗9{̗{ 0mڋfw ̗{ 0ڋ̗ɆɆۆ Њ|3<GNk@PNk@Pkz0@pz0@zP`P`(>(>/(%/(/C9CCRHRR^ɌW^Ɍ^iɌciɌƙ%ȥpI@Ƴ4X%ȥpI@Ƴ4Xak  00@ ?HLSkt~Щ~5ś]oЩ{%@=[05GJM % 'ѝHhXXXѝHhX3ѝ۝@UWY! )\jeip-= 0Ξaמ۞ -0P#jSkػۻ޻{#-@j-7P`Hh4hAjyhAj`.ب.AI|AǶԶd$%7-7Ъ¢Hŵص%'*-HSS]ЪnЮh{0X9Ю0X"+55T(=?ATg F[ H[n nèب˧x˧xWpWpHWHW3@C[ӫ`9TWz(czsz֬8]/G]/]mbmm|/Hr|/H  $'@ٴŵdϽpϽ!S[fjyž$8pgC<fJ8gC<fJds} "U^bi 3:QCGNpy 83K#:=@U8] 0B]p),/|p@P<P E\y(<P .0@P``p %Xaelp''+2JLYS< 0 0 $0;MW W\c|K0P,",?DGRR\P`eo`u| u;P`;P`PrZrrw<<p1  8 88xH(IxH(YddooypyPp :0%:0:R0g?R0gRjWjjo^^^^C:)t)?\:2k;2 fcf*/2K@u!Mk!V!Fku4#(404N]%bi;3 ?<@G_hrtO]   ykzS    {S  {Xg|#%'2Q%7W`\14=D\*`}''9HHKTY%%@EN``hq/27N=AHZhww| ]k@O,_m;M_m+QU   +QUWwmycwmymwmy(     " (    0BzKZyZbku ~%5 x ~DU5D!'0@8s  d}.   $E$       }" I o{o{$5$55E5EEUEU. s    ]    x       $ 2 T ^  j!p!11D22j!p!11D2222j! "V#`#%%11D2ADI++OSZl/0z&&01 %N1[1.8&&T^&&m('6'0000[0q011'(''' ''$6&'jrtyX`##'(<()*'(/()*yY | 2!j!X)j)M!j! "0")) "0"#BP"Z"/BP"Z" l""&&6'Q'( )* *** ""6'Q'( )* *   % "" % ""7 A @"P"A P 0"@"|    ## *9*j**z,, !"# !!####@#V#'(####((++####(( $H$((8,J,&$H$(($$(($$(($$(($e%((******:+_+++02D2$e%((****:+_+++e%j%o%%((t%%((%%((%%%%((%%%m&('(,..../%*&('(&& &&4&<&?&B&,,,,,,,,t-y-|----....#.5.|&&&&**''<(H(''<(H(''H(U(''H(U(''U(e(''U(e(''e(u(''e(u(''u((''u((B)Q)**+'+_+f+k+s+$3389KKUUUUkVVcWWW3389UUcWW3333XX3+4V5WG4Z4A Ab4f4m44VV44@@@@44 A0A44XXLYnY5 55)58ZEZ25<5BB<5@5G55P??X%YYYYYY Z55BB55BB5J69k9FG`IIGNYN P-PfPsPVV['[(6J6FGGNYN P-PfPsPVV['["9k9`II;9[9`IIQ66??0AAH H NGNTPfPZRgRRR^ _v660AAH HTPfPZRgRRR^ _0AAAH H?? NGN?? NGN66B+C0LM-PTPRR}TTTT_`bb660LMRR}TTTT_`bbB+C-PTPBC-PTP647 DDILJgRRTTiUvUUU``cc747ILJTTiUvUUU``ccBDDgRR[D{DgRR;77 HHgN0OVT}TUUVVnY{Y1cAc5dKd`77gN0OUUVVnY{Y1cAc5dKdBHHVT}T^H~HVT}T77 MMsP@QvUUVV]]^^aabb77sP@QVV]]^^aabbBMMvUU^M~MvUU7!80OORSDVkV]]]]aabc7!8RS]]]]aabcROODVkVnOODVkV(8p8@QQTiUqZZ]^G`W`cd d5dM8p8TiU]^G`W`cd d5dbQQqZZ~QQqZZw88LJJSS^^Xaaccd d88LJJXaaccd dSS^^SS^^99EF9:\]::#:;:'[5[D:N:`FpFl:v:pFFv:: E5E7E:E::FF::n__::: ;]];;DD;;E;D DE;g;CCCCg;q;GGz;;bbdd;;;;wdd;; L0L <<L L<6<pKKKK6<@<GG@<]<FFf<<5[k[<<<<[[<<FF<=GHM M@RZRr^^2aXaaacc ==GHM M2aXaaa==FF====ZZ==FF>>FF>=>pEEEE=>P>FFs>*?YNgN8TVT`2ac1c>*?YNgN``c1c3@>@pBBAIRI3@>@pBB>@M@BBC@M@BBM@]@`BpBR@]@`BpB]@z@PB`BFF F*FKL1F6F=F`FKKIIRR IIRRI"IRRI"IRRGXQX^^YXcX^^D\I\L\t\"^F^bb.^F^bbT^X^]^r^dKmm v0vn{nPx`xa{nn@xPxnnvwnnuuuunnvvnno oo)o2o=oxxLooyyzzUzooyy?Uopxxpp/pppp߆ppv vpppqqYqxyR_bqlq0v@vqqqqqqxr rw0w/r9rww9rrxx'58;΄rrwxrrwwrrwwrrrrs.s0x@x#s.s0x@xPipP`]m[h %N[Lc Yc sx{ER˗ 0˗Зחʾ;`p-=DO0PmPzPag0('9<?)'92<Zp fp ȨȨך0@l 0@ 0[ 0edpP#@0GиIe9epP0GиIed#@2T#@l`(7S(7Sǭ``")ALYJTPpTǝ 7Нڝڝߝ ?Ip۞fLORbfpppzаű~ű#,07Op}Xbb4$ˡ$6ԡޡ@Pиk_*%@P_ -0@0/25)0@)3`p3>P`Wa@Pw{ӤSdmP`ӤP`Ӥ`pݤ`p'''I1IIkSkkЬuЬЬЬ̥pCީXqXqXqжжж ж%%%4*4qʫqʫqpG`3BG`8BG`$W`dk@O#O]$cpsvj!]lҴմ0(NY 3Nݺ*3úO(  - km|8FM ps}UE*J E 0@```5b&c``5b cc&c 00@`*+``5b&cLSXZZ[[x37G\]]]] ^ $$$)<R ^*^j@X^^0g`p"#$$stuu 38AC~:=vyʱϱtyKPx0u`pQT\bu""*I[Yp""fp""$$""##"#<H$$>H$$HX$$MX$$Xg$$]g$$`u ڕ`uɖ BYOYY\htjtt~~0BDFTx x!(:޴K]P6`68989p66)P$`$'Ƕ1;`6p6CJVp0000p66/ ռ߼-??MY~Rfɽ%/@PXc0@r| 0  "0" "0"%4FvD8`8!`p-@P`5@P`Y]adk}jj(app!`rtv!1EIPeɽս#)NQY|_cj#ADGADGW8k ߸%r0"@"$8 8MOQ 0' B͞04;Ppzak8PǶ۶.Pgt P`5@Ph$h'h,hS  3p3Wlpw0:@"P"@"P"@"P"p$$G(G B]%p$$ B]`#p#P"`"0:;CD 0  X]dz,;18D8;U# #!x!1EJQg5{D{x5588xkk #0# ?BJAwPT[muv~@6P6888866)Y`$p$Ѧuak66sz1"1$1&166PH0#@#|mm ?BJ @PT[pyP#`#&$$ll$$@#P#  >>qtqGKRjpps}77}ooGQ77Pg9*9]g9*9s~07@7 707Ze7 7774>67h@1U1W1Y166p77`7p7P7`7$DP`@7P7,D@7P7Hg%%%%g|p55%%%%55"*z||04;M{{^p555555/:55Bc0000CCcv6 63}@} 06@6 06@6" * 2 I 887 I 88^ i 66i   569999@:E:::FFM M[M`MMM3N8NuNzNOOjOoOQQrQwQQQRRHRMRRR;S@SSS"T'TTTTT@UEUUUV VVVwW|WWWMXRXXX__vv߅ %*Œ"ƪ˪_dq u z  56      l    Ո   606{    88vvRw`wcwhw8a  88 ' 88' / ; E 88E J ] s 4C  p88  p88  p88 n IIa4 n an  88 DDKK<1n  88EDD<"  99  99  `8p8   " xP&`&HH(:uxP&`&8Zu" * 3 ; !"2(2JJVHWXY,!"VWXY; P K{LLL\ K{LLL\rk  Xmor  @P    UUBp(Bp8BpZ^cii{P``ppp@PORZNN`dk}INSNP`xP`P``p@`"{"JJz{a@z{a'9a" "Qm" "" "" " 0     +XTbT!0 @ tRRRRSS!3` p ?IP ` I[@ P [^jw!!lw!!wQSSQQp  D  M,MYY/YPY4      S  8OjOrOOѫ5G  Su!!]u!!u!!!!+O8O    !!!! !1cXpXVn@!P!dn@!P!!!!!!@!"!@!WX$P!`!$)5q::`!p!MMp!z!&z!!#!!#P$EEEEH I:aΏ##Ώ#$H I#$H I$ $$!$HH&& ''77818tqqK|''88''78''''77"('(3(Q(a((+ +sww"x6x((0-P-((((,,,,((((,0-)&),,)&),,&)H) ,@,0)H) ,@,H)j)@,`,R)j)@,`,j))`,,t))`,,)),,)),,))++))++))+,))+,))++))++)*++)*++*3*++*3*++3*C*++8*C*++C*e*++M*e*++e**++o**++**,,**,,**,,**, ,**, ,2+g+zz`--z6z----zz-.`5p5..`5p5..`5p56.:.=.C.66L.^.@5`5^.c.o..M/e/00P0R/e/00P0e/t/P0p0j/t/P0p0t//p00//p00//00//00///0///0//000//000(2,232U2rrm2277r=rss227722PFnF2222EEEE22nFF23ą&3*313P3Yua3q3993333l33*9C93499щC44u9944\9u944$5.5C9\9$;/;AA/;F;@A7;;;@;F;@AF;K;^;w;;;@@;;@@;;`ApA;;@@;;<,<,;<=PA`AxE=-=@APA9=D=0A@AD=N= A0AN=\=p====Vx====q~==A AH>L>T>>AAۮ >>AA>>AA>?pAA?/?IV8?J?AA???E@uBB} ,;dE@P@PBuBP@b@0BPBb@j@v@@B0B@@AAAAcG{GIJqG{GIJGGiJxJGGIIG%HБH HH%H.H@HSJiJ^HbHiHHJjKKKzz{5{JjKKKzz{5{}NNOdPƪ˪ժ_dyѫOO(P6P >PPPFVlVRVlVbVlVzef%ffef%f0fGfifff6xVxxxxy6xVxxSypyy[^ku*ʥ*5_x{@Ua%1yUay@UT\%1?PyO@T1@"Uu{3UupEnxEU9E-9.y|#-Sy|#-. . $. ;h'~ dh~Ue ",s,,Ym'MYAM-A").R  kzpz#-FX#-55myETh@WEYm>EThEYmEJOcTcu %/ %eul{}&(Ggu^ < 5CNNRYq.%7FTc%%%",5?P$'Pux , "HMVhhmv 66/[$i/ @ RWel !!!""""6MPU'(,MPUn'1'#7(7IXX]fpyE !!!E"G""%)L))*5// $2]@pfyp! " !!.27b@%%5E5E%5%5116?Q> ))  ]"i"  ]"i"    i"u"  i"u"    u""  u""!!!v!""(!+!8!D!"":!D!""D!T!""I!T!""6(C(%HC(]())!!$-/\dfh/D61C1  04;S(/5/a024iu*2*f*z*''  $-07V''}DRj##$$DR$$$$!0ET~z*+zlp**lpKkWkak~Ri**-._.g.--_.g.#O""^'y'''z**#x^'y'z**#(0D5DVeejs}Ha0l.RWel"""""7#B#\#$$$''E-U-/0Pl04=xp|@P-| HX 2xXd0@?'??a.Ia.Oc.:Yc.:chq:Fv:FFUFU $$W$/0&5+55:CRHRW\l"""7#B#I#L#\#~$$''E-U-"" ##~$$ ##~$$#'#E-U-#'#E-U-'#7#B#I#L#\#'',#7#B#I#L#\#''w). /w  %1.-.:WEZ\^Wl)<tx8-E-,-s*,@,],,s0::>GJQc ,*,qDY++b2D++b2D&>++GKRg\+f+uzb%233zb%2 c33/*3738GGJSX@2v211  5 D >JD H [  ->33 505>5T5        u 8 5 5F J Q f ~55t  eu  4455    Ve K N S !V4h4* K N S !l   4&4     !-  !-  !-  %&g& 44G  %&;& 44  esY &%&g&&..00  es &%&g&&..        JV    # / @ e@  e h r x V__bkwmww;%]%%;Xafm=O''g.. /(/C1s1.=uu<\#j#U-e-111233e111233%%&&& ' ''@G6Pff]]nn::yy66PP{{FF``!F!F-F%(%,/=D )LO-0:=OUX^` 3 9 < M R _ 3 9 < B B H P V B I [ t x L `   L ` p p  PVY^VY^aP knp:BF&7@HUNRU[36TW]bNRU[NRU[ : #: ]`jntz: : >AQU[a :  : (,28F M N U ] s w z   s w z B s w z ] ` w z ] ` w z s w z s w z   ! $ * , / 2 > @ F K W _   ! $ * ,  g + . H K Y ^     J  PYan &pGMW]fk~  ;>LOUX[`|;>LO ),=T%+gjux@@FINFINQdj<?EK``#Ih  #&3 6 O R X ^ !B!p!,# !!!!!!!!!0"`",#{"~"""""$$$$%(&,&/&&& ' '''T+W+a+d+j+n+S666766667778(9+9W9Z99999p:: ;;I;];w<z<<<<<<<=G>K>P>y>|>>>????`@f@n@t@@@@@0B9BE@EPE_EdEgExEEPE_EdEgExEEF GG!HFFF GFGIGPGUG`GGFGIGPGUGuGGoJqJtJ~JJJoJqJtJ~JJJMMM'N O8OMMMMM NMMM NMM O8O O'O,O8OEN{NNNNNNNNNNNNN O OOOPQQ?QQQ,Q?Q)P4P8PPPP)P4P8PPIPbPPxP~PPPPIPVPPPPPPPXQ^QrQQQQQQ.