from __future__ import print_function import argparse import logging import os from torchvision import datasets, transforms import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim WORLD_SIZE = int(os.environ.get("WORLD_SIZE", 1)) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: msg = "Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()) logging.info(msg) niter = epoch * len(train_loader) + batch_idx def test(args, model, device, test_loader, epoch): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) logging.info("{{metricName: accuracy, metricValue: {:.4f}}};{{metricName: loss, metricValue: {:.4f}}}\n".format( float(correct) / len(test_loader.dataset), test_loss)) def should_distribute(): return dist.is_available() and WORLD_SIZE > 1 def is_distributed(): return dist.is_available() and dist.is_initialized() def main(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument("--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)") parser.add_argument("--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)") parser.add_argument("--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)") parser.add_argument("--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)") parser.add_argument("--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)") parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument("--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status") parser.add_argument("--log-path", type=str, default="", help="Path to save logs. Print to StdOut if log-path is not set") parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") if dist.is_available(): parser.add_argument("--backend", type=str, help="Distributed backend", choices=[dist.Backend.GLOO, dist.Backend.NCCL, dist.Backend.MPI], default=dist.Backend.GLOO) args = parser.parse_args() # Use this format (%Y-%m-%dT%H:%M:%SZ) to record timestamp of the metrics. # If log_path is empty print log to StdOut, otherwise print log to the file. if args.log_path == "": logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%dT%H:%M:%SZ", level=logging.DEBUG) else: logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", datefmt="%Y-%m-%dT%H:%M:%SZ", level=logging.DEBUG, filename=args.log_path) use_cuda = not args.no_cuda and torch.cuda.is_available() if use_cuda: print("Using CUDA") torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") if should_distribute(): print("Using distributed PyTorch with {} backend".format(args.backend)) dist.init_process_group(backend=args.backend) kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.FashionMNIST("./data", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.FashionMNIST("./data", train=False, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=args.test_batch_size, shuffle=False, **kwargs) model = Net().to(device) if is_distributed(): Distributor = nn.parallel.DistributedDataParallel if use_cuda \ else nn.parallel.DistributedDataParallelCPU model = Distributor(model) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader, epoch) if (args.save_model): torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == "__main__": import debugpy; debugpy.listen(('0.0.0.0',5678)); debugpy.wait_for_client(); breakpoint() main()