###################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # SPDX-License-Identifier: MIT-0 # ###################################################################### import numpy as np from torchhandler_atomic import initialize, run, cleanup if __name__ == "__main__": import os run_id = os.getenv('PM_ID') model_loc = '/wd/model/%s/mlp_train.pth'%(run_id) print('Initializing w/:%s' % (model_loc)) # Determine processor setting processor = os.getenv('PROCESSOR', default='cpu') print('Running model on %s' % (processor)) gpu_mode = True if processor == 'cpu': gpu_mode = False init_dict = initialize(model_loc=model_loc, gpu_mode=gpu_mode) inp_dict = {} loc_analyticSettings = {} loc_analyticSettings['modelParams'] = { "input_var_order": ["x_1", "x_2", "x_3"], "output_var_order": ["y_1"], # "bias_weight_array": list(np.ones((5,))), "bias_weight_map": { "final": { "weights": [1, 2, 3, 4], "bias": [0] } } } loc_analyticSettings['tunableParams'] = { "bias_weight_array": list(np.random.random(5, )) } # Set the Inputs n_rows = 10 inputs = {} for idx, cur_var in enumerate(loc_analyticSettings['modelParams']['input_var_order']): inputs[cur_var] = np.random.random(n_rows).tolist() inp_dict['analyticSettings'] = loc_analyticSettings inp_dict['inputs'] = inputs print('Simulating') ret_dict = run(inp_dict=inp_dict, **init_dict) print(ret_dict) print('Clean Up') cleanup(**init_dict)