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.data.rel.ro.dynamic.got.got.plt.data.bss.comment.debug_aranges.debug_info.debug_abbrev.debug_line.debug_str.debug_loc.debug_ranges$.o8 XX0@Ho"/"/Uo(1(1@dh1h1qn xxxs ~PP|̙̙ M 88$40(00(00(00(0 0( 02(2004(04 9( 9) b*b h, b )c e )(:f40}A?@MJa 6"X"# A#MX"/(1h1 x  P ̙ 80(0(0(0( 0(2(04( 9(b*  0F*3 @Gm `GE Gi H  0H. Ha^`** 0I( P1 `I IP*3 @J.I b pJv 0K5 pLs L N PO( f9 ]M nb P*o*w @Qq Q  :?Ў*  yZ(*0 $S $v  6Y 0 [  2 PRH =e  P 9( %   SZ. SY 0Uz  c VO pW XN ZT @[q$@*5*G*\b*ub*Ѕ* ar**&*4p*Cy*R*i @d*@*P*@* g *? *V  j *  pm v* `* *(  0p(b 8*o @*| *  `s( pv* *  v(0 z*@  z*P *g  y( (* 0* @*  |( `*  (R *i  P h~* p~* *   *' xz*7 *F z*V @* m  Њ * * *   **'*4*D * [ P*(* *0*@*  5!`*(8 P3qv* * 3* Р! * 8 o*}*  ؀**  Ы)* @ x*  0y*y**  S&l*?l*]{*u |* @Sl*l* s!*5 *F 7}* `p{*}** 0!, `b@y*|  *u**&*4|*By*R*`u*pu*u* *y*@*Ѓ*u* `c f {; FL |x `w*@*Bv*`v*Pv*@v*0* p**+*<*PЈ*i*P{*****Ќ*z*/Ȍ*F@*[*t**P*** v*0*v**p*Vv*e*u*x*x*0z*u*/Ћ*[pu*k`u*{*Pu**@u**0u*%*P u*``}*u* *u*|*t*|*+t*;|*dt*t*t*~*t**t*(t*8*^t*n@*pt**`t*0*Pt*~*@t* *30t*C*o t**t*u*0*t**3s*Cs*Ss*cx*~s**s*s*v*s**$ s*4 ~*` s*p * xs* p* ps* `*!hs*&!}*Q!`s*a!}*!Ps*!*!`*!Hs*!z*!*!8s*"@s*"`{*%"0s*7" s*g"Y*"P|*"*"0*"8*#0*/#(*U# *n#*#*#*#*#* $*B$؍*j$Ѝ*$*$*$*%*M%*%x*%p*%h*(&`*^&X*&P*&H*&@*5'8*j'}*}'w*'}*'~*'P*'*'*'*( *(*%(*4(|*N(0v*Z(r*s(r*(r*(r*(*(r*(r*)*")r*;)r*Y) *m)pr*)`r*)*)Pr*)@r*)**0r** r*7*`*M*r*f*r**P**q**q****q**q*+q*'+q*E+*Y+q*r+q*+`*+pq*+`q*+ *+Pq* ,@q*(,p*:,0q*S, q*q,*,q*,q*,*,p*,p*-p*-p*3-p*Q-*g-p*-p*-*-p*-p*-~*.pp*(.`p*F.`~*e.Pp*~.@p*.@~*.0p*. p*. ~*.p*/p*2/P}*C/o*\/o*z/0}*/o*/o*/}*/o*/o*0|* 0o*90o*W00|*f0po*0`o*0|*0Po*0@o*0{*00o*1 o*-1{*>1o*W1o*u1{*1n*1n*1n*1n*10{*2n*)2n*G2`z*V2n*o2n*2@z*2pn*2`n*2z*2Pn*3@n*!3y*;30n*T3 n*r3y*3n*3n*3`y*3m*3m*4m*14m*O4 y*d4m*}4m*40x*4m*4m*4w*4pm*5`m*05pw*C5Pm*\5@m*z5Pw*50m*5 m*5w*5m*5m* 6v*6}*66b* `6`b* 6*6؆*6*6*6*6*6X* 7H*7*%7*97*M7X*^7*w7h*7*7*7h*7*7x*7~*8X~*388~*J8~*[8H}*l8(}*8}*8|*8(|*8{*8{*8{*8{*9{*9X{*'9({*:9z*K9Xz*Z98z*n9z*9y*9xy*9Xy*98y*9y*:(x*:w*(:hw*;:Hw*J:v*\:v*k:*:*:Pz*:Љ*:{* ;*7;py*a;*;@x*;`*;{* < *4<*_<*<*<*<w*=@**=|*T=0*y={*=*={*=*!>0y*K>*w>~*>*>Py*>*?*J?P*q?@*?`*?0~*?*@*A@*l@P~*@*@y*@*Ay*DAp*pA`w*A0*A@}*Ap*Bv*CB*lB|*B@*B`*B*CP*]Pl*\]@*n]~*}]@l*]0l*] *] l*]l*^l*^k*=^k*V^k*t^@*^ ЋW^ w*^x*^}*^j*_pj*1_`j*J_Pj*h_@j*_0j*_z*_ j*_j*_*_* `@|*`j*3`i*Q`*d`i*}`i*`*`*`z*`*`i*`i* ai*#api*Aay*Pai*iai*a*a@*aPx*a*0a Gbf* bf*>b*Mbf*fbf*b*bpf*b`f*b|*b0f*b f*cf*)cf*Gc0*Wce*pce*c*cXe*cPe*c *c@e*c0e*d*/d{*@d e*Yde*wde*dd*d`*dPf*d@f*de*ee*-e*Bee*[ee*ye*ee*ee*epe*e`e*ed*fd*1f*Ifd*bfd*f@{*fd*fpd*fpz*fz*fy*f`d*gPd*4gw*Egz*\gy*kgx*zg@d*g0d*gd*gd*g{*g@*(h *Jh@h*ch0h*hh*hph*h`h*hPh*h* i P??ik*Xipk*vi*ip*iP*ix*iЁ*ik*ik*jk* jk*>j*MjY*h]j Aj j &j <j `#k  2k  Ek `>nk L ~k k $k k @k  l !3l Vl @,"~l l ,"l @l m +"6m [m +'m  m @!m @+"m +" n $In *,qn *n -n @%n o 6o $_o ` o o o o p (=p %fp !p p @ p @(p ,'q *'Oq (xq #q  q @#q r ! @b " 1 @ y)  `$ Z , ,9 V `n ~   @b  ʀ S    T `S'C "l G   U   ց  `D  ړ ! @qH W g h   N 7  # 3 ЍY 'f Ht 8 B "  d~؃ ޕ ,  < `\E T l `!  n V{ф `  6 0 L $ `L [ ֕k Ε{   C  *  x˅ $م    }#  5 ?] k ƕ{ SS   ʆ ׆   J# `@ Gg !~ =   6 -    - S !{   :   ̈ و     N* " = K e p q j c   `A  \w* %E UT 1 e    ,6  Ί ( ߊ  @  /@ N [  s* Y*0[*؋`[*P  *}? *3z* ){@),)@b)5))N`) X)e@) ǎ)A `)~6)m) ) )' ) g ) v) ѐi) a)J@W) @N)ё`A) `5) G`&))  )  ) (( `(V (Փ((6 E@(K @( () @(7( m@(<s(< h( #W(riL( `A( >(S@:([@9(h9(h0(— PFח F Fb*0(6 GB0(ax  G ˜ ̘ ֘ 0H)        * 3 < EX"S0(_0(l 0(ub*04(ș @jי @^8 @FK `f p@W e  cW ʚ :'ؚ `V0AVb po&{ `c/˛ T*b*U `I"b :s 6%Ĝќb*؜ o[ ) p: =(HZ kTj R{ I3 pa,Ɲ l՝ ̙۝ @}  $7Ea `F{ ˞۞ ( @73D]p @kN F p>&şٟ N% p]9J p\ P{ ZȠ gL / ~[C^qǡء Xn <  pF):F `_(Xlzʢ a֢   _ ]#5AYk J£ aϣ 0F&<Oi `u @:F I ˤ٤ @J> cJ%**:Ij 0] a 7n Wϥ l !F  JB p$ @? P]Udb*p :C @ bæΦ >/ $ 91C I_d `t ~ } >Ч <[ PP k,A `q p| ¨Ԩ pA ] 2 jk@L =^r PFʩة f$0@\m ze  ;̪ݪ @%7HZgx" xǫ =ث( L/usr/lib/../lib64/crti.ocall_gmon_startmtrand.c__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss__pyx_tp_traverse_5numpy_6random_6mtrand_RandomState__pyx_tp_clear_5numpy_6random_6mtrand_RandomState__pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator__Pyx_ErrRestoreInState__pyx_tp_new_5numpy_6random_6mtrand_RandomState__pyx_vtabptr_5numpy_6random_6mtrand_RandomState__pyx_empty_tuple__Pyx_PyCFunction_FastCall__Pyx_RaiseNeedMoreValuesError__Pyx_PyObject_GetAttrStr__Pyx_PyFunction_FastCallNoKw__pyx_pyframe_localsplus_offset__Pyx_PyObject_IsTrue__Pyx_PyNumber_IntOrLong__Pyx_PyInt_As_long__Pyx_PyInt_As_int__Pyx_PyObject_LookupSpecial__Pyx__GetException__pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw__Pyx_ImportType__Pyx_ImportVoidPtr__Pyx_ImportFunction__Pyx_Import__pyx_m__pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator__Pyx__ExceptionReset.isra.4__Pyx_CheckKeywordStrings__Pyx_GetBuiltinName__pyx_b__Pyx__GetModuleGlobalName__pyx_d__Pyx_PyInt_EqObjC.isra.13.part.14__Pyx_PyInt_NeObjC.isra.15.part.16__Pyx_ImportFrom.part.17__Pyx_GetItemInt_Fast.part.20__Pyx_IternextUnpackEndCheck.part.22__Pyx_SetItemInt_Fast.part.24__Pyx_PyInt_As_Py_intptr_t.part.25__Pyx_PyInt_As_int64_t.part.26__Pyx_PyInt_As_size_t__Pyx_PyDict_GetItem.part.29__Pyx_copy_spec_to_module__pyx_pymod_createmain_interpreter_id.20996__Pyx_PyObject_GetIndex__Pyx_ParseOptionalKeywords.constprop.40__Pyx_Raise.constprop.41__Pyx_RaiseArgtupleInvalid.constprop.42__Pyx_PyFunction_FastCallDict.constprop.43__Pyx_PyObject_Call.constprop.48__Pyx_PyObject_CallNoArg.part.12__Pyx__PyObject_CallOneArg__Pyx_PyObject_CallOneArg__Pyx_PyObject_CallNoArg__Pyx_PyUnicode_Equals__Pyx_ImportFrom__Pyx_AddTraceback__pyx_code_cache__pyx_empty_bytes__pyx_cython_runtime__pyx_dict_version.21847__pyx_dict_cached_value.21848__pyx_n_s_cline_in_traceback__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample__pyx_f_5numpy_6random_6common_double_fill__pyx_lineno__pyx_clineno__pyx_filename__pyx_n_s_size__pyx_pyargnames.15859__pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str____pyx_n_s_class__pyx_n_s_name__pyx_kp_u__3__pyx_kp_u__4__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal__pyx_f_5numpy_6random_6common_cont__pyx_pyargnames.17333__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential__pyx_pyargnames.16057__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy__pyx_float_0_0__pyx_kp_u__12__pyx_pyargnames.17751__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare__pyx_n_u_df__pyx_n_s_df__pyx_pyargnames.17650__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t__pyx_int_0__pyx_pyargnames.17797__