
INTRODUCTION
This workshop provides an introduction to chaos engineering using Amazon Web Services (AWS) tooling, with a

focus on AWS Fault Injection Simulator (FIS). It introduces the core elements of chaos engineering:

form a hypothesis (plan),

introduce stress (do),

observe (check), and

improve (act).

You will learn how to use FIS and other AWS tools to inject faults in your infrastructure to validate your system’s

resilience as well as verifying your alarms, observability, and monitoring practices.

Target audience
This is a technical workshop introducing chaos engineering practices for Dev, QA and Ops teams. For best

results, the participants should have familiarity with the AWS console as well as some proficiency with

command-line tooling.

Additionally, chaos engineering is about proving or disproving a hypothesis of how a particular fault might

affect the overall system behavior (steady-state) so an understanding of the systems being disrupted is helpful

but not required to do the workshop.

Duration
Core sections
For an introductory workshop we recommend the following core sections:

Baselining and Monitoring

Synthetic User Experience

First Experiment > Configuring Permissions

First Experiment > Experiment (Console)

AWS Systems Manager Integration > FIS SSM Send Command Setup

AWS Systems Manager Integration > Linux CPU Stress Experiment

AWS Systems Manager Integration > Working with SSM documents

AWS Systems Manager Integration > Optional - Windows CPU Stress Experiment

AWS Systems Manager Integration > FIS SSM Start Automation Setup

AWS Systems Manager Integration > SSM Additional resources

Databases > RDS DB Instance Reboot

When run in a prepared AWS account these core sections of the workshop will take about 2-3h. When run in a

customer account, deploying the workshop’s core infrastructure will require an additional 45min.

Additional sections
All remaining sections are intended as independent modules that can be added based on customer need and

interest. All sections require the roles created in

First Experiment > Configuring Permissions

AWS Systems Manager Integration > FIS SSM Start Automation Setup

Cost
When run in a private customer account, this workshop will incur costs on the order of USD1/h for the

infrastructure created. Please ensure you clean up all infrastructure after finishing the workshop to prevent

continuing expenses. You can find instructions in the Cleanup section.

https://chaos-engineering.workshop.aws/en/990_cleanup.html
https://chaos-engineering.workshop.aws/en/
https://chaos-engineering.workshop.aws/en/020_starting_workshop.html

START THE WORKSHOP

To start the workshop, follow one of the following links: depending on

whether you are…

Running the workshop in your own account
Running in an AWS provided account (using AWS provided hashes)

Once you have completed one of the setup paths above, continue with

Region Selection

https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://chaos-engineering.workshop.aws/en/010_introduction.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced.html

...ON YOUR OWN

Running the workshop on your own

Next step:

Create an AWS account

Region selection

Create a Workspace

Provision AWS resources

Only complete this section if you are running the workshop on your

own. If you are at an AWS hosted event (such as re:Invent, Kubecon,

Immersion Day, etc), go to Start the workshop at an AWS event.

Warning

https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/account.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/040_create_workspace.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/account.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event.html

CREATE AN AWS ACCOUNT

1. If you don’t already have an AWS account with “Administrator” access:

Create an AWS account by clicking here.

2. Once you have an AWS account, ensure you are following the remaining workshop steps as an IAM user

with administrator access to the AWS account: Create a new IAM user to use for the workshop

3. Enter the user details:

Your account must have the ability to create new AWS Identity and Access Management (IAM) roles and

scope other IAM permissions.

 Warning

https://portal.aws.amazon.com/billing/signup
https://console.aws.amazon.com/iam/home?#/users$new

4. Attach the “AdministratorAccess” IAM Policy:

https://chaos-engineering.workshop.aws/images/020_starting_workshop/iam-1-create-user.png?classes=shadow&width=60pc

5. Select “Create user”:

https://chaos-engineering.workshop.aws/images/020_starting_workshop/iam-2-attach-policy.png?classes=shadow&width=60pc

6. Take note of the sign-in URL and save:

7. Sign out of your current AWS Console session: on the top menu, select your login and select “Sign out”

https://chaos-engineering.workshop.aws/images/020_starting_workshop/iam-3-create-user.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/images/020_starting_workshop/iam-4-save-url.png?classes=shadow&width=60pc

8. Sign in to a new AWS Console session by using the sign-in URL saved and the newly created user

credentials.

9. Once you have completed the steps above, you can head straight to the Region Selection.

https://chaos-engineering.workshop.aws/images/020_starting_workshop/iam-5-sign-out.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html

REGION SELECTION
This workshop relies heavily on AWS Fault Injection Simulator (FIS) and assumes you will be running all your

experiments in the same region. If not otherwise instructed, please choose a region in which FIS is currently

available.

To select this region for navigate to the AWS Console and select the desired region from the drop-down menu

on the top right:

A number of services, in particular AWS Identity and Access Management (IAM), are region independent and

will show “Global” as the selection.

 Note

https://docs.aws.amazon.com/general/latest/gr/fis.html#fis_region
https://console.aws.amazon.com/console/home
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection/select-region.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/account.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/040_create_workspace.html

CREATE A WORKSPACE

Launch Cloud9 in the region selected previously
Using the region selected in Region Selection, navigate to the Cloud9 console.

Select Create environment
Name it fisworkshop and select Next step.

Since we only need to access our Cloud9 environment via web browser, please select the Create a new
no-ingress EC2 instance for environment (access via Systems Manager) under the Environment Type.

Select “Other Instance Types” and choose t3.medium (you can type to search) for instance type, go

through the wizard with the default values. Finally select Create environment

When it comes up, customize the environment by:

Closing the Welcome tab

A list of supported browsers for AWS Cloud9 (Cloud9) is found here.

 Info

Ad blockers, javascript disablers, and tracking blockers should be disabled for the Cloud9 domain, or

connecting to the workspace might be impacted. Cloud9 requires third-party-cookies. You can whitelist

specific domains by following these instructions.

 Tip

https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://console.aws.amazon.com/cloud9
https://docs.aws.amazon.com/cloud9/latest/user-guide/browsers.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/troubleshooting.html#troubleshooting-env-loading

Opening a new Terminal tab in the main work area

https://chaos-engineering.workshop.aws/images/020_starting_workshop/cloud9-1.png?classes=shadow&width=60pc

Closing the lower work area

https://chaos-engineering.workshop.aws/images/020_starting_workshop/cloud9-2.png?classes=shadow&width=60pc

Your workspace should now look like this

https://chaos-engineering.workshop.aws/images/020_starting_workshop/cloud9-3.png?classes=shadow&width=60pc

Increase the disk size on the Cloud9 instance

Copy/Paste the following code in your Cloud9 terminal (you can paste the whole block at once).

Once the command completes, we reboot the instance and it could take a minute or two for the Integrated

Development Environment (IDE) to come back online.

Some commands in this workshop require more than the default disk allocation on a Cloud9 workspace.

The following command adds more disk space to the root volume of the Amazon EC2 (EC2) instance that

Cloud9 runs on.

 Info

Ensure we have newest boto3 installed
pip3 install --user --upgrade boto3

Identify instance ID of the Cloud9 environment
export instance_id=$(curl -s http://169.254.169.254/latest/meta-data/instance-id)

https://chaos-engineering.workshop.aws/images/020_starting_workshop/cloud9-4.png?classes=shadow&width=60pc

Update tools and dependencies

Copy/Paste the following code in your Cloud9 terminal (you can paste the whole block at once).

Use API to identify attached volume and increase size
python -c "import boto3
import os
from botocore.exceptions import ClientError
ec2 = boto3.client('ec2')
volume_info = ec2.describe_volumes(
 Filters=[
 {
 'Name': 'attachment.instance-id',
 'Values': [
 os.getenv('instance_id')
]
 }
]
)
volume_id = volume_info['Volumes'][0]['VolumeId']
try:
 resize = ec2.modify_volume(
 VolumeId=volume_id,
 Size=30
)
 print(resize)
except ClientError as e:
 if e.response['Error']['Code'] == 'InvalidParameterValue':
 print('ERROR MESSAGE: {}'.format(e))"

Reboot - on restart the cloud-init will adjust FS size
if [$? -eq 0]; then
 sudo reboot
fi

The instructions in this workshop assume you are using a bash shell in a linux-like environment. They also

rely on a number of tools. Follow these instructions to install the required tools in an AWS Cloud9

workspace:

 Info

Update to the latest stable release of npm and nodejs.
nvm install --lts
nvm use --lts

Install typescript

npm install -g typescript

Install CDK
npm install -g aws-cdk

Install the jq tool
sudo yum install -y jq gettext

https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html

PROVISION AWS RESOURCES

Before we start running fault injection experiments we need to provision our resources in the cloud. The rest of

the workshop uses these resources.

Clone the repository

Deploy the resources

Review the deploy output. It should similar to this:

Only complete this section if you are running the workshop on your own. If you are at an AWS hosted event

(such as re:Invent, Kubecon, Immersion Day, etc), these steps have already been executed for you.

 Warning

cd ~/environment
git clone https://github.com/aws-samples/aws-fault-injection-simulator-
workshop.git

cd aws-fault-injection-simulator-workshop
cd resources/templates
./deploy-parallel.sh

Instantiating all resources will take about 30 minutes. This might be a good time to read ahead at

Baselining and Monitoring or go for coffee.

 Note

Substack vpc SUCCEEDED
Substack goad-cdk SUCCEEDED
Substack access-controls SUCCEEDED

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining.html

If any of the substacks report as FAILED you can try to re-run the deployment script. If that still fails you can

find some debugging information in files named deploy-output.*.txt .

Substack serverless SUCCEEDED
Substack rds SUCCEEDED
Substack asg-cdk SUCCEEDED
Substack eks SUCCEEDED
Substack ecs SUCCEEDED
Substack cpu-stress SUCCEEDED
Substack api-failures SUCCEEDED
Substack spot SUCCEEDED
Overall install SUCCEEDED

https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/040_create_workspace.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event.html

...AT AN AWS EVENT

Running the workshop at an AWS Event

Next step:

AWS Workshop Portal

Configure AWS CloudShell

Only complete this section if you are at an AWS hosted event (such as

re:Invent, AWS Summit, Immersion Day, or any other event hosted by

an AWS employee). If you are running the workshop on your own, go

to: Start the workshop on your own.

Warning

https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/portal.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/portal.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced.html

AWS WORKSHOP PORTAL

Login to AWS Workshop Portal
This workshop uses an AWS account and a AWS Cloud9 environment. You will need the Participant Hash
provided by the event organizers and your email address to track your unique session.

Connect to the portal by following instructions sent by the organizers or by browsing to

https://dashboard.eventengine.run/. You should see the following screen:

Enter the provided hash in the text box. The button on the bottom right corner changes to Accept Terms &
Login. Select that button to continue.

https://dashboard.eventengine.run/
https://chaos-engineering.workshop.aws/images/020_starting_workshop/aws_event/event-engine-initial-screen.png?classes=shadow&width=60pc

Select AWS Console on dashboard.

Keep the defaults and select Open AWS Console. This will open AWS Console in a new browser tab.

Once you have completed the steps above, you can head straight to the Region Selection.

https://chaos-engineering.workshop.aws/images/020_starting_workshop/aws_event/event-engine-dashboard.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/images/020_starting_workshop/aws_event/event-engine-aws-console.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/030_region_selection.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell.html

https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell.html

CONFIGURE AWS CLOUDSHELL
While it is possible to do this workshop from your desktop, the instructions in this workshop will assume that

you are using AWS CloudShell (AWS events) or AWS Cloud9 (in your own account).

To open CloudShell, navigate to the AWS console and either search for “CloudShell” or click on the CloudShell

icon in the menu bar:

Once the CloudShell terminal opens, we need to check out the GitHub repository. Paste the following into your

CloudShell:

If this is this first time you are using CloudShell you may receive a dialog box asking to confirm a multi-line

paste:

mkdir -p ~/environment
cd ~/environment
git clone https://github.com/aws-samples/aws-fault-injection-simulator-
workshop.git

https://console.aws.amazon.com/console/home
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/start-cloudshell.en.png?classes=shadow&width=60pc

Optionally uncheck the “Ask before pasting multiline code” checkbox. Then select “Paste”.

You should see a git clone like this:

Update tools and dependencies

The instructions in this workshop assume you are using a bash shell in a linux-like environment. They also

rely on a number of tools. Follow these instructions to install the required tools in CloudShell:

 Info

https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell-safe-paste.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/clone-git-repo.en.png?classes=shadow&width=60pc

Copy/Paste the following code in your CloudShell terminal (you can paste the whole block at once).

Update to the latest stable release of npm and nodejs.
sudo npm install -g stable

Install typescript
sudo npm install -g typescript

Install CDK
sudo npm install -g aws-cdk

Install the jq tool
sudo yum install -y jq gettext

https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/portal.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru.html

OPTIONAL: SETUP FOR AMAZON

DEVOPS GURU

Navigate to the DevOps Guru console and select the “Get Started” button:

For “Amazon DevOps Guru analysis coverage” select “Choose later” if you will only be exploring as part of this

workshop. Otherwise you can select “Analyze all AWS resources in the current AWS account in this Region” but it

may take more time and incur more cost to get started.

Only complete this section if you are planning to explore the Amazon DevOps Guru (DevOps Guru) section

at the end of the workshop. If you are planning to explore DevOps Guru in this way please allow sufficient

time for DevOps Guru to perform initial resource discovery and baselining. Depending on the number of

resources in the account/region you select this may take from 2-24h.

 Warning

https://console.aws.amazon.com/devops-guru/home?#/home
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru/getting-started.en.png?classes=shadow&width=60pc

During this workshop we will not be exploring Amazon Simple Notification Service (SNS) notifications and thus

don’t need to specify an SNS topic.

Select “Enable”.

If you set coverage to “Choose later” you should now see an information banner notifying you that you have

not yet selected resources:

Select the “Manage analysis coverage” option in the banner or navigate to the DevOps Guru console,

choose “Settings” and select “Manage” option under “DevOps Guru analysis coverage”:

Select all the stacks with names starting with Fis :

https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru/coverage.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru/no-resources-warning.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/devops-guru/home?#/home
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru/manage-coverage.en.png?classes=shadow&width=60pc

Select “Save”.

https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru/select-stacks.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell.html
https://chaos-engineering.workshop.aws/en/030_basic_content.html

WORKSHOP

This workshop is broken into multiple chapters. The chapters are designed

to be done in sequence with each chapter assuming familiarity with some

concepts from previous chapters and focusing on new learnings. We

include refresher links to relevant prior sections to help you skip over

materials you are already familiar with.

Chapters:
Baselining and Monitoring

Synthetic User Experience

First Experiment

AWS Systems Manager Integration

Databases

Advanced experiments

Containers

EC2 spot instances

Serverless

API Failures

Recurrent Experiments - CI/CD

Common scenarios

Observability

Architecture Diagrams
This workshop is focused on how to inject fault into an existing

infrastructure. For this purpose the template in the

Provision AWS resources section sets up a variety of components.

Throughout this workshop we will be showing you architecture diagrams

focusing on only the components relevant to the section, e.g.:

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining.html
https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm.html
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers.html
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot.html
https://chaos-engineering.workshop.aws/en/030_basic_content/075_serverless.html
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios.html
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html

You can click on these images to enlarge them.

 Click to expand if you are hosting a demo

https://chaos-engineering.workshop.aws/en/030_basic_content/BasicASG.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru.html
https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining.html

BASELINING AND MONITORING
Before we start injecting faults into our system we should consider the following thought experiment:

“If a tree falls in a forest and no one is around to hear it, does it make a sound?"

For the purpose of our fault injection experiments we can rephrase this in two ways:

“If part of our system is disrupted and we do not receive any irate calls from users, did anything
break?"

“If part of our system is disrupted and sysops isn’t alerted, did anything break?"

Think about this for a second. There is a distinct difference between those two statements because users and

Ops teams have very different experiences.

What the users see
What the users see is immediate, e.g. the website not loading or loading slowly. What the users see is also an

end-to-end test of all system components, and not all components of the system are in your purview, e.g. you

cannot see the speed of the users' network connection or the state of their DNS caches. Finally an individual

user can have an experience entirely different from all other users. For this workshop, this is particularly

important for a particular edge case: developers and ops typically have better system configurations and better

experiences than the average user but tend to rely on the anecdotal evidence of “it worked for me”.

What sysops sees
Typically, what SysOps see is a wealth of individual health and performance indicators. These often grow

organically over time and especially after outages. Even where dashboards have been built with overall system

health in mind, the metrics are delayed against the user experience and aggregate over the experience of many

users, requiring extra effort to notice poor experiences specific to a subset of users.

To disrupt production - or not
Chaos engineering was popularized by Netflix who famously ran it in production. This view of chaos engineering

being a production practice is so entrenched that it was even spelt out in the wikipedia definition.

Chaos engineering is the discipline of experimenting on a software system in production in order
to build confidence in the system’s capability to withstand turbulent and unexpected conditions.

This is so counterintutive that Gene Kim used to have a section in his presentations where he would spell this

out to immediate audience laughter:

One of the things people don’t tell you about chaos engineering: before you do it in production,
do it in dev/test.

Once you stop laughing, stop to think: if you ran a chaos experiment in dev/test, would you have the same

monitoring and alerting? Would you know if anything broke?

Setting up for fault injection
Before starting our first fault injection experiment, let’s take a look at our most basic infrastructure:

https://en.wikipedia.org/wiki/Chaos_engineering

We have a user trying to access a website running on AWS. We have designed it for high availability. We used

EC2 instances with an Auto Scaling group and a load balancer to ensure that users can always reach our website

even under heavy load or if an instance suddenly fails.

Once you’ve created the resources as described in Provision AWS resources you can navigate to

CloudFormation, select the FisStackAsg stack and select the “Outputs” tab which will show you the server

URL:

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining/BasicASG-with-user.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html
https://console.aws.amazon.com/cloudformation/home

To gain visibility into the user experience from the sysops side we’ve used the AWS CloudWatch agent to
export our web server logs to AWS CloudWatch Logs and we created AWS CloudWatch Logs metrics �lters
to track server response codes and speeds on a dashboard. Note that the dashboard’s name is based on the

region in which we deployed. If you chose a region other than us-west-2 the dashboard’s name will be

different. The dashboard also shows the number of instances in our Auto Scaling Group (ASG).

 Accessing the dashboard from the console

In the next section we will cover how to measure the user experience.

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining/cloudformation.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/UseCloudWatchUnifiedAgent.html
https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups/log-group/$252Ffis-workshop$252Fasg-access-log
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringLogData.html
https://console.aws.amazon.com/cloudwatch/home?#dashboards:name=FisDashboard-us-west-2
https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining/fis-dashboard-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content.html
https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load.html

https://chaos-engineering.workshop.aws/en/030_basic_content.html
https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load.html

SYNTHETIC USER EXPERIENCE
In the previous section we showed you a typical configuration to collect sysops data but without visibility into

the actual user experience. To gain end-to-end insights from our fault injection experiments, we want to

correlate user-experience with the sysops view from the previous section. In production, we could instrument

the clients to send telemetry back to us, but in non-production we don’t usually have sufficient load to do this.

You also probably have better things to do than sit there clicking reload on a browser page while your

experiment is running.

In this section we will show you how to generate and record synthetic load to reflect the user experience:

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/BasicASG-with-user-and-synthetics.en.png?classes=shadow&width=60pc

Generating load against our website
In the previous section, you navigated to the basic website setup as well as the sysops performance dashboard.

Open a linux terminal and save the URL from the previous page in an environment variable:

Next, we need to generate load. There are many load testing tools available to generate a variety of load

patterns. However, for the purpose of this workshop we have included an AWS Lambda (Lambda) function that

will make HTTP GET calls to our website and log performance data to Amazon CloudWatch (CloudWatch). To

find the Lambda function, navigate to the AWS CloudFormation (CloudFormation) console, select the
FisStackLoadGen stack, and click on the “Outputs” tab. It will show you the Lambda function ARN:

Save the Lambda function ARN in another environment variable:

Finally, invoke the Lambda function using the AWS CLI:

export URL_HOME=[PASTE URL HERE]

export LAMBDA_ARN=[PASTE ARN HERE]

Workaround for AWS CLI v1/v2 compatibility issues
CLI_MAJOR_VERSION=$(aws --version | grep '^aws-cli' | cut -d/ -f2 | cut -d. -f1
)
if ["$CLI_MAJOR_VERSION" == "2"]; then FIX_CLI_PARAM="--cli-binary-format raw-
in-base64-out"; else unset FIX_CLI_PARAM; fi

Run load for 3min
aws lambda invoke \

https://en.wikipedia.org/wiki/Category:Load_testing_tools
https://console.aws.amazon.com/cloudformation/home
https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/cloudformation.en.png?classes=shadow&width=60pc

Now, let’s generate some load. The invocation above will generate 1000 connections per second for 3 minutes.

We expect our website’s performance to degrade and for Auto Scaling to kick in.

Explore impact of load
While our load is running let’s explore the setup a little more.

Webserver logs and metrics
The first thing we want to look at is our webserver logs. Because we are using an Auto Scaling group, virtual

machines can be terminated and recycled which means logs written locally on the EC2 instance won’t be

accessible anymore. Therefore, we have installed the Uni�ed CloudWatch Agent and configured our

webserver to write logs to a CloudWatch Log Group.

 Navigating to CloudWatch Log Groups

 --function-name ${LAMBDA_ARN} \
 --payload "{
 \"ConnectionTargetUrl\": \"${URL_HOME}\",
 \"ExperimentDurationSeconds\": 180,
 \"ConnectionsPerSecond\": 1000,
 \"ReportingMilliseconds\": 1000,
 \"ConnectionTimeoutMilliseconds\": 2000,
 \"TlsTimeoutMilliseconds\": 2000,
 \"TotalTimeoutMilliseconds\": 2000
 }" \
 $FIX_CLI_PARAM \
 --invocation-type Event \
 /dev/null

If you are running AWS CLI v2, you need to pass the parameter
--cli-binary-format raw-in-base64-out or you’ll get the error “Invalid base64” when sending the

payload. This notice is for troubleshooting, the code above should work for both CLI versions.

 Info

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/UseCloudWatchUnifiedAgent.html
https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups/log-group/$252Ffis-workshop$252Fasg-access-log

Click through on the topmost entry and expand any of the log lines. You may notice that we’ve modified the

Nginx output format to use JSON instead of the default format:

While not necessary, this makes it easy to create Metric Filters. Navigate back to the
/fis-workshop/asg-access-log log group and select the “Metric �lters” tab. You will see that we have

created filters to extract the count of responses with HTTP status codes in the 2xx (good responses) and 5xx

(bad responses) ranges. We also created a filter to select all entries that have a request_time set. The resulting

metrics can be found under Metrics / All metrics / Custom Namespaces / fisworkshop . These are also the

metrics for Server (nginx) connection status and Server (nginx) response time you saw on the

dashboard in the previous section.

Let’s look at our dashboard:

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/nginx-log-stream-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/nginx-log-stream-2.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/MonitoringPolicyExamples.html

That’s odd, did anything happen? According to Nginx, it looks like nothing happened. Remember the falling tree

in the forest and no one is around to hear it? We need to look at what the server CPU and the load runner. For

this, we have added a more detailed dashboard:

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/dashboard-basic-home.en.png?classes=shadow&width=60pc

Now, it’s clearer what happened. We were requesting a small static page and Nginx is really efficient. In the
Server CPU graph, we can see minimal CPU utilization correlating with the load data in the
Customer (load test) graphs.

Increasing the load
Clearly, hitting a static page isn’t a good test to validate our Auto Scaling configuration works as intended.

Fortunately, the server also exposes a phpinfo.php page. Let’s try loading that instead. Define another

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/dashboard-extended-home.en.png?classes=shadow&width=60pc

environment variable and run the load test against the new URL. Since we want to see the Auto Scaling group

adjust capacity, let’s run more than one copy:

While this is executing, we encourage you to explore CloudWatch logs and create some dashboard views of your

own.

export URL_PHP=${URL_HOME}/phpinfo.php

Workaround for AWS CLI v1/v2 compatibility issues
CLI_MAJOR_VERSION=$(aws --version | grep '^aws-cli' | cut -d/ -f2 | cut -d. -f1
)
if ["$CLI_MAJOR_VERSION" == "2"]; then FIX_CLI_PARAM="--cli-binary-format raw-
in-base64-out"; else unset FIX_CLI_PARAM; fi

Run load for 5min, 3x in parallel because max per lambda is 1000
for ii in 1 2 3; do
 aws lambda invoke \
 --function-name ${LAMBDA_ARN} \
 --payload "{
 \"ConnectionTargetUrl\": \"${URL_PHP}\",
 \"ExperimentDurationSeconds\": 300,
 \"ConnectionsPerSecond\": 1000,
 \"ReportingMilliseconds\": 1000,
 \"ConnectionTimeoutMilliseconds\": 2000,
 \"TlsTimeoutMilliseconds\": 2000,
 \"TotalTimeoutMilliseconds\": 2000
 }" \
 $FIX_CLI_PARAM \
 --invocation-type Event \
 /dev/null
done

If you are running AWS CLI v2, you need to pass the parameter
--cli-binary-format raw-in-base64-out or you’ll get the error “Invalid base64” when sending the

payload. This notice is for troubleshooting, the code above should work for both CLI versions.

 Info

According to the dashboards, we’ve now generated enough load to force a scaling event. We can also see how

different the user experience is from the Nginx report. Requests timeout after 2s, substantially affecting user

experiences, and rendering the website unavailable. Nginx, in contrast, doesn’t report this as an error because

the connection was terminated by the client before being served. We will leave it as an exercise to the reader to

figure out more details and will move on to fault injection experiments.

If you are working in CloudShell you terminal may expire throughout this workshop. To save your

environment variables from this section so they re-populate when you restart your terminal, paste this into

your shell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load/dashboard-extended-phpinfo.en.png?classes=shadow&width=60pc

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

FIRST EXPERIMENT
In this section, we will cover the setup required for using AWS FIS to run our first fault injection experiment

Experiment idea
In the previous section, we ensured that we can measure the user experience. We also have configured an Auto

Scaling group that should make sure we can “always” provide a good experience to the customer. Let’s validate

this:

Given: we have an Auto Scaling group with multiple instances

Hypothesis: Failure of a single EC2 instance may lead to slower response times but should not affect

service availability for our customers.

https://chaos-engineering.workshop.aws/en/030_basic_content/020_working_under_load.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

CONFIGURING PERMISSIONS
The AWS FIS security model uses two IAM roles. The first IAM role, the one you used to log into the console,

controls access to AWS FIS service. It governs whether you are able to see, modify, and run AWS FIS experiments.

The second role governs what resources an AWS FIS experiment can affect during a fault injection experiment.

For the purposes of this workshop, we will create one generic role. However, you can create fine grained IAM

roles for each fault injection experiment.

Create FIS service role
We need to create an IAM role for the AWS FIS service to grant it permissions to inject faults into the system.

While we could have pre-created this IAM role for you, we think it is important to review its scope with you.

Navigate to the IAM console and create a new IAM policy. On the “Create Policy” page select the JSON tab

Please note that FIS uses a service linked role to perform some of the internal tasks FIS does on your

behalf. If you have sufficient privileges like during this workshop, specifically if you are permitted to

perform the iam:CreateServiceLinkedRole action, this role will be automatically created the first time

you use FIS. If you plan on configuring FIS in an account that is fully managed by Infrastructure as Code

(IaC) and where all FIS users do not have the above permission, please make sure to create the service linked

role as part of your IaC setup.

