openfold_model_name=finetuning_ptm_2 processor=gpu output_dir_base=/fsx-shared/openfold/cameo/inference_output/ alignment_dir=/fsx-shared/openfold/cameo/r6i_xlarge_run3_16GB/ config_preset=model_1_ptm use_precomputed_alignments=True skip_relaxation=True no_cpus=4 # number of models per model server num_models=1 # service_port=8080 - port on which model service will be exposed service_port=8080 runtime=kubernetes # Kubernetes-specific deployment settings # instance_type = c5.xxx | g4dn.xlarge | g4dn.12xlarge | inf1.xlarge | inf1.6xlarge | ... # A node group with the specified instance_type must exist in the cluster # The instance type must have the processor type configured above instance_type=g4dn.xlarge # num_servers - number of model servers to deploy # note that more than one model server can run on a node with multiple cpu/gpu/inferentia chips. # example: 4 model servers fit on one inf1.6xlarge instance as it has 4 inferentia chips. num_servers=1 # Kubernetes namespace ##namespace=mpi # Kubernetes app name app_name=openfold-${processor} app_dir=app-${app_name}-${instance_type}