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma__pyx_n_u_shape__pyx_n_s_shape__pyx_pyargnames.17436__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto__pyx_n_u_a__pyx_n_s_a__pyx_pyargnames.17899__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull__pyx_pyargnames.17948__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power__pyx_pyargnames.17997__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare__pyx_n_u_nonc__pyx_n_s_nonc__pyx_pyargnames.17700__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald__pyx_n_u_mean__pyx_n_u_scale__pyx_n_s_mean__pyx_n_s_scale__pyx_pyargnames.18326__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta__pyx_n_u_b__pyx_n_s_b__pyx_pyargnames.15955__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises__pyx_n_u_mu__pyx_n_u_kappa__pyx_n_s_mu__pyx_n_s_kappa__pyx_pyargnames.17847__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f__pyx_n_u_dfnum__pyx_n_u_dfden__pyx_n_s_dfnum__pyx_n_s_dfden__pyx_pyargnames.17541__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f__pyx_pyargnames.17595__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh__pyx_float_1_0__pyx_pyargnames.18274__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential__pyx_pyargnames.16007__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma__pyx_pyargnames.17486__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal__pyx_n_s_loc__pyx_pyargnames.17380__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel__pyx_n_u_loc__pyx_pyargnames.18104__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic__pyx_pyargnames.18161__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace__pyx_pyargnames.18047__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal__pyx_n_u_sigma__pyx_n_s_sigma__pyx_pyargnames.18218__pyx_pw_5numpy_6random_6mtrand_3ranf__pyx_dict_version.20424__pyx_dict_cached_value.20425__pyx_n_s_random_sample__pyx_n_s_rand_2__pyx_pw_5numpy_6random_6mtrand_1sample__pyx_dict_version.20386__pyx_dict_cached_value.20387__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate____pyx_n_s_get_state__pyx_n_s_legacy__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random__pyx_pyargnames.15904__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce____pyx_n_s_randomstate_ctor__pyx_n_s_pickle__pyx_n_u_bit_generator__Pyx_PyObject_Call2Args__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn__pyx_n_s_standard_normal__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state__pyx_n_u_MT19937_2__pyx_tuple__8__pyx_builtin_TypeError__pyx_n_u_key__pyx_n_u_pos__pyx_n_u_state__pyx_n_s_get__pyx_tuple__10__pyx_tuple__11__pyx_tuple__7__pyx_builtin_ValueError__pyx_n_s_state__pyx_n_u_has_gauss__pyx_n_u_gauss__pyx_tuple__9__Pyx_IsSubtype__Pyx_TypeTest.isra.7__Pyx_PyErr_GivenExceptionMatches.part.21__Pyx_IterFinish__Pyx_PyErr_ExceptionMatchesInState.isra.23__pyx_pymod_exec_mtrand__pyx_empty_unicode__pyx_string_tab__pyx_float_1eneg_8__pyx_int_1__pyx_int_4294967296__pyx_int_neg_1__pyx_n_s_main__pyx_n_s_ValueError__pyx_n_s_id__pyx_builtin_id__pyx_n_s_TypeError__pyx_n_s_RuntimeWarning__pyx_builtin_RuntimeWarning__pyx_n_s_range__pyx_builtin_range__pyx_n_s_DeprecationWarning__pyx_builtin_DeprecationWarning__pyx_n_s_OverflowError__pyx_builtin_OverflowError__pyx_n_s_reversed__pyx_builtin_reversed__pyx_n_s_IndexError__pyx_builtin_IndexError__pyx_n_s_RuntimeError__pyx_builtin_RuntimeError__pyx_n_s_ImportError__pyx_builtin_ImportError__pyx_n_u_l__pyx_tuple___pyx_kp_u_Invalid_bit_generator_The_bit_ge__pyx_tuple__2__pyx_kp_u_can_only_re_seed_a_MT19937_BitGe__pyx_tuple__5__pyx_kp_u_get_state_and_legacy_can_only_be__pyx_tuple__6__pyx_kp_u_state_dictionary_is_not_valid__pyx_kp_u_state_must_be_a_dict_or_a_tuple__pyx_kp_u_set_state_can_only_be_used_with__pyx_tuple__13__pyx_kp_u_Providing_a_dtype_with_a_non_nat__pyx_tuple__15__pyx_tuple__16__pyx_kp_u_a_must_be_1_dimensional_or_an_in__pyx_tuple__17__pyx_kp_u_a_must_be_greater_than_0_unless__pyx_tuple__18__pyx_kp_u_a_must_be_1_dimensional__pyx_tuple__19__pyx_kp_u_a_cannot_be_empty_unless_no_sam__pyx_tuple__20__pyx_kp_u_p_must_be_1_dimensional__pyx_tuple__21__pyx_kp_u_a_and_p_must_have_same_size__pyx_tuple__22__pyx_kp_u_probabilities_contain_NaN__pyx_tuple__23__pyx_kp_u_probabilities_are_not_non_negati__pyx_tuple__24__pyx_kp_u_probabilities_do_not_sum_to_1__pyx_tuple__25__pyx_kp_u_Cannot_take_a_larger_sample_than__pyx_tuple__26__pyx_kp_u_negative_dimensions_are_not_allo__pyx_tuple__27__pyx_kp_u_Fewer_non_zero_entries_in_p_than__pyx_tuple__28__pyx_tuple__29__pyx_kp_u_Range_exceeds_valid_bounds__pyx_tuple__30__pyx_kp_u_left_mode__pyx_tuple__31__pyx_kp_u_mode_right__pyx_tuple__32__pyx_kp_u_left_right__pyx_tuple__33__pyx_kp_u_ngood_nbad_nsample__pyx_tuple__34__pyx_kp_u_mean_must_be_1_dimensional__pyx_tuple__35__pyx_kp_u_cov_must_be_2_dimensional_and_sq__pyx_tuple__36__pyx_kp_u_mean_and_cov_must_have_same_leng__pyx_tuple__37__pyx_slice__38__pyx_kp_u_check_valid_must_equal_warn_rais__pyx_tuple__39__pyx_kp_u_covariance_is_not_positive_semid__pyx_tuple__40__pyx_tuple__41__pyx_tuple__42__pyx_kp_u_sum_pvals_1_1_0__pyx_tuple__43__pyx_kp_u_alpha_0__pyx_tuple__44__pyx_tuple__45__pyx_kp_u_x_must_be_an_integer_or_at_least__pyx_tuple__46__pyx_kp_u_ndarray_is_not_C_contiguous__pyx_tuple__47__pyx_kp_u_ndarray_is_not_Fortran_contiguou__pyx_tuple__48__pyx_kp_u_Non_native_byte_order_not_suppor__pyx_tuple__49__pyx_kp_u_Format_string_allocated_too_shor__pyx_tuple__50__pyx_kp_u_Format_string_allocated_too_shor_2__pyx_tuple__51__pyx_kp_u_numpy_core_multiarray_failed_to__pyx_tuple__52__pyx_kp_u_numpy_core_umath_failed_to_impor__pyx_tuple__53__pyx_n_s_kwargs__pyx_n_s_args__pyx_tuple__54__pyx_n_s_sample__pyx_kp_s_mtrand_pyx__pyx_codeobj__55__pyx_tuple__56__pyx_n_s_ranf__pyx_codeobj__57__pyx_vtable_5numpy_6random_6mtrand_RandomState__pyx_type_5numpy_6random_6mtrand_RandomState__pyx_n_s_pyx_vtable__pyx_n_s_RandomState__pyx_ptype_5numpy_6random_6mtrand_RandomState__pyx_ptype_7cpython_4type_type__pyx_ptype_7cpython_4bool_bool__pyx_ptype_7cpython_7complex_complex__pyx_ptype_5numpy_dtype__pyx_ptype_5numpy_flatiter__pyx_ptype_5numpy_broadcast__pyx_ptype_5numpy_ndarray__pyx_ptype_5numpy_ufunc__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX__pyx_vp_5numpy_6random_6common_MAXSIZE__pyx_f_5numpy_6random_6common_check_constraint__pyx_f_5numpy_6random_6common_check_array_constraint__pyx_f_5numpy_6random_6common_kahan_sum__pyx_f_5numpy_6random_6common_disc__pyx_f_5numpy_6random_6common_cont_broadcast_3__pyx_f_5numpy_6random_6common_discrete_broadcast_iii__pyx_f_5numpy_6random_16bounded_integers__rand