 Note

https://docs.aws.amazon.com/fis/latest/userguide/getting-started-iam.html#getting-started-iam-service-role
https://console.aws.amazon.com/iam/home?#/policies
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions/create-policy-1.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

and paste the following policy. This policy is designed to allow you to freely test during the workshop but take

the time to look at how broad these permissions are. We suggest limiting this policy using resource names and

conditions before using FIS in production:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowFISExperimentLoggingActionsCloudwatch",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowFISExperimentRoleReadOnly",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ecs:DescribeClusters",
 "ecs:ListContainerInstances",
 "eks:DescribeNodegroup",
 "iam:ListRoles",
 "rds:DescribeDBInstances",
 "rds:DescribeDbClusters",
 "ssm:ListCommands"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowFISExperimentRoleEC2Actions",
 "Effect": "Allow",
 "Action": [
 "ec2:RebootInstances",
 "ec2:StopInstances",
 "ec2:StartInstances",
 "ec2:TerminateInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*"
 },
 {
 "Sid": "AllowFISExperimentRoleECSActions",
 "Effect": "Allow",
 "Action": [
 "ecs:UpdateContainerInstancesState",
 "ecs:ListContainerInstances"
],
 "Resource": "arn:aws:ecs:*:*:container-instance/*"

 },
 {
 "Sid": "AllowFISExperimentRoleEKSActions",
 "Effect": "Allow",
 "Action": [
 "ec2:TerminateInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*"
 },
 {
 "Sid": "AllowFISExperimentRoleFISActions",
 "Effect": "Allow",
 "Action": [
 "fis:InjectApiInternalError",
 "fis:InjectApiThrottleError",
 "fis:InjectApiUnavailableError"
],
 "Resource": "arn:*:fis:*:*:experiment/*"
 },
 {
 "Sid": "AllowFISExperimentRoleRDSReboot",
 "Effect": "Allow",
 "Action": [
 "rds:RebootDBInstance"
],
 "Resource": "arn:aws:rds:*:*:db:*"
 },
 {
 "Sid": "AllowFISExperimentRoleRDSFailOver",
 "Effect": "Allow",
 "Action": [
 "rds:FailoverDBCluster"
],
 "Resource": "arn:aws:rds:*:*:cluster:*"
 },
 {
 "Sid": "AllowFISExperimentRoleSSMSendCommand",
 "Effect": "Allow",
 "Action": [
 "ssm:SendCommand"
],
 "Resource": [
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ssm:*:*:document/*"
]
 },
 {
 "Sid": "AllowFISExperimentRoleSSMCancelCommand",
 "Effect": "Allow",
 "Action": [
 "ssm:CancelCommand"
],
 "Resource": "*"
 }

Click on Next: Tags to move to the next screen, adding any Tags as you’d wish. In the Review Policy page, save

this policy as FisWorkshopServicePolicy and add any description you would like. Complete the policy

creation by clicking on Create Policy.

Navigate to the IAM console page and create a new Role.

On the “Select type of trusted entity” page AWS FIS does not exist as a trusted service yet. We shall add an

account trust as a placeholder and replace this with AWS FIS later. Select “Another AWS Account” and add the

current account number. You can find the AWS account number in the drop-down menu at the top right of the

page as shown:

Click on Next: permissions. On the “Attach permissions” page search for the FisWorkshopServicePolicy we

just created and check the box beside it to attach it to the role.

Click on Next: Tags and add any Tags you would like for this role.

Click on Next: Review and save the role name as FisWorkshopServiceRole . Add any description you would

like for this role.

]
}

https://console.aws.amazon.com/iam/home?#/roles
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions/create-role-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions/create-role-2.en.png?classes=shadow&width=60pc

Complete the Role creation by clicking on Create role.

Back in the IAM Roles page, find and edit the FisWorkshopServiceRole . Select “Trust relationships” and

the “Edit trust relationship” button.

Replace the policy document with the following:

Click on Update Trust Policy to complete updating the Role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "fis.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {}
 }
]
}

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions/create-role-3.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html

EXPERIMENT (CONSOLE)
In this section, we will learn how to create an AWS FIS experiment template using the AWS Console.

Experiment setup
To create a fault injection experiment, we first need to create an AWS FIS template defining:

Name (optional)

Description (optional)

Template permissions

Actions
Targets
Stop Conditions (optional but strongly recommended)

Tags

Create an AWS FIS experiment template
Navigate to the FIS console and select “Create experiment template”.

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://docs.aws.amazon.com/fis/latest/userguide/actions.html
https://docs.aws.amazon.com/fis/latest/userguide/targets.html
https://docs.aws.amazon.com/fis/latest/userguide/stop-conditions.html
https://console.aws.amazon.com/fis/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Template description, name, and permissions
Let’s write a description for our experiment template and select an IAM role to use when performing the

experiment. Go to the “Description, name and permission” section. For “Description” enter
Terminate half of the instances in the auto scaling group , for “Name” enter
FisWorkshopExp1Run1 and for “IAM Role” select the FisWorkshopServiceRole role you created previously.

Action definition

Note: if you’ve used AWS FIS before you may not see the splash screen. In that case select “Experiment

templates” in the burger menu on the left and access “Create experiment template” from there.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-description.en.png?classes=shadow&width=60pc

Here we select the type of fault we wish to inject, the action to take. To test the hypothesis that we can safely

impact half the instances in our Auto Scaling group, we will terminate those instances. Go to the “Actions”

section and select “Add Action”.

For “Name” enter FisWorkshopAsg-TerminateInstances and add a “Description” like
Terminate instances . For “Action type” select aws:ec2:terminate-instances .

We will leave the “Start after” section blank since we are only taking a single action in this experiment template.

Leave the default “Target” Instances-Target-1 and select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-actions-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-actions-2-autogen.en.png?classes=shadow&width=60pc

Target definition
For our action we are choosing to terminate EC2 instances. In the target section we define which instances to

terminate. As a reminder, for this first experiment we want to prove the hypothesis that we can safely impact

half the instances in our Auto Scaling group.

Go to the “Targets” section, select the Instances-Target-1 section, and select “Edit”.

You may leave the default name Instances-Target-1 but for maintainability we rcommend using descriptive

target names. Change the name to FisWorkshopAsg-50Percent (this will automatically update the name in

the action as well) and make sure “Resource type” is set to aws:ec2:instances . For “Target method” we will

dynamically select resources based on an associated tag. Select the Resource tags and filters checkbox.

Pick Percent from “Selection mode” and enter 50 . Under “Resource tags” enter Name in the “Key” field and
FisStackAsg/ASG for “Value” to select only from instances associated with the desired Auto Scaling group.

Under filters enter State.Name in the “Attribute path” field and running under “Values” to ensure we do not

consider instances that are starting or stopping due to unrelated events. For more information on filters see the

documentation. Select “Save”.

Instances-Target-1 was auto-generated for us because no appropriate target type existed in the

experiment template. If one or more targets already exist, e.g. because we added actions before, then we will

be presented with a drop down selector for existing targets instead.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-targets-1-autogen.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/fis/latest/userguide/targets.html#target-identification

Stop conditions
AWS FIS provides stop conditions tied to Amazon CloudWatch alarms as a safeguard to minimize the impact

of experiments that do not perform as expected. In this experiment we are performing a single action that

cannot be reverted so we will leave this empty.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-targets-2.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-4-stop-conditions-empty.en.png?classes=shadow&width=60pc

Logs
To write logs of FIS events to CloudWatch, expand the “Logs” card, check the “Send to CloudWatchLogs”

checkbox, and select “Browse” to select the pre-created log group:

For “Log groups” enter /fis-workshop/fis-logs and select the relevant entry:

Template tags
AWS FIS tracks the template name as the special tag Name which is displayed in the “Name” field of the

experiment template list view. In addition to the Name tag that propagated from setting it in the “Description,

name and permission” card, we can optionally attach tags to our template. Tags can be used in IAM policy

condition keys to control access to the experiment template.

For this experiment we will make no changes here.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-5-logs-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-5-logs-2.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionsimulator.html#awsfaultinjectionsimulator-fis_Service

Creating template without stop conditions
Scroll to the bottom of the template definition page and select “Create experiment template”.

Since we didn’t specify a stop condition we receive a warning. This is ok, for this experiment we won’t use a stop

condition. Type create in the text box as indicated and select “Create experiment template”.

Validation procedure
We will be using the AWS CloudWatch dashboard from the previous sections for validation, no additional setup

required.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-2-name.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/create-template-3-confirm.en.png?classes=shadow&width=60pc

Run FIS experiment
As previously discussed, we should collect both customer and ops metrics. For larger experiments we would

add the load generator into our experiment.

However, for this experiment we will manually trigger load generation on the system before starting the

experiment, similar to what we did in the previous section. Here we have increased the run time to 5 minutes by

setting ExperimentDurationSeconds to 300 :

To start the experiment navigate to the FIS console, select the FisWorkshopExp1 template we just created.

Under “Actions” select “Start experiment”.

Please ensure that LAMBDA_ARN, URL_HOME, and FIX_CLI_PARAM are still set from
previous section

Run load for 5min, 3x in parallel because max per lambda is 1000
for ii in 1 2 3; do
 aws lambda invoke \
 --function-name ${LAMBDA_ARN} \
 --payload "{
 \"ConnectionTargetUrl\": \"${URL_PHP}\",
 \"ExperimentDurationSeconds\": 300,
 \"ConnectionsPerSecond\": 1000,
 \"ReportingMilliseconds\": 1000,
 \"ConnectionTimeoutMilliseconds\": 2000,
 \"TlsTimeoutMilliseconds\": 2000,
 \"TotalTimeoutMilliseconds\": 2000
 }" \
 $FIX_CLI_PARAM \
 --invocation-type Event \
 /dev/null
done

If you are running AWS CLI v2, you need to pass the parameter
--cli-binary-format raw-in-base64-out or you’ll get the error “Invalid base64” when sending the

payload.

 Warning

https://chaos-engineering.workshop.aws/en/030_basic_content/010-baselining.html
https://console.aws.amazon.com/fis/home?#ExperimentTemplates

Let’s give the experiment run a friendly name. It will make it easier to find it from the list page. Under

“Experiment tags” enter Name for “Key and FisWorkshopExp1Run1 then select “Start experiment”.

Because you are about to start a potentially destructive process, you will be asked to confirm that you really

want to do this. Type start as directed and select “Start experiment”.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/start-experiment-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/start-experiment-2.en.png?classes=shadow&width=60pc

Review results
Navigate to the FIS console, select “Experiments”, and click the experiment ID for the experiment you just

started.

Look at the “State” entry. If this still shows pending, feel free to select the “Refresh” button a few times until

you see a result. If you followed the above steps carefully there is a good chance that your experiment state will

be Failed .

Click on the failed result to get more information about why it failed. The message should say
Target resolution returned empty set . Scroll down further and select “Timeline”:

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/start-experiment-3.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#Experiments
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/run-experiment-1-fail.en.png?classes=shadow&width=60pc

In this case this doesn’t show anything because the experiment failed to run entirely, but for larger experiments

you would see when each action was active in the timeline.

Next navigate to the CloudWatch Logs console and select the /fis-workshop/fis-logs log group

then expand the topmost stream under “Log streams”

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/run-experiment-1-fail-2.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups/log-group/$252Ffis-workshop$252Ffis-logs
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/run-experiment-1-fail-3.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/run-experiment-1-fail-4.en.png?classes=shadow&width=60pc

All this shows that FIS failed to identify virtual machines that satisfied the condition of being “50% of instances

with “Name” tag of FisStackAsg/ASG .

To see why this would happen, have a look at the auto scaling group from which we tried to select instances.

Navigate to the EC2 console, select “Auto Scaling Groups” on the bottom of the burger menu, and search for
FisStackAsg- :

Learning and improving
It looks like our ASG was configured to scale down to just one instance while idle. Since we can’t shut down half

of one instance, our 50% selector came up empty and the experiment failed.

Great! While this wasn’t really what we expected, we just found a �aw in our con�guration that would
severely a�ect our system’s resilience! Let’s �x it and try again!

Click on the Auto Scaling group name and “Edit” the “Group Details” to raise both the “Desired capacity” and

“Minimum capacity” to 2 .

https://console.aws.amazon.com/ec2autoscaling/home?#/details
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/review-1-asg-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/review-1-asg-2.en.png?classes=shadow&width=60pc

Check the ASG details or the CloudWatch Dashboard we explored in the previous section to make sure the

active instances count has come up to 2.

To repeat the experiment, repeat the steps above:

restart the load

navigate back to the FIS Experiment Templates Console, start the experiment adding a Name tag of
FisWorkshopExp1Run2

check to make sure the experiment succeeded

Finally navigate to the CloudWatch Dashboard from the previous section. Review the number of instances in

the ASG going down and then up again and review the error responses reported by the load test.

Findings and next steps
From this experiment we learned:

Carefully choose the resource to affect and how to select them. If we had originally chosen to terminate a

single instance (COUNT) rather than a fraction (PERCENT), we would have severely affected our service.

Spinning up instances takes time. To achieve resilience, Auto Scaling groups should be set to have at least

two instances running at all times

https://console.aws.amazon.com/fis/home?#ExperimentTemplates
https://console.aws.amazon.com/cloudwatch/home?#dashboards:
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console/cwdashboard-asg-1.en.png?classes=shadow&width=60pc

From here you can explore how to set up experiments programatically using the AWS CLI or

AWS CloudFormation, or move on exploring more fault types to inject.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/30-experiment-cli.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/30-experiment-cli.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm.html

EXPERIMENT (CLI)
In this section we will show you how to create an experiment using AWS FIS templates. For clarity, we will

replicate the same experiment as we previously did via the AWS console.

Template overview
Experiment templates are JSON files containing Actions, Targets, an IAM role, and optional Stop Conditions,

and Tags:

Actions
Actions specify an action name and description , an actionId and matching parameters picked from the

AWS FIS Action reference, and a list of targets which references the target section in the same template:

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

{
 "experimentTemplate": {
 "description": "...",
 "actions": {},
 "targets": {},
 "roleArn": "arn:aws:iam:...",
 "stopConditions": [],
 "logConfiguration": {},
 "tags": {}
 }
}

https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates.html
https://docs.aws.amazon.com/fis/latest/userguide/action-sequence.html
https://docs.aws.amazon.com/fis/latest/userguide/fis-actions-reference.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Targets
Targets specify a name, a resourceType from which to select by resourceArn , resourceTags or filters ,

and selectionMode for sampling from the eligible resources by COUNT() or PERCENT() .

A note on finding the path and values for filters : as described under "Resource �lters" in the AWS

documentation, filter paths are based on API output. E.g.: if we want to only target running EC2 instances we

could use the AWS CLI to list instances:

To find the relevant path and values start in the Instances block of the API output and identify entries you

would like to filter on:

"ActionName": {
 "description": "ActionDescription",
 "actionId": "aws:ec2:terminate-instances",
 "parameters": {},
 "targets": {}
}

"TargetGroupName": {
 "resourceType": "aws:ec2:instance",
 "resourceArns": [],
 "resourceTags": {
 "TagName1": "TagValue1",
 "TagName2": "TagValue2",
 ...
 },
 "filters": [
 {
 "path": "State.Name",
 "values": [
 "running"
]
 }
],
 "selectionMode": "COUNT(1)"
}

aws ec2 describe-instances

https://docs.aws.amazon.com/fis/latest/userguide/targets.html
https://docs.aws.amazon.com/fis/latest/userguide/targets.html#target-identification

E.g.: to select an instance that is running in us-east-2a we would add the following filters:

{
 "Reservations": [
 {
 "Groups": [],
 "Instances": [
 {
 "ImageId": "ami-00c36fdebc0d948bd",
 "InstanceType": "t2.micro",
 "Placement": {
 "AvailabilityZone": "us-east-2a",
 "GroupName": "",
 "Tenancy": "default"
 },
 "State": {
 "Code": 16,
 "Name": "running"
 },
 "SubnetId": "subnet-0e912694b51e205d6",
 "VpcId": "vpc-0d4c31ce84606e7eb",
 "Tags": [
 {
 "Key": "Name",
 "Value": "FisStackAsg/ASG"
 },
 ...
],
 ...
 },
 ...
]
 }
]
}

"filters": [
 {
 "path": "State.Name",
 "values": [
 "running"
]
 },
 {
 "path": "Placement.AvailabilityZone",
 "values": [
 "us-east-2a"
]
 }
],

Stop conditions
Stop conditions use a list of Amazon CloudWatch alarms to prematurely stop the experiment if it does not

proceed along expected lines:

Logging configuration
Experiment logging can be enabled in the logConfiguration section of the template. For logging to

CloudWatch similar to the previous section would look like this (with the region and account number filled in

appropriately):

Finished template
Using the above, this would be the finished template.

"stopConditions": [
 {
 "source": "aws:cloudwatch:alarm",
 "value": "arn:aws:cloudwatch:..."
 }
]

"logConfiguration": {
 "cloudWatchLogsConfiguration": {
 "logGroupArn":
"arn:aws:logs:YOUR_REGION_HERE:YOUR_ACCOUNT_NUMBER_HERE:log-group:/fis-
workshop/fis-logs:*"
 },
 "logSchemaVersion": 1
},

Before using this template, please ensure that you replace the ARN for the FIS execution role on the last line

with the ARN of the role you created in the Con�guring permissions section and appropriately set the

region and account number for the log group ARN.

 Note

https://docs.aws.amazon.com/fis/latest/userguide/stop-conditions.html
https://docs.aws.amazon.com/fis/latest/userguide/monitoring-logging.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Working with templates

{
 "description": "Terminate 50% of instances based on Name Tag",
 "tags": {
 "Name": "FisWorkshop-Exp1-CLI"
 },
 "actions": {
 "FisWorkshopTerminateAsg-1-CLI": {
 "actionId": "aws:ec2:terminate-instances",
 "description": "Terminate 50% of instances based on Name Tag",
 "parameters": {},
 "targets": {
 "Instances": "FisWorkshopAsg-50Percent"
 }
 },
 "Wait": {
 "actionId": "aws:fis:wait",
 "parameters": {
 "duration": "PT3M"
 }
 }
 },
 "targets": {
 "FisWorkshopAsg-50Percent": {
 "resourceType": "aws:ec2:instance",
 "resourceTags": {
 "Name": "FisStackAsg/ASG"
 },
 "selectionMode": "PERCENT(50)"
 }
 },
 "stopConditions": [
 {
 "source": "none"
 }
],
 "roleArn":
"arn:aws:iam::YOUR_ACCOUNT_NUMBER_HERE:role/FisWorkshopServiceRole",
 "logConfiguration": {
 "cloudWatchLogsConfiguration": {
 "logGroupArn":
"arn:aws:logs:YOUR_REGION_HERE:YOUR_ACCOUNT_NUMBER_HERE:log-group:/fis-
workshop/fis-logs:*"
 },
 "logSchemaVersion": 1
 },
}

The rest of this section uses the AWS CLI. If you are using AWS Cloud9 this should work out of the box.

Otherwise, please ensure you have installed AWS CLI and configured AWS credentials for the CLI.

Creating templates
To create an experiment template, copy the above “Finished template” JSON into a file named fis.json and

ensure you have changed the roleArn entry to the ARN of the role you created earlier. To find this role ARN,

navigate to the IAM Roles page, search for the role FisWorkshopServiceRole , click on it and copy the value

in Role ARN. Then, use the CLI to create the template in AWS:

You should now be able to see the newly created experiment template in the AWS Console.

Listing templates
This command

will list all the templates. If you happened to run the create-experiment-template command above

multiple times you might notice that it is possible to have multiple copies of a template only differentiated by

the id field.

While it is possible to update an existing experiment template via the update-experiment-template

command, and while the content of the template at execution time is saved with the experiment data, this may

make it harder to establish what happened during an experiment.

Exporting / saving templates
Once you have established the id of an experiment template you can dump the template. This can be a good

way of learning how to write templates as well:

aws fis create-experiment-template --cli-input-json file://fis.json

aws fis list-experiment-templates

export EXPERIMENT_TEMPLATE_ID=<YOUR_EXPERIMENT_TEMPLATE_ID_HERE>
aws fis get-experiment-template --id $EXPERIMENT_TEMPLATE_ID

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://console.aws.amazon.com/cloud9/home/product
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://console.aws.amazon.com/iamv2/home#/roles
https://console.aws.amazon.com/fis/home?#ExperimentTemplates

You will note that the result is wrapped into an experimentTemplate: {} block. You may also notice that

there are some additional fields that are not used during experiment template creation. You can generate

reusable JSON like so:

Validation procedure
Like in the previous section we will be using the AWS CloudWatch dashboard from the previous sections for

validation, no additional setup required.

Run FIS experiment
Like in the previous section we will generate some load:

aws fis get-experiment-template --id $EXPERIMENT_TEMPLATE_ID | jq
'.experimentTemplate | del(.id) | del(.creationTime) | del(.lastUpdateTime)'

Please ensure that LAMBDA_ARN, URL_HOME, and FIX_CLI_PARAM are still set from
previous section

Run load for 5min, 3x in parallel because max per lambda is 1000
for ii in 1 2 3; do
 aws lambda invoke \
 --function-name ${LAMBDA_ARN} \
 --payload "{
 \"ConnectionTargetUrl\": \"${URL_PHP}\",
 \"ExperimentDurationSeconds\": 300,
 \"ConnectionsPerSecond\": 1000,
 \"ReportingMilliseconds\": 1000,
 \"ConnectionTimeoutMilliseconds\": 2000,
 \"TlsTimeoutMilliseconds\": 2000,
 \"TotalTimeoutMilliseconds\": 2000
 }" \
 $FIX_CLI_PARAM \
 --invocation-type Event \
 /dev/null
done

Finally we want to run the experiment:

Using the returned id field you can check on the outcome of the experiment:

Findings and next steps
The learnings here should be the same as for the console section:

Carefully choose the resource to affect and how to select them. If we had originally chosen to terminate a

single instance (COUNT) rather than a fraction (PERCENT), we would have severely affected our service.

Spinning up instances takes time. To achieve resilience, ASGs should be set to have at least two instances

running at all times

Additionally, the benefit of using AWS CLI to create and run experiments, is to allow you to document and

automate the process for consistency. The best practice is to work with version controlled (e.g. in a Git

repository)scripts, as shown here, or CloudFormation templates, as shown in the next section. With that you can

setup peer review processes as well as the ability to run experiments continuously via a CI/CD pipeline.

From here you can explore how to set up experiments using AWS CloudFormation or move on exploring

more fault types to inject.

If you are running AWS CLI v2, you need to pass the parameter
--cli-binary-format raw-in-base64-out or you’ll get the error “Invalid base64” when sending the

payload.

 Warning

aws fis start-experiment --experiment-template-id $EXPERIMENT_TEMPLATE_ID --tags
Name=FisWorkshopTerminateAsg-1-CLI | jq '.experiment.id'

aws fis get-experiment --id YOUR_EXPERIMENT_ID_HERE

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm.html

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html

EXPERIMENT

(CLOUDFORMATION)
In this section we will cover how to define and update experiment templates using CloudFormation.

CFN template format
The AWS CloudFormation template uses the same format as the API but capitalizes the first letter of section

names. As such the AWS FIS experiment template from the previous section would become:

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

{
"Type" : "AWS::FIS::ExperimentTemplate",
"Properties" : {
 "Description": "Terminate 50% of instances based on Name Tag",
 "Tags": {
 "Name": "FisWorkshop-Exp1-CFN-v1.0.0"
 },
 "Actions": {
 "FisWorkshopTerminateAsg-1-CFN": {
 "ActionId": "aws:ec2:terminate-instances",
 "Description": "Terminate 50% of instances based on Name Tag",
 "Parameters": {},
 "Targets": {
 "Instances": "FisWorkshopAsg-50Percent"
 }
 },
 "Wait": {
 "ActionId": "aws:fis:wait",
 "Parameters": {
 "duration": "PT3M"

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-fis-experimenttemplate.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

We can wrap this into the Resources section of a CloudFormation template. Additionally CloudFormation

allows us to use pseudo parameters which we can use to automatically insert the account number into the role

definition using the AWS::AccountId and AWS::Region parameters in conjunction with the Fn::Sub

function. Thus, a simple CFN template would become:

 }
 }
 },
 "Targets": {
 "FisWorkshopAsg-50Percent": {
 "ResourceType": "aws:ec2:instance",
 "ResourceTags": {
 "Name": "FisStackAsg/ASG"
 },
 "SelectionMode": "PERCENT(50)"
 }
 },
 "StopConditions": [
 {
 "Source": "none"
 }
],
 "RoleArn": {
 "Fn::Sub": "arn:aws:iam::YOUR_ACCOUNT_ID:role/FisWorkshopServiceRole"
 }
}

{
 "Resources" : {
 "FisExperimentDemo" : {
 "Type" : "AWS::FIS::ExperimentTemplate",
 "Properties" : {
 "Description": "Terminate 50% of instances based on Name Tag",
 "Tags": {
 "Name": "FisWorkshop-Exp1-CFN-v1.0.0"
 },
 "Actions": {
 "FisWorkshopTerminateAsg-1-CFN": {
 "ActionId": "aws:ec2:terminate-instances",
 "Description": "Terminate 50% of instances based on Name
Tag",
 "Parameters": {},
 "Targets": {
 "Instances": "FisWorkshopAsg-50Percent"
 }
 },
 "Wait": {
 "ActionId": "aws:fis:wait",
 "Parameters": {
 "duration": "PT3M"

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html#gettingstarted.templatebasics.multiple
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html#cfn-pseudo-param-accountid
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-sub.html

Using the CFN template
A deep dive into AWS CloudFormation is beyond the scope of this workshop, so we will only cover how to

create and update stacks via the CLI.

Create a new template / experiment
To create a stack, and thus the contained FIS experiment template, copy the above JSON into a file named
cfn-fis-experiment.json then run this AWS CLI command:

 }
 }
 },
 "Targets": {
 "FisWorkshopAsg-50Percent": {
 "ResourceType": "aws:ec2:instance",
 "ResourceTags": {
 "Name": "FisStackAsg/ASG"
 },
 "SelectionMode": "PERCENT(50)"
 }
 },
 "StopConditions": [
 {
 "Source": "none"
 }
],
 "RoleArn": {
 "Fn::Sub":
"arn:aws:iam::${AWS::AccountId}:role/FisWorkshopServiceRole"
 },
 "LogConfiguration": {
 "CloudWatchLogsConfiguration": {
 "LogGroupArn": {
 "Fn::Sub":
"arn:aws:logs:${AWS::Region}:${AWS::AccountId}:log-group:/fis-workshop/fis-
logs:*"
 }
 },
 "LogSchemaVersion": 1
 }
 }
 }
 }
}

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

If you navigate to the CloudFormation console you should now see a new stack named
FisWorkshopExperimentTemplate and navigating to the FIS console should show an experiment named
FisWorkshop-Exp1-CFN-v1.0.0

Update template / experiment
To update the experiment template you will need to update the CFN template. Let’s change the Name tag from
FisWorkshop-Exp1-CFN-v1.0.0 to FisWorkshop-Exp1-CFN-v2.0.0 and save the file.

Then run the AWS CLI command:

This should update the name of your experiment template in the FIS console. Obviously this is most useful if

you make actual changes to the template itself too.

Validation and running FIS experiment
The steps so far created an experiment template to run an experiment and validate outcomes you can follow the

procedures outlined in the previous Experiment (Console) or Experiment (CLI) sections.

Findings and next steps
The learnings here should be the same as for the console section:

Carefully choose the resource to affect and how to select them. If we had originally chosen to terminate a

single instance (COUNT) rather than a fraction (PERCENT), we would have severely affected our service.

Spinning up instances takes time. To achieve resilience, ASGs should be set to have at least two instances

running at all times

aws cloudformation create-stack --stack-name FisWorkshopExperimentTemplate --
template-body file://cfn-fis-experiment.json

aws cloudformation update-stack --stack-name FisWorkshopExperimentTemplate --
template-body file://cfn-fis-experiment.json

https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=FisWorkshopExperiment&viewNested=true&hideStacks=false
https://console.aws.amazon.com/fis/home?#ExperimentTemplates
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/30-experiment-cli.html

As mentioned in the previous section, it is valuable to version control the contents of experiment templates for

consistency and automation by using AWS CLI scripting. Using CloudFormation goes one step further and

allows you to version control the creation of experiment templates in addition to the template content.

In the next section we will explore more fault injection options.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/30-experiment-cli.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm.html

AWS SYSTEMS MANAGER

INTEGRATION
In this section, we will demonstrate how you can use AWS Systems Manager (SSM) along with AWS Fault

Injection Simulator (FIS) to emulate faults within an EC2 Instance.

AWS FIS does not need an agent for actions affecting the AWS control plane like the ones we have worked with

thus far, such as stopping instances or failing over Amazon Relational Database Service (RDS) Databases.

However, there are actions that require us to initiate commands within the operating system of the EC2

Instance, such as affecting CPU or Memory consumption, or terminating processes. For these types of actions

AWS FIS can use AWS Systems Manager (SSM) and the SSM Agent. This approach provides you with the access

controls to grant FIS limited access to your instances under the shared responsibility model.

In the following sections we will show you how to use the built-in SSM actions and how to build your own SSM

documents to create custom actions.

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ssm-agent.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/010_setup.html

FIS SSM SEND COMMAND SETUP
For this section we will use Linux and Windows instances created specifically for the purpose of enabling FIS

SSM commands. As shown in the diagram below, SSM access to the instance requires an instance role with the
AmazonSSMManagedInstanceCore policy attached. Additionally FIS access to SSM is controlled via the

execution policy as shown in the First Experiment section.

https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-instance-profile.html#instance-profile-policies-overview
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/010_setup/StressTest-with-user.en.png?classes=shadow&width=60pc

The resources above have been created as part of the account setup or in the Start the workshop section.

If you would like to examine how these resources were defined you can examine the

AWS Cloud Formation template.

 Info

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/cpu-stress/CPUStressInstances.yaml

LINUX CPU STRESS EXPERIMENT

Experiment idea
In this section we are exploring tooling so we will start without a hypothesis. However, we will provide some

learnings and next steps at the end.

Specifically, in this section we will run a CPU Stress test using AWS Fault Injection Simulator against an Amazon

Linux EC2 Instance. The Linux CPU stress test is an out of the box FIS action. We will do the following:

1. Create experiment template to stress CPU.

2. Connect to a Linux EC2 Instance and run the top command.

3. Start experiment and observe results.

Experiment setup

General template setup
Create a new experiment template

Add a name for the template using a Tag with key as Name and value as LinuxBurnCPUviaSSM

(located at bottom of page)

Add Description of Inject CPU stress on Linux

Select FisCpuStress-FISRole as execution role

Action definition
In the “Actions” section select the “Add Action” button.

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://docs.aws.amazon.com/fis/latest/userguide/actions-ssm-agent.html#fis-ssm-docs
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

Name the Action as StressCPUViaSSM , and under “Action Type” select
aws:ssm:send-command/AWSFIS-Run-Cpu-Stress . This is an out of the box action to run stress test on

Linux Instances using the stress-ng tool. Set the “documentParameters” field to {"DurationSeconds":120}

which is passed to the script and the “duration” field to 2 minutes which tells FIS how long to wait for a result.

Leave the default “Target” Instances-Target-1 and select “Save”.

This action will use AWS Systems Manager Run Command to run the AWSFIS-Run-Cpu-Stress command

document against our targets for two minutes.

Target selection
For this action we need to designate EC2 instance targets on which to run the commands. Go to the “Targets”

section, select the Instances-Target-1 section, and select “Edit”.

https://kernel.ubuntu.com/git/cking/stress-ng.git/
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/StressActionSettings.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html

You may leave the default name Instances-Target-1 but for maintainability we rcommend using descriptive

target names. Change the name to FisWorkshop-StressLinux (this will automatically update the name in the

action as well) and make sure “Resource type” is set to aws:ec2:instances . To select our target instances by

tag select “Resource tags and filters” and keep selection mode ALL . Select “Add new tag” and enter a “Key” of
Name and a “Value” of FisLinuxCPUStress . Finally select “Save”.

Creating template without stop conditions
Select “Create experiment template” and confirm that you wish to create a template without stop conditions.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/EditTarget-rev1.en.png?classes=shadow&width=60pc

Validation procedure
We will use the linux top system command to observe the increased CPU load. To do this we now need to

connect to our EC2 Instance so we can observe the CPU being stressed. Head over to the EC2 Console.

1. Once at the EC2 Console lets select our instance named FisLinuxCpuStress and click on the “Connect”

button.

2. Select “Session Manager” and select “Connect”.

https://console.aws.amazon.com/ec2/v2/home?#Instances:instanceState=running
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/SelectConnect-rev1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/SessionManagerConnect.en.png?classes=shadow&width=60pc

This will open a session to the EC2 instance in another tab. In the new tab enter:

You should now see a continuously updating display similar to the next screenshot. Initially the CPU percentage

should be at or close to zero as this instance is not doing anything. Keep this tab open, we will come back once

we have started our experiment.

Run CPU Stress Experiment

Keep the EC2 instance session with top running. In a new browser window navigate to the

AWS Fault Injection Simulator Console and start the experiment:

use the LinuxBurnCPUviaSSM

add a Name tag of FisWorkshopLinuxStress1

confirm that you want to start the experiment

ensure that the “State” is Running

htop

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/LinuxNoStress.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/RunningState.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

In the EC2 terminal window watch the CPU percentage displayed by top : it should hit 100% for a few minutes

and then return back to 0%. Once we have observed the action we can click the Terminate button to

terminate our Session Manager session.

Congratulations for completing this lab! In this lab you walked through running an experiment that took action

within a Linux EC2 Instance using AWS Systems Manager. Using the integration between Fault Injection

Simulator and AWS Systems Manager you can run scripted actions within an EC2 Instance. Through this

integration you can script events against your applications or run other chaos engineering tools and

frameworks.

Learning and improving
Since this instance wasn’t doing anything, there aren’t any actions. To think about how to use this to test a

hypothesis and make an improvement, consider running the same experiment against the ASG instances from

the First Experiment section. Maybe you could use this to tune the optimal CPU levels for scaling up or down?

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress/linuxStressed.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/010_setup.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs.html

WORKING WITH SSM

DOCUMENTS

Pre-configured SSM documents
The linux CPU stress experiment we saw in the previous section used one of the

pre-con�gured SSM documents to run a script on our Linux instance.

To find the script, navigate to the AWS Systems Manager console, scroll down in the left-hand menu all the

way to the bottom to “Documents”, select “Owned by Amazon”, and search for AWSFIS . Note that this

search may take a few seconds to display results.

To inspect the script, click on the script name, i.e. AWSFIS-Run-CPU-Stress , then select the “Content” tab.

https://docs.aws.amazon.com/fis/latest/userguide/actions-ssm-agent.html#fis-ssm-docs
https://console.aws.amazon.com/systems-manager/documents?
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs/find-ssm.en.png?classes=shadow&width=60pc

The document is a YAML file defining two aws:runShellScript actions: InstallDependencies to install the
stress-ng package, and ExecuteStressNg to inject CPU stress.

Custom SSM documents
Currently AWS does not provide a CPU stress document for Windows, but we can create our own as shown in

the next section. For more information on writing SSM documents please see these resources:

AWS Systems Manager documentation
Writing your own SSM documents blog
AWS SSM workshop

If you want to see an example how one might inject stress, you can have a look at the WinStressDocument

resource in the CloudFormation template. Alternatively you can follow the same search procedure as for the

AWS owned documents but search the “Owned by me” or “Shared by me” tabs instead of “Owned by
AWS”.

For additional SSM sample documents relating to FIS see these resources

https://github.com/adhorn/chaos-ssm-documents

Working with custom SSM documents in FIS

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs/look-at-ssm.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html
https://aws.amazon.com/blogs/mt/writing-your-own-aws-systems-manager-documents/
https://workshop.aws-management.tools/ssm/capability_hands-on_labs/documents/
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/cpu-stress/CPUStressInstances.yaml
https://github.com/adhorn/chaos-ssm-documents

While writing custom SSM documents is outside the scope of this workshop, there are a few aspects of SSM

documents you should be aware of:

Document ARN - FIS requires the full SSM document ARN. The ARN can easily be constructed from the

document name (and the owner account ID if the template is shared with you) using this format string:
arn:${AWS::Partition}:ssm:${AWS::Region}:${AWS::AccountId}:document/${WinStressDocumen

Exit status - Shell script convention is to signal success with a return/exit value of 0 and a failure with

any non-zero numeric value. If FIS detects a non-zero exit status on an SSM script it will mark the action as

“Failed”, terminate all running actions, cancel queued actions, invoke any outstanding roll-back actions,

cancel experiment execution, and mark the overall experiment as “Failed”.

Duration - FIS actions have a “Duration” setting and will stop action execution if the action has not

finished within this time period. For SSM actions this will "cancel" the command. If the command has a

sequence of steps, this will result in only some of the steps being executed.

onCancel / onFailure - SSM provides you with a means to ensure that automation can fail / clean-up

safely by providing onCancel and onFailure properties on each step. These properties allow

designating clean-up steps to perform.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/rc-cancel.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-actions.html

WINDOWS CPU STRESS

EXPERIMENT

Experiment idea
In this section we are exploring tooling so we will start without a hypothesis. However, we will provide some

learnings and next steps at the end.

Specifically, in this section we will run a CPU Stress test using AWS Fault Injection Simulator against an Amazon

Windows EC2 Instance. The Windows CPU stress test will use a custom SSM command document. We will do

the following:

1. Create experiment template to stress CPU.

2. Reset password on Windows Instance.

3. Connect to Windows EC2 Instance and run task manager.

4. Start experiment and observe results.

Experiment Setup

This section requires that you have a Remote Desktop Protocol (RDP) client on your local machine. This

section cannot be performed from a Cloud9 instance.

 Warning

The shell syntax in this section is written for bash. If you are on a Mac with zsh as default shell please switch

to bash to execute the commands in this section.

 Warning

General template setup
Create a new experiment template

Add a name for the template using a Tag with key as Name and value as WindowsBurnCPUviaSSM

(located at bottom of page)

Add Description of Inject CPU stress on Windows

Select FisCpuStress-FISRole as execution role

Action definition
In the “Actions” section select the “Add Action” button.

“Name” the action as StressCPUViaSSM , and under “Action Type” select the aws:ssm:send-command action.

Currently there is no out of box Action for Windows CPU Stress Testing, so we are using the send-command

action along with a command document that was deployed by our CloudFormation template. To view this

document please reference the WinStressDocument resource in the CloudFormation template.

To find the ARN of the document that was created by the template, open a new tab and browse to the

CloudFormation console, select “Stacks”, select the stack named “FisCpuStress”, then select “Outputs”.

Copy the value of the WinStressDocumentArn entry as you will need it in the next step.

Return to the FIS console and enter the ARN you copied into the “documentArn” field. Then set the

“documentParameters” field to {"durationSeconds":120} which is passed to the script and the “duration”

field to 2 minutes which tells FIS how long to wait for a result. Leave the default “Target”
Instances-Target-1 and select “Save”.

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/cpu-stress/CPUStressInstances.yaml
https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=FisCpuStress&viewNested=true&hideStacks=false
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

This action will use AWS Systems Manager Run Command to run the FisCpuStress-WinStressDocument

document against our targets for two minutes.

Target selection
For this action we need to designate EC2 instance targets on which to run the commands. Go to the “Targets”

section, select the Instances-Target-1 section, and select “Edit”.

You may leave the default name Instances-Target-1 but for maintainability we rcommend using descriptive

target names. Change the name to FisWorkshop-StressWindows (this will automatically update the name in

the action as well) and make sure “Resource type” is set to aws:ec2:instances . To select our target instances

by tag select “Resource tags and filters” and keep selection mode ALL . Select “Add new tag” and enter a “Key”

of Name and a “Value” of FisWindowsCPUStress . Finally select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress/WinStressActionSettings.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html

Creating template without stop conditions
Select “Create experiment template” and confirm that you wish to create a template without stop conditions.

Validation procedure
We will use the Windows task manager to observe increased CPU load. To do this we now need to connect to

our EC2 Instance so we can observe the CPU being stressed.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress/WinEditTarget-rev1.en.png?classes=shadow&width=60pc

Use AWS Systems Manager Run Command to reset
Password
When we deployed the instance we didn’t use SSH Keys, and we don’t know the password. However, with the

SSM Agent along with the right IAM privileges we have a break glass scenario where we can reset the password.

Please adjust the value of TMP_PASSWORD and use the commands below to find the InstanceId of the
FisWindowsCPUStress instance and help you reset the admin password to the password of choice.

Use AWS Systems Manager Session Manager to connect
to Target Instance

The password reset command will report “success” even if a trivial password is picked but will not reset the

password in that case. Please pick a password with sufficient complexity (uppercase, lowercase, numbers,

symbols) to ensure successfull password reset.

 Warning

For readability - passing passwords this way is not secure
Pick complex password
TMP_PASSWORD=ENTER_NEW_PASSWORD_HERE

For readability and convenience
TMP_INSTANCE=$(aws ec2 describe-instances --filter
Name=tag:Name,Values=FisWindowsCPUStress --query
'Reservations[*].Instances[0].InstanceId' --output text)

Reset password on instance - this is NOT a secure method,
in real life use AWS-PasswordReset document
aws ssm send-command \
 --document-name "AWS-RunPowerShellScript" \
 --document-version "1" \
 --targets '[{"Key":"InstanceIds","Values":["'${TMP_INSTANCE}'"]}]' \
 --parameters '{"workingDirectory":[""],"executionTimeout":["3600"],"commands":
["net user administrator '${TMP_PASSWORD}'"]}' \
 --timeout-seconds 600 \
 --max-concurrency "50" \
 --max-errors "0" \
 --cloud-watch-output-config '{"CloudWatchOutputEnabled":false}'

We now need to connect to our EC2 Instance so we can observe the CPU being stressed. We are going to do this

by using the port forwarding capability of AWS Systems Manager Session Manager and using RDP.

1. First make sure that the Session Manager plugin for the AWS CLI is installed on your local machine.

2. Run the following command first, this will securely forward local port 56788 to port 3389 on the Windows

EC2 Instance. Note that we are targeting a specific instance by passing the TMP_INSTANCE variable from

above.

3. Once the command says waiting for connections you can launch the RDP client and enter
localhost:56788 for the server name and login as administrator with the password you set in the

previous section.

 Troubleshooting connectivity

4. Once you have RDP’ed into the Windows Instance, launch task manager by right clicking on the menu bar

and selecting “Task Manager” (or by using the SHIFT-CTRL-ESC keyboard sortcut). Click on “More details”
button and then on the “Performance” tab so you can see the CPU graph as shown below.

This presumes you set TMP_INSTANCE (see above)
aws ssm start-session \
 --target ${TMP_INSTANCE} \
 --document-name AWS-StartPortForwardingSession \
 --parameters portNumber=3389,localPortNumber=56788

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html

Run CPU Stress Experiment

Keep the RDP session with “Task Manager” running. In a new browser window navigate to the

AWS Fault Injection Simulator Console and start the experiment:

use the WindowsBurnCPUviaSSM

add a Name tag of FisWorkshopWindowsStress1

confirm that you want to start the experiment

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress/WinNoStress.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

ensure that the “State” is Running

Once the experiment is running, lets go back to the RDP session and observe the task manager graph.

Watch the CPU percentage, it should hit 100% for a few minutes and then return back to 0%. Once we have

observed the action we can logout of the Windows Instance and hit CTRL + C on the window you ran the port

forwarding command to close the session.

Congratulations for completing this lab! In this lab you walked through running an experiment that took action

within a Windows EC2 Instance using AWS Systems Manager and a custom run command. Using the integration

between Fault Injection Simulator and AWS Systems Manager you can run scripted actions within an EC2

Instance. Through this integration you can script events against your applications or run other chaos

engineering tools and frameworks.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress/WindowsStressed.en.png?classes=shadow&width=60pc

Learning and improving
Since this instance wasn’t doing anything there aren’t any actions. To think about how to use this to test a

hypothesis and make an improvement consider building custom SSM scripts to run custom scenarios. We will

cover some of these in the Common Scenarios section.

Cleanup
If you created an additional CpuStress CloudFormation stack in the FIS SSM Setup section, make sure to

delete that stack to avoid incurring additional costs.

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/010_setup.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html

FIS SSM START AUTOMATION

SETUP

In the previous sections we used AWS FIS actions to directly interact with AWS APIs to terminate EC2 instances,

and the SSM SendCommand option to execute code directly on our virtual machines.

In this section we will cover how to execute additional actions against AWS APIs that are not yet supported by

FIS by using SSM Runbooks.

The automation in this section creates and modifies IAM roles. With the current workshop description this

will not work in Cloud9. Please either perform the role creation on the console or follow the instructions in

Con�gure AWS CloudShell to use AWS CloudShell. If you use CloudShell, you will need to check out the

GitHub repository in CloudShell as described in Provision AWS resources.

 Warning

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_SendCommand.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-documents.html
https://chaos-engineering.workshop.aws/en/020_starting_workshop/020_aws_event/cloudshell.html
https://console.aws.amazon.com/cloudshell/home
https://chaos-engineering.workshop.aws/en/020_starting_workshop/010_self_paced/050_create_stack.html

Configure permissions
In the Con�guring Permissions section we defined a service role FisWorkshopServiceRole that granted us

access to running the FIS aws:ssm:send-command on our instances. To use the
aws:ssm:start-automation-execution action we will need to update our permissions

Create SSM role

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation/StressTest-with-runbook.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

As shown in the image above, SSM Runbooks require us to define and pass a separate role. Let’s say we want to

create an SSM document that can terminate instances in an autoscaling group. A policy for that might need the

following permissions (see EC2 Actions and Autoscaling Actions):

Since SSM needs to be able to assume this role for running an SSM document we also need to define a trust

policy:

To create a role, save the two JSON blocks above into files named iam-ec2-demo-policy.json and
iam-ec2-demo-trust.json and run the following CLI commands to create a role named
FisWorkshopSsmEc2DemoRole

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAsgDocument",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:SuspendProcesses",
 "autoscaling:ResumeProcesses",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:TerminateInstances"
],
 "Resource": "*"
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "ssm.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
}

cd ~/environment/aws-fault-injection-simulator-workshop
cd workshop/content/030_basic_content/040_ssm/050_direct_automation

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html#amazonec2-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2autoscaling.html#amazonec2autoscaling-actions-as-permissions

Note the ARN of the created role as we will need it below.

 Troubleshooting Security Token Invalid when Creating IAM Role

Update FIS service role
The FisWorkshopServiceRole we defined in the Con�guring Permissions only grants limited access to SSM

so we need to add the following two policy statements.

The first statement allows FIS to use SSM actions. The second statement defines the role that SSM will use.

Make sure to insert the ARN of the FisWorkshopSsmEc2DemoRole role you created above.

To update the FisWorkshopServiceRole , navigate to the IAM console, select “Roles” on the left, and search

for FisWorkshopServiceRole .

ROLE_NAME=FisWorkshopSsmEc2DemoRole

aws iam create-role \
 --role-name ${ROLE_NAME} \
 --assume-role-policy-document file://iam-ec2-demo-trust.json

aws iam put-role-policy \
 --role-name ${ROLE_NAME} \
 --policy-name ${ROLE_NAME} \
 --policy-document file://iam-ec2-demo-policy.json

 {
 "Sid": "EnableSSMAutomationExecution",
 "Effect": "Allow",
 "Action": [
 "ssm:GetAutomationExecution",
 "ssm:StartAutomationExecution",
 "ssm:StopAutomationExecution"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowFisToPassListedRolesToSsm",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "PLACE_ROLE_ARN_HERE"
 },

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html
https://console.aws.amazon.com/iam/home#/roles/FisWorkshopServiceRole?section=permissions

Expand the FisWorkshopServicePolicy and select “Edit Policy”. Then select the “JSON” tab and copy the

above JSON block just above the first statement AllowFISExperimentRoleReadOnly :

Then select “Review policy” and “Save Changes”.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation/locate-role-policy.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation/edit-role-policy.en.png?classes=shadow&width=60pc

Create SSM document
For this section we will replicate the FIS terminate instance action using SSM. This has no real value in and of

itself but is a starting point for the advanced SSM documents in the Common Scenarios section. Copy the

YAML below into a file named ssm-terminate-instances-asg-az.yaml

If the policy editor shows errors, check that you have separated blocks with commas, and that you have

updated the Role ARN to a valid value.

 Tip

description: Terminate all instances of ASG in a particular AZ
schemaVersion: '0.3'
assumeRole: "{{ AutomationAssumeRole }}"
parameters:
 AvailabilityZone:
 type: String
 description: "(Required) The Availability Zone to impact"
 AutoscalingGroupName:
 type: String
 description: "(Required) The names of the autoscaling group"
 AutomationAssumeRole:
 type: String
 description: "The ARN of the role that allows Automation to perform
 the actions on your behalf."
mainSteps:
Find all instances in ASG
- name: DescribeAutoscaling
 action: aws:executeAwsApi
 onFailure: 'step:ExitReview'
 onCancel: 'step:ExitReview'
 timeoutSeconds: 60
 inputs:
 Service: autoscaling
 Api: DescribeAutoScalingGroups
 AutoScalingGroupNames:
 - "{{ AutoscalingGroupName }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
Find all ASG instances in AZ
- name: DescribeInstances
 action: aws:executeAwsApi
 onFailure: 'step:ExitReview'
 onCancel: 'step:ExitReview'
 timeoutSeconds: 60

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios.html

 inputs:
 Service: ec2
 Api: DescribeInstances
 Filters:
 - Name: "availability-zone"
 Values:
 - "{{ AvailabilityZone }}"
 - Name: "instance-id"
 Values: "{{ DescribeAutoscaling.InstanceIds }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
Terminate 100% of selected instances
- name: TerminateEc2Instances
 action: aws:changeInstanceState
 onFailure: 'step:ExitReview'
 onCancel: 'step:ExitReview'
 inputs:
 InstanceIds: "{{ DescribeInstances.InstanceIds }}"
 DesiredState: terminated
 Force: true
Wait for up to 90s to make sure instances have been terminated
- name: VerifyInstanceStateTerminated
 action: aws:waitForAwsResourceProperty
 onFailure: 'step:ExitReview'
 onCancel: 'step:ExitReview'
 timeoutSeconds: 90
 inputs:
 Service: ec2
 Api: DescribeInstanceStatus
 IncludeAllInstances: true
 InstanceIds: "{{ DescribeInstances.InstanceIds }}"
 PropertySelector: "$..InstanceState.Name"
 DesiredValues:
 - terminated
On normal exit or failure list instances in ASG/AZ
- name: ExitReview
 action: aws:executeAwsApi
 timeoutSeconds: 60
 inputs:
 Service: ec2
 Api: DescribeInstances
 Filters:
 - Name: "availability-zone"
 Values:
 - "{{ AvailabilityZone }}"
 - Name: "instance-id"
 Values: "{{ DescribeAutoscaling.InstanceIds }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
outputs:

Use the following CLI command to create the SSM document and export the document ARN:

Create FIS Experiment Template
Finally we have to create the FIS experiment template to call the SSM document. Copy the following JSON into a

file called fis-terminate-instances-asg-az.json . You will need to replace the following:

DOCUMENT_ARN - use the ARN from constructed in the previous step. See explanation at the end of the

Working with SSM documents section.

AZ_NAME - use the name of your target AZ, e.g. us-east-1a if you are working in us-east-1

ASG_NAME - navigate to the EC2 console, select the Auto Scaling group (ASG) starting with
FisStackAsg , then copy the full name of the ASG, e.g. FisStackAsg-ASG46ED3070-1RAQ30VBKLWE1

SSM_ROLE_ARN - use the role ARN of the FisWorkshopSsmEc2DemoRole created in the first step of this

section. You can also find this by navigating to the IAM console, searching for
FisWorkshopSsmEc2DemoRole , clicking on the role and copying the “Role ARN”

FIS_WORKSHOP_ROLE_ARN - use the role ARN of the FisWorkshopServiceRole that you updated in the

second step of this section. You can also find this by navigating to the IAM console, searching for

- DescribeInstances.InstanceIds
- ExitReview.InstanceIds

cd ~/environment/aws-fault-injection-simulator-workshop
cd workshop/content/030_basic_content/040_ssm/050_direct_automation

SSM_DOCUMENT_NAME=TerminateAsgInstancesWithSsm

Create SSM document
aws ssm create-document \
 --name ${SSM_DOCUMENT_NAME} \
 --document-format YAML \
 --document-type Automation \
 --content file://ssm-terminate-instances-asg-az.yaml

Construct ARN
REGION=$(aws ec2 describe-availability-zones --output text --query
'AvailabilityZones[0].[RegionName]')
ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')
DOCUMENT_ARN=arn:aws:ssm:${REGION}:${ACCOUNT_ID}:document/${SSM_DOCUMENT_NAME}
echo $DOCUMENT_ARN

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs.html
https://console.aws.amazon.com/ec2autoscaling/home?#/details
https://console.aws.amazon.com/iamv2/home#/roles
https://console.aws.amazon.com/iamv2/home#/roles

FisWorkshopServiceRole , clicking on the role and copying the “Role ARN”

Once this is done, create the experiment template with this AWS CLI command:

Note the experiment template ID as we will use this to start the experiment next.

Run FIS experiment using SSM automation
Using the experiment template ID from the previous step, run the following AWS CLI command to start the

experiment:

{
 "description": "Terminate All ASG Instances in AZ",
 "stopConditions": [
 {
 "source": "none"
 }
],
 "targets": {
 },
 "actions": {
 "terminateInstances": {
 "actionId": "aws:ssm:start-automation-execution",
 "description": "Terminate Instances in AZ",
 "parameters": {
 "documentArn": "DOCUMENT_ARN",
 "documentParameters": "{\"AvailabilityZone\": \"AZ_NAME\",
\"AutoscalingGroupName\": \"ASG_NAME\", \"AutomationAssumeRole\":
\"SSM_ROLE_ARN\"}",
 "maxDuration": "PT3M"
 },
 "targets": {
 }
 }
 },
 "roleArn": "FIS_WORKSHOP_ROLE_ARN"
}

aws fis create-experiment-template \
 --cli-input-json file://fis-terminate-instances-asg-az.json

Let’s get back to EC2 console and check what’s happening to our EC2 instances in the AZ we selected. If the

experiment runs successfully, all of our instances in that particular AZ will be terminated, and spin back up after

some time.

Troubleshooting
If you run into issues with your FIS experiment failing check the following:

Experiment fails with “Unable to start SSM automation, not authorized to perform required action” - you

probably didn’t update your FIS role to enable SSM AutomationExecution and allow PassRole. You can

search the “Event history” in the CloudTrail console for “Event name” StartAutomationExecution .

Note that events can take up to 15min to appear in CloudTrail.

Experiment fails with “Unable to start SSM automation. A required parameter for the document is missing,

or an undefined parameter was provided.” - make sure that you properly replaced all the document

parameters. You can check this by editing the experiment template. This can also be caused by a role

misconfiguration that prevents SSM from assuming the execution role. You can search the “Event
history” in the CloudTrail console for “Event name” StartAutomationExecution . Note that events

can take up to 15min to appear in CloudTrail.

Experiment fails with “Automation execution completed with status: Failed.” - this can be caused by

insufficient privileges on the role passed to SSM for execution. This can also happen if there are no

instances found in the selected AZ. You can examine the history and output of SSM automation runs by

navigating to the AWS Systems Manager console and selecting “Automation” in the burger menu on

the left. Then click on the automation run associated with your failed experiment and examine the output

of the individual steps for more detail.