_uint64__pyx_f_5numpy_6random_16bounded_integers__rand_uint32__pyx_f_5numpy_6random_16bounded_integers__rand_uint16__pyx_f_5numpy_6random_16bounded_integers__rand_uint8__pyx_f_5numpy_6random_16bounded_integers__rand_bool__pyx_f_5numpy_6random_16bounded_integers__rand_int64__pyx_f_5numpy_6random_16bounded_integers__rand_int32__pyx_f_5numpy_6random_16bounded_integers__rand_int16__pyx_f_5numpy_6random_16bounded_integers__rand_int8__pyx_n_s_operator__pyx_n_s_warnings__pyx_n_s_numpy__pyx_n_s_np__pyx_n_s_integers_types__pyx_n_s_bounded_integers__pyx_n_s_MT19937_2__pyx_n_s_mt19937__pyx_n_s_MT19937PyArray_API__pyx_n_s_beta__pyx_n_s_poisson_lam_max__pyx_k__14__pyx_dict_version.21038__pyx_dict_cached_value.21039__pyx_dict_version.21042__pyx_dict_cached_value.21043__pyx_n_s_binomial__pyx_dict_version.21046__pyx_dict_cached_value.21047__pyx_n_s_bytes__pyx_dict_version.21050__pyx_dict_cached_value.21051__pyx_n_s_chisquare__pyx_dict_version.21054__pyx_dict_cached_value.21055__pyx_n_s_choice__pyx_dict_version.21058__pyx_dict_cached_value.21059__pyx_n_s_dirichlet__pyx_dict_version.21062__pyx_dict_cached_value.21063__pyx_n_s_exponential__pyx_dict_version.21066__pyx_dict_cached_value.21067__pyx_n_s_f__pyx_dict_version.21070__pyx_dict_cached_value.21071__pyx_n_s_gamma__pyx_dict_version.21074__pyx_dict_cached_value.21075__pyx_dict_version.21078__pyx_dict_cached_value.21079__pyx_n_s_geometric__pyx_dict_version.21082__pyx_dict_cached_value.21083__pyx_n_s_gumbel__pyx_dict_version.21086__pyx_dict_cached_value.21087__pyx_n_s_hypergeometric__pyx_dict_version.21090__pyx_dict_cached_value.21091__pyx_n_s_laplace__pyx_dict_version.21094__pyx_dict_cached_value.21095__pyx_n_s_logistic__pyx_dict_version.21098__pyx_dict_cached_value.21099__pyx_n_s_lognormal__pyx_dict_version.21102__pyx_dict_cached_value.21103__pyx_n_s_logseries__pyx_dict_version.21106__pyx_dict_cached_value.21107__pyx_n_s_multinomial__pyx_dict_version.21110__pyx_dict_cached_value.21111__pyx_n_s_multivariate_normal__pyx_dict_version.21114__pyx_dict_cached_value.21115__pyx_n_s_negative_binomial__pyx_dict_version.21118__pyx_dict_cached_value.21119__pyx_n_s_noncentral_chisquare__pyx_dict_version.21122__pyx_dict_cached_value.21123__pyx_n_s_noncentral_f__pyx_dict_version.21126__pyx_dict_cached_value.21127__pyx_n_s_normal__pyx_dict_version.21130__pyx_dict_cached_value.21131__pyx_n_s_pareto__pyx_dict_version.21134__pyx_dict_cached_value.21135__pyx_n_s_permutation__pyx_dict_version.21138__pyx_dict_cached_value.21139__pyx_n_s_poisson__pyx_dict_version.21142__pyx_dict_cached_value.21143__pyx_n_s_power__pyx_dict_version.21146__pyx_dict_cached_value.21147__pyx_n_s_rand__pyx_dict_version.21150__pyx_dict_cached_value.21151__pyx_n_s_randint__pyx_dict_version.21154__pyx_dict_cached_value.21155__pyx_n_s_randn__pyx_dict_version.21158__pyx_dict_cached_value.21159__pyx_n_s_random__pyx_dict_version.21162__pyx_dict_cached_value.21163__pyx_n_s_random_integers__pyx_dict_version.21166__pyx_dict_cached_value.21167__pyx_dict_version.21170__pyx_dict_cached_value.21171__pyx_n_s_rayleigh__pyx_dict_version.21174__pyx_dict_cached_value.21175__pyx_n_s_seed__pyx_dict_version.21178__pyx_dict_cached_value.21179__pyx_n_s_set_state__pyx_dict_version.21182__pyx_dict_cached_value.21183__pyx_n_s_shuffle__pyx_dict_version.21186__pyx_dict_cached_value.21187__pyx_n_s_standard_cauchy__pyx_dict_version.21190__pyx_dict_cached_value.21191__pyx_n_s_standard_exponential__pyx_dict_version.21194__pyx_dict_cached_value.21195__pyx_n_s_standard_gamma__pyx_dict_version.21198__pyx_dict_cached_value.21199__pyx_dict_version.21202__pyx_dict_cached_value.21203__pyx_n_s_standard_t__pyx_dict_version.21206__pyx_dict_cached_value.21207__pyx_n_s_triangular__pyx_dict_version.21210__pyx_dict_cached_value.21211__pyx_n_s_uniform__pyx_dict_version.21214__pyx_dict_cached_value.21215__pyx_n_s_vonmises__pyx_dict_version.21218__pyx_dict_cached_value.21219__pyx_n_s_wald__pyx_dict_version.21222__pyx_dict_cached_value.21223__pyx_n_s_weibull__pyx_dict_version.21226__pyx_dict_cached_value.21227__pyx_n_s_zipf__pyx_n_s_numpy_random_mtrand__pyx_mdef_5numpy_6random_6mtrand_1sample__pyx_mdef_5numpy_6random_6mtrand_3ranf__pyx_n_u_beta__pyx_n_u_binomial__pyx_n_u_bytes__pyx_n_u_chisquare__pyx_n_u_choice__pyx_n_u_dirichlet__pyx_n_u_exponential__pyx_n_u_f__pyx_n_u_gamma__pyx_n_u_geometric__pyx_n_u_get_state__pyx_n_u_gumbel__pyx_n_u_hypergeometric__pyx_n_u_laplace__pyx_n_u_logistic__pyx_n_u_lognormal__pyx_n_u_logseries__pyx_n_u_multinomial__pyx_n_u_multivariate_normal__pyx_n_u_negative_binomial__pyx_n_u_noncentral_chisquare__pyx_n_u_noncentral_f__pyx_n_u_normal__pyx_n_u_pareto__pyx_n_u_permutation__pyx_n_u_poisson__pyx_n_u_power__pyx_n_u_rand__pyx_n_u_randint__pyx_n_u_randn__pyx_n_u_random__pyx_n_u_random_integers__pyx_n_u_random_sample__pyx_n_u_ranf__pyx_n_u_rayleigh__pyx_n_u_sample__pyx_n_u_seed__pyx_n_u_set_state__pyx_n_u_shuffle__pyx_n_u_standard_cauchy__pyx_n_u_standard_exponential__pyx_n_u_standard_gamma__pyx_n_u_standard_normal__pyx_n_u_standard_t__pyx_n_u_triangular__pyx_n_u_uniform__pyx_n_u_vonmises__pyx_n_u_wald__pyx_n_u_weibull__pyx_n_u_zipf__pyx_n_u_RandomState__pyx_n_s_all_2__pyx_kp_u_seed_self_seed_None_Reseed_a_le__pyx_kp_u_RandomState_seed_line_141__pyx_kp_u_random_sample_size_None_Return__pyx_kp_u_RandomState_random_sample_line_2__pyx_kp_u_standard_exponential_size_None__pyx_kp_u_RandomState_standard_exponential__pyx_kp_u_tomaxint_size_None_Return_a_sam__pyx_kp_u_RandomState_tomaxint_line_472__pyx_kp_u_randint_low_high_None_size_None__pyx_kp_u_RandomState_randint_line_530__pyx_kp_u_bytes_length_Return_random_byte__pyx_kp_u_RandomState_bytes_line_651__pyx_kp_u_choice_a_size_None_replace_True__pyx_kp_u_RandomState_choice_line_680__pyx_kp_u_uniform_low_0_0_high_1_0_size_N__pyx_kp_u_RandomState_uniform_line_869__pyx_kp_u_rand_d0_d1_dn_Random_values_in__pyx_kp_u_RandomState_rand_line_980__pyx_kp_u_randn_d0_d1_dn_Return_a_sample__pyx_kp_u_RandomState_randn_line_1024__pyx_kp_u_random_integers_low_high_None_s__pyx_kp_u_RandomState_random_integers_line__pyx_kp_u_standard_normal_size_None_Draw__pyx_kp_u_RandomState_standard_normal_line__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N__pyx_kp_u_RandomState_normal_line_1239__pyx_kp_u_standard_gamma_shape_size_None__pyx_kp_u_RandomState_standard_gamma_line__pyx_kp_u_gamma_shape_scale_1_0_size_None__pyx_kp_u_RandomState_gamma_line_1416__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa__pyx_kp_u_RandomState_f_line_1494__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s__pyx_kp_u_RandomState_noncentral_f_line