TEMPLATE_ID=[PASTE_ID_HERE]
aws fis start-experiment \
 --tags Name=DemoSsmAutomationDocument \
 --experiment-template-id ${TEMPLATE_ID}

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation/experiment-az-down.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudtrail/home?#/events?EventName=StartAutomationExecution
https://console.aws.amazon.com/cloudtrail/home?#/events?EventName=StartAutomationExecution
https://console.aws.amazon.com/systems-manager/automation/executions

Experiment succeeds but SSM automation status shows “Cancelled” steps. This can happen if you set the

“Duration” in the FIS action to be shorter than the time it takes for the SSM document to finish. In this

situation FIS will call the onCancel action on the SSM document (see the end of the

Working with SSM documents section). Edit the FIS template and ensure that you allow enough time in

FIS for the SSM document to finish.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/040_windows_stress.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/060_ssm_resources.html

SSM ADDITIONAL RESOURCES
For additional AWS Systems Manager (SSM) automation resources see:

SSM Workshop
SSM Chaos Documents
SSM Documents AWS documentation
SSM working with inputs and outputs

https://workshop.aws-management.tools/ssm/
https://github.com/adhorn/chaos-ssm-documents
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-aws-apis-calling.html#automation-aws-apis-calling-input-output
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases.html

DATABASES
In this section we will cover working with databases. For this setup we are adding Amazon Relational Database

Service (RDS) MySQL and Amazon Aurora (Aurora) for MySQL to our test architecture:

Both RDS MySQL and Aurora for MySQL provide MySQL databases but they are different products. RDS MySQL

is a managed service based on stock MySQL while Aurora is a custom built MySQL and PostgreSQL-compatible

relational database with better performance and reliability.

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/ASG-RDS-with-user.en.png?classes=shadow&width=60pc

Since these are different products they have slightly different failover patterns. They also use slightly different

naming conventions:

For RDS MySQL your dashboard will show “Instances” which may have “Replicas” attached for failover.

For Aurora MySQL your dashboard will show “Clusters” with “Writers” and “Readers”.

For this workshop we are using a similar configuration that replicates data across two Availability Zones (AZs)

for resilience.

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/060_ssm_resources.html
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot.html

RDS DB INSTANCE REBOOT

Experiment idea
In the previous section we ensured that we have a resilient front end of servers in an Auto Scaling group.

Typically these servers would depend on a resilient database configuration. Let’s validate this:

Given: we have a managed database with a replica and automatic failover enabled

Hypothesis: failure of a single database instance / replica may slow down a few requests but will not

adversely affect our application

Experiment setup

General template setup
Create a new experiment template

Add Name tag of FisWorkshopRds1

Add Description of RebootRDSInstance

Select FisWorkshopServiceRole as execution role

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Action definition
In the “Actions” section select the “Add Action” button.

For “Name” enter RDSInstanceReboot and you can skip the Description. For “Action type” select
aws:rds:reboot-db-instances .

For this experiment we are using a Multi-AZ database and we want to force a failover to the standby instance to

minimize outage time. To do this, set the forceFailover parameter to true .

Leave the default “Target” DBInstances-Target-1 and select “Save”.

This action will reboot the main database instance and, due to the “forceFailover” setting, promote the previous

replica and update the information associated with the connection string (see below).

Target selection
For this action we need to select our RDS MySQL “Instance”. For this we will need to know the instance resource

ID. To find this ID open a new browser window and navigate to the RDS console). Note the “DB identifier” for

the target DB instance, the one with “Engine” type “MySQL Community”.

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/create-template-2-actions-2.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/rds/home?#databases:

Return to the FIS experiment setup, scroll to the “Targets” section, select DBInstances-Target-1 and select

“Edit”.

You may leave the default name Instances-Target-1 but for maintainability we rcommend using descriptive

target names. Change “Name” to FisWorkshopRDSDB for name (this will automatically update the name in the

action as well) and make sure “Resource type” is set to aws:rds:db .

For “Target method” we will select resources based on the ID. Select the “Resource IDs” checkbox. Under

“Resource IDs” pick the target DB instance matching the “DB Identifier” you noted above, then select All from

“Selection mode”. Select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/rds-check-resource-id.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/create-template-2-targets-2-rev1.en.png?classes=shadow&width=60pc

Creating template without stop conditions
Select “Create experiment template” and confirm that you wish to create a template without stop conditions.

Validation procedure
Before running the experiment we should consider how we will define success. How will we know that our

failover was in fact non-impacting. For this workshop we have installed a python script that will read and write

data to the database, conceptually like this but with some added safeguards (see full code in GitHub):

We would expect that this would keep writing output while the DB is available, stop while it’s failing over and

restart when the DB has successfully failed over.

Additionally, because the DB connection does a DNS lookup, our script will also print the IP address of the

database it’s currently connected to. A healthy output should look like this:

Starting the validation procedure

import mysql.connector
mydb = mysql.connector.connect(...)
cursor = mydb.cursor()
while True:
 cursor.execute("insert into test (value) values (%d)" %
int(32768*random.random()))
 cursor.execute("select * from test order by id desc limit 10")
 for line in cursor:
 cursor.append("%-30s" % str(line))

AURORA RDS
10.0.89.224 10.0.95.247
(7711, 2282) (5419, 15189)
(7710, 5964) (5418, 15841)
(7709, 10634) (5417, 8071)
(7708, 4834) (5416, 21948)
(7707, 20291) (5415, 27256)
(7706, 9343) (5414, 8187)
(7705, 5496) (5413, 9359)
(7704, 30985) (5412, 6058)
(7703, 21808) (5411, 26174)
(7702, 20243) (5410, 21155)

https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/asg-cdk/assets/test_mysql_connector_curses.py

Connect to one of the EC2 instances in your auto scaling group. In a new browser window - we need to be able

to see this side-by-side with the FIS experiment later - navigate to your EC2 console and search for instances

named FisStackAsg/ASG . Select one of the instances and select the “Connect” button:

On the next page select “Session Manager” and “Connect”:

This will open a linux terminal session. In this session sudo to assume the ec2-user identity:

If this is the first time you are doing this run the create_db.py script (review code in GitHub) to ensure we

can connect to the DB and we have created the required tables:

sudo su - ec2-user

https://console.aws.amazon.com/ec2/v2/home?#Instances:instanceState=running;search=FisStackAsg/ASG
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/instance-connect-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/instance-connect-2.en.png?classes=shadow&width=60pc
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/asg-cdk/assets/create_db.py

If all went well you should see output similar to this:

Now start the test script and leave it running:

Run FIS experiment

Record current RDS state
Navigate to the RDS console, select “Databases” on the left menu, and select the “MySQL Community”

instance. Note that the current instance state is “Available”:

./create_db.py

AURORA RDS
10.0.89.224 10.0.95.247
done

./test_mysql_connector_curses.py

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://console.aws.amazon.com/rds/home?#databases:
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/rds-state-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

Start the experiment
Select the FisWorkshopRds1 experiment template you created above

Select start experiment

Add a Name tag of FisWorkshopMysql1Run1

Confirm that you want to start an experiment

Watch the output of your test script

Check the state of your database in the RDS console

Review results
If all went “well” the status of the database in the RDS console should have changed from “Available” to

“Rebooting”

and back to “Available”.

However, even though your database failed over successfully, your script should have locked up during the

failover - no more updates to your data and it didn’t recover even after the DB successfully failed over.

https://console.aws.amazon.com/rds/home?#databases:
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/review-1-rds-2.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot/review-1-rds-1.en.png?classes=shadow&width=60pc

Great! Discoveries like this are exactly why we are using Fault Injection Simulator!

Learning and Improving
What happened is that our script used a common MySQL database connector library that does not have a
read_timeout setting. The database successfully failed over but the INSERT or SELECT statement that was

in flight during the failover never timed out and locked our code into waiting forever.

Fortunately there is another common library that has very similar configuration and does implement
read_timeout . For your convenience we have provided an updated script (review code in GitHub). CTRL-C out

of the hung script and repeat the experiment but this time running

This time you should see almost no interruption in your code’s ability to interact with the database.

To end the session, hit CTRL+C to stop the script, and click “Terminate” button.

./test_pymysql_curses.py

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases.html
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover.html
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/asg-cdk/assets/test_pymysql_curses.py

AURORA CLUSTER FAILOVER

Experiment idea
In the previous section we ensured that we have a resilient front end of servers in an Auto Scaling group.

Typically these servers would depend on a resilient database configuration. Let’s validate this:

Given: we have a managed database with a replica and automatic failover enabled

Hypothesis: failure of a single database instance / replica may slow down a few requests but will not

adversely affect our application

Experiment setup

General template setup
Create a new experiment template

Add Name tag of FisWorkshopAurora1

Add Description of FailoverAuroraCluster

Select FisWorkshopServiceRole as execution role

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Action definition
In the “Actions” section select the “Add Action” button.

For “Name” enter FisWorkshopFailoverAuroraCluster and add a “Description” like
Failover Aurora Cluster . For “Action type” select aws:rds:failover-db-cluster .

Leave the default “Target” Clusters-Target-1 and select “Save”.

Target selection
For this action we need to select our Amazon Aurora “Cluster”. For this we will need to know the instance

resource ID. To find this ID open a new browser window and navigate to the RDS console). Note the “DB

identifier” for the target cluster, the one with “Engine” type “Aurora MySQL” and “Role” “Regional Cluster”.

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/create-template-2-actions-2-rev1.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/rds/home?#databases:

Return to the FIS experiment setup, scroll to the “Targets” section, select Clusters-Target-1 and select

“Edit”.

You may leave the default name Clusters-Target-1 but for maintainability we rcommend using descriptive

target names. Change “Name” to FisWorkshopAuroraCluster for name (this will automatically update the

name in the action as well) and make sure “Resource type” is set to aws:rds:cluster .

For “Target method” we will select resources based on the ID. Select the “Resource IDs” checkbox. Under

“Resource IDs” pick the target DB instance matching the “DB Identifier” you noted above, then select All from

“Selection mode”. Select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/rds-check-resource-id.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/create-template-2-targets-2-rev1.en.png?classes=shadow&width=60pc

Creating template without stop conditions
Select “Create experiment template” and confirm that you wish to create a template without stop conditions.

Validation procedure
The validation procedure is identical to what we did in the RDS DB Instance Reboot section. If you have not

explored that section before, perform the steps as described there under the “Validation Procedure” heading and

return here when you reach the “Run FIS experiment” heading.

Run FIS experiment

Record current Aurora state
Navigate to the RDS console, select “Databases” on the left menu, and search for “fisworkshop”. Take a

screenshot or write down the “Reader” and “Writer” AZ information, e.g.:

Start the experiment
Select the FisWorkshopAurora1 experiment template you created above

Select start experiment

Add a Name tag of FisWorkshopAurora1Run1

Confirm that you want to start an experiment

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot.html
https://console.aws.amazon.com/rds/home
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/review-1-rds-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

Watch the output of your test script

Review results
Verify that the experiment worked. If you are not already on the pane viewing your experiment, navigate to the

FIS console, select “Experiments”, and select the experiment ID for the experiment you just started. This

should show “success”.

Verify that the failover actually happened. Navigate to the RDS console again and about a minute after you

started the experiment you’ll see the “Reader” and “Writer” instances flipped to the other AZ:

If all went well, the “Reader” and “Writer” instances should have traded places.

If you were watching the output of your test script carefully you might also have noticed that for a short period

of time DNS returns no value for Aurora. To address this our code already contains an additional try/except

block for DB reconnection (see code in GitHub).

Learning and improving
As this was essentially the same as the previous RDS DB Instance Reboot section there are no new learnings

here.

However, you may want to experiment further with built-in Aurora fault injenction queries for MySQL and

PostgreSQL.

E.g. for the Aurora MySQL database provisioned in this workshop, you can extract the connection information

from the AWS Secrets Manager console by selecting the FisAuroraSecret and selecting “Retrieve secret
value”:

https://console.aws.amazon.com/fis/home?#Experiments
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/review-1-rds-2.en.png?classes=shadow&width=60pc
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/asg-cdk/assets/test_pymysql_curses.py#L88-L92
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.FaultInjectionQueries.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Managing.FaultInjectionQueries.html
https://console.aws.amazon.com/secretsmanager/home?#!/secret?name=FisAuroraSecret
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover/ssm-get-secret.en.png?classes=shadow&width=60pc

Using the information you can open another terminal, e.g. from the same instance you were using for testing,

and connect to your Aurora database with the retrieved secret values:

 Expand to see scripted version

you can then run fault injection queries as further explained in this blog post and observe the effect on the test

script, e.g.:

Note that in contrast to the FIS actions these actions will only affect the connection making the queries. All

other connections to the database will be unaffected by this simulation.

hostname / username / dbname from secret
export DB_HOST_NAME=[host from secret]
export DB_USER_NAME=[username from secret]
export DB_NAME=[dbname from secret]

The code below will not work from CloudShell because the database is in a private VPC. Make sure to run

this from an EC2 instances with access to the VPC"

 Note

mysql -h $DB_HOST_NAME -u $DB_USER_NAME -p $DB_NAME

ALTER SYSTEM CRASH NODE;

https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/010_rds_database_reboot.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments.html
https://aws.amazon.com/blogs/architecture/perform-chaos-testing-on-your-amazon-aurora-cluster/

ADVANCED EXPERIMENTS
In this section we will cover more advanced experiment configurations

Access controls

Access control tags

Tags: update vs. create

Template sharing

https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/020_access_control_tags.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/030_modify_tags_security.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/040_template_sharing.html
https://chaos-engineering.workshop.aws/en/030_basic_content/050_databases/020_rds_aurora_cluster_failover.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls.html

ACCESS CONTROLS
In the Con�guring Permissions section we showed how to limit the access of a running FIS experiment. In this

section we will demonstrate how to control user access to AWS Fault Injection Simulator (FIS).

Controlling user access to FIS
AWS Identity and Access Management (IAM) provides you fine-grained controls for to the use of FIS. As part of

the provisioned infrastructure we have created three roles that can be assumed from within your account:

FisAccessControlAdmin - This Role extends the ReadOnlyAccess AWS managed policy by adding all

FIS actions. Note that this role does not have permission to perform impacting actions outside of FIS

such as terminating EC2 instances. Those permissions have to be granted by the FIS execution role.

Navigate to the IAM Console and expand the AllowFisFullAccess policy to see permissions granted.

FisAccessControlUser - This Role extends the ReadOnlyAccess AWS managed policy by adding the

ability to start/stop experiments and to tag Experiments (required to add the “Name” tag when starting an

experiment). Note that this role does not have permission to perform impacting actions outside of FIS

such as terminating EC2 instances. Those permissions have to be granted by the FIS execution role.

Navigate to the IAM Console and expand the AllowFisUsageAccess policy to see permissions granted.

FisAccessControlNonUser - This Role extends the ReadOnlyAccess AWS managed policy by explicitly

denying all FIS actions. Navigate to the IAM Console and expand the DenyFisAccess policy to see

permissions granted.

Exploring FIS with assumed roles
To see the effect of the above roles we will assume each role on the AWS console and explore its effect on the

use of FIS.

All tabs in a browser profile will share the same AWS identity. As such, assuming roles will expire all other

active AWS console tabs and you will have to reload those tabs. Reloading the tabs will navigate to the same

URL as before but with the new IAM Role .

 Warning

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsfaultinjectionsimulator.html#awsfaultinjectionsimulator-actions-as-permissions
https://console.aws.amazon.com/iam/home?#/roles/FisAccessControlAdmin
https://console.aws.amazon.com/iam/home?#/roles/FisAccessControlUser
https://console.aws.amazon.com/iam/home?#/roles/FisAccessControlNonUser

Full access via FisAccessControlAdmin
To assume the FisAccessControlAdmin role navigate to the AWS console and click on the user identity at

the top to get an info drop down. From the drop-down copy the account ID (12 digit number). Finally select

“Switch Roles”.

To define the role we would like to assume enter the account number you just copied and use the role name
FisAccessControlAdmin . Pick a color to identify the role in the dropdown later. Since this is a privileged role

we are using “red”. Finally select “Switch Role”.

https://console.aws.amazon.com/console/home
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/switch-role-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/switch-role-2.en.png?classes=shadow&width=60pc

With the assumed role (visible at the top) navigate to the FIS console, select the FisWorkshopExp1 template,

and from the “Actions” drop down select “Start Experiment”.

Add a new tag with “Key” Name and “Value” FisAccessControlAdmin , then select “Start Experiment” and

confirm you wish to start the experiment.

Even though the FisAccessControlAdmin role itself does not have ec2:TerminateInstances privileges,

the experiment will run and you will get a “Completed” or “Failed” result depending on how many instances

We will assume that you have previously created the FisWorkshopExp1 Experiment template from the

First Experiment section and will use that template for the examples below but this should work with

other templates as well.

 Note

https://console.aws.amazon.com/fis/home?#ExperimentTemplates
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/start-exp-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/name-exp-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

were in the auto-scaling group, just as observed in the First Experiment section.

Just as in the First Experiment section you can also update the template as needed.

Before the next step, return to the normal workshop role by using the same dropdown you used to assume the

role, then selecting “Back to …”.

Execution access via FisAccessControlUser
Repeat the assume role steps above with the FisAccessControlUser role. You may pick a different color, e.g.

orange, to signify a less privileged user.

With this role you can list experiments and experiment templates and run an experiment. However, this role is

not allowed to edit an experiment template.

To test this, navigate to the FIS Console, select “Experiment Templates”, select the FisWorkshopExp1

template, and under the “Actions” drop down select “Update experiment template”.

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/return-role.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#ExperimentTemplates
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/edit-template-user-1.en.png?classes=shadow&width=60pc

Edit the FisWorkshopAsg-50Percent1 “Target”, set “Selection mode” to COUNT and “Mumber of resources”

to 1 , and select “Save” on the edit modal.

Select “Update experiment template” and confirm the intent to update. This will result in a failure banner

informing you that the assumed role lacks the required edit/update privileges.

Before the next step, return to the normal workshop role by using the same dropdown you used to assume the

role, then selecting “Back to …”.

No access via FisAccessControlNonUser
Repeat the assume role steps above with the FisAccessControlNonUser role. You may pick a different color,

e.g. black, to signify an unprivileged user.

Even though this role is based on the AWS managed ReadOnlyAccess policy, access to FIS has been explicitly

denied.

Navigate to the FIS Console and select “Experiment Templates”. You will notice that no templates are listed

because the user is not sufficiently privileged.

Similarly if you select “Experiments” you will notice that no experiments are listed because the user is not

sufficiently privileged.

https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/edit-template-user-2.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/non-user-templates.en.png?classes=shadow&width=60pc

https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls/non-user-experiments.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/020_access_control_tags.html

ACCESS CONTROL TAGS
In the previous section we saw how to use IAM roles and policies to control access to experiments and

templates. In addition to fixed IAM policies it is also possible to use resource tags to add more granular access

control.

Configuring CloudShell

Navigate to CloudShell and wait for your CloudShell instance to start up.

Once ready, set up a directory in which to work and create a custom AWS CLI config file. This file defines profiles

for the three roles we used in the previous secton plus an additional FisAccessControlSecurityAdmin role:

To simplify the assume role functionality for the workshop, this section will use AWS CloudShell. If you

want to use the same approach from other environments, review this link for other ways to configure your

credentials provider.

 Note

To protect your exisiting AWS CLI config file, we will use a custom AWS CLI config file. We will reference this

file by setting the AWS_CONFIG_FILE environment variable. If you need to return to using your default

config file either unset the environment variable or open a new CloudShell tab.

 Warning

Create same path as used by GitHub repository
mkdir -p ~/environment/aws-fault-injection-simulator-
workshop/resources/templates/access-controls/
cd ~/environment/aws-fault-injection-simulator-
workshop/resources/templates/access-controls/

ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')
cat > aws_test_config <<EOT
[profile FisAccessControlSecurityAdmin]

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://console.aws.amazon.com/cloudshell/home
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html

Let’s test the setup:

Restricting update permissions with tags
For this demonstration we will export the the first experiment template into two separate experiment templates

files. In the first template file we will change the Name tag to TagAccessTest1Dev and add a new
Environment tag with value dev . For the second template file we will change the Name tag to
TagAccessTest1Prod and add a new Environment tag with value prod . Later in this section we will show

how to use these tags for access control.

 role_arn = arn:aws:iam::${ACCOUNT_ID}:role/FisAccessControlSecurityAdmin
 credential_source = EcsContainer

[profile FisAccessControlAdmin]
 role_arn = arn:aws:iam::${ACCOUNT_ID}:role/FisAccessControlAdmin
 credential_source = EcsContainer

[profile FisAccessControlUser]
 role_arn = arn:aws:iam::${ACCOUNT_ID}:role/FisAccessControlUser
 credential_source = EcsContainer

[profile FisAccessControlNonUser]
 role_arn = arn:aws:iam::${ACCOUNT_ID}:role/FisAccessControlNonUser
 credential_source = EcsContainer

EOT

export AWS_CONFIG_FILE=${PWD}/aws_test_config
export AWS_PAGER=""

Validate that we can assume the role
aws --profile FisAccessControlAdmin sts get-caller-identity

List experiment templates
aws --profile FisAccessControlAdmin fis list-experiment-templates

Get experiment template ID
EXPERIMENT_TEMPLATE_ID=$(aws fis list-experiment-templates --query
"experimentTemplates[?tags.Name=='FisWorkshopExp1'].id" --output text)

Save template with a "dev" environment tag
aws fis get-experiment-template --id $EXPERIMENT_TEMPLATE_ID \
| jq '.experimentTemplate' \
| jq 'del(.id) | del(.creationTime) | del(.lastUpdateTime)' \

Privileged user experience without prod constraint
Our newly created security admin user has no restrictions on their ability to use FIS. In particular this role is able

to create experiment templates and experiments with any attached tags.

As such it can create both the dev and prod experiment templates

It can start experiments from both dev and prod templates and can tag the resulting experiments with dev and

prod tags

| jq '.tags.Name="TagAccessTest1Dev"' \
| jq '.tags.Environment="dev"' \
> tag-test-template-dev.json

Save template with a "prod" environment tag
aws fis get-experiment-template --id $EXPERIMENT_TEMPLATE_ID \
| jq '.experimentTemplate' \
| jq 'del(.id) | del(.creationTime) | del(.lastUpdateTime)' \
| jq '.tags.Name="TagAccessTest1Prod"' \
| jq '.tags.Environment="prod"' \
> tag-test-template-prod.json

Privileged admin user can create dev templates
DEV_TEMPLATE_1=$(
 aws fis create-experiment-template \
 --profile FisAccessControlSecurityAdmin \
 --cli-input-json file://tag-test-template-dev.json \
 --query 'experimentTemplate.id' \
 --output text
)
echo $DEV_TEMPLATE_1

Privileged admin user can create prod templates
PROD_TEMPLATE_1=$(
 aws fis create-experiment-template \
 --profile FisAccessControlSecurityAdmin \
 --cli-input-json file://tag-test-template-prod.json \
 --query 'experimentTemplate.id' \
 --output text
)
echo $PROD_TEMPLATE_1

Privileged admin can user start experiments from dev templates
DEV_EXPERIMENT_1=$(
 aws fis start-experiment \

It can retrieve the content of both dev and prod tagged experiment templates

It can retrieve the content of both dev and prod tagged experiments

 --profile FisAccessControlSecurityAdmin \
 --experiment-template-id ${DEV_TEMPLATE_1} \
 --tags \
 Name=FisWorkshop-TagLimit-Dev-
FisAccessControlSecurityAdmin,Environment=dev \
 --query 'experiment.id' \
 --output text
)
echo $DEV_EXPERIMENT_1

Privileged admin can user start and tag experiments from prod templates
PROD_EXPERIMENT_1=$(
 aws fis start-experiment \
 --profile FisAccessControlSecurityAdmin \
 --experiment-template-id ${PROD_TEMPLATE_1} \
 --tags \
 Name=FisWorkshop-TagLimit-Prod-
FisAccessControlSecurityAdmin,Environment=prod \
 --query 'experiment.id' \
 --output text
)
echo $PROD_EXPERIMENT_1

Privileged admin can retrieve dev experiment templates
aws fis get-experiment-template \
 --profile FisAccessControlSecurityAdmin \
 --id ${DEV_TEMPLATE_1}

Privileged admin can retrieve prod experiment templates
aws fis get-experiment-template \
 --profile FisAccessControlSecurityAdmin \
 --id ${PROD_TEMPLATE_1}

Privileged admin can retrieve dev experiments
aws fis get-experiment \
 --profile FisAccessControlSecurityAdmin \
 --id ${DEV_EXPERIMENT_1}

Privileged admin can retrieve prod experiments
aws fis get-experiment \
 --profile FisAccessControlSecurityAdmin \
 --id ${PROD_EXPERIMENT_1}

Privileged user experience with prod constraint
Now lets look at a user that can perform any FIS actions unless the resource created or used has an attached
Environment tag with value prod .

Repeating the previous steps with the less privileged role / profile we can see that this user can create dev

templates but cannot create templates with an attached Environment tag with value prod

The constrained admin role can start experiments from templates tagged with an Environment tag with value
dev but not with value prod . The constrained role also cannot start experiments from dev templates and tag

the result as prod .

Admin user can create dev templates
DEV_TEMPLATE_2=$(
 aws fis create-experiment-template \
 --profile FisAccessControlAdmin \
 --cli-input-json file://tag-test-template-dev.json \
 --query 'experimentTemplate.id' \
 --output text
)
echo $DEV_TEMPLATE_2

Admin user cannot create prod templates
PROD_TEMPLATE_2=$(
 aws fis create-experiment-template \
 --profile FisAccessControlAdmin \
 --cli-input-json file://tag-test-template-prod.json \
 --query 'experimentTemplate.id' \
 --output text
)
echo $PROD_TEMPLATE_2

Admin can user start experiments from dev templates
DEV_EXPERIMENT_2=$(
 aws fis start-experiment \
 --profile FisAccessControlAdmin \
 --experiment-template-id ${DEV_TEMPLATE_1} \
 --tags \
 Name=FisWorkshop-TagLimit-Dev-FisAccessControlAdmin,Environment=dev \
 --query 'experiment.id' \
 --output text
)
echo $DEV_EXPERIMENT_2

Admin cannot user start experiments from prod templates
DEV_EXPERIMENT_3=$(
 aws fis start-experiment \

The constrained role can retrieve the content of experiment templates with an attached Environment tag with

value dev but not prod

The constrained role can retrieve the content of experiments with an attached Environment tag with value
dev but not prod

 --profile FisAccessControlAdmin \
 --experiment-template-id ${PROD_TEMPLATE_1} \
 --tags \
 Name=FisWorkshop-TagLimit-Dev-FisAccessControlAdmin,Environment=dev \
 --query 'experiment.id' \
 --output text
)
echo $DEV_EXPERIMENT_3

Admin cannot user tag experiments with prod tag
PROD_EXPERIMENT_2=$(
 aws fis start-experiment \
 --profile FisAccessControlAdmin \
 --experiment-template-id ${DEV_TEMPLATE_1} \
 --tags \
 Name=FisWorkshop-TagLimit-Prod-FisAccessControlAdmin,Environment=prod \
 --query 'experiment.id' \
 --output text
)
echo $PROD_EXPERIMENT_2

Admin can retrieve dev experiment templates
aws fis get-experiment-template \
 --profile FisAccessControlAdmin \
 --id ${DEV_TEMPLATE_1}

Admin can retrieve prod experiment templates
aws fis get-experiment-template \
 --profile FisAccessControlAdmin \
 --id ${PROD_TEMPLATE_1}

Admin can retrieve dev experiments
aws fis get-experiment \
 --profile FisAccessControlAdmin \
 --id ${DEV_EXPERIMENT_1}

Admin can retrieve prod experiments
aws fis get-experiment \
 --profile FisAccessControlAdmin \
 --id ${PROD_EXPERIMENT_1}

Note that list operations are not constrained by tags so this user can still see the list of all prod experiments

that have been performed.

Unprivileged user experience
Repeating the above commands with the FisAccessControlUser role will demonstrate the additional

constraint of not being able to create experiment templates. Like the constrained admin user, this user can see

the list of all prod experiments that have been performed.

Repeating the above commands with the FisAccessControlNonUser will show no access to FIS resources.

Because this role’s access to FIS has been constrained by an explicit deny it also cannot list experiment templates

or experiments even though the AWS managed ReadOnlyAccess policy would have allowed the list actions.

https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/030_modify_tags_security.html

TAGS: UPDATE VS. CREATE

As we saw in the previous section, tags can be used as part of access control policies. To enable update

workflows, FIS provides separate API calls for tagging resources (CLI / API) and for updating template content (

CLI / API).

Because tags and experiment templates are managed by independent services it is not possible to atomically

update tags and experiment template content at the same time.

If you have use cases where you need prevent template execution while performing updates on both tags and

template content, we recommend that you update the templates and tags with the following steps:

1. Update tags to prevent all execution of the template. The exact approach will depend on the relevant IAM

policies in your account.

2. Update template content.

3. Update tags to desired target state.

This section is aimed at large, distributed, and extremely security conscious teams. If that’s not a high

concern to you, feel free to skip this section.

 Note

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/tag-resource.html
https://docs.aws.amazon.com/fis/latest/APIReference/API_TagResource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/fis/update-experiment-template.html
https://docs.aws.amazon.com/fis/latest/APIReference/API_UpdateExperimentTemplate.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/020_access_control_tags.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/040_template_sharing.html

TEMPLATE SHARING
AWS Fault Injection Simulator is a regional service that allows targeting resources by availability zones or even

affect all resources in a region to simulate whole region outages.

However, there are two scenarios where you might want to manage experiment templates across multiple

regions and multiple accounts:

Users from one account accessing FIS in another account, e.g. because you are using a

multi-account strategy
Template replication, e.g. because you are running identical stacks in multiple regions and want to run

identical experiments in all regions

Cross-account access

We will assume that you have a firm grasp of the assume role procedure from the Access controls section. If

not we suggest you revisit that section and consult the AWS documentation.

Enabling access from the workshop “server” account
Follow these steps

Note the account ID for your workshop account - we will refer to this as 111122223333 or “server” for

the remainder of this section.

Note the account ID for your other account - we will refer to this as 444455556666 or “client” for the

remainder of this section.

This workshop only provisions one account. If you wish to test this you will need another account. If you use

one of your corporate accounts to test this as part of the workshop please make sure that (1) your

corporate account is the one assuming the role (“client”) and (2) you remove any role changes you’ve made

in your corporate (“client”) account to access the workshop (“server”) account.

 Warning

https://docs.aws.amazon.com/controltower/latest/userguide/aws-multi-account-landing-zone.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html

In your “server” account navigate to the IAM console and locate the FisAccessControlSecurityAdmin

role.

Select the role and select the “Trust relationships” tab. This tab should currently show a single entry under

“Trusted entities”, the “server” account 111122223333

Select “Edit trust relationship”

Update the JSON to read (replace the account IDs appropriately):

Select “Update Trust Policy”

Accessing from the client account

In a new browser / profile / incognito window log into your “client” AWS account, which should be distinct from

your workshop account.

In the “client” account window follow the same procedure outlined in the Access controls section. For “Account”

enter the workshop / “server” account number 111122223333 . For “Role” enter the name (not the ARN) of the

role you want to assume, in this case the role that we modified above to allow access: e.g.
FisAccessControlSecurityAdmin . Pick a color, we suggest blue to differentiate it from the other choices in

this workshop, and select “Switch Role”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

All tabs in a browser profile will share the same AWS identity. As such, logging into another AWS account or

assuming roles will expire all other active AWS console tabs and you will have to reload those tabs. For this

section we suggest that you use an browser profiles (Chrome, Firefox) or use an incognito window to avoid

confusion about which account you are logged into.

 Warning

https://console.aws.amazon.com/iam/home#/roles/FisAccessControlSecurityAdmin?section=trust
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/010_access_controls.html
https://support.google.com/chrome/answer/2364824?hl=en&co=GENIE.Platform%3DDesktop
https://support.mozilla.org/en-US/kb/profile-manager-create-remove-switch-firefox-profiles

At this point you should see a blue indicator at the top of your console indicating that you are no longer “client”

account 444455556666 but are instead logged into the “server” account 111122223333 with role
FisAccessControlSecurityAdmin . You should also be able to see your role history in the left part of the

drop down indicating your origin “client” account and role.

As this approach is based on IAM you can use instance or service roles in the “client” account or you can

configure the AWS CLI to use pro�les that assume a role or to use AWS SSO.

Template replication
Currently templates are static objects and in many cases need to reference targeted resources with account and

region specific information. We have previously covered how to create templates via CLI or CloudFormation

and we have discussed access controls earlier in this section so we will limit the discussion to a few points for

you to consider:

ARNs - where ARNs are required, e.g. execution roles, ECS or EKS clusters, and SSM documents, these must

contain the account number. If you use CloudFormation you can inject this information using

Pseudo Parameters. If you prefer using a CLI/API approach you can use a JSON templating engine such

as mustache or handlebars.

Static resources - while FIS allows targeting resources based on filters, sometimes it is necessary to

specify a particular resource via ID or ARN. If you use CloudFormation and can define the FIS experiment

template in the same CloudFormation template as the resource then you can directly reference the

resource. If you opt for a CLI/API approach, most JSON templating engines allow injecting variables so you

could write a small script to do the lookup in the target account and parametrize your template.

AZ naming - if you need to replicate templates across accounts but wish to perform an experiment that

targets the same AZ across multiple accounts you will need to determine the correct AZ ID as part of the

templating.

https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/040_template_sharing/cross-account-assumed-1.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html#cfn-pseudo-param-accountid
http://mustache.github.io/
https://handlebarsjs.com/
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html

Managing infrastructure across multiple
accounts
In addition to sharing templates across accounts you will need to manage IAM roles, SSM documents, and other

resources across accounts to ensure consistency in naming, access controls, etc. While there are many ways to

achieve this we recommend reviewing AWS CloudFormation StackSets,

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/030_modify_tags_security.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers.html

CONTAINERS
AWS provides managed services to help run containers at scale. This section covers fault injection experiments

on:

Amazon ECS

Amazon EKS

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks.html
https://chaos-engineering.workshop.aws/en/030_basic_content/060_advanced_experiments/040_template_sharing.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs.html

AMAZON ECS
In this section we will cover working with containers running on Amazon Elastic Container Service (ECS). For

this setup we’ll be using the following test architecture:

https://aws.amazon.com/ecs/
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/ECSCluster-with-user.en.png?classes=shadow&width=60pc

Amazon ECS is a fully managed container orchestration service that helps you easily deploy, manage, and scale

containerized applications. It deeply integrates with the rest of the AWS platform to provide a secure and easy-

to-use solution for running container workloads in the cloud and now on your infrastructure with Amazon ECS

Anywhere.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment.html

HYPOTHESIS & EXPERIMENT

Experiment idea
In this section we want to ensure that our containerized application running on Amazon ECS is designed in a

fault tolerant way, so that even if an instance in the cluster fails our application is still available. Let’s validate

this:

Given: we have a containerized application running on Amazon ECS exposing a web page.

Hypothesis: failure of a single container instance will not adversely affect our application. The web page

will continue to be available.

Experiment setup

General template setup

Create a new experiment template:

add Name tag of FisWorkshopECS

add Description of Terminate ECS Cluster Instance

select FisWorkshopServiceRole as execution role

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Target selection
Now we need to define targets. Scroll to the “Targets” section and select “Add Target”

On the “Add target” popup enter FisWorkshopECSInstance for name and select aws:ec2:instance for

resource type. For “Target method” we will dynamically select resources based on an associated tag. Select the
Resource tags and filters checkbox. Pick Count from “Selection mode” and enter 1 . Under “Resource

tags” enter Name in the “Key” field and FisStackEcs/EcsAsgProvider for “Value”. Under filters enter
State.Name in the “Attribute path” field and running under “Values”. Select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/create-template-2-targets-1.en.png?classes=shadow&width=60pc

Action definition
With targets defined we define the action to take. Scroll to the “Actions” section" and select “Add Action”

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/create-template-2-targets-2-rev1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/create-template-2-actions-1.en.png?classes=shadow&width=60pc

For “Name” enter ECSInstanceTerminate and you can skip the Description. For “Action type” select
aws:ec2:terminate-instances .

We will leave the “Start after” section blank since the instances we are terminating are part of an auto scaling

group and we can let the auto scaling group create new instances to replace the terminated ones.

Under “Target” select the FisWorkshopECSInstance target created above. Select “Save”.

Creating template without stop conditions
Confirm that you wish to create the template without stop condition.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/create-template-2-actions-2.en.png?classes=shadow&width=60pc

Validation procedure
Before running the experiment we should consider how we will define success. Let’s check the webpage we are

hosting. To find the URL of the webpage navigate to the CloudFormation console, select the FisStackEcs

stack, Select “Outputs”, and copy the value of “FisEcsUrl”.

Open the URL in a new tab to validate that our website is in fact up and running:

How will we know that our instance failure was in fact non-impacting? For this workshop we’ll be using a simple

Bash script that continuously polls our application.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/create-template-3-confirm.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=FisStackEcs&viewNested=true&hideStacks=false
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/ecs-sample-app.en.png?classes=shadow&width=60pc

Starting the validation procedure
In your local terminal, run the following script. For your convenience we are automating the query for the load

balancer URL but you could also paste the URL you’ve found above:

We would expect that all requests will return a HTTP 200 OK code with some variability in the request duration,

meaning the application is still responding successfully. Healthy output should look like this:

Leave the script running while we run the FIS experiment next.

Run FIS experiment
Record current application state
In a new browser window navigate to the load balancer URL you copied earlier, this is your application endpoint.

Notice that the application is currently running:

Query URL for convenience
ECS_URL=$(aws cloudformation describe-stacks --stack-name FisStackEcs --query
"Stacks[*].Outputs[?OutputKey=='FisEcsUrl'].OutputValue" --output text)

Busy loop queries. CTRL-C to end loop
while true; do
 curl -sLo /dev/null -w 'Code %{response_code} Duration %{time_total} \n'
${ECS_URL}
done

Code 200 Duration 0.140314
Code 200 Duration 0.086206
Code 200 Duration 0.085946
Code 200 Duration 0.084102
Code 200 Duration 0.085972

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200

You can also verify the HTTP return code using this command, replacing
REPLACE_WITH_ECS_SERVICE_ALB_URL with the load balancer DNS name you copied earlier:

Start the experiment
Select the FisWorkshopECS experiment template you created above

Select Start experiment from the Action drop-down menu

Add a Name tag of FisWorkshopECSRun1

Confirm that you want to start an experiment

curl -IL <REPLACE_WITH_ECS_SERVICE_ALB_URL> | grep "^HTTP\/"

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/ecs-sample-app.en.png?classes=shadow&width=60pc

If you are working in CloudShell you terminal may expire throughout this workshop. To save your

environment variables from this section so they re-populate when you restart your terminal, paste this into

your shell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/20-observe.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment/start-experiment-3.en.png?classes=shadow&width=60pc

OBSERVE THE SYSTEM

Review results
Let’s take a look at the output in the terminal window where your Bash script is running:

You’ll notice that as not all the requests were successful. As the FIS experiment starts you should see some

HTTP 502 “Bad Gateway” and HTTP 503 “Service Unavailable” return codes. This means our application was not

available for a period of time. This is not what we were expecting, so let’s dive a bit deeper to find out why it

happened.

Check number of containers

Code 200 Duration 0.137204
Code 200 Duration 0.080911
Code 200 Duration 0.081539
Code 200 Duration 0.077265
Code 200 Duration 0.085331
Code 200 Duration 0.081634

...

Code 503 Duration 0.083001
Code 503 Duration 0.088983
Code 502 Duration 0.085972
Code 502 Duration 0.086619
Code 502 Duration 0.086554
Code 503 Duration 0.083428
Code 502 Duration 0.084929

...

Code 200 Duration 0.082434
Code 200 Duration 0.081427
Code 200 Duration 0.087983
Code 200 Duration 0.081950
Code 200 Duration 0.082790

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503

In a new browser window navigate to the Clusters section in the ECS console and search for the cluster named
FisStackEcs-Cluster... , e.g. FisStack-ClusterEB0386A7-xJ4yY19a5jLP . Click on the cluster name and

look at the ECS services running on this cluster:

You’ll notice that the service named FisStackEcs-SampleAppService... , e.g.
FisStackEcs-SampleAppServiceD69D759B-PsBz3nNuocPp - i.e. our application - only has one desired task,

meaning that only one copy of our containerized application will be running at any time.

Check number of instances
Now click on the “ECS Instances” tab. You’ll see here that there’s only one instance registered with our cluster.

https://console.aws.amazon.com/ecs/home?#/clusters
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/20-observe/ecs-cluster-services.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/20-observe/ecs-service-desired-capacity.en.png?classes=shadow&width=60pc

Observations
This configuration is not optimal:

A cluster with a single instance means that if that instance fails, all the containers running on that instance

will also be killed. This is what happened during our experiment and the reason why we observed some

HTTP 503 “Service Unavailable” return codes. We should change this so that our cluster has more than one

instance across multiple Availability Zones (AZs).

Having an ECS Service with one desired task also means that if that task fails, there aren’t any other tasks

to continue serving requests. We can modify this by adjusting the desired task capacity to 2 (or any

number greater than 1).

Now that we have identified some issues with our current setup, let’s move to the next section to fix them.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/20-observe/ecs-cluster-instances.en.png?classes=shadow&width=60pc
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/10-experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat.html

IMPROVE & REPEAT

Learning and Improving
In the previous section we have identified some issues with our current setup: our ECS cluster only had one
instance and our application’s ECS Service desired capacity was set to 1 . Now, let’s improve our infrastructure

setup.

Increase the number of instances
In our ECS configuration we have chosen to use EC2 with an auto scaling group as our capacity provider. To

adjust desired instance capacity open a browser window and navigate to the Auto Scaling Groups section in the

EC2 console and search for an auto scaling group named FisStackEcs-EcsAsgProvider... , e.g.
FisStackEcs-EcsAsgProviderASG51CCF8BD-4LO6D3O44727 . Select the check box next to our Auto Scaling

group. A split pane opens up in the bottom part of the Auto Scaling groups page, showing information about

the group that’s selected.

In the lower pane, in the Details tab and under Group details section, click the Edit button.

https://console.aws.amazon.com/ec2autoscaling/home
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat/auto-scaling-group-details.en.png?classes=shadow&width=60pc

Change the current settings for “minimum” to 2 to ensure we always have at least 2 instances available

for redundancy. Note: if you only increase “desired” and “maximum” then the scaling policy for the auto

scaling group could decrease the “desired” value back to 1 during low load periods.

Set “desired” and “maximum” to 2 or more. Note: setting the desired value to more than the number of

tasks (see below) will leave you with idle instances.

Click Update to complete the changes:

Increase the number of tasks
Navigate to the Clusters section in the ECS console and search for the cluster named
FisStackEcs-Cluster... , e.g. FisStackEcs-ClusterEB0386A7-xJ4yY19a5jLP . Click on the cluster name

and look at the ECS service named FisStackEcs-SampleAppService... , e.g.
FisStackEcs-SampleAppServiceD69D759B-PsBz3nNuocPp , running on this cluster. Select the check box

next to our ECS Service and click Update:

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat/auto-scaling-group-change-capacity.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/ecs/home?#/clusters

Scroll to the bottom of the Configure service screen and change the value of the Number of tasks setting from
1 to 2 . Click Skip to review and complete the process by selecting Update Service.

Repeat the experiment
Now that we have improved our configuration, let’s re-run the experiment. Before starting review the ECS

Cluster to ensure that the instance capacity has increased to 2 and that the number of running tasks is 2 .

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat/ecs-service-update.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat/ecs-service-update-number-tasks.en.png?classes=shadow&width=60pc

This time we should observe that, even when one of the container instances gets terminated, our application is

still available and successfully serving requests. In the output of the Bash script there we should no longer see

the HTTP 503 “Service Unavailable” return codes.

ECS further learning
For more on ECS configurations see the ECS workshop.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://ecsworkshop.com/
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/20-observe.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks.html

AMAZON EKS
In this section we will cover working with containers running on Amazon Elastic Kubernetes Service (EKS). For

this setup we’ll be using the following test architecture:

https://aws.amazon.com/eks/
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/EKSCluster-with-user.en.png?classes=shadow&width=60pc

Amazon EKS gives you the flexibility to start, run, and scale Kubernetes applications in the AWS cloud or on-

premises. Amazon EKS helps you provide highly-available and secure clusters and automates key tasks such as

patching, node provisioning, and updates. EKS runs upstream Kubernetes and is certified Kubernetes

conformant for a predictable experience. You can easily migrate any standard Kubernetes application to EKS

without needing to refactor your code.

For this section, make sure you have kubectl installed in your local environment. Follow these steps if you

need to install kubectl .

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/010_ecs/30-fix-repeat.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment.html
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html

HYPOTHESIS & EXPERIMENT

Experiment idea
In this section we want to ensure that our containerized application running on Amazon EKS is designed in a

fault tolerant way, so that even if an instance in the cluster fails our application is still available. Let’s validate

this:

Given: we have a containerized application running on Amazon EKS exposing a web page.

Hypothesis: failure of a single worker node instance will not adversely affect our application. The web

page will continue to be available.

Experiment setup

General template setup

Create a new experiment template:

add Name tag of FisWorkshopEKS

add Description of Terminate EKS Worker Node

select FisWorkshopServiceRole as execution role

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Target selection
Now we need to define targets. Scroll to the “Targets” section and select “Add Target”

On the “Add target” popup enter FisWorkshopEKSWorkerNode for name and select aws:ec2:instance . For

“Target method” we will dynamically select resources based on an associated tag. Select the
Resource tags and filters checkbox. Pick Count from “Selection mode” and enter 1 . Under “Resource

tags” enter eks:nodegroup-name in the “Key” field and FisWorkshopNG for “Value”. Under filters enter
State.Name in the “Attribute path” field and running under “Values”. Select “Save”.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/create-template-2-targets-1.en.png?classes=shadow&width=60pc

Note: we are using the aws:ec2:instance action instead of the aws:eks:nodegroup action because

currently the latter cannot terminate a single running worker node.

Action definition
With targets defined we define the action to take. Scroll to the “Actions” section" and select “Add Action”

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/create-template-2-targets-2.en.png?classes=shadow&width=60pc

For “Name” enter EKSWorkerNodeTerminate and you can skip the Description. For “Action type” select
aws:ec2:terminate-instances .

We will leave the “Start after” section blank since the instances we are terminating are part of an EKS Managed

Node Group and we can let the Managed Node Group create new instances to replace the terminated ones.

Under “Target” select the FisWorkshopEKSWorkerNode target created above. Select “Save”.

Creating template without stop conditions
Confirm that you wish to create the template without stop condition.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/create-template-2-actions-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/create-template-2-actions-2.en.png?classes=shadow&width=60pc

Validation procedure
Before running the experiment we should consider how we will define success. Let’s check the webpage we are

hosting. To find the URL of the webpage navigate to the CloudFormation console, select the FisStackEks

stack, Select “Outputs”, and copy the value of “FisEksUrl”.

Open the URL in a new tab to validate that our website is in fact up and running:

How will we know that our instance failure was in fact non-impacting? For this workshop we’ll be using a simple

Bash script that continuously polls our application.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/create-template-3-confirm.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=FisStackEks&viewNested=true&hideStacks=false
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/hello-kubernetes-app.en.png?classes=shadow&width=60pc

Starting the validation procedure
In your local terminal, run the following script. For your convenience we are automating the query for the load

balancer URL but you could also paste the URL you’ve found above:

We would expect that all requests will return a HTTP 200 OK code with some variability in the request duration,

meaning the application is still responding successfully. Healthy output should look like this:

Leave the script running while we run the FIS experiment next.

Run FIS experiment
Record current application state
In a new browser window navigate to the load balancer URL you copied earlier, this is your application endpoint.

Notice that the application is currently running:

Query URL for convenience
EKS_URL=$(aws cloudformation describe-stacks --stack-name FisStackEks --query
"Stacks[*].Outputs[?OutputKey=='FisEksUrl'].OutputValue" --output text)

Busy loop queries. CTRL-C to end loop
while true; do
 curl -sLo /dev/null -w 'Code %{response_code} Duration %{time_total} \n'
${EKS_URL}
done

Code 200 Duration 0.140314
Code 200 Duration 0.086206
Code 200 Duration 0.085946
Code 200 Duration 0.084102
Code 200 Duration 0.085972

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200

You can also verify the HTTP return code using this command, replacing
REPLACE_WITH_EKS_SERVICE_ALB_URL with the load balancer DNS name you copied earlier:

Start the experiment
select the FisWorkshopEKS experiment template you created above

select Start experiment from the Action drop-down menu

add a Name tag of FisWorkshopEKSRun1

confirm that you want to start an experiment

curl -IL <REPLACE_WITH_EKS_SERVICE_ALB_URL> | grep "^HTTP\/"

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/hello-kubernetes-app.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment/start-experiment-3.en.png?classes=shadow&width=60pc

If you are working in CloudShell you terminal may expire throughout this workshop. To save your

environment variables from this section so they re-populate when you restart your terminal, paste this into

your shell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/20-observe.html

OBSERVE THE SYSTEM

Review results
Let’s take a look at the output in the terminal window where your Bash script is running:

You’ll notice that not all the requests were successful, As the FIS experiment starts you should see some 000

return codes. This is not a legal HTTP response code. If we just ran curl as

we would see an error message indicating that the server just closed the connection on us.

Code 200 Duration 0.137204
Code 200 Duration 0.080911
Code 200 Duration 0.081539
Code 200 Duration 0.077265
Code 200 Duration 0.085331
Code 200 Duration 0.081634

...

Code 000 Duration 0.093033
Code 000 Duration 0.088688
Code 000 Duration 0.086454
Code 000 Duration 0.088505
Code 000 Duration 0.097665

...

Code 200 Duration 0.082434
Code 200 Duration 0.081427
Code 200 Duration 0.087983
Code 200 Duration 0.081950
Code 200 Duration 0.082790

curl $EKS_URL

In practice this means our application was not available for a period of time. This is not what we were expecting,

so let’s dive a bit deeper to find out why it happened.

Configure kubectl

We will follow these steps to update the kubectl configuration to securely connect to the EKS cluster. The

cluster is named FisWorkshop-EksCluster . To find the ARN of the kubectl access role, navigate to the

CloudFormation console, select the FisStackEks stack, Select “Outputs”, and copy the value of

“FisEksKubectlRole”.

From a local terminal, run the following command to configure kubectl:

Check number of containers

curl: (52) Empty reply from server

Make sure you have kubectl installed in your local environment. Follow these steps if you need to install
kubectl .

 Note

verify you have aws CLI installed
aws --version

Retrieve the role ARN
KUBECTL_ROLE=$(aws cloudformation describe-stacks --stack-name FisStackEks --
query "Stacks[*].Outputs[?OutputKey=='FisEksKubectlRole'].OutputValue" --output
text)

Configure kubectl with cluster name and ARN
aws eks update-kubeconfig --name FisWorkshop-EksCluster --role-arn
${KUBECTL_ROLE}

If you get the message “error: You must be logged in to the server (Unauthorized)" when running
kubectl command, please follow these steps to troubleshoot the problem.

 Note

https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html#create-kubeconfig-automatically
https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=FisStackEks&viewNested=true&hideStacks=false
https://docs.aws.amazon.com/eks/latest/userguide/install-kubectl.html
https://aws.amazon.com/premiumsupport/knowledge-center/eks-api-server-unauthorized-error/

From a local terminal, run the following command to check our application service configuration:

You’ll notice that there’s only one pod named hello-kubernetes-... - e.g.
hello-kubernetes-ffd764cf9-zwnq7 - meaning that only one copy of our containerized application is

running at any time.

Check number of instances
In the same terminal, run the following command to check the nodes in our cluster:

In the output you’ll see that our cluster only has a single worker node.

Observations
This configuration is not optimal:

A cluster with a single worker node means that if that instance fails, all the containers running on that

instance will also be killed. This is what happened during our experiment and the reason why we observed

some curl: (52) Empty reply from server messages. We should change this so that our cluster

has more than one instance across multiple Availability Zones (AZs).

An EKS workload with one pod also means that if that pod fails, there aren’t any other pods to continue

serving requests. We can modify this by adjusting the pod count to 2 (or any number greater than 1).

kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-kubernetes-ffd764cf9-zwnq7 1/1 Running 0 8m34s

kubectl get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-150-147.eu-west-1.compute.internal Ready <none> 12m v1.20.4-eks-
6b7464

Now that we have identified some issues with our current setup, let’s move to the next section to fix them.

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/10-experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/30-fix-repeat.html

IMPROVE & REPEAT

Learning and Improving
In the previous section we have identified some issues with our current setup: our EKS cluster only had one
worker node and our application’s pod count was set to 1 . Now, let’s improve our infrastructure setup.

Increase the number of instances
In a browser window navigate to the Clusters section in the EKS console and search for the cluster named
FisWorkshop-EksCluster . Click on the cluster name, select the Configuration tab and then the Compute tab.

In the Node Groups section, select the round check box next to the group named FisWorkshopNG and click

Edit.

On the Edit node group page

Change the current settings for “minimum” to 2 to ensure we always have at least 2 instances available

for redundancy. Note: if you only increase “desired” and “maximum” then the scaling policy for the auto

scaling group could decrease the “desired” value back to 1 during low load periods.

Set “desired” and “maximum” to 2 or more. Note: setting the desired value to more than the number of

tasks (see below) will leave you with idle instances.

https://console.aws.amazon.com/eks/home?#/clusters
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/30-fix-repeat/eks-cluster-compute-configuration.en.png?classes=shadow&width=60pc

When you’re finished editing, scroll to the bottom and choose Save changes.

Increase the number of containers
From a local terminal, run the following command to update the application’s pod count to 2:

To verify, you can run kubectl get pods and kubectl get deployments . Here’s the sample output.

Repeat the experiment

kubectl scale --current-replicas=1 --replicas=2 deployment/hello-kubernetes

NAME READY STATUS RESTARTS AGE
hello-kubernetes-ffd764cf9-5v7z9 1/1 Running 0 25s
hello-kubernetes-ffd764cf9-6bdbn 1/1 Running 0 4m43s

NAME READY UP-TO-DATE AVAILABLE AGE
hello-kubernetes 2/2 2 2 46h

https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/30-fix-repeat/eks-cluster-update-node-group-size.en.png?classes=shadow&width=60pc

Now that we have improved our configuration, let’s re-run the experiment. Before starting review the EKS

Cluster to ensure that the instance capacity has increased to 2 and that the number of running containers is 2 .

This time we should observe that, even when one of the container instances gets terminated, our application is

still available and successfully serving requests. In the output of the Bash script there should be no
curl: (52) Empty reply from server messages.

EKS/k8s cluster auto scaling
In this workshop we used manual scaling of both worker nodes and pods. In a production setup you would likely

configure kubernetes / EKS to use

a Cluster Autoscaler that is aware of scaling needs based on pod configuration.

a Horizontal Pod Autoscaler to dynamically manage the number of pods .

a Vertical Pod Autoscaler to dynamically manage CPU and memory allocation on your pods.

EKS further learning
For more on EKS configurations see the EKS workshop.

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/vertical-pod-autoscaler.html
https://www.eksworkshop.com/
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/20-observe.html
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot.html

EC2 SPOT INSTANCES
In this section we will cover how to validate AWS EC2 Spot Instance Interruption behavior.