_15__pyx_kp_u_chisquare_df_size_None_Draw_sam__pyx_kp_u_RandomState_chisquare_line_1659__pyx_kp_u_noncentral_chisquare_df_nonc_si__pyx_kp_u_RandomState_noncentral_chisquare__pyx_kp_u_standard_cauchy_size_None_Draw__pyx_kp_u_RandomState_standard_cauchy_line__pyx_kp_u_standard_t_df_size_None_Draw_sa__pyx_kp_u_RandomState_standard_t_line_1871__pyx_kp_u_vonmises_mu_kappa_size_None_Dra__pyx_kp_u_RandomState_vonmises_line_1965__pyx_kp_u_pareto_a_size_None_Draw_samples__pyx_kp_u_RandomState_pareto_line_2048__pyx_kp_u_weibull_a_size_None_Draw_sample__pyx_kp_u_RandomState_weibull_line_2145__pyx_kp_u_power_a_size_None_Draws_samples__pyx_kp_u_RandomState_power_line_2243__pyx_kp_u_laplace_loc_0_0_scale_1_0_size__pyx_kp_u_RandomState_laplace_line_2343__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N__pyx_kp_u_RandomState_gumbel_line_2428__pyx_kp_u_logistic_loc_0_0_scale_1_0_size__pyx_kp_u_RandomState_logistic_line_2546__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si__pyx_kp_u_RandomState_lognormal_line_2626__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr__pyx_kp_u_RandomState_rayleigh_line_2736__pyx_kp_u_wald_mean_scale_size_None_Draw__pyx_kp_u_RandomState_wald_line_2804__pyx_kp_u_triangular_left_mode_right_size__pyx_kp_u_RandomState_triangular_line_2872__pyx_kp_u_binomial_n_p_size_None_Draw_sam__pyx_kp_u_RandomState_binomial_line_2972__pyx_kp_u_negative_binomial_n_p_size_None__pyx_kp_u_RandomState_negative_binomial_li__pyx_kp_u_poisson_lam_1_0_size_None_Draw__pyx_kp_u_RandomState_poisson_line_3196__pyx_kp_u_zipf_a_size_None_Draw_samples_f__pyx_kp_u_RandomState_zipf_line_3269__pyx_kp_u_geometric_p_size_None_Draw_samp__pyx_kp_u_RandomState_geometric_line_3350__pyx_kp_u_hypergeometric_ngood_nbad_nsamp__pyx_kp_u_RandomState_hypergeometric_line__pyx_kp_u_logseries_p_size_None_Draw_samp__pyx_kp_u_RandomState_logseries_line_3531__pyx_kp_u_multivariate_normal_mean_cov_si__pyx_kp_u_RandomState_multivariate_normal__pyx_kp_u_multinomial_n_pvals_size_None_D__pyx_kp_u_RandomState_multinomial_line_378__pyx_kp_u_dirichlet_alpha_size_None_Draw__pyx_kp_u_RandomState_dirichlet_line_3892__pyx_kp_u_shuffle_x_Modify_a_sequence_in__pyx_kp_u_RandomState_shuffle_line_4031__pyx_kp_u_permutation_x_Randomly_permute__pyx_kp_u_RandomState_permutation_line_411__pyx_n_s_test__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state__pyx_dict_version.15761__pyx_dict_cached_value.15762__pyx_n_s_warn__pyx_pyargnames.15727__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate____pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed__pyx_dict_version.15694__pyx_dict_cached_value.15695__pyx_n_s_legacy_seeding__pyx_pyargnames.15667__pyx_f_5numpy_6random_6mtrand_int64_to_long__pyx_dict_version.15377__pyx_dict_cached_value.15378__pyx_n_s_isscalar__pyx_n_s_astype__pyx_n_u_unsafe__pyx_n_s_casting__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries__pyx_n_u_p__pyx_n_s_p__pyx_pyargnames.19248__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric__pyx_pyargnames.18991__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf__pyx_pyargnames.18939__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson__pyx_n_u_lam__pyx_n_s_lam__pyx_pyargnames.18885__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial__pyx_n_u_n__pyx_n_s_n__pyx_pyargnames.18830__pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr____pyx_n_s_str__pyx_kp_u_at_0x_X__pyx_n_s_format__pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init____pyx_n_u_capsule__pyx_n_s_capsule__pyx_n_s_lock__pyx_dict_version.15443__pyx_dict_cached_value.15444__pyx_dict_version.15453__pyx_dict_cached_value.15454__pyx_pyargnames.15412__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes__pyx_dict_version.16400__pyx_dict_cached_value.16401__pyx_n_s_uint32__pyx_n_s_dtype__pyx_kp_u_u4__pyx_n_s_tobytes__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers__pyx_dict_version.17281__pyx_dict_cached_value.17282__pyx_kp_u_This_function_is_deprecated_Plea_2__pyx_n_s_low__pyx_n_s_high__pyx_dict_version.17256__pyx_dict_cached_value.17257__pyx_kp_u_This_function_is_deprecated_Plea__pyx_pyargnames.17218__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform__pyx_dict_version.17040__pyx_dict_cached_value.17041__pyx_n_s_isfinite__pyx_dict_version.17058__pyx_dict_cached_value.17059__pyx_n_s_subtract__pyx_dict_version.17074__pyx_dict_cached_value.17075__pyx_n_s_all__pyx_dict_version.17077__pyx_dict_cached_value.17078__pyx_pyargnames.16974__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial__pyx_n_u_pvals__pyx_dict_version.19643__pyx_dict_cached_value.19644__pyx_n_s_index__pyx_dict_version.19679__pyx_dict_cached_value.19680__pyx_n_s_zeros__pyx_n_s_exit__pyx_n_s_enter__pyx_pyargnames.19575__pyx_n_s_pvals__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular__pyx_dict_version.18464__pyx_dict_cached_value.18465__pyx_n_s_any__pyx_dict_version.18467__pyx_dict_cached_value.18468__pyx_n_s_greater__pyx_dict_version.18490__pyx_dict_cached_value.18491__pyx_dict_version.18493__pyx_dict_cached_value.18494__pyx_dict_version.18516__pyx_dict_cached_value.18517__pyx_dict_version.18519__pyx_dict_cached_value.18520__pyx_n_s_equal__pyx_n_s_left__pyx_n_s_mode__pyx_n_s_right__pyx_pyargnames.18380__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric__pyx_dict_version.19130__pyx_dict_cached_value.19131__pyx_dict_version.19133__pyx_dict_cached_value.19134__pyx_n_s_less__pyx_dict_version.19136__pyx_dict_cached_value.19137__pyx_n_s_add__pyx_dict_version.19172__pyx_dict_cached_value.19173__pyx_n_s_int64__pyx_dict_version.19184__pyx_dict_cached_value.19185__pyx_dict_version.19196__pyx_dict_cached_value.19197__pyx_n_u_nsample__pyx_n_u_ngood__pyx_n_u_nbad__pyx_n_s_ngood__pyx_n_s_nbad__pyx_n_s_nsample__pyx_pyargnames.19045__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet__pyx_dict_version.19804__pyx_dict_cached_value.19805__pyx_dict_version.19807__pyx_dict_cached_value.19808__pyx_n_s_less_equal__pyx_dict_version.19832__pyx_dict_cached_value.19833__pyx_dict_version.19874__pyx_dict_cached_value.19875__pyx_dict_version.19877__pyx_dict_cached_value.19878__pyx_n_s_float64__pyx_n_s_alpha__pyx_pyargnames.19741__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint__pyx_dict_version.16183__pyx_dict_cached_value.16184__pyx_n_s_empty__pyx_dict_version.16186__pyx_dict_cached_value.16187__pyx_pyargnames.16102__pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint__pyx_n_s_name_2__pyx_dict_version.16294__pyx_dict_cached_value.16295__pyx_n_s_isnative__pyx_dict_version.16300__pyx_dict_cached_value.16