EC2 Spot Instances make spare EC2 capacity available for steep discounts in exchange for returning them

when Amazon EC2 needs the capacity back. Because demand for Spot Instances can vary significantly over time,

it is always possible that your Spot Instance might be interrupted.

To help you gracefully handle interruptions, AWS will send Spot Instance Interruption notices two minutes

before Amazon EC2 stops or terminates your Spot Instance. While it is not always possible to predict demand,

AWS may occasionally send an EC2 rebalance recommendation signal before sending the Instance

interruption notice.

EC2 Spot instances can be used with Auto Scaling groups or as worker nodes for various forms of batch

processing. Because nodes in Auto Scaling groups are usually stateless while batch processes usually generate

stateful data we will demonstrate fault injection on a batch compute example with checkpointing.

In this section we will use AWS Step Functions to orchestrate a hypothetical batch workload:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html#spot-instance-termination-notices
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/rebalance-recommendations.html
https://en.wikipedia.org/wiki/Application_checkpointing
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/step-functions-runner.en.png?classes=shadow&width=60pc

The workflow will:

initialize a workload parameterized with total duration and checkpoint duration

request a spot instance to run the workload

wait for the spot instance run to finish

repeat the request-and-wait cycle until 100% of the job is done

The workload is a python script, passed as user data, that writes metrics to CloudWatch:

More details in the next section.

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/step-functions-runner.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/full-run.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/070_containers/020_eks/30-fix-repeat.html
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate.html

BASELINING

Experiment idea
In this section we explore the effect of regular EC2 instance termination on an experiment with checkpoints

enabled:

Given: we have am AWS Step Functions workflow that will restart spot instances until the job is 100%

finished.

Hypothesis: terminating an EC2 spot instance will require additional computation but the job will reach

100% completion without human intervention.

Experiment setup

General template setup

Create a new experiment template

Add “Name” tag of FisWorkshopSpotTerminate

Add “Description” of Use EC2 terminate instances on spot instance

Select FisWorkshopSpotRole as execution role

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Action / Target definition 1
In this experiment we will introduce an initial wait before triggering instance termination. Go to the “Actions”

section and select “Add Action”.

For “Name” enter AllowSomeCompletion and add a “Description” like
Wait for some compute to happen before termination . For “Action type” select aws:fis:wait and

for “Action parameters” / “duration” select 3 minutes. Select “Save”.

Action / Target definition 2
Following the same process as described in First Experiment define actions:

“Name”: FisWorkshopSpot-TerminateInstance

“Description”: Use terminate instances on spot instances

“Action Type”: aws:ec2:terminate-instances

Since we want this action to execute after an initial wait, select the AllowSomeCompletion action from the

“Start after” drop down.

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate/wait-action.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html

Define targets by editing the auto-generated Instances-Target-1 using:

“Name”: FisWorkshopSpot-SpotInstance

“Resource type”: aws:ec2:instance

“Target method”: “Resource tags and filters

“Selection mode”: “All”

“Resource tags”:

“Key”: Name

“Value”: Fis/Spot

“Resource filters”:

“Attribute path”: State.Name

“Values”: running

Validation procedure
Similar to the first experiment we will use a CloudWatch dashboard created as part of resource creation.

Navigate to the CloudWatch console and select a dashboard named “FisSpot-REGION”, e.g.
FisSpot-us-west-2 .

Run FIS experiment
First we need to start the StepFunctions workflow. For demonstration purposes we will run this with a total

duration of 6 minutes and a checkpoint duration of 2 minutes but if you have the time you may want to explore

what happens if you set checkpoint duration to >= total duration.

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate/terminate-action.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudwatch/home?#dashboards:

Then start the experiment. If you named the template as described above this should work, otherwise adjust
SPOT_EXPERIMENT_TEMPLATE_ID as needed:

Copy the experiment ID and navigate to the FIS console. Search for the experiment ID and check that the state

is “running”. If the experiment failed because of empty target lookup, run the start experiment command again.

If the experiment keeps failing, navigate to the StepFunctions console, select the “SpotChaosStateMachine”

and examine the most recent execution to ensure a spot instance has been created.

Finally navigate to the CloudWatch console, select the FisSpot dashboard and set a custom duration of 15min:

STATE_MACHINE_ARN=$(aws stepfunctions list-state-machines --query
"stateMachines[?contains(name,'SpotChaosStateMachine')].stateMachineArn" --output
text)

aws stepfunctions start-execution \
 --state-machine-arn ${STATE_MACHINE_ARN} \
 --input '{ "JobDuration": "6", "CheckpointDuration": "2"}'

Currently all target resolution is performed at the beginning of the experiment run. As such it is possible

that the FIS experiment will fail target resolution if the spot instance is not running yet. If that happens,

wait a few seconds and restart the FIS experiment below.

 Warning

SPOT_EXPERIMENT_TEMPLATE_ID=$(aws fis list-experiment-templates --query
"experimentTemplates[?tags.Name=='FisWorkshopSpotTerminate'].id" --output text)

aws fis start-experiment \
 --experiment-template-id $SPOT_EXPERIMENT_TEMPLATE_ID \
 --tags Name=FisWorkshopSpotTerminateTest \
| jq -rc '.experiment.id'

https://console.aws.amazon.com/fis/home?#Experiments
https://console.aws.amazon.com/states/home?#/statemachines
https://console.aws.amazon.com/cloudwatch/home?#dashboards:

You may have to wait for a few minutes for data to become available. You should then see data like this (no

checkpoint happened before interruption):

Learning and improving
From the graphs we can see that the workflow will successfully restart from the last checkpoint. However, we

can also see that a substantial amount of progress has to be re-calculated and it would be better if we could

save progress closer to the actual interruption of the instance. In the next section we will repeat the same

experiment but using the aws:ec2:send-spot-instance-interruptions action which will replicate normal

spot instance interruption behavior by sending a notification before terminating the instance.

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate/dashboard-custom-duration.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate/terminate-no-checkpoint.en.png?classes=shadow&width=60pc

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot.html
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup.html

SIMULATING INTERRUPTS

Experiment idea
In this section we explore how to mitigate the effect of instance interruption by reacting to the spot instance

interrupt notification:

Given: we have am AWS Step Functions workflow that will restart spot instances until the job is 100%

finished.

Hypothesis: capturing the spot instance interrupt request and checkpointing when it is received will

better utilize EC2 spot instances and the job will still reach 100% completion without human intervention.

Experiment setup

General template setup
Create a new experiment template

Add “Name” tag of FisWorkshopSpotInterrupt

Add “Description” of Use spot instance interruption on spot instance

Select FisWorkshopSpotRole as execution role

We will follow the exact same steps as in the previous section. We will only change the action type from
aws:ec2:instance to aws:ec2:send-spot-instance-interruptions .

 Note

Even though the target selection looks the same as before, spot instance target selection is distinct from

EC2 instance target selection. For this reason it is recommended that you create a completely new

experiment template here instead of just editing the previous one.

 Warning

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate.html

Action / Target definition 1
Define action:

“Name”: AllowSomeCompletion

“Description”: Wait for some compute to happen before termination

“Action Type”: aws:fis:wait

“Action parameters” / “duration”: 3 minutes

Action / Target definition 2
Define action:

“Name”: FisWorkshopSpot-InterruptInstance

“Description”: Use spot instance interruption on spot instances

“Action Type”: aws:ec2:send-spot-instance-interruptions

“Start after”: AllowSomeCompletion

We also need to set an amount of time to pass between the notification and the actual instance termination. We

will set this to the minimum allowed value of 2 minutes:

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup/wait-action.en.png?classes=shadow&width=60pc

Define targets by editing the auto-generated SpotInstances-Target-1 using:

“Name”: FisWorkshopSpot-SpotInstance

“Resource type”: aws:ec2:spot-instance

“Target method”: “Resource tags and filters

“Selection mode”: “All”

“Resource tags”:

“Key”: Name

“Value”: Fis/Spot

“Resource filters”:

“Attribute path”: State.Name

“Values”: running

Validation procedure
Similar to the first experiment we will use a CloudWatch dashboard created as part of resource creation.

Navigate to the CloudWatch console and select a dashboard named “FisSpot-REGION”, e.g.
FisSpot-us-west-2 .

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup/terminate-action.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudwatch/home?#dashboards:

Run FIS experiment
First we need to start the StepFunctions workflow. For demonstration purposes we will run this with a total

duration of 6 minutes and a checkpoint duration of 2 minutes but if you have the time you may want to explore

what happens if you set checkpoint duration to >= total duration.

Then start the experiment. If you named the template as described above this should work, otherwise adjust
SPOT_EXPERIMENT_TEMPLATE_ID as needed:

Copy the experiment ID and navigate to the FIS console. Search for the experiment ID and check that the state

is “running”. If the experiment failed because of empty target lookup, run the start experiment command again.

If the experiment keeps failing, navigate to the StepFunctions console, select the “SpotChaosStateMachine”

and examine the most recent execution to ensure a spot instance has been created.

Finally navigate to the CloudWatch console, select the FisSpot dashboard and set a custom duration of 15min:

STATE_MACHINE_ARN=$(aws stepfunctions list-state-machines --query
"stateMachines[?contains(name,'SpotChaosStateMachine')].stateMachineArn" --output
text)

aws stepfunctions start-execution \
 --state-machine-arn ${STATE_MACHINE_ARN} \
 --input '{ "JobDuration": "6", "CheckpointDuration": "2"}'

Currently all target resolution is performed at the beginning of the experiment run. As such it is possible

that the FIS experiment will fail target resolution if the spot instance is not running yet. If that happens,

wait a few seconds and restart the FIS experiment below.

 Warning

SPOT_EXPERIMENT_TEMPLATE_ID=$(aws fis list-experiment-templates --query
"experimentTemplates[?tags.Name=='FisWorkshopSpotInterrupt'].id" --output text)

aws fis start-experiment \
 --experiment-template-id $SPOT_EXPERIMENT_TEMPLATE_ID \
 --tags Name=FisWorkshopSpotInterruptTest \
| jq -rc '.experiment.id'

https://console.aws.amazon.com/fis/home?#Experiments
https://console.aws.amazon.com/states/home?#/statemachines
https://console.aws.amazon.com/cloudwatch/home?#dashboards:

You may have to wait for a few minutes for data to become available. You should then see data like this. In this

graph a checkpoint happened at the 2minute mark and another checkpoint immediately after that resulting

from the instance interruption. Notably the newly created spot instance did not have to re-do any of the work:

Learning and improving
Capturing the spot instance interruption notice and acting on it can substantially decrease the amount of

repeated calculations.

In our example the checkpointing is instantaneous whereas in the real world checkpointing might require

substantial amounts of time for data offloading, writing to databases etc. With the ability to simulate

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup/dashboard-custom-duration.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup/checkpoint-at-interrupt.en.png?classes=shadow&width=60pc

interruption behavior you can now tune your interrupt behavior to make the most of your spot resources.

https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/010_spot_ec2_terminate.html
https://chaos-engineering.workshop.aws/en/030_basic_content/075_serverless.html

SERVERLESS
FIS currently does not support disrupting serverless execution in AWS Lambda. It is, however, possible to inject

chaos actions by decorating the code executed within AWS Lambda.

In this section we use the open source chaos_lambda python library to demonstrate how to

inject latency into serverless calls,

change the response code of the serverless function, and

simulate exceptions in code execution.

A similar JS library, failure-lambda is described in the Serverless Chaos workshop and the understanding of

the principles should allow the reader to build their own in their preferred language.

Architecture
In AWS Lambda, serverless functions expose a “handler” function that receives a JSON object and returns a

JSON object. We can keep this handler function unchanged by inserting a new wrapper function around the

original handler function, e.g. using a decorator pattern. This wrapper can cause exceptions in lambda function

execution before or after customer code is called, can inject latency before or after customer code is called, can

modify output thus simulating a failure result, and can even modify input thus triggering failures in the

customer function code:

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://github.com/adhorn/aws-lambda-chaos-injection
https://github.com/gunnargrosch/failure-lambda
https://catalog.us-east-1.prod.workshops.aws/workshops/3015a19d-0e07-4493-9781-6c02a7626c65/en-US/serverless/failure-lambda/fault-injection
https://en.wikipedia.org/wiki/Decorator_pattern

In chaos-lambda, to allow injecting failures on-demand, the wrapper function will query an

**SSM Parameter Store parameter ** to check whether failures should be injected at all and, if so, what failures.

To inject failures in the context of an FIS experiment, we will use an SSM Automation document to change the

value of the SSM Parameter Store parameter and turn on different types of failures.

Experiment idea
In this section we are focusing on tooling rather than presenting a full experiment, with some guidance on how

to expand on the tooling at the end.

Specifically in this section we will inject failures in an API backed by AWS Lambda instrumented with

chaos_lambda. We will run an FIS experiment that will, in order:

inject latency

inject an error code response

inject a runtime exception

We will observe these changes by continuously checking response time, response code, and response body.

Experiment setup

https://chaos-engineering.workshop.aws/en/030_basic_content/075_serverless/serverless.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html

Prerequisites
We will be using an SSM document to call the SSM PutParameter API. As such, we will require an IAM role that

allows ssm:PutParameter - see template de�nition in GitHub. Name this role
FisWorkshopLambdaSsmRole .

We will also need an IAM role that allows FIS to call SSM Automation and pass the above role to SSM - see

template de�nition in GitHub. Name this role FisWorkshopLambdaServiceRole

Finally, we will need an SSM automation document to put a parameter value - see

template de�nition in GitHub. Note that this document will create or overwrite the parameter with a value

that disables fault injection. If you create this document manually you will have to construct the ARN as

described in the Working with SSM documents section.

General template setup
Add “Description” of Inject Lambda Failures

Add a “Name” of FisWorkshopLambdaFailure

Select FisWorkshopLambdaServiceRole as execution role

Action definition
We will define multiple actions that we want to run in sequence. This follows the same procedure as before

except that we will populate the optional “Start after” selection to sequence action execution. Create the

following actions:

“Name”: S01_EnableLatency

The experiment setup section is for reference only. All required components have been created as
part of the workshop setup. If you just want to see the serverless fault injection you can skip ahead
to “Validation Procedure” below.

 Note

In earlier sections we have described how configure to service roles, create FIS experiment templates, and

create SSM automation documents. For this section, we have created all the required resources as part of

the infrastructure setup, and we will only outline the configuration process on the console.

 Note

https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/serverless/template.yaml#L91-L112
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/serverless/template.yaml#L115-L212
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/serverless/template.yaml#L58-L89
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/030_custom_ssm_docs.html

“Action type”: aws:ssm:start-automation-execution

“Start after”: leave this empty as the first step starts at the beginning of the experiment

“documentArn”: the ARN found in the “Outputs” tab of the FisStackServerless CloudFormation.

“documentParameters”: Reformatted here for legibility. For the AutomationAssumeRole you will

need to insert the ARN of the FisWorkshopLambdaSsmRole either from the “Outputs” of the

cloudformation stack or from the “Prerequisites” section.

“maxDuration”: 1 “Minutes”

“Name”: S02_Wait1

“Action type”: aws:fis:wait

“Start after”: S01_EnableLatency

duration: 1 “Minutes”

“Name”: S03_EnableStatusCode

“Action type”: aws:ssm:start-automation-execution

“Start after”: S02_Wait1

“documentArn”: the ARN found in the “Outputs” tab of the FisStackServerless CloudFormation.

“documentParameters”: Reformatted here for legibility. For the AutomationAssumeRole you will

need to insert the ARN of the FisWorkshopLambdaSsmRole either from the “Outputs” of the

cloudformation stack or from the “Prerequisites” section.

{
 "AutomationAssumeRole":
"arn:aws:iam::ACCOUNT_ID:role/FisStackServerless-
FisWorkshopLambdaSsmRole-xxxxyyyyzzzz",
 "FaultParameterValue": "{
 \"is_enabled\":true,
 \"fault_type\":\"latency\",
 \"delay\":400,
 \"error_code\":404,
 \"exception_msg\":\"Fault injected by chaos-lambda\",
 \"rate\":1
 }"
}

{
 "AutomationAssumeRole":
"arn:aws:iam::ACCOUNT_ID:role/FisStackServerless-
FisWorkshopLambdaSsmRole-xxxxyyyyzzzz",
 "FaultParameterValue": "{
 \"is_enabled\":true,

https://console.aws.amazon.com/cloudformation/home?#/stacks/outputs?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false&stackId=FisStackServerless
https://console.aws.amazon.com/cloudformation/home?#/stacks/outputs?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false&stackId=FisStackServerless

“maxDuration”: 1 “Minutes”

“Name”: S04_Wait2

“Action type”: aws:fis:wait

“Start after”: S03_EnableStatusCode

duration: 1 “Minutes”

“Name”: S05_EnableException

“Action type”: aws:ssm:start-automation-execution

“Start after”: S04_Wait2

“documentArn”: the ARN found in the “Outputs” tab of the FisStackServerless CloudFormation.

“documentParameters”: Reformatted here for legibility. For the AutomationAssumeRole you will

need to insert the ARN of the FisWorkshopLambdaSsmRole either from the “Outputs” of the

cloudformation stack or from the “Prerequisites” section.

“maxDuration”: 1 “Minutes”

“Name”: S06_Wait3

“Action type”: aws:fis:wait

“Start after”: S05_EnableException

 \"fault_type\":\"status_code\",
 \"delay\":400,
 \"error_code\":404,
 \"exception_msg\":\"Fault injected by chaos-lambda\",
 \"rate\":1
 }"
}

{
 "AutomationAssumeRole":
"arn:aws:iam::ACCOUNT_ID:role/FisStackServerless-
FisWorkshopLambdaSsmRole-xxxxyyyyzzzz",
 "FaultParameterValue": "{
 \"is_enabled\":true,
 \"fault_type\":\"exception\",
 \"delay\":400,
 \"error_code\":404,
 \"exception_msg\":\"Fault injected by chaos-lambda\",
 \"rate\":1
 }"
}

https://console.aws.amazon.com/cloudformation/home?#/stacks/outputs?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false&stackId=FisStackServerless

duration: 1 “Minutes”

“Name”: S07_DisableFaults

“Action type”: aws:ssm:start-automation-execution

“Start after”: S06_Wait3

“documentArn”: the ARN found in the “Outputs” tab of the FisStackServerless CloudFormation.

“documentParameters”: Reformatted here for legibility. For the AutomationAssumeRole you will

need to insert the ARN of the FisWorkshopLambdaSsmRole either from the “Outputs” of the

cloudformation stack or from the “Prerequisites” section.

“maxDuration”: 1 “Minutes”

Target selection
Because we are exclusively using SSM Automation documents, we don’t need to specify any targets.

Creating template without stop conditions
Select “Create experiment template” and confirm that you wish to create a template without stop conditions.

Validation procedure
As part of the workshop setup, we’ve created a “Hello World” lambda function instrumented with chaos_lambda

- see in GitHub.

We will validate our experiment by using curl in CloudShell. To help us focus on only the response message,

status code, and duration, we have created a convenient test script that will run in a loop querying the API:

{
 "AutomationAssumeRole":
"arn:aws:iam::ACCOUNT_ID:role/FisStackServerless-
FisWorkshopLambdaSsmRole-xxxxyyyyzzzz",
 "FaultParameterValue": "{
 \"is_enabled\":false,
 \"fault_type\":\"exception\",
 \"delay\":400,
 \"error_code\":404,
 \"exception_msg\":\"Fault injected by chaos-lambda\",
 \"rate\":1
 }"
}

https://console.aws.amazon.com/cloudformation/home?#/stacks/outputs?filteringStatus=active&filteringText=&viewNested=true&hideStacks=false&stackId=FisStackServerless
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/serverless/assets/fail_python_lambda/app.py
https://console.aws.amazon.com/cloudshell/home

We should see output similar to this updating about once per second:

The output shows us the response from the Lambda function Hello from Lambda! , the status code 200 and

the response time. Note the average response time as we will inject about 400ms of additional latency as part of

the experiment.

Run serverless failure injection experiment

Keep the CloudShell session running with the curl generating new information about once per second. In a new

browser window navigate to the AWS Fault Injection Simulator Console and start the experiment:

use the FisWorkshopLambdaFailure template

add a Name tag of FisWorkshopLambdaFailure1

confirm that you want to start the experiment

ensure that the “State” is Running

 Troubleshooting

Query URL for convenience
SERVERLESS_URL=$(aws cloudformation describe-stacks --stack-name
FisStackServerless --query "Stacks[*].Outputs[?
OutputKey=='ServerlessFaultApi'].OutputValue" --output text)

cd ~/environment/aws-fault-injection-simulator-
workshop/resources/templates/serverless
./test.sh ${SERVERLESS_URL}

...
Hello from Lambda! - 200 - 0.134764
Hello from Lambda! - 200 - 0.135114
Hello from Lambda! - 200 - 0.105795
...

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

https://console.aws.amazon.com/fis/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html

In the FIS window select the “Timeline” tab and hit refresh every minute or so. You should see the experiment

progressing through the individual states with green indicating finished steps, blue indicating in-progress steps,

and grey signifying steps yet to be started:

At the same time, watch the curl output in the CloudShell window. As the experiment transitions from one step

to the next you should see the output change, first to increase the latency:

then for the latency to return to normal but the response code changing to 404:

...
Hello from Lambda! - 200 - 0.541716
Hello from Lambda! - 200 - 0.513623
Hello from Lambda! - 200 - 0.546924
...

...
Hello from Lambda! - 404 - 0.113380
Hello from Lambda! - 404 - 0.274236
Hello from Lambda! - 404 - 0.136305
...

https://chaos-engineering.workshop.aws/en/030_basic_content/075_serverless/timeline.png?classes=shadow&width=60pc

and finally changing to an error message indicating an exception has occurred during code execution:

before returning to normal at the end of the experiment.

Congratulations for completing this lab! In this lab, you walked through running a multi-step experiment,

changed an SSM Parameter Store parameter, and injected faults into a Lambda function.

Learning and improving
The setup we’ve shown here provides failure modes similar to those available for instances and containers. For

teaching purposes it also has various problems that you can experiment with and use for ideation on how to

customize your own serverless fault injection libraries:

Parameter resets - In the example above, we are using FIS to control the parameter value in two separate

steps rather than setting / un-setting the parameter using a single long-running SSM document.

Therefore, if you stop the FIS experiment prematurely, the parameter will not be reset to a non-impacting

configuration. To address this you could add a RollbackValue parameter to the SSM document / FIS

template and add an onError / onCancel path to the SSM document as shown in the

aws-fis-templates-cdk GitHub examples here and here. You could even read the parameter at the start of

the SSM document run, but please consider concurrency implications if another experiment is also

changing the parameter.

Order of events - If you are simulating a failure, do you still want the Lambda code to run or not? There is

no single correct answer to this question, as it may depend on your business logic. At the time of writing, if

you use the status-code error, the Lambda code still executes but reports a failure when no failure

occurred. Similarly, in the current implementation an exception occurs before executing user code but

could be moved to occur after user code. As you create your own versions, ask yourself: what impact

would the mismatch between code execution and error reporting have on error handling in downstream

systems?

Rate limiting - As we saw in the First Experiment, small differences like terminating 50% vs. terminating

1 of an assumed 2 instances can lead to substantially different outcomes. Similarly the pattern of failures

in consecutive invocations may matter to your experiment. E.g., sometimes you may want to affect all

invocations for the duration of the fault, sometimes you may want to affect up to a certain number of

...
{"message": "Internal server error"} - 502 - 0.215665
{"message": "Internal server error"} - 502 - 0.113820
{"message": "Internal server error"} - 502 - 0.163391
...

https://github.com/adhorn/aws-fis-templates-cdk
https://github.com/adhorn/aws-fis-templates-cdk/blob/main/lib/fis-upload-ssm-docs/documents/ssma-put-config-parameterstore.yml#L63-L65
https://github.com/adhorn/aws-fis-templates-cdk/blob/main/lib/fis-upload-ssm-docs/documents/ssma-put-config-parameterstore.yml#L105-L114
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/20-experiment-console.html

invocations per time unit, and sometimes you may want to affect a certain fraction of invocations.

Sometimes you may prefer deterministic outcomes, sometimes you may prefer heuristic outcomes. As you

create your own scenarios, you can review the heuristic implementation in chaos_lambda.

https://github.com/adhorn/aws-lambda-chaos-injection/blob/a6d10af49ea823dc0d24998fe6d5f5544327fc03/chaos_lambda.py#L282
https://chaos-engineering.workshop.aws/en/030_basic_content/078_ec2_spot/020_spot_ec2_interrup.html
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults.html

API FAILURES
Cloud infrastructure is controlled by “control plane” APIs. These APIs can be used to query existing

infrastructure, e.g. to list all the EC2 instances running in a region. These APIs can also be used to create new

infrastructure or modify infrastructure configurations, e.g. an autoscaling group adding or removing instances

in response to load.

AWS achieves very high availability for control plane APIs but as Dr. Werner Vogels reminds us “Everything fails

all the time” and our code needs to engineer for resilience against possible failures. In order to ensure that our

resilience measures are effective, AWS Fault Injection Service (FIS) allows simulating failures by narrowly

targeting individual execution roles. For this module we will be deploying an Amazon API Gateway integrated

with a Lambda function. Within the Lambda function, we will be using the DescribeInstances action for the EC2

service API to demonstrate how API failures can impact integrated applications.

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/ApiFailures.png?classes=shadow&width=60pc

FIS provides three error scenarios:

API is partially unavailable (intermittent failures due to throttling)

API is fully unavailable (all API calls fail)

API returns an error message on invocation

In this section we will demonstrate API throttling and unavailability by using FIS to to inject failures into AWS

API calls by targeting an IAM role and the associated resources that leverage that role for permissions.

Only EC2 Service Actions are supported at this time.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/075_serverless.html
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonec2.html

API THROTTLING

Experiment idea
AWS throttles API requests for each AWS account on a per-region basis. Amazon does this to help ensure the

performance of all services, and to ensure fair usage for all AWS customers.

As an AWS account grows in resources and usage, API usage is likely to grow as well, potentially exceeding

quotas. As such, handling API throttling events is an important design consideration as you build applications

that rely on the availablility of AWS APIs.

AWS developers considered this when building their SDKs. Each AWS SDK implements automatic retry logic.

Our experiment looks as follows:

Given: We are using AWS SDKs in a serverless application

Hypothesis: The SDK will manage AWS API retries during API throttling conditions and eventually (in time

for dependent services) return a successful response.

Environment setup
We will be using a simple serverless application that returns the response of an ec2:DescribeInstances API

call. A Lambda function will run our serverless application and an API Gateway will be used to proxy the request

from the client to the Lambda function.

CloudFormation resources
As part of resource setup this workshop created the required resources using the api-throttling.yaml file

in the GitHub repo.

Navigate to the CloudFormation console and in the stack outputs note the values of apiGatewayInvokeUrl

and iamRole .

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/throttling.html#throttling-monitor
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/api-failures/api-throttling.yaml
https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringText=FisApiFailureThrottling&viewNested=true&hideStacks=false&filteringStatus=active

Experiment setup

General template setup

We will be creating a new experiment template in FIS

Create a new experiment template

Add “Name” tag of FisWorkshopApiThrottle

Add “Description” of ApiThrottling

Select FisWorkshopServiceRole as “execution role”

Target Selection
In the target selection, click add target.

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling/Stack-outputs.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Inside the target modal, enter FISWorkshopApiLambda for “Name” and select aws:iam:role for “Resource

type”. The “Target method” should be left as Resource IDs and then enter the role value that you obtained

from the Cloudformation stack output.

The selection mode should read as “All”. When done select “Save”.

Action definition
With a target defined we need define the action to take. Scroll to the “Actions” section and select “Add Action”

Type APIThrottle for" Name". For “Action type”, select aws:fis:inject-api-throttle-error . Select the

target you created in the previous section. It should read FISWorkshopApiLambda .

In the Action parameters section set the following fields:

duration: Minutes 3

operations: DescribeInstances

percentage: 75

service: ec2

Hit “Save” and then select “Create experiment template”.

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling/throttle-target.en.png?classes=shadow&width=60pc

Creating template without stop conditions
Confirm that you wish to create the template without stop condition

Validation procedure
Before we validate our hypothesis, we need to understand what normal state is. We have read that the SDK

automatically handles retries, but what impact will adding throttling to our environment have and how will we

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling/throttle-action.en.png?classes=shadow&width=60pc

be able to measure that impact?

For that, we will be using Curl to make a request to the url endpoint that was created during the environment

setup. Use the apiGatewayInvokeUrl you noted from the CloudFormation stack outputs earlier, e.g.:

You will see a result that looks similar to:

{'InstanceIds': ['i-036173389128de59b'], 'RetryAttempts': 0}

RetryAttempts are hopefully at 0 in your test. Any number above 0 indicates that the API call received an

error response.

For reference, the relavant part of our application that we are testing reads:

THROTTLE_URL=[replace with apiGatewayInvokeUrl]
curl ${THROTTLE_URL}

The list of Ids will be different in your environment depending on how many ec2 instances are running.

 Note

import boto3

ec2 = boto3.client('ec2')

def describe_instances():
 resp = ec2.describe_instances(
 Filters=[{
 'Name': 'instance-state-name',
 'Values': ['running']
 }]
)

 instance_ids = [i['Instances'][0].get('InstanceId') for i in
resp['Reservations']]

 return {
 "InstanceIds": instance_ids,
 "RetryAttempts": resp['ResponseMetadata'].get('RetryAttempts')
 }

https://curl.se/

Run FIS experiment
Start the experiment
Within FIS

Select the FisWorkshopApiThrottle experiment template you created above

Select start experiment

Add a Name tag of FisWorkshopThrottleRun1

Confirm that you want to start an experiment

Going back to the curl command, lets go ahead and fire off another request. Is the RetryAttempts value still at

0? Remember that we set throttling to 75% in our experiment template so it is possible that the response was

the same as the previous attempt. Lets run several more requests to see if we notice any difference when we

increase the volume of traffic.

Did you see a failure message or an increase in retries? Did you notice any difference in response times?

Learning and Improving
In this scenario, a Lambda function is using the AWS Boto3 SDK to integrate with the EC2 DescribeInstances API.

By default, it will retry an API call 5 times before raising the error. You can reference Boto3 documentantion for

complete details.

Remember we set our experiment to throttle at a rate of 75% ? From our curl calls, not all requests failed, but its

likely you had at least 1 error. During times of high volume many more requests would have failed. To address

these failures, we are going to increase the amount of retries to raise our chance of success.

Open up the Lambda console. Navigate to the fis-workshop-api-errors-throttling function and

browse to the “Code source” section. We will use the embedded editor to update our code.

Add the following block under the import boto3 line. Be sure to remove the existing ec2 variable declaration.

for i in {1..10}
do
 curl ${THROTTLE_URL}
done

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/retries.html
https://console.aws.amazon.com/lambda/home

Your final function should look like:

Click the “Deploy” button above the editor

Re-run experiment
Back in the FIS console, start a new experiment from the same template as earlier. Tag this experiment with

“Name” FisWorkshopThrottleRun2 and start the experiment.

Re-run the same loop curl command. Do you see retry counts >= 5? Did you receive any errors or timeouts?

Conclusion
Even after updating our configuration to retry up to 10 times, we likely still saw at least 1 error from our

multiple requests to our endpoint. Why did this happen? Extending our retries in our library only considers the

from botocore.config import Config

config = Config(
 retries = {
 'max_attempts': 10,
 'mode': 'standard'
 }
)

ec2 = boto3.client('ec2', config=config)

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling/lambda-retry.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#ExperimentTemplates

integration between our application code and the AWS EC2 api. It does not account for the other pieces of our

architecture that may be impacted up increasing the retry account. In this example, we also need to consider the

maximum time our Lambda function is configured to run (30 seconds), and the hard limit our API Gateway

requires a response from our Lambda function (30 seconds). By increasing the retry count, we also increased the

time it would take for the AWS SDK to complete the call or return a response.

This is a great example of the tradeoff of increasing retries. Sometimes it makes sense to increase this value to

ensure completion of a certain action. For example, in background batch jobs where response times are not as

critical, increasing retries might provide a mechanism that results in less failures during high throttling rates. In

contrast, in applications that benefit from faster responses, such as synchrounous web application integrations,

it might make more sense to reduce the retry count to handle failures sooner.

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults.html
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors.html

API UNAVAILABLE

Experiment idea
In the last module we discussed handling AWS API throtting. In that module our example showed an application

that read data. What about a scenario that includes writing, updating, or deleting data. Does

increasing retries apply here as well? In this module we are going to simulate unavailability of an AWS API and

how that relates to mutating calls.

Given: We are using AWS SDKs in a serverless application

Hypothesis: The SDK will manage AWS API retries during high rates of API errors and eventually (in time

for dependent services) return a successful response.

Environment setup
The same serverless application approach will be used in this module to return the same
ec2:DescribeInstances API call. In this module, we are also adding a capability to destroy instances which

represents our mutation call. We will be updating our existing CloudFormation stack to deploy additional code

to our lambda function as well as updates to our Amazon API Gateway (API Gateway). We will also be creating

an SQS queue and a t3.micro ec2 instance.

CloudFormation resources
As part of resource setup this workshop created the required resources using the api-unavailable.yaml file

in the GitHub repo.

This workshop will not impact any ec2 instances outside of this module. An IAM role is used to only allow

terminate instances against the instance ID deployed by the CloudFormation stack. An additional safeguard

is also included in the application’s logic.

 Note

https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/templates/api-failures/api-unavailable.yaml

Navigate to the CloudFormation console and in the stack outputs note the values of apiGatewayInvokeUrl ,
iamRole and InstancdeId . The additional InstanceId value is the ID of an EC2 instance that was created

specifically for the instance termination flow described below.

Experiment setup

General template setup

General template setup
We will be creating a new experiment template in FIS

Create a new experiment template

Add “Name” tag of FisWorkshopUnavailable

Add “Description” of ApiUnavailable

Select FisWorkshopServiceRole as “execution role”

We are assuming that you know how to set up a basic FIS experiment and will focus on things specific to

this experiment. If you need a refresher see the previous First Experiment section.

 Note

This section relies on the FisWorkshopServiceRole role created in the Con�guring Permissions
section. You can create this role by pasting this into CloudShell:
source ~/environment/aws-fault-injection-simulator-workshop/resources/code/scripts/cheat.

 Note

https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringText=FisApiFailureUnavailable&viewNested=true&hideStacks=false&filteringStatus=active
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors/Stack-outputs.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/10-permissions.html

Target Selection
In the target selection, click add target.

Inside the target modal, enter FISWorkshopApiLambda for “Name” and select aws:iam:role for “Resource

type”. The “Target method” should be left as Resource IDs and then enter the role value that you obtained

from the CloudFormation stack output.

The selection mode should read as “All”. When done hit “Save”.

Action definition
With a target defined we need define the action to take. Scroll to the “Actions” section and select “Add Action”

Type APIError for “Name”. For “Action type”, select aws:fis:inject-api-unavailble-error . Select the

target you created in the previous section. It should read FISWorkshopApiLambda .

In the Action parameters section set the following fields:

When selecting the IAM role, ensure you only add the role that includes lambda in the name

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors/error-target.en.png?classes=shadow&width=60pc

duration: Minutes 3

operations: DescribeInstances,TerminateInstances

percentage: 100

service: ec2

Hit “Save” and then select “Create expiriment template”.

Creating template without stop conditions

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors/error-action.en.png?classes=shadow&width=60pc

Confirm that you wish to create the template without stop condition

Validation Procedure
Just as we did in the last module, we will use curl to validate our environment prior to starting the experiment.

Run the curl command with the new URL you noted from the CloudFormation stack:

This should result in the same response as the previous module

In the list of IDs displayed you should see the ID you noted from the outputs section of the CloudFormation

stack. When we run the experiment, we will use a different endpoint that will result in a mutation call and issue a

termination of this instance.

Run FIS experiment
Start the experiment
Within FIS

Select the FisWorkshopApiUnavailable experiment template you created above

Select start experiment

Add a Name tag of FisWorkshopUnavailableRun1

Confirm that you want to start an experiment

Instead of issuing the same request, we are going to add the /terminate path to our API Gateway url. This path

is configured to mock an endpoint that will terminate the ec2 instance that was created for this experiment.

UNAVAILABLE_URL=[replace with apiGatewayInvokeUrl]
curl ${UNAVAILABLE_URL}

{'InstanceIds': ['i-0823fd3823e25afd3', 'i-036173389128de59b'], 'RetryAttempts':
0}

With the experiment running, we should receive an error:

{"message": "Internal server error"}

While the experiment runs and we continue to call the terminate endpoint, we will continue to receive this error.

During service outages that result in 100% unavailability errors, all calls will fail to complete.

Learning and Improving
In situations where APIs are unreliable or you want to minimize the scope of the impact during API

unavailability, you may want to consider using asynchronous patterns to process incoming requests. So far in

this module, all of the testing has been using synchronous call patterns.

Asynchronous Design Patterns allow for faster client responses and the ability to limit the impact of call

failures. Implementing queues and asynchronous processing of requests seperates the processing of those

requests from the injestion process.

In this environment, we have added an Amazon Simple Queueing Service (SQS) queue to store the request

for asynchronous processing. Instead of our request being sent directly to the lambda function for processing,

we will have our API Gateway write directly to the SQS queue. In this pattern, the lambda function will attempt

to process this request from the queue, and will continue to retry asynchronously until the mutating call

completes.

In FIS ensure the experiment is still running. If not, start a new experiment with Name tag
FisWorkshopUnavailableRun2 .

When the experiment begins running issue a new curl request to the /terminate path, but this time with a
POST action. HTTP POST methods are usually used for mutating actions.

Even with the experiment running you should receive a response that looks similar to

TERMINATION_URL=${UNAVAILABLE_URL}/terminate
curl ${TERMINATION_URL}

curl -X POST curl ${TERMINATION_URL}

{"SendMessageResponse":{"ResponseMetadata":{"RequestId":"8cc4bb0a-6dbf-595b-995d-
e2ac3d9e3622"},"SendMessageResult":

https://aws.amazon.com/blogs/compute/managing-backend-requests-and-frontend-notifications-in-serverless-web-apps/
https://aws.amazon.com/sqs/
https://console.aws.amazon.com/fis/home

This response was generated from the sqs:SendMessage API initiated from our API Gateway and not affected

by the specific EC2 throttling.

To confirm the message was sent to the queue, navigae to the sqs console and the click “Queues” > “fis-

workshop-api-queue”

Under the “Monitoring” tab you should see a count in the “Number of Messages Received”

When the experiment completes after running 3 minutes, you can verify that the instance with the ID from the

stack output is in the process of terminating.

Conclusion
In this module, we used an SQS queue message to ensure that the TerminateInstances API call would be retried

after the fault injection to demonstrate how you can use asynchronous API patterns to mitigate API failures.

{"MD5OfMessageAttributes":null,"MD5OfMessageBody":"74ed192a7c4e541bf34668d1e8ef0027
b5f9-48ee-8511-222144fbef01","SequenceNumber":null}}}

https://console.aws.amazon.com/sqs/v2/home
https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors/sqs-messages.en.png?classes=shadow&width=60pc

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/010_api_throttling.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd.html

RECURRENT EXPERIMENTS -

CI/CD
So far we have discussed iterating through a cycle of:

establish baseline performance data

develop new hypothesis

run experiment

verify hypothesis

improve based on findings

In this section we will address use cases in which we want test and existing hypothesis multiple times. Common

examples for this are:

ensure the system remains resilient after changes (CI/CD)

ensure detection and recovery continue to work (Disaster Recovery)

“Experiment” or “Test”?
A deep dive into testing terminology is outside the scope of this workshop but for readers familiar with the field

we want to point out some analogies and provide some considerations:

Human-led processes
The hypothesis based cycle we’ve discussed up to this point is very similar to “Exploratory Testing” and

“Acceptance Testing” in the sense that it steps away from purely validating that something “works as intended”.

Just like “Exploratory Testing” and “Acceptance Testing”, the human-led fault injection process should allow for

human observation to adjust the “intent”.

Machine-led processes

Automating fault injection based on prior validation of a hypothesis is analogous to the wide range automated

and recurrent tests such as:

unit tests

regression tests

integration tests

load tests

Just like for other tests, it is important to consider the scope and duration of recurrent fault injection

experiments. Because fault injection experiments generally expose issues across a large number of linked

systems they will typically require extended run times to ensure sufficient data collection. In order to not slow

down developers they should be run in later stages of CI/CD pipelines.

Architecture
For demonstration purposes we have made the following choices but there are many other ways to build

valuable automation:

CI/CD - We focus on running experiments in a CI/CD pipeline with the argument that it’s easy to slow

down a pipeline to run only once a year but hard to speed up a manual process to run multiple times every

day.

One repo - We use a single repository to host the definition of the pipeline, the infrastructure, and fault

injection template. We do this to show how one would co-version all components of a system but whether

this is a good idea for you depends on your governance processes and each of the parts could easily be

independent.

The setup looks like this:

In the next section we will:

create a code repository and a pipeline using AWS CDK

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/Continuous-Stress.en.png?classes=shadow&width=60pc

trigger the pipeline to instantiate sample infrastructure

trigger the pipeline to update infrastructure and perform fault injection

https://chaos-engineering.workshop.aws/en/030_basic_content/076_api_faults/020_api_errors.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/010_setup.html

SETUP
In this section, we will integrate an AWS Fault Injection Simulator experiment with a CI/CD pipeline.

Create The Pipeline
We will use the AWS CDK to provision our CI/CD pipeline.

If you have not done so yet, in your Cloud9 terminal clone the repository for the workshop.

Next change directory into the CI/CD CDK project and restore the npm packages used for the pipeline.

Finally lets deploy our stack.

The stack will take a few minutes to complete. You can monitor the progress from the CloudFormation Console.

mkdir -p ~/environment
cd ~/environment
git clone https://github.com/aws-samples/aws-fault-injection-simulator-
workshop.git

cd ~/environment/aws-fault-injection-simulator-workshop/resources/code/cdk/cicd/

Make sure we use right npm version
sudo npm install -g npm@7

Pull relevant npm packages
npm install

use local version of cdk
npx cdk deploy --require-approval never

Once stack creation is complete, continue to the next section.

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup.html

REVIEW THE PIPELINE
Lets review the components our previous section created.

CodeCommit
Open the AWS CodeCommit Console. You should see the newly created FIS_Workshop repository.

CodeBuild
Open the AWS CodeBuild Console. Note: You may have to select a region at the top right. You should see the
FIS_Workshop build project.

https://console.aws.amazon.com/codesuite/codecommit/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup/codecommit.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/codesuite/codebuild/projects?#
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup/codebuild.en.png?classes=shadow&width=60pc

CodePipeline
Open the AWS CodePipeline Console. You should now see the FIS_Workshop pipeline.

To review, click on the pipeline name.

This pipeline has 3 stages.

1. Source: This stage will trigger the pipeline when a commit occurs in our repository.

2. Infrastructure_Provisioning: This stage use an AWS CloudFormation template from our repo to create

our test infrastructure and create our experiment templates.

3. FIS: This stage will use the AWS CodeBuild project to make an API call to run our experiment and monitor

the results.

The pipeline will start in a failed state, since we have not uploaded any files to our repository.

https://console.aws.amazon.com/codesuite/codepipeline/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup/codepipeline.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup/codepipelinedetails1.en.png?classes=shadow&width=60pc

Continue to the next section to start the pipeline.

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup/codepipelinedetails2.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/010_setup.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline.html

START THE PIPELINE
The pipeline is configured to run every time new code is committed to our AWS CodeCommit repository. To

start our pipeline we need to commit files to our repository.

Update repository

Adding files to our repository is a 3-step process:

create a local copy of our repository (clone)

add or update files and save them (add / commit)

upload them to our repo (push)

Clone
Open the AWS Code Commit Console. Click the HTTPS link next to the FIS_Workshop repository name to

examine the clone URL.

To use IAM credentials in Cloudshell/Cloud9 we will configure the git credential helper:

In your CloudShell/Cloud9 terminal clone the repository (for convenience, the commands below show how to

query the clone URL):

The instructions below are designed for use with Cloud9. On Cloud9 git access is enabled via the IAM role

associated with the Cloud9 instance. If you would like to access the AWS CodeCommit repository from your

local machine, review the getting started documentation.

 Note

git config --global credential.helper '!aws codecommit credential-helper $@'
git config --global credential.UseHttpPath true

https://console.aws.amazon.com/codesuite/codecommit/home?#Home
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-unixes.html#setting-up-https-unixes-credential-helper
https://docs.aws.amazon.com/codecommit/latest/userguide/getting-started.html

Add/Update
Copy the sample files from the resources section into the newly cloned repository.

Since this is the first time working with code commit, we should setup our username and email for the commit

history. Run the below commands, be sure to replace the details with your information.

Finally add all the files in the directory, and commit them as a new version with a label of
Uploading Workshop files .

Push
Finally push the files to copy them to our repository and to trigger the pipeline:

View Progress

GIT_URL=$(aws codecommit get-repository --repository-name FIS_Workshop --query
"repositoryMetadata.cloneUrlHttp" --output text)
cd ~/environment
git clone ${GIT_URL}
cd FIS_Workshop

cp ~/environment/aws-fault-injection-simulator-
workshop/resources/code/cdk/cicd/resources/* ~/environment/FIS_Workshop/

git config --global user.name "Your Name"
git config --global user.email you@example.com

git add .
git commit -am "Uploading Workshop files"

git push -u

After you push the files, the pipeline will start. Open the AWS CodePipeline Console. You should now see the
FIS_Workshop pipeline is in progress. Click on the pipeline name to view the step details.

The pipeline runs in sequence, first running the Wait for the “Infrastructure_Provisioning” step, and on success

starting the “FIS” step.

You can monitor the progress of our experiment either from the CodePipeline details page or from the AWS FIS

console.

Navigate to the FIS console. Click on the “Experiment ID” of the running experiment. You should see the

experiment in a running status:

If you expand the “instanceActions / aws:ec2:stop-instance” card (as shown above) you can see that the

experiment stops the test instance, waits for 1minute, then restarts the instance.

https://console.aws.amazon.com/codesuite/codepipeline/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline/codepipelineinprogress.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#Experiments
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline/fisrunning.en.png?classes=shadow&width=60pc

Wait a couple minutes for the instance to restart and the experiment to finish and refresh the page. You should

see the experiment is completed successfully.

Finally navigate back to the AWS CodePipeline Console. You should also see that your pipeline has completed

successfully.

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline/fissuccessfully.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/codesuite/codepipeline/home?#Home

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline/codepipelinesuccessfully.en.png?classes=shadow&width=60pc

Congratulations! You have successfully integrated a Fault Injection Simulator Experiment into a CI/CD pipeline.

In this scenario, we completed a happy path to ensure that our infrastructure and experiment completed

without error. Continue on to the next section, where we will deploy a new version of our CloudFormation

template and force our experiment (and pipeline) to fail.

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/020_review_setup.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline.html

FORCE A PIPELINE ERROR
In this section we will update the experiment template defined in our repository to contain a stop condition that

will prevent or abort experiment execution if our cloudwatch alarm is in ALARM state.

We will then push the new revision to our repository which will trigger a new pipeline run, update our

experiment template and execute our experiment template. Then while our pipeline is running, we will force an

ALARM state. This will lead to a failure of the AWS FIS experiment and in turn to a failure of the pipeline.

Change the Infrastructure Template

We will be making a change to our CloudFormation template that creates our EC2 Instance and defines our

experiment.

Open the AWS CodeCommit Console and select the FIS_Workshop repository. Click on
cfn_fis_demos.yaml and select “Edit” in the upper right hand corner. Edit the file as shown below to enable

am AWS CloudWatch alarm as a Stop Condition.

Before:

In this section we are directly updating the file in AWS CodeCommit. This is equivalent to the add /
commit / push process that we performed in the previous section and creates a new revision. To

subsequently synchronize the copy on your Cloud9 instance you would git pull

 Note

https://console.aws.amazon.com/codesuite/codecommit/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline/sourcebefore.en.png?classes=shadow&width=60pc

After:

Finally, enter your name and email at the bottom of the page and select “Commit changes”. Just like our prior
git push this will trigger the pipeline to start.

Forcing an Error
To trigger the stop condition and simulate a failed experiment, we will manually set our CloudWatch alarm to an

error state.

Navigate back to the AWS CodePipeline Console and watch the pipeline status. Once the FIS section changes

to in progress, run the below command from your Cloud9 instance to force an error.

By setting this CloudWatch alarm to an error state, this will stop a running experiment or prevent the

experiment from starting.

aws cloudwatch set-alarm-state --alarm-name "NetworkInAbnormal" --state-value
"ALARM" --state-reason "testing FIS"

We are artificially changing the alarm state. The alarm will reset to OK state after a short period of time. If

you want to persist the ALARM state for longer try running the command in a loop.

 Note

https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline/sourceafter.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/codesuite/codepipeline/home?#Home

To verify the Experiment was stopped, navigate to the FIS console. You should see that your latest experiment

has failed due to the stop condition.

To verify that this resulted in a failed pipeline execution navigate back to the AWS CodePipeline Console. You

should see that your pipeline has also failed do to the experiment stopping.

https://console.aws.amazon.com/fis/home?#Experiments
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline/fisfail.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/codesuite/codepipeline/home?#Home
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline/codepipelinefail.en.png?classes=shadow&width=60pc

Congratulations! You have built a CI/CD pipeline, instrumented it with an AWS FIS experiment, and

demonstrated both successful and failed experiment outcomes.

Next steps
From this starting point you can explore improvements like:

add more pipeline stages - In our pipeline the experiment is the last step and does not gate progress. In

a production scenario there might be a additional steps that would only run if the AWS FIS experiment

succeeds. Try adding a pipeline stage and verify that it only runs if the experiment succeeds.

explore alternative ways to change the template - in this example we are using an AWS

CloudFormation template to define the experiment template as shown in the

Experiment (CloudFormation) section. Could you store the experiment template as a separate file and

update it using the CLI as show in Experiment (CLI) or expand the runExperiment.py script (see

code in GitHub)?

trigger AWS CloudWatch alarm from experiment template - AWS FIS templates allow you to run a

sequence of steps, try triggering the alarm from a step in the template. Hint: you could do this via the

AWS Sytems Manager integration/en/030_basic_content/040_ssm.html.

set up a real alarm

https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/40-experiment-cfn.html
https://chaos-engineering.workshop.aws/en/030_basic_content/030_basic_experiment/30-experiment-cli.html
https://github.com/aws-samples/aws-fault-injection-simulator-workshop/blob/main/resources/code/cdk/cicd/resources/runExperiment.py
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/030_start_pipeline.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios.html

COMMON SCENARIOS
This section covers common scenarios customers ask about.

Targeting on-prem instances

Simulating AZ Issues

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/020_targeting_hybrid_instances.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues.html
https://chaos-engineering.workshop.aws/en/030_basic_content/080_cicd/040_fail_pipeline.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/020_targeting_hybrid_instances.html

TARGETING ON-PREM INSTANCES
Some customers use AWS Systems Manager for hybrid environments to manage both on-prem and cloud

resources and would like to run instance-based fault injection actions against on-prem resources.

In this section we discuss how to use SSM automation (SSMA) to target on-prem instances with the same SSM

runbooks used for EC2 instances.

For illustration we will assume that you have a hybrid activation of two on-prem Raspberry Pi instances and the

managed instances have been tagged in SSM FleetManager with tag OS / value Raspbian and tag Version

/ value 2 and 4 respectively:

Some aspects of using hybrid instances may require activation of “advanced” tier. Please be aware that

enabling advanced tier may incur substantial additional costs.

 Warning

For this section we assume that you already have a hybrid instance setup.

 Note

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-managedinstances.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/tagging-managed-instances.html
https://aws.amazon.com/systems-manager/pricing/#On-Premises_Instance_Management

Setup
To replicate the Linux CPU Stress Experiment on the on-prem instance we will use a variation on the

FIS SSM Start Automation Setup.

Create SSM role
First we will need an SSM execution role to enable running the on-prem automation:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAsgDocument",

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/020_targeting_hybrid_instances/stresstest-with-runbook-hybrid.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/020_linux_stress.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html

with an SSM assume role trust policy:

To create a role, save the two JSON blocks above into files named iam-hybrid-demo-policy.json and
iam-hybrid-demo-trust.json and run the following CLI commands to create a role named
FisWorkshopSsmHybridDemoRole :

 "Effect": "Allow",
 "Action": [
 "ssm:DescribeInstanceInformation",
 "ssm:ListCommands",
 "ssm:ListCommandInvocations",
 "ssm:SendCommand"],
 "Resource": "*"
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "Service": "ssm.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
}

Set required variables
REGION=$(aws ec2 describe-availability-zones --output text --query
'AvailabilityZones[0].[RegionName]')
ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')

cd ~/environment/aws-fault-injection-simulator-workshop
cd
workshop/content/030_basic_content/090_scenarios/020_targeting_hybrid_instances

HYBRID_ROLE_NAME=FisWorkshopSsmHybridDemoRole

aws iam create-role \
 --role-name ${HYBRID_ROLE_NAME} \
 --assume-role-policy-document file://iam-hybrid-demo-trust.json

aws iam put-role-policy \
 --role-name ${HYBRID_ROLE_NAME} \
 --policy-name ${HYBRID_ROLE_NAME} \

Update FIS service role
Update the FisWorkshopServiceRole as described in the FIS SSM Start Automation Setup section, using

the role ARN from the statement above. If you had previously performed that update note that you can add

multiple role ARNs so the resulting AllowFisToPassListedRolesToSsm “Sid” would look like this:

Create SSM document
The core of this approach is to select managed instances targets using SSM and then execute runbooks against

the selected instances. The following parameters help target instances and define the fault injection to run:

Filters - defines the filter parameter for the SSM DescribeInstanceInformation API. By default this is

set to
[{"Key":"PingStatus","Values":["Online"]},{"Key":"ResourceType","Values":["ManagedInst

which will target all running managed instances. Below we will show you how to instead target instances

based on FleetManager tags by adding {"Key":"tag:OS","Values":["Raspbian"]} .

DocumentName - the name of an SSM runbook document to be called from this automation document

after instance selection.

DocumentParameters - Parameters to pass to the document. In our example below this will be the stress

duration.