301__pyx_n_u_int32__pyx_n_u_int64__pyx_n_u_int16__pyx_n_u_int8__pyx_n_u_uint64__pyx_n_u_uint32__pyx_n_u_uint16__pyx_n_u_uint8__pyx_n_u_bool__pyx_dict_version.16316__pyx_dict_cached_value.16317__pyx_n_s_bool__pyx_dict_version.16322__pyx_dict_cached_value.16323__pyx_n_s_int__pyx_dict_version.16327__pyx_dict_cached_value.16328__pyx_n_s_long__pyx_dict_version.16333__pyx_dict_cached_value.16334__pyx_n_s_array__pyx_kp_u_Unsupported_dtype_s_for_randint__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint__pyx_pyargnames.16243__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation__pyx_dict_version.20212__pyx_dict_cached_value.20213__pyx_n_s_integer__pyx_dict_version.20218__pyx_dict_cached_value.20219__pyx_n_s_arange__pyx_dict_version.20237__pyx_dict_cached_value.20238__pyx_n_s_asarray__pyx_n_s_ndim__pyx_dict_version.20251__pyx_dict_cached_value.20252__pyx_n_s_may_share_memory__pyx_dict_version.20266__pyx_dict_cached_value.20267__pyx_dict_version.20286__pyx_dict_cached_value.20287__pyx_dict_version.20290__pyx_dict_cached_value.20291__pyx_n_s_intp__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal__pyx_n_u_warn__pyx_n_s_svd__pyx_n_s_numpy_dual__pyx_dict_version.19367__pyx_dict_cached_value.19368__pyx_dict_version.19378__pyx_dict_cached_value.19379__pyx_dict_version.19390__pyx_dict_cached_value.19391__pyx_n_s_reshape__pyx_dict_version.19435__pyx_dict_cached_value.19436__pyx_n_s_double__pyx_n_u_ignore__pyx_n_u_raise__pyx_dict_version.19464__pyx_dict_cached_value.19465__pyx_n_s_allclose__pyx_dict_version.19467__pyx_dict_cached_value.19468__pyx_n_s_dot__pyx_n_s_T__pyx_n_s_rtol__pyx_n_s_atol__pyx_dict_version.19494__pyx_dict_cached_value.19495__pyx_dict_version.19497__pyx_dict_cached_value.19498__pyx_n_s_sqrt__pyx_dict_version.19487__pyx_dict_cached_value.19488__pyx_n_s_cov__pyx_n_s_check_valid__pyx_n_s_tol__pyx_pyargnames.19303__pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice__pyx_dict_version.16517__pyx_dict_cached_value.16518__pyx_n_s_copy__pyx_dict_version.16529__pyx_dict_cached_value.16530__pyx_n_s_item__pyx_dict_version.16567__pyx_dict_cached_value.16568__pyx_n_s_prod__pyx_dict_version.16597__pyx_dict_cached_value.16598__pyx_dict_version.16600__pyx_dict_cached_value.16601__pyx_n_s_finfo__pyx_dict_version.16603__pyx_dict_cached_value.16604__pyx_n_s_eps__pyx_dict_version.16686__pyx_dict_cached_value.16687__pyx_n_s_isnan__pyx_dict_version.16698__pyx_dict_cached_value.16699__pyx_n_s_logical_or__pyx_n_s_reduce__pyx_dict_version.16714__pyx_dict_cached_value.16715__pyx_dict_version.16717__pyx_dict_cached_value.16718__pyx_n_s_cumsum__pyx_dict_version.16585__pyx_dict_cached_value.16586__pyx_dict_version.16621__pyx_dict_cached_value.16622__pyx_n_s_issubdtype__pyx_dict_version.16624__pyx_dict_cached_value.16625__pyx_n_s_floating__pyx_dict_version.16643__pyx_dict_cached_value.16644__pyx_dict_version.16646__pyx_dict_cached_value.16647__pyx_dict_version.16768__pyx_dict_cached_value.16769__pyx_n_s_count_nonzero__pyx_dict_version.16789__pyx_dict_cached_value.16790__pyx_n_s_ravel__pyx_dict_version.16815__pyx_dict_cached_value.16816__pyx_n_s_searchsorted__pyx_n_u_right__pyx_n_s_side__pyx_dict_version.16836__pyx_dict_cached_value.16837__pyx_n_s_unique__pyx_n_s_return_index__pyx_n_s_sort__pyx_n_s_take__pyx_dict_version.16903__pyx_dict_cached_value.16904__pyx_dict_version.16747__pyx_dict_cached_value.16748__pyx_n_s_replace__pyx_pyargnames.16449__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial__pyx_dict_version.18761__pyx_dict_cached_value.18762__pyx_dict_version.18652__pyx_dict_cached_value.18653__pyx_dict_version.18668__pyx_dict_cached_value.18669__pyx_pyargnames.18577__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle__pyx_dict_version.20052__pyx_dict_cached_value.20053__pyx_n_s_empty_like__pyx_n_s_ctypes__pyx_n_s_data__pyx_n_s_strides__pyx_n_s_itemsize__pyx_dict_version.19990__pyx_dict_cached_value.19991__pyx_dict_version.19993__pyx_dict_cached_value.19994__pyx_n_s_int8__pyx_moduledef__pyx_k_Cannot_take_a_larger_sample_than__pyx_k_DeprecationWarning__pyx_k_Fewer_non_zero_entries_in_p_than__pyx_k_Format_string_allocated_too_shor__pyx_k_Format_string_allocated_too_shor_2__pyx_k_ImportError__pyx_k_IndexError__pyx_k_Invalid_bit_generator_The_bit_ge__pyx_k_MT19937__pyx_k_MT19937_2__pyx_k_Non_native_byte_order_not_suppor__pyx_k_OverflowError__pyx_k_Providing_a_dtype_with_a_non_nat__pyx_k_RandomState__pyx_k_RandomState_binomial_line_2972__pyx_k_RandomState_bytes_line_651__pyx_k_RandomState_chisquare_line_1659__pyx_k_RandomState_choice_line_680__pyx_k_RandomState_dirichlet_line_3892__pyx_k_RandomState_f_line_1494__pyx_k_RandomState_gamma_line_1416__pyx_k_RandomState_geometric_line_3350__pyx_k_RandomState_gumbel_line_2428__pyx_k_RandomState_hypergeometric_line__pyx_k_RandomState_laplace_line_2343__pyx_k_RandomState_logistic_line_2546__pyx_k_RandomState_lognormal_line_2626__pyx_k_RandomState_logseries_line_3531__pyx_k_RandomState_multinomial_line_378__pyx_k_RandomState_multivariate_normal__pyx_k_RandomState_negative_binomial_li__pyx_k_RandomState_noncentral_chisquare__pyx_k_RandomState_noncentral_f_line_15__pyx_k_RandomState_normal_line_1239__pyx_k_RandomState_pareto_line_2048__pyx_k_RandomState_permutation_line_411__pyx_k_RandomState_poisson_line_3196__pyx_k_RandomState_power_line_2243__pyx_k_RandomState_rand_line_980__pyx_k_RandomState_randint_line_530__pyx_k_RandomState_randn_line_1024__pyx_k_RandomState_random_integers_line__pyx_k_RandomState_random_sample_line_2__pyx_k_RandomState_rayleigh_line_2736__pyx_k_RandomState_seed_line_141__pyx_k_RandomState_shuffle_line_4031__pyx_k_RandomState_standard_cauchy_line__pyx_k_RandomState_standard_exponential__pyx_k_RandomState_standard_gamma_line__pyx_k_RandomState_standard_normal_line__pyx_k_RandomState_standard_t_line_1871__pyx_k_RandomState_tomaxint_line_472__pyx_k_RandomState_triangular_line_2872__pyx_k_RandomState_uniform_line_869__pyx_k_RandomState_vonmises_line_1965__pyx_k_RandomState_wald_line_2804__pyx_k_RandomState_weibull_line_2145__pyx_k_RandomState_zipf_line_3269__pyx_k_Range_exceeds_valid_bounds__pyx_k_RuntimeError__pyx_k_RuntimeWarning__pyx_k_T__pyx_k_This_function_is_deprecated_Plea__pyx_k_This_function_is_deprecated_Plea_2__pyx_k_TypeError__pyx_k_Unsupported_dtype_s_for_randint__pyx_k_ValueError__pyx_k__12__pyx_k__3__pyx_k__4__pyx_k_a__pyx_k_a_and_p_must_have_same_size__pyx_k_a_cannot_be_empty_unless_no_sam__pyx_k_a_must_be_1_dimensional__pyx_k_a_must_be_1_dimensional_or_an_in__pyx_k_a_must_be_greater_than_0_unless__pyx_k_add__pyx_k_all__pyx_k_all_2__pyx_k_allclose__pyx_k_alpha__pyx_k_alpha_0__pyx_k_any__pyx_k_arange__pyx_k_args__pyx_k_array__pyx_k_asarray__pyx_k_astype__pyx_k_at_0x_X__pyx_k_atol__pyx_k_b__pyx_k_beta__pyx_k_binomial__pyx_k_binomial_n_p_size_None_Draw_sam__pyx_k_bit_generator__pyx_k_bool__pyx_k_bounded_integers__pyx_k_bytes__pyx_k_bytes_length_Return_random_byte__pyx_k_can_only_re_seed_a_MT19937_BitGe__pyx_k_capsule__pyx_k_casting__pyx_k_check_valid__pyx_k_check_valid_must_equal_warn_rais__pyx_k_chisquare__pyx_k_chisquare_df_size_None_Draw_sam__pyx_k_choice__pyx_k_choice_a_size_None_replace_True__pyx_k_class__pyx_k_cline_in_traceback__pyx_k_copy__pyx_k_count_nonzero__pyx_k_cov__pyx_k_cov_must_be_2_dimensional_and_sq__pyx_k_covariance_is_not_positive_semid__pyx_k_ctypes__pyx_k_cumsum__pyx_k_data__pyx_k_df__pyx_k_dfden__pyx_k_dfnum__pyx_k_dirichlet__pyx_k_dirichlet_alpha_size_None_Draw__pyx_k_dot__pyx_k_double__pyx_k_dtype__pyx_k_empty__pyx_k_empty_like__pyx_k_enter__pyx_k_eps__pyx_k_equal__pyx_k_exit__pyx_k_exponential__pyx_k_f__pyx_k_f_dfnum_dfden_size_None_Draw_sa__pyx_k_finfo__pyx_k_float64__pyx_k_floating__pyx_k_format__pyx_k_gamma__pyx_k_gamma_shape_scale_1_0_size_None__pyx_k_gauss__pyx_k_geometric__pyx_k_geometric_p_size_None_Draw_samp__pyx_k_get__pyx_k_get_state__pyx_k_get_state_and_legacy_can_only_be__pyx_k_greater__pyx_k_gumbel__pyx_k_gumbel_loc_0_0_scale_1_0_size_N__pyx_k_has_gauss__pyx_k_high__pyx_k_hypergeometric__pyx_k_hypergeometric_ngood_nbad_nsamp__pyx_k_id__pyx_k_ignore__pyx_n_s_import__pyx_k_import__pyx_k_index__pyx_k_int__pyx_k_int16__pyx_k_int32__pyx_k_int64__pyx_k_int8__pyx_k_integer__pyx_k_integers_types__pyx_k_intp__pyx_k_isfinite__pyx_k_isnan__pyx_k_isnative__pyx_k_isscalar__pyx_k_issubdtype__pyx_k_item__pyx_k_itemsize__pyx_k_kappa__pyx_k_key__pyx_k_kwargs__pyx_k_l__pyx_k_lam__pyx_k_laplace__pyx_k_laplace_loc_0_0_scale_1_0_size__pyx_k_left__pyx_k_left_mode__pyx_k_left_right__pyx_k_legacy__pyx_k_legacy_seeding__pyx_k_less__pyx_k_less_equal__pyx_k_loc__pyx_k_lock__pyx_k_logical_or__pyx_k_logistic__pyx_k_logistic_loc_0_0_scale_1_0_size__pyx_k_lognormal__pyx_k_lognormal_mean_0_0_sigma_1_0_si__pyx_k_logseries__pyx_k_logseries_p_size_None_Draw_samp__pyx_k_long__pyx_k_low__pyx_k_main__pyx_k_may_share_memory__pyx_k_mean__pyx_k_mean_and_cov_must_have_same_leng__pyx_k_mean_must_be_1_dimensional__pyx_k_mode__pyx_k_mode_right__pyx_k_mt19937__pyx_k_mtrand_pyx__pyx_k_mu__pyx_k_multinomial__pyx_k_multinomial_n_pvals_size_None_D__pyx_k_multivariate_normal__pyx_k_multivariate_normal_mean_cov_si__pyx_k_n__pyx_k_name__pyx_k_name_2__pyx_k_nbad__pyx_k_ndarray_is_not_C_contiguous__pyx_k_ndarray_is_not_Fortran_contiguou__pyx_k_ndim__pyx_k_negative_binomial__pyx_k_negative_binomial_n_p_size_None__pyx_k_negative_dimensions_are_not_allo__pyx_k_ngood__pyx_k_ngood_nbad_nsample__pyx_k_nonc__pyx_k_noncentral_chisquare__pyx_k_noncentral_chisquare_df_nonc_si__pyx_k_noncentral_f__pyx_k_noncentral_f_dfnum_dfden_nonc_s__pyx_k_normal__pyx_k_normal_loc_0_0_scale_1_0_size_N__pyx_k_np__pyx_k_nsample__pyx_k_numpy__pyx_k_numpy_core_multiarray_failed_to__pyx_k_numpy_core_umath_failed_to_impor__pyx_k_numpy_dual__pyx_k_numpy_random_mtrand__pyx_k_operator__pyx_k_p__pyx_k_p_must_be_1_dimensional__pyx_k_pareto__pyx_k_pareto_a_size_None_Draw_samples__pyx_k_permutation__pyx_k_permutation_x_Randomly_permute__pyx_k_pickle__pyx_k_poisson__pyx_k_poisson_lam_1_0_size_None_Draw__pyx_k_poisson_lam_max__pyx_k_pos__pyx_k_power__pyx_k_power_a_size_None_Draws_samples__pyx_k_probabilities_are_not_non_negati__pyx_k_probabilities_contain_NaN__pyx_k_probabilities_do_not_sum_to_1__pyx_k_prod__pyx_k_pvals__pyx_k_pyx_vtable__pyx_k_raise__pyx_k_rand__pyx_k_rand_2__pyx_k_rand_d0_d1_dn_Random_values_in__pyx_k_randint__pyx_k_randint_low_high_None_size_None__pyx_k_randn__pyx_k_randn_d0_d1_dn_Return_a_sample__pyx_k_random__pyx_k_random_integers__pyx_k_random_integers_low_high_None_s__pyx_k_random_sample__pyx_k_random_sample_size_None_Return__pyx_k_randomstate_ctor__pyx_k_ranf__pyx_k_range__pyx_k_ravel__pyx_k_rayleigh__pyx_k_rayleigh_scale_1_0_size_None_Dr__pyx_k_reduce__pyx_k_replace__pyx_k_reshape__pyx_k_return_index__pyx_k_reversed__pyx_k_right__pyx_k_rtol__pyx_k_sample__pyx_k_scale__pyx_k_searchsorted__pyx_k_seed__pyx_k_seed_self_seed_None_Reseed_a_le__pyx_k_set_state__pyx_k_set_state_can_only_be_used_with__pyx_k_shape__pyx_k_shuffle__pyx_k_shuffle_x_Modify_a_sequence_in__pyx_k_side__pyx_k_sigma__pyx_k_size__pyx_k_sort__pyx_k_sqrt__pyx_k_standard_cauchy__pyx_k_standard_cauchy_size_None_Draw__pyx_k_standard_exponential__pyx_k_standard_exponential_size_None__pyx_k_standard_gamma__pyx_k_standard_gamma_shape_size_None__pyx_k_standard_normal__pyx_k_standard_normal_size_None_Draw__pyx_k_standard_t__pyx_k_standard_t_df_size_None_Draw_sa__pyx_k_state__pyx_k_state_dictionary_is_not_valid__pyx_k_state_must_be_a_dict_or_a_tuple__pyx_k_str__pyx_k_strides__pyx_k_subtract__pyx_k_sum_pvals_1_1_0__pyx_k_svd__pyx_k_take__pyx_k_test__pyx_k_tobytes__pyx_k_tol__pyx_k_tomaxint_size_None_Return_a_sam__pyx_k_triangular__pyx_k_triangular_left_mode_right_size__pyx_k_u4__pyx_k_uint16__pyx_k_uint32__pyx_k_uint64__pyx_k_uint8__pyx_k_uniform__pyx_k_uniform_low_0_0_high_1_0_size_N__pyx_k_unique__pyx_kp_u_unknown_dtype_code_in_numpy_pxd__pyx_k_unknown_dtype_code_in_numpy_pxd__pyx_k_unsafe__pyx_k_vonmises__pyx_k_vonmises_mu_kappa_size_None_Dra__pyx_k_wald__pyx_k_wald_mean_scale_size_None_Draw__pyx_k_warn__pyx_k_warnings__pyx_k_weibull__pyx_k_weibull_a_size_None_Draw_sample__pyx_k_x_must_be_an_integer_or_at_least__pyx_k_zeros__pyx_k_zipf__pyx_k_zipf_a_size_None_Draw_samples_f__pyx_methods__pyx_moduledef_slots__pyx_methods_5numpy_6random_6mtrand_RandomState__pyx_getsets_5numpy_6random_6mtrand_RandomState__pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed__pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state__pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample__pyx_doc_5numpy_6random_6mtrand_11RandomState_20random__pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta__pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential__pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint__pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint__pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes__pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice__pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform__pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand__pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn__pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers__pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma__pyx_doc_5numpy_6random_6mtrand_11RandomState_52f__pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f__pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare__pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy__pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t__pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises__pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto__pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull__pyx_doc_5numpy_6random_6mtrand_11RandomState_70power__pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace__pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel__pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic__pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal__pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh__pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald__pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular__pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson__pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf__pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric__pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries__pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal__pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial__pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet__pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle__pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation__pyx_doc_5numpy_6random_6mtrand_2ranf__pyx_doc_5numpy_6random_6mtrand_samplecrtstuff.c__JCR_LIST__deregister_tm_clonesregister_tm_clones__do_global_dtors_auxcompleted.6330__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entrylegacy-distributions.clogfactorial.clogfactdistributions.cstandard_exponential_zigwe_doubleke_doublefe_doublestandard_exponential_zig_fwe_floatke_floatfe_floatwi_doubleki_doublefi_doublewi_floatki_floatfi_float__FRAME_END____JCR_END____dso_handle_DYNAMIC__TMC_END___GLOBAL_OFFSET_TABLE_PyUnicode_FromFormatPyObject_SetItemPyList_Newrandom_laplace_PyUnicode_ReadyPyExc_SystemErrorPyDict_SetItemStringPyDict_Sizerandom_buffered_bounded_boollegacy_random_zipfrandom_geometric_inversionPyException_SetTracebacklegacy_frandom_weibullPyMethod_Typerandom_f_ITM_deregisterTMCloneTablelegacy_paretoPyFloat_TypePyTuple_TypePyList_AsTuplerandom_gauss_zig_f_PyThreadState_UncheckedGetPyModuleDef_InitPyEval_RestoreThreadPyFrame_Newrandom_negative_binomialrandom_standard_cauchyPyCFunction_NewEx__isnan@@GLIBC_2.2.5PyCapsule_GetNamerandom_gauss_zig_fillPyNumber_InPlaceAddexp@@GLIBC_2.2.5PyNumber_AddPyObject_GetAttrString__pyx_module_is_main_numpy__random__mtrandrandom_floatlegacy_chisquarePyImport_AddModulePyBytes_FromStringAndSizePyObject_SetAttrStringlegacy_gaussPyErr_WarnEx_edatarandom_binomial_btpePyModule_NewObjectPyErr_SetObjectPyErr_NormalizeExceptionrandom_logserieslegacy_normalPyNumber_Multiplyrandom_rayleighrandom_gauss_zigrandom_standard_exponentialPyObject_RichComparerandom_uniformPyCode_Newrandom_poisson_finiPyImport_GetModuleDictlegacy_random_binomialrandom_bounded_uint64_fillPyExc_RuntimeErrorPyNumber_LongPyErr_GivenExceptionMatcheslegacy_random_multinomialPyErr_SetStringrandom_bounded_uint16_fillPyObject_IsInstancePyObject_GetItemPyExc_ExceptionPyExc_ValueErrorPyExc_DeprecationWarningrandom_multinomialPyExc_TypeErrorlegacy_standard_exponentialPyInterpreterState_GetIDPyEval_EvalFrameExrandom_logisticPySequence_Containslegacy_random_logserieslegacy_negative_binomialmemset@@GLIBC_2.2.5PyMem_ReallocPyErr_ExceptionMatchesrandom_bounded_uint64pow@@GLIBC_2.2.5random_positive_intlog@@GLIBC_2.2.5random_triangularrandom_buffered_bounded_uint32PyOS_snprintfPyTraceBack_Hererandom_standard_gamma_zig_ffmod@@GLIBC_2.2.5PyObject_CallFinalizerFromDeallocrandom_powerrandom_bounded_uint8_fillPyObject_Notcos@@GLIBC_2.2.5random_noncentral_fPyNumber_InPlaceTrueDividePyLong_FromSsize_tPyFloat_FromDoublePyType_Readyacos@@GLIBC_2.2.5PyLong_FromLongmemcmp@@GLIBC_2.2.5PyLong_AsSsize_trandom_standard_gamma_ziglegacy_waldrandom_buffered_bounded_uint8logfactorialPyModule_GetNamePyErr_Clearrandom_normal_zigmemcpy@@GLIBC_2.2.5PyList_Append_Py_CheckRecursiveCall_Py_CheckRecursionLimitPyCapsule_IsValidPyExc_KeyErrorrandom_beta_Py_FalseStruct__gmon_start__PyUnicode_AsUnicoderandom_exponentialloggamexpf@@GLIBC_2.2.5PyTuple_NewPyObject_GenericGetAttrPyThreadState_GetPyExc_OverflowErrorrandom_standard_exponential_zigPyNumber_RemainderPyType_Modifiedrandom_gammalegacy_random_poissonPyObject_SetAttrPyErr_Occurred_Py_EllipsisObjectPyLong_AsLongPyImport_ImportModulesqrtf@@GLIBC_2.2.5_PyDict_GetItem_KnownHashrandom_zipflegacy_weibullPyDict_GetItemStringrandom_doublePyEval_EvalCodeExpowf@@GLIBC_2.2.5PyObject_Sizerandom_standard_exponential_frandom_pareto_Py_NoneStructPyFloat_AsDouble_endPyObject_IsTrue_PyType_LookupPyImport_ImportModuleLevelObjectrandom_positive_int64random_gamma_floatlegacy_standard_gammarandom_geometric_searchPyObject_Hashrandom_standard_tPyUnicode_ComparePyInit_mtrandrandom_double_fillrandom_vonmisesrandom_bounded_uint32_fillrandom_positive_int32_Py_TrueStruct__bss_startlogf@@GLIBC_2.2.5PyFunction_Typelegacy_powerlegacy_exponentialrandom_chisquarePyDict_Newlegacy_standard_cauchyPyExc_IndexErrorPyLong_AsUnsignedLongPyDict_TypePyDict_Nextlegacy_gammaPyBaseObject_Typerandom_standard_exponential_fillrandom_intervalrandom_waldrandom_noncentral_chisquarePyLong_TypePyFrame_Typelegacy_betaPyCapsule_Typelegacy_noncentral_f_PyObject_GetDictPtrrandom_standard_exponential_zig_frandom_lognormalPyUnicode_FromStringrandom_buffered_bounded_uint16PyObject_GetIterPyEval_SaveThreadPyUnicode_InternFromStringrandom_binomial_Jv_RegisterClassesPyExc_ImportErrorlegacy_random_hypergeometricPyDict_SetItemrandom_uintPySequence_TuplePyExc_AttributeErrorrandom_gumbelPyDict_Copylegacy_standard_tPyExc_StopIterationPySequence_Listfloor@@GLIBC_2.2.5PyObject_Calllegacy_random_geometricPyUnicode_TypePyCapsule_NewPyUnicode_DecodePyErr_Formatrandom_bounded_bool_fillPyCapsule_GetPointerPySlice_NewPyExc_NameErrorPyUnicode_FromStringAndSizePyModule_GetDictrandom_binomial_inversion_ITM_registerTMCloneTablelegacy_noncentral_chisquarePyNumber_IndexPyObject_GetAttrsqrt@@GLIBC_2.2.5random_geometricPyCFunction_Type_PyDict_NewPresizedceil@@GLIBC_2.2.5PyUnicode_FormatPyLong_FromStringPyMem_MallocPyErr_WarnFormat__cxa_finalize@@GLIBC_2.2.5_initPyNumber_SubtractPyTuple_PackPy_GetVersionlegacy_lognormalPyObject_GC_UnTrackPyExc_UnboundLocalErrorPyDict_GetItemWithErrorPyList_Typerandom_standard_exponential_zig_fill