 --policy-document file://iam-hybrid-demo-policy.json

Export ARN for later
HYBRID_ROLE_ARN=arn:aws:iam::${ACCOUNT_ID}:role/${HYBRID_ROLE_NAME}
echo ${HYBRID_ROLE_ARN}

{
 "Sid": "AllowFisToPassListedRolesToSsm",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "PREVIOUS_ROLE_ARN_HERE",
 "PLACE_NEW_ROLE_ARN_HERE"
]
 }

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_DescribeInstanceInformation.html

description: Run SSM command on SSM hybrid instances
schemaVersion: '0.3'
assumeRole: "{{ AutomationAssumeRole }}"
parameters:
 AutomationAssumeRole:
 type: String
 description: "The ARN of the role that allows Automation to perform
 the actions on your behalf."
 DocumentName:
 type: String
 description: "SSM document name to run on hybrid instances"
 DocumentParameters:
 type: StringMap
 description: "Parameters to pass to SSM document run on hybrid instances
(string to deal with FIS serialization bug)"
 Filters:
 # Normally this would be a MapList.
 # Currently passing as string and converting to deal with some serialization
complexity.
 type: String
 description: '(Optional) Selector JSON for DescribeInstanceInformation as
described in CLI/API docs. Default [{"Key":"PingStatus","Values":["Online"]},
{"Key":"ResourceType","Values":["ManagedInstance"]}]'
 default: "[{\"Key\":\"PingStatus\",\"Values\":[\"Online\"]},
{\"Key\":\"ResourceType\",\"Values\":[\"ManagedInstance\"]}]"
mainSteps:
--
Unpack a JSON string to JSON to deal with serialization complexity
- name: FormatConverter
 action: aws:executeScript
 onFailure: 'step:ExitHook'
 onCancel: 'step:ExitHook'
 timeoutSeconds: 60
 inputs:
 Runtime: "python3.6"
 Handler: "script_handler"
 InputPayload:
 JSONstring: "{{Filters}}"
 Script: |
 import json
 def script_handler(events, context):
 return json.loads(events.get("JSONstring","{}"))
 outputs:
 - Name: Filters
 Selector: "$.Payload"
 Type: MapList
--
Select managed instances. Note that you can filter EITHER on tags
OR on instance properties but not both.
- name: SelectHybridInstances
 action: aws:executeAwsApi
 onFailure: 'step:ExitHook'
 onCancel: 'step:ExitHook'

Use the following CLI command to create the SSM document and export the document ARN:

 timeoutSeconds: 60
 inputs:
 Service: ssm
 Api: DescribeInstanceInformation
 Filters: "{{ FormatConverter.Filters }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
--
Execute the DocumentName / DocumentParameters from inputs on the
instances selected in previous step.
- name: DoStuff
 action: 'aws:runCommand'
 inputs:
 DocumentName: "{{ DocumentName }}"
 InstanceIds:
 - '{{SelectHybridInstances.InstanceIds}}'
 Parameters: "{{ DocumentParameters}}"
--
NOOP exit point to allow skipping steps if selection fails
- name: ExitHook
 action: aws:sleep
 inputs:
 Duration: PT1S

cd ~/environment/aws-fault-injection-simulator-workshop
cd
workshop/content/030_basic_content/090_scenarios/020_targeting_hybrid_instances

HYBRID_DOCUMENT_NAME=TargetHybridInstances

Create SSM document
aws ssm create-document \
 --name ${HYBRID_DOCUMENT_NAME} \
 --document-format YAML \
 --document-type Automation \
 --content file://hybrid-target.yaml

Construct ARN
REGION=$(aws ec2 describe-availability-zones --output text --query
'AvailabilityZones[0].[RegionName]')
ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')
HYBRID_DOCUMENT_ARN=arn:aws:ssm:${REGION}:${ACCOUNT_ID}:document/${HYBRID_DOCUMENT_

echo $HYBRID_DOCUMENT_ARN

Assuming you have managed instances you can validate the SSM document by invoking it directly like this.

and

Once started you can examine the progress by navigating to the SSM Automation console and selecting the

execution ID from the invocation.

Create FIS template
As we saw in the Create FIS Experiment Template subsecton of FIS SSM Start Automation Setup, we need

to substitute some ARN values into the FIS template. For convenience and to make the JSON string escaping

easier we will do this with some shell substitutions. First we set the relevant environment variables:

Invocation on the command line requires additional square brackets around the individual parameter values

independent of the parameter type defined in the SSM document. Complex parameters passed through to

SSM documents may additionally require escaping quotes as show below

 Note

Select all running managed instances (default with no Filters set)
aws ssm start-automation-execution \
 --document-name "TargetHybridInstances" \
 --parameters '{"AutomationAssumeRole":["'${HYBRID_ROLE_ARN}'"],"DocumentName":
["AWSFIS-Run-CPU-Stress"],"DocumentParameters":["{ \"DurationSeconds\": \"120\"
}"],"Filters":["[{\"Key\":\"PingStatus\",\"Values\":[\"Online\"]},
{\"Key\":\"ResourceType\",\"Values\":[\"ManagedInstance\"]}]"] }'

Select all instances with tags OS=Raspbian and Version=4
aws ssm start-automation-execution \
 --document-name "TargetHybridInstances" \
 --parameters '{"AutomationAssumeRole":["'${HYBRID_ROLE_ARN}'"],"DocumentName":
["AWSFIS-Run-CPU-Stress"],"DocumentParameters":["{ \"DurationSeconds\": \"120\"
}"],"Filters":["[{\"Key\":\"tag:OS\",\"Values\":[\"Raspbian\"]},
{\"Key\":\"tag:Version\",\"Values\":[\"4\"]}]"] }'

ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')
REGION=$(aws ec2 describe-availability-zones --output text --query
'AvailabilityZones[0].[RegionName]')

https://console.aws.amazon.com/systems-manager/automation/executions
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html

Then we use a bash trick to substitute them into our FIS template and write it to disk as
fis-hybrid-target.json .

FIS_WORKSHOP_ROLE_ARN=arn:aws:iam::${ACCOUNT_ID}:role/FisWorkshopServiceRole
LINUX_STRESS_ARN=arn:aws:ssm:${REGION}::document/AWSFIS-Run-CPU-Stress

Because we are doing an additional string evaluation we need to add extra escape characters to the source

string leading to the 5 backslashes. See the final FIS template for a more human readable result with one

level of escapes removed.

 Note

cat > fis-hybrid-target.json <<EOT
{
 "description": "Run stress on managed instance",
 "stopConditions": [
 {
 "source": "none"
 }
],
 "targets": {
 },
 "actions": {
 "terminateInstances": {
 "actionId": "aws:ssm:start-automation-execution",
 "description": "Managed instances run-command CPU Stress",
 "parameters": {
 "maxDuration": "PT3M",
 "documentArn": "${HYBRID_DOCUMENT_ARN}",
 "documentParameters": "{ \"AutomationAssumeRole\":
\"${HYBRID_ROLE_ARN}\", \"DocumentName\": \"${LINUX_STRESS_ARN}\",
\"DocumentParameters\": \"{ \\\\\"DurationSeconds\\\\\": \\\\\"120\\\\\" }\",
\"Filters\": \"[{\\\\\"Key\\\\\":\\\\\"tag:OS\\\\\",\\\\\"Values\\\\\":
[\\\\\"Raspbian\\\\\"]}]\" }"
 },
 "targets": {
 }
 }
 },
 "roleArn": "${FIS_WORKSHOP_ROLE_ARN}",
 "tags": {
 "Name": "ManagedInstanceCpuStress"
 }
}
EOT

Check the template content in fis-hybrid-target.json to confirm that the Role and Document ARNs have

been filled in, then create the FIS experiment template:

Running experiments
Targeting all running hybrid instances
SSM allows targeting instances based on properties returned by the SSM DescribeInstanceInformation API.

On prem instances are identified by a ResourceType of ManagedInstance . Additionally we might only want

to include currently running instances identified by a PingStatus of Online .

Navigate to the FIS experiment template console, select the experiment template ID created above, and edit

the "Filters" statement in the documentParameters entry:

aws fis create-experiment-template \
 --cli-input-json file://fis-hybrid-target.json

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_DescribeInstanceInformation.html
https://console.aws.amazon.com/fis/home?#ExperimentTemplates

to read:

Targeting specific managed instances
SSM allows you to target instances based on tag values. The default version of the template will target all

instances tagged with OS value Raspbian . We could furter refine that to only target instances with Version

value 4 .

Navigate to the FIS experiment template console, select the experiment template ID created above, and edit

the "Filters" statement in the documentParameters entry:

"Filters": "[{\"Key\":\"PingStatus\",\"Values\":[\"Online\"]},
{\"Key\":\"ResourceType\",\"Values\":[\"ManagedInstance\"]}]"

https://chaos-engineering.workshop.aws/edit-filter-location.png?classes=shadow&width=60pc
https://console.aws.amazon.com/fis/home?#ExperimentTemplates

to read:

Learnings and next steps
The approach outline above provides a generic way to run SSM documents on on-prem managed instances. You

may want to expand the SSMA document to suit your needs, e.g. with custom parameters for easier targeting or

with more complex selection mechanisms.

Targeting specific running instances
Because tags are stored separately from instance metadata SSM does not allow joint queries for both metadata

such as PingState and tags such as OS . If you have only a small number of instances you could make two

"Filters": "[{\"Key\":\"tag:OS\",\"Values\":[\"Raspbian\"]},
{\"Key\":\"tag:Version\",\"Values\":[\"4\"]}]"

https://chaos-engineering.workshop.aws/edit-filter-location.png?classes=shadow&width=60pc

separate lookups and use the aws:executeScript action to merge the two result sets. For large numbers of

managed instances this is potentially slow and may run into pagination issues on the API. Here we would

suggest to instead manage all relevant information in tags and do a single lookup.

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues.html

SIMULATING AZ ISSUES
A common ask we hear is for “Availability Zone outage” simulation. Because AWS has spent more than a decade

working to prevent exactly those scenarios and to self-heal any disruption, there is currently no “easy button”

solution to simulate this.

In this section we will present failure paths you can group together to build an experiment that approximates an

AZ failure for your particular workload.

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/020_targeting_hybrid_instances.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/010_background.html

BACKGROUND
Before attempting to simulate an Availability Zone (AZ) failure it’s worth considering what we mean by “AZ

failure”.

AZ vs. data center
Many of our customers phrase their idea of an AZ failure as “the whole data center goes away” but

AWS Availability Zones are “one or more discrete data centers with redundant power, networking, and

connectivity in an AWS Region” so even a full “data center” outage at AWS may not have the level of impact you

would expect on-prem. Additionally, many AWS services use cell-based architectures to even further reduce the

impact of any system failures.

Control plane vs. data plane
When simulating AZ failure, an important thing to consider is the difference between the effects of an outage

on the “control plane” vs. the “data plane” and their impact on reliability:

Data plane is responsible for delivering service. E.g. in an AWS Auto Scaling group, the EC2 instances being

started or stopped into different AZs would represent the data plane. Similarly in a user managed cluster

there will typically be “worker” nodes that are involved in delivering the service.

Control plane is used to configure an environment or service. E.g. in AWS Auto Scaling group a scheduler

will constantly monitor the requirement for EC2 instances and the number of available instances and will

start and stop instances according to requirements. Similarly in a user managed cluster there will typically

be “master” or “control” nodes that are involved in monitoring and controlling the worker nodes.

A real outage, whether due to a bad cell, a full data center outage, or even a full AZ outage, would create

awareness in the AWS control plane that these resources are unavailable. During the impact period the control

plane would only use un-affected parts of the data plane.

In contrast a simulated outage will only affect the data plane, limited to just the provisioned customer

resources, without affecting the control plane.

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/#Availability_Zones
https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/understanding-availability-needs.html

For example in the auto scaling setup we built for the First Experiment section, we can target EC2 instances in

a given AZ for termination by filtering on Placement.AvailabilityZone . We expect that the “control plane”,

in this case the associated Auto Scaling group, will start new instances to replace those terminated. However,

since there is no actual AZ failure and the Auto Scaling group thus has no awareness of our experiment, the new

instances will most likely be re-created in the AZ for which we wanted to simulate a failure.

Simulating AZ outage options
In the following sections we will cover how to approximate AZ outages for different configurations and how to

build that into a bigger experiment in a way that simulates some of the data plane awareness.

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/010_background/ASG-controlplane.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/020_impact_ec2-asg.html

IMPACT EC2/ASG
This section covers approaches to simulating AZ issues for EC2 instances and Auto Scaling groups.

Standalone EC2
Standalone EC2 instances can be directly targeted based on availability zone placement using the target filter

and set Placement.AvailabilityZone to the desired availability zone.

EC2 with Auto Scaling
We can use Placement.AvailabilityZone to target instances that are part of an Auto Scaling group as well.

However, as mentioned in the background section, Auto Scaling groups (ASGs) will try to rebalance instances

and will likely create new instances in the “affected” AZ.

Workaround: prevent Auto Scaling
If you only need to verify continued availability you can instruct to ASG to suspend activity and not add any

new instances.

For this we can extend the SSM Automation approach shown in FIS SSM Start Automation Setup.

Similar to the aws:ec2:terminate-instances FIS action, the updated SSM document below will terminate

EC2 instances that are members of a specified Auto Scaling group and are in the selected AZ. Additionally this

document will use the Auto Scaling API to suspend and re-enable auto-scaling activity:

This section relies on the use of SSM Automation documents. Please review the

FIS SSM Start Automation Setup when you need additional details.

 Warning

description: Terminate all instances of ASG in a particular AZ

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/010_background.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-suspend-resume-processes.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html
https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html

schemaVersion: '0.3'
assumeRole: "{{ AutomationAssumeRole }}"
parameters:
 AvailabilityZone:
 type: String
 description: "(Required) The Availability Zone to impact"
 AutoscalingGroupName:
 type: String
 description: "(Required) The names of the Auto Scaling group"
 AutomationAssumeRole:
 type: String
 description: "The ARN of the role that allows Automation to perform
 the actions on your behalf."
 Duration:
 type: String
 description: (Optional) The duration of the attack in minutes (default=5)
 default: '5'
mainSteps:
Find all instances in ASG
- name: DescribeAutoscaling
 action: aws:executeAwsApi
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 timeoutSeconds: 60
 inputs:
 Service: autoscaling
 Api: DescribeAutoScalingGroups
 AutoScalingGroupNames:
 - "{{ AutoscalingGroupName }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
Find all ASG instances in AZ
- name: DescribeInstances
 action: aws:executeAwsApi
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 timeoutSeconds: 60
 inputs:
 Service: ec2
 Api: DescribeInstances
 Filters:
 - Name: "availability-zone"
 Values:
 - "{{ AvailabilityZone }}"
 - Name: "instance-id"
 Values: "{{ DescribeAutoscaling.InstanceIds }}"
 outputs:
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
Suspend ASG activity to prevent scaling
- name: SuspendAsgProcesses
 action: aws:executeAwsApi

This SSM document requires an SSM role with the following permissions:

 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 inputs:
 Service: autoscaling
 Api: SuspendProcesses
 AutoScalingGroupName: "{{ AutoscalingGroupName }}"
 ScalingProcesses: ['Launch','Terminate']
Terminate 100% of selected instances
- name: TerminateEc2Instances
 action: aws:changeInstanceState
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 inputs:
 InstanceIds: "{{ DescribeInstances.InstanceIds }}"
 DesiredState: terminated
 Force: true
Wait for up to 90s to make sure instances have been terminated
- name: VerifyInstanceStateTerminated
 action: aws:waitForAwsResourceProperty
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 timeoutSeconds: 90
 inputs:
 Service: ec2
 Api: DescribeInstanceStatus
 IncludeAllInstances: true
 InstanceIds: "{{ DescribeInstances.InstanceIds }}"
 PropertySelector: "$..InstanceState.Name"
 DesiredValues:
 - terminated
Wait for duration specified before re-enabling autoscaling
Note that this is different of the FIS duration setting,
make sure that FIS duration setting is higher than this
- name: WaitForDuration
 action: 'aws:sleep'
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 inputs:
 Duration: 'PT{{Duration}}M'
Always re-enable autoscaling
- name: Rollback
 action: aws:executeAwsApi
 inputs:
 Service: autoscaling
 Api: ResumeProcesses
 AutoScalingGroupName: "{{ AutoscalingGroupName }}"
 ScalingProcesses: ['Launch','Terminate']
 isEnd: true
outputs:
- DescribeInstances.InstanceIds

From here follow the “Create FIS Experiment Template” step shown in FIS SSM Start Automation Setup to

add this as an action to your FIS experiment.

Workaround: remove AZ from ASG / LB
If you need to model a situation in which EC2 instances in an AZ become unavailable but where the ASG will

bring up replacement instances in the remaining AZs, you can modify the ASG to remove subnets associated

with the AZ:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAsgDocument",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:SuspendProcesses",
 "autoscaling:ResumeProcesses",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:TerminateInstances"
],
 "Resource": "*"
 }
]
}

description: Terminate all instances of ASG in a particular AZ
schemaVersion: '0.3'
assumeRole: "{{ AutomationAssumeRole }}"
parameters:
 AvailabilityZone:
 type: String
 description: "(Required) The Availability Zone to impact"
 AutoscalingGroupName:
 type: String
 description: "(Required) The name of the autoscaling group"
 AutomationAssumeRole:
 type: String
 description: "The ARN of the role that allows Automation to perform
 the actions on your behalf."
 Duration:
 type: String
 description: (Optional) The duration of the attack in minutes (default=5)
 default: '5'

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html

mainSteps:

Query subnets attached to ASG. We will later match these to AZs
for detaching and re-attaching operations
- name: DescribeAutoscaling
 action: aws:executeAwsApi
 onFailure: 'step:ExitList'
 onCancel: 'step:ExitList'
 timeoutSeconds: 60
 inputs:
 Service: autoscaling
 Api: DescribeAutoScalingGroups
 AutoScalingGroupNames:
 - "{{ AutoscalingGroupName }}"
 outputs:
 - Name: VPCZoneIdentifier
 Selector: "$.AutoScalingGroups[0].VPCZoneIdentifier"
 Type: String
 - Name: AvailabilityZones
 Selector: "$.AutoScalingGroups[0].AvailabilityZones"
 Type: StringList
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList

Using ASG information, select subnets / AZs to remove from ASG
and subnets / AZs to keep in ASG. This also makes an API call
because the selection logic is more readable than using SSM
JSONPATH / JMESPATH selectors.
- name: SubnetSelector
 action: aws:executeScript
 onFailure: 'step:ExitList'
 onCancel: 'step:ExitList'
 timeoutSeconds: 60
 inputs:
 Runtime: "python3.6"
 Handler: "script_handler"
 InputPayload:
 "vpcZoneIdentifier": "{{ DescribeAutoscaling.VPCZoneIdentifier }}"
 "affectAz": "{{ AvailabilityZone }}"
 Script: |
 import boto3
 client = boto3.client("ec2")
 def script_handler(events, context):
 asgSubnets = events.get("vpcZoneIdentifier","").split(",")
 affectAz = events.get("affectAz","")
 botoOut = client.describe_subnets(SubnetIds=asgSubnets).get("Subnets")
 affectSubnets = [x["SubnetId"] for x in botoOut if
x["AvailabilityZone"] == affectAz]
 protectSubnets = [x["SubnetId"] for x in botoOut if
x["AvailabilityZone"] != affectAz]
 affectAzs = [x["AvailabilityZone"] for x in botoOut if
x["AvailabilityZone"] == affectAz]

 protectAzs = [x["AvailabilityZone"] for x in botoOut if
x["AvailabilityZone"] != affectAz]
 return {
 "SubnetIdArray": asgSubnets,
 "AffectSubnetsArray": affectSubnets,
 "ProtectSubnetsArray": protectSubnets,
 "ProtectVpcZoneIdentifier": ",".join(protectSubnets),
 "AffectAzsArray": affectAzs,
 "ProtectAzsArray": protectAzs,
 }
 outputs:
 - Name: SubnetIds
 Selector: "$.Payload.SubnetIdArray"
 Type: StringList
 - Name: AffectSubnetsArray
 Selector: "$.Payload.AffectSubnetsArray"
 Type: StringList
 - Name: ProtectSubnetsArray
 Selector: "$.Payload.ProtectSubnetsArray"
 Type: StringList
 - Name: ProtectVpcZoneIdentifier
 Selector: "$.Payload.ProtectVpcZoneIdentifier"
 Type: String
 - Name: AffectAzsArray
 Selector: "$.Payload.AffectAzsArray"
 Type: StringList
 - Name: ProtectAzsArray
 Selector: "$.Payload.ProtectAzsArray"
 Type: StringList

Remove subnets / AZs
- name: RemoveSubnets
 action: aws:executeAwsApi
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 inputs:
 Service: autoscaling
 Api: UpdateAutoScalingGroup
 AutoScalingGroupName: "{{ AutoscalingGroupName }}"
 VPCZoneIdentifier: "{{ SubnetSelector.ProtectVpcZoneIdentifier }}"

Wait in outage simulation state
- name: WaitForDuration
 action: 'aws:sleep'
 onFailure: 'step:Rollback'
 onCancel: 'step:Rollback'
 inputs:
 Duration: 'PT{{Duration}}M'

Reset ASG subnets / AZs to original state before we started.
- name: Rollback
 action: aws:executeAwsApi

This SSM document requires an SSM role with the following permissions:

 onFailure: 'step:ExitList'
 onCancel: 'step:ExitList'
 inputs:
 Service: autoscaling
 Api: UpdateAutoScalingGroup
 AutoScalingGroupName: "{{ AutoscalingGroupName }}"
 VPCZoneIdentifier: "{{ DescribeAutoscaling.VPCZoneIdentifier }}"

List state of ASG after all is done. Hopefully it's the same as
before we started.
- name: ExitList
 action: aws:executeAwsApi
 timeoutSeconds: 60
 inputs:
 Service: autoscaling
 Api: DescribeAutoScalingGroups
 AutoScalingGroupNames:
 - "{{ AutoscalingGroupName }}"
 outputs:
 - Name: VPCZoneIdentifier
 Selector: "$.AutoScalingGroups[0].VPCZoneIdentifier"
 Type: String
 - Name: AvailabilityZones
 Selector: "$.AutoScalingGroups[0].AvailabilityZones"
 Type: StringList
 - Name: InstanceIds
 Selector: "$..InstanceId"
 Type: StringList
 isEnd: true

outputs:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableAsgDocument",
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "autoscaling:SuspendProcesses",
 "autoscaling:ResumeProcesses",
 "autoscaling:UpdateAutoScalingGroup",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:TerminateInstance",
 "ec2:DescribeSubnets"
],

From here follow the “Create FIS Experiment Template” step shown in FIS SSM Start Automation Setup to

add this as an action to your FIS experiment.

Note that the above SSM document example limits itself to affecting the ASG and relying on the ASG to cleanly
drain and remove instances from the LB. You can add extra steps to explicitly terminate instances and/or add

NACLs to achieve more extreme failure scenarios on your instances.

Avoid: NACLs and SGs on their own
For EC2 instances in ASGs avoid the exclusive use Network Access Control Lists (NACLs) or security groups (SGs)

as they will create untypical failure scenarios. In particular NACLs preventing access to an ASG or LB subnet will

lead to churn when the ASG tries to spin up new instances and they fail to register as healthy.

If other aspects of your simulation require using NACLs or SGs we suggest combining them with the prevention

Auto Scaling actions as described in the first workaround section above and/or with the removal of subnets

from the ASG as shown in the second example.

 "Resource": "*"
 }
]
}

https://chaos-engineering.workshop.aws/en/030_basic_content/040_ssm/050_direct_automation.html
https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/010_background.html
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability.html

OBSERVABILITY
A core aspect of chaos engineering is observability. In this section we will cover AWS tooling that supports FIS in

providing observability for experiments and help in gaining the understanding needed to improve your system.

https://chaos-engineering.workshop.aws/en/030_basic_content/090_scenarios/010_simulating_az_issues/020_impact_ec2-asg.html
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru.html

DEVOPS GURU

Dashboard overview
Navigate to the DevOps Guru console. Once enough time has passed for DevOps Guru to generate insights you

should see a dashboard similar to this:

This section requires that you followed the setup instructions at the beginning of the workshop and

allowed enough time for Amazon DevOps Guru to establish a baseline. This section also presumes that you

followed the load generating steps in the Synthetic user experience section.

 Warning

https://console.aws.amazon.com/devops-guru/home?#/dashboard
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/dashboard.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/020_starting_workshop/060_devops_guru.html

Reactive insights
Select “Insights” on the left and explore the reactive insights generated from our fault injection activities. You

should see an event relating to “Application ELB” (depending on the exact order of events your dashboard may

vary slightly):

Visualizing anomalies
Selecting the event exposes more detailed information. The “Aggregated metrics” view will show timelines of

different anomalous events that happened during the overall anomaly window:

https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/reactive-insights-1.en.png?classes=shadow&width=60pc

Note that there may be multiple additional pages for additional events:

Examining the example above we see that during the event

an unusually high number of connections were made - by our external load testing tool,

https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/metrics-aggregate-1.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/metrics-aggregate-2.en.png?classes=shadow&width=60pc

the high number of connections led to a high number of overall requests on the load balancer,

the high number of connections led to a high number of connections to each target,

the response time for the servers associated with the target increased substantially.

In addition to the expected direct impact of more connections, we also see unusual responses being sent:

the number of HTTP 5xx errors increased at the load balancer,

specifically the number of HTTP 502 error increased at the load balancer,

the number of HTTP 5xx errors originated at the load balancer target, i.e. our web servers.

Switching to the “Graphed Anomalies” view shows the more detailed time data for each anomalous metric:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

Note that in this view data outside the anomaly window are set to zero to allow focusing on the relevant details

during the outage.

Contextualizing with infrastructure events

https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/metrics-graphed-1.en.png?classes=shadow&width=60pc

In our case the anomalies arose from external load but frequently anomalies are caused by changes to code or

infrastructure configuration. To help you diagnose this, DevOps Guru provides visibility into deployment and

infrastructure changes associated with the anomaly. These events can be visualized in a timeline view (you can

get details by clicking on the dots):

or in table format:

From the table format we can see that about 2h before the anomaly some changes were made to the stack

configuration and deployed code. We can also see that around the time of the event instances were added to

the load balancer in response to the increased load, and subsequently removed from the load balancer due to

the external event subsiding.

Recommendations for improvement

https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/infra-timeline.en.png?classes=shadow&width=60pc
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/infra-table.en.png?classes=shadow&width=60pc

Finally DevOps Guru provides “Recommendations”, links to relevant articles to help troubleshoot issues and

improve overall system performance:

Further reading
To learn more about DevOps Guru, see the documentation, and explore using

DevOps guru on serverless infrastructure as well as larger deployment strategies.

https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru/recommendations.en.png?classes=shadow&width=60pc
https://docs.aws.amazon.com/devops-guru/latest/userguide/welcome.html
https://aws.amazon.com/blogs/devops/gaining-operational-insights-with-aiops-using-amazon-devops-guru/
https://aws.amazon.com/blogs/devops/configure-devops-guru-multiple-accounts-regions-using-cfn-stacksets/
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability.html
https://chaos-engineering.workshop.aws/en/990_cleanup.html

CLEANUP
To ensure you don’t incur any further costs after the workshop, please follow these instructions to delete the

resources you created.

Manually
If you created the CI/CD stack and ran the pipeline, first start by deleting the insfrastructure provisioned

by the pipeline:

Navigate to the AWS CloudFormation console and find the stack named CicdStack

Select the stack

Select “Delete”

Once, the CicdStack is deleted, following the same procedure as above, delete the CicdStack stack

Following the same procedure as above, delete the following stacks

FisStackEks

FisStackEcs

FisStackRdsAurora

FisStackLoadGen

FisStackAsg

FisStackVpc

Delete the CloudWatch log groups:

Navigate to the AWS CloudWatch console

https://console.aws.amazon.com/cloudformation/home?#/stacks?filteringStatus=active&filteringText=CicdStack&viewNested=true&hideStacks=false
https://chaos-engineering.workshop.aws/en/990_cleanup/delete-cicd.en.png?classes=shadow&width=60pc
https://console.aws.amazon.com/cloudwatch/home?#logsV2:log-groups$3FlogGroupNameFilter$3Dfis-workshop

Search for fis-workshop

Select the checkboxes

Under “Actions” select “Delete log group(s)”

Delete Cloud9 Environments

Navigate to the AWS Cloud9 console

Delete the Cloud9 environment that you use during the workshop

Using a script
In your Cloud9 terminal where you performed the Provision AWS resources step run the following commands:

Retained resources
CloudWatch metrics and FIS experiments will be retained until the end of their respective expiration periods.

cd ~/environment

cd aws-fault-injection-simulator-workshop
cd resources/templates
./cleanup-parallel.sh

https://ap-southeast-1.console.aws.amazon.com/cloud9/home
https://chaos-engineering.workshop.aws/en/030_basic_content/100_observability/010_devops_guru.html
https://chaos-engineering.workshop.aws/en/010_